code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : str = 'speech_to_text_2' __SCREAMING_SNAKE_CASE : str = ['past_key_values'] __SCREAMING_SNAKE_CASE : Dict = {'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[Any] , UpperCamelCase__ : Union[str, Any]=10_000 , UpperCamelCase__ : List[str]=6 , UpperCamelCase__ : Optional[int]=2_048 , UpperCamelCase__ : int=4 , UpperCamelCase__ : List[Any]=0.0 , UpperCamelCase__ : int=True , UpperCamelCase__ : str="relu" , UpperCamelCase__ : int=256 , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Any=0.0 , UpperCamelCase__ : Optional[int]=0.0 , UpperCamelCase__ : Optional[Any]=0.02 , UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Optional[Any]=1 , UpperCamelCase__ : List[Any]=0 , UpperCamelCase__ : Any=2 , UpperCamelCase__ : Union[str, Any]=1_024 , **UpperCamelCase__ : str , ): '''simple docstring''' lowercase_ = vocab_size lowercase_ = d_model lowercase_ = decoder_ffn_dim lowercase_ = decoder_layers lowercase_ = decoder_attention_heads lowercase_ = dropout lowercase_ = attention_dropout lowercase_ = activation_dropout lowercase_ = activation_function lowercase_ = init_std lowercase_ = decoder_layerdrop lowercase_ = use_cache lowercase_ = decoder_layers lowercase_ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase_ = max_target_positions super().__init__( pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , decoder_start_token_id=UpperCamelCase__ , **UpperCamelCase__ , )
650
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) a = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
650
1
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase__ : def __init__( self : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any]=13 , UpperCamelCase__ : str=30 , UpperCamelCase__ : Any=2 , UpperCamelCase__ : str=3 , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : str=32 , UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : Optional[int]=4 , UpperCamelCase__ : Optional[Any]=37 , UpperCamelCase__ : Dict="gelu" , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : str=0.1 , UpperCamelCase__ : Optional[int]=10 , UpperCamelCase__ : Optional[Any]=0.02 , UpperCamelCase__ : List[str]=3 , UpperCamelCase__ : Optional[int]=None , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = is_training lowercase_ = use_labels lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase_ = (image_size // patch_size) ** 2 lowercase_ = num_patches + 1 def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] ): '''simple docstring''' lowercase_ = TFViTModel(config=UpperCamelCase__ ) lowercase_ = model(UpperCamelCase__ , training=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. lowercase_ = self.image_size // 2 lowercase_ = pixel_values[:, :, :image_size, :image_size] lowercase_ = model(UpperCamelCase__ , interpolate_pos_encoding=UpperCamelCase__ , training=UpperCamelCase__ ) lowercase_ = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any ): '''simple docstring''' lowercase_ = self.type_sequence_label_size lowercase_ = TFViTForImageClassification(UpperCamelCase__ ) lowercase_ = model(UpperCamelCase__ , labels=UpperCamelCase__ , training=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. lowercase_ = self.image_size // 2 lowercase_ = pixel_values[:, :, :image_size, :image_size] lowercase_ = model(UpperCamelCase__ , interpolate_pos_encoding=UpperCamelCase__ , training=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ = 1 lowercase_ = TFViTForImageClassification(UpperCamelCase__ ) lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ = config_and_inputs lowercase_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class UpperCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[str] = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () __SCREAMING_SNAKE_CASE : Dict = ( {'feature-extraction': TFViTModel, 'image-classification': TFViTForImageClassification} if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE : int = False __SCREAMING_SNAKE_CASE : Any = False __SCREAMING_SNAKE_CASE : Optional[Any] = False def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = TFViTModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' pass def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowercase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , tf.keras.layers.Layer ) ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCamelCase__ ) lowercase_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @slow def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = TFViTModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(UpperCamelCase__ ) def UpperCAmelCase_ ( ): lowercase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class UpperCamelCase__ ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""" ) if is_vision_available() else None @slow def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = TFViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""" ) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=UpperCamelCase__ , return_tensors="""tf""" ) # forward pass lowercase_ = model(**UpperCamelCase__ ) # verify the logits lowercase_ = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) lowercase_ = tf.constant([-0.2_744, 0.8_215, -0.0_836] ) tf.debugging.assert_near(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 )
650
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() a = logging.get_logger(__name__) a = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } a = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): for attribute in key.split(""".""" ): lowercase_ = getattr(UpperCAmelCase__ , UpperCAmelCase__ ) if weight_type is not None: lowercase_ = getattr(UpperCAmelCase__ , UpperCAmelCase__ ).shape else: lowercase_ = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase_ = value elif weight_type == "weight_g": lowercase_ = value elif weight_type == "weight_v": lowercase_ = value elif weight_type == "bias": lowercase_ = value else: lowercase_ = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = [] lowercase_ = fairseq_model.state_dict() lowercase_ = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight lowercase_ = None for name, value in fairseq_dict.items(): lowercase_ = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , hf_model.config.feat_extract_norm == """group""" , ) lowercase_ = True elif name.split(""".""" )[0] == "proj": lowercase_ = fairseq_model.proj lowercase_ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: lowercase_ = True if "*" in mapped_key: lowercase_ = name.split(UpperCAmelCase__ )[0].split(""".""" )[-2] lowercase_ = mapped_key.replace("""*""" , UpperCAmelCase__ ) if "weight_g" in name: lowercase_ = """weight_g""" elif "weight_v" in name: lowercase_ = """weight_v""" elif "bias" in name: lowercase_ = """bias""" elif "weight" in name: lowercase_ = """weight""" else: lowercase_ = None set_recursively(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) continue if not is_used: unused_weights.append(UpperCAmelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) return proj_weight def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = full_name.split("""conv_layers.""" )[-1] lowercase_ = name.split(""".""" ) lowercase_ = int(items[0] ) lowercase_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowercase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(UpperCAmelCase__ ) def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ , lowercase_ = emb.weight.shape lowercase_ = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ , bias=UpperCAmelCase__ ) lowercase_ = emb.weight.data return lin_layer def UpperCAmelCase_ ( UpperCAmelCase__ ): with open(UpperCAmelCase__ , """r""" , encoding="""utf-8""" ) as f: lowercase_ = f.readlines() lowercase_ = [line.split(""" """ )[0] for line in lines] lowercase_ = len(UpperCAmelCase__ ) lowercase_ = { """<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3, } vocab_dict.update(dict(zip(UpperCAmelCase__ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ): lowercase_ = WavaVecaConfig.from_pretrained(UpperCAmelCase__ ) lowercase_ = SpeechaTextaConfig.from_pretrained( UpperCAmelCase__ , vocab_size=UpperCAmelCase__ , decoder_layers=UpperCAmelCase__ , do_stable_layer_norm=UpperCAmelCase__ ) lowercase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , ) lowercase_ , lowercase_ , lowercase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) lowercase_ = model[0].eval() # set weights for wav2vec2 encoder lowercase_ = WavaVecaModel(UpperCAmelCase__ ) lowercase_ = recursively_load_weights_wavaveca(model.encoder , UpperCAmelCase__ ) lowercase_ = SpeechaTextaForCausalLM(UpperCAmelCase__ ) lowercase_ , lowercase_ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=UpperCAmelCase__ ) # set output linear layer unexpected_keys.remove("""embed_out""" ) lowercase_ = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) lowercase_ = SpeechEncoderDecoderModel(encoder=UpperCAmelCase__ , decoder=UpperCAmelCase__ ) lowercase_ = False # add projection layer lowercase_ = nn.Parameter(projection_layer.weight ) lowercase_ = nn.Parameter(projection_layer.bias ) lowercase_ = create_vocab_dict(UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__ , """vocab.json""" ) , """w""" ) as fp: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ = SpeechaTextaTokenizer(os.path.join(UpperCAmelCase__ , """vocab.json""" ) ) tokenizer.save_pretrained(UpperCAmelCase__ ) lowercase_ = hf_wavavec.config.to_dict() lowercase_ = tokenizer.pad_token_id lowercase_ = tokenizer.bos_token_id lowercase_ = tokenizer.eos_token_id lowercase_ = """speech_to_text_2""" lowercase_ = """wav2vec2""" lowercase_ = SpeechEncoderDecoderConfig.from_dict(UpperCAmelCase__ ) hf_wavavec.save_pretrained(UpperCAmelCase__ ) feature_extractor.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-large-lv60', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/s2t-small-mustc-en-fr-st', type=str, help='Path to hf decoder s2t checkpoint config', ) parser.add_argument('--vocab_size', default=1_0_2_2_4, type=int, help='Vocab size of decoder') parser.add_argument('--num_decoder_layers', default=7, type=int, help='Number of decoder layers') a = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
650
1
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('0.12.2'): raise Exception('requires fairseq >= 0.12.2') if version.parse(fairseq.__version__) > version.parse('2'): raise Exception('requires fairseq < v2') logging.set_verbosity_info() a = logging.get_logger(__name__) a = 'Hello, World!' a = 'en_XX' def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = Path("""data_bin""" ) lowercase_ = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(UpperCAmelCase__ ).parent ) , checkpoint_file=Path(UpperCAmelCase__ ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(UpperCAmelCase__ ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(UpperCAmelCase__ ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(UpperCAmelCase__ ) lowercase_ = xmod.model.encoder.sentence_encoder lowercase_ = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: lowercase_ = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , UpperCAmelCase__ ) lowercase_ = XmodForSequenceClassification(UpperCAmelCase__ ) if classification_head else XmodForMaskedLM(UpperCAmelCase__ ) model.eval() # Now let's copy all the weights. # Embeddings lowercase_ = xmod_sent_encoder.embed_tokens.weight lowercase_ = xmod_sent_encoder.embed_positions.weight lowercase_ = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. lowercase_ = xmod_sent_encoder.layernorm_embedding.weight lowercase_ = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowercase_ = model.roberta.encoder.layer[i] lowercase_ = xmod_sent_encoder.layers[i] # self attention lowercase_ = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) lowercase_ = xmod_layer.self_attn.q_proj.weight lowercase_ = xmod_layer.self_attn.q_proj.bias lowercase_ = xmod_layer.self_attn.k_proj.weight lowercase_ = xmod_layer.self_attn.k_proj.bias lowercase_ = xmod_layer.self_attn.v_proj.weight lowercase_ = xmod_layer.self_attn.v_proj.bias # self-attention output lowercase_ = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) lowercase_ = xmod_layer.self_attn.out_proj.weight lowercase_ = xmod_layer.self_attn.out_proj.bias lowercase_ = xmod_layer.self_attn_layer_norm.weight lowercase_ = xmod_layer.self_attn_layer_norm.bias # intermediate lowercase_ = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) lowercase_ = xmod_layer.fca.weight lowercase_ = xmod_layer.fca.bias # output lowercase_ = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) lowercase_ = xmod_layer.fca.weight lowercase_ = xmod_layer.fca.bias lowercase_ = xmod_layer.final_layer_norm.weight lowercase_ = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowercase_ = xmod_layer.adapter_layer_norm.weight lowercase_ = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): lowercase_ = bert_output.adapter_modules[lang_code] lowercase_ = xmod_layer.adapter_modules[lang_code] lowercase_ = from_adapter.fca.weight lowercase_ = from_adapter.fca.bias lowercase_ = from_adapter.fca.weight lowercase_ = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowercase_ = xmod_sent_encoder.layer_norm.weight lowercase_ = xmod_sent_encoder.layer_norm.bias if classification_head: lowercase_ = xmod.model.classification_heads["""mnli"""].dense.weight lowercase_ = xmod.model.classification_heads["""mnli"""].dense.bias lowercase_ = xmod.model.classification_heads["""mnli"""].out_proj.weight lowercase_ = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head lowercase_ = xmod.model.encoder.lm_head.dense.weight lowercase_ = xmod.model.encoder.lm_head.dense.bias lowercase_ = xmod.model.encoder.lm_head.layer_norm.weight lowercase_ = xmod.model.encoder.lm_head.layer_norm.bias lowercase_ = xmod.model.encoder.lm_head.weight lowercase_ = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowercase_ = xmod.encode(UpperCAmelCase__ ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(UpperCAmelCase__ ) lowercase_ = model(UpperCAmelCase__ )[0] if classification_head: lowercase_ = xmod.model.classification_heads["""mnli"""](xmod.extract_features(UpperCAmelCase__ ) ) else: lowercase_ = xmod.model(UpperCAmelCase__ , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) lowercase_ = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 lowercase_ = torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(UpperCAmelCase__ ).mkdir(parents=UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xmod_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) a = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
650
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) # TODO Update this a = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Tuple = 'esm' def __init__( self : Optional[Any] , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : List[Any]=768 , UpperCamelCase__ : Tuple=12 , UpperCamelCase__ : Optional[int]=12 , UpperCamelCase__ : Dict=3_072 , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : Optional[int]=1_026 , UpperCamelCase__ : Any=0.02 , UpperCamelCase__ : Dict=1e-12 , UpperCamelCase__ : List[str]="absolute" , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Union[str, Any]=False , UpperCamelCase__ : Optional[int]=False , UpperCamelCase__ : Dict=None , UpperCamelCase__ : str=None , **UpperCamelCase__ : str , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , mask_token_id=UpperCamelCase__ , **UpperCamelCase__ ) lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = position_embedding_type lowercase_ = use_cache lowercase_ = emb_layer_norm_before lowercase_ = token_dropout lowercase_ = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("""No esmfold_config supplied for folding model, using default values.""" ) lowercase_ = EsmFoldConfig() elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = EsmFoldConfig(**UpperCamelCase__ ) lowercase_ = esmfold_config if vocab_list is None: logger.warning("""No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!""" ) lowercase_ = get_default_vocab_list() else: lowercase_ = vocab_list else: lowercase_ = None lowercase_ = None if self.esmfold_config is not None and getattr(self.esmfold_config , """use_esm_attn_map""" , UpperCamelCase__ ): raise ValueError("""The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!""" ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = super().to_dict() if isinstance(self.esmfold_config , UpperCamelCase__ ): lowercase_ = self.esmfold_config.to_dict() return output @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : str = None __SCREAMING_SNAKE_CASE : bool = True __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : float = 0 __SCREAMING_SNAKE_CASE : bool = True __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : "TrunkConfig" = None def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' if self.trunk is None: lowercase_ = TrunkConfig() elif isinstance(self.trunk , UpperCamelCase__ ): lowercase_ = TrunkConfig(**self.trunk ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = asdict(self ) lowercase_ = self.trunk.to_dict() return output @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : int = 48 __SCREAMING_SNAKE_CASE : int = 1024 __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : float = 0 __SCREAMING_SNAKE_CASE : float = 0 __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : int = 4 __SCREAMING_SNAKE_CASE : Optional[int] = 128 __SCREAMING_SNAKE_CASE : "StructureModuleConfig" = None def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' if self.structure_module is None: lowercase_ = StructureModuleConfig() elif isinstance(self.structure_module , UpperCamelCase__ ): lowercase_ = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( """`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got""" F''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( """`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got""" F''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) lowercase_ = self.sequence_state_dim // self.sequence_head_width lowercase_ = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( """`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got""" F''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( """`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got""" F''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(F'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = asdict(self ) lowercase_ = self.structure_module.to_dict() return output @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : int = 384 __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : int = 16 __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : int = 12 __SCREAMING_SNAKE_CASE : int = 4 __SCREAMING_SNAKE_CASE : int = 8 __SCREAMING_SNAKE_CASE : float = 0.1 __SCREAMING_SNAKE_CASE : int = 8 __SCREAMING_SNAKE_CASE : int = 1 __SCREAMING_SNAKE_CASE : int = 2 __SCREAMING_SNAKE_CASE : int = 7 __SCREAMING_SNAKE_CASE : int = 10 __SCREAMING_SNAKE_CASE : float = 1e-8 __SCREAMING_SNAKE_CASE : float = 1e5 def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' return asdict(self ) def UpperCAmelCase_ ( ): return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
650
1
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase__ ( __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[str] = MgpstrTokenizer __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : Optional[int] = {} __SCREAMING_SNAKE_CASE : List[Any] = False def UpperCAmelCase__ ( self : Any ): '''simple docstring''' super().setUp() # fmt: off lowercase_ = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on lowercase_ = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) lowercase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + """\n""" ) def UpperCAmelCase__ ( self : int , **UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : List[Any] ): '''simple docstring''' lowercase_ = """tester""" lowercase_ = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' pass def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = self.get_tokenizers(do_lower_case=UpperCamelCase__ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase_ = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) lowercase_ = tokenizer.encode([special_token] , add_special_tokens=UpperCamelCase__ ) self.assertEqual(len(UpperCamelCase__ ) , 1 ) lowercase_ = tokenizer.decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) self.assertTrue(special_token not in decoded ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase_ , lowercase_ = self.get_input_output_texts(UpperCamelCase__ ) lowercase_ = tokenizer.tokenize(UpperCamelCase__ ) lowercase_ = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) lowercase_ = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertNotEqual(len(UpperCamelCase__ ) , 0 ) lowercase_ = tokenizer.decode(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(text_a.replace(""" """ , """""" ) , UpperCamelCase__ ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' pass
650
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def UpperCAmelCase_ ( UpperCAmelCase__=None ): if subparsers is not None: lowercase_ = subparsers.add_parser("""env""" ) else: lowercase_ = argparse.ArgumentParser("""Accelerate env command""" ) parser.add_argument( """--config_file""" , default=UpperCAmelCase__ , help="""The config file to use for the default values in the launching script.""" ) if subparsers is not None: parser.set_defaults(func=UpperCAmelCase__ ) return parser def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = torch.__version__ lowercase_ = torch.cuda.is_available() lowercase_ = is_xpu_available() lowercase_ = is_npu_available() lowercase_ = """Not found""" # Get the default from the config file. if args.config_file is not None or os.path.isfile(UpperCAmelCase__ ): lowercase_ = load_config_from_file(args.config_file ).to_dict() lowercase_ = { """`Accelerate` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Numpy version""": np.__version__, """PyTorch version (GPU?)""": F'''{pt_version} ({pt_cuda_available})''', """PyTorch XPU available""": str(UpperCAmelCase__ ), """PyTorch NPU available""": str(UpperCAmelCase__ ), """System RAM""": F'''{psutil.virtual_memory().total / 1_0_2_4 ** 3:.2f} GB''', } if pt_cuda_available: lowercase_ = torch.cuda.get_device_name() print("""\nCopy-and-paste the text below in your GitHub issue\n""" ) print("""\n""".join([F'''- {prop}: {val}''' for prop, val in info.items()] ) ) print("""- `Accelerate` default config:""" if args.config_file is None else """- `Accelerate` config passed:""" ) lowercase_ = ( """\n""".join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else F'''\t{accelerate_config}''' ) print(UpperCAmelCase__ ) lowercase_ = accelerate_config return info def UpperCAmelCase_ ( ): lowercase_ = env_command_parser() lowercase_ = parser.parse_args() env_command(UpperCAmelCase__ ) return 0 if __name__ == "__main__": raise SystemExit(main())
650
1
from collections.abc import Callable class UpperCamelCase__ : def __init__( self : List[Any] , UpperCamelCase__ : Callable | None = None ): '''simple docstring''' lowercase_ = [] # Stores indexes of each item for supporting updates and deletion. lowercase_ = {} # Stores current size of heap. lowercase_ = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. lowercase_ = key or (lambda UpperCamelCase__ : x) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : int ): '''simple docstring''' return int((i - 1) / 2 ) if i > 0 else None def UpperCAmelCase__ ( self : Union[str, Any] , UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = int(2 * i + 1 ) return left if 0 < left < self.size else None def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = int(2 * i + 2 ) return right if 0 < right < self.size else None def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : int ): '''simple docstring''' lowercase_ , lowercase_ = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. lowercase_ , lowercase_ = self.arr[j], self.arr[i] def UpperCAmelCase__ ( self : Dict , UpperCamelCase__ : int , UpperCamelCase__ : int ): '''simple docstring''' return self.arr[i][1] < self.arr[j][1] def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = self._left(UpperCamelCase__ ) lowercase_ = self._right(UpperCamelCase__ ) lowercase_ = i if left is not None and not self._cmp(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = left if right is not None and not self._cmp(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = right return valid_parent def UpperCAmelCase__ ( self : int , UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = self._parent(UpperCamelCase__ ) while parent is not None and not self._cmp(UpperCamelCase__ , UpperCamelCase__ ): self._swap(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ , lowercase_ = parent, self._parent(UpperCamelCase__ ) def UpperCAmelCase__ ( self : Dict , UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = self._get_valid_parent(UpperCamelCase__ ) while valid_parent != index: self._swap(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ , lowercase_ = valid_parent, self._get_valid_parent(UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : int ): '''simple docstring''' if item not in self.pos_map: return lowercase_ = self.pos_map[item] lowercase_ = [item, self.key(UpperCamelCase__ )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(UpperCamelCase__ ) self._heapify_down(UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[str] , UpperCamelCase__ : int ): '''simple docstring''' if item not in self.pos_map: return lowercase_ = self.pos_map[item] del self.pos_map[item] lowercase_ = self.arr[self.size - 1] lowercase_ = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(UpperCamelCase__ ) self._heapify_down(UpperCamelCase__ ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : int , UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(UpperCamelCase__ )] ) else: lowercase_ = [item, self.key(UpperCamelCase__ )] lowercase_ = self.size self.size += 1 self._heapify_up(self.size - 1 ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' return self.arr[0] if self.size else None def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def UpperCAmelCase_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
650
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class UpperCamelCase__ : def __init__( self : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple=13 , UpperCamelCase__ : Tuple=30 , UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : Union[str, Any]=3 , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : int=32 , UpperCamelCase__ : Tuple=5 , UpperCamelCase__ : List[Any]=4 , UpperCamelCase__ : Dict=37 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : Any=10 , UpperCamelCase__ : Optional[int]=0.02 , UpperCamelCase__ : Dict=3 , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Union[str, Any]=2 , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = is_training lowercase_ = use_labels lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = scope lowercase_ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowercase_ = (image_size // patch_size) ** 2 lowercase_ = num_patches + 2 def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple ): '''simple docstring''' lowercase_ = DeiTModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = DeiTForMaskedImageModeling(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase_ = 1 lowercase_ = DeiTForMaskedImageModeling(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] ): '''simple docstring''' lowercase_ = self.type_sequence_label_size lowercase_ = DeiTForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ = 1 lowercase_ = DeiTForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : str = ( { 'feature-extraction': DeiTModel, 'image-classification': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : List[Any] = False def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = DeiTModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' pass def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCamelCase__ ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any]=False ): '''simple docstring''' lowercase_ = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' if not self.model_tester.is_training: return lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(UpperCamelCase__ ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue lowercase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.train() lowercase_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) lowercase_ = model(**UpperCamelCase__ ).loss loss.backward() def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase_ = False lowercase_ = True for model_class in self.all_model_classes: if model_class in get_values(UpperCamelCase__ ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue lowercase_ = model_class(UpperCamelCase__ ) model.gradient_checkpointing_enable() model.to(UpperCamelCase__ ) model.train() lowercase_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) lowercase_ = model(**UpperCamelCase__ ).loss loss.backward() def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(UpperCamelCase__ ), *get_values(UpperCamelCase__ ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'''Testing {model_class} with {problem_type["title"]}''' ): lowercase_ = problem_type["""title"""] lowercase_ = problem_type["""num_labels"""] lowercase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.train() lowercase_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if problem_type["num_labels"] > 1: lowercase_ = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) lowercase_ = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=UpperCamelCase__ ) as warning_list: lowercase_ = model(**UpperCamelCase__ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def UpperCAmelCase__ ( self : int ): '''simple docstring''' for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = DeiTModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def UpperCAmelCase_ ( ): lowercase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = DeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ).to( UpperCamelCase__ ) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowercase_ = model(**UpperCamelCase__ ) # verify the logits lowercase_ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) lowercase_ = torch.tensor([-1.0_266, 0.1_912, -1.2_861] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = DeiTModel.from_pretrained( """facebook/deit-base-distilled-patch16-224""" , torch_dtype=torch.floataa , device_map="""auto""" ) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ) lowercase_ = inputs.pixel_values.to(UpperCamelCase__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowercase_ = model(UpperCamelCase__ )
650
1
import sys a = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = 1 for digit in s: product *= int(UpperCAmelCase__ ) return product def UpperCAmelCase_ ( UpperCAmelCase__ = N ): lowercase_ = -sys.maxsize - 1 lowercase_ = n[:1_3] lowercase_ = 1_3 while cur_index < len(UpperCAmelCase__ ) - 1_3: if int(n[cur_index] ) >= int(substr[0] ): lowercase_ = substr[1:] + n[cur_index] cur_index += 1 else: lowercase_ = max(UpperCAmelCase__ , str_eval(UpperCAmelCase__ ) ) lowercase_ = n[cur_index : cur_index + 1_3] cur_index += 1_3 return largest_product if __name__ == "__main__": print(F'''{solution() = }''')
650
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
650
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available a = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ['MLukeTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
650
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = XGLMTokenizer __SCREAMING_SNAKE_CASE : List[Any] = XGLMTokenizerFast __SCREAMING_SNAKE_CASE : List[Any] = True __SCREAMING_SNAKE_CASE : int = True def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase_ = XGLMTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = """<pad>""" lowercase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(len(UpperCamelCase__ ) , 1_008 ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_008 ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = XGLMTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) lowercase_ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCamelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowercase_ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowercase_ = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase_ = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def UpperCAmelCase__ ( self : str ): '''simple docstring''' return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(UpperCamelCase__ , f.name ) lowercase_ = XGLMTokenizer(f.name , keep_accents=UpperCamelCase__ ) lowercase_ = pickle.dumps(UpperCamelCase__ ) pickle.loads(UpperCamelCase__ ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' if not self.test_rust_tokenizer: return lowercase_ = self.get_tokenizer() lowercase_ = self.get_rust_tokenizer() lowercase_ = """I was born in 92000, and this is falsé.""" lowercase_ = tokenizer.tokenize(UpperCamelCase__ ) lowercase_ = rust_tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) lowercase_ = rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = self.get_rust_tokenizer() lowercase_ = tokenizer.encode(UpperCamelCase__ ) lowercase_ = rust_tokenizer.encode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) @slow def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = """Hello World!""" lowercase_ = [2, 31_227, 4_447, 35] self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @slow def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth""" ) # fmt: off lowercase_ = [2, 1_018, 67, 11, 1_988, 2_617, 5_631, 278, 11, 3_407, 48, 71_630, 28_085, 4, 3_234, 157, 13, 6, 5, 6, 4, 3_526, 768, 15, 659, 57, 298, 3_983, 864, 129, 21, 6, 5, 13_675, 377, 652, 7_580, 10_341, 155, 2_817, 422, 1_666, 7, 1_674, 53, 113, 202_277, 17_892, 33, 60, 87, 4, 3_234, 157, 61, 2_667, 52_376, 19, 88, 23, 735] # fmt: on self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @slow def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = { """input_ids""": [[2, 108_825, 1_163, 15, 88_010, 473, 15_898, 157, 13_672, 1_857, 312, 8, 238_021, 1_163, 53, 13_672, 1_857, 312, 8, 53_283, 182_396, 8, 18_566, 16, 36_733, 4_101, 8, 230, 244_017, 122_553, 7, 15, 132_597, 4, 293, 12_511, 7_610, 4, 3_414, 132_597, 9, 4, 32_361, 362, 4, 734, 28_512, 32_569, 18, 4, 32_361, 26_096, 14_982, 73, 18_715, 21_433, 235_261, 15, 492, 12_427, 16, 53, 18_715, 21_433, 65_454, 15, 23_659, 563, 16, 278, 597, 2_843, 595, 7_931, 182_396, 64_186, 22, 886, 595, 132_981, 53, 25_540, 3_449, 43_982, 39_901, 5_951, 878, 330, 4, 27_694, 80_269, 312, 53, 6_517, 11_780, 611, 20_408, 5], [2, 6, 132_597, 67, 42_897, 33, 592, 8, 163_729, 25_540, 361, 136_997, 109_514, 173_230, 7, 501, 60, 102_913, 196, 5_631, 235, 63_243, 473, 6, 231_757, 74, 5_277, 7_905, 53, 3_095, 37_317, 22, 454, 183_874, 5], [2, 268, 31_298, 46_530, 6, 132_935, 43_831, 7, 597, 32, 24, 3_688, 9_865, 5]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name="""facebook/xglm-564M""" , padding=UpperCamelCase__ , )
650
1
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def UpperCAmelCase_ ( ): raise RuntimeError("""CUDA out of memory.""" ) class UpperCamelCase__ ( nn.Module ): def __init__( self : str ): '''simple docstring''' super().__init__() lowercase_ = nn.Linear(3 , 4 ) lowercase_ = nn.BatchNormad(4 ) lowercase_ = nn.Linear(4 , 5 ) def UpperCAmelCase__ ( self : Dict , UpperCamelCase__ : Any ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(UpperCamelCase__ ) ) ) class UpperCamelCase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(UpperCamelCase__ : Optional[Any] ): nonlocal batch_sizes batch_sizes.append(UpperCamelCase__ ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(UpperCamelCase__ , [128, 64, 32, 16, 8] ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(UpperCamelCase__ : int , UpperCamelCase__ : Tuple ): nonlocal batch_sizes batch_sizes.append(UpperCamelCase__ ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga lowercase_ , lowercase_ = mock_training_loop_function("""hello""" ) self.assertListEqual(UpperCamelCase__ , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, """hello"""] ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(UpperCamelCase__ : List[str] ): pass with self.assertRaises(UpperCamelCase__ ) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0] ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(UpperCamelCase__ : List[Any] ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(UpperCamelCase__ ) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0] ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : int ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(UpperCamelCase__ ) as cm: mock_training_loop_function(128 , """hello""" , """world""" ) self.assertIn("""Batch size was passed into `f`""" , cm.exception.args[0] ) self.assertIn("""`f(arg1='hello', arg2='world')""" , cm.exception.args[0] ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(UpperCamelCase__ : Any ): raise ValueError("""Oops, we had an error!""" ) with self.assertRaises(UpperCamelCase__ ) as cm: mock_training_loop_function() self.assertIn("""Oops, we had an error!""" , cm.exception.args[0] ) @require_cuda def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = torch.cuda.memory_allocated() lowercase_ = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , UpperCamelCase__ ) lowercase_ = release_memory(UpperCamelCase__ ) self.assertEqual(torch.cuda.memory_allocated() , UpperCamelCase__ )
650
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: a = None a = logging.get_logger(__name__) a = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} a = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 a = { 't5-small': 5_1_2, 't5-base': 5_1_2, 't5-large': 5_1_2, 't5-3b': 5_1_2, 't5-11b': 5_1_2, } class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : str = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : Dict = TaTokenizer __SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self : int , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Any=None , UpperCamelCase__ : Dict="</s>" , UpperCamelCase__ : Tuple="<unk>" , UpperCamelCase__ : Optional[Any]="<pad>" , UpperCamelCase__ : Union[str, Any]=100 , UpperCamelCase__ : Optional[Any]=None , **UpperCamelCase__ : List[str] , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: lowercase_ = [F'''<extra_id_{i}>''' for i in range(UpperCamelCase__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowercase_ = len(set(filter(lambda UpperCamelCase__ : bool("""extra_id_""" in str(UpperCamelCase__ ) ) , UpperCamelCase__ ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , extra_ids=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , **UpperCamelCase__ , ) lowercase_ = vocab_file lowercase_ = False if not self.vocab_file else True lowercase_ = extra_ids @staticmethod def UpperCAmelCase__ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : int ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowercase_ = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" F''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" F''' {pretrained_model_name_or_path} automatically truncating your input to''' F''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' F''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , UpperCamelCase__ , ) return max_model_length def UpperCAmelCase__ ( self : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCamelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ = os.path.join( UpperCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ): copyfile(self.vocab_file , UpperCamelCase__ ) logger.info(F'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' lowercase_ = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowercase_ = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def UpperCAmelCase__ ( self : str , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' lowercase_ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return list( set(filter(lambda UpperCamelCase__ : bool(re.search(R"""<extra_id_\d+>""" , UpperCamelCase__ ) ) is not None , self.additional_special_tokens ) ) ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' return [self.convert_tokens_to_ids(UpperCamelCase__ ) for token in self.get_sentinel_tokens()]
650
1
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser a = re.compile(R'\s+') def UpperCAmelCase_ ( UpperCAmelCase__ ): return {"hash": hashlib.mda(re.sub(SCREAMING_SNAKE_CASE_ , """""" , example["""content"""] ).encode("""utf-8""" ) ).hexdigest()} def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = [len(SCREAMING_SNAKE_CASE_ ) for line in example["""content"""].splitlines()] return {"line_mean": np.mean(SCREAMING_SNAKE_CASE_ ), "line_max": max(SCREAMING_SNAKE_CASE_ )} def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = np.mean([c.isalnum() for c in example["""content"""]] ) return {"alpha_frac": alpha_frac} def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): if example["hash"] in uniques: uniques.remove(example["""hash"""] ) return True else: return False def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__=5 ): lowercase_ = ["""auto-generated""", """autogenerated""", """automatically generated"""] lowercase_ = example["""content"""].splitlines() for _, line in zip(range(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__=5 , UpperCAmelCase__=0.05 ): lowercase_ = ["""unit tests""", """test file""", """configuration file"""] lowercase_ = example["""content"""].splitlines() lowercase_ = 0 lowercase_ = 0 # first test for _, line in zip(range(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test lowercase_ = example["""content"""].count("""\n""" ) lowercase_ = int(coeff * nlines ) for line in lines: count_config += line.lower().count("""config""" ) count_test += line.lower().count("""test""" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = ["""def """, """class """, """for """, """while """] lowercase_ = example["""content"""].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__=4 ): lowercase_ = example["""content"""].splitlines() lowercase_ = 0 for line in lines: counter += line.lower().count("""=""" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = tokenizer(example["""content"""] , truncation=SCREAMING_SNAKE_CASE_ )["""input_ids"""] lowercase_ = len(example["""content"""] ) / len(SCREAMING_SNAKE_CASE_ ) return {"ratio": ratio} def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = {} results.update(get_hash(SCREAMING_SNAKE_CASE_ ) ) results.update(line_stats(SCREAMING_SNAKE_CASE_ ) ) results.update(alpha_stats(SCREAMING_SNAKE_CASE_ ) ) results.update(char_token_ratio(SCREAMING_SNAKE_CASE_ ) ) results.update(is_autogenerated(SCREAMING_SNAKE_CASE_ ) ) results.update(is_config_or_test(SCREAMING_SNAKE_CASE_ ) ) results.update(has_no_keywords(SCREAMING_SNAKE_CASE_ ) ) results.update(has_few_assignments(SCREAMING_SNAKE_CASE_ ) ) return results def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): if not check_uniques(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def UpperCAmelCase_ ( UpperCAmelCase__ ): with open(SCREAMING_SNAKE_CASE_ , """rb""" ) as f_in: with gzip.open(str(SCREAMING_SNAKE_CASE_ ) + """.gz""" , """wb""" , compresslevel=6 ) as f_out: shutil.copyfileobj(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) os.unlink(SCREAMING_SNAKE_CASE_ ) # Settings a = HfArgumentParser(PreprocessingArguments) a = parser.parse_args() if args.num_workers is None: a = multiprocessing.cpu_count() a = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset a = time.time() a = load_dataset(args.dataset_name, split='train') print(F'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing a = time.time() a = ds.map(preprocess, num_proc=args.num_workers) print(F'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes a = set(ds.unique('hash')) a = len(uniques) / len(ds) print(F'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics a = time.time() a = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args}) print(F'''Time to filter dataset: {time.time()-t_start:.2f}''') print(F'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: a = time.time() a = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(F'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file a = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / 'duplicate_clusters.json', 'w') as f: json.dump(duplicate_clusters, f) a = output_dir / "data" data_dir.mkdir(exist_ok=True) a = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): a = str(data_dir / F'''file-{file_number+1:012}.json''') a = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F'''Time to save dataset: {time.time()-t_start:.2f}''')
700
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionDiffEditPipeline __SCREAMING_SNAKE_CASE : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'height', 'width', 'image'} | {'image_latents'} __SCREAMING_SNAKE_CASE : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'image'} | {'image_latents'} __SCREAMING_SNAKE_CASE : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __SCREAMING_SNAKE_CASE : Any = frozenset([] ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase__ , ) lowercase_ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCamelCase__ , set_alpha_to_one=UpperCamelCase__ , ) lowercase_ = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCamelCase__ , set_alpha_to_zero=UpperCamelCase__ , ) torch.manual_seed(0 ) lowercase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=512 , ) lowercase_ = CLIPTextModel(UpperCamelCase__ ) lowercase_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase_ = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCAmelCase__ ( self : int , UpperCamelCase__ : Any , UpperCamelCase__ : Any=0 ): '''simple docstring''' lowercase_ = floats_tensor((1, 16, 16) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowercase_ = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) if str(UpperCamelCase__ ).startswith("""mps""" ): lowercase_ = torch.manual_seed(UpperCamelCase__ ) else: lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowercase_ = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str=0 ): '''simple docstring''' lowercase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowercase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase_ = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert("""RGB""" ) if str(UpperCamelCase__ ).startswith("""mps""" ): lowercase_ = torch.manual_seed(UpperCamelCase__ ) else: lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowercase_ = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple=0 ): '''simple docstring''' lowercase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowercase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase_ = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert("""RGB""" ) if str(UpperCamelCase__ ).startswith("""mps""" ): lowercase_ = torch.manual_seed(UpperCamelCase__ ) else: lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowercase_ = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : int ): '''simple docstring''' if not hasattr(self.pipeline_class , """_optional_components""" ): return lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowercase_ = self.get_dummy_inputs(UpperCamelCase__ ) lowercase_ = pipe(**UpperCamelCase__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCamelCase__ ) lowercase_ = self.pipeline_class.from_pretrained(UpperCamelCase__ ) pipe_loaded.to(UpperCamelCase__ ) pipe_loaded.set_progress_bar_config(disable=UpperCamelCase__ ) for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCamelCase__ , UpperCamelCase__ ) is None , F'''`{optional_component}` did not stay set to None after loading.''' , ) lowercase_ = self.get_dummy_inputs(UpperCamelCase__ ) lowercase_ = pipe_loaded(**UpperCamelCase__ )[0] lowercase_ = np.abs(output - output_loaded ).max() self.assertLess(UpperCamelCase__ , 1e-4 ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = """cpu""" lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_mask_inputs(UpperCamelCase__ ) lowercase_ = pipe.generate_mask(**UpperCamelCase__ ) lowercase_ = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowercase_ = np.array([0] * 9 ) lowercase_ = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = """cpu""" lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_inversion_inputs(UpperCamelCase__ ) lowercase_ = pipe.invert(**UpperCamelCase__ ).images lowercase_ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase_ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1e-3 ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = """cpu""" lowercase_ = self.get_dummy_components() lowercase_ = {"""beta_start""": 0.00_085, """beta_end""": 0.012, """beta_schedule""": """scaled_linear"""} lowercase_ = DPMSolverMultistepScheduler(**UpperCamelCase__ ) lowercase_ = DPMSolverMultistepInverseScheduler(**UpperCamelCase__ ) lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_inversion_inputs(UpperCamelCase__ ) lowercase_ = pipe.invert(**UpperCamelCase__ ).images lowercase_ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase_ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1e-3 ) @require_torch_gpu @slow class UpperCamelCase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def UpperCAmelCase__ ( cls : Dict ): '''simple docstring''' lowercase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) lowercase_ = raw_image.convert("""RGB""" ).resize((768, 768) ) lowercase_ = raw_image def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = torch.manual_seed(0 ) lowercase_ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa ) lowercase_ = DDIMScheduler.from_config(pipe.scheduler.config ) lowercase_ = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = """a bowl of fruit""" lowercase_ = """a bowl of pears""" lowercase_ = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCamelCase__ , target_prompt=UpperCamelCase__ , generator=UpperCamelCase__ , ) lowercase_ = pipe.invert( prompt=UpperCamelCase__ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCamelCase__ ).latents lowercase_ = pipe( prompt=UpperCamelCase__ , mask_image=UpperCamelCase__ , image_latents=UpperCamelCase__ , generator=UpperCamelCase__ , negative_prompt=UpperCamelCase__ , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0] lowercase_ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1 def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = torch.manual_seed(0 ) lowercase_ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa ) lowercase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase_ = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = """a bowl of fruit""" lowercase_ = """a bowl of pears""" lowercase_ = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCamelCase__ , target_prompt=UpperCamelCase__ , generator=UpperCamelCase__ , ) lowercase_ = pipe.invert( prompt=UpperCamelCase__ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCamelCase__ , num_inference_steps=25 , ).latents lowercase_ = pipe( prompt=UpperCamelCase__ , mask_image=UpperCamelCase__ , image_latents=UpperCamelCase__ , generator=UpperCamelCase__ , negative_prompt=UpperCamelCase__ , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0] lowercase_ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1
650
0
import pytest import datasets # Import fixture modules as plugins a = ['tests.fixtures.files', 'tests.fixtures.hub', 'tests.fixtures.fsspec'] def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ["""integration""", """unit"""] ): continue item.add_marker(pytest.mark.unit ) def UpperCAmelCase_ ( UpperCAmelCase__ ): config.addinivalue_line("""markers""" , """torchaudio_latest: mark test to run with torchaudio>=0.12""" ) @pytest.fixture(autouse=__A ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? lowercase_ = tmp_path_factory.getbasetemp() / """cache""" lowercase_ = test_hf_cache_home / """datasets""" lowercase_ = test_hf_cache_home / """metrics""" lowercase_ = test_hf_cache_home / """modules""" monkeypatch.setattr("""datasets.config.HF_DATASETS_CACHE""" , str(__A ) ) monkeypatch.setattr("""datasets.config.HF_METRICS_CACHE""" , str(__A ) ) monkeypatch.setattr("""datasets.config.HF_MODULES_CACHE""" , str(__A ) ) lowercase_ = test_hf_datasets_cache / """downloads""" monkeypatch.setattr("""datasets.config.DOWNLOADED_DATASETS_PATH""" , str(__A ) ) lowercase_ = test_hf_datasets_cache / """downloads""" / """extracted""" monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(__A ) ) @pytest.fixture(autouse=__A , scope="""session""" ) def UpperCAmelCase_ ( ): datasets.disable_progress_bar() @pytest.fixture(autouse=__A ) def UpperCAmelCase_ ( UpperCAmelCase__ ): # don't take tests into account when counting downloads monkeypatch.setattr("""datasets.config.HF_UPDATE_DOWNLOAD_COUNTS""" , __A ) @pytest.fixture def UpperCAmelCase_ ( UpperCAmelCase__ ): # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported monkeypatch.setattr("""sqlalchemy.util.deprecations.SILENCE_UBER_WARNING""" , __A )
701
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging a = logging.get_logger(__name__) class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : str = ['pixel_values'] def __init__( self : List[Any] , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[int, float] = 1 / 255 , UpperCamelCase__ : bool = True , UpperCamelCase__ : int = 8 , **UpperCamelCase__ : Optional[Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowercase_ = do_rescale lowercase_ = rescale_factor lowercase_ = do_pad lowercase_ = pad_size def UpperCAmelCase__ ( self : int , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : float , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[Any] ): '''simple docstring''' return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None ): '''simple docstring''' lowercase_ , lowercase_ = get_image_size(UpperCamelCase__ ) lowercase_ = (old_height // size + 1) * size - old_height lowercase_ = (old_width // size + 1) * size - old_width return pad(UpperCamelCase__ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[float] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase__ : Dict , ): '''simple docstring''' lowercase_ = do_rescale if do_rescale is not None else self.do_rescale lowercase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ = do_pad if do_pad is not None else self.do_pad lowercase_ = pad_size if pad_size is not None else self.pad_size lowercase_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_rescale: lowercase_ = [self.rescale(image=UpperCamelCase__ , scale=UpperCamelCase__ ) for image in images] if do_pad: lowercase_ = [self.pad(UpperCamelCase__ , size=UpperCamelCase__ ) for image in images] lowercase_ = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] lowercase_ = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
650
0
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class UpperCamelCase__ ( snake_case__ ): __SCREAMING_SNAKE_CASE : int = (DPMSolverSDEScheduler,) __SCREAMING_SNAKE_CASE : Optional[Any] = 10 def UpperCAmelCase__ ( self : Any , **UpperCamelCase__ : List[Any] ): '''simple docstring''' lowercase_ = { """num_train_timesteps""": 1_100, """beta_start""": 0.0_001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**UpperCAmelCase_ ) return config def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_ ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=UpperCAmelCase_ , beta_end=UpperCAmelCase_ ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=UpperCAmelCase_ ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase_ ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**UpperCAmelCase_ ) scheduler.set_timesteps(self.num_inference_steps ) lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter * scheduler.init_noise_sigma lowercase_ = sample.to(UpperCAmelCase_ ) for i, t in enumerate(scheduler.timesteps ): lowercase_ = scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_ ) lowercase_ = model(UpperCAmelCase_ , UpperCAmelCase_ ) lowercase_ = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowercase_ = output.prev_sample lowercase_ = torch.sum(torch.abs(UpperCAmelCase_ ) ) lowercase_ = torch.mean(torch.abs(UpperCAmelCase_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_821_044_921_875 ) < 1e-2 assert abs(result_mean.item() - 0.2_178_705_964_565_277 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_352_111_816_406 ) < 1e-2 assert abs(result_mean.item() - 0.22_342_906_892_299_652 ) < 1e-3 else: assert abs(result_sum.item() - 162.52_383_422_851_562 ) < 1e-2 assert abs(result_mean.item() - 0.211_619_570_851_326 ) < 1e-3 def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config(prediction_type="""v_prediction""" ) lowercase_ = scheduler_class(**UpperCAmelCase_ ) scheduler.set_timesteps(self.num_inference_steps ) lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter * scheduler.init_noise_sigma lowercase_ = sample.to(UpperCAmelCase_ ) for i, t in enumerate(scheduler.timesteps ): lowercase_ = scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_ ) lowercase_ = model(UpperCAmelCase_ , UpperCAmelCase_ ) lowercase_ = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowercase_ = output.prev_sample lowercase_ = torch.sum(torch.abs(UpperCAmelCase_ ) ) lowercase_ = torch.mean(torch.abs(UpperCAmelCase_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_149_200_439_453 ) < 1e-2 assert abs(result_mean.item() - 0.16_226_289_014_816_284 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_663_360_595_703 ) < 1e-2 assert abs(result_mean.item() - 0.16_688_326_001_167_297 ) < 1e-3 else: assert abs(result_sum.item() - 119.8_487_548_828_125 ) < 1e-2 assert abs(result_mean.item() - 0.1_560_530_662_536_621 ) < 1e-3 def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**UpperCAmelCase_ ) scheduler.set_timesteps(self.num_inference_steps , device=UpperCAmelCase_ ) lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter.to(UpperCAmelCase_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowercase_ = scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_ ) lowercase_ = model(UpperCAmelCase_ , UpperCAmelCase_ ) lowercase_ = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowercase_ = output.prev_sample lowercase_ = torch.sum(torch.abs(UpperCAmelCase_ ) ) lowercase_ = torch.mean(torch.abs(UpperCAmelCase_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_957_397_460_938 ) < 1e-2 assert abs(result_mean.item() - 0.21_805_934_607_982_635 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_353_637_695_312 ) < 1e-2 assert abs(result_mean.item() - 0.22_342_908_382_415_771 ) < 1e-3 else: assert abs(result_sum.item() - 162.52_383_422_851_562 ) < 1e-2 assert abs(result_mean.item() - 0.211_619_570_851_326 ) < 1e-3 def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**UpperCAmelCase_ , use_karras_sigmas=UpperCAmelCase_ ) scheduler.set_timesteps(self.num_inference_steps , device=UpperCAmelCase_ ) lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter.to(UpperCAmelCase_ ) * scheduler.init_noise_sigma lowercase_ = sample.to(UpperCAmelCase_ ) for t in scheduler.timesteps: lowercase_ = scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_ ) lowercase_ = model(UpperCAmelCase_ , UpperCAmelCase_ ) lowercase_ = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowercase_ = output.prev_sample lowercase_ = torch.sum(torch.abs(UpperCAmelCase_ ) ) lowercase_ = torch.mean(torch.abs(UpperCAmelCase_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_974_135_742_188 ) < 1e-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_653_564_453_125 ) < 1e-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1e-2 else: assert abs(result_sum.item() - 170.3_135_223_388_672 ) < 1e-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1e-2
702
def UpperCAmelCase_ ( UpperCAmelCase__ ): if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise TypeError("""Input value must be an 'int' type""" ) lowercase_ = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
650
0
import re def UpperCAmelCase_ ( UpperCAmelCase__ ): if len(re.findall("""[ATCG]""" , UpperCAmelCase__ ) ) != len(UpperCAmelCase__ ): raise ValueError("""Invalid Strand""" ) return dna.translate(dna.maketrans("""ATCG""" , """TAGC""" ) ) if __name__ == "__main__": import doctest doctest.testmod()
703
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ ): @register_to_config def __init__( self : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : bool = False , ): '''simple docstring''' super().__init__() lowercase_ = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = False lowercase_ = nn.Dropout(p=UpperCamelCase__ ) lowercase_ = TaConfig( vocab_size=UpperCamelCase__ , d_model=UpperCamelCase__ , num_heads=UpperCamelCase__ , d_kv=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ , feed_forward_proj=UpperCamelCase__ , is_decoder=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , ) lowercase_ = nn.ModuleList() for lyr_num in range(UpperCamelCase__ ): lowercase_ = TaBlock(UpperCamelCase__ ) self.encoders.append(UpperCamelCase__ ) lowercase_ = TaLayerNorm(UpperCamelCase__ ) lowercase_ = nn.Dropout(p=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = self.token_embedder(UpperCamelCase__ ) lowercase_ = encoder_input_tokens.shape[1] lowercase_ = torch.arange(UpperCamelCase__ , device=encoder_input_tokens.device ) x += self.position_encoding(UpperCamelCase__ ) lowercase_ = self.dropout_pre(UpperCamelCase__ ) # inverted the attention mask lowercase_ = encoder_input_tokens.size() lowercase_ = self.get_extended_attention_mask(UpperCamelCase__ , UpperCamelCase__ ) for lyr in self.encoders: lowercase_ = lyr(UpperCamelCase__ , UpperCamelCase__ )[0] lowercase_ = self.layer_norm(UpperCamelCase__ ) return self.dropout_post(UpperCamelCase__ ), encoder_inputs_mask
650
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig a = logging.get_logger(__name__) a = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Optional[int] = 'dpt' def __init__( self : Tuple , UpperCamelCase__ : List[str]=768 , UpperCamelCase__ : Tuple=12 , UpperCamelCase__ : Tuple=12 , UpperCamelCase__ : Union[str, Any]=3_072 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : str=0.0 , UpperCamelCase__ : Any=0.0 , UpperCamelCase__ : List[str]=0.02 , UpperCamelCase__ : int=1e-12 , UpperCamelCase__ : List[Any]=384 , UpperCamelCase__ : int=16 , UpperCamelCase__ : Union[str, Any]=3 , UpperCamelCase__ : Union[str, Any]=False , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : Union[str, Any]=[2, 5, 8, 11] , UpperCamelCase__ : Tuple="project" , UpperCamelCase__ : Tuple=[4, 2, 1, 0.5] , UpperCamelCase__ : List[Any]=[96, 192, 384, 768] , UpperCamelCase__ : Any=256 , UpperCamelCase__ : Tuple=-1 , UpperCamelCase__ : Dict=False , UpperCamelCase__ : int=True , UpperCamelCase__ : Dict=0.4 , UpperCamelCase__ : List[str]=255 , UpperCamelCase__ : str=0.1 , UpperCamelCase__ : Union[str, Any]=[1, 1_024, 24, 24] , UpperCamelCase__ : List[str]=[0, 1] , UpperCamelCase__ : Optional[Any]=None , **UpperCamelCase__ : Dict , ): '''simple docstring''' super().__init__(**UpperCamelCase_ ) lowercase_ = hidden_size lowercase_ = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("""Initializing the config with a `BiT` backbone.""" ) lowercase_ = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, } lowercase_ = BitConfig(**UpperCamelCase_ ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): logger.info("""Initializing the config with a `BiT` backbone.""" ) lowercase_ = BitConfig(**UpperCamelCase_ ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowercase_ = backbone_config else: raise ValueError( F'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) lowercase_ = backbone_featmap_shape lowercase_ = neck_ignore_stages if readout_type != "project": raise ValueError("""Readout type must be \'project\' when using `DPT-hybrid` mode.""" ) else: lowercase_ = None lowercase_ = None lowercase_ = [] lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = qkv_bias lowercase_ = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("""Readout_type must be one of [\'ignore\', \'add\', \'project\']""" ) lowercase_ = readout_type lowercase_ = reassemble_factors lowercase_ = neck_hidden_sizes lowercase_ = fusion_hidden_size lowercase_ = head_in_index lowercase_ = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) lowercase_ = use_auxiliary_head lowercase_ = auxiliary_loss_weight lowercase_ = semantic_loss_ignore_index lowercase_ = semantic_classifier_dropout def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowercase_ = self.backbone_config.to_dict() lowercase_ = self.__class__.model_type return output
704
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar a = TypeVar('T') class UpperCamelCase__ ( Generic[T] ): __SCREAMING_SNAKE_CASE : deque[T] # Cache store of keys __SCREAMING_SNAKE_CASE : set[T] # References of the keys in cache __SCREAMING_SNAKE_CASE : int = 10 # Maximum capacity of cache def __init__( self : str , UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = deque() lowercase_ = set() if not n: lowercase_ = sys.maxsize elif n < 0: raise ValueError("""n should be an integer greater than 0.""" ) else: lowercase_ = n def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : T ): '''simple docstring''' if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: lowercase_ = self.dq_store.pop() self.key_reference.remove(UpperCamelCase__ ) else: self.dq_store.remove(UpperCamelCase__ ) self.dq_store.appendleft(UpperCamelCase__ ) self.key_reference.add(UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' for k in self.dq_store: print(UpperCamelCase__ ) def __repr__( self : Optional[Any] ): '''simple docstring''' return F'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() a = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
650
0
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def UpperCAmelCase_ ( UpperCAmelCase__ ): if ( (cp >= 0X4e_00 and cp <= 0X9f_ff) or (cp >= 0X34_00 and cp <= 0X4d_bf) # or (cp >= 0X2_00_00 and cp <= 0X2_a6_df) # or (cp >= 0X2_a7_00 and cp <= 0X2_b7_3f) # or (cp >= 0X2_b7_40 and cp <= 0X2_b8_1f) # or (cp >= 0X2_b8_20 and cp <= 0X2_ce_af) # or (cp >= 0Xf9_00 and cp <= 0Xfa_ff) or (cp >= 0X2_f8_00 and cp <= 0X2_fa_1f) # ): # return True return False def UpperCAmelCase_ ( UpperCAmelCase__ ): for char in word: lowercase_ = ord(_A ) if not _is_chinese_char(_A ): return 0 return 1 def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = set() for token in tokens: lowercase_ = len(_A ) > 1 and is_chinese(_A ) if chinese_word: word_set.add(_A ) lowercase_ = list(_A ) return word_list def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): if not chinese_word_set: return bert_tokens lowercase_ = max([len(_A ) for w in chinese_word_set] ) lowercase_ = bert_tokens lowercase_ = 0, len(_A ) while start < end: lowercase_ = True if is_chinese(bert_word[start] ): lowercase_ = min(end - start , _A ) for i in range(_A , 1 , -1 ): lowercase_ = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowercase_ = "##" + bert_word[j] lowercase_ = start + i lowercase_ = False break if single_word: start += 1 return bert_word def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = [] for i in range(0 , len(_A ) , 1_0_0 ): lowercase_ = ltp_tokenizer.seg(lines[i : i + 1_0_0] )[0] lowercase_ = [get_chinese_word(_A ) for r in res] ltp_res.extend(_A ) assert len(_A ) == len(_A ) lowercase_ = [] for i in range(0 , len(_A ) , 1_0_0 ): lowercase_ = bert_tokenizer(lines[i : i + 1_0_0] , add_special_tokens=_A , truncation=_A , max_length=5_1_2 ) bert_res.extend(res["""input_ids"""] ) assert len(_A ) == len(_A ) lowercase_ = [] for input_ids, chinese_word in zip(_A , _A ): lowercase_ = [] for id in input_ids: lowercase_ = bert_tokenizer._convert_id_to_token(_A ) input_tokens.append(_A ) lowercase_ = add_sub_symbol(_A , _A ) lowercase_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_A ): if token[:2] == "##": lowercase_ = token[2:] # save chinese tokens' pos if len(_A ) == 1 and _is_chinese_char(ord(_A ) ): ref_id.append(_A ) ref_ids.append(_A ) assert len(_A ) == len(_A ) return ref_ids def UpperCAmelCase_ ( UpperCAmelCase__ ): with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: lowercase_ = f.readlines() lowercase_ = [line.strip() for line in data if len(_A ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowercase_ = LTP(args.ltp ) # faster in GPU device lowercase_ = BertTokenizer.from_pretrained(args.bert ) lowercase_ = prepare_ref(_A , _A , _A ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: lowercase_ = [json.dumps(_A ) + "\n" for ref in ref_ids] f.writelines(_A ) if __name__ == "__main__": a = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path' ) parser.add_argument('--bert', type=str, default='./resources/robert', help='resources for Bert tokenizer') parser.add_argument('--save_path', type=str, default='./resources/ref.txt', help='path to save res') a = parser.parse_args() main(args)
705
def UpperCAmelCase_ ( UpperCAmelCase__ ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
650
0
a = '2.13.1' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('3.7'): raise ImportWarning( 'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( 'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n' 'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip a = concatenate_datasets a = DownloadConfig a = DownloadManager a = DownloadMode a = DownloadConfig a = DownloadMode a = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
706
def UpperCAmelCase_ ( UpperCAmelCase__=2_8_1_2_3 ): lowercase_ = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i lowercase_ = set() lowercase_ = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(UpperCAmelCase__ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
650
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig a = { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/config.json", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/config.json", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/config.json", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/config.json", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/config.json", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/config.json", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json", } class UpperCamelCase__ ( UpperCAmelCase_ ): __SCREAMING_SNAKE_CASE : Any = 'albert' def __init__( self : List[Any] , UpperCamelCase__ : Optional[int]=30_000 , UpperCamelCase__ : Any=128 , UpperCamelCase__ : Any=4_096 , UpperCamelCase__ : Dict=12 , UpperCamelCase__ : Any=1 , UpperCamelCase__ : Any=64 , UpperCamelCase__ : List[Any]=16_384 , UpperCamelCase__ : Optional[int]=1 , UpperCamelCase__ : Optional[Any]="gelu_new" , UpperCamelCase__ : Dict=0 , UpperCamelCase__ : Optional[int]=0 , UpperCamelCase__ : Union[str, Any]=512 , UpperCamelCase__ : int=2 , UpperCamelCase__ : Dict=0.02 , UpperCamelCase__ : Tuple=1e-12 , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : List[Any]="absolute" , UpperCamelCase__ : Dict=0 , UpperCamelCase__ : Tuple=2 , UpperCamelCase__ : Tuple=3 , **UpperCamelCase__ : Optional[Any] , ): '''simple docstring''' super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) lowercase_ = vocab_size lowercase_ = embedding_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_hidden_groups lowercase_ = num_attention_heads lowercase_ = inner_group_num lowercase_ = hidden_act lowercase_ = intermediate_size lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = classifier_dropout_prob lowercase_ = position_embedding_type class UpperCamelCase__ ( UpperCAmelCase_ ): @property def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' if self.task == "multiple-choice": lowercase_ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowercase_ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
707
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase__ : def __init__( self : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str]=13 , UpperCamelCase__ : str=7 , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : str=False , UpperCamelCase__ : str=True , UpperCamelCase__ : Union[str, Any]=99 , UpperCamelCase__ : Dict=32 , UpperCamelCase__ : Union[str, Any]=5 , UpperCamelCase__ : Tuple=4 , UpperCamelCase__ : Dict=37 , UpperCamelCase__ : Any="gelu" , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Tuple=512 , UpperCamelCase__ : Union[str, Any]=16 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : int=0.02 , UpperCamelCase__ : int=3 , UpperCamelCase__ : Optional[Any]=4 , UpperCamelCase__ : int=None , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_input_mask lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_labels lowercase_ = num_choices lowercase_ = scope def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ = None if self.use_input_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ = None if self.use_token_type_ids: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ = None lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , use_stable_embedding=UpperCamelCase__ , ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] ): '''simple docstring''' lowercase_ = OpenLlamaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , ): '''simple docstring''' lowercase_ = True lowercase_ = OpenLlamaModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , ) lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , ) lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , ): '''simple docstring''' lowercase_ = OpenLlamaForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : Tuple , ): '''simple docstring''' lowercase_ = True lowercase_ = True lowercase_ = OpenLlamaForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # first forward pass lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , use_cache=UpperCamelCase__ , ) lowercase_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowercase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase_ = torch.cat([input_mask, next_mask] , dim=-1 ) lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , )["""hidden_states"""][0] lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , past_key_values=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , )["""hidden_states"""][0] # select random slice lowercase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase_ = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : List[str] = (OpenLlamaForCausalLM,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : List[Any] = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Optional[int] = False def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = OpenLlamaModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase_ = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = input_dict["""input_ids"""] lowercase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowercase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase_ = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = """single_label_classification""" lowercase_ = input_dict["""input_ids"""] lowercase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowercase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase_ = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = """multi_label_classification""" lowercase_ = input_dict["""input_ids"""] lowercase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowercase_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowercase_ = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = ids_tensor([1, 10] , config.vocab_size ) lowercase_ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase_ = OpenLlamaModel(UpperCamelCase__ ) original_model.to(UpperCamelCase__ ) original_model.eval() lowercase_ = original_model(UpperCamelCase__ ).last_hidden_state lowercase_ = original_model(UpperCamelCase__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase_ = {"""type""": scaling_type, """factor""": 10.0} lowercase_ = OpenLlamaModel(UpperCamelCase__ ) scaled_model.to(UpperCamelCase__ ) scaled_model.eval() lowercase_ = scaled_model(UpperCamelCase__ ).last_hidden_state lowercase_ = scaled_model(UpperCamelCase__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) )
650
0
import argparse import os import re a = 'src/diffusers' # Pattern that looks at the indentation in a line. a = re.compile(R'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. a = re.compile(R'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. a = re.compile(R'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. a = re.compile(R'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. a = re.compile(R'\[([^\]]+)\]') def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = _re_indent.search(__A ) return "" if search is None else search.groups()[0] def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__="" , UpperCAmelCase__=None , UpperCAmelCase__=None ): lowercase_ = 0 lowercase_ = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(__A ): index += 1 lowercase_ = ['''\n'''.join(lines[:index] )] else: lowercase_ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowercase_ = [lines[index]] index += 1 while index < len(__A ) and (end_prompt is None or not lines[index].startswith(__A )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(__A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(__A ) ) if index < len(__A ) - 1: lowercase_ = [lines[index + 1]] index += 1 else: lowercase_ = [] else: blocks.append("""\n""".join(__A ) ) lowercase_ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(__A ) > 0: blocks.append("""\n""".join(__A ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(__A ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def UpperCAmelCase_ ( UpperCAmelCase__ ): def _inner(UpperCAmelCase__ ): return key(__A ).lower().replace("""_""" , """""" ) return _inner def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__=None ): def noop(UpperCAmelCase__ ): return x if key is None: lowercase_ = noop # Constants are all uppercase, they go first. lowercase_ = [obj for obj in objects if key(__A ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowercase_ = [obj for obj in objects if key(__A )[0].isupper() and not key(__A ).isupper()] # Functions begin with a lowercase, they go last. lowercase_ = [obj for obj in objects if not key(__A )[0].isupper()] lowercase_ = ignore_underscore(__A ) return sorted(__A , key=__A ) + sorted(__A , key=__A ) + sorted(__A , key=__A ) def UpperCAmelCase_ ( UpperCAmelCase__ ): def _replace(UpperCAmelCase__ ): lowercase_ = match.groups()[0] if "," not in imports: return F'''[{imports}]''' lowercase_ = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase_ = keys[:-1] return "[" + ", ".join([F'''"{k}"''' for k in sort_objects(__A )] ) + "]" lowercase_ = import_statement.split("""\n""" ) if len(__A ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowercase_ = 2 if lines[1].strip() == '''[''' else 1 lowercase_ = [(i, _re_strip_line.search(__A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowercase_ = sort_objects(__A , key=lambda UpperCAmelCase__ : x[1] ) lowercase_ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(__A ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowercase_ = _re_bracket_content.sub(_replace , lines[1] ) else: lowercase_ = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase_ = keys[:-1] lowercase_ = get_indent(lines[1] ) + ''', '''.join([F'''"{k}"''' for k in sort_objects(__A )] ) return "\n".join(__A ) else: # Finally we have to deal with imports fitting on one line lowercase_ = _re_bracket_content.sub(_replace , __A ) return import_statement def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__=True ): with open(__A , """r""" ) as f: lowercase_ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowercase_ = split_code_in_indented_blocks( __A , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(__A ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowercase_ = main_blocks[block_idx] lowercase_ = block.split("""\n""" ) # Get to the start of the imports. lowercase_ = 0 while line_idx < len(__A ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowercase_ = len(__A ) else: line_idx += 1 if line_idx >= len(__A ): continue # Ignore beginning and last line: they don't contain anything. lowercase_ = '''\n'''.join(block_lines[line_idx:-1] ) lowercase_ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowercase_ = split_code_in_indented_blocks(__A , indent_level=__A ) # We have two categories of import key: list or _import_structure[key].append/extend lowercase_ = _re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowercase_ = [(pattern.search(__A ).groups()[0] if pattern.search(__A ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowercase_ = [(i, key) for i, key in enumerate(__A ) if key is not None] lowercase_ = [x[0] for x in sorted(__A , key=lambda UpperCAmelCase__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowercase_ = 0 lowercase_ = [] for i in range(len(__A ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: lowercase_ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(__A ) count += 1 # And we put our main block back together with its first and last line. lowercase_ = '''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(__A ): if check_only: return True else: print(F'''Overwriting {file}.''' ) with open(__A , """w""" ) as f: f.write("""\n""".join(__A ) ) def UpperCAmelCase_ ( UpperCAmelCase__=True ): lowercase_ = [] for root, _, files in os.walk(__A ): if "__init__.py" in files: lowercase_ = sort_imports(os.path.join(__A , """__init__.py""" ) , check_only=__A ) if result: lowercase_ = [os.path.join(__A , """__init__.py""" )] if len(__A ) > 0: raise ValueError(F'''Would overwrite {len(__A )} files, run `make style`.''' ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') a = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
708
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: a = False a = logging.get_logger(__name__) a = 'ybelkada/fonts' def UpperCAmelCase_ ( ): if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F'''You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ''' """Pix2StructImageProcessor. Please upgrade torch.""" ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): requires_backends(UpperCAmelCase__ , ["""torch"""] ) _check_torch_version() lowercase_ = image_tensor.unsqueeze(0 ) lowercase_ = torch.nn.functional.unfold(UpperCAmelCase__ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) lowercase_ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , UpperCAmelCase__ , UpperCAmelCase__ , -1 ) lowercase_ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ = 3_6 , UpperCAmelCase__ = "black" , UpperCAmelCase__ = "white" , UpperCAmelCase__ = 5 , UpperCAmelCase__ = 5 , UpperCAmelCase__ = 5 , UpperCAmelCase__ = 5 , UpperCAmelCase__ = None , UpperCAmelCase__ = None , ): requires_backends(UpperCAmelCase__ , """vision""" ) # Add new lines so that each line is no more than 80 characters. lowercase_ = textwrap.TextWrapper(width=8_0 ) lowercase_ = wrapper.wrap(text=UpperCAmelCase__ ) lowercase_ = """\n""".join(UpperCAmelCase__ ) if font_bytes is not None and font_path is None: lowercase_ = io.BytesIO(UpperCAmelCase__ ) elif font_path is not None: lowercase_ = font_path else: lowercase_ = hf_hub_download(UpperCAmelCase__ , """Arial.TTF""" ) lowercase_ = ImageFont.truetype(UpperCAmelCase__ , encoding="""UTF-8""" , size=UpperCAmelCase__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. lowercase_ = ImageDraw.Draw(Image.new("""RGB""" , (1, 1) , UpperCAmelCase__ ) ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = temp_draw.textbbox((0, 0) , UpperCAmelCase__ , UpperCAmelCase__ ) # Create the actual image with a bit of padding around the text. lowercase_ = text_width + left_padding + right_padding lowercase_ = text_height + top_padding + bottom_padding lowercase_ = Image.new("""RGB""" , (image_width, image_height) , UpperCAmelCase__ ) lowercase_ = ImageDraw.Draw(UpperCAmelCase__ ) draw.text(xy=(left_padding, top_padding) , text=UpperCAmelCase__ , fill=UpperCAmelCase__ , font=UpperCAmelCase__ ) return image def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ): requires_backends(UpperCAmelCase__ , """vision""" ) # Convert to PIL image if necessary lowercase_ = to_pil_image(UpperCAmelCase__ ) lowercase_ = render_text(UpperCAmelCase__ , **UpperCAmelCase__ ) lowercase_ = max(header_image.width , image.width ) lowercase_ = int(image.height * (new_width / image.width) ) lowercase_ = int(header_image.height * (new_width / header_image.width) ) lowercase_ = Image.new("""RGB""" , (new_width, new_height + new_header_height) , """white""" ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary lowercase_ = to_numpy_array(UpperCAmelCase__ ) if infer_channel_dimension_format(UpperCAmelCase__ ) == ChannelDimension.LAST: lowercase_ = to_channel_dimension_format(UpperCAmelCase__ , ChannelDimension.LAST ) return new_image class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Tuple = ['flattened_patches'] def __init__( self : str , UpperCamelCase__ : bool = True , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : int = 2_048 , UpperCamelCase__ : bool = False , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowercase_ = patch_size if patch_size is not None else {"""height""": 16, """width""": 16} lowercase_ = do_normalize lowercase_ = do_convert_rgb lowercase_ = max_patches lowercase_ = is_vqa def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : int , UpperCamelCase__ : dict , **UpperCamelCase__ : Optional[int] ): '''simple docstring''' requires_backends(self.extract_flattened_patches , """torch""" ) _check_torch_version() # convert to torch lowercase_ = to_channel_dimension_format(UpperCamelCase__ , ChannelDimension.FIRST ) lowercase_ = torch.from_numpy(UpperCamelCase__ ) lowercase_ , lowercase_ = patch_size["""height"""], patch_size["""width"""] lowercase_ , lowercase_ = get_image_size(UpperCamelCase__ ) # maximize scale s.t. lowercase_ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) lowercase_ = max(min(math.floor(scale * image_height / patch_height ) , UpperCamelCase__ ) , 1 ) lowercase_ = max(min(math.floor(scale * image_width / patch_width ) , UpperCamelCase__ ) , 1 ) lowercase_ = max(num_feasible_rows * patch_height , 1 ) lowercase_ = max(num_feasible_cols * patch_width , 1 ) lowercase_ = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="""bilinear""" , align_corners=UpperCamelCase__ , antialias=UpperCamelCase__ , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] lowercase_ = torch_extract_patches(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = patches.shape lowercase_ = patches_shape[1] lowercase_ = patches_shape[2] lowercase_ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] lowercase_ = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] lowercase_ = torch.arange(UpperCamelCase__ ).reshape([rows, 1] ).repeat(1 , UpperCamelCase__ ).reshape([rows * columns, 1] ) lowercase_ = torch.arange(UpperCamelCase__ ).reshape([1, columns] ).repeat(UpperCamelCase__ , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] lowercase_ = row_ids.to(torch.floataa ) lowercase_ = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] lowercase_ = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] lowercase_ = torch.nn.functional.pad(UpperCamelCase__ , [0, 0, 0, max_patches - (rows * columns)] ).float() lowercase_ = to_numpy_array(UpperCamelCase__ ) return result def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Dict ): '''simple docstring''' if image.dtype == np.uinta: lowercase_ = image.astype(np.floataa ) # take mean across the whole `image` lowercase_ = np.mean(UpperCamelCase__ ) lowercase_ = np.std(UpperCamelCase__ ) lowercase_ = max(UpperCamelCase__ , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase__ : Union[str, Any] , ): '''simple docstring''' lowercase_ = do_normalize if do_normalize is not None else self.do_normalize lowercase_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase_ = patch_size if patch_size is not None else self.patch_size lowercase_ = max_patches if max_patches is not None else self.max_patches lowercase_ = self.is_vqa if kwargs.get("""data_format""" , UpperCamelCase__ ) is not None: raise ValueError("""data_format is not an accepted input as the outputs are """ ) lowercase_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase_ = [convert_to_rgb(UpperCamelCase__ ) for image in images] # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(UpperCamelCase__ ) for image in images] if is_vqa: if header_text is None: raise ValueError("""A header text must be provided for VQA models.""" ) lowercase_ = kwargs.pop("""font_bytes""" , UpperCamelCase__ ) lowercase_ = kwargs.pop("""font_path""" , UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = [header_text] * len(UpperCamelCase__ ) lowercase_ = [ render_header(UpperCamelCase__ , header_text[i] , font_bytes=UpperCamelCase__ , font_path=UpperCamelCase__ ) for i, image in enumerate(UpperCamelCase__ ) ] if do_normalize: lowercase_ = [self.normalize(image=UpperCamelCase__ ) for image in images] # convert to torch tensor and permute lowercase_ = [ self.extract_flattened_patches(image=UpperCamelCase__ , max_patches=UpperCamelCase__ , patch_size=UpperCamelCase__ ) for image in images ] # create attention mask in numpy lowercase_ = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] lowercase_ = BatchFeature( data={"""flattened_patches""": images, """attention_mask""": attention_masks} , tensor_type=UpperCamelCase__ ) return encoded_outputs
650
0
import collections import os import re from pathlib import Path a = 'src/transformers' # Matches is_xxx_available() a = re.compile(R'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} a = re.compile(R'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] a = re.compile(R'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available a = re.compile(R'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") a = re.compile(R'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] a = re.compile(R'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", a = re.compile(R'^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], a = re.compile(R'^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo a = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: a = re.compile(R'^\s*try:') # Catches a line with else: a = re.compile(R'^\s*else:') def UpperCAmelCase_ ( UpperCAmelCase__ ): if _re_test_backend.search(__lowerCAmelCase ) is None: return None lowercase_ = [b[0] for b in _re_backend.findall(__lowerCAmelCase )] backends.sort() return "_and_".join(__lowerCAmelCase ) def UpperCAmelCase_ ( UpperCAmelCase__ ): with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowercase_ = f.readlines() lowercase_ = 0 while line_index < len(__lowerCAmelCase ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(__lowerCAmelCase ): return None # First grab the objects without a specific backend in _import_structure lowercase_ = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: lowercase_ = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(__lowerCAmelCase ): lowercase_ = _re_one_line_import_struct.search(__lowerCAmelCase ).groups()[0] lowercase_ = re.findall(r"""\[([^\]]+)\]""" , __lowerCAmelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue lowercase_ = _re_import_struct_key_value.search(__lowerCAmelCase ) if single_line_import_search is not None: lowercase_ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(__lowerCAmelCase ) > 0] objects.extend(__lowerCAmelCase ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 lowercase_ = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. lowercase_ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowercase_ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowercase_ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): lowercase_ = lines[line_index] if _re_import_struct_add_one.search(__lowerCAmelCase ) is not None: objects.append(_re_import_struct_add_one.search(__lowerCAmelCase ).groups()[0] ) elif _re_import_struct_add_many.search(__lowerCAmelCase ) is not None: lowercase_ = _re_import_struct_add_many.search(__lowerCAmelCase ).groups()[0].split(""", """ ) lowercase_ = [obj[1:-1] for obj in imports if len(__lowerCAmelCase ) > 0] objects.extend(__lowerCAmelCase ) elif _re_between_brackets.search(__lowerCAmelCase ) is not None: lowercase_ = _re_between_brackets.search(__lowerCAmelCase ).groups()[0].split(""", """ ) lowercase_ = [obj[1:-1] for obj in imports if len(__lowerCAmelCase ) > 0] objects.extend(__lowerCAmelCase ) elif _re_quote_object.search(__lowerCAmelCase ) is not None: objects.append(_re_quote_object.search(__lowerCAmelCase ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 1_2 + """\"""" ): objects.append(line[1_3:-3] ) line_index += 1 lowercase_ = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowercase_ = [] while ( line_index < len(__lowerCAmelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): lowercase_ = lines[line_index] lowercase_ = _re_import.search(__lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 lowercase_ = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(__lowerCAmelCase ): # If the line is an if is_backend_available, we grab all objects associated. lowercase_ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowercase_ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowercase_ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): lowercase_ = lines[line_index] lowercase_ = _re_import.search(__lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 1_2 ): objects.append(line[1_2:-2] ) line_index += 1 lowercase_ = objects else: line_index += 1 return import_dict_objects, type_hint_objects def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): def find_duplicates(UpperCAmelCase__ ): return [k for k, v in collections.Counter(__lowerCAmelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowercase_ = [] for key in import_dict_objects.keys(): lowercase_ = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) lowercase_ = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowercase_ = """base imports""" if key == """none""" else F'''{key} backend''' errors.append(F'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def UpperCAmelCase_ ( ): lowercase_ = [] for root, _, files in os.walk(__lowerCAmelCase ): if "__init__.py" in files: lowercase_ = os.path.join(__lowerCAmelCase , """__init__.py""" ) lowercase_ = parse_init(__lowerCAmelCase ) if objects is not None: lowercase_ = analyze_results(*__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: lowercase_ = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append("""\n""".join(__lowerCAmelCase ) ) if len(__lowerCAmelCase ) > 0: raise ValueError("""\n\n""".join(__lowerCAmelCase ) ) def UpperCAmelCase_ ( ): lowercase_ = [] for path, directories, files in os.walk(__lowerCAmelCase ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(__lowerCAmelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(__lowerCAmelCase ) / folder).glob("""*.py""" ) ) ) == 0: continue lowercase_ = str((Path(__lowerCAmelCase ) / folder).relative_to(__lowerCAmelCase ) ) lowercase_ = short_path.replace(os.path.sep , """.""" ) submodules.append(__lowerCAmelCase ) for fname in files: if fname == "__init__.py": continue lowercase_ = str((Path(__lowerCAmelCase ) / fname).relative_to(__lowerCAmelCase ) ) lowercase_ = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(__lowerCAmelCase ) return submodules a = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', 'models.esm.openfold_utils', ] def UpperCAmelCase_ ( ): # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import lowercase_ = direct_transformers_import(__lowerCAmelCase ) lowercase_ = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(__lowerCAmelCase , """__init__.py""" ) , """r""" ) as f: lowercase_ = f.read() import_structure_keys.update(set(re.findall(r"""import_structure\[\"([^\"]*)\"\]""" , __lowerCAmelCase ) ) ) lowercase_ = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(__lowerCAmelCase ) > 0: lowercase_ = """\n""".join(F'''- {module}''' for module in module_not_registered ) raise ValueError( """The following submodules are not properly registed in the main init of Transformers:\n""" F'''{list_of_modules}\n''' """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
709
import cva import numpy as np class UpperCamelCase__ : def __init__( self : List[str] , UpperCamelCase__ : float , UpperCamelCase__ : int ): '''simple docstring''' if k in (0.04, 0.06): lowercase_ = k lowercase_ = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : Optional[int] ): '''simple docstring''' return str(self.k ) def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = cva.imread(UpperCamelCase__ , 0 ) lowercase_ , lowercase_ = img.shape lowercase_ = [] lowercase_ = img.copy() lowercase_ = cva.cvtColor(UpperCamelCase__ , cva.COLOR_GRAY2RGB ) lowercase_ , lowercase_ = np.gradient(UpperCamelCase__ ) lowercase_ = dx**2 lowercase_ = dy**2 lowercase_ = dx * dy lowercase_ = 0.04 lowercase_ = self.window_size // 2 for y in range(UpperCamelCase__ , h - offset ): for x in range(UpperCamelCase__ , w - offset ): lowercase_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase_ = (wxx * wyy) - (wxy**2) lowercase_ = wxx + wyy lowercase_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": a = HarrisCorner(0.04, 3) a , a = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
650
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a = { "configuration_efficientformer": [ "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientFormerConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ["EfficientFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientFormerForImageClassification", "EfficientFormerForImageClassificationWithTeacher", "EfficientFormerModel", "EfficientFormerPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFEfficientFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
710
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): a = { 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: a = { 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = (images / 2 + 0.5).clamp(0 , 1 ) lowercase_ = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowercase_ = numpy_to_pil(UpperCAmelCase__ ) return images def UpperCAmelCase_ ( UpperCAmelCase__ ): if images.ndim == 3: lowercase_ = images[None, ...] lowercase_ = (images * 2_5_5).round().astype("""uint8""" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images lowercase_ = [Image.fromarray(image.squeeze() , mode="""L""" ) for image in images] else: lowercase_ = [Image.fromarray(UpperCAmelCase__ ) for image in images] return pil_images
650
0
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(_lowerCAmelCase , _lowerCAmelCase ) ) ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): if dataset.ndim != value_array.ndim: lowercase_ = ( "Wrong input data's dimensions... " F'''dataset : {dataset.ndim}, value_array : {value_array.ndim}''' ) raise ValueError(_lowerCAmelCase ) try: if dataset.shape[1] != value_array.shape[1]: lowercase_ = ( "Wrong input data's shape... " F'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}''' ) raise ValueError(_lowerCAmelCase ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("""Wrong shape""" ) if dataset.dtype != value_array.dtype: lowercase_ = ( "Input data have different datatype... " F'''dataset : {dataset.dtype}, value_array : {value_array.dtype}''' ) raise TypeError(_lowerCAmelCase ) lowercase_ = [] for value in value_array: lowercase_ = euclidean(_lowerCAmelCase , dataset[0] ) lowercase_ = dataset[0].tolist() for dataset_value in dataset[1:]: lowercase_ = euclidean(_lowerCAmelCase , _lowerCAmelCase ) if dist > temp_dist: lowercase_ = temp_dist lowercase_ = dataset_value.tolist() answer.append([vector, dist] ) return answer def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): return np.dot(_lowerCAmelCase , _lowerCAmelCase ) / (norm(_lowerCAmelCase ) * norm(_lowerCAmelCase )) if __name__ == "__main__": import doctest doctest.testmod()
711
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : str = (UnCLIPScheduler,) def UpperCAmelCase__ ( self : int , **UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = { """num_train_timesteps""": 1_000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**UpperCamelCase__ ) return config def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=UpperCamelCase__ , prev_timestep=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config(variance_type="""fixed_small_log""" ) lowercase_ = scheduler_class(**UpperCamelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1e-5 def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config(variance_type="""learned_range""" ) lowercase_ = scheduler_class(**UpperCamelCase__ ) lowercase_ = 0.5 assert scheduler._get_variance(1 , predicted_variance=UpperCamelCase__ ) - -10.1_712_790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=UpperCamelCase__ ) - -5.7_998_052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=UpperCamelCase__ ) - -0.0_010_011 < 1e-5 def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**UpperCamelCase__ ) lowercase_ = scheduler.timesteps lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter lowercase_ = torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase__ ): # 1. predict noise residual lowercase_ = model(UpperCamelCase__ , UpperCamelCase__ ) # 2. predict previous mean of sample x_t-1 lowercase_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample lowercase_ = pred_prev_sample lowercase_ = torch.sum(torch.abs(UpperCamelCase__ ) ) lowercase_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1e-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1e-3 def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(25 ) lowercase_ = scheduler.timesteps lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter lowercase_ = torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase__ ): # 1. predict noise residual lowercase_ = model(UpperCamelCase__ , UpperCamelCase__ ) if i + 1 == timesteps.shape[0]: lowercase_ = None else: lowercase_ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 lowercase_ = scheduler.step( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , prev_timestep=UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample lowercase_ = pred_prev_sample lowercase_ = torch.sum(torch.abs(UpperCamelCase__ ) ) lowercase_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1e-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1e-3 def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' pass def UpperCAmelCase__ ( self : int ): '''simple docstring''' pass
650
0
class UpperCamelCase__ : def __init__( self : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = name lowercase_ = value lowercase_ = weight def __repr__( self : Tuple ): '''simple docstring''' return F'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def UpperCAmelCase__ ( self : Any ): '''simple docstring''' return self.value def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' return self.name def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return self.weight def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return self.value / self.weight def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Dict: lowercase_ = [] for i in range(len(__lowerCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Union[str, Any]: lowercase_ = sorted(__lowerCAmelCase , key=__lowerCAmelCase , reverse=__lowerCAmelCase ) lowercase_ = [] lowercase_ = 0.0, 0.0 for i in range(len(__lowerCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def UpperCAmelCase_ ( ) -> List[str]: pass if __name__ == "__main__": import doctest doctest.testmod()
712
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') a = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) a = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : Optional[str] = field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field(default=__magic_name__ , metadata={'help': 'A folder containing the training data.'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field(default=__magic_name__ , metadata={'help': 'A folder containing the validation data.'} ) __SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.1_5 , metadata={'help': 'Percent to split off of train for validation.'} ) __SCREAMING_SNAKE_CASE : int = field(default=32 , metadata={'help': 'The size of the square patches to use for masking.'} ) __SCREAMING_SNAKE_CASE : float = field( default=0.6 , metadata={'help': 'Percentage of patches to mask.'} , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = {} if self.train_dir is not None: lowercase_ = self.train_dir if self.validation_dir is not None: lowercase_ = self.validation_dir lowercase_ = data_files if data_files else None @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : str = field( default=__magic_name__ , metadata={ 'help': ( 'The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a ' 'checkpoint identifier on the hub. ' 'Don\'t set if you want to train a model from scratch.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(__magic_name__ )} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'} , ) __SCREAMING_SNAKE_CASE : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __SCREAMING_SNAKE_CASE : str = field(default=__magic_name__ , metadata={'help': 'Name or path of preprocessor config.'} ) __SCREAMING_SNAKE_CASE : bool = field( default=__magic_name__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'The size (resolution) of each image. If not specified, will use `image_size` of the configuration.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={'help': 'Stride to use for the encoder.'} , ) class UpperCamelCase__ : def __init__( self : Dict , UpperCamelCase__ : List[Any]=192 , UpperCamelCase__ : Tuple=32 , UpperCamelCase__ : Dict=4 , UpperCamelCase__ : str=0.6 ): '''simple docstring''' lowercase_ = input_size lowercase_ = mask_patch_size lowercase_ = model_patch_size lowercase_ = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError("""Input size must be divisible by mask patch size""" ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError("""Mask patch size must be divisible by model patch size""" ) lowercase_ = self.input_size // self.mask_patch_size lowercase_ = self.mask_patch_size // self.model_patch_size lowercase_ = self.rand_size**2 lowercase_ = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self : int ): '''simple docstring''' lowercase_ = np.random.permutation(self.token_count )[: self.mask_count] lowercase_ = np.zeros(self.token_count , dtype=UpperCamelCase__ ) lowercase_ = 1 lowercase_ = mask.reshape((self.rand_size, self.rand_size) ) lowercase_ = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = torch.stack([example["""pixel_values"""] for example in examples] ) lowercase_ = torch.stack([example["""mask"""] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def UpperCAmelCase_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase_ , lowercase_ , lowercase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase_ , lowercase_ , lowercase_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mim""" , UpperCAmelCase__ , UpperCAmelCase__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase_ = training_args.get_process_log_level() logger.setLevel(UpperCAmelCase__ ) transformers.utils.logging.set_verbosity(UpperCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. lowercase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. lowercase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowercase_ = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , UpperCAmelCase__ ) and data_args.train_val_split > 0.0: lowercase_ = ds["""train"""].train_test_split(data_args.train_val_split ) lowercase_ = split["""train"""] lowercase_ = split["""test"""] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase_ = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name_or_path: lowercase_ = AutoConfig.from_pretrained(model_args.config_name_or_path , **UpperCAmelCase__ ) elif model_args.model_name_or_path: lowercase_ = AutoConfig.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase__ ) else: lowercase_ = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(UpperCAmelCase__ , """decoder_type""" ): lowercase_ = """simmim""" # adapt config lowercase_ = model_args.image_size if model_args.image_size is not None else config.image_size lowercase_ = model_args.patch_size if model_args.patch_size is not None else config.patch_size lowercase_ = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { """image_size""": model_args.image_size, """patch_size""": model_args.patch_size, """encoder_stride""": model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: lowercase_ = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **UpperCAmelCase__ ) elif model_args.model_name_or_path: lowercase_ = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase__ ) else: lowercase_ = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } lowercase_ = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: lowercase_ = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) lowercase_ = AutoModelForMaskedImageModeling.from_config(UpperCAmelCase__ ) if training_args.do_train: lowercase_ = ds["""train"""].column_names else: lowercase_ = ds["""validation"""].column_names if data_args.image_column_name is not None: lowercase_ = data_args.image_column_name elif "image" in column_names: lowercase_ = """image""" elif "img" in column_names: lowercase_ = """img""" else: lowercase_ = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py lowercase_ = Compose( [ Lambda(lambda UpperCAmelCase__ : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator lowercase_ = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(UpperCAmelCase__ ): lowercase_ = [transforms(UpperCAmelCase__ ) for image in examples[image_column_name]] lowercase_ = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: lowercase_ = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(UpperCAmelCase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: lowercase_ = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(UpperCAmelCase__ ) # Initialize our trainer lowercase_ = Trainer( model=UpperCAmelCase__ , args=UpperCAmelCase__ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=UpperCAmelCase__ , data_collator=UpperCAmelCase__ , ) # Training if training_args.do_train: lowercase_ = None if training_args.resume_from_checkpoint is not None: lowercase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase_ = last_checkpoint lowercase_ = trainer.train(resume_from_checkpoint=UpperCAmelCase__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase_ = trainer.evaluate() trainer.log_metrics("""eval""" , UpperCAmelCase__ ) trainer.save_metrics("""eval""" , UpperCAmelCase__ ) # Write model card and (optionally) push to hub lowercase_ = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """masked-image-modeling""", """dataset""": data_args.dataset_name, """tags""": ["""masked-image-modeling"""], } if training_args.push_to_hub: trainer.push_to_hub(**UpperCAmelCase__ ) else: trainer.create_model_card(**UpperCAmelCase__ ) if __name__ == "__main__": main()
650
0
from __future__ import annotations from collections import Counter from random import random class UpperCamelCase__ : def __init__( self : Optional[Any] ): '''simple docstring''' lowercase_ = {} def UpperCAmelCase__ ( self : Union[str, Any] , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = {} def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : float ): '''simple docstring''' if nodea not in self.connections: self.add_node(UpperCamelCase__ ) if nodea not in self.connections: self.add_node(UpperCamelCase__ ) lowercase_ = probability def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return list(self.connections ) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = 0 lowercase_ = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) lowercase_ = Counter(graph.get_nodes() ) lowercase_ = start for _ in range(__UpperCAmelCase ): lowercase_ = graph.transition(__UpperCAmelCase ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
713
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging a = logging.get_logger(__name__) class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : List[Any] = ['pixel_values'] def __init__( self : List[str] , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[int, float] = 1 / 255 , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **UpperCamelCase__ : Dict , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowercase_ = size if size is not None else {"""shortest_edge""": 224} lowercase_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) lowercase_ = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} lowercase_ = get_size_dict(UpperCamelCase__ , param_name="""crop_size""" ) lowercase_ = do_resize lowercase_ = size lowercase_ = resample lowercase_ = do_center_crop lowercase_ = crop_size lowercase_ = do_rescale lowercase_ = rescale_factor lowercase_ = do_normalize lowercase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase__ ( self : int , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' lowercase_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: lowercase_ = int((256 / 224) * size["""shortest_edge"""] ) lowercase_ = get_resize_output_image_size(UpperCamelCase__ , size=UpperCamelCase__ , default_to_square=UpperCamelCase__ ) lowercase_ = {"""height""": output_size[0], """width""": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( UpperCamelCase__ , size=(size_dict["""height"""], size_dict["""width"""]) , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : str , ): '''simple docstring''' lowercase_ = get_size_dict(UpperCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(UpperCamelCase__ , size=(size["""height"""], size["""width"""]) , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[int, float] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : str , ): '''simple docstring''' return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[str] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : Dict , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : PILImageResampling = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[float] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = None , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = None , UpperCamelCase__ : Optional[TensorType] = None , UpperCamelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' lowercase_ = do_resize if do_resize is not None else self.do_resize lowercase_ = resample if resample is not None else self.resample lowercase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase_ = do_rescale if do_rescale is not None else self.do_rescale lowercase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ = do_normalize if do_normalize is not None else self.do_normalize lowercase_ = image_mean if image_mean is not None else self.image_mean lowercase_ = image_std if image_std is not None else self.image_std lowercase_ = size if size is not None else self.size lowercase_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) lowercase_ = crop_size if crop_size is not None else self.crop_size lowercase_ = get_size_dict(UpperCamelCase__ , param_name="""crop_size""" ) lowercase_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_resize: lowercase_ = [self.resize(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for image in images] if do_center_crop: lowercase_ = [self.center_crop(UpperCamelCase__ , UpperCamelCase__ ) for image in images] if do_rescale: lowercase_ = [self.rescale(UpperCamelCase__ , UpperCamelCase__ ) for image in images] if do_normalize: lowercase_ = [self.normalize(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for image in images] lowercase_ = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] lowercase_ = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
650
0
'''simple docstring''' from heapq import heappop, heappush import numpy as np def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ): lowercase_ , lowercase_ = grid.shape lowercase_ = [-1, 1, 0, 0] lowercase_ = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] lowercase_ , lowercase_ = [(0, source)], set() lowercase_ = np.full((rows, cols) , np.inf ) lowercase_ = 0 lowercase_ = np.empty((rows, cols) , dtype=lowerCAmelCase__ ) lowercase_ = None while queue: ((lowercase_) , (lowercase_)) = heappop(lowerCAmelCase__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: lowercase_ = [] while (x, y) != source: path.append((x, y) ) lowercase_ , lowercase_ = predecessors[x, y] path.append(lowerCAmelCase__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(lowerCAmelCase__ ) ): lowercase_ , lowercase_ = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: lowercase_ = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(lowerCAmelCase__ , (dist + 1, (nx, ny)) ) lowercase_ = dist + 1 lowercase_ = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
714
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) a = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
650
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { "weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json", } class UpperCamelCase__ ( __lowerCAmelCase ): __SCREAMING_SNAKE_CASE : Any = 'roc_bert' def __init__( self : Optional[int] , UpperCamelCase__ : Union[str, Any]=30_522 , UpperCamelCase__ : int=768 , UpperCamelCase__ : Any=12 , UpperCamelCase__ : List[str]=12 , UpperCamelCase__ : Tuple=3_072 , UpperCamelCase__ : int="gelu" , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : List[Any]=512 , UpperCamelCase__ : Union[str, Any]=2 , UpperCamelCase__ : Tuple=0.02 , UpperCamelCase__ : List[Any]=1e-12 , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : List[Any]=0 , UpperCamelCase__ : int="absolute" , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : Any=True , UpperCamelCase__ : Tuple=768 , UpperCamelCase__ : int=910 , UpperCamelCase__ : Optional[Any]=512 , UpperCamelCase__ : List[str]=24_858 , UpperCamelCase__ : Tuple=True , **UpperCamelCase__ : Optional[Any] , ): '''simple docstring''' lowercase_ = vocab_size lowercase_ = max_position_embeddings lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = initializer_range lowercase_ = type_vocab_size lowercase_ = layer_norm_eps lowercase_ = use_cache lowercase_ = enable_pronunciation lowercase_ = enable_shape lowercase_ = pronunciation_embed_dim lowercase_ = pronunciation_vocab_size lowercase_ = shape_embed_dim lowercase_ = shape_vocab_size lowercase_ = concat_input lowercase_ = position_embedding_type lowercase_ = classifier_dropout super().__init__(pad_token_id=_UpperCamelCase , **_UpperCamelCase )
715
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() a = logging.get_logger(__name__) a = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } a = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): for attribute in key.split(""".""" ): lowercase_ = getattr(UpperCAmelCase__ , UpperCAmelCase__ ) if weight_type is not None: lowercase_ = getattr(UpperCAmelCase__ , UpperCAmelCase__ ).shape else: lowercase_ = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase_ = value elif weight_type == "weight_g": lowercase_ = value elif weight_type == "weight_v": lowercase_ = value elif weight_type == "bias": lowercase_ = value else: lowercase_ = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = [] lowercase_ = fairseq_model.state_dict() lowercase_ = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight lowercase_ = None for name, value in fairseq_dict.items(): lowercase_ = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , hf_model.config.feat_extract_norm == """group""" , ) lowercase_ = True elif name.split(""".""" )[0] == "proj": lowercase_ = fairseq_model.proj lowercase_ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: lowercase_ = True if "*" in mapped_key: lowercase_ = name.split(UpperCAmelCase__ )[0].split(""".""" )[-2] lowercase_ = mapped_key.replace("""*""" , UpperCAmelCase__ ) if "weight_g" in name: lowercase_ = """weight_g""" elif "weight_v" in name: lowercase_ = """weight_v""" elif "bias" in name: lowercase_ = """bias""" elif "weight" in name: lowercase_ = """weight""" else: lowercase_ = None set_recursively(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) continue if not is_used: unused_weights.append(UpperCAmelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) return proj_weight def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = full_name.split("""conv_layers.""" )[-1] lowercase_ = name.split(""".""" ) lowercase_ = int(items[0] ) lowercase_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowercase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(UpperCAmelCase__ ) def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ , lowercase_ = emb.weight.shape lowercase_ = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ , bias=UpperCAmelCase__ ) lowercase_ = emb.weight.data return lin_layer def UpperCAmelCase_ ( UpperCAmelCase__ ): with open(UpperCAmelCase__ , """r""" , encoding="""utf-8""" ) as f: lowercase_ = f.readlines() lowercase_ = [line.split(""" """ )[0] for line in lines] lowercase_ = len(UpperCAmelCase__ ) lowercase_ = { """<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3, } vocab_dict.update(dict(zip(UpperCAmelCase__ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ): lowercase_ = WavaVecaConfig.from_pretrained(UpperCAmelCase__ ) lowercase_ = SpeechaTextaConfig.from_pretrained( UpperCAmelCase__ , vocab_size=UpperCAmelCase__ , decoder_layers=UpperCAmelCase__ , do_stable_layer_norm=UpperCAmelCase__ ) lowercase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , ) lowercase_ , lowercase_ , lowercase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) lowercase_ = model[0].eval() # set weights for wav2vec2 encoder lowercase_ = WavaVecaModel(UpperCAmelCase__ ) lowercase_ = recursively_load_weights_wavaveca(model.encoder , UpperCAmelCase__ ) lowercase_ = SpeechaTextaForCausalLM(UpperCAmelCase__ ) lowercase_ , lowercase_ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=UpperCAmelCase__ ) # set output linear layer unexpected_keys.remove("""embed_out""" ) lowercase_ = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) lowercase_ = SpeechEncoderDecoderModel(encoder=UpperCAmelCase__ , decoder=UpperCAmelCase__ ) lowercase_ = False # add projection layer lowercase_ = nn.Parameter(projection_layer.weight ) lowercase_ = nn.Parameter(projection_layer.bias ) lowercase_ = create_vocab_dict(UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__ , """vocab.json""" ) , """w""" ) as fp: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ = SpeechaTextaTokenizer(os.path.join(UpperCAmelCase__ , """vocab.json""" ) ) tokenizer.save_pretrained(UpperCAmelCase__ ) lowercase_ = hf_wavavec.config.to_dict() lowercase_ = tokenizer.pad_token_id lowercase_ = tokenizer.bos_token_id lowercase_ = tokenizer.eos_token_id lowercase_ = """speech_to_text_2""" lowercase_ = """wav2vec2""" lowercase_ = SpeechEncoderDecoderConfig.from_dict(UpperCAmelCase__ ) hf_wavavec.save_pretrained(UpperCAmelCase__ ) feature_extractor.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-large-lv60', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/s2t-small-mustc-en-fr-st', type=str, help='Path to hf decoder s2t checkpoint config', ) parser.add_argument('--vocab_size', default=1_0_2_2_4, type=int, help='Vocab size of decoder') parser.add_argument('--num_decoder_layers', default=7, type=int, help='Number of decoder layers') a = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
650
0
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ : def __init__( self : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple=3 , UpperCamelCase__ : Optional[int]=32 , UpperCamelCase__ : Any=3 , UpperCamelCase__ : List[str]=10 , UpperCamelCase__ : Dict=[10, 20, 30, 40] , UpperCamelCase__ : Any=[1, 1, 2, 1] , UpperCamelCase__ : Any=True , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Any="relu" , UpperCamelCase__ : Union[str, Any]=3 , UpperCamelCase__ : List[str]=None , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = num_channels lowercase_ = embeddings_size lowercase_ = hidden_sizes lowercase_ = depths lowercase_ = is_training lowercase_ = use_labels lowercase_ = hidden_act lowercase_ = num_labels lowercase_ = scope lowercase_ = len(_A ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.num_labels ) lowercase_ = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = TFResNetModel(config=_A ) lowercase_ = model(_A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase__ ( self : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Dict ): '''simple docstring''' lowercase_ = self.num_labels lowercase_ = TFResNetForImageClassification(_A ) lowercase_ = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() lowercase_ = config_and_inputs lowercase_ = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class UpperCamelCase__ ( a__ , a__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Dict = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () __SCREAMING_SNAKE_CASE : Tuple = ( {'feature-extraction': TFResNetModel, 'image-classification': TFResNetForImageClassification} if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : Optional[int] = False __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = TFResNetModelTester(self ) lowercase_ = ConfigTester(self , config_class=_A , has_text_modality=_A ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return @unittest.skip(reason="""ResNet does not use inputs_embeds""" ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' pass @unittest.skip(reason="""ResNet does not support input and output embeddings""" ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' pass def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(_A ) lowercase_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _A ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' def check_hidden_states_output(UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : Any ): lowercase_ = model_class(_A ) lowercase_ = model(**self._prepare_for_class(_A , _A ) ) lowercase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase_ = self.model_tester.num_stages self.assertEqual(len(_A ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase_ = layer_type lowercase_ = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True check_hidden_states_output(_A , _A , _A ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = TFResNetModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def UpperCAmelCase_ ( ): lowercase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class UpperCamelCase__ ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=_A , return_tensors="""tf""" ) # forward pass lowercase_ = model(**_A ) # verify the logits lowercase_ = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , _A ) lowercase_ = tf.constant([-11.1_069, -9.7_877, -8.3_777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _A , atol=1e-4 ) )
716
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) # TODO Update this a = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Tuple = 'esm' def __init__( self : Optional[Any] , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : List[Any]=768 , UpperCamelCase__ : Tuple=12 , UpperCamelCase__ : Optional[int]=12 , UpperCamelCase__ : Dict=3_072 , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : Optional[int]=1_026 , UpperCamelCase__ : Any=0.02 , UpperCamelCase__ : Dict=1e-12 , UpperCamelCase__ : List[str]="absolute" , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Union[str, Any]=False , UpperCamelCase__ : Optional[int]=False , UpperCamelCase__ : Dict=None , UpperCamelCase__ : str=None , **UpperCamelCase__ : str , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , mask_token_id=UpperCamelCase__ , **UpperCamelCase__ ) lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = position_embedding_type lowercase_ = use_cache lowercase_ = emb_layer_norm_before lowercase_ = token_dropout lowercase_ = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("""No esmfold_config supplied for folding model, using default values.""" ) lowercase_ = EsmFoldConfig() elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = EsmFoldConfig(**UpperCamelCase__ ) lowercase_ = esmfold_config if vocab_list is None: logger.warning("""No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!""" ) lowercase_ = get_default_vocab_list() else: lowercase_ = vocab_list else: lowercase_ = None lowercase_ = None if self.esmfold_config is not None and getattr(self.esmfold_config , """use_esm_attn_map""" , UpperCamelCase__ ): raise ValueError("""The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!""" ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = super().to_dict() if isinstance(self.esmfold_config , UpperCamelCase__ ): lowercase_ = self.esmfold_config.to_dict() return output @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : str = None __SCREAMING_SNAKE_CASE : bool = True __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : float = 0 __SCREAMING_SNAKE_CASE : bool = True __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : "TrunkConfig" = None def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' if self.trunk is None: lowercase_ = TrunkConfig() elif isinstance(self.trunk , UpperCamelCase__ ): lowercase_ = TrunkConfig(**self.trunk ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = asdict(self ) lowercase_ = self.trunk.to_dict() return output @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : int = 48 __SCREAMING_SNAKE_CASE : int = 1024 __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : float = 0 __SCREAMING_SNAKE_CASE : float = 0 __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : int = 4 __SCREAMING_SNAKE_CASE : Optional[int] = 128 __SCREAMING_SNAKE_CASE : "StructureModuleConfig" = None def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' if self.structure_module is None: lowercase_ = StructureModuleConfig() elif isinstance(self.structure_module , UpperCamelCase__ ): lowercase_ = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( """`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got""" F''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( """`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got""" F''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) lowercase_ = self.sequence_state_dim // self.sequence_head_width lowercase_ = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( """`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got""" F''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( """`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got""" F''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(F'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = asdict(self ) lowercase_ = self.structure_module.to_dict() return output @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : int = 384 __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : int = 16 __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : int = 12 __SCREAMING_SNAKE_CASE : int = 4 __SCREAMING_SNAKE_CASE : int = 8 __SCREAMING_SNAKE_CASE : float = 0.1 __SCREAMING_SNAKE_CASE : int = 8 __SCREAMING_SNAKE_CASE : int = 1 __SCREAMING_SNAKE_CASE : int = 2 __SCREAMING_SNAKE_CASE : int = 7 __SCREAMING_SNAKE_CASE : int = 10 __SCREAMING_SNAKE_CASE : float = 1e-8 __SCREAMING_SNAKE_CASE : float = 1e5 def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' return asdict(self ) def UpperCAmelCase_ ( ): return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
650
0
def UpperCAmelCase_ ( UpperCAmelCase__ ): if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("""Input value must be an 'int' type""" ) lowercase_ = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
717
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def UpperCAmelCase_ ( UpperCAmelCase__=None ): if subparsers is not None: lowercase_ = subparsers.add_parser("""env""" ) else: lowercase_ = argparse.ArgumentParser("""Accelerate env command""" ) parser.add_argument( """--config_file""" , default=UpperCAmelCase__ , help="""The config file to use for the default values in the launching script.""" ) if subparsers is not None: parser.set_defaults(func=UpperCAmelCase__ ) return parser def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = torch.__version__ lowercase_ = torch.cuda.is_available() lowercase_ = is_xpu_available() lowercase_ = is_npu_available() lowercase_ = """Not found""" # Get the default from the config file. if args.config_file is not None or os.path.isfile(UpperCAmelCase__ ): lowercase_ = load_config_from_file(args.config_file ).to_dict() lowercase_ = { """`Accelerate` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Numpy version""": np.__version__, """PyTorch version (GPU?)""": F'''{pt_version} ({pt_cuda_available})''', """PyTorch XPU available""": str(UpperCAmelCase__ ), """PyTorch NPU available""": str(UpperCAmelCase__ ), """System RAM""": F'''{psutil.virtual_memory().total / 1_0_2_4 ** 3:.2f} GB''', } if pt_cuda_available: lowercase_ = torch.cuda.get_device_name() print("""\nCopy-and-paste the text below in your GitHub issue\n""" ) print("""\n""".join([F'''- {prop}: {val}''' for prop, val in info.items()] ) ) print("""- `Accelerate` default config:""" if args.config_file is None else """- `Accelerate` config passed:""" ) lowercase_ = ( """\n""".join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else F'''\t{accelerate_config}''' ) print(UpperCAmelCase__ ) lowercase_ = accelerate_config return info def UpperCAmelCase_ ( ): lowercase_ = env_command_parser() lowercase_ = parser.parse_args() env_command(UpperCAmelCase__ ) return 0 if __name__ == "__main__": raise SystemExit(main())
650
0
import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict a = namedtuple( '_TestCommandArgs', [ 'dataset', 'name', 'cache_dir', 'data_dir', 'all_configs', 'save_infos', 'ignore_verifications', 'force_redownload', 'clear_cache', ], defaults=[None, None, None, False, False, False, False, False], ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = _TestCommandArgs(dataset=a_ , all_configs=a_ , save_infos=a_ ) lowercase_ = TestCommand(*a_ ) test_command.run() lowercase_ = os.path.join(a_ , """README.md""" ) assert os.path.exists(a_ ) lowercase_ = DatasetInfosDict.from_directory(a_ ) lowercase_ = DatasetInfosDict( { """default""": DatasetInfo( features=Features( { """tokens""": Sequence(Value("""string""" ) ), """ner_tags""": Sequence( ClassLabel(names=["""O""", """B-PER""", """I-PER""", """B-ORG""", """I-ORG""", """B-LOC""", """I-LOC"""] ) ), """langs""": Sequence(Value("""string""" ) ), """spans""": Sequence(Value("""string""" ) ), } ) , splits=[ { """name""": """train""", """num_bytes""": 2_3_5_1_5_6_3, """num_examples""": 1_0_0_0_0, }, { """name""": """validation""", """num_bytes""": 2_3_8_4_1_8, """num_examples""": 1_0_0_0, }, ] , download_size=3_9_4_0_6_8_0 , dataset_size=2_5_8_9_9_8_1 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: lowercase_ = getattr(dataset_infos["""default"""] , a_ ), getattr(expected_dataset_infos["""default"""] , a_ ) if key == "num_bytes": assert is_apercent_close(a_ , a_ ) elif key == "splits": assert list(a_ ) == list(a_ ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
718
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class UpperCamelCase__ : def __init__( self : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple=13 , UpperCamelCase__ : Tuple=30 , UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : Union[str, Any]=3 , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : int=32 , UpperCamelCase__ : Tuple=5 , UpperCamelCase__ : List[Any]=4 , UpperCamelCase__ : Dict=37 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : Any=10 , UpperCamelCase__ : Optional[int]=0.02 , UpperCamelCase__ : Dict=3 , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Union[str, Any]=2 , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = is_training lowercase_ = use_labels lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = scope lowercase_ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowercase_ = (image_size // patch_size) ** 2 lowercase_ = num_patches + 2 def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple ): '''simple docstring''' lowercase_ = DeiTModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = DeiTForMaskedImageModeling(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase_ = 1 lowercase_ = DeiTForMaskedImageModeling(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] ): '''simple docstring''' lowercase_ = self.type_sequence_label_size lowercase_ = DeiTForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ = 1 lowercase_ = DeiTForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : str = ( { 'feature-extraction': DeiTModel, 'image-classification': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : List[Any] = False def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = DeiTModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' pass def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCamelCase__ ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any]=False ): '''simple docstring''' lowercase_ = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' if not self.model_tester.is_training: return lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(UpperCamelCase__ ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue lowercase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.train() lowercase_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) lowercase_ = model(**UpperCamelCase__ ).loss loss.backward() def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase_ = False lowercase_ = True for model_class in self.all_model_classes: if model_class in get_values(UpperCamelCase__ ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue lowercase_ = model_class(UpperCamelCase__ ) model.gradient_checkpointing_enable() model.to(UpperCamelCase__ ) model.train() lowercase_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) lowercase_ = model(**UpperCamelCase__ ).loss loss.backward() def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(UpperCamelCase__ ), *get_values(UpperCamelCase__ ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'''Testing {model_class} with {problem_type["title"]}''' ): lowercase_ = problem_type["""title"""] lowercase_ = problem_type["""num_labels"""] lowercase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.train() lowercase_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if problem_type["num_labels"] > 1: lowercase_ = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) lowercase_ = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=UpperCamelCase__ ) as warning_list: lowercase_ = model(**UpperCamelCase__ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def UpperCAmelCase__ ( self : int ): '''simple docstring''' for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = DeiTModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def UpperCAmelCase_ ( ): lowercase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = DeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ).to( UpperCamelCase__ ) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowercase_ = model(**UpperCamelCase__ ) # verify the logits lowercase_ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) lowercase_ = torch.tensor([-1.0_266, 0.1_912, -1.2_861] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = DeiTModel.from_pretrained( """facebook/deit-base-distilled-patch16-224""" , torch_dtype=torch.floataa , device_map="""auto""" ) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ) lowercase_ = inputs.pixel_values.to(UpperCamelCase__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowercase_ = model(UpperCamelCase__ )
650
0
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def UpperCAmelCase_ ( UpperCAmelCase__ ): if is_torch_version("""<""" , """2.0.0""" ) or not hasattr(_A , """_dynamo""" ): return False return isinstance(_A , torch._dynamo.eval_frame.OptimizedModule ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ = True ): lowercase_ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) lowercase_ = is_compiled_module(_A ) if is_compiled: lowercase_ = model lowercase_ = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_A , _A ): lowercase_ = model.module if not keep_fpaa_wrapper: lowercase_ = getattr(_A , """forward""" ) lowercase_ = model.__dict__.pop("""_original_forward""" , _A ) if original_forward is not None: while hasattr(_A , """__wrapped__""" ): lowercase_ = forward.__wrapped__ if forward == original_forward: break lowercase_ = forward if getattr(_A , """_converted_to_transformer_engine""" , _A ): convert_model(_A , to_transformer_engine=_A ) if is_compiled: lowercase_ = model lowercase_ = compiled_model return model def UpperCAmelCase_ ( ): PartialState().wait_for_everyone() def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): if PartialState().distributed_type == DistributedType.TPU: xm.save(_A , _A ) elif PartialState().local_process_index == 0: torch.save(_A , _A ) @contextmanager def UpperCAmelCase_ ( **UpperCAmelCase__ ): for key, value in kwargs.items(): lowercase_ = str(_A ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def UpperCAmelCase_ ( UpperCAmelCase__ ): if not hasattr(_A , """__qualname__""" ) and not hasattr(_A , """__name__""" ): lowercase_ = getattr(_A , """__class__""" , _A ) if hasattr(_A , """__qualname__""" ): return obj.__qualname__ if hasattr(_A , """__name__""" ): return obj.__name__ return str(_A ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): for key, value in source.items(): if isinstance(_A , _A ): lowercase_ = destination.setdefault(_A , {} ) merge_dicts(_A , _A ) else: lowercase_ = value return destination def UpperCAmelCase_ ( UpperCAmelCase__ = None ): if port is None: lowercase_ = 2_9_5_0_0 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("""localhost""", port) ) == 0
719
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
650
0
def UpperCAmelCase_ ( UpperCAmelCase__ ): if not nums: # Makes sure that the list is not empty raise ValueError("""List is empty""" ) lowercase_ = sum(UpperCAmelCase__ ) / len(UpperCAmelCase__ ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(UpperCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
720
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = XGLMTokenizer __SCREAMING_SNAKE_CASE : List[Any] = XGLMTokenizerFast __SCREAMING_SNAKE_CASE : List[Any] = True __SCREAMING_SNAKE_CASE : int = True def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase_ = XGLMTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = """<pad>""" lowercase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(len(UpperCamelCase__ ) , 1_008 ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_008 ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = XGLMTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) lowercase_ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCamelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowercase_ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowercase_ = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase_ = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def UpperCAmelCase__ ( self : str ): '''simple docstring''' return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(UpperCamelCase__ , f.name ) lowercase_ = XGLMTokenizer(f.name , keep_accents=UpperCamelCase__ ) lowercase_ = pickle.dumps(UpperCamelCase__ ) pickle.loads(UpperCamelCase__ ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' if not self.test_rust_tokenizer: return lowercase_ = self.get_tokenizer() lowercase_ = self.get_rust_tokenizer() lowercase_ = """I was born in 92000, and this is falsé.""" lowercase_ = tokenizer.tokenize(UpperCamelCase__ ) lowercase_ = rust_tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) lowercase_ = rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = self.get_rust_tokenizer() lowercase_ = tokenizer.encode(UpperCamelCase__ ) lowercase_ = rust_tokenizer.encode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) @slow def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = """Hello World!""" lowercase_ = [2, 31_227, 4_447, 35] self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @slow def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth""" ) # fmt: off lowercase_ = [2, 1_018, 67, 11, 1_988, 2_617, 5_631, 278, 11, 3_407, 48, 71_630, 28_085, 4, 3_234, 157, 13, 6, 5, 6, 4, 3_526, 768, 15, 659, 57, 298, 3_983, 864, 129, 21, 6, 5, 13_675, 377, 652, 7_580, 10_341, 155, 2_817, 422, 1_666, 7, 1_674, 53, 113, 202_277, 17_892, 33, 60, 87, 4, 3_234, 157, 61, 2_667, 52_376, 19, 88, 23, 735] # fmt: on self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @slow def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = { """input_ids""": [[2, 108_825, 1_163, 15, 88_010, 473, 15_898, 157, 13_672, 1_857, 312, 8, 238_021, 1_163, 53, 13_672, 1_857, 312, 8, 53_283, 182_396, 8, 18_566, 16, 36_733, 4_101, 8, 230, 244_017, 122_553, 7, 15, 132_597, 4, 293, 12_511, 7_610, 4, 3_414, 132_597, 9, 4, 32_361, 362, 4, 734, 28_512, 32_569, 18, 4, 32_361, 26_096, 14_982, 73, 18_715, 21_433, 235_261, 15, 492, 12_427, 16, 53, 18_715, 21_433, 65_454, 15, 23_659, 563, 16, 278, 597, 2_843, 595, 7_931, 182_396, 64_186, 22, 886, 595, 132_981, 53, 25_540, 3_449, 43_982, 39_901, 5_951, 878, 330, 4, 27_694, 80_269, 312, 53, 6_517, 11_780, 611, 20_408, 5], [2, 6, 132_597, 67, 42_897, 33, 592, 8, 163_729, 25_540, 361, 136_997, 109_514, 173_230, 7, 501, 60, 102_913, 196, 5_631, 235, 63_243, 473, 6, 231_757, 74, 5_277, 7_905, 53, 3_095, 37_317, 22, 454, 183_874, 5], [2, 268, 31_298, 46_530, 6, 132_935, 43_831, 7, 597, 32, 24, 3_688, 9_865, 5]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name="""facebook/xglm-564M""" , padding=UpperCamelCase__ , )
650
0
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput a = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): @register_to_config def __init__( self : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] = None , UpperCamelCase__ : List[str] = None ): '''simple docstring''' super().__init__() lowercase_ = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" lowercase_ = torch.zeros(_lowercase , _lowercase ) else: lowercase_ = None lowercase_ = torch.nn.Parameter(_lowercase ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = 42 __SCREAMING_SNAKE_CASE : Union[str, Any] = 42 __SCREAMING_SNAKE_CASE : List[Any] = 42 __SCREAMING_SNAKE_CASE : Tuple = 42 __SCREAMING_SNAKE_CASE : Any = 42 __SCREAMING_SNAKE_CASE : List[str] = 42 def __init__( self : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : List[str] , ): '''simple docstring''' super().__init__() self.register_modules( vqvae=_lowercase , transformer=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) def UpperCAmelCase__ ( self : Dict , UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = len(_lowercase ) if isinstance(_lowercase , _lowercase ) else 1 # get prompt text embeddings lowercase_ = self.tokenizer( _lowercase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) lowercase_ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowercase_ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) lowercase_ = text_input_ids[:, : self.tokenizer.model_max_length] lowercase_ = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 lowercase_ = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=_lowercase ) # duplicate text embeddings for each generation per prompt lowercase_ = prompt_embeds.repeat_interleave(_lowercase , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: lowercase_ = self.learned_classifier_free_sampling_embeddings.embeddings lowercase_ = negative_prompt_embeds.unsqueeze(0 ).repeat(_lowercase , 1 , 1 ) else: lowercase_ = [""""""] * batch_size lowercase_ = text_input_ids.shape[-1] lowercase_ = self.tokenizer( _lowercase , padding="""max_length""" , max_length=_lowercase , truncation=_lowercase , return_tensors="""pt""" , ) lowercase_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings lowercase_ = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=_lowercase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase_ = negative_prompt_embeds.shape[1] lowercase_ = negative_prompt_embeds.repeat(1 , _lowercase , 1 ) lowercase_ = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _lowercase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase_ = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] = 100 , UpperCamelCase__ : Optional[int] = 5.0 , UpperCamelCase__ : Dict = 1.0 , UpperCamelCase__ : str = 1 , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[Any] = None , UpperCamelCase__ : Any = "pil" , UpperCamelCase__ : Union[str, Any] = True , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[Any] = 1 , ): '''simple docstring''' if isinstance(_lowercase , _lowercase ): lowercase_ = 1 elif isinstance(_lowercase , _lowercase ): lowercase_ = len(_lowercase ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(_lowercase )}''' ) lowercase_ = batch_size * num_images_per_prompt lowercase_ = guidance_scale > 1.0 lowercase_ = self._encode_prompt(_lowercase , _lowercase , _lowercase ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_lowercase , _lowercase ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(_lowercase )}.''' ) # get the initial completely masked latents unless the user supplied it lowercase_ = (batch_size, self.transformer.num_latent_pixels) if latents is None: lowercase_ = self.transformer.num_vector_embeds - 1 lowercase_ = torch.full(_lowercase , _lowercase ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( """Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,""" F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) lowercase_ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_lowercase , device=self.device ) lowercase_ = self.scheduler.timesteps.to(self.device ) lowercase_ = latents for i, t in enumerate(self.progress_bar(_lowercase ) ): # expand the sample if we are doing classifier free guidance lowercase_ = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` lowercase_ = self.transformer(_lowercase , encoder_hidden_states=_lowercase , timestep=_lowercase ).sample if do_classifier_free_guidance: lowercase_ = model_output.chunk(2 ) lowercase_ = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(_lowercase , dim=1 , keepdim=_lowercase ) lowercase_ = self.truncate(_lowercase , _lowercase ) # remove `log(0)`'s (`-inf`s) lowercase_ = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ = self.scheduler.step(_lowercase , timestep=_lowercase , sample=_lowercase , generator=_lowercase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_lowercase , _lowercase , _lowercase ) lowercase_ = self.vqvae.config.vq_embed_dim lowercase_ = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) lowercase_ = self.vqvae.quantize.get_codebook_entry(_lowercase , shape=_lowercase ) lowercase_ = self.vqvae.decode(_lowercase , force_not_quantize=_lowercase ).sample lowercase_ = (image / 2 + 0.5).clamp(0 , 1 ) lowercase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase_ = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = torch.sort(_lowercase , 1 , descending=_lowercase ) lowercase_ = torch.exp(_lowercase ) lowercase_ = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out lowercase_ = torch.full_like(keep_mask[:, 0:1, :] , _lowercase ) lowercase_ = torch.cat((all_true, keep_mask) , dim=1 ) lowercase_ = keep_mask[:, :-1, :] lowercase_ = keep_mask.gather(1 , indices.argsort(1 ) ) lowercase_ = log_p_x_0.clone() lowercase_ = -torch.inf # -inf = log(0) return rv
721
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: a = None a = logging.get_logger(__name__) a = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} a = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 a = { 't5-small': 5_1_2, 't5-base': 5_1_2, 't5-large': 5_1_2, 't5-3b': 5_1_2, 't5-11b': 5_1_2, } class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : str = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : Dict = TaTokenizer __SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self : int , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Any=None , UpperCamelCase__ : Dict="</s>" , UpperCamelCase__ : Tuple="<unk>" , UpperCamelCase__ : Optional[Any]="<pad>" , UpperCamelCase__ : Union[str, Any]=100 , UpperCamelCase__ : Optional[Any]=None , **UpperCamelCase__ : List[str] , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: lowercase_ = [F'''<extra_id_{i}>''' for i in range(UpperCamelCase__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowercase_ = len(set(filter(lambda UpperCamelCase__ : bool("""extra_id_""" in str(UpperCamelCase__ ) ) , UpperCamelCase__ ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , extra_ids=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , **UpperCamelCase__ , ) lowercase_ = vocab_file lowercase_ = False if not self.vocab_file else True lowercase_ = extra_ids @staticmethod def UpperCAmelCase__ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : int ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowercase_ = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" F''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" F''' {pretrained_model_name_or_path} automatically truncating your input to''' F''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' F''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , UpperCamelCase__ , ) return max_model_length def UpperCAmelCase__ ( self : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCamelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ = os.path.join( UpperCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ): copyfile(self.vocab_file , UpperCamelCase__ ) logger.info(F'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' lowercase_ = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowercase_ = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def UpperCAmelCase__ ( self : str , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' lowercase_ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return list( set(filter(lambda UpperCamelCase__ : bool(re.search(R"""<extra_id_\d+>""" , UpperCamelCase__ ) ) is not None , self.additional_special_tokens ) ) ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' return [self.convert_tokens_to_ids(UpperCamelCase__ ) for token in self.get_sentinel_tokens()]
650
0
def UpperCAmelCase_ ( UpperCAmelCase__ = 2_0_0_0_0_0_0 ): lowercase_ = [0 for i in range(n + 1 )] lowercase_ = 1 lowercase_ = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , snake_case__ ): lowercase_ = 1 lowercase_ = 0 for i in range(snake_case__ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F'''{solution() = }''')
700
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionDiffEditPipeline __SCREAMING_SNAKE_CASE : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'height', 'width', 'image'} | {'image_latents'} __SCREAMING_SNAKE_CASE : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'image'} | {'image_latents'} __SCREAMING_SNAKE_CASE : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __SCREAMING_SNAKE_CASE : Any = frozenset([] ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase__ , ) lowercase_ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCamelCase__ , set_alpha_to_one=UpperCamelCase__ , ) lowercase_ = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCamelCase__ , set_alpha_to_zero=UpperCamelCase__ , ) torch.manual_seed(0 ) lowercase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=512 , ) lowercase_ = CLIPTextModel(UpperCamelCase__ ) lowercase_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase_ = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCAmelCase__ ( self : int , UpperCamelCase__ : Any , UpperCamelCase__ : Any=0 ): '''simple docstring''' lowercase_ = floats_tensor((1, 16, 16) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowercase_ = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) if str(UpperCamelCase__ ).startswith("""mps""" ): lowercase_ = torch.manual_seed(UpperCamelCase__ ) else: lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowercase_ = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str=0 ): '''simple docstring''' lowercase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowercase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase_ = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert("""RGB""" ) if str(UpperCamelCase__ ).startswith("""mps""" ): lowercase_ = torch.manual_seed(UpperCamelCase__ ) else: lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowercase_ = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple=0 ): '''simple docstring''' lowercase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowercase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase_ = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert("""RGB""" ) if str(UpperCamelCase__ ).startswith("""mps""" ): lowercase_ = torch.manual_seed(UpperCamelCase__ ) else: lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowercase_ = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : int ): '''simple docstring''' if not hasattr(self.pipeline_class , """_optional_components""" ): return lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowercase_ = self.get_dummy_inputs(UpperCamelCase__ ) lowercase_ = pipe(**UpperCamelCase__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCamelCase__ ) lowercase_ = self.pipeline_class.from_pretrained(UpperCamelCase__ ) pipe_loaded.to(UpperCamelCase__ ) pipe_loaded.set_progress_bar_config(disable=UpperCamelCase__ ) for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCamelCase__ , UpperCamelCase__ ) is None , F'''`{optional_component}` did not stay set to None after loading.''' , ) lowercase_ = self.get_dummy_inputs(UpperCamelCase__ ) lowercase_ = pipe_loaded(**UpperCamelCase__ )[0] lowercase_ = np.abs(output - output_loaded ).max() self.assertLess(UpperCamelCase__ , 1e-4 ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = """cpu""" lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_mask_inputs(UpperCamelCase__ ) lowercase_ = pipe.generate_mask(**UpperCamelCase__ ) lowercase_ = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowercase_ = np.array([0] * 9 ) lowercase_ = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = """cpu""" lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_inversion_inputs(UpperCamelCase__ ) lowercase_ = pipe.invert(**UpperCamelCase__ ).images lowercase_ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase_ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1e-3 ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = """cpu""" lowercase_ = self.get_dummy_components() lowercase_ = {"""beta_start""": 0.00_085, """beta_end""": 0.012, """beta_schedule""": """scaled_linear"""} lowercase_ = DPMSolverMultistepScheduler(**UpperCamelCase__ ) lowercase_ = DPMSolverMultistepInverseScheduler(**UpperCamelCase__ ) lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_inversion_inputs(UpperCamelCase__ ) lowercase_ = pipe.invert(**UpperCamelCase__ ).images lowercase_ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase_ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1e-3 ) @require_torch_gpu @slow class UpperCamelCase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def UpperCAmelCase__ ( cls : Dict ): '''simple docstring''' lowercase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) lowercase_ = raw_image.convert("""RGB""" ).resize((768, 768) ) lowercase_ = raw_image def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = torch.manual_seed(0 ) lowercase_ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa ) lowercase_ = DDIMScheduler.from_config(pipe.scheduler.config ) lowercase_ = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = """a bowl of fruit""" lowercase_ = """a bowl of pears""" lowercase_ = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCamelCase__ , target_prompt=UpperCamelCase__ , generator=UpperCamelCase__ , ) lowercase_ = pipe.invert( prompt=UpperCamelCase__ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCamelCase__ ).latents lowercase_ = pipe( prompt=UpperCamelCase__ , mask_image=UpperCamelCase__ , image_latents=UpperCamelCase__ , generator=UpperCamelCase__ , negative_prompt=UpperCamelCase__ , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0] lowercase_ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1 def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = torch.manual_seed(0 ) lowercase_ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa ) lowercase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase_ = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = """a bowl of fruit""" lowercase_ = """a bowl of pears""" lowercase_ = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCamelCase__ , target_prompt=UpperCamelCase__ , generator=UpperCamelCase__ , ) lowercase_ = pipe.invert( prompt=UpperCamelCase__ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCamelCase__ , num_inference_steps=25 , ).latents lowercase_ = pipe( prompt=UpperCamelCase__ , mask_image=UpperCamelCase__ , image_latents=UpperCamelCase__ , generator=UpperCamelCase__ , negative_prompt=UpperCamelCase__ , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0] lowercase_ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1
650
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available a = {'tokenization_herbert': ['HerbertTokenizer']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ['HerbertTokenizerFast'] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
701
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging a = logging.get_logger(__name__) class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : str = ['pixel_values'] def __init__( self : List[Any] , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[int, float] = 1 / 255 , UpperCamelCase__ : bool = True , UpperCamelCase__ : int = 8 , **UpperCamelCase__ : Optional[Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowercase_ = do_rescale lowercase_ = rescale_factor lowercase_ = do_pad lowercase_ = pad_size def UpperCAmelCase__ ( self : int , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : float , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[Any] ): '''simple docstring''' return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None ): '''simple docstring''' lowercase_ , lowercase_ = get_image_size(UpperCamelCase__ ) lowercase_ = (old_height // size + 1) * size - old_height lowercase_ = (old_width // size + 1) * size - old_width return pad(UpperCamelCase__ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[float] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase__ : Dict , ): '''simple docstring''' lowercase_ = do_rescale if do_rescale is not None else self.do_rescale lowercase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ = do_pad if do_pad is not None else self.do_pad lowercase_ = pad_size if pad_size is not None else self.pad_size lowercase_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_rescale: lowercase_ = [self.rescale(image=UpperCamelCase__ , scale=UpperCamelCase__ ) for image in images] if do_pad: lowercase_ = [self.pad(UpperCamelCase__ , size=UpperCamelCase__ ) for image in images] lowercase_ = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] lowercase_ = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
650
0
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Optional[int] = 42 @flax_register_to_config class UpperCamelCase__ ( nn.Module , __magic_name__ , __magic_name__ ): __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : str = 4 __SCREAMING_SNAKE_CASE : str = 4 __SCREAMING_SNAKE_CASE : List[str] = ( 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D', 'DownBlock2D', ) __SCREAMING_SNAKE_CASE : Union[str, Any] = ('UpBlock2D', 'CrossAttnUpBlock2D', 'CrossAttnUpBlock2D', 'CrossAttnUpBlock2D') __SCREAMING_SNAKE_CASE : str = False __SCREAMING_SNAKE_CASE : str = (320, 640, 1280, 1280) __SCREAMING_SNAKE_CASE : Tuple = 2 __SCREAMING_SNAKE_CASE : List[Any] = 8 __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : List[str] = 1280 __SCREAMING_SNAKE_CASE : str = 0.0 __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : List[Any] = jnp.floataa __SCREAMING_SNAKE_CASE : str = True __SCREAMING_SNAKE_CASE : List[Any] = 0 __SCREAMING_SNAKE_CASE : Optional[int] = False def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = (1, self.in_channels, self.sample_size, self.sample_size) lowercase_ = jnp.zeros(UpperCamelCase__ , dtype=jnp.floataa ) lowercase_ = jnp.ones((1,) , dtype=jnp.intaa ) lowercase_ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) lowercase_ , lowercase_ = jax.random.split(UpperCamelCase__ ) lowercase_ = {"""params""": params_rng, """dropout""": dropout_rng} return self.init(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )["params"] def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = self.block_out_channels lowercase_ = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( """At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.""" ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowercase_ = self.num_attention_heads or self.attention_head_dim # input lowercase_ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowercase_ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) lowercase_ = FlaxTimestepEmbedding(UpperCamelCase__ , dtype=self.dtype ) lowercase_ = self.only_cross_attention if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = (only_cross_attention,) * len(self.down_block_types ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = (num_attention_heads,) * len(self.down_block_types ) # down lowercase_ = [] lowercase_ = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): lowercase_ = output_channel lowercase_ = block_out_channels[i] lowercase_ = i == len(UpperCamelCase__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowercase_ = FlaxCrossAttnDownBlockaD( in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: lowercase_ = FlaxDownBlockaD( in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(UpperCamelCase__ ) lowercase_ = down_blocks # mid lowercase_ = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up lowercase_ = [] lowercase_ = list(reversed(UpperCamelCase__ ) ) lowercase_ = list(reversed(UpperCamelCase__ ) ) lowercase_ = list(reversed(UpperCamelCase__ ) ) lowercase_ = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): lowercase_ = output_channel lowercase_ = reversed_block_out_channels[i] lowercase_ = reversed_block_out_channels[min(i + 1 , len(UpperCamelCase__ ) - 1 )] lowercase_ = i == len(UpperCamelCase__ ) - 1 if up_block_type == "CrossAttnUpBlock2D": lowercase_ = FlaxCrossAttnUpBlockaD( in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , prev_output_channel=UpperCamelCase__ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: lowercase_ = FlaxUpBlockaD( in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , prev_output_channel=UpperCamelCase__ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(UpperCamelCase__ ) lowercase_ = output_channel lowercase_ = up_blocks # out lowercase_ = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) lowercase_ = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Any=None , UpperCamelCase__ : int=None , UpperCamelCase__ : Union[str, Any] = True , UpperCamelCase__ : Dict = False , ): '''simple docstring''' if not isinstance(UpperCamelCase__ , jnp.ndarray ): lowercase_ = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(UpperCamelCase__ , jnp.ndarray ) and len(timesteps.shape ) == 0: lowercase_ = timesteps.astype(dtype=jnp.floataa ) lowercase_ = jnp.expand_dims(UpperCamelCase__ , 0 ) lowercase_ = self.time_proj(UpperCamelCase__ ) lowercase_ = self.time_embedding(UpperCamelCase__ ) # 2. pre-process lowercase_ = jnp.transpose(UpperCamelCase__ , (0, 2, 3, 1) ) lowercase_ = self.conv_in(UpperCamelCase__ ) # 3. down lowercase_ = (sample,) for down_block in self.down_blocks: if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ , lowercase_ = down_block(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , deterministic=not train ) else: lowercase_ , lowercase_ = down_block(UpperCamelCase__ , UpperCamelCase__ , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: lowercase_ = () for down_block_res_sample, down_block_additional_residual in zip( UpperCamelCase__ , UpperCamelCase__ ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) lowercase_ = new_down_block_res_samples # 4. mid lowercase_ = self.mid_block(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: lowercase_ = down_block_res_samples[-(self.layers_per_block + 1) :] lowercase_ = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = up_block( UpperCamelCase__ , temb=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , res_hidden_states_tuple=UpperCamelCase__ , deterministic=not train , ) else: lowercase_ = up_block(UpperCamelCase__ , temb=UpperCamelCase__ , res_hidden_states_tuple=UpperCamelCase__ , deterministic=not train ) # 6. post-process lowercase_ = self.conv_norm_out(UpperCamelCase__ ) lowercase_ = nn.silu(UpperCamelCase__ ) lowercase_ = self.conv_out(UpperCamelCase__ ) lowercase_ = jnp.transpose(UpperCamelCase__ , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=UpperCamelCase__ )
702
def UpperCAmelCase_ ( UpperCAmelCase__ ): if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise TypeError("""Input value must be an 'int' type""" ) lowercase_ = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
650
0
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed a = """true""" def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__=8_2 , UpperCAmelCase__=1_6 ): set_seed(4_2 ) lowercase_ = RegressionModel() lowercase_ = deepcopy(snake_case_ ) lowercase_ = RegressionDataset(length=snake_case_ ) lowercase_ = DataLoader(snake_case_ , batch_size=snake_case_ ) model.to(accelerator.device ) lowercase_ = accelerator.prepare(snake_case_ , snake_case_ ) return model, ddp_model, dataloader def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__=False ): lowercase_ = AutoTokenizer.from_pretrained("""hf-internal-testing/mrpc-bert-base-cased""" ) lowercase_ = load_dataset("""glue""" , """mrpc""" , split="""validation""" ) def tokenize_function(UpperCAmelCase__ ): lowercase_ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=snake_case_ , max_length=snake_case_ ) return outputs with accelerator.main_process_first(): lowercase_ = dataset.map( snake_case_ , batched=snake_case_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) lowercase_ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(UpperCAmelCase__ ): if use_longest: return tokenizer.pad(snake_case_ , padding="""longest""" , return_tensors="""pt""" ) return tokenizer.pad(snake_case_ , padding="""max_length""" , max_length=1_2_8 , return_tensors="""pt""" ) return DataLoader(snake_case_ , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=1_6 ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = Accelerator(dispatch_batches=snake_case_ , split_batches=snake_case_ ) lowercase_ = get_dataloader(snake_case_ , not dispatch_batches ) lowercase_ = AutoModelForSequenceClassification.from_pretrained( """hf-internal-testing/mrpc-bert-base-cased""" , return_dict=snake_case_ ) lowercase_ = accelerator.prepare(snake_case_ , snake_case_ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = [] for batch in dataloader: lowercase_ = batch.values() with torch.no_grad(): lowercase_ = model(snake_case_ ) lowercase_ = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) lowercase_ = [], [] for logit, targ in logits_and_targets: logits.append(snake_case_ ) targs.append(snake_case_ ) lowercase_ = torch.cat(snake_case_ ), torch.cat(snake_case_ ) return logits, targs def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__=8_2 , UpperCAmelCase__=False , UpperCAmelCase__=False , UpperCAmelCase__=1_6 ): lowercase_ = get_basic_setup(snake_case_ , snake_case_ , snake_case_ ) lowercase_ = generate_predictions(snake_case_ , snake_case_ , snake_case_ ) assert ( len(snake_case_ ) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(snake_case_ )}''' def UpperCAmelCase_ ( UpperCAmelCase__ = False , UpperCAmelCase__ = False ): lowercase_ = evaluate.load("""glue""" , """mrpc""" ) lowercase_ = get_mrpc_setup(snake_case_ , snake_case_ ) # First do baseline lowercase_ = setup["no"] model.to(snake_case_ ) model.eval() for batch in dataloader: batch.to(snake_case_ ) with torch.inference_mode(): lowercase_ = model(**snake_case_ ) lowercase_ = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=snake_case_ , references=batch["""labels"""] ) lowercase_ = metric.compute() # Then do distributed lowercase_ = setup["ddp"] model.eval() for batch in dataloader: with torch.inference_mode(): lowercase_ = model(**snake_case_ ) lowercase_ = outputs.logits.argmax(dim=-1 ) lowercase_ = batch["labels"] lowercase_ = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=snake_case_ , references=snake_case_ ) lowercase_ = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def UpperCAmelCase_ ( ): lowercase_ = Accelerator(split_batches=snake_case_ , dispatch_batches=snake_case_ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("""**Testing gather_for_metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(snake_case_ , snake_case_ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test torch metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: lowercase_ = Accelerator(split_batches=snake_case_ , dispatch_batches=snake_case_ ) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(snake_case_ , 9_9 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test last batch is not dropped when perfectly divisible**""" ) lowercase_ = Accelerator() test_torch_metrics(snake_case_ , 5_1_2 ) accelerator.state._reset_state() def UpperCAmelCase_ ( UpperCAmelCase__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
703
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ ): @register_to_config def __init__( self : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : bool = False , ): '''simple docstring''' super().__init__() lowercase_ = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = False lowercase_ = nn.Dropout(p=UpperCamelCase__ ) lowercase_ = TaConfig( vocab_size=UpperCamelCase__ , d_model=UpperCamelCase__ , num_heads=UpperCamelCase__ , d_kv=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ , feed_forward_proj=UpperCamelCase__ , is_decoder=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , ) lowercase_ = nn.ModuleList() for lyr_num in range(UpperCamelCase__ ): lowercase_ = TaBlock(UpperCamelCase__ ) self.encoders.append(UpperCamelCase__ ) lowercase_ = TaLayerNorm(UpperCamelCase__ ) lowercase_ = nn.Dropout(p=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = self.token_embedder(UpperCamelCase__ ) lowercase_ = encoder_input_tokens.shape[1] lowercase_ = torch.arange(UpperCamelCase__ , device=encoder_input_tokens.device ) x += self.position_encoding(UpperCamelCase__ ) lowercase_ = self.dropout_pre(UpperCamelCase__ ) # inverted the attention mask lowercase_ = encoder_input_tokens.size() lowercase_ = self.get_extended_attention_mask(UpperCamelCase__ , UpperCamelCase__ ) for lyr in self.encoders: lowercase_ = lyr(UpperCamelCase__ , UpperCamelCase__ )[0] lowercase_ = self.layer_norm(UpperCamelCase__ ) return self.dropout_post(UpperCamelCase__ ), encoder_inputs_mask
650
0
import operator as op def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = [] lowercase_ = lambda UpperCAmelCase__ , UpperCAmelCase__ : int(x / y ) # noqa: E731 integer division operation lowercase_ = { "^": op.pow, "*": op.mul, "/": div, "+": op.add, "-": op.sub, } # operators & their respective operation # print table header print("""Symbol""".center(8 ) , """Action""".center(1_2 ) , """Stack""" , sep=""" | """ ) print("""-""" * (3_0 + len(_lowerCamelCase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(_lowerCamelCase ) # append x to stack # output in tabular format print(x.rjust(8 ) , ("""push(""" + x + """)""").ljust(1_2 ) , """,""".join(_lowerCamelCase ) , sep=""" | """ ) else: lowercase_ = stack.pop() # pop stack # output in tabular format print("""""".rjust(8 ) , ("""pop(""" + b + """)""").ljust(1_2 ) , """,""".join(_lowerCamelCase ) , sep=""" | """ ) lowercase_ = stack.pop() # pop stack # output in tabular format print("""""".rjust(8 ) , ("""pop(""" + a + """)""").ljust(1_2 ) , """,""".join(_lowerCamelCase ) , sep=""" | """ ) stack.append( str(opr[x](int(_lowerCamelCase ) , int(_lowerCamelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ("""push(""" + a + x + b + """)""").ljust(1_2 ) , """,""".join(_lowerCamelCase ) , sep=""" | """ , ) return int(stack[0] ) if __name__ == "__main__": a = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
704
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar a = TypeVar('T') class UpperCamelCase__ ( Generic[T] ): __SCREAMING_SNAKE_CASE : deque[T] # Cache store of keys __SCREAMING_SNAKE_CASE : set[T] # References of the keys in cache __SCREAMING_SNAKE_CASE : int = 10 # Maximum capacity of cache def __init__( self : str , UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = deque() lowercase_ = set() if not n: lowercase_ = sys.maxsize elif n < 0: raise ValueError("""n should be an integer greater than 0.""" ) else: lowercase_ = n def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : T ): '''simple docstring''' if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: lowercase_ = self.dq_store.pop() self.key_reference.remove(UpperCamelCase__ ) else: self.dq_store.remove(UpperCamelCase__ ) self.dq_store.appendleft(UpperCamelCase__ ) self.key_reference.add(UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' for k in self.dq_store: print(UpperCamelCase__ ) def __repr__( self : Optional[Any] ): '''simple docstring''' return F'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() a = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
650
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[str] = ShapEImgaImgPipeline __SCREAMING_SNAKE_CASE : str = ['image'] __SCREAMING_SNAKE_CASE : Any = ['image'] __SCREAMING_SNAKE_CASE : Optional[Any] = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] __SCREAMING_SNAKE_CASE : List[str] = False @property def UpperCAmelCase__ ( self : str ): '''simple docstring''' return 32 @property def UpperCAmelCase__ ( self : str ): '''simple docstring''' return 32 @property def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' return 8 @property def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) lowercase_ = CLIPVisionModel(_a ) return model @property def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = CLIPImageProcessor( crop_size=224 , do_center_crop=_a , do_normalize=_a , do_resize=_a , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=224 , ) return image_processor @property def UpperCAmelCase__ ( self : str ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } lowercase_ = PriorTransformer(**_a ) return model @property def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } lowercase_ = ShapERenderer(**_a ) return model def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ = self.dummy_prior lowercase_ = self.dummy_image_encoder lowercase_ = self.dummy_image_processor lowercase_ = self.dummy_renderer lowercase_ = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1_024 , prediction_type="""sample""" , use_karras_sigmas=_a , clip_sample=_a , clip_sample_range=1.0 , ) lowercase_ = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def UpperCAmelCase__ ( self : int , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str]=0 ): '''simple docstring''' lowercase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_a ) ).to(_a ) if str(_a ).startswith("""mps""" ): lowercase_ = torch.manual_seed(_a ) else: lowercase_ = torch.Generator(device=_a ).manual_seed(_a ) lowercase_ = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = """cpu""" lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**_a ) lowercase_ = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) lowercase_ = pipe(**self.get_dummy_inputs(_a ) ) lowercase_ = output.images[0] lowercase_ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase_ = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = torch_device == """cpu""" lowercase_ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_a , relax_max_difference=_a , ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**_a ) lowercase_ = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) lowercase_ = 1 lowercase_ = 2 lowercase_ = self.get_dummy_inputs(_a ) for key in inputs.keys(): if key in self.batch_params: lowercase_ = batch_size * [inputs[key]] lowercase_ = pipe(**_a , num_images_per_prompt=_a )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) lowercase_ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) lowercase_ = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) lowercase_ = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) lowercase_ = torch.Generator(device=_a ).manual_seed(0 ) lowercase_ = pipe( _a , generator=_a , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_a , _a )
705
def UpperCAmelCase_ ( UpperCAmelCase__ ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
650
0
def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): if not isinstance(snake_case__ , snake_case__ ): raise ValueError("""iterations must be defined as integers""" ) if not isinstance(snake_case__ , snake_case__ ) or not number >= 1: raise ValueError( """starting number must be and integer and be more than 0""" ) if not iterations >= 1: raise ValueError("""Iterations must be done more than 0 times to play FizzBuzz""" ) lowercase_ = """""" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(snake_case__ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
706
def UpperCAmelCase_ ( UpperCAmelCase__=2_8_1_2_3 ): lowercase_ = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i lowercase_ = set() lowercase_ = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(UpperCAmelCase__ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
650
0
a = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' a = [{'type': 'code', 'content': INSTALL_CONTENT}] a = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
707
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase__ : def __init__( self : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str]=13 , UpperCamelCase__ : str=7 , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : str=False , UpperCamelCase__ : str=True , UpperCamelCase__ : Union[str, Any]=99 , UpperCamelCase__ : Dict=32 , UpperCamelCase__ : Union[str, Any]=5 , UpperCamelCase__ : Tuple=4 , UpperCamelCase__ : Dict=37 , UpperCamelCase__ : Any="gelu" , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Tuple=512 , UpperCamelCase__ : Union[str, Any]=16 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : int=0.02 , UpperCamelCase__ : int=3 , UpperCamelCase__ : Optional[Any]=4 , UpperCamelCase__ : int=None , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_input_mask lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_labels lowercase_ = num_choices lowercase_ = scope def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ = None if self.use_input_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ = None if self.use_token_type_ids: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ = None lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , use_stable_embedding=UpperCamelCase__ , ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] ): '''simple docstring''' lowercase_ = OpenLlamaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , ): '''simple docstring''' lowercase_ = True lowercase_ = OpenLlamaModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , ) lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , ) lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , ): '''simple docstring''' lowercase_ = OpenLlamaForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : Tuple , ): '''simple docstring''' lowercase_ = True lowercase_ = True lowercase_ = OpenLlamaForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # first forward pass lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , use_cache=UpperCamelCase__ , ) lowercase_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowercase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase_ = torch.cat([input_mask, next_mask] , dim=-1 ) lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , )["""hidden_states"""][0] lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , past_key_values=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , )["""hidden_states"""][0] # select random slice lowercase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase_ = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : List[str] = (OpenLlamaForCausalLM,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : List[Any] = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Optional[int] = False def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = OpenLlamaModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase_ = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = input_dict["""input_ids"""] lowercase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowercase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase_ = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = """single_label_classification""" lowercase_ = input_dict["""input_ids"""] lowercase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowercase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase_ = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = """multi_label_classification""" lowercase_ = input_dict["""input_ids"""] lowercase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowercase_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowercase_ = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = ids_tensor([1, 10] , config.vocab_size ) lowercase_ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase_ = OpenLlamaModel(UpperCamelCase__ ) original_model.to(UpperCamelCase__ ) original_model.eval() lowercase_ = original_model(UpperCamelCase__ ).last_hidden_state lowercase_ = original_model(UpperCamelCase__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase_ = {"""type""": scaling_type, """factor""": 10.0} lowercase_ = OpenLlamaModel(UpperCamelCase__ ) scaled_model.to(UpperCamelCase__ ) scaled_model.eval() lowercase_ = scaled_model(UpperCamelCase__ ).last_hidden_state lowercase_ = scaled_model(UpperCamelCase__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) )
650
0
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed a = logging.getLogger(__name__) def UpperCAmelCase_ ( UpperCAmelCase__=2 , UpperCAmelCase__=3 , UpperCAmelCase__=1_6 , UpperCAmelCase__ = 1_0 , UpperCAmelCase__ = 2 ): def get_dataset(UpperCAmelCase__ ): lowercase_ = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(UpperCAmelCase__ , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) lowercase_ = get_dataset(UpperCAmelCase__ ) lowercase_ = get_dataset(UpperCAmelCase__ ) lowercase_ = DataLoader(UpperCAmelCase__ , shuffle=UpperCAmelCase__ , batch_size=UpperCAmelCase__ , num_workers=4 ) lowercase_ = DataLoader(UpperCAmelCase__ , shuffle=UpperCAmelCase__ , batch_size=UpperCAmelCase__ , num_workers=4 ) return (train_dataloader, valid_dataloader) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None ): lowercase_ = [] for epoch in range(UpperCAmelCase__ ): # Train quickly model.train() for batch in dataloader: lowercase_ = batch lowercase_ = model(UpperCAmelCase__ ) lowercase_ = torch.nn.functional.mse_loss(UpperCAmelCase__ , UpperCAmelCase__ ) accelerator.backward(UpperCAmelCase__ ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class UpperCamelCase__ ( nn.Module ): def __init__( self : Optional[Any] ): '''simple docstring''' super().__init__() lowercase_ = nn.Parameter(torch.randn(1 ) ) lowercase_ = nn.Parameter(torch.randn(1 ) ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : Dict ): '''simple docstring''' return x * self.a + self.b class UpperCamelCase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase_ = DummyModel() lowercase_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase_ = dummy_dataloaders() lowercase_ = ProjectConfiguration(total_limit=1 , project_dir=lowercase_ , automatic_checkpoint_naming=lowercase_ ) # Train baseline lowercase_ = Accelerator(project_config=lowercase_ ) lowercase_ = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase_ = DummyModel() lowercase_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase_ = dummy_dataloaders() # Train baseline lowercase_ = Accelerator() lowercase_ = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Save initial lowercase_ = os.path.join(lowercase_ , """initial""" ) accelerator.save_state(lowercase_ ) (lowercase_) = model.a.item(), model.b.item() lowercase_ = optimizer.state_dict() lowercase_ = train(3 , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) (lowercase_) = model.a.item(), model.b.item() lowercase_ = optimizer.state_dict() # Train partially set_seed(42 ) lowercase_ = DummyModel() lowercase_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase_ = dummy_dataloaders() lowercase_ = Accelerator() lowercase_ = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) accelerator.load_state(lowercase_ ) (lowercase_) = model.a.item(), model.b.item() lowercase_ = optimizer.state_dict() self.assertEqual(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) lowercase_ = train(2 , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Save everything lowercase_ = os.path.join(lowercase_ , """checkpoint""" ) accelerator.save_state(lowercase_ ) # Load everything back in and make sure all states work accelerator.load_state(lowercase_ ) test_rands += train(1 , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) (lowercase_) = model.a.item(), model.b.item() lowercase_ = optimizer.state_dict() self.assertEqual(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase_ = DummyModel() lowercase_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase_ = dummy_dataloaders() lowercase_ = ProjectConfiguration(automatic_checkpoint_naming=lowercase_ ) # Train baseline lowercase_ = Accelerator(project_dir=lowercase_ , project_config=lowercase_ ) lowercase_ = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Save initial accelerator.save_state() (lowercase_) = model.a.item(), model.b.item() lowercase_ = optimizer.state_dict() lowercase_ = train(3 , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) (lowercase_) = model.a.item(), model.b.item() lowercase_ = optimizer.state_dict() # Train partially set_seed(42 ) lowercase_ = DummyModel() lowercase_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase_ = dummy_dataloaders() lowercase_ = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=lowercase_ ) lowercase_ = Accelerator(project_dir=lowercase_ , project_config=lowercase_ ) lowercase_ = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) accelerator.load_state(os.path.join(lowercase_ , """checkpoints""" , """checkpoint_0""" ) ) (lowercase_) = model.a.item(), model.b.item() lowercase_ = optimizer.state_dict() self.assertEqual(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) lowercase_ = train(2 , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(lowercase_ , """checkpoints""" , """checkpoint_1""" ) ) test_rands += train(1 , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) (lowercase_) = model.a.item(), model.b.item() lowercase_ = optimizer.state_dict() self.assertEqual(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = torch.tensor([1, 2, 3] ) lowercase_ = torch.tensor([2, 3, 4] ) lowercase_ = DummyModel() lowercase_ = torch.optim.Adam(net.parameters() ) lowercase_ = Accelerator() with self.assertRaises(lowercase_ ) as ve: accelerator.register_for_checkpointing(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase_ = str(ve.exception ) self.assertTrue("""Item at index 0""" in message ) self.assertTrue("""Item at index 1""" in message ) self.assertFalse("""Item at index 2""" in message ) self.assertFalse("""Item at index 3""" in message ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase_ = DummyModel() lowercase_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase_ = torch.optim.lr_scheduler.StepLR(lowercase_ , step_size=1 , gamma=0.99 ) lowercase_ = dummy_dataloaders() lowercase_ = ProjectConfiguration(automatic_checkpoint_naming=lowercase_ ) # Train baseline lowercase_ = Accelerator(project_dir=lowercase_ , project_config=lowercase_ ) lowercase_ = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Save initial accelerator.save_state() lowercase_ = scheduler.state_dict() train(3 , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) self.assertNotEqual(lowercase_ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(lowercase_ , """checkpoints""" , """checkpoint_0""" ) ) self.assertEqual(lowercase_ , scheduler.state_dict() ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase_ = DummyModel() lowercase_ = ProjectConfiguration(automatic_checkpoint_naming=lowercase_ , total_limit=2 ) # Train baseline lowercase_ = Accelerator(project_dir=lowercase_ , project_config=lowercase_ ) lowercase_ = accelerator.prepare(lowercase_ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(lowercase_ , """checkpoints""" , """checkpoint_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase_ , """checkpoints""" , """checkpoint_9""" ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase_ , """checkpoints""" , """checkpoint_10""" ) ) ) @require_cuda def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = ["""torchrun""", F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(lowercase_ , env=os.environ.copy() ) if __name__ == "__main__": a = "/tmp/accelerate/state_checkpointing" a = DummyModel() a = torch.optim.Adam(params=model.parameters(), lr=1E-3) a = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) a = dummy_dataloaders() a = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline a = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='no') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) a = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) a = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: a = group["params"][0].device break assert param_device.type == accelerator.device.type a = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='cpu') for group in optimizer.param_groups: a = group["params"][0].device break assert ( param_device.type == torch.device('cpu').type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='on_device') for group in optimizer.param_groups: a = group["params"][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='Unsupported optimizer map location passed'): accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='invalid') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
708
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: a = False a = logging.get_logger(__name__) a = 'ybelkada/fonts' def UpperCAmelCase_ ( ): if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F'''You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ''' """Pix2StructImageProcessor. Please upgrade torch.""" ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): requires_backends(UpperCAmelCase__ , ["""torch"""] ) _check_torch_version() lowercase_ = image_tensor.unsqueeze(0 ) lowercase_ = torch.nn.functional.unfold(UpperCAmelCase__ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) lowercase_ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , UpperCAmelCase__ , UpperCAmelCase__ , -1 ) lowercase_ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ = 3_6 , UpperCAmelCase__ = "black" , UpperCAmelCase__ = "white" , UpperCAmelCase__ = 5 , UpperCAmelCase__ = 5 , UpperCAmelCase__ = 5 , UpperCAmelCase__ = 5 , UpperCAmelCase__ = None , UpperCAmelCase__ = None , ): requires_backends(UpperCAmelCase__ , """vision""" ) # Add new lines so that each line is no more than 80 characters. lowercase_ = textwrap.TextWrapper(width=8_0 ) lowercase_ = wrapper.wrap(text=UpperCAmelCase__ ) lowercase_ = """\n""".join(UpperCAmelCase__ ) if font_bytes is not None and font_path is None: lowercase_ = io.BytesIO(UpperCAmelCase__ ) elif font_path is not None: lowercase_ = font_path else: lowercase_ = hf_hub_download(UpperCAmelCase__ , """Arial.TTF""" ) lowercase_ = ImageFont.truetype(UpperCAmelCase__ , encoding="""UTF-8""" , size=UpperCAmelCase__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. lowercase_ = ImageDraw.Draw(Image.new("""RGB""" , (1, 1) , UpperCAmelCase__ ) ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = temp_draw.textbbox((0, 0) , UpperCAmelCase__ , UpperCAmelCase__ ) # Create the actual image with a bit of padding around the text. lowercase_ = text_width + left_padding + right_padding lowercase_ = text_height + top_padding + bottom_padding lowercase_ = Image.new("""RGB""" , (image_width, image_height) , UpperCAmelCase__ ) lowercase_ = ImageDraw.Draw(UpperCAmelCase__ ) draw.text(xy=(left_padding, top_padding) , text=UpperCAmelCase__ , fill=UpperCAmelCase__ , font=UpperCAmelCase__ ) return image def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ): requires_backends(UpperCAmelCase__ , """vision""" ) # Convert to PIL image if necessary lowercase_ = to_pil_image(UpperCAmelCase__ ) lowercase_ = render_text(UpperCAmelCase__ , **UpperCAmelCase__ ) lowercase_ = max(header_image.width , image.width ) lowercase_ = int(image.height * (new_width / image.width) ) lowercase_ = int(header_image.height * (new_width / header_image.width) ) lowercase_ = Image.new("""RGB""" , (new_width, new_height + new_header_height) , """white""" ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary lowercase_ = to_numpy_array(UpperCAmelCase__ ) if infer_channel_dimension_format(UpperCAmelCase__ ) == ChannelDimension.LAST: lowercase_ = to_channel_dimension_format(UpperCAmelCase__ , ChannelDimension.LAST ) return new_image class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Tuple = ['flattened_patches'] def __init__( self : str , UpperCamelCase__ : bool = True , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : int = 2_048 , UpperCamelCase__ : bool = False , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowercase_ = patch_size if patch_size is not None else {"""height""": 16, """width""": 16} lowercase_ = do_normalize lowercase_ = do_convert_rgb lowercase_ = max_patches lowercase_ = is_vqa def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : int , UpperCamelCase__ : dict , **UpperCamelCase__ : Optional[int] ): '''simple docstring''' requires_backends(self.extract_flattened_patches , """torch""" ) _check_torch_version() # convert to torch lowercase_ = to_channel_dimension_format(UpperCamelCase__ , ChannelDimension.FIRST ) lowercase_ = torch.from_numpy(UpperCamelCase__ ) lowercase_ , lowercase_ = patch_size["""height"""], patch_size["""width"""] lowercase_ , lowercase_ = get_image_size(UpperCamelCase__ ) # maximize scale s.t. lowercase_ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) lowercase_ = max(min(math.floor(scale * image_height / patch_height ) , UpperCamelCase__ ) , 1 ) lowercase_ = max(min(math.floor(scale * image_width / patch_width ) , UpperCamelCase__ ) , 1 ) lowercase_ = max(num_feasible_rows * patch_height , 1 ) lowercase_ = max(num_feasible_cols * patch_width , 1 ) lowercase_ = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="""bilinear""" , align_corners=UpperCamelCase__ , antialias=UpperCamelCase__ , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] lowercase_ = torch_extract_patches(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = patches.shape lowercase_ = patches_shape[1] lowercase_ = patches_shape[2] lowercase_ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] lowercase_ = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] lowercase_ = torch.arange(UpperCamelCase__ ).reshape([rows, 1] ).repeat(1 , UpperCamelCase__ ).reshape([rows * columns, 1] ) lowercase_ = torch.arange(UpperCamelCase__ ).reshape([1, columns] ).repeat(UpperCamelCase__ , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] lowercase_ = row_ids.to(torch.floataa ) lowercase_ = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] lowercase_ = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] lowercase_ = torch.nn.functional.pad(UpperCamelCase__ , [0, 0, 0, max_patches - (rows * columns)] ).float() lowercase_ = to_numpy_array(UpperCamelCase__ ) return result def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Dict ): '''simple docstring''' if image.dtype == np.uinta: lowercase_ = image.astype(np.floataa ) # take mean across the whole `image` lowercase_ = np.mean(UpperCamelCase__ ) lowercase_ = np.std(UpperCamelCase__ ) lowercase_ = max(UpperCamelCase__ , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase__ : Union[str, Any] , ): '''simple docstring''' lowercase_ = do_normalize if do_normalize is not None else self.do_normalize lowercase_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase_ = patch_size if patch_size is not None else self.patch_size lowercase_ = max_patches if max_patches is not None else self.max_patches lowercase_ = self.is_vqa if kwargs.get("""data_format""" , UpperCamelCase__ ) is not None: raise ValueError("""data_format is not an accepted input as the outputs are """ ) lowercase_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase_ = [convert_to_rgb(UpperCamelCase__ ) for image in images] # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(UpperCamelCase__ ) for image in images] if is_vqa: if header_text is None: raise ValueError("""A header text must be provided for VQA models.""" ) lowercase_ = kwargs.pop("""font_bytes""" , UpperCamelCase__ ) lowercase_ = kwargs.pop("""font_path""" , UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = [header_text] * len(UpperCamelCase__ ) lowercase_ = [ render_header(UpperCamelCase__ , header_text[i] , font_bytes=UpperCamelCase__ , font_path=UpperCamelCase__ ) for i, image in enumerate(UpperCamelCase__ ) ] if do_normalize: lowercase_ = [self.normalize(image=UpperCamelCase__ ) for image in images] # convert to torch tensor and permute lowercase_ = [ self.extract_flattened_patches(image=UpperCamelCase__ , max_patches=UpperCamelCase__ , patch_size=UpperCamelCase__ ) for image in images ] # create attention mask in numpy lowercase_ = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] lowercase_ = BatchFeature( data={"""flattened_patches""": images, """attention_mask""": attention_masks} , tensor_type=UpperCamelCase__ ) return encoded_outputs
650
0
import os import time import numpy as np import onnxruntime as ort a = '''1''' a = '''0''' a = '''1''' a = ort.SessionOptions() a = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print('Create inference session...') a = ['''TensorrtExecutionProvider''', '''CUDAExecutionProvider'''] a = ort.InferenceSession('model.onnx', sess_options=sess_opt, providers=execution_provider) a = ort.RunOptions() a = 1_2_8 a = 1 a = np.ones((batch, sequence), dtype=np.intaa) a = np.ones((batch, sequence), dtype=np.intaa) a = np.ones((batch, sequence), dtype=np.intaa) print('Warm up phase...') sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('Start inference...') a = time.time() a = 2_0_0_0 a = {} for iter in range(max_iters): a = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('Average Inference Time = {:.3f} ms'.format((time.time() - start_time) * 1_0_0_0 / max_iters))
709
import cva import numpy as np class UpperCamelCase__ : def __init__( self : List[str] , UpperCamelCase__ : float , UpperCamelCase__ : int ): '''simple docstring''' if k in (0.04, 0.06): lowercase_ = k lowercase_ = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : Optional[int] ): '''simple docstring''' return str(self.k ) def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = cva.imread(UpperCamelCase__ , 0 ) lowercase_ , lowercase_ = img.shape lowercase_ = [] lowercase_ = img.copy() lowercase_ = cva.cvtColor(UpperCamelCase__ , cva.COLOR_GRAY2RGB ) lowercase_ , lowercase_ = np.gradient(UpperCamelCase__ ) lowercase_ = dx**2 lowercase_ = dy**2 lowercase_ = dx * dy lowercase_ = 0.04 lowercase_ = self.window_size // 2 for y in range(UpperCamelCase__ , h - offset ): for x in range(UpperCamelCase__ , w - offset ): lowercase_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase_ = (wxx * wyy) - (wxy**2) lowercase_ = wxx + wyy lowercase_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": a = HarrisCorner(0.04, 3) a , a = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
650
0
import numpy as np def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): return np.where(vector > 0 , UpperCAmelCase__ , (alpha * (np.exp(UpperCAmelCase__ ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
710
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): a = { 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: a = { 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = (images / 2 + 0.5).clamp(0 , 1 ) lowercase_ = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowercase_ = numpy_to_pil(UpperCAmelCase__ ) return images def UpperCAmelCase_ ( UpperCAmelCase__ ): if images.ndim == 3: lowercase_ = images[None, ...] lowercase_ = (images * 2_5_5).round().astype("""uint8""" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images lowercase_ = [Image.fromarray(image.squeeze() , mode="""L""" ) for image in images] else: lowercase_ = [Image.fromarray(UpperCAmelCase__ ) for image in images] return pil_images
650
0
import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) a = 'hf-internal-testing/tiny-random-bert' a = os.path.join(TRANSFORMERS_CACHE, 'models--hf-internal-testing--tiny-random-bert') a = '9b8c223d42b2188cb49d29af482996f9d0f3e5a6' class UpperCamelCase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = cached_file(UpperCAmelCase_ , UpperCAmelCase_ ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(UpperCAmelCase_ ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) with open(os.path.join(UpperCAmelCase_ , """refs""" , """main""" ) ) as f: lowercase_ = f.read() self.assertEqual(UpperCAmelCase_ , os.path.join(UpperCAmelCase_ , """snapshots""" , UpperCAmelCase_ , UpperCAmelCase_ ) ) self.assertTrue(os.path.isfile(UpperCAmelCase_ ) ) # File is cached at the same place the second time. lowercase_ = cached_file(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) # Using a specific revision to test the full commit hash. lowercase_ = cached_file(UpperCAmelCase_ , UpperCAmelCase_ , revision="""9b8c223""" ) self.assertEqual(UpperCAmelCase_ , os.path.join(UpperCAmelCase_ , """snapshots""" , UpperCAmelCase_ , UpperCAmelCase_ ) ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' with self.assertRaisesRegex(UpperCAmelCase_ , """is not a valid model identifier""" ): lowercase_ = cached_file("""tiny-random-bert""" , UpperCAmelCase_ ) with self.assertRaisesRegex(UpperCAmelCase_ , """is not a valid git identifier""" ): lowercase_ = cached_file(UpperCAmelCase_ , UpperCAmelCase_ , revision="""aaaa""" ) with self.assertRaisesRegex(UpperCAmelCase_ , """does not appear to have a file named""" ): lowercase_ = cached_file(UpperCAmelCase_ , """conf""" ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' with self.assertRaisesRegex(UpperCAmelCase_ , """does not appear to have a file named""" ): lowercase_ = cached_file(UpperCAmelCase_ , """conf""" ) with open(os.path.join(UpperCAmelCase_ , """refs""" , """main""" ) ) as f: lowercase_ = f.read() self.assertTrue(os.path.isfile(os.path.join(UpperCAmelCase_ , """.no_exist""" , UpperCAmelCase_ , """conf""" ) ) ) lowercase_ = cached_file(UpperCAmelCase_ , """conf""" , _raise_exceptions_for_missing_entries=UpperCAmelCase_ ) self.assertIsNone(UpperCAmelCase_ ) lowercase_ = cached_file(UpperCAmelCase_ , """conf""" , local_files_only=UpperCAmelCase_ , _raise_exceptions_for_missing_entries=UpperCAmelCase_ ) self.assertIsNone(UpperCAmelCase_ ) lowercase_ = mock.Mock() lowercase_ = 500 lowercase_ = {} lowercase_ = HTTPError lowercase_ = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" , return_value=UpperCAmelCase_ ) as mock_head: lowercase_ = cached_file(UpperCAmelCase_ , """conf""" , _raise_exceptions_for_connection_errors=UpperCAmelCase_ ) self.assertIsNone(UpperCAmelCase_ ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase__ ( self : Any ): '''simple docstring''' self.assertTrue(has_file("""hf-internal-testing/tiny-bert-pt-only""" , UpperCAmelCase_ ) ) self.assertFalse(has_file("""hf-internal-testing/tiny-bert-pt-only""" , UpperCAmelCase_ ) ) self.assertFalse(has_file("""hf-internal-testing/tiny-bert-pt-only""" , UpperCAmelCase_ ) ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' self.assertIsNone(get_file_from_repo("""bert-base-cased""" , """ahah.txt""" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(UpperCAmelCase_ , """is not a valid model identifier""" ): get_file_from_repo("""bert-base-case""" , UpperCAmelCase_ ) # The function raises if the revision does not exist. with self.assertRaisesRegex(UpperCAmelCase_ , """is not a valid git identifier""" ): get_file_from_repo("""bert-base-cased""" , UpperCAmelCase_ , revision="""ahaha""" ) lowercase_ = get_file_from_repo("""bert-base-cased""" , UpperCAmelCase_ ) # The name is the cached name which is not very easy to test, so instead we load the content. lowercase_ = json.loads(open(UpperCAmelCase_ , """r""" ).read() ) self.assertEqual(config["""hidden_size"""] , 768 ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ = Path(UpperCAmelCase_ ) / """a.txt""" filename.touch() self.assertEqual(get_file_from_repo(UpperCAmelCase_ , """a.txt""" ) , str(UpperCAmelCase_ ) ) self.assertIsNone(get_file_from_repo(UpperCAmelCase_ , """b.txt""" ) )
711
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : str = (UnCLIPScheduler,) def UpperCAmelCase__ ( self : int , **UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = { """num_train_timesteps""": 1_000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**UpperCamelCase__ ) return config def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=UpperCamelCase__ , prev_timestep=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config(variance_type="""fixed_small_log""" ) lowercase_ = scheduler_class(**UpperCamelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1e-5 def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config(variance_type="""learned_range""" ) lowercase_ = scheduler_class(**UpperCamelCase__ ) lowercase_ = 0.5 assert scheduler._get_variance(1 , predicted_variance=UpperCamelCase__ ) - -10.1_712_790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=UpperCamelCase__ ) - -5.7_998_052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=UpperCamelCase__ ) - -0.0_010_011 < 1e-5 def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**UpperCamelCase__ ) lowercase_ = scheduler.timesteps lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter lowercase_ = torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase__ ): # 1. predict noise residual lowercase_ = model(UpperCamelCase__ , UpperCamelCase__ ) # 2. predict previous mean of sample x_t-1 lowercase_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample lowercase_ = pred_prev_sample lowercase_ = torch.sum(torch.abs(UpperCamelCase__ ) ) lowercase_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1e-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1e-3 def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(25 ) lowercase_ = scheduler.timesteps lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter lowercase_ = torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase__ ): # 1. predict noise residual lowercase_ = model(UpperCamelCase__ , UpperCamelCase__ ) if i + 1 == timesteps.shape[0]: lowercase_ = None else: lowercase_ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 lowercase_ = scheduler.step( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , prev_timestep=UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample lowercase_ = pred_prev_sample lowercase_ = torch.sum(torch.abs(UpperCamelCase__ ) ) lowercase_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1e-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1e-3 def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' pass def UpperCAmelCase__ ( self : int ): '''simple docstring''' pass
650
0
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCamelCase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = 1 lowercase_ = 3 lowercase_ = (32, 32) lowercase_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCamelCase__ ) return image @property def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def UpperCAmelCase__ ( self : str ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def UpperCAmelCase__ ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , ) return RobertaSeriesModelWithTransformation(UpperCamelCase__ ) @property def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' def extract(*UpperCamelCase__ : str , **UpperCamelCase__ : str ): class UpperCamelCase__ : def __init__( self : Any ): '''simple docstring''' lowercase_ = torch.ones([0] ) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : int ): '''simple docstring''' self.pixel_values.to(UpperCamelCase__ ) return self return Out() return extract def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase_ = self.dummy_cond_unet lowercase_ = PNDMScheduler(skip_prk_steps=UpperCamelCase__ ) lowercase_ = self.dummy_vae lowercase_ = self.dummy_text_encoder lowercase_ = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) lowercase_ = 77 lowercase_ = self.dummy_image.to(UpperCamelCase__ ) lowercase_ = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowercase_ = AltDiffusionImgaImgPipeline( unet=UpperCamelCase__ , scheduler=UpperCamelCase__ , vae=UpperCamelCase__ , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ , safety_checker=UpperCamelCase__ , feature_extractor=self.dummy_extractor , ) lowercase_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCamelCase__ ) lowercase_ = alt_pipe.to(UpperCamelCase__ ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = '''A painting of a squirrel eating a burger''' lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) lowercase_ = alt_pipe( [prompt] , generator=UpperCamelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=UpperCamelCase__ , ) lowercase_ = output.images lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) lowercase_ = alt_pipe( [prompt] , generator=UpperCamelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=UpperCamelCase__ , return_dict=UpperCamelCase__ , )[0] lowercase_ = image[0, -3:, -3:, -1] lowercase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase_ = np.array([0.4_427, 0.3_731, 0.4_249, 0.4_941, 0.4_546, 0.4_148, 0.4_193, 0.4_666, 0.4_499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = self.dummy_cond_unet lowercase_ = PNDMScheduler(skip_prk_steps=UpperCamelCase__ ) lowercase_ = self.dummy_vae lowercase_ = self.dummy_text_encoder lowercase_ = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) lowercase_ = 77 lowercase_ = self.dummy_image.to(UpperCamelCase__ ) # put models in fp16 lowercase_ = unet.half() lowercase_ = vae.half() lowercase_ = bert.half() # make sure here that pndm scheduler skips prk lowercase_ = AltDiffusionImgaImgPipeline( unet=UpperCamelCase__ , scheduler=UpperCamelCase__ , vae=UpperCamelCase__ , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ , safety_checker=UpperCamelCase__ , feature_extractor=self.dummy_extractor , ) lowercase_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCamelCase__ ) lowercase_ = alt_pipe.to(UpperCamelCase__ ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = '''A painting of a squirrel eating a burger''' lowercase_ = torch.manual_seed(0 ) lowercase_ = alt_pipe( [prompt] , generator=UpperCamelCase__ , num_inference_steps=2 , output_type="""np""" , image=UpperCamelCase__ , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) # resize to resolution that is divisible by 8 but not 16 or 32 lowercase_ = init_image.resize((760, 504) ) lowercase_ = '''BAAI/AltDiffusion''' lowercase_ = AltDiffusionImgaImgPipeline.from_pretrained( UpperCamelCase__ , safety_checker=UpperCamelCase__ , ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() lowercase_ = '''A fantasy landscape, trending on artstation''' lowercase_ = torch.manual_seed(0 ) lowercase_ = pipe( prompt=UpperCamelCase__ , image=UpperCamelCase__ , strength=0.75 , guidance_scale=7.5 , generator=UpperCamelCase__ , output_type="""np""" , ) lowercase_ = output.images[0] lowercase_ = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) lowercase_ = np.array([0.9_358, 0.9_397, 0.9_599, 0.9_901, 1.0_000, 1.0_000, 0.9_882, 1.0_000, 1.0_000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) lowercase_ = init_image.resize((768, 512) ) lowercase_ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy""" ) lowercase_ = '''BAAI/AltDiffusion''' lowercase_ = AltDiffusionImgaImgPipeline.from_pretrained( UpperCamelCase__ , safety_checker=UpperCamelCase__ , ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() lowercase_ = '''A fantasy landscape, trending on artstation''' lowercase_ = torch.manual_seed(0 ) lowercase_ = pipe( prompt=UpperCamelCase__ , image=UpperCamelCase__ , strength=0.75 , guidance_scale=7.5 , generator=UpperCamelCase__ , output_type="""np""" , ) lowercase_ = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
712
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') a = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) a = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : Optional[str] = field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field(default=__magic_name__ , metadata={'help': 'A folder containing the training data.'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field(default=__magic_name__ , metadata={'help': 'A folder containing the validation data.'} ) __SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.1_5 , metadata={'help': 'Percent to split off of train for validation.'} ) __SCREAMING_SNAKE_CASE : int = field(default=32 , metadata={'help': 'The size of the square patches to use for masking.'} ) __SCREAMING_SNAKE_CASE : float = field( default=0.6 , metadata={'help': 'Percentage of patches to mask.'} , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = {} if self.train_dir is not None: lowercase_ = self.train_dir if self.validation_dir is not None: lowercase_ = self.validation_dir lowercase_ = data_files if data_files else None @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : str = field( default=__magic_name__ , metadata={ 'help': ( 'The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a ' 'checkpoint identifier on the hub. ' 'Don\'t set if you want to train a model from scratch.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(__magic_name__ )} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'} , ) __SCREAMING_SNAKE_CASE : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __SCREAMING_SNAKE_CASE : str = field(default=__magic_name__ , metadata={'help': 'Name or path of preprocessor config.'} ) __SCREAMING_SNAKE_CASE : bool = field( default=__magic_name__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'The size (resolution) of each image. If not specified, will use `image_size` of the configuration.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={'help': 'Stride to use for the encoder.'} , ) class UpperCamelCase__ : def __init__( self : Dict , UpperCamelCase__ : List[Any]=192 , UpperCamelCase__ : Tuple=32 , UpperCamelCase__ : Dict=4 , UpperCamelCase__ : str=0.6 ): '''simple docstring''' lowercase_ = input_size lowercase_ = mask_patch_size lowercase_ = model_patch_size lowercase_ = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError("""Input size must be divisible by mask patch size""" ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError("""Mask patch size must be divisible by model patch size""" ) lowercase_ = self.input_size // self.mask_patch_size lowercase_ = self.mask_patch_size // self.model_patch_size lowercase_ = self.rand_size**2 lowercase_ = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self : int ): '''simple docstring''' lowercase_ = np.random.permutation(self.token_count )[: self.mask_count] lowercase_ = np.zeros(self.token_count , dtype=UpperCamelCase__ ) lowercase_ = 1 lowercase_ = mask.reshape((self.rand_size, self.rand_size) ) lowercase_ = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = torch.stack([example["""pixel_values"""] for example in examples] ) lowercase_ = torch.stack([example["""mask"""] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def UpperCAmelCase_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase_ , lowercase_ , lowercase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase_ , lowercase_ , lowercase_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mim""" , UpperCAmelCase__ , UpperCAmelCase__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase_ = training_args.get_process_log_level() logger.setLevel(UpperCAmelCase__ ) transformers.utils.logging.set_verbosity(UpperCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. lowercase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. lowercase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowercase_ = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , UpperCAmelCase__ ) and data_args.train_val_split > 0.0: lowercase_ = ds["""train"""].train_test_split(data_args.train_val_split ) lowercase_ = split["""train"""] lowercase_ = split["""test"""] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase_ = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name_or_path: lowercase_ = AutoConfig.from_pretrained(model_args.config_name_or_path , **UpperCAmelCase__ ) elif model_args.model_name_or_path: lowercase_ = AutoConfig.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase__ ) else: lowercase_ = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(UpperCAmelCase__ , """decoder_type""" ): lowercase_ = """simmim""" # adapt config lowercase_ = model_args.image_size if model_args.image_size is not None else config.image_size lowercase_ = model_args.patch_size if model_args.patch_size is not None else config.patch_size lowercase_ = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { """image_size""": model_args.image_size, """patch_size""": model_args.patch_size, """encoder_stride""": model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: lowercase_ = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **UpperCAmelCase__ ) elif model_args.model_name_or_path: lowercase_ = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase__ ) else: lowercase_ = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } lowercase_ = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: lowercase_ = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) lowercase_ = AutoModelForMaskedImageModeling.from_config(UpperCAmelCase__ ) if training_args.do_train: lowercase_ = ds["""train"""].column_names else: lowercase_ = ds["""validation"""].column_names if data_args.image_column_name is not None: lowercase_ = data_args.image_column_name elif "image" in column_names: lowercase_ = """image""" elif "img" in column_names: lowercase_ = """img""" else: lowercase_ = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py lowercase_ = Compose( [ Lambda(lambda UpperCAmelCase__ : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator lowercase_ = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(UpperCAmelCase__ ): lowercase_ = [transforms(UpperCAmelCase__ ) for image in examples[image_column_name]] lowercase_ = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: lowercase_ = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(UpperCAmelCase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: lowercase_ = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(UpperCAmelCase__ ) # Initialize our trainer lowercase_ = Trainer( model=UpperCAmelCase__ , args=UpperCAmelCase__ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=UpperCAmelCase__ , data_collator=UpperCAmelCase__ , ) # Training if training_args.do_train: lowercase_ = None if training_args.resume_from_checkpoint is not None: lowercase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase_ = last_checkpoint lowercase_ = trainer.train(resume_from_checkpoint=UpperCAmelCase__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase_ = trainer.evaluate() trainer.log_metrics("""eval""" , UpperCAmelCase__ ) trainer.save_metrics("""eval""" , UpperCAmelCase__ ) # Write model card and (optionally) push to hub lowercase_ = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """masked-image-modeling""", """dataset""": data_args.dataset_name, """tags""": ["""masked-image-modeling"""], } if training_args.push_to_hub: trainer.push_to_hub(**UpperCAmelCase__ ) else: trainer.create_model_card(**UpperCAmelCase__ ) if __name__ == "__main__": main()
650
0
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class UpperCamelCase__ : def __init__( self : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Any=99 , UpperCamelCase__ : Any=13 , UpperCamelCase__ : Optional[int]=16 , UpperCamelCase__ : Optional[int]=7 , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : int=True , UpperCamelCase__ : Optional[int]=False , UpperCamelCase__ : Any=True , UpperCamelCase__ : Tuple=2 , UpperCamelCase__ : List[str]=32 , UpperCamelCase__ : int=4 , UpperCamelCase__ : Tuple=4 , UpperCamelCase__ : List[str]=30 , UpperCamelCase__ : List[str]=0 , UpperCamelCase__ : str=1 , UpperCamelCase__ : str=2 , UpperCamelCase__ : Any=None , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = decoder_seq_length # For common tests lowercase_ = self.decoder_seq_length lowercase_ = is_training lowercase_ = use_attention_mask lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = d_model lowercase_ = d_model lowercase_ = decoder_layers lowercase_ = decoder_layers lowercase_ = decoder_ffn_dim lowercase_ = decoder_attention_heads lowercase_ = decoder_attention_heads lowercase_ = eos_token_id lowercase_ = bos_token_id lowercase_ = pad_token_id lowercase_ = decoder_start_token_id lowercase_ = use_cache lowercase_ = max_position_embeddings lowercase_ = None lowercase_ = decoder_seq_length lowercase_ = 2 lowercase_ = 1 def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) lowercase_ = None if self.use_attention_mask: lowercase_ = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) lowercase_ = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : List[Any] , ): '''simple docstring''' lowercase_ = True lowercase_ = TrOCRDecoder(config=_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ).eval() lowercase_ = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass lowercase_ = model(_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE ) lowercase_ = model(_SCREAMING_SNAKE_CASE ) lowercase_ = model(_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE ) self.parent.assertTrue(len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) ) self.parent.assertTrue(len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) + 1 ) lowercase_ = outputs["""past_key_values"""] # create hypothetical next token and extent to next_input_ids lowercase_ = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and lowercase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase_ = model(_SCREAMING_SNAKE_CASE )["""last_hidden_state"""] lowercase_ = model(_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE )["""last_hidden_state"""] # select random slice lowercase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase_ = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() lowercase_ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ , lowercase_ = config_and_inputs lowercase_ = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_torch class UpperCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Dict = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () __SCREAMING_SNAKE_CASE : str = (TrOCRForCausalLM,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : List[str] = {'text-generation': TrOCRForCausalLM} if is_torch_available() else {} __SCREAMING_SNAKE_CASE : Union[str, Any] = True __SCREAMING_SNAKE_CASE : Tuple = False def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = TrOCRStandaloneDecoderModelTester(self , is_training=_SCREAMING_SNAKE_CASE ) lowercase_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' pass def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' pass def UpperCAmelCase__ ( self : Any ): '''simple docstring''' pass def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' return @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' pass
713
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging a = logging.get_logger(__name__) class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : List[Any] = ['pixel_values'] def __init__( self : List[str] , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[int, float] = 1 / 255 , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **UpperCamelCase__ : Dict , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowercase_ = size if size is not None else {"""shortest_edge""": 224} lowercase_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) lowercase_ = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} lowercase_ = get_size_dict(UpperCamelCase__ , param_name="""crop_size""" ) lowercase_ = do_resize lowercase_ = size lowercase_ = resample lowercase_ = do_center_crop lowercase_ = crop_size lowercase_ = do_rescale lowercase_ = rescale_factor lowercase_ = do_normalize lowercase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase__ ( self : int , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' lowercase_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: lowercase_ = int((256 / 224) * size["""shortest_edge"""] ) lowercase_ = get_resize_output_image_size(UpperCamelCase__ , size=UpperCamelCase__ , default_to_square=UpperCamelCase__ ) lowercase_ = {"""height""": output_size[0], """width""": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( UpperCamelCase__ , size=(size_dict["""height"""], size_dict["""width"""]) , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : str , ): '''simple docstring''' lowercase_ = get_size_dict(UpperCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(UpperCamelCase__ , size=(size["""height"""], size["""width"""]) , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[int, float] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : str , ): '''simple docstring''' return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[str] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : Dict , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : PILImageResampling = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[float] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = None , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = None , UpperCamelCase__ : Optional[TensorType] = None , UpperCamelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' lowercase_ = do_resize if do_resize is not None else self.do_resize lowercase_ = resample if resample is not None else self.resample lowercase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase_ = do_rescale if do_rescale is not None else self.do_rescale lowercase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ = do_normalize if do_normalize is not None else self.do_normalize lowercase_ = image_mean if image_mean is not None else self.image_mean lowercase_ = image_std if image_std is not None else self.image_std lowercase_ = size if size is not None else self.size lowercase_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) lowercase_ = crop_size if crop_size is not None else self.crop_size lowercase_ = get_size_dict(UpperCamelCase__ , param_name="""crop_size""" ) lowercase_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_resize: lowercase_ = [self.resize(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for image in images] if do_center_crop: lowercase_ = [self.center_crop(UpperCamelCase__ , UpperCamelCase__ ) for image in images] if do_rescale: lowercase_ = [self.rescale(UpperCamelCase__ , UpperCamelCase__ ) for image in images] if do_normalize: lowercase_ = [self.normalize(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for image in images] lowercase_ = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] lowercase_ = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
650
0
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType a = None a = '<' if sys.byteorder == 'little' else '>' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image a = [ np.dtype('|b1'), np.dtype('|u1'), np.dtype('<u2'), np.dtype('>u2'), np.dtype('<i2'), np.dtype('>i2'), np.dtype('<u4'), np.dtype('>u4'), np.dtype('<i4'), np.dtype('>i4'), np.dtype('<f4'), np.dtype('>f4'), np.dtype('<f8'), np.dtype('>f8'), ] @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : bool = True __SCREAMING_SNAKE_CASE : Optional[str] = None # Automatically constructed __SCREAMING_SNAKE_CASE : ClassVar[str] = "PIL.Image.Image" __SCREAMING_SNAKE_CASE : ClassVar[Any] = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) __SCREAMING_SNAKE_CASE : str = field(default='Image' , init=UpperCAmelCase__ , repr=UpperCAmelCase__ ) def __call__( self : List[str] ): '''simple docstring''' return self.pa_type def UpperCAmelCase__ ( self : List[str] , UpperCamelCase__ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = np.array(UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): return {"path": value, "bytes": None} elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): return {"path": None, "bytes": value} elif isinstance(UpperCamelCase__ , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(UpperCamelCase__ ) elif isinstance(UpperCamelCase__ , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(UpperCamelCase__ ) elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( F'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : dict , UpperCamelCase__ : Tuple=None ): '''simple docstring''' if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support decoding images, please install 'Pillow'.""" ) if token_per_repo_id is None: lowercase_ = {} lowercase_ = value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(F'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(UpperCamelCase__ ): lowercase_ = PIL.Image.open(UpperCamelCase__ ) else: lowercase_ = path.split("""::""" )[-1] try: lowercase_ = string_to_dict(UpperCamelCase__ , config.HUB_DATASETS_URL )["""repo_id"""] lowercase_ = token_per_repo_id.get(UpperCamelCase__ ) except ValueError: lowercase_ = None with xopen(UpperCamelCase__ , """rb""" , use_auth_token=UpperCamelCase__ ) as f: lowercase_ = BytesIO(f.read() ) lowercase_ = PIL.Image.open(bytes_ ) else: lowercase_ = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' from .features import Value return ( self if self.decode else { "bytes": Value("""binary""" ), "path": Value("""string""" ), } ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ): '''simple docstring''' if pa.types.is_string(storage.type ): lowercase_ = pa.array([None] * len(UpperCamelCase__ ) , type=pa.binary() ) lowercase_ = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowercase_ = pa.array([None] * len(UpperCamelCase__ ) , type=pa.string() ) lowercase_ = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: lowercase_ = storage.field("""bytes""" ) else: lowercase_ = pa.array([None] * len(UpperCamelCase__ ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: lowercase_ = storage.field("""path""" ) else: lowercase_ = pa.array([None] * len(UpperCamelCase__ ) , type=pa.string() ) lowercase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): lowercase_ = pa.array( [encode_np_array(np.array(UpperCamelCase__ ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) lowercase_ = pa.array([None] * len(UpperCamelCase__ ) , type=pa.string() ) lowercase_ = pa.StructArray.from_arrays( [bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(UpperCamelCase__ , self.pa_type ) def UpperCAmelCase__ ( self : List[str] , UpperCamelCase__ : pa.StructArray ): '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(UpperCamelCase__ : List[str] ): with xopen(UpperCamelCase__ , """rb""" ) as f: lowercase_ = f.read() return bytes_ lowercase_ = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowercase_ = pa.array( [os.path.basename(UpperCamelCase__ ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) lowercase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(UpperCamelCase__ , self.pa_type ) def UpperCAmelCase_ ( ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() lowercase_ = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = BytesIO() if image.format in list_image_compression_formats(): lowercase_ = image.format else: lowercase_ = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(UpperCAmelCase__ , format=UpperCAmelCase__ ) return buffer.getvalue() def UpperCAmelCase_ ( UpperCAmelCase__ ): if hasattr(UpperCAmelCase__ , """filename""" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(UpperCAmelCase__ )} def UpperCAmelCase_ ( UpperCAmelCase__ ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) lowercase_ = array.dtype lowercase_ = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER lowercase_ = dtype.kind lowercase_ = dtype.itemsize lowercase_ = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: lowercase_ = np.dtype("""|u1""" ) if dtype_kind not in ["u", "i"]: raise TypeError( F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: lowercase_ = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: lowercase_ = dtype_byteorder + dtype_kind + str(UpperCAmelCase__ ) lowercase_ = np.dtype(UpperCAmelCase__ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) lowercase_ = PIL.Image.fromarray(array.astype(UpperCAmelCase__ ) ) return {"path": None, "bytes": image_to_bytes(UpperCAmelCase__ )} def UpperCAmelCase_ ( UpperCAmelCase__ ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if objs: lowercase_ = first_non_null_value(UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(UpperCAmelCase__ , np.ndarray ): lowercase_ = no_op_if_value_is_null(UpperCAmelCase__ ) return [obj_to_image_dict_func(UpperCAmelCase__ ) for obj in objs] elif isinstance(UpperCAmelCase__ , PIL.Image.Image ): lowercase_ = no_op_if_value_is_null(UpperCAmelCase__ ) return [obj_to_image_dict_func(UpperCAmelCase__ ) for obj in objs] else: return objs else: return objs
714
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) a = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
650
0
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class UpperCamelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = AutoencoderKL __SCREAMING_SNAKE_CASE : Any = """sample""" __SCREAMING_SNAKE_CASE : str = 1e-2 @property def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = 4 lowercase_ = 3 lowercase_ = (32, 32) lowercase_ = floats_tensor((batch_size, num_channels) + sizes ).to(__lowercase ) return {"sample": image} @property def UpperCAmelCase__ ( self : int ): '''simple docstring''' return (3, 32, 32) @property def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return (3, 32, 32) def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } lowercase_ = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' pass def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' pass @unittest.skipIf(torch_device == """mps""" , """Gradient checkpointing skipped on MPS""" ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ , lowercase_ = self.prepare_init_args_and_inputs_for_common() lowercase_ = self.model_class(**__lowercase ) model.to(__lowercase ) assert not model.is_gradient_checkpointing and model.training lowercase_ = model(**__lowercase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() lowercase_ = torch.randn_like(__lowercase ) lowercase_ = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing lowercase_ = self.model_class(**__lowercase ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(__lowercase ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training lowercase_ = model_a(**__lowercase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() lowercase_ = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) lowercase_ = dict(model.named_parameters() ) lowercase_ = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ , lowercase_ = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" , output_loading_info=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(__lowercase ) lowercase_ = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" ) lowercase_ = model.to(__lowercase ) model.eval() if torch_device == "mps": lowercase_ = torch.manual_seed(0 ) else: lowercase_ = torch.Generator(device=__lowercase ).manual_seed(0 ) lowercase_ = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) lowercase_ = image.to(__lowercase ) with torch.no_grad(): lowercase_ = model(__lowercase , sample_posterior=__lowercase , generator=__lowercase ).sample lowercase_ = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": lowercase_ = torch.tensor( [ -4.0078e-01, -3.8323e-04, -1.2681e-01, -1.1462e-01, 2.0095e-01, 1.0893e-01, -8.8247e-02, -3.0361e-01, -9.8644e-03, ] ) elif torch_device == "cpu": lowercase_ = torch.tensor( [-0.1_352, 0.0_878, 0.0_419, -0.0_818, -0.1_069, 0.0_688, -0.1_458, -0.4_446, -0.0_026] ) else: lowercase_ = torch.tensor( [-0.2_421, 0.4_642, 0.2_507, -0.0_438, 0.0_682, 0.3_160, -0.2_018, -0.0_727, 0.2_485] ) self.assertTrue(torch_all_close(__lowercase , __lowercase , rtol=1e-2 ) ) @slow class UpperCamelCase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : Dict , UpperCamelCase__ : int , UpperCamelCase__ : str ): '''simple docstring''' return F'''gaussian_noise_s={seed}_shape={"_".join([str(__lowercase ) for s in shape] )}.npy''' def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : Optional[Any]=0 , UpperCamelCase__ : List[str]=(4, 3, 512, 512) , UpperCamelCase__ : List[Any]=False ): '''simple docstring''' lowercase_ = torch.floataa if fpaa else torch.floataa lowercase_ = torch.from_numpy(load_hf_numpy(self.get_file_format(__lowercase , __lowercase ) ) ).to(__lowercase ).to(__lowercase ) return image def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : Any="CompVis/stable-diffusion-v1-4" , UpperCamelCase__ : List[Any]=False ): '''simple docstring''' lowercase_ = """fp16""" if fpaa else None lowercase_ = torch.floataa if fpaa else torch.floataa lowercase_ = AutoencoderKL.from_pretrained( __lowercase , subfolder="""vae""" , torch_dtype=__lowercase , revision=__lowercase , ) model.to(__lowercase ).eval() return model def UpperCAmelCase__ ( self : str , UpperCamelCase__ : Optional[int]=0 ): '''simple docstring''' if torch_device == "mps": return torch.manual_seed(__lowercase ) return torch.Generator(device=__lowercase ).manual_seed(__lowercase ) @parameterized.expand( [ # fmt: off [33, [-0.1_603, 0.9_878, -0.0_495, -0.0_790, -0.2_709, 0.8_375, -0.2_060, -0.0_824], [-0.2_395, 0.0_098, 0.0_102, -0.0_709, -0.2_840, -0.0_274, -0.0_718, -0.1_824]], [47, [-0.2_376, 0.1_168, 0.1_332, -0.4_840, -0.2_508, -0.0_791, -0.0_493, -0.4_089], [0.0_350, 0.0_847, 0.0_467, 0.0_344, -0.0_842, -0.0_547, -0.0_633, -0.1_131]], # fmt: on ] ) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] ): '''simple docstring''' lowercase_ = self.get_sd_vae_model() lowercase_ = self.get_sd_image(__lowercase ) lowercase_ = self.get_generator(__lowercase ) with torch.no_grad(): lowercase_ = model(__lowercase , generator=__lowercase , sample_posterior=__lowercase ).sample assert sample.shape == image.shape lowercase_ = sample[-1, -2:, -2:, :2].flatten().float().cpu() lowercase_ = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(__lowercase , __lowercase , atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_513, 0.0_289, 1.3_799, 0.2_166, -0.2_573, -0.0_871, 0.5_103, -0.0_999]], [47, [-0.4_128, -0.1_320, -0.3_704, 0.1_965, -0.4_116, -0.2_332, -0.3_340, 0.2_247]], # fmt: on ] ) @require_torch_gpu def UpperCAmelCase__ ( self : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple ): '''simple docstring''' lowercase_ = self.get_sd_vae_model(fpaa=__lowercase ) lowercase_ = self.get_sd_image(__lowercase , fpaa=__lowercase ) lowercase_ = self.get_generator(__lowercase ) with torch.no_grad(): lowercase_ = model(__lowercase , generator=__lowercase , sample_posterior=__lowercase ).sample assert sample.shape == image.shape lowercase_ = sample[-1, -2:, :2, -2:].flatten().float().cpu() lowercase_ = torch.tensor(__lowercase ) assert torch_all_close(__lowercase , __lowercase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_609, 0.9_866, -0.0_487, -0.0_777, -0.2_716, 0.8_368, -0.2_055, -0.0_814], [-0.2_395, 0.0_098, 0.0_102, -0.0_709, -0.2_840, -0.0_274, -0.0_718, -0.1_824]], [47, [-0.2_377, 0.1_147, 0.1_333, -0.4_841, -0.2_506, -0.0_805, -0.0_491, -0.4_085], [0.0_350, 0.0_847, 0.0_467, 0.0_344, -0.0_842, -0.0_547, -0.0_633, -0.1_131]], # fmt: on ] ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any] ): '''simple docstring''' lowercase_ = self.get_sd_vae_model() lowercase_ = self.get_sd_image(__lowercase ) with torch.no_grad(): lowercase_ = model(__lowercase ).sample assert sample.shape == image.shape lowercase_ = sample[-1, -2:, -2:, :2].flatten().float().cpu() lowercase_ = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(__lowercase , __lowercase , atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_051, -0.1_803, -0.2_311, -0.2_114, -0.3_292, -0.3_574, -0.2_953, -0.3_323]], [37, [-0.2_632, -0.2_625, -0.2_199, -0.2_741, -0.4_539, -0.4_990, -0.3_720, -0.4_925]], # fmt: on ] ) @require_torch_gpu def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple ): '''simple docstring''' lowercase_ = self.get_sd_vae_model() lowercase_ = self.get_sd_image(__lowercase , shape=(3, 4, 64, 64) ) with torch.no_grad(): lowercase_ = model.decode(__lowercase ).sample assert list(sample.shape ) == [3, 3, 512, 512] lowercase_ = sample[-1, -2:, :2, -2:].flatten().cpu() lowercase_ = torch.tensor(__lowercase ) assert torch_all_close(__lowercase , __lowercase , atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_369, 0.0_207, -0.0_776, -0.0_682, -0.1_747, -0.1_930, -0.1_465, -0.2_039]], [16, [-0.1_628, -0.2_134, -0.2_747, -0.2_642, -0.3_774, -0.4_404, -0.3_687, -0.4_277]], # fmt: on ] ) @require_torch_gpu def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any ): '''simple docstring''' lowercase_ = self.get_sd_vae_model(fpaa=__lowercase ) lowercase_ = self.get_sd_image(__lowercase , shape=(3, 4, 64, 64) , fpaa=__lowercase ) with torch.no_grad(): lowercase_ = model.decode(__lowercase ).sample assert list(sample.shape ) == [3, 3, 512, 512] lowercase_ = sample[-1, -2:, :2, -2:].flatten().float().cpu() lowercase_ = torch.tensor(__lowercase ) assert torch_all_close(__lowercase , __lowercase , atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="""xformers is not required when using PyTorch 2.0.""" ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' lowercase_ = self.get_sd_vae_model(fpaa=__lowercase ) lowercase_ = self.get_sd_image(__lowercase , shape=(3, 4, 64, 64) , fpaa=__lowercase ) with torch.no_grad(): lowercase_ = model.decode(__lowercase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): lowercase_ = model.decode(__lowercase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(__lowercase , __lowercase , atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="""xformers is not required when using PyTorch 2.0.""" ) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : Any ): '''simple docstring''' lowercase_ = self.get_sd_vae_model() lowercase_ = self.get_sd_image(__lowercase , shape=(3, 4, 64, 64) ) with torch.no_grad(): lowercase_ = model.decode(__lowercase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): lowercase_ = model.decode(__lowercase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(__lowercase , __lowercase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_001, 0.0_918, -2.6_984, -3.9_720, -3.2_099, -5.0_353, 1.7_338, -0.2_065, 3.4_267]], [47, [-1.5_030, -4.3_871, -6.0_355, -9.1_157, -1.6_661, -2.7_853, 2.1_607, -5.0_823, 2.5_633]], # fmt: on ] ) def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] ): '''simple docstring''' lowercase_ = self.get_sd_vae_model() lowercase_ = self.get_sd_image(__lowercase ) lowercase_ = self.get_generator(__lowercase ) with torch.no_grad(): lowercase_ = model.encode(__lowercase ).latent_dist lowercase_ = dist.sample(generator=__lowercase ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] lowercase_ = sample[0, -1, -3:, -3:].flatten().cpu() lowercase_ = torch.tensor(__lowercase ) lowercase_ = 3e-3 if torch_device != """mps""" else 1e-2 assert torch_all_close(__lowercase , __lowercase , atol=__lowercase )
715
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() a = logging.get_logger(__name__) a = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } a = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): for attribute in key.split(""".""" ): lowercase_ = getattr(UpperCAmelCase__ , UpperCAmelCase__ ) if weight_type is not None: lowercase_ = getattr(UpperCAmelCase__ , UpperCAmelCase__ ).shape else: lowercase_ = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase_ = value elif weight_type == "weight_g": lowercase_ = value elif weight_type == "weight_v": lowercase_ = value elif weight_type == "bias": lowercase_ = value else: lowercase_ = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = [] lowercase_ = fairseq_model.state_dict() lowercase_ = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight lowercase_ = None for name, value in fairseq_dict.items(): lowercase_ = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , hf_model.config.feat_extract_norm == """group""" , ) lowercase_ = True elif name.split(""".""" )[0] == "proj": lowercase_ = fairseq_model.proj lowercase_ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: lowercase_ = True if "*" in mapped_key: lowercase_ = name.split(UpperCAmelCase__ )[0].split(""".""" )[-2] lowercase_ = mapped_key.replace("""*""" , UpperCAmelCase__ ) if "weight_g" in name: lowercase_ = """weight_g""" elif "weight_v" in name: lowercase_ = """weight_v""" elif "bias" in name: lowercase_ = """bias""" elif "weight" in name: lowercase_ = """weight""" else: lowercase_ = None set_recursively(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) continue if not is_used: unused_weights.append(UpperCAmelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) return proj_weight def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = full_name.split("""conv_layers.""" )[-1] lowercase_ = name.split(""".""" ) lowercase_ = int(items[0] ) lowercase_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowercase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(UpperCAmelCase__ ) def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ , lowercase_ = emb.weight.shape lowercase_ = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ , bias=UpperCAmelCase__ ) lowercase_ = emb.weight.data return lin_layer def UpperCAmelCase_ ( UpperCAmelCase__ ): with open(UpperCAmelCase__ , """r""" , encoding="""utf-8""" ) as f: lowercase_ = f.readlines() lowercase_ = [line.split(""" """ )[0] for line in lines] lowercase_ = len(UpperCAmelCase__ ) lowercase_ = { """<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3, } vocab_dict.update(dict(zip(UpperCAmelCase__ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ): lowercase_ = WavaVecaConfig.from_pretrained(UpperCAmelCase__ ) lowercase_ = SpeechaTextaConfig.from_pretrained( UpperCAmelCase__ , vocab_size=UpperCAmelCase__ , decoder_layers=UpperCAmelCase__ , do_stable_layer_norm=UpperCAmelCase__ ) lowercase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , ) lowercase_ , lowercase_ , lowercase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) lowercase_ = model[0].eval() # set weights for wav2vec2 encoder lowercase_ = WavaVecaModel(UpperCAmelCase__ ) lowercase_ = recursively_load_weights_wavaveca(model.encoder , UpperCAmelCase__ ) lowercase_ = SpeechaTextaForCausalLM(UpperCAmelCase__ ) lowercase_ , lowercase_ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=UpperCAmelCase__ ) # set output linear layer unexpected_keys.remove("""embed_out""" ) lowercase_ = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) lowercase_ = SpeechEncoderDecoderModel(encoder=UpperCAmelCase__ , decoder=UpperCAmelCase__ ) lowercase_ = False # add projection layer lowercase_ = nn.Parameter(projection_layer.weight ) lowercase_ = nn.Parameter(projection_layer.bias ) lowercase_ = create_vocab_dict(UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__ , """vocab.json""" ) , """w""" ) as fp: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ = SpeechaTextaTokenizer(os.path.join(UpperCAmelCase__ , """vocab.json""" ) ) tokenizer.save_pretrained(UpperCAmelCase__ ) lowercase_ = hf_wavavec.config.to_dict() lowercase_ = tokenizer.pad_token_id lowercase_ = tokenizer.bos_token_id lowercase_ = tokenizer.eos_token_id lowercase_ = """speech_to_text_2""" lowercase_ = """wav2vec2""" lowercase_ = SpeechEncoderDecoderConfig.from_dict(UpperCAmelCase__ ) hf_wavavec.save_pretrained(UpperCAmelCase__ ) feature_extractor.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-large-lv60', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/s2t-small-mustc-en-fr-st', type=str, help='Path to hf decoder s2t checkpoint config', ) parser.add_argument('--vocab_size', default=1_0_2_2_4, type=int, help='Vocab size of decoder') parser.add_argument('--num_decoder_layers', default=7, type=int, help='Number of decoder layers') a = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
650
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() a = logging.get_logger(__name__) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__=False ): lowercase_ = [] # fmt: off # stem: rename_keys.append(("""cls_token""", """vit.embeddings.cls_token""") ) rename_keys.append(("""pos_embed""", """vit.embeddings.position_embeddings""") ) rename_keys.append(("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias""") ) # backbone rename_keys.append(("""patch_embed.backbone.stem.conv.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight""") ) rename_keys.append(("""patch_embed.backbone.stem.norm.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight""") ) rename_keys.append(("""patch_embed.backbone.stem.norm.bias""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias""") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias''') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase_ = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) # fmt: on return rename_keys def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=False ): for i in range(config.num_hidden_layers ): if base_model: lowercase_ = "" else: lowercase_ = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase_ = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) lowercase_ = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase_ = in_proj_weight[ : config.hidden_size, : ] lowercase_ = in_proj_bias[: config.hidden_size] lowercase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase_ = in_proj_weight[ -config.hidden_size :, : ] lowercase_ = in_proj_bias[-config.hidden_size :] def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = dct.pop(_lowerCAmelCase ) lowercase_ = val def UpperCAmelCase_ ( ): lowercase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase_ = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=False ): lowercase_ = BitConfig( global_padding="""same""" , layer_type="""bottleneck""" , depths=(3, 4, 9) , out_features=["""stage3"""] , embedding_dynamic_padding=_lowerCAmelCase , ) lowercase_ = ViTHybridConfig(backbone_config=_lowerCAmelCase , image_size=3_8_4 , num_labels=1_0_0_0 ) lowercase_ = False # load original model from timm lowercase_ = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowercase_ = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCAmelCase ) lowercase_ = create_rename_keys(_lowerCAmelCase , _lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) lowercase_ = "huggingface/label-files" lowercase_ = "imagenet-1k-id2label.json" lowercase_ = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) lowercase_ = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} lowercase_ = idalabel lowercase_ = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": lowercase_ = ViTHybridModel(_lowerCAmelCase ).eval() else: lowercase_ = ViTHybridForImageClassification(_lowerCAmelCase ).eval() model.load_state_dict(_lowerCAmelCase ) # create image processor lowercase_ = create_transform(**resolve_data_config({} , model=_lowerCAmelCase ) ) lowercase_ = transform.transforms lowercase_ = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } lowercase_ = ViTHybridImageProcessor( do_resize=_lowerCAmelCase , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_lowerCAmelCase , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=_lowerCAmelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowercase_ = prepare_img() lowercase_ = transform(_lowerCAmelCase ).unsqueeze(0 ) lowercase_ = processor(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase ) # verify logits with torch.no_grad(): lowercase_ = model(_lowerCAmelCase ) lowercase_ = outputs.logits print("""Predicted class:""" , logits.argmax(-1 ).item() ) if base_model: lowercase_ = timm_model.forward_features(_lowerCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCAmelCase , outputs.pooler_output , atol=1e-3 ) else: lowercase_ = timm_model(_lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCAmelCase , outputs.logits , atol=1e-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(F'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCAmelCase ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: print(F'''Pushing model and processor to the hub {vit_name}''' ) model.push_to_hub(F'''ybelkada/{vit_name}''' ) processor.push_to_hub(F'''ybelkada/{vit_name}''' ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_r50_s16_384', type=str, help='Name of the hybrid ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) a = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
716
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) # TODO Update this a = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Tuple = 'esm' def __init__( self : Optional[Any] , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : List[Any]=768 , UpperCamelCase__ : Tuple=12 , UpperCamelCase__ : Optional[int]=12 , UpperCamelCase__ : Dict=3_072 , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : Optional[int]=1_026 , UpperCamelCase__ : Any=0.02 , UpperCamelCase__ : Dict=1e-12 , UpperCamelCase__ : List[str]="absolute" , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Union[str, Any]=False , UpperCamelCase__ : Optional[int]=False , UpperCamelCase__ : Dict=None , UpperCamelCase__ : str=None , **UpperCamelCase__ : str , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , mask_token_id=UpperCamelCase__ , **UpperCamelCase__ ) lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = position_embedding_type lowercase_ = use_cache lowercase_ = emb_layer_norm_before lowercase_ = token_dropout lowercase_ = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("""No esmfold_config supplied for folding model, using default values.""" ) lowercase_ = EsmFoldConfig() elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = EsmFoldConfig(**UpperCamelCase__ ) lowercase_ = esmfold_config if vocab_list is None: logger.warning("""No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!""" ) lowercase_ = get_default_vocab_list() else: lowercase_ = vocab_list else: lowercase_ = None lowercase_ = None if self.esmfold_config is not None and getattr(self.esmfold_config , """use_esm_attn_map""" , UpperCamelCase__ ): raise ValueError("""The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!""" ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = super().to_dict() if isinstance(self.esmfold_config , UpperCamelCase__ ): lowercase_ = self.esmfold_config.to_dict() return output @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : str = None __SCREAMING_SNAKE_CASE : bool = True __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : float = 0 __SCREAMING_SNAKE_CASE : bool = True __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : "TrunkConfig" = None def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' if self.trunk is None: lowercase_ = TrunkConfig() elif isinstance(self.trunk , UpperCamelCase__ ): lowercase_ = TrunkConfig(**self.trunk ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = asdict(self ) lowercase_ = self.trunk.to_dict() return output @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : int = 48 __SCREAMING_SNAKE_CASE : int = 1024 __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : float = 0 __SCREAMING_SNAKE_CASE : float = 0 __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : int = 4 __SCREAMING_SNAKE_CASE : Optional[int] = 128 __SCREAMING_SNAKE_CASE : "StructureModuleConfig" = None def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' if self.structure_module is None: lowercase_ = StructureModuleConfig() elif isinstance(self.structure_module , UpperCamelCase__ ): lowercase_ = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( """`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got""" F''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( """`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got""" F''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) lowercase_ = self.sequence_state_dim // self.sequence_head_width lowercase_ = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( """`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got""" F''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( """`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got""" F''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(F'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = asdict(self ) lowercase_ = self.structure_module.to_dict() return output @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : int = 384 __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : int = 16 __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : int = 12 __SCREAMING_SNAKE_CASE : int = 4 __SCREAMING_SNAKE_CASE : int = 8 __SCREAMING_SNAKE_CASE : float = 0.1 __SCREAMING_SNAKE_CASE : int = 8 __SCREAMING_SNAKE_CASE : int = 1 __SCREAMING_SNAKE_CASE : int = 2 __SCREAMING_SNAKE_CASE : int = 7 __SCREAMING_SNAKE_CASE : int = 10 __SCREAMING_SNAKE_CASE : float = 1e-8 __SCREAMING_SNAKE_CASE : float = 1e5 def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' return asdict(self ) def UpperCAmelCase_ ( ): return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
650
0
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder a = '''__DUMMY_TRANSFORMERS_USER__''' a = '''Dummy User''' a = '''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''' a = '''https://hub-ci.huggingface.co''' a = CI_HUB_ENDPOINT + '''/datasets/{repo_id}/resolve/{revision}/{path}''' a = CI_HUB_ENDPOINT + '''/{repo_id}/resolve/{revision}/{filename}''' a = Path('~/.huggingface/hub_ci_token').expanduser() @pytest.fixture def UpperCAmelCase_ ( UpperCAmelCase__ ): monkeypatch.setattr( """huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE""" , UpperCAmelCase__ ) @pytest.fixture def UpperCAmelCase_ ( UpperCAmelCase__ ): monkeypatch.setattr("""datasets.config.HF_ENDPOINT""" , UpperCAmelCase__ ) monkeypatch.setattr("""datasets.config.HUB_DATASETS_URL""" , UpperCAmelCase__ ) @pytest.fixture def UpperCAmelCase_ ( UpperCAmelCase__ ): monkeypatch.setattr("""huggingface_hub.hf_api.HfFolder.path_token""" , UpperCAmelCase__ ) @pytest.fixture def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): HfFolder.save_token(UpperCAmelCase__ ) yield HfFolder.delete_token() @pytest.fixture(scope="""session""" ) def UpperCAmelCase_ ( ): return HfApi(endpoint=UpperCAmelCase__ ) @pytest.fixture(scope="""session""" ) def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = HfFolder.get_token() HfFolder.save_token(UpperCAmelCase__ ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(UpperCAmelCase__ ) @pytest.fixture def UpperCAmelCase_ ( UpperCAmelCase__ ): def _cleanup_repo(UpperCAmelCase__ ): hf_api.delete_repo(UpperCAmelCase__ , token=UpperCAmelCase__ , repo_type="""dataset""" ) return _cleanup_repo @pytest.fixture def UpperCAmelCase_ ( UpperCAmelCase__ ): @contextmanager def _temporary_repo(UpperCAmelCase__ ): try: yield repo_id finally: cleanup_repo(UpperCAmelCase__ ) return _temporary_repo @pytest.fixture(scope="""session""" ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = F'''repo_txt_data-{int(time.time() * 10e3 )}''' lowercase_ = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(UpperCAmelCase__ , token=UpperCAmelCase__ , repo_type="""dataset""" , private=UpperCAmelCase__ ) hf_api.upload_file( token=UpperCAmelCase__ , path_or_fileobj=str(UpperCAmelCase__ ) , path_in_repo="""data/text_data.txt""" , repo_id=UpperCAmelCase__ , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(UpperCAmelCase__ , token=UpperCAmelCase__ , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="""session""" ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = F'''repo_zipped_txt_data-{int(time.time() * 10e3 )}''' lowercase_ = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(UpperCAmelCase__ , token=UpperCAmelCase__ , repo_type="""dataset""" , private=UpperCAmelCase__ ) hf_api.upload_file( token=UpperCAmelCase__ , path_or_fileobj=str(UpperCAmelCase__ ) , path_in_repo="""data.zip""" , repo_id=UpperCAmelCase__ , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(UpperCAmelCase__ , token=UpperCAmelCase__ , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="""session""" ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = F'''repo_zipped_img_data-{int(time.time() * 10e3 )}''' lowercase_ = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(UpperCAmelCase__ , token=UpperCAmelCase__ , repo_type="""dataset""" , private=UpperCAmelCase__ ) hf_api.upload_file( token=UpperCAmelCase__ , path_or_fileobj=str(UpperCAmelCase__ ) , path_in_repo="""data.zip""" , repo_id=UpperCAmelCase__ , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(UpperCAmelCase__ , token=UpperCAmelCase__ , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): return hf_private_dataset_repo_zipped_img_data_
717
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def UpperCAmelCase_ ( UpperCAmelCase__=None ): if subparsers is not None: lowercase_ = subparsers.add_parser("""env""" ) else: lowercase_ = argparse.ArgumentParser("""Accelerate env command""" ) parser.add_argument( """--config_file""" , default=UpperCAmelCase__ , help="""The config file to use for the default values in the launching script.""" ) if subparsers is not None: parser.set_defaults(func=UpperCAmelCase__ ) return parser def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = torch.__version__ lowercase_ = torch.cuda.is_available() lowercase_ = is_xpu_available() lowercase_ = is_npu_available() lowercase_ = """Not found""" # Get the default from the config file. if args.config_file is not None or os.path.isfile(UpperCAmelCase__ ): lowercase_ = load_config_from_file(args.config_file ).to_dict() lowercase_ = { """`Accelerate` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Numpy version""": np.__version__, """PyTorch version (GPU?)""": F'''{pt_version} ({pt_cuda_available})''', """PyTorch XPU available""": str(UpperCAmelCase__ ), """PyTorch NPU available""": str(UpperCAmelCase__ ), """System RAM""": F'''{psutil.virtual_memory().total / 1_0_2_4 ** 3:.2f} GB''', } if pt_cuda_available: lowercase_ = torch.cuda.get_device_name() print("""\nCopy-and-paste the text below in your GitHub issue\n""" ) print("""\n""".join([F'''- {prop}: {val}''' for prop, val in info.items()] ) ) print("""- `Accelerate` default config:""" if args.config_file is None else """- `Accelerate` config passed:""" ) lowercase_ = ( """\n""".join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else F'''\t{accelerate_config}''' ) print(UpperCAmelCase__ ) lowercase_ = accelerate_config return info def UpperCAmelCase_ ( ): lowercase_ = env_command_parser() lowercase_ = parser.parse_args() env_command(UpperCAmelCase__ ) return 0 if __name__ == "__main__": raise SystemExit(main())
650
0
def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): if discount_rate < 0: raise ValueError("""Discount rate cannot be negative""" ) if not cash_flows: raise ValueError("""Cash flows list cannot be empty""" ) lowercase_ = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(__lowerCAmelCase ) ) return round(__lowerCAmelCase , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
718
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class UpperCamelCase__ : def __init__( self : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple=13 , UpperCamelCase__ : Tuple=30 , UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : Union[str, Any]=3 , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : int=32 , UpperCamelCase__ : Tuple=5 , UpperCamelCase__ : List[Any]=4 , UpperCamelCase__ : Dict=37 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : Any=10 , UpperCamelCase__ : Optional[int]=0.02 , UpperCamelCase__ : Dict=3 , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Union[str, Any]=2 , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = is_training lowercase_ = use_labels lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = scope lowercase_ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowercase_ = (image_size // patch_size) ** 2 lowercase_ = num_patches + 2 def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple ): '''simple docstring''' lowercase_ = DeiTModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = DeiTForMaskedImageModeling(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase_ = 1 lowercase_ = DeiTForMaskedImageModeling(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] ): '''simple docstring''' lowercase_ = self.type_sequence_label_size lowercase_ = DeiTForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ = 1 lowercase_ = DeiTForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : str = ( { 'feature-extraction': DeiTModel, 'image-classification': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : List[Any] = False def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = DeiTModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' pass def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCamelCase__ ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any]=False ): '''simple docstring''' lowercase_ = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' if not self.model_tester.is_training: return lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(UpperCamelCase__ ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue lowercase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.train() lowercase_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) lowercase_ = model(**UpperCamelCase__ ).loss loss.backward() def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase_ = False lowercase_ = True for model_class in self.all_model_classes: if model_class in get_values(UpperCamelCase__ ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue lowercase_ = model_class(UpperCamelCase__ ) model.gradient_checkpointing_enable() model.to(UpperCamelCase__ ) model.train() lowercase_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) lowercase_ = model(**UpperCamelCase__ ).loss loss.backward() def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(UpperCamelCase__ ), *get_values(UpperCamelCase__ ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'''Testing {model_class} with {problem_type["title"]}''' ): lowercase_ = problem_type["""title"""] lowercase_ = problem_type["""num_labels"""] lowercase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.train() lowercase_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if problem_type["num_labels"] > 1: lowercase_ = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) lowercase_ = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=UpperCamelCase__ ) as warning_list: lowercase_ = model(**UpperCamelCase__ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def UpperCAmelCase__ ( self : int ): '''simple docstring''' for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = DeiTModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def UpperCAmelCase_ ( ): lowercase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = DeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ).to( UpperCamelCase__ ) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowercase_ = model(**UpperCamelCase__ ) # verify the logits lowercase_ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) lowercase_ = torch.tensor([-1.0_266, 0.1_912, -1.2_861] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = DeiTModel.from_pretrained( """facebook/deit-base-distilled-patch16-224""" , torch_dtype=torch.floataa , device_map="""auto""" ) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ) lowercase_ = inputs.pixel_values.to(UpperCamelCase__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowercase_ = model(UpperCamelCase__ )
650
0
def UpperCAmelCase_ ( UpperCAmelCase__ ): if not grid or not grid[0]: raise TypeError("""The grid does not contain the appropriate information""" ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] lowercase_ = grid[0] for row_n in range(1 , len(lowercase__ ) ): lowercase_ = grid[row_n] lowercase_ = fill_row(lowercase__ , lowercase__ ) lowercase_ = grid[row_n] return grid[-1][-1] def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): current_row[0] += row_above[0] for cell_n in range(1 , len(lowercase__ ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
719
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
650
0
def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ = False ): if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 1_0 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1 and not allow_probable: raise ValueError( """Warning: upper bound of deterministic test is exceeded. """ """Pass allow_probable=True to allow probabilistic test. """ """A return value of True indicates a probable prime.""" ) # array bounds provided by analysis lowercase_ = [ 2_0_4_7, 1_3_7_3_6_5_3, 2_5_3_2_6_0_0_1, 3_2_1_5_0_3_1_7_5_1, 2_1_5_2_3_0_2_8_9_8_7_4_7, 3_4_7_4_7_4_9_6_6_0_3_8_3, 3_4_1_5_5_0_0_7_1_7_2_8_3_2_1, 1, 3_8_2_5_1_2_3_0_5_6_5_4_6_4_1_3_0_5_1, 1, 1, 3_1_8_6_6_5_8_5_7_8_3_4_0_3_1_1_5_1_1_6_7_4_6_1, 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1, ] lowercase_ = [2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1] for idx, _p in enumerate(UpperCamelCase__ , 1 ): if n < _p: # then we have our last prime to check lowercase_ = primes[:idx] break lowercase_ = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: lowercase_ = False for r in range(UpperCamelCase__ ): lowercase_ = pow(UpperCamelCase__ , d * 2**r , UpperCamelCase__ ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): lowercase_ = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def UpperCAmelCase_ ( ): assert not miller_rabin(5_6_1 ) assert miller_rabin(5_6_3 ) # 2047 assert not miller_rabin(8_3_8_2_0_1 ) assert miller_rabin(8_3_8_2_0_7 ) # 1_373_653 assert not miller_rabin(1_7_3_1_6_0_0_1 ) assert miller_rabin(1_7_3_1_6_0_1_7 ) # 25_326_001 assert not miller_rabin(3_0_7_8_3_8_6_6_4_1 ) assert miller_rabin(3_0_7_8_3_8_6_6_5_3 ) # 3_215_031_751 assert not miller_rabin(1_7_1_3_0_4_5_5_7_4_8_0_1 ) assert miller_rabin(1_7_1_3_0_4_5_5_7_4_8_1_9 ) # 2_152_302_898_747 assert not miller_rabin(2_7_7_9_7_9_9_7_2_8_3_0_7 ) assert miller_rabin(2_7_7_9_7_9_9_7_2_8_3_2_7 ) # 3_474_749_660_383 assert not miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_4_4_1 ) assert miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_5_2_7 ) # 341_550_071_728_321 assert not miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_5_1 ) assert miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_9_1 ) # 3_825_123_056_546_413_051 assert not miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_8_6_7 ) assert miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_9_5_1 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_3_3 ) assert miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_5_9 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
720
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = XGLMTokenizer __SCREAMING_SNAKE_CASE : List[Any] = XGLMTokenizerFast __SCREAMING_SNAKE_CASE : List[Any] = True __SCREAMING_SNAKE_CASE : int = True def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase_ = XGLMTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = """<pad>""" lowercase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(len(UpperCamelCase__ ) , 1_008 ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_008 ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = XGLMTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) lowercase_ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCamelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowercase_ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowercase_ = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase_ = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def UpperCAmelCase__ ( self : str ): '''simple docstring''' return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(UpperCamelCase__ , f.name ) lowercase_ = XGLMTokenizer(f.name , keep_accents=UpperCamelCase__ ) lowercase_ = pickle.dumps(UpperCamelCase__ ) pickle.loads(UpperCamelCase__ ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' if not self.test_rust_tokenizer: return lowercase_ = self.get_tokenizer() lowercase_ = self.get_rust_tokenizer() lowercase_ = """I was born in 92000, and this is falsé.""" lowercase_ = tokenizer.tokenize(UpperCamelCase__ ) lowercase_ = rust_tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) lowercase_ = rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = self.get_rust_tokenizer() lowercase_ = tokenizer.encode(UpperCamelCase__ ) lowercase_ = rust_tokenizer.encode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) @slow def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = """Hello World!""" lowercase_ = [2, 31_227, 4_447, 35] self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @slow def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth""" ) # fmt: off lowercase_ = [2, 1_018, 67, 11, 1_988, 2_617, 5_631, 278, 11, 3_407, 48, 71_630, 28_085, 4, 3_234, 157, 13, 6, 5, 6, 4, 3_526, 768, 15, 659, 57, 298, 3_983, 864, 129, 21, 6, 5, 13_675, 377, 652, 7_580, 10_341, 155, 2_817, 422, 1_666, 7, 1_674, 53, 113, 202_277, 17_892, 33, 60, 87, 4, 3_234, 157, 61, 2_667, 52_376, 19, 88, 23, 735] # fmt: on self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @slow def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = { """input_ids""": [[2, 108_825, 1_163, 15, 88_010, 473, 15_898, 157, 13_672, 1_857, 312, 8, 238_021, 1_163, 53, 13_672, 1_857, 312, 8, 53_283, 182_396, 8, 18_566, 16, 36_733, 4_101, 8, 230, 244_017, 122_553, 7, 15, 132_597, 4, 293, 12_511, 7_610, 4, 3_414, 132_597, 9, 4, 32_361, 362, 4, 734, 28_512, 32_569, 18, 4, 32_361, 26_096, 14_982, 73, 18_715, 21_433, 235_261, 15, 492, 12_427, 16, 53, 18_715, 21_433, 65_454, 15, 23_659, 563, 16, 278, 597, 2_843, 595, 7_931, 182_396, 64_186, 22, 886, 595, 132_981, 53, 25_540, 3_449, 43_982, 39_901, 5_951, 878, 330, 4, 27_694, 80_269, 312, 53, 6_517, 11_780, 611, 20_408, 5], [2, 6, 132_597, 67, 42_897, 33, 592, 8, 163_729, 25_540, 361, 136_997, 109_514, 173_230, 7, 501, 60, 102_913, 196, 5_631, 235, 63_243, 473, 6, 231_757, 74, 5_277, 7_905, 53, 3_095, 37_317, 22, 454, 183_874, 5], [2, 268, 31_298, 46_530, 6, 132_935, 43_831, 7, 597, 32, 24, 3_688, 9_865, 5]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name="""facebook/xglm-564M""" , padding=UpperCamelCase__ , )
650
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a = {"configuration_swin": ["SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwinConfig", "SwinOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ "SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "SwinForImageClassification", "SwinForMaskedImageModeling", "SwinModel", "SwinPreTrainedModel", "SwinBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ "TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSwinForImageClassification", "TFSwinForMaskedImageModeling", "TFSwinModel", "TFSwinPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
721
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: a = None a = logging.get_logger(__name__) a = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} a = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 a = { 't5-small': 5_1_2, 't5-base': 5_1_2, 't5-large': 5_1_2, 't5-3b': 5_1_2, 't5-11b': 5_1_2, } class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : str = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : Dict = TaTokenizer __SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self : int , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Any=None , UpperCamelCase__ : Dict="</s>" , UpperCamelCase__ : Tuple="<unk>" , UpperCamelCase__ : Optional[Any]="<pad>" , UpperCamelCase__ : Union[str, Any]=100 , UpperCamelCase__ : Optional[Any]=None , **UpperCamelCase__ : List[str] , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: lowercase_ = [F'''<extra_id_{i}>''' for i in range(UpperCamelCase__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowercase_ = len(set(filter(lambda UpperCamelCase__ : bool("""extra_id_""" in str(UpperCamelCase__ ) ) , UpperCamelCase__ ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , extra_ids=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , **UpperCamelCase__ , ) lowercase_ = vocab_file lowercase_ = False if not self.vocab_file else True lowercase_ = extra_ids @staticmethod def UpperCAmelCase__ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : int ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowercase_ = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" F''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" F''' {pretrained_model_name_or_path} automatically truncating your input to''' F''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' F''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , UpperCamelCase__ , ) return max_model_length def UpperCAmelCase__ ( self : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCamelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ = os.path.join( UpperCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ): copyfile(self.vocab_file , UpperCamelCase__ ) logger.info(F'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' lowercase_ = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowercase_ = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def UpperCAmelCase__ ( self : str , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' lowercase_ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return list( set(filter(lambda UpperCamelCase__ : bool(re.search(R"""<extra_id_\d+>""" , UpperCamelCase__ ) ) is not None , self.additional_special_tokens ) ) ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' return [self.convert_tokens_to_ids(UpperCamelCase__ ) for token in self.get_sentinel_tokens()]
650
0
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : List[str] = None __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : int = False __SCREAMING_SNAKE_CASE : int = None __SCREAMING_SNAKE_CASE : Optional[Any] = None __SCREAMING_SNAKE_CASE : Any = False __SCREAMING_SNAKE_CASE : str = False __SCREAMING_SNAKE_CASE : Optional[int] = False __SCREAMING_SNAKE_CASE : List[str] = True __SCREAMING_SNAKE_CASE : int = None __SCREAMING_SNAKE_CASE : Dict = 1 __SCREAMING_SNAKE_CASE : Dict = None __SCREAMING_SNAKE_CASE : Optional[Any] = False __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : List[str] = None def UpperCAmelCase__ ( self : Any ): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(A__ ) for k, v in self.__dict__.items()} )
700
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionDiffEditPipeline __SCREAMING_SNAKE_CASE : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'height', 'width', 'image'} | {'image_latents'} __SCREAMING_SNAKE_CASE : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'image'} | {'image_latents'} __SCREAMING_SNAKE_CASE : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __SCREAMING_SNAKE_CASE : Any = frozenset([] ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase__ , ) lowercase_ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCamelCase__ , set_alpha_to_one=UpperCamelCase__ , ) lowercase_ = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCamelCase__ , set_alpha_to_zero=UpperCamelCase__ , ) torch.manual_seed(0 ) lowercase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=512 , ) lowercase_ = CLIPTextModel(UpperCamelCase__ ) lowercase_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase_ = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCAmelCase__ ( self : int , UpperCamelCase__ : Any , UpperCamelCase__ : Any=0 ): '''simple docstring''' lowercase_ = floats_tensor((1, 16, 16) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowercase_ = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) if str(UpperCamelCase__ ).startswith("""mps""" ): lowercase_ = torch.manual_seed(UpperCamelCase__ ) else: lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowercase_ = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str=0 ): '''simple docstring''' lowercase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowercase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase_ = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert("""RGB""" ) if str(UpperCamelCase__ ).startswith("""mps""" ): lowercase_ = torch.manual_seed(UpperCamelCase__ ) else: lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowercase_ = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple=0 ): '''simple docstring''' lowercase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowercase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase_ = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert("""RGB""" ) if str(UpperCamelCase__ ).startswith("""mps""" ): lowercase_ = torch.manual_seed(UpperCamelCase__ ) else: lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowercase_ = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : int ): '''simple docstring''' if not hasattr(self.pipeline_class , """_optional_components""" ): return lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowercase_ = self.get_dummy_inputs(UpperCamelCase__ ) lowercase_ = pipe(**UpperCamelCase__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCamelCase__ ) lowercase_ = self.pipeline_class.from_pretrained(UpperCamelCase__ ) pipe_loaded.to(UpperCamelCase__ ) pipe_loaded.set_progress_bar_config(disable=UpperCamelCase__ ) for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCamelCase__ , UpperCamelCase__ ) is None , F'''`{optional_component}` did not stay set to None after loading.''' , ) lowercase_ = self.get_dummy_inputs(UpperCamelCase__ ) lowercase_ = pipe_loaded(**UpperCamelCase__ )[0] lowercase_ = np.abs(output - output_loaded ).max() self.assertLess(UpperCamelCase__ , 1e-4 ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = """cpu""" lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_mask_inputs(UpperCamelCase__ ) lowercase_ = pipe.generate_mask(**UpperCamelCase__ ) lowercase_ = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowercase_ = np.array([0] * 9 ) lowercase_ = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = """cpu""" lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_inversion_inputs(UpperCamelCase__ ) lowercase_ = pipe.invert(**UpperCamelCase__ ).images lowercase_ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase_ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1e-3 ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = """cpu""" lowercase_ = self.get_dummy_components() lowercase_ = {"""beta_start""": 0.00_085, """beta_end""": 0.012, """beta_schedule""": """scaled_linear"""} lowercase_ = DPMSolverMultistepScheduler(**UpperCamelCase__ ) lowercase_ = DPMSolverMultistepInverseScheduler(**UpperCamelCase__ ) lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_inversion_inputs(UpperCamelCase__ ) lowercase_ = pipe.invert(**UpperCamelCase__ ).images lowercase_ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase_ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1e-3 ) @require_torch_gpu @slow class UpperCamelCase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def UpperCAmelCase__ ( cls : Dict ): '''simple docstring''' lowercase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) lowercase_ = raw_image.convert("""RGB""" ).resize((768, 768) ) lowercase_ = raw_image def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = torch.manual_seed(0 ) lowercase_ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa ) lowercase_ = DDIMScheduler.from_config(pipe.scheduler.config ) lowercase_ = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = """a bowl of fruit""" lowercase_ = """a bowl of pears""" lowercase_ = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCamelCase__ , target_prompt=UpperCamelCase__ , generator=UpperCamelCase__ , ) lowercase_ = pipe.invert( prompt=UpperCamelCase__ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCamelCase__ ).latents lowercase_ = pipe( prompt=UpperCamelCase__ , mask_image=UpperCamelCase__ , image_latents=UpperCamelCase__ , generator=UpperCamelCase__ , negative_prompt=UpperCamelCase__ , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0] lowercase_ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1 def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = torch.manual_seed(0 ) lowercase_ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa ) lowercase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase_ = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = """a bowl of fruit""" lowercase_ = """a bowl of pears""" lowercase_ = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCamelCase__ , target_prompt=UpperCamelCase__ , generator=UpperCamelCase__ , ) lowercase_ = pipe.invert( prompt=UpperCamelCase__ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCamelCase__ , num_inference_steps=25 , ).latents lowercase_ = pipe( prompt=UpperCamelCase__ , mask_image=UpperCamelCase__ , image_latents=UpperCamelCase__ , generator=UpperCamelCase__ , negative_prompt=UpperCamelCase__ , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0] lowercase_ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1
650
0
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a = '▁' a = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : str = BigBirdTokenizer __SCREAMING_SNAKE_CASE : Optional[Any] = BigBirdTokenizerFast __SCREAMING_SNAKE_CASE : List[str] = True __SCREAMING_SNAKE_CASE : Tuple = True def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' super().setUp() lowercase_ = self.tokenizer_class(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = """<s>""" lowercase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """[MASK]""" ) self.assertEqual(len(UpperCamelCase__ ) , 1_004 ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' if not self.test_rust_tokenizer: return lowercase_ = self.get_tokenizer() lowercase_ = self.get_rust_tokenizer() lowercase_ = """I was born in 92000, and this is falsé.""" lowercase_ = tokenizer.tokenize(UpperCamelCase__ ) lowercase_ = rust_tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) lowercase_ = rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = self.get_rust_tokenizer() lowercase_ = tokenizer.encode(UpperCamelCase__ ) lowercase_ = rust_tokenizer.encode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = BigBirdTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) lowercase_ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCamelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [285, 46, 10, 170, 382] , ) lowercase_ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowercase_ = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowercase_ = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def UpperCAmelCase__ ( self : Any ): '''simple docstring''' return BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""" ) @slow def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = """Hello World!""" lowercase_ = [65, 18_536, 2_260, 101, 66] self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @slow def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) # fmt: off lowercase_ = [65, 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, 66] # noqa: E231 # fmt: on self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @require_torch @slow def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence lowercase_ = list(self.big_tokenizer.get_vocab().keys() )[:10] lowercase_ = """ """.join(UpperCamelCase__ ) lowercase_ = self.big_tokenizer.encode_plus(UpperCamelCase__ , return_tensors="""pt""" , return_token_type_ids=UpperCamelCase__ ) lowercase_ = self.big_tokenizer.batch_encode_plus( [sequence + """ """ + sequence] , return_tensors="""pt""" , return_token_type_ids=UpperCamelCase__ ) lowercase_ = BigBirdConfig(attention_type="""original_full""" ) lowercase_ = BigBirdModel(UpperCamelCase__ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**UpperCamelCase__ ) model(**UpperCamelCase__ ) @slow def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""" ) lowercase_ = tokenizer.decode(tokenizer("""Paris is the [MASK].""" ).input_ids ) self.assertTrue(decoded_text == """[CLS] Paris is the[MASK].[SEP]""" ) @slow def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = {"""input_ids""": [[65, 39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114, 66], [65, 448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name="""google/bigbird-roberta-base""" , revision="""215c99f1600e06f83acce68422f2035b2b5c3510""" , )
701
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging a = logging.get_logger(__name__) class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : str = ['pixel_values'] def __init__( self : List[Any] , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[int, float] = 1 / 255 , UpperCamelCase__ : bool = True , UpperCamelCase__ : int = 8 , **UpperCamelCase__ : Optional[Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowercase_ = do_rescale lowercase_ = rescale_factor lowercase_ = do_pad lowercase_ = pad_size def UpperCAmelCase__ ( self : int , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : float , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[Any] ): '''simple docstring''' return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None ): '''simple docstring''' lowercase_ , lowercase_ = get_image_size(UpperCamelCase__ ) lowercase_ = (old_height // size + 1) * size - old_height lowercase_ = (old_width // size + 1) * size - old_width return pad(UpperCamelCase__ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[float] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase__ : Dict , ): '''simple docstring''' lowercase_ = do_rescale if do_rescale is not None else self.do_rescale lowercase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ = do_pad if do_pad is not None else self.do_pad lowercase_ = pad_size if pad_size is not None else self.pad_size lowercase_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_rescale: lowercase_ = [self.rescale(image=UpperCamelCase__ , scale=UpperCamelCase__ ) for image in images] if do_pad: lowercase_ = [self.pad(UpperCamelCase__ , size=UpperCamelCase__ ) for image in images] lowercase_ = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] lowercase_ = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
650
0
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase__ ( __snake_case , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = MgpstrTokenizer __SCREAMING_SNAKE_CASE : str = False __SCREAMING_SNAKE_CASE : str = {} __SCREAMING_SNAKE_CASE : Union[str, Any] = False def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' super().setUp() # fmt: off lowercase_ = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on lowercase_ = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) lowercase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__UpperCamelCase ) + """\n""" ) def UpperCAmelCase__ ( self : int , **UpperCamelCase__ : int ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : Dict ): '''simple docstring''' lowercase_ = """tester""" lowercase_ = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' pass def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = self.get_tokenizers(do_lower_case=__UpperCamelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase_ = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) lowercase_ = tokenizer.encode([special_token] , add_special_tokens=__UpperCamelCase ) self.assertEqual(len(__UpperCamelCase ) , 1 ) lowercase_ = tokenizer.decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase ) self.assertTrue(special_token not in decoded ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase_ , lowercase_ = self.get_input_output_texts(__UpperCamelCase ) lowercase_ = tokenizer.tokenize(__UpperCamelCase ) lowercase_ = tokenizer.convert_tokens_to_ids(__UpperCamelCase ) lowercase_ = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) lowercase_ = tokenizer.convert_ids_to_tokens(__UpperCamelCase ) self.assertNotEqual(len(__UpperCamelCase ) , 0 ) lowercase_ = tokenizer.decode(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) self.assertEqual(text_a.replace(""" """ , """""" ) , __UpperCamelCase ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' pass
702
def UpperCAmelCase_ ( UpperCAmelCase__ ): if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise TypeError("""Input value must be an 'int' type""" ) lowercase_ = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
650
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = 3_8_4 if "tiny" in model_name: lowercase_ = [3, 3, 9, 3] lowercase_ = [9_6, 1_9_2, 3_8_4, 7_6_8] if "small" in model_name: lowercase_ = [3, 3, 2_7, 3] lowercase_ = [9_6, 1_9_2, 3_8_4, 7_6_8] if "base" in model_name: lowercase_ = [3, 3, 2_7, 3] lowercase_ = [1_2_8, 2_5_6, 5_1_2, 1_0_2_4] lowercase_ = 5_1_2 if "large" in model_name: lowercase_ = [3, 3, 2_7, 3] lowercase_ = [1_9_2, 3_8_4, 7_6_8, 1_5_3_6] lowercase_ = 7_6_8 if "xlarge" in model_name: lowercase_ = [3, 3, 2_7, 3] lowercase_ = [2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] lowercase_ = 1_0_2_4 # set label information lowercase_ = 1_5_0 lowercase_ = '''huggingface/label-files''' lowercase_ = '''ade20k-id2label.json''' lowercase_ = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) lowercase_ = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} lowercase_ = {v: k for k, v in idalabel.items()} lowercase_ = ConvNextConfig( depths=lowerCAmelCase_ , hidden_sizes=lowerCAmelCase_ , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) lowercase_ = UperNetConfig( backbone_config=lowerCAmelCase_ , auxiliary_in_channels=lowerCAmelCase_ , num_labels=lowerCAmelCase_ , idalabel=lowerCAmelCase_ , labelaid=lowerCAmelCase_ , ) return config def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = [] # fmt: off # stem rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") ) rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.stages.{i}.{j}.gamma''', F'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.norm.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.norm.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((F'''backbone.downsample_layers.{i}.0.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.0.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.1.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.1.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = dct.pop(lowerCAmelCase_ ) lowercase_ = val def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = { '''upernet-convnext-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth''', '''upernet-convnext-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth''', '''upernet-convnext-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth''', '''upernet-convnext-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth''', '''upernet-convnext-xlarge''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth''', } lowercase_ = model_name_to_url[model_name] lowercase_ = torch.hub.load_state_dict_from_url(lowerCAmelCase_ , map_location="""cpu""" )['''state_dict'''] lowercase_ = get_upernet_config(lowerCAmelCase_ ) lowercase_ = UperNetForSemanticSegmentation(lowerCAmelCase_ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): lowercase_ = state_dict.pop(lowerCAmelCase_ ) if "bn" in key: lowercase_ = key.replace("""bn""" , """batch_norm""" ) lowercase_ = val # rename keys lowercase_ = create_rename_keys(lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) # verify on image lowercase_ = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' lowercase_ = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ).convert("""RGB""" ) lowercase_ = SegformerImageProcessor() lowercase_ = processor(lowerCAmelCase_ , return_tensors="""pt""" ).pixel_values with torch.no_grad(): lowercase_ = model(lowerCAmelCase_ ) if model_name == "upernet-convnext-tiny": lowercase_ = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": lowercase_ = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": lowercase_ = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": lowercase_ = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": lowercase_ = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCAmelCase_ ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: print(F'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(F'''openmmlab/{model_name}''' ) processor.push_to_hub(F'''openmmlab/{model_name}''' ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-convnext-tiny', type=str, choices=[F'''upernet-convnext-{size}''' for size in ['tiny', 'small', 'base', 'large', 'xlarge']], help='Name of the ConvNext UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) a = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
703
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ ): @register_to_config def __init__( self : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : bool = False , ): '''simple docstring''' super().__init__() lowercase_ = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = False lowercase_ = nn.Dropout(p=UpperCamelCase__ ) lowercase_ = TaConfig( vocab_size=UpperCamelCase__ , d_model=UpperCamelCase__ , num_heads=UpperCamelCase__ , d_kv=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ , feed_forward_proj=UpperCamelCase__ , is_decoder=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , ) lowercase_ = nn.ModuleList() for lyr_num in range(UpperCamelCase__ ): lowercase_ = TaBlock(UpperCamelCase__ ) self.encoders.append(UpperCamelCase__ ) lowercase_ = TaLayerNorm(UpperCamelCase__ ) lowercase_ = nn.Dropout(p=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = self.token_embedder(UpperCamelCase__ ) lowercase_ = encoder_input_tokens.shape[1] lowercase_ = torch.arange(UpperCamelCase__ , device=encoder_input_tokens.device ) x += self.position_encoding(UpperCamelCase__ ) lowercase_ = self.dropout_pre(UpperCamelCase__ ) # inverted the attention mask lowercase_ = encoder_input_tokens.size() lowercase_ = self.get_extended_attention_mask(UpperCamelCase__ , UpperCamelCase__ ) for lyr in self.encoders: lowercase_ = lyr(UpperCamelCase__ , UpperCamelCase__ )[0] lowercase_ = self.layer_norm(UpperCamelCase__ ) return self.dropout_post(UpperCamelCase__ ), encoder_inputs_mask
650
0
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process a = logging.getLogger(__name__) a = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) a = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : Optional[str] = field( default=_UpperCAmelCase , metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_UpperCAmelCase )} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=_UpperCAmelCase , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) __SCREAMING_SNAKE_CASE : bool = field( default=_UpperCAmelCase , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) __SCREAMING_SNAKE_CASE : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __SCREAMING_SNAKE_CASE : bool = field( default=_UpperCAmelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( """--config_overrides can't be used in combination with --config_name or --model_name_or_path""" ) @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field(default=_UpperCAmelCase , metadata={'help': 'The input training data file (a text file).'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'An optional input train ref data file for whole word masking in Chinese.'} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'An optional input validation ref data file for whole word masking in Chinese.'} , ) __SCREAMING_SNAKE_CASE : bool = field( default=_UpperCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=5 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=_UpperCAmelCase , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated. Default to the max input length of the model.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=_UpperCAmelCase , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) __SCREAMING_SNAKE_CASE : float = field( default=0.1_5 , metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) __SCREAMING_SNAKE_CASE : bool = field( default=_UpperCAmelCase , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' if self.train_file is not None: lowercase_ = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: lowercase_ = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): with open(SCREAMING_SNAKE_CASE__ , """r""" , encoding="""utf-8""" ) as f: lowercase_ = [json.loads(SCREAMING_SNAKE_CASE__ ) for line in f.read().splitlines() if (len(SCREAMING_SNAKE_CASE__ ) > 0 and not line.isspace())] assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) lowercase_ = {c: dataset[c] for c in dataset.column_names} lowercase_ = refs return Dataset.from_dict(SCREAMING_SNAKE_CASE__ ) def UpperCAmelCase_ ( ): lowercase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase_ = parser.parse_args_into_dataclasses() # Detecting last checkpoint. lowercase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , SCREAMING_SNAKE_CASE__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowercase_ = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): lowercase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''train[:{data_args.validation_split_percentage}%]''' , ) lowercase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''train[{data_args.validation_split_percentage}%:]''' , ) else: lowercase_ = {} if data_args.train_file is not None: lowercase_ = data_args.train_file if data_args.validation_file is not None: lowercase_ = data_args.validation_file lowercase_ = data_args.train_file.split(""".""" )[-1] if extension == "txt": lowercase_ = """text""" lowercase_ = load_dataset(SCREAMING_SNAKE_CASE__ , data_files=SCREAMING_SNAKE_CASE__ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase_ = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: lowercase_ = AutoConfig.from_pretrained(model_args.config_name , **SCREAMING_SNAKE_CASE__ ) elif model_args.model_name_or_path: lowercase_ = AutoConfig.from_pretrained(model_args.model_name_or_path , **SCREAMING_SNAKE_CASE__ ) else: lowercase_ = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) lowercase_ = { """cache_dir""": model_args.cache_dir, """use_fast""": model_args.use_fast_tokenizer, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.tokenizer_name: lowercase_ = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **SCREAMING_SNAKE_CASE__ ) elif model_args.model_name_or_path: lowercase_ = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **SCREAMING_SNAKE_CASE__ ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported by this script.""" """You can do it from another script, save it, and load it from here, using --tokenizer_name.""" ) if model_args.model_name_or_path: lowercase_ = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) lowercase_ = AutoModelForMaskedLM.from_config(SCREAMING_SNAKE_CASE__ ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE__ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: lowercase_ = datasets["""train"""].column_names else: lowercase_ = datasets["""validation"""].column_names lowercase_ = """text""" if """text""" in column_names else column_names[0] lowercase_ = """max_length""" if data_args.pad_to_max_length else False def tokenize_function(UpperCAmelCase__ ): # Remove empty lines lowercase_ = [line for line in examples["""text"""] if len(SCREAMING_SNAKE_CASE__ ) > 0 and not line.isspace()] return tokenizer(examples["""text"""] , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , max_length=data_args.max_seq_length ) lowercase_ = datasets.map( SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: lowercase_ = add_chinese_references(tokenized_datasets["""train"""] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: lowercase_ = add_chinese_references( tokenized_datasets["""validation"""] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer lowercase_ = data_args.train_ref_file or data_args.validation_ref_file if has_ref: lowercase_ = False # Data collator # This one will take care of randomly masking the tokens. lowercase_ = DataCollatorForWholeWordMask(tokenizer=SCREAMING_SNAKE_CASE__ , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer lowercase_ = Trainer( model=SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , train_dataset=tokenized_datasets["""train"""] if training_args.do_train else None , eval_dataset=tokenized_datasets["""validation"""] if training_args.do_eval else None , tokenizer=SCREAMING_SNAKE_CASE__ , data_collator=SCREAMING_SNAKE_CASE__ , ) # Training if training_args.do_train: if last_checkpoint is not None: lowercase_ = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): lowercase_ = model_args.model_name_or_path else: lowercase_ = None lowercase_ = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE__ ) trainer.save_model() # Saves the tokenizer too for easy upload lowercase_ = os.path.join(training_args.output_dir , """train_results.txt""" ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE__ , """w""" ) as writer: logger.info("""***** Train results *****""" ) for key, value in sorted(train_result.metrics.items() ): logger.info(F''' {key} = {value}''' ) writer.write(F'''{key} = {value}\n''' ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # Evaluation lowercase_ = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowercase_ = trainer.evaluate() lowercase_ = math.exp(eval_output["""eval_loss"""] ) lowercase_ = perplexity lowercase_ = os.path.join(training_args.output_dir , """eval_results_mlm_wwm.txt""" ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in sorted(results.items() ): logger.info(F''' {key} = {value}''' ) writer.write(F'''{key} = {value}\n''' ) return results def UpperCAmelCase_ ( UpperCAmelCase__ ): main() if __name__ == "__main__": main()
704
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar a = TypeVar('T') class UpperCamelCase__ ( Generic[T] ): __SCREAMING_SNAKE_CASE : deque[T] # Cache store of keys __SCREAMING_SNAKE_CASE : set[T] # References of the keys in cache __SCREAMING_SNAKE_CASE : int = 10 # Maximum capacity of cache def __init__( self : str , UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = deque() lowercase_ = set() if not n: lowercase_ = sys.maxsize elif n < 0: raise ValueError("""n should be an integer greater than 0.""" ) else: lowercase_ = n def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : T ): '''simple docstring''' if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: lowercase_ = self.dq_store.pop() self.key_reference.remove(UpperCamelCase__ ) else: self.dq_store.remove(UpperCamelCase__ ) self.dq_store.appendleft(UpperCamelCase__ ) self.key_reference.add(UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' for k in self.dq_store: print(UpperCamelCase__ ) def __repr__( self : Optional[Any] ): '''simple docstring''' return F'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() a = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
650
0
def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = len(a_ ) lowercase_ = len(a_ ) lowercase_ = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] lowercase_ = True for i in range(a_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: lowercase_ = True if a[i].islower(): lowercase_ = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
705
def UpperCAmelCase_ ( UpperCAmelCase__ ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
650
0
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Dict = (EulerDiscreteScheduler,) __SCREAMING_SNAKE_CASE : str = 10 def UpperCAmelCase__ ( self : List[str] , **UpperCamelCase__ : Any ): '''simple docstring''' lowercase_ = { """num_train_timesteps""": 1_100, """beta_start""": 0.0_001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**UpperCamelCase__ ) return config def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=UpperCamelCase__ , beta_end=UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=UpperCamelCase__ ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) lowercase_ = torch.manual_seed(0 ) lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter * scheduler.init_noise_sigma lowercase_ = sample.to(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): lowercase_ = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = model(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ) lowercase_ = output.prev_sample lowercase_ = torch.sum(torch.abs(UpperCamelCase__ ) ) lowercase_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 10.0_807 ) < 1e-2 assert abs(result_mean.item() - 0.0_131 ) < 1e-3 def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config(prediction_type="""v_prediction""" ) lowercase_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) lowercase_ = torch.manual_seed(0 ) lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter * scheduler.init_noise_sigma lowercase_ = sample.to(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): lowercase_ = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = model(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ) lowercase_ = output.prev_sample lowercase_ = torch.sum(torch.abs(UpperCamelCase__ ) ) lowercase_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 0.0_002 ) < 1e-2 assert abs(result_mean.item() - 2.2676e-06 ) < 1e-3 def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=UpperCamelCase__ ) lowercase_ = torch.manual_seed(0 ) lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() lowercase_ = sample.to(UpperCamelCase__ ) for t in scheduler.timesteps: lowercase_ = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = model(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ) lowercase_ = output.prev_sample lowercase_ = torch.sum(torch.abs(UpperCamelCase__ ) ) lowercase_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 10.0_807 ) < 1e-2 assert abs(result_mean.item() - 0.0_131 ) < 1e-3 def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**UpperCamelCase__ , use_karras_sigmas=UpperCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=UpperCamelCase__ ) lowercase_ = torch.manual_seed(0 ) lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() lowercase_ = sample.to(UpperCamelCase__ ) for t in scheduler.timesteps: lowercase_ = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = model(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ) lowercase_ = output.prev_sample lowercase_ = torch.sum(torch.abs(UpperCamelCase__ ) ) lowercase_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 124.52_299_499_511_719 ) < 1e-2 assert abs(result_mean.item() - 0.16_213_932_633_399_963 ) < 1e-3
706
def UpperCAmelCase_ ( UpperCAmelCase__=2_8_1_2_3 ): lowercase_ = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i lowercase_ = set() lowercase_ = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(UpperCAmelCase__ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
650
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a = logging.get_logger(__name__) a = { 'shi-labs/nat-mini-in1k-224': 'https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json', # See all Nat models at https://huggingface.co/models?filter=nat } class UpperCamelCase__ ( _UpperCamelCase , _UpperCamelCase ): __SCREAMING_SNAKE_CASE : Tuple = "nat" __SCREAMING_SNAKE_CASE : Tuple = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Dict , UpperCamelCase__ : str=4 , UpperCamelCase__ : Optional[int]=3 , UpperCamelCase__ : Optional[int]=64 , UpperCamelCase__ : Any=[3, 4, 6, 5] , UpperCamelCase__ : Optional[int]=[2, 4, 8, 16] , UpperCamelCase__ : List[Any]=7 , UpperCamelCase__ : Optional[Any]=3.0 , UpperCamelCase__ : Any=True , UpperCamelCase__ : int=0.0 , UpperCamelCase__ : Optional[Any]=0.0 , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : Dict="gelu" , UpperCamelCase__ : List[str]=0.02 , UpperCamelCase__ : int=1e-5 , UpperCamelCase__ : int=0.0 , UpperCamelCase__ : str=None , UpperCamelCase__ : List[Any]=None , **UpperCamelCase__ : Dict , ): '''simple docstring''' super().__init__(**__a ) lowercase_ = patch_size lowercase_ = num_channels lowercase_ = embed_dim lowercase_ = depths lowercase_ = len(__a ) lowercase_ = num_heads lowercase_ = kernel_size lowercase_ = mlp_ratio lowercase_ = qkv_bias lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = drop_path_rate lowercase_ = hidden_act lowercase_ = layer_norm_eps lowercase_ = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowercase_ = int(embed_dim * 2 ** (len(__a ) - 1) ) lowercase_ = layer_scale_init_value lowercase_ = ["stem"] + [F'''stage{idx}''' for idx in range(1 , len(__a ) + 1 )] lowercase_ = get_aligned_output_features_output_indices( out_features=__a , out_indices=__a , stage_names=self.stage_names )
707
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase__ : def __init__( self : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str]=13 , UpperCamelCase__ : str=7 , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : str=False , UpperCamelCase__ : str=True , UpperCamelCase__ : Union[str, Any]=99 , UpperCamelCase__ : Dict=32 , UpperCamelCase__ : Union[str, Any]=5 , UpperCamelCase__ : Tuple=4 , UpperCamelCase__ : Dict=37 , UpperCamelCase__ : Any="gelu" , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Tuple=512 , UpperCamelCase__ : Union[str, Any]=16 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : int=0.02 , UpperCamelCase__ : int=3 , UpperCamelCase__ : Optional[Any]=4 , UpperCamelCase__ : int=None , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_input_mask lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_labels lowercase_ = num_choices lowercase_ = scope def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ = None if self.use_input_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ = None if self.use_token_type_ids: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ = None lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , use_stable_embedding=UpperCamelCase__ , ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] ): '''simple docstring''' lowercase_ = OpenLlamaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , ): '''simple docstring''' lowercase_ = True lowercase_ = OpenLlamaModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , ) lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , ) lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , ): '''simple docstring''' lowercase_ = OpenLlamaForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : Tuple , ): '''simple docstring''' lowercase_ = True lowercase_ = True lowercase_ = OpenLlamaForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # first forward pass lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , use_cache=UpperCamelCase__ , ) lowercase_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowercase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase_ = torch.cat([input_mask, next_mask] , dim=-1 ) lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , )["""hidden_states"""][0] lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , past_key_values=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , )["""hidden_states"""][0] # select random slice lowercase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase_ = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : List[str] = (OpenLlamaForCausalLM,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : List[Any] = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Optional[int] = False def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = OpenLlamaModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase_ = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = input_dict["""input_ids"""] lowercase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowercase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase_ = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = """single_label_classification""" lowercase_ = input_dict["""input_ids"""] lowercase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowercase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase_ = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = """multi_label_classification""" lowercase_ = input_dict["""input_ids"""] lowercase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowercase_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowercase_ = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = ids_tensor([1, 10] , config.vocab_size ) lowercase_ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase_ = OpenLlamaModel(UpperCamelCase__ ) original_model.to(UpperCamelCase__ ) original_model.eval() lowercase_ = original_model(UpperCamelCase__ ).last_hidden_state lowercase_ = original_model(UpperCamelCase__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase_ = {"""type""": scaling_type, """factor""": 10.0} lowercase_ = OpenLlamaModel(UpperCamelCase__ ) scaled_model.to(UpperCamelCase__ ) scaled_model.eval() lowercase_ = scaled_model(UpperCamelCase__ ).last_hidden_state lowercase_ = scaled_model(UpperCamelCase__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) )
650
0
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class UpperCamelCase__ ( UpperCAmelCase_ ): __SCREAMING_SNAKE_CASE : int = 0 __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : float = 3.0 class UpperCamelCase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {"""a""": 2} ) self.assertDictEqual(MockClass(a=2 , b=_snake_case ).to_kwargs() , {"""a""": 2, """b""": True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {"""a""": 2, """c""": 2.25} ) @require_cuda def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = GradScalerKwargs(init_scale=1_024 , growth_factor=2 ) AcceleratorState._reset_state() lowercase_ = Accelerator(mixed_precision="""fp16""" , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) lowercase_ = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1_024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_000 ) self.assertEqual(scaler._enabled , _snake_case ) @require_multi_gpu def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = ["""torchrun""", F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(_snake_case , env=os.environ.copy() ) if __name__ == "__main__": a = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) a = Accelerator(kwargs_handlers=[ddp_scaler]) a = torch.nn.Linear(1_0_0, 2_0_0) a = accelerator.prepare(model) # Check the values changed in kwargs a = '' a = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
708
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: a = False a = logging.get_logger(__name__) a = 'ybelkada/fonts' def UpperCAmelCase_ ( ): if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F'''You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ''' """Pix2StructImageProcessor. Please upgrade torch.""" ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): requires_backends(UpperCAmelCase__ , ["""torch"""] ) _check_torch_version() lowercase_ = image_tensor.unsqueeze(0 ) lowercase_ = torch.nn.functional.unfold(UpperCAmelCase__ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) lowercase_ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , UpperCAmelCase__ , UpperCAmelCase__ , -1 ) lowercase_ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ = 3_6 , UpperCAmelCase__ = "black" , UpperCAmelCase__ = "white" , UpperCAmelCase__ = 5 , UpperCAmelCase__ = 5 , UpperCAmelCase__ = 5 , UpperCAmelCase__ = 5 , UpperCAmelCase__ = None , UpperCAmelCase__ = None , ): requires_backends(UpperCAmelCase__ , """vision""" ) # Add new lines so that each line is no more than 80 characters. lowercase_ = textwrap.TextWrapper(width=8_0 ) lowercase_ = wrapper.wrap(text=UpperCAmelCase__ ) lowercase_ = """\n""".join(UpperCAmelCase__ ) if font_bytes is not None and font_path is None: lowercase_ = io.BytesIO(UpperCAmelCase__ ) elif font_path is not None: lowercase_ = font_path else: lowercase_ = hf_hub_download(UpperCAmelCase__ , """Arial.TTF""" ) lowercase_ = ImageFont.truetype(UpperCAmelCase__ , encoding="""UTF-8""" , size=UpperCAmelCase__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. lowercase_ = ImageDraw.Draw(Image.new("""RGB""" , (1, 1) , UpperCAmelCase__ ) ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = temp_draw.textbbox((0, 0) , UpperCAmelCase__ , UpperCAmelCase__ ) # Create the actual image with a bit of padding around the text. lowercase_ = text_width + left_padding + right_padding lowercase_ = text_height + top_padding + bottom_padding lowercase_ = Image.new("""RGB""" , (image_width, image_height) , UpperCAmelCase__ ) lowercase_ = ImageDraw.Draw(UpperCAmelCase__ ) draw.text(xy=(left_padding, top_padding) , text=UpperCAmelCase__ , fill=UpperCAmelCase__ , font=UpperCAmelCase__ ) return image def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ): requires_backends(UpperCAmelCase__ , """vision""" ) # Convert to PIL image if necessary lowercase_ = to_pil_image(UpperCAmelCase__ ) lowercase_ = render_text(UpperCAmelCase__ , **UpperCAmelCase__ ) lowercase_ = max(header_image.width , image.width ) lowercase_ = int(image.height * (new_width / image.width) ) lowercase_ = int(header_image.height * (new_width / header_image.width) ) lowercase_ = Image.new("""RGB""" , (new_width, new_height + new_header_height) , """white""" ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary lowercase_ = to_numpy_array(UpperCAmelCase__ ) if infer_channel_dimension_format(UpperCAmelCase__ ) == ChannelDimension.LAST: lowercase_ = to_channel_dimension_format(UpperCAmelCase__ , ChannelDimension.LAST ) return new_image class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Tuple = ['flattened_patches'] def __init__( self : str , UpperCamelCase__ : bool = True , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : int = 2_048 , UpperCamelCase__ : bool = False , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowercase_ = patch_size if patch_size is not None else {"""height""": 16, """width""": 16} lowercase_ = do_normalize lowercase_ = do_convert_rgb lowercase_ = max_patches lowercase_ = is_vqa def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : int , UpperCamelCase__ : dict , **UpperCamelCase__ : Optional[int] ): '''simple docstring''' requires_backends(self.extract_flattened_patches , """torch""" ) _check_torch_version() # convert to torch lowercase_ = to_channel_dimension_format(UpperCamelCase__ , ChannelDimension.FIRST ) lowercase_ = torch.from_numpy(UpperCamelCase__ ) lowercase_ , lowercase_ = patch_size["""height"""], patch_size["""width"""] lowercase_ , lowercase_ = get_image_size(UpperCamelCase__ ) # maximize scale s.t. lowercase_ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) lowercase_ = max(min(math.floor(scale * image_height / patch_height ) , UpperCamelCase__ ) , 1 ) lowercase_ = max(min(math.floor(scale * image_width / patch_width ) , UpperCamelCase__ ) , 1 ) lowercase_ = max(num_feasible_rows * patch_height , 1 ) lowercase_ = max(num_feasible_cols * patch_width , 1 ) lowercase_ = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="""bilinear""" , align_corners=UpperCamelCase__ , antialias=UpperCamelCase__ , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] lowercase_ = torch_extract_patches(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = patches.shape lowercase_ = patches_shape[1] lowercase_ = patches_shape[2] lowercase_ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] lowercase_ = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] lowercase_ = torch.arange(UpperCamelCase__ ).reshape([rows, 1] ).repeat(1 , UpperCamelCase__ ).reshape([rows * columns, 1] ) lowercase_ = torch.arange(UpperCamelCase__ ).reshape([1, columns] ).repeat(UpperCamelCase__ , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] lowercase_ = row_ids.to(torch.floataa ) lowercase_ = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] lowercase_ = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] lowercase_ = torch.nn.functional.pad(UpperCamelCase__ , [0, 0, 0, max_patches - (rows * columns)] ).float() lowercase_ = to_numpy_array(UpperCamelCase__ ) return result def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Dict ): '''simple docstring''' if image.dtype == np.uinta: lowercase_ = image.astype(np.floataa ) # take mean across the whole `image` lowercase_ = np.mean(UpperCamelCase__ ) lowercase_ = np.std(UpperCamelCase__ ) lowercase_ = max(UpperCamelCase__ , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase__ : Union[str, Any] , ): '''simple docstring''' lowercase_ = do_normalize if do_normalize is not None else self.do_normalize lowercase_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase_ = patch_size if patch_size is not None else self.patch_size lowercase_ = max_patches if max_patches is not None else self.max_patches lowercase_ = self.is_vqa if kwargs.get("""data_format""" , UpperCamelCase__ ) is not None: raise ValueError("""data_format is not an accepted input as the outputs are """ ) lowercase_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase_ = [convert_to_rgb(UpperCamelCase__ ) for image in images] # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(UpperCamelCase__ ) for image in images] if is_vqa: if header_text is None: raise ValueError("""A header text must be provided for VQA models.""" ) lowercase_ = kwargs.pop("""font_bytes""" , UpperCamelCase__ ) lowercase_ = kwargs.pop("""font_path""" , UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = [header_text] * len(UpperCamelCase__ ) lowercase_ = [ render_header(UpperCamelCase__ , header_text[i] , font_bytes=UpperCamelCase__ , font_path=UpperCamelCase__ ) for i, image in enumerate(UpperCamelCase__ ) ] if do_normalize: lowercase_ = [self.normalize(image=UpperCamelCase__ ) for image in images] # convert to torch tensor and permute lowercase_ = [ self.extract_flattened_patches(image=UpperCamelCase__ , max_patches=UpperCamelCase__ , patch_size=UpperCamelCase__ ) for image in images ] # create attention mask in numpy lowercase_ = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] lowercase_ = BatchFeature( data={"""flattened_patches""": images, """attention_mask""": attention_masks} , tensor_type=UpperCamelCase__ ) return encoded_outputs
650
0
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy a = logging.get_logger(__name__) class UpperCamelCase__ ( _lowerCAmelCase ): def __init__( self : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float , **UpperCamelCase__ : Optional[Any] ): '''simple docstring''' lowercase_ = feature_size lowercase_ = sampling_rate lowercase_ = padding_value lowercase_ = kwargs.pop("""padding_side""" , """right""" ) lowercase_ = kwargs.pop("""return_attention_mask""" , _lowerCAmelCase ) super().__init__(**_lowerCAmelCase ) def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , UpperCamelCase__ : Union[bool, str, PaddingStrategy] = True , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , ): '''simple docstring''' if isinstance(_lowerCAmelCase , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): lowercase_ = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( """You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`""" F''' to this method that includes {self.model_input_names[0]}, but you provided''' F''' {list(processed_features.keys() )}''' ) lowercase_ = processed_features[self.model_input_names[0]] lowercase_ = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(_lowerCAmelCase ) == 0: if return_attention_mask: lowercase_ = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch lowercase_ = required_input[0] if isinstance(_lowerCAmelCase , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. lowercase_ = 0 while len(required_input[index] ) == 0: index += 1 if index < len(_lowerCAmelCase ): lowercase_ = required_input[index][0] if return_tensors is None: if is_tf_tensor(_lowerCAmelCase ): lowercase_ = """tf""" elif is_torch_tensor(_lowerCAmelCase ): lowercase_ = """pt""" elif isinstance(_lowerCAmelCase , (int, float, list, tuple, np.ndarray) ): lowercase_ = """np""" else: raise ValueError( F'''type of {first_element} unknown: {type(_lowerCAmelCase )}. ''' """Should be one of a python, numpy, pytorch or tensorflow object.""" ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): lowercase_ = to_numpy(_lowerCAmelCase ) else: lowercase_ = [to_numpy(_lowerCAmelCase ) for v in value] # Convert padding_strategy in PaddingStrategy lowercase_ = self._get_padding_strategies(padding=_lowerCAmelCase , max_length=_lowerCAmelCase ) lowercase_ = processed_features[self.model_input_names[0]] lowercase_ = len(_lowerCAmelCase ) if not all(len(_lowerCAmelCase ) == batch_size for v in processed_features.values() ): raise ValueError("""Some items in the output dictionary have a different batch size than others.""" ) lowercase_ = [] for i in range(_lowerCAmelCase ): lowercase_ = {k: v[i] for k, v in processed_features.items()} # truncation lowercase_ = self._truncate( _lowerCAmelCase , max_length=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , truncation=_lowerCAmelCase , ) truncated_inputs.append(_lowerCAmelCase ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length lowercase_ = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) lowercase_ = PaddingStrategy.MAX_LENGTH lowercase_ = {} for i in range(_lowerCAmelCase ): # padding lowercase_ = self._pad( truncated_inputs[i] , max_length=_lowerCAmelCase , padding_strategy=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) for key, value in outputs.items(): if key not in batch_outputs: lowercase_ = [] if value.dtype is np.dtype(np.floataa ): lowercase_ = value.astype(np.floataa ) batch_outputs[key].append(_lowerCAmelCase ) return BatchFeature(_lowerCAmelCase , tensor_type=_lowerCAmelCase ) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : Union[Dict[str, np.ndarray], BatchFeature] , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[bool] = None , ): '''simple docstring''' lowercase_ = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: lowercase_ = len(_lowerCAmelCase ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): lowercase_ = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of lowercase_ = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(_lowerCAmelCase ) < max_length if return_attention_mask and "attention_mask" not in processed_features: lowercase_ = np.ones(len(_lowerCAmelCase ) , dtype=np.intaa ) if needs_to_be_padded: lowercase_ = max_length - len(_lowerCAmelCase ) if self.padding_side == "right": if return_attention_mask: lowercase_ = np.pad( processed_features["""attention_mask"""] , (0, difference) ) lowercase_ = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) lowercase_ = np.pad( _lowerCAmelCase , _lowerCAmelCase , """constant""" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: lowercase_ = np.pad( processed_features["""attention_mask"""] , (difference, 0) ) lowercase_ = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) lowercase_ = np.pad( _lowerCAmelCase , _lowerCAmelCase , """constant""" , constant_values=self.padding_value ) else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return processed_features def UpperCAmelCase__ ( self : str , UpperCamelCase__ : Union[Dict[str, np.ndarray], BatchFeature] , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[bool] = None , ): '''simple docstring''' if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("""When setting ``truncation=True``, make sure that ``max_length`` is defined.""" ) lowercase_ = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): lowercase_ = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of lowercase_ = len(_lowerCAmelCase ) > max_length if needs_to_be_truncated: lowercase_ = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: lowercase_ = processed_features["""attention_mask"""][:max_length] return processed_features def UpperCAmelCase__ ( self : Union[str, Any] , UpperCamelCase__ : List[Any]=False , UpperCamelCase__ : Tuple=None ): '''simple docstring''' if padding is not False: if padding is True: lowercase_ = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase_ = PaddingStrategy(_lowerCAmelCase ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase_ = padding else: lowercase_ = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F'''When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined''' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( """Asking to pad but the feature_extractor does not have a padding value. Please select a value to use""" """ as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.""" ) return padding_strategy
709
import cva import numpy as np class UpperCamelCase__ : def __init__( self : List[str] , UpperCamelCase__ : float , UpperCamelCase__ : int ): '''simple docstring''' if k in (0.04, 0.06): lowercase_ = k lowercase_ = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : Optional[int] ): '''simple docstring''' return str(self.k ) def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = cva.imread(UpperCamelCase__ , 0 ) lowercase_ , lowercase_ = img.shape lowercase_ = [] lowercase_ = img.copy() lowercase_ = cva.cvtColor(UpperCamelCase__ , cva.COLOR_GRAY2RGB ) lowercase_ , lowercase_ = np.gradient(UpperCamelCase__ ) lowercase_ = dx**2 lowercase_ = dy**2 lowercase_ = dx * dy lowercase_ = 0.04 lowercase_ = self.window_size // 2 for y in range(UpperCamelCase__ , h - offset ): for x in range(UpperCamelCase__ , w - offset ): lowercase_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase_ = (wxx * wyy) - (wxy**2) lowercase_ = wxx + wyy lowercase_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": a = HarrisCorner(0.04, 3) a , a = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
650
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = 3_8_4 lowercase_ = 7 if "tiny" in model_name: lowercase_ = 9_6 lowercase_ = (2, 2, 6, 2) lowercase_ = (3, 6, 1_2, 2_4) elif "small" in model_name: lowercase_ = 9_6 lowercase_ = (2, 2, 1_8, 2) lowercase_ = (3, 6, 1_2, 2_4) elif "base" in model_name: lowercase_ = 1_2_8 lowercase_ = (2, 2, 1_8, 2) lowercase_ = (4, 8, 1_6, 3_2) lowercase_ = 1_2 lowercase_ = 5_1_2 elif "large" in model_name: lowercase_ = 1_9_2 lowercase_ = (2, 2, 1_8, 2) lowercase_ = (6, 1_2, 2_4, 4_8) lowercase_ = 1_2 lowercase_ = 7_6_8 # set label information lowercase_ = 1_5_0 lowercase_ = """huggingface/label-files""" lowercase_ = """ade20k-id2label.json""" lowercase_ = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type="""dataset""" ) , """r""" ) ) lowercase_ = {int(snake_case_ ): v for k, v in idalabel.items()} lowercase_ = {v: k for k, v in idalabel.items()} lowercase_ = SwinConfig( embed_dim=snake_case_ , depths=snake_case_ , num_heads=snake_case_ , window_size=snake_case_ , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) lowercase_ = UperNetConfig( backbone_config=snake_case_ , auxiliary_in_channels=snake_case_ , num_labels=snake_case_ , idalabel=snake_case_ , labelaid=snake_case_ , ) return config def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = [] # fmt: off # stem rename_keys.append(("""backbone.patch_embed.projection.weight""", """backbone.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.projection.bias""", """backbone.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """backbone.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """backbone.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm1.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm1.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm2.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm2.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.stages.{i}.downsample.reduction.weight''', F'''backbone.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.stages.{i}.downsample.norm.weight''', F'''backbone.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.stages.{i}.downsample.norm.bias''', F'''backbone.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = dct.pop(snake_case_ ) lowercase_ = val def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): lowercase_ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowercase_ = state_dict.pop(F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' ) lowercase_ = state_dict.pop(F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase_ = in_proj_weight[:dim, :] lowercase_ = in_proj_bias[: dim] lowercase_ = in_proj_weight[ dim : dim * 2, : ] lowercase_ = in_proj_bias[ dim : dim * 2 ] lowercase_ = in_proj_weight[ -dim :, : ] lowercase_ = in_proj_bias[-dim :] # fmt: on def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = x.shape lowercase_ = x.reshape(snake_case_ , 4 , in_channel // 4 ) lowercase_ = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(snake_case_ , snake_case_ ) return x def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = x.shape lowercase_ = x.reshape(snake_case_ , in_channel // 4 , 4 ) lowercase_ = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(snake_case_ , snake_case_ ) return x def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = x.shape[0] lowercase_ = x.reshape(4 , in_channel // 4 ) lowercase_ = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(snake_case_ ) return x def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = x.shape[0] lowercase_ = x.reshape(in_channel // 4 , 4 ) lowercase_ = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(snake_case_ ) return x def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = { """upernet-swin-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth""", """upernet-swin-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth""", """upernet-swin-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth""", """upernet-swin-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth""", } lowercase_ = model_name_to_url[model_name] lowercase_ = torch.hub.load_state_dict_from_url(snake_case_ , map_location="""cpu""" , file_name=snake_case_ )[ """state_dict""" ] for name, param in state_dict.items(): print(snake_case_ , param.shape ) lowercase_ = get_upernet_config(snake_case_ ) lowercase_ = UperNetForSemanticSegmentation(snake_case_ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): lowercase_ = state_dict.pop(snake_case_ ) if "bn" in key: lowercase_ = key.replace("""bn""" , """batch_norm""" ) lowercase_ = val # rename keys lowercase_ = create_rename_keys(snake_case_ ) for src, dest in rename_keys: rename_key(snake_case_ , snake_case_ , snake_case_ ) read_in_q_k_v(snake_case_ , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: lowercase_ = reverse_correct_unfold_reduction_order(snake_case_ ) if "norm" in key: lowercase_ = reverse_correct_unfold_norm_order(snake_case_ ) model.load_state_dict(snake_case_ ) # verify on image lowercase_ = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" lowercase_ = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ).convert("""RGB""" ) lowercase_ = SegformerImageProcessor() lowercase_ = processor(snake_case_ , return_tensors="""pt""" ).pixel_values with torch.no_grad(): lowercase_ = model(snake_case_ ) lowercase_ = outputs.logits print(logits.shape ) print("""First values of logits:""" , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": lowercase_ = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ) elif model_name == "upernet-swin-small": lowercase_ = torch.tensor( [[-7.1921, -7.1921, -6.9532], [-7.1921, -7.1921, -6.9532], [-7.0908, -7.0908, -6.8534]] ) elif model_name == "upernet-swin-base": lowercase_ = torch.tensor( [[-6.5851, -6.5851, -6.4330], [-6.5851, -6.5851, -6.4330], [-6.4763, -6.4763, -6.3254]] ) elif model_name == "upernet-swin-large": lowercase_ = torch.tensor( [[-7.5297, -7.5297, -7.3802], [-7.5297, -7.5297, -7.3802], [-7.4044, -7.4044, -7.2586]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , snake_case_ , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case_ ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(snake_case_ ) if push_to_hub: print(F'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(F'''openmmlab/{model_name}''' ) processor.push_to_hub(F'''openmmlab/{model_name}''' ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-swin-tiny', type=str, choices=[F'''upernet-swin-{size}''' for size in ['tiny', 'small', 'base', 'large']], help='Name of the Swin + UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) a = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
710
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): a = { 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: a = { 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = (images / 2 + 0.5).clamp(0 , 1 ) lowercase_ = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowercase_ = numpy_to_pil(UpperCAmelCase__ ) return images def UpperCAmelCase_ ( UpperCAmelCase__ ): if images.ndim == 3: lowercase_ = images[None, ...] lowercase_ = (images * 2_5_5).round().astype("""uint8""" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images lowercase_ = [Image.fromarray(image.squeeze() , mode="""L""" ) for image in images] else: lowercase_ = [Image.fromarray(UpperCAmelCase__ ) for image in images] return pil_images
650
0
def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = set() # To detect a back edge, keep track of vertices currently in the recursion stack lowercase_ = set() return any( node not in visited and depth_first_search(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) for node in graph ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): visited.add(__UpperCamelCase ) rec_stk.add(__UpperCamelCase ) for node in graph[vertex]: if node not in visited: if depth_first_search(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(__UpperCamelCase ) return False if __name__ == "__main__": from doctest import testmod testmod()
711
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : str = (UnCLIPScheduler,) def UpperCAmelCase__ ( self : int , **UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = { """num_train_timesteps""": 1_000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**UpperCamelCase__ ) return config def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=UpperCamelCase__ , prev_timestep=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config(variance_type="""fixed_small_log""" ) lowercase_ = scheduler_class(**UpperCamelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1e-5 def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config(variance_type="""learned_range""" ) lowercase_ = scheduler_class(**UpperCamelCase__ ) lowercase_ = 0.5 assert scheduler._get_variance(1 , predicted_variance=UpperCamelCase__ ) - -10.1_712_790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=UpperCamelCase__ ) - -5.7_998_052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=UpperCamelCase__ ) - -0.0_010_011 < 1e-5 def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**UpperCamelCase__ ) lowercase_ = scheduler.timesteps lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter lowercase_ = torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase__ ): # 1. predict noise residual lowercase_ = model(UpperCamelCase__ , UpperCamelCase__ ) # 2. predict previous mean of sample x_t-1 lowercase_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample lowercase_ = pred_prev_sample lowercase_ = torch.sum(torch.abs(UpperCamelCase__ ) ) lowercase_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1e-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1e-3 def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(25 ) lowercase_ = scheduler.timesteps lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter lowercase_ = torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase__ ): # 1. predict noise residual lowercase_ = model(UpperCamelCase__ , UpperCamelCase__ ) if i + 1 == timesteps.shape[0]: lowercase_ = None else: lowercase_ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 lowercase_ = scheduler.step( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , prev_timestep=UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample lowercase_ = pred_prev_sample lowercase_ = torch.sum(torch.abs(UpperCamelCase__ ) ) lowercase_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1e-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1e-3 def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' pass def UpperCAmelCase__ ( self : int ): '''simple docstring''' pass
650
0
import math import random from typing import Any from .hill_climbing import SearchProblem def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ = True , UpperCAmelCase__ = math.inf , UpperCAmelCase__ = -math.inf , UpperCAmelCase__ = math.inf , UpperCAmelCase__ = -math.inf , UpperCAmelCase__ = False , UpperCAmelCase__ = 1_0_0 , UpperCAmelCase__ = 0.01 , UpperCAmelCase__ = 1 , ) -> Union[str, Any]: lowercase_ = False lowercase_ = search_prob lowercase_ = start_temperate lowercase_ = [] lowercase_ = 0 lowercase_ = None while not search_end: lowercase_ = current_state.score() if best_state is None or current_score > best_state.score(): lowercase_ = current_state scores.append(lowerCamelCase_ ) iterations += 1 lowercase_ = None lowercase_ = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to lowercase_ = random.randint(0 , len(lowerCamelCase_ ) - 1 ) # picking a random neighbor lowercase_ = neighbors.pop(lowerCamelCase_ ) lowercase_ = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: lowercase_ = change * -1 # in case we are finding minimum if change > 0: # improves the solution lowercase_ = picked_neighbor else: lowercase_ = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability lowercase_ = picked_neighbor lowercase_ = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor lowercase_ = True else: lowercase_ = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowerCamelCase_ ) , lowerCamelCase_ ) plt.xlabel("""Iterations""" ) plt.ylabel("""Function values""" ) plt.show() return best_state if __name__ == "__main__": def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ) -> Tuple: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) a = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a = simulated_annealing( prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( 'The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) a = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a = simulated_annealing( prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( 'The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ) -> int: return (3 * x**2) - (6 * y) a = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a = simulated_annealing(prob, find_max=False, visualization=True) print( 'The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F'''{local_min.score()}''' ) a = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a = simulated_annealing(prob, find_max=True, visualization=True) print( 'The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F'''{local_min.score()}''' )
712
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') a = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) a = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : Optional[str] = field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field(default=__magic_name__ , metadata={'help': 'A folder containing the training data.'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field(default=__magic_name__ , metadata={'help': 'A folder containing the validation data.'} ) __SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.1_5 , metadata={'help': 'Percent to split off of train for validation.'} ) __SCREAMING_SNAKE_CASE : int = field(default=32 , metadata={'help': 'The size of the square patches to use for masking.'} ) __SCREAMING_SNAKE_CASE : float = field( default=0.6 , metadata={'help': 'Percentage of patches to mask.'} , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = {} if self.train_dir is not None: lowercase_ = self.train_dir if self.validation_dir is not None: lowercase_ = self.validation_dir lowercase_ = data_files if data_files else None @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : str = field( default=__magic_name__ , metadata={ 'help': ( 'The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a ' 'checkpoint identifier on the hub. ' 'Don\'t set if you want to train a model from scratch.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(__magic_name__ )} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'} , ) __SCREAMING_SNAKE_CASE : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __SCREAMING_SNAKE_CASE : str = field(default=__magic_name__ , metadata={'help': 'Name or path of preprocessor config.'} ) __SCREAMING_SNAKE_CASE : bool = field( default=__magic_name__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'The size (resolution) of each image. If not specified, will use `image_size` of the configuration.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={'help': 'Stride to use for the encoder.'} , ) class UpperCamelCase__ : def __init__( self : Dict , UpperCamelCase__ : List[Any]=192 , UpperCamelCase__ : Tuple=32 , UpperCamelCase__ : Dict=4 , UpperCamelCase__ : str=0.6 ): '''simple docstring''' lowercase_ = input_size lowercase_ = mask_patch_size lowercase_ = model_patch_size lowercase_ = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError("""Input size must be divisible by mask patch size""" ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError("""Mask patch size must be divisible by model patch size""" ) lowercase_ = self.input_size // self.mask_patch_size lowercase_ = self.mask_patch_size // self.model_patch_size lowercase_ = self.rand_size**2 lowercase_ = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self : int ): '''simple docstring''' lowercase_ = np.random.permutation(self.token_count )[: self.mask_count] lowercase_ = np.zeros(self.token_count , dtype=UpperCamelCase__ ) lowercase_ = 1 lowercase_ = mask.reshape((self.rand_size, self.rand_size) ) lowercase_ = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = torch.stack([example["""pixel_values"""] for example in examples] ) lowercase_ = torch.stack([example["""mask"""] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def UpperCAmelCase_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase_ , lowercase_ , lowercase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase_ , lowercase_ , lowercase_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mim""" , UpperCAmelCase__ , UpperCAmelCase__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase_ = training_args.get_process_log_level() logger.setLevel(UpperCAmelCase__ ) transformers.utils.logging.set_verbosity(UpperCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. lowercase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. lowercase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowercase_ = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , UpperCAmelCase__ ) and data_args.train_val_split > 0.0: lowercase_ = ds["""train"""].train_test_split(data_args.train_val_split ) lowercase_ = split["""train"""] lowercase_ = split["""test"""] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase_ = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name_or_path: lowercase_ = AutoConfig.from_pretrained(model_args.config_name_or_path , **UpperCAmelCase__ ) elif model_args.model_name_or_path: lowercase_ = AutoConfig.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase__ ) else: lowercase_ = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(UpperCAmelCase__ , """decoder_type""" ): lowercase_ = """simmim""" # adapt config lowercase_ = model_args.image_size if model_args.image_size is not None else config.image_size lowercase_ = model_args.patch_size if model_args.patch_size is not None else config.patch_size lowercase_ = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { """image_size""": model_args.image_size, """patch_size""": model_args.patch_size, """encoder_stride""": model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: lowercase_ = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **UpperCAmelCase__ ) elif model_args.model_name_or_path: lowercase_ = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase__ ) else: lowercase_ = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } lowercase_ = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: lowercase_ = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) lowercase_ = AutoModelForMaskedImageModeling.from_config(UpperCAmelCase__ ) if training_args.do_train: lowercase_ = ds["""train"""].column_names else: lowercase_ = ds["""validation"""].column_names if data_args.image_column_name is not None: lowercase_ = data_args.image_column_name elif "image" in column_names: lowercase_ = """image""" elif "img" in column_names: lowercase_ = """img""" else: lowercase_ = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py lowercase_ = Compose( [ Lambda(lambda UpperCAmelCase__ : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator lowercase_ = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(UpperCAmelCase__ ): lowercase_ = [transforms(UpperCAmelCase__ ) for image in examples[image_column_name]] lowercase_ = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: lowercase_ = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(UpperCAmelCase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: lowercase_ = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(UpperCAmelCase__ ) # Initialize our trainer lowercase_ = Trainer( model=UpperCAmelCase__ , args=UpperCAmelCase__ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=UpperCAmelCase__ , data_collator=UpperCAmelCase__ , ) # Training if training_args.do_train: lowercase_ = None if training_args.resume_from_checkpoint is not None: lowercase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase_ = last_checkpoint lowercase_ = trainer.train(resume_from_checkpoint=UpperCAmelCase__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase_ = trainer.evaluate() trainer.log_metrics("""eval""" , UpperCAmelCase__ ) trainer.save_metrics("""eval""" , UpperCAmelCase__ ) # Write model card and (optionally) push to hub lowercase_ = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """masked-image-modeling""", """dataset""": data_args.dataset_name, """tags""": ["""masked-image-modeling"""], } if training_args.push_to_hub: trainer.push_to_hub(**UpperCAmelCase__ ) else: trainer.create_model_card(**UpperCAmelCase__ ) if __name__ == "__main__": main()
650
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { "facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class UpperCamelCase__ ( _A ): __SCREAMING_SNAKE_CASE : str = 'vit_mae' def __init__( self : Optional[int] , UpperCamelCase__ : Optional[Any]=768 , UpperCamelCase__ : Optional[int]=12 , UpperCamelCase__ : Any=12 , UpperCamelCase__ : Optional[Any]=3_072 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : Any=0.0 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : str=0.02 , UpperCamelCase__ : Optional[Any]=1e-12 , UpperCamelCase__ : Dict=224 , UpperCamelCase__ : List[str]=16 , UpperCamelCase__ : Optional[Any]=3 , UpperCamelCase__ : Any=True , UpperCamelCase__ : Tuple=16 , UpperCamelCase__ : Any=512 , UpperCamelCase__ : Optional[Any]=8 , UpperCamelCase__ : Any=2_048 , UpperCamelCase__ : str=0.75 , UpperCamelCase__ : Union[str, Any]=False , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = qkv_bias lowercase_ = decoder_num_attention_heads lowercase_ = decoder_hidden_size lowercase_ = decoder_num_hidden_layers lowercase_ = decoder_intermediate_size lowercase_ = mask_ratio lowercase_ = norm_pix_loss
713
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging a = logging.get_logger(__name__) class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : List[Any] = ['pixel_values'] def __init__( self : List[str] , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[int, float] = 1 / 255 , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **UpperCamelCase__ : Dict , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowercase_ = size if size is not None else {"""shortest_edge""": 224} lowercase_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) lowercase_ = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} lowercase_ = get_size_dict(UpperCamelCase__ , param_name="""crop_size""" ) lowercase_ = do_resize lowercase_ = size lowercase_ = resample lowercase_ = do_center_crop lowercase_ = crop_size lowercase_ = do_rescale lowercase_ = rescale_factor lowercase_ = do_normalize lowercase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase__ ( self : int , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' lowercase_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: lowercase_ = int((256 / 224) * size["""shortest_edge"""] ) lowercase_ = get_resize_output_image_size(UpperCamelCase__ , size=UpperCamelCase__ , default_to_square=UpperCamelCase__ ) lowercase_ = {"""height""": output_size[0], """width""": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( UpperCamelCase__ , size=(size_dict["""height"""], size_dict["""width"""]) , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : str , ): '''simple docstring''' lowercase_ = get_size_dict(UpperCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(UpperCamelCase__ , size=(size["""height"""], size["""width"""]) , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[int, float] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : str , ): '''simple docstring''' return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[str] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : Dict , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : PILImageResampling = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[float] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = None , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = None , UpperCamelCase__ : Optional[TensorType] = None , UpperCamelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' lowercase_ = do_resize if do_resize is not None else self.do_resize lowercase_ = resample if resample is not None else self.resample lowercase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase_ = do_rescale if do_rescale is not None else self.do_rescale lowercase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ = do_normalize if do_normalize is not None else self.do_normalize lowercase_ = image_mean if image_mean is not None else self.image_mean lowercase_ = image_std if image_std is not None else self.image_std lowercase_ = size if size is not None else self.size lowercase_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) lowercase_ = crop_size if crop_size is not None else self.crop_size lowercase_ = get_size_dict(UpperCamelCase__ , param_name="""crop_size""" ) lowercase_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_resize: lowercase_ = [self.resize(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for image in images] if do_center_crop: lowercase_ = [self.center_crop(UpperCamelCase__ , UpperCamelCase__ ) for image in images] if do_rescale: lowercase_ = [self.rescale(UpperCamelCase__ , UpperCamelCase__ ) for image in images] if do_normalize: lowercase_ = [self.normalize(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for image in images] lowercase_ = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] lowercase_ = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
650
0
'''simple docstring''' import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = F'''{sampling_rate}''' lowercase_ = """1""" lowercase_ = """f32le""" lowercase_ = [ """ffmpeg""", """-i""", """pipe:0""", """-ac""", ac, """-ar""", ar, """-f""", format_for_conversion, """-hide_banner""", """-loglevel""", """quiet""", """pipe:1""", ] try: with subprocess.Popen(a__ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: lowercase_ = ffmpeg_process.communicate(a__ ) except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to load audio files from filename""" ) from error lowercase_ = output_stream[0] lowercase_ = np.frombuffer(a__ , np.floataa ) if audio.shape[0] == 0: raise ValueError("""Malformed soundfile""" ) return audio def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = "f32le" , ): lowercase_ = F'''{sampling_rate}''' lowercase_ = """1""" if format_for_conversion == "s16le": lowercase_ = 2 elif format_for_conversion == "f32le": lowercase_ = 4 else: raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) lowercase_ = platform.system() if system == "Linux": lowercase_ = """alsa""" lowercase_ = """default""" elif system == "Darwin": lowercase_ = """avfoundation""" lowercase_ = """:0""" elif system == "Windows": lowercase_ = """dshow""" lowercase_ = """default""" lowercase_ = [ """ffmpeg""", """-f""", format_, """-i""", input_, """-ac""", ac, """-ar""", ar, """-f""", format_for_conversion, """-fflags""", """nobuffer""", """-hide_banner""", """-loglevel""", """quiet""", """pipe:1""", ] lowercase_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample lowercase_ = _ffmpeg_stream(a__ , a__ ) for item in iterator: yield item def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = "f32le" , ): if stream_chunk_s is not None: lowercase_ = stream_chunk_s else: lowercase_ = chunk_length_s lowercase_ = ffmpeg_microphone(a__ , a__ , format_for_conversion=a__ ) if format_for_conversion == "s16le": lowercase_ = np.intaa lowercase_ = 2 elif format_for_conversion == "f32le": lowercase_ = np.floataa lowercase_ = 4 else: raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: lowercase_ = chunk_length_s / 6 lowercase_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(a__ , (int, float) ): lowercase_ = [stride_length_s, stride_length_s] lowercase_ = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample lowercase_ = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample lowercase_ = datetime.datetime.now() lowercase_ = datetime.timedelta(seconds=a__ ) for item in chunk_bytes_iter(a__ , a__ , stride=(stride_left, stride_right) , stream=a__ ): # Put everything back in numpy scale lowercase_ = np.frombuffer(item["""raw"""] , dtype=a__ ) lowercase_ = ( item["""stride"""][0] // size_of_sample, item["""stride"""][1] // size_of_sample, ) lowercase_ = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 1_0 * delta: # We're late !! SKIP continue yield item def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = False ): lowercase_ = B"""""" lowercase_ , lowercase_ = stride if stride_left + stride_right >= chunk_len: raise ValueError( F'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) lowercase_ = 0 for raw in iterator: acc += raw if stream and len(a__ ) < chunk_len: lowercase_ = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(a__ ) >= chunk_len: # We are flushing the accumulator lowercase_ = (_stride_left, stride_right) lowercase_ = {"""raw""": acc[:chunk_len], """stride""": stride} if stream: lowercase_ = False yield item lowercase_ = stride_left lowercase_ = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(a__ ) > stride_left: lowercase_ = {"""raw""": acc, """stride""": (_stride_left, 0)} if stream: lowercase_ = False yield item def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = 2**2_4 # 16Mo try: with subprocess.Popen(a__ , stdout=subprocess.PIPE , bufsize=a__ ) as ffmpeg_process: while True: lowercase_ = ffmpeg_process.stdout.read(a__ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to stream audio files from filename""" ) from error
714
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) a = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
650
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() a = logging.get_logger(__name__) def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = DPTConfig() if "large" in checkpoint_url: lowercase_ = 1_0_2_4 lowercase_ = 4_0_9_6 lowercase_ = 2_4 lowercase_ = 1_6 lowercase_ = [5, 1_1, 1_7, 2_3] lowercase_ = [2_5_6, 5_1_2, 1_0_2_4, 1_0_2_4] lowercase_ = (1, 3_8_4, 3_8_4) if "ade" in checkpoint_url: lowercase_ = True lowercase_ = 1_5_0 lowercase_ = """huggingface/label-files""" lowercase_ = """ade20k-id2label.json""" lowercase_ = json.load(open(cached_download(hf_hub_url(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) ) , """r""" ) ) lowercase_ = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} lowercase_ = idalabel lowercase_ = {v: k for k, v in idalabel.items()} lowercase_ = [1, 1_5_0, 4_8_0, 4_8_0] return config, expected_shape def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(UpperCamelCase__ , UpperCamelCase__ ) def UpperCAmelCase_ ( UpperCAmelCase__ ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowercase_ = name.replace("""pretrained.model""" , """dpt.encoder""" ) if "pretrained.model" in name: lowercase_ = name.replace("""pretrained.model""" , """dpt.embeddings""" ) if "patch_embed" in name: lowercase_ = name.replace("""patch_embed""" , """patch_embeddings""" ) if "pos_embed" in name: lowercase_ = name.replace("""pos_embed""" , """position_embeddings""" ) if "attn.proj" in name: lowercase_ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "proj" in name and "project" not in name: lowercase_ = name.replace("""proj""" , """projection""" ) if "blocks" in name: lowercase_ = name.replace("""blocks""" , """layer""" ) if "mlp.fc1" in name: lowercase_ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase_ = name.replace("""mlp.fc2""" , """output.dense""" ) if "norm1" in name: lowercase_ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase_ = name.replace("""norm2""" , """layernorm_after""" ) if "scratch.output_conv" in name: lowercase_ = name.replace("""scratch.output_conv""" , """head""" ) if "scratch" in name: lowercase_ = name.replace("""scratch""" , """neck""" ) if "layer1_rn" in name: lowercase_ = name.replace("""layer1_rn""" , """convs.0""" ) if "layer2_rn" in name: lowercase_ = name.replace("""layer2_rn""" , """convs.1""" ) if "layer3_rn" in name: lowercase_ = name.replace("""layer3_rn""" , """convs.2""" ) if "layer4_rn" in name: lowercase_ = name.replace("""layer4_rn""" , """convs.3""" ) if "refinenet" in name: lowercase_ = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowercase_ = name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: lowercase_ = name.replace("""out_conv""" , """projection""" ) if "resConfUnit1" in name: lowercase_ = name.replace("""resConfUnit1""" , """residual_layer1""" ) if "resConfUnit2" in name: lowercase_ = name.replace("""resConfUnit2""" , """residual_layer2""" ) if "conv1" in name: lowercase_ = name.replace("""conv1""" , """convolution1""" ) if "conv2" in name: lowercase_ = name.replace("""conv2""" , """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowercase_ = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: lowercase_ = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: lowercase_ = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: lowercase_ = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowercase_ = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: lowercase_ = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: lowercase_ = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: lowercase_ = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: lowercase_ = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: lowercase_ = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: lowercase_ = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: lowercase_ = name.replace("""pretrained""" , """dpt""" ) if "bn" in name: lowercase_ = name.replace("""bn""" , """batch_norm""" ) if "head" in name: lowercase_ = name.replace("""head""" , """head.head""" ) if "encoder.norm" in name: lowercase_ = name.replace("""encoder.norm""" , """layernorm""" ) if "auxlayer" in name: lowercase_ = name.replace("""auxlayer""" , """auxiliary_head.head""" ) return name def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase_ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) lowercase_ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase_ = in_proj_weight[: config.hidden_size, :] lowercase_ = in_proj_bias[: config.hidden_size] lowercase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase_ = in_proj_weight[ -config.hidden_size :, : ] lowercase_ = in_proj_bias[-config.hidden_size :] def UpperCAmelCase_ ( ): lowercase_ = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase_ = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return im @torch.no_grad() def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ , lowercase_ = get_dpt_config(UpperCamelCase__ ) # load original state_dict from URL lowercase_ = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(UpperCamelCase__ ) # rename keys for key in state_dict.copy().keys(): lowercase_ = state_dict.pop(UpperCamelCase__ ) lowercase_ = val # read in qkv matrices read_in_q_k_v(UpperCamelCase__ , UpperCamelCase__ ) # load HuggingFace model lowercase_ = DPTForSemanticSegmentation(UpperCamelCase__ ) if """ade""" in checkpoint_url else DPTForDepthEstimation(UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) model.eval() # Check outputs on an image lowercase_ = 4_8_0 if """ade""" in checkpoint_url else 3_8_4 lowercase_ = DPTImageProcessor(size=UpperCamelCase__ ) lowercase_ = prepare_img() lowercase_ = image_processor(UpperCamelCase__ , return_tensors="""pt""" ) # forward pass lowercase_ = model(**UpperCamelCase__ ).logits if """ade""" in checkpoint_url else model(**UpperCamelCase__ ).predicted_depth # Assert logits lowercase_ = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] ) if "ade" in checkpoint_url: lowercase_ = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] ) assert outputs.shape == torch.Size(UpperCamelCase__ ) assert ( torch.allclose(outputs[0, 0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , UpperCamelCase__ ) ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCamelCase__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: print("""Pushing model to hub...""" ) model.push_to_hub( repo_path_or_name=Path(UpperCamelCase__ , UpperCamelCase__ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=UpperCamelCase__ , ) image_processor.push_to_hub( repo_path_or_name=Path(UpperCamelCase__ , UpperCamelCase__ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=UpperCamelCase__ , ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) a = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
715
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() a = logging.get_logger(__name__) a = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } a = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): for attribute in key.split(""".""" ): lowercase_ = getattr(UpperCAmelCase__ , UpperCAmelCase__ ) if weight_type is not None: lowercase_ = getattr(UpperCAmelCase__ , UpperCAmelCase__ ).shape else: lowercase_ = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase_ = value elif weight_type == "weight_g": lowercase_ = value elif weight_type == "weight_v": lowercase_ = value elif weight_type == "bias": lowercase_ = value else: lowercase_ = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = [] lowercase_ = fairseq_model.state_dict() lowercase_ = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight lowercase_ = None for name, value in fairseq_dict.items(): lowercase_ = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , hf_model.config.feat_extract_norm == """group""" , ) lowercase_ = True elif name.split(""".""" )[0] == "proj": lowercase_ = fairseq_model.proj lowercase_ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: lowercase_ = True if "*" in mapped_key: lowercase_ = name.split(UpperCAmelCase__ )[0].split(""".""" )[-2] lowercase_ = mapped_key.replace("""*""" , UpperCAmelCase__ ) if "weight_g" in name: lowercase_ = """weight_g""" elif "weight_v" in name: lowercase_ = """weight_v""" elif "bias" in name: lowercase_ = """bias""" elif "weight" in name: lowercase_ = """weight""" else: lowercase_ = None set_recursively(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) continue if not is_used: unused_weights.append(UpperCAmelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) return proj_weight def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = full_name.split("""conv_layers.""" )[-1] lowercase_ = name.split(""".""" ) lowercase_ = int(items[0] ) lowercase_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowercase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(UpperCAmelCase__ ) def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ , lowercase_ = emb.weight.shape lowercase_ = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ , bias=UpperCAmelCase__ ) lowercase_ = emb.weight.data return lin_layer def UpperCAmelCase_ ( UpperCAmelCase__ ): with open(UpperCAmelCase__ , """r""" , encoding="""utf-8""" ) as f: lowercase_ = f.readlines() lowercase_ = [line.split(""" """ )[0] for line in lines] lowercase_ = len(UpperCAmelCase__ ) lowercase_ = { """<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3, } vocab_dict.update(dict(zip(UpperCAmelCase__ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ): lowercase_ = WavaVecaConfig.from_pretrained(UpperCAmelCase__ ) lowercase_ = SpeechaTextaConfig.from_pretrained( UpperCAmelCase__ , vocab_size=UpperCAmelCase__ , decoder_layers=UpperCAmelCase__ , do_stable_layer_norm=UpperCAmelCase__ ) lowercase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , ) lowercase_ , lowercase_ , lowercase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) lowercase_ = model[0].eval() # set weights for wav2vec2 encoder lowercase_ = WavaVecaModel(UpperCAmelCase__ ) lowercase_ = recursively_load_weights_wavaveca(model.encoder , UpperCAmelCase__ ) lowercase_ = SpeechaTextaForCausalLM(UpperCAmelCase__ ) lowercase_ , lowercase_ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=UpperCAmelCase__ ) # set output linear layer unexpected_keys.remove("""embed_out""" ) lowercase_ = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) lowercase_ = SpeechEncoderDecoderModel(encoder=UpperCAmelCase__ , decoder=UpperCAmelCase__ ) lowercase_ = False # add projection layer lowercase_ = nn.Parameter(projection_layer.weight ) lowercase_ = nn.Parameter(projection_layer.bias ) lowercase_ = create_vocab_dict(UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__ , """vocab.json""" ) , """w""" ) as fp: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ = SpeechaTextaTokenizer(os.path.join(UpperCAmelCase__ , """vocab.json""" ) ) tokenizer.save_pretrained(UpperCAmelCase__ ) lowercase_ = hf_wavavec.config.to_dict() lowercase_ = tokenizer.pad_token_id lowercase_ = tokenizer.bos_token_id lowercase_ = tokenizer.eos_token_id lowercase_ = """speech_to_text_2""" lowercase_ = """wav2vec2""" lowercase_ = SpeechEncoderDecoderConfig.from_dict(UpperCAmelCase__ ) hf_wavavec.save_pretrained(UpperCAmelCase__ ) feature_extractor.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-large-lv60', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/s2t-small-mustc-en-fr-st', type=str, help='Path to hf decoder s2t checkpoint config', ) parser.add_argument('--vocab_size', default=1_0_2_2_4, type=int, help='Vocab size of decoder') parser.add_argument('--num_decoder_layers', default=7, type=int, help='Number of decoder layers') a = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
650
0
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated a = collections.namedtuple('_Datasets', ['train', 'validation', 'test']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ a = '''https://storage.googleapis.com/cvdf-datasets/mnist/''' def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = numpy.dtype(numpy.uintaa ).newbyteorder(""">""" ) return numpy.frombuffer(bytestream.read(4 ) , dtype=_UpperCAmelCase )[0] @deprecated(_UpperCAmelCase , """Please use tf.data to implement this functionality.""" ) def UpperCAmelCase_ ( UpperCAmelCase__ ): print("""Extracting""" , f.name ) with gzip.GzipFile(fileobj=_UpperCAmelCase ) as bytestream: lowercase_ = _readaa(_UpperCAmelCase ) if magic != 2_0_5_1: raise ValueError( """Invalid magic number %d in MNIST image file: %s""" % (magic, f.name) ) lowercase_ = _readaa(_UpperCAmelCase ) lowercase_ = _readaa(_UpperCAmelCase ) lowercase_ = _readaa(_UpperCAmelCase ) lowercase_ = bytestream.read(rows * cols * num_images ) lowercase_ = numpy.frombuffer(_UpperCAmelCase , dtype=numpy.uinta ) lowercase_ = data.reshape(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , 1 ) return data @deprecated(_UpperCAmelCase , """Please use tf.one_hot on tensors.""" ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = labels_dense.shape[0] lowercase_ = numpy.arange(_UpperCAmelCase ) * num_classes lowercase_ = numpy.zeros((num_labels, num_classes) ) lowercase_ = 1 return labels_one_hot @deprecated(_UpperCAmelCase , """Please use tf.data to implement this functionality.""" ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__=False , UpperCAmelCase__=1_0 ): print("""Extracting""" , f.name ) with gzip.GzipFile(fileobj=_UpperCAmelCase ) as bytestream: lowercase_ = _readaa(_UpperCAmelCase ) if magic != 2_0_4_9: raise ValueError( """Invalid magic number %d in MNIST label file: %s""" % (magic, f.name) ) lowercase_ = _readaa(_UpperCAmelCase ) lowercase_ = bytestream.read(_UpperCAmelCase ) lowercase_ = numpy.frombuffer(_UpperCAmelCase , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(_UpperCAmelCase , _UpperCAmelCase ) return labels class UpperCamelCase__ : @deprecated( __SCREAMING_SNAKE_CASE , """Please use alternatives such as official/mnist/_DataSet.py""" """ from tensorflow/models.""" , ) def __init__( self : Union[str, Any] , UpperCamelCase__ : int , UpperCamelCase__ : Dict , UpperCamelCase__ : Any=False , UpperCamelCase__ : Optional[int]=False , UpperCamelCase__ : Any=dtypes.floataa , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : Any=None , ): '''simple docstring''' lowercase_ , lowercase_ = random_seed.get_seed(__SCREAMING_SNAKE_CASE ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) lowercase_ = dtypes.as_dtype(__SCREAMING_SNAKE_CASE ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError("""Invalid image dtype %r, expected uint8 or float32""" % dtype ) if fake_data: lowercase_ = 10_000 lowercase_ = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F'''images.shape: {images.shape} labels.shape: {labels.shape}''' lowercase_ = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 lowercase_ = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. lowercase_ = images.astype(numpy.floataa ) lowercase_ = numpy.multiply(__SCREAMING_SNAKE_CASE , 1.0 / 255.0 ) lowercase_ = images lowercase_ = labels lowercase_ = 0 lowercase_ = 0 @property def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return self._images @property def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return self._labels @property def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' return self._num_examples @property def UpperCAmelCase__ ( self : str ): '''simple docstring''' return self._epochs_completed def UpperCAmelCase__ ( self : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple=False , UpperCamelCase__ : Optional[int]=True ): '''simple docstring''' if fake_data: lowercase_ = [1] * 784 lowercase_ = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(__SCREAMING_SNAKE_CASE )], [fake_label for _ in range(__SCREAMING_SNAKE_CASE )], ) lowercase_ = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: lowercase_ = numpy.arange(self._num_examples ) numpy.random.shuffle(__SCREAMING_SNAKE_CASE ) lowercase_ = self.images[perma] lowercase_ = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch lowercase_ = self._num_examples - start lowercase_ = self._images[start : self._num_examples] lowercase_ = self._labels[start : self._num_examples] # Shuffle the data if shuffle: lowercase_ = numpy.arange(self._num_examples ) numpy.random.shuffle(__SCREAMING_SNAKE_CASE ) lowercase_ = self.images[perm] lowercase_ = self.labels[perm] # Start next epoch lowercase_ = 0 lowercase_ = batch_size - rest_num_examples lowercase_ = self._index_in_epoch lowercase_ = self._images[start:end] lowercase_ = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size lowercase_ = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(_UpperCAmelCase , """Please write your own downloading logic.""" ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): if not gfile.Exists(_UpperCAmelCase ): gfile.MakeDirs(_UpperCAmelCase ) lowercase_ = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if not gfile.Exists(_UpperCAmelCase ): urllib.request.urlretrieve(_UpperCAmelCase , _UpperCAmelCase ) # noqa: S310 with gfile.GFile(_UpperCAmelCase ) as f: lowercase_ = f.size() print("""Successfully downloaded""" , _UpperCAmelCase , _UpperCAmelCase , """bytes.""" ) return filepath @deprecated( _UpperCAmelCase , """Please use alternatives such as:""" """ tensorflow_datasets.load(\'mnist\')""" ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__=False , UpperCAmelCase__=False , UpperCAmelCase__=dtypes.floataa , UpperCAmelCase__=True , UpperCAmelCase__=5_0_0_0 , UpperCAmelCase__=None , UpperCAmelCase__=DEFAULT_SOURCE_URL , ): if fake_data: def fake(): return _DataSet( [] , [] , fake_data=_UpperCAmelCase , one_hot=_UpperCAmelCase , dtype=_UpperCAmelCase , seed=_UpperCAmelCase ) lowercase_ = fake() lowercase_ = fake() lowercase_ = fake() return _Datasets(train=_UpperCAmelCase , validation=_UpperCAmelCase , test=_UpperCAmelCase ) if not source_url: # empty string check lowercase_ = DEFAULT_SOURCE_URL lowercase_ = """train-images-idx3-ubyte.gz""" lowercase_ = """train-labels-idx1-ubyte.gz""" lowercase_ = """t10k-images-idx3-ubyte.gz""" lowercase_ = """t10k-labels-idx1-ubyte.gz""" lowercase_ = _maybe_download( _UpperCAmelCase , _UpperCAmelCase , source_url + train_images_file ) with gfile.Open(_UpperCAmelCase , """rb""" ) as f: lowercase_ = _extract_images(_UpperCAmelCase ) lowercase_ = _maybe_download( _UpperCAmelCase , _UpperCAmelCase , source_url + train_labels_file ) with gfile.Open(_UpperCAmelCase , """rb""" ) as f: lowercase_ = _extract_labels(_UpperCAmelCase , one_hot=_UpperCAmelCase ) lowercase_ = _maybe_download( _UpperCAmelCase , _UpperCAmelCase , source_url + test_images_file ) with gfile.Open(_UpperCAmelCase , """rb""" ) as f: lowercase_ = _extract_images(_UpperCAmelCase ) lowercase_ = _maybe_download( _UpperCAmelCase , _UpperCAmelCase , source_url + test_labels_file ) with gfile.Open(_UpperCAmelCase , """rb""" ) as f: lowercase_ = _extract_labels(_UpperCAmelCase , one_hot=_UpperCAmelCase ) if not 0 <= validation_size <= len(_UpperCAmelCase ): lowercase_ = ( """Validation size should be between 0 and """ F'''{len(_UpperCAmelCase )}. Received: {validation_size}.''' ) raise ValueError(_UpperCAmelCase ) lowercase_ = train_images[:validation_size] lowercase_ = train_labels[:validation_size] lowercase_ = train_images[validation_size:] lowercase_ = train_labels[validation_size:] lowercase_ = {"""dtype""": dtype, """reshape""": reshape, """seed""": seed} lowercase_ = _DataSet(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) lowercase_ = _DataSet(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) lowercase_ = _DataSet(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) return _Datasets(train=_UpperCAmelCase , validation=_UpperCAmelCase , test=_UpperCAmelCase )
716
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) # TODO Update this a = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Tuple = 'esm' def __init__( self : Optional[Any] , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : List[Any]=768 , UpperCamelCase__ : Tuple=12 , UpperCamelCase__ : Optional[int]=12 , UpperCamelCase__ : Dict=3_072 , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : Optional[int]=1_026 , UpperCamelCase__ : Any=0.02 , UpperCamelCase__ : Dict=1e-12 , UpperCamelCase__ : List[str]="absolute" , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Union[str, Any]=False , UpperCamelCase__ : Optional[int]=False , UpperCamelCase__ : Dict=None , UpperCamelCase__ : str=None , **UpperCamelCase__ : str , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , mask_token_id=UpperCamelCase__ , **UpperCamelCase__ ) lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = position_embedding_type lowercase_ = use_cache lowercase_ = emb_layer_norm_before lowercase_ = token_dropout lowercase_ = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("""No esmfold_config supplied for folding model, using default values.""" ) lowercase_ = EsmFoldConfig() elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = EsmFoldConfig(**UpperCamelCase__ ) lowercase_ = esmfold_config if vocab_list is None: logger.warning("""No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!""" ) lowercase_ = get_default_vocab_list() else: lowercase_ = vocab_list else: lowercase_ = None lowercase_ = None if self.esmfold_config is not None and getattr(self.esmfold_config , """use_esm_attn_map""" , UpperCamelCase__ ): raise ValueError("""The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!""" ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = super().to_dict() if isinstance(self.esmfold_config , UpperCamelCase__ ): lowercase_ = self.esmfold_config.to_dict() return output @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : str = None __SCREAMING_SNAKE_CASE : bool = True __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : float = 0 __SCREAMING_SNAKE_CASE : bool = True __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : "TrunkConfig" = None def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' if self.trunk is None: lowercase_ = TrunkConfig() elif isinstance(self.trunk , UpperCamelCase__ ): lowercase_ = TrunkConfig(**self.trunk ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = asdict(self ) lowercase_ = self.trunk.to_dict() return output @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : int = 48 __SCREAMING_SNAKE_CASE : int = 1024 __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : float = 0 __SCREAMING_SNAKE_CASE : float = 0 __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : int = 4 __SCREAMING_SNAKE_CASE : Optional[int] = 128 __SCREAMING_SNAKE_CASE : "StructureModuleConfig" = None def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' if self.structure_module is None: lowercase_ = StructureModuleConfig() elif isinstance(self.structure_module , UpperCamelCase__ ): lowercase_ = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( """`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got""" F''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( """`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got""" F''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) lowercase_ = self.sequence_state_dim // self.sequence_head_width lowercase_ = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( """`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got""" F''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( """`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got""" F''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(F'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = asdict(self ) lowercase_ = self.structure_module.to_dict() return output @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : int = 384 __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : int = 16 __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : int = 12 __SCREAMING_SNAKE_CASE : int = 4 __SCREAMING_SNAKE_CASE : int = 8 __SCREAMING_SNAKE_CASE : float = 0.1 __SCREAMING_SNAKE_CASE : int = 8 __SCREAMING_SNAKE_CASE : int = 1 __SCREAMING_SNAKE_CASE : int = 2 __SCREAMING_SNAKE_CASE : int = 7 __SCREAMING_SNAKE_CASE : int = 10 __SCREAMING_SNAKE_CASE : float = 1e-8 __SCREAMING_SNAKE_CASE : float = 1e5 def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' return asdict(self ) def UpperCAmelCase_ ( ): return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
650
0
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL a = logging.get_logger(__name__) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): def constraint_to_multiple_of(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=0 , UpperCAmelCase__=None ): lowercase_ = round(val / multiple ) * multiple if max_val is not None and x > max_val: lowercase_ = math.floor(val / multiple ) * multiple if x < min_val: lowercase_ = math.ceil(val / multiple ) * multiple return x lowercase_ = (output_size, output_size) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else output_size lowercase_ = get_image_size(UpperCAmelCase__ ) lowercase_ = output_size # determine new height and width lowercase_ = output_height / input_height lowercase_ = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width lowercase_ = scale_width else: # fit height lowercase_ = scale_height lowercase_ = constraint_to_multiple_of(scale_height * input_height , multiple=UpperCAmelCase__ ) lowercase_ = constraint_to_multiple_of(scale_width * input_width , multiple=UpperCAmelCase__ ) return (new_height, new_width) class UpperCamelCase__ ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE : Any = ['pixel_values'] def __init__( self : Optional[int] , UpperCamelCase__ : Any = True , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[int] = PILImageResampling.BILINEAR , UpperCamelCase__ : Union[str, Any] = False , UpperCamelCase__ : str = 1 , UpperCamelCase__ : str = True , UpperCamelCase__ : Tuple = 1 / 255 , UpperCamelCase__ : str = True , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : str = None , **UpperCamelCase__ : str , ): '''simple docstring''' super().__init__(**__a ) lowercase_ = size if size is not None else {'height': 384, 'width': 384} lowercase_ = get_size_dict(__a ) lowercase_ = do_resize lowercase_ = size lowercase_ = keep_aspect_ratio lowercase_ = ensure_multiple_of lowercase_ = resample lowercase_ = do_rescale lowercase_ = rescale_factor lowercase_ = do_normalize lowercase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase__ ( self : Union[str, Any] , UpperCamelCase__ : int , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict = False , UpperCamelCase__ : List[str] = 1 , UpperCamelCase__ : Optional[Any] = PILImageResampling.BICUBIC , UpperCamelCase__ : List[str] = None , **UpperCamelCase__ : Any , ): '''simple docstring''' lowercase_ = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) lowercase_ = get_resize_output_image_size( __a , output_size=(size["""height"""], size["""width"""]) , keep_aspect_ratio=__a , multiple=__a , ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def UpperCAmelCase__ ( self : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] = None , **UpperCamelCase__ : Any , ): '''simple docstring''' return rescale(__a , scale=__a , data_format=__a , **__a ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict = None , **UpperCamelCase__ : str , ): '''simple docstring''' return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : int = None , UpperCamelCase__ : Union[str, Any] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Any = None , UpperCamelCase__ : Optional[Any] = None , UpperCamelCase__ : Dict = None , UpperCamelCase__ : int = None , UpperCamelCase__ : int = None , UpperCamelCase__ : Union[str, Any] = None , UpperCamelCase__ : Any = None , UpperCamelCase__ : List[Any] = None , UpperCamelCase__ : Tuple = ChannelDimension.FIRST , **UpperCamelCase__ : int , ): '''simple docstring''' lowercase_ = do_resize if do_resize is not None else self.do_resize lowercase_ = size if size is not None else self.size lowercase_ = get_size_dict(__a ) lowercase_ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio lowercase_ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of lowercase_ = resample if resample is not None else self.resample lowercase_ = do_rescale if do_rescale is not None else self.do_rescale lowercase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ = do_normalize if do_normalize is not None else self.do_normalize lowercase_ = image_mean if image_mean is not None else self.image_mean lowercase_ = image_std if image_std is not None else self.image_std lowercase_ = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(__a ) for image in images] if do_resize: lowercase_ = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_rescale: lowercase_ = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: lowercase_ = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] lowercase_ = [to_channel_dimension_format(__a , __a ) for image in images] lowercase_ = {'pixel_values': images} return BatchFeature(data=__a , tensor_type=__a ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : Any = None ): '''simple docstring''' lowercase_ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__a ) != len(__a ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(__a ): lowercase_ = target_sizes.numpy() lowercase_ = [] for idx in range(len(__a ) ): lowercase_ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=__a ) lowercase_ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__a ) else: lowercase_ = logits.argmax(dim=1 ) lowercase_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
717
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def UpperCAmelCase_ ( UpperCAmelCase__=None ): if subparsers is not None: lowercase_ = subparsers.add_parser("""env""" ) else: lowercase_ = argparse.ArgumentParser("""Accelerate env command""" ) parser.add_argument( """--config_file""" , default=UpperCAmelCase__ , help="""The config file to use for the default values in the launching script.""" ) if subparsers is not None: parser.set_defaults(func=UpperCAmelCase__ ) return parser def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = torch.__version__ lowercase_ = torch.cuda.is_available() lowercase_ = is_xpu_available() lowercase_ = is_npu_available() lowercase_ = """Not found""" # Get the default from the config file. if args.config_file is not None or os.path.isfile(UpperCAmelCase__ ): lowercase_ = load_config_from_file(args.config_file ).to_dict() lowercase_ = { """`Accelerate` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Numpy version""": np.__version__, """PyTorch version (GPU?)""": F'''{pt_version} ({pt_cuda_available})''', """PyTorch XPU available""": str(UpperCAmelCase__ ), """PyTorch NPU available""": str(UpperCAmelCase__ ), """System RAM""": F'''{psutil.virtual_memory().total / 1_0_2_4 ** 3:.2f} GB''', } if pt_cuda_available: lowercase_ = torch.cuda.get_device_name() print("""\nCopy-and-paste the text below in your GitHub issue\n""" ) print("""\n""".join([F'''- {prop}: {val}''' for prop, val in info.items()] ) ) print("""- `Accelerate` default config:""" if args.config_file is None else """- `Accelerate` config passed:""" ) lowercase_ = ( """\n""".join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else F'''\t{accelerate_config}''' ) print(UpperCAmelCase__ ) lowercase_ = accelerate_config return info def UpperCAmelCase_ ( ): lowercase_ = env_command_parser() lowercase_ = parser.parse_args() env_command(UpperCAmelCase__ ) return 0 if __name__ == "__main__": raise SystemExit(main())
650
0
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): a = { 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: a = { 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = (images / 2 + 0.5).clamp(0 , 1 ) lowercase_ = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowercase_ = numpy_to_pil(_lowercase ) return images def UpperCAmelCase_ ( UpperCAmelCase__ ): if images.ndim == 3: lowercase_ = images[None, ...] lowercase_ = (images * 2_5_5).round().astype("""uint8""" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images lowercase_ = [Image.fromarray(image.squeeze() , mode="""L""" ) for image in images] else: lowercase_ = [Image.fromarray(_lowercase ) for image in images] return pil_images
718
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class UpperCamelCase__ : def __init__( self : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple=13 , UpperCamelCase__ : Tuple=30 , UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : Union[str, Any]=3 , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : int=32 , UpperCamelCase__ : Tuple=5 , UpperCamelCase__ : List[Any]=4 , UpperCamelCase__ : Dict=37 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : Any=10 , UpperCamelCase__ : Optional[int]=0.02 , UpperCamelCase__ : Dict=3 , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Union[str, Any]=2 , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = is_training lowercase_ = use_labels lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = scope lowercase_ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowercase_ = (image_size // patch_size) ** 2 lowercase_ = num_patches + 2 def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple ): '''simple docstring''' lowercase_ = DeiTModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = DeiTForMaskedImageModeling(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase_ = 1 lowercase_ = DeiTForMaskedImageModeling(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] ): '''simple docstring''' lowercase_ = self.type_sequence_label_size lowercase_ = DeiTForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ = 1 lowercase_ = DeiTForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : str = ( { 'feature-extraction': DeiTModel, 'image-classification': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : List[Any] = False def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = DeiTModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' pass def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCamelCase__ ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any]=False ): '''simple docstring''' lowercase_ = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' if not self.model_tester.is_training: return lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(UpperCamelCase__ ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue lowercase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.train() lowercase_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) lowercase_ = model(**UpperCamelCase__ ).loss loss.backward() def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase_ = False lowercase_ = True for model_class in self.all_model_classes: if model_class in get_values(UpperCamelCase__ ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue lowercase_ = model_class(UpperCamelCase__ ) model.gradient_checkpointing_enable() model.to(UpperCamelCase__ ) model.train() lowercase_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) lowercase_ = model(**UpperCamelCase__ ).loss loss.backward() def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(UpperCamelCase__ ), *get_values(UpperCamelCase__ ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'''Testing {model_class} with {problem_type["title"]}''' ): lowercase_ = problem_type["""title"""] lowercase_ = problem_type["""num_labels"""] lowercase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.train() lowercase_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if problem_type["num_labels"] > 1: lowercase_ = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) lowercase_ = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=UpperCamelCase__ ) as warning_list: lowercase_ = model(**UpperCamelCase__ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def UpperCAmelCase__ ( self : int ): '''simple docstring''' for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = DeiTModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def UpperCAmelCase_ ( ): lowercase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = DeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ).to( UpperCamelCase__ ) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowercase_ = model(**UpperCamelCase__ ) # verify the logits lowercase_ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) lowercase_ = torch.tensor([-1.0_266, 0.1_912, -1.2_861] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = DeiTModel.from_pretrained( """facebook/deit-base-distilled-patch16-224""" , torch_dtype=torch.floataa , device_map="""auto""" ) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ) lowercase_ = inputs.pixel_values.to(UpperCamelCase__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowercase_ = model(UpperCamelCase__ )
650
0
def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def UpperCAmelCase_ ( ): print(sum_of_series(1 , 1 , 1_0 ) ) if __name__ == "__main__": import doctest doctest.testmod()
719
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
650
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
720
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = XGLMTokenizer __SCREAMING_SNAKE_CASE : List[Any] = XGLMTokenizerFast __SCREAMING_SNAKE_CASE : List[Any] = True __SCREAMING_SNAKE_CASE : int = True def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase_ = XGLMTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = """<pad>""" lowercase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(len(UpperCamelCase__ ) , 1_008 ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_008 ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = XGLMTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) lowercase_ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCamelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowercase_ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowercase_ = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase_ = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def UpperCAmelCase__ ( self : str ): '''simple docstring''' return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(UpperCamelCase__ , f.name ) lowercase_ = XGLMTokenizer(f.name , keep_accents=UpperCamelCase__ ) lowercase_ = pickle.dumps(UpperCamelCase__ ) pickle.loads(UpperCamelCase__ ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' if not self.test_rust_tokenizer: return lowercase_ = self.get_tokenizer() lowercase_ = self.get_rust_tokenizer() lowercase_ = """I was born in 92000, and this is falsé.""" lowercase_ = tokenizer.tokenize(UpperCamelCase__ ) lowercase_ = rust_tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) lowercase_ = rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = self.get_rust_tokenizer() lowercase_ = tokenizer.encode(UpperCamelCase__ ) lowercase_ = rust_tokenizer.encode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) @slow def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = """Hello World!""" lowercase_ = [2, 31_227, 4_447, 35] self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @slow def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth""" ) # fmt: off lowercase_ = [2, 1_018, 67, 11, 1_988, 2_617, 5_631, 278, 11, 3_407, 48, 71_630, 28_085, 4, 3_234, 157, 13, 6, 5, 6, 4, 3_526, 768, 15, 659, 57, 298, 3_983, 864, 129, 21, 6, 5, 13_675, 377, 652, 7_580, 10_341, 155, 2_817, 422, 1_666, 7, 1_674, 53, 113, 202_277, 17_892, 33, 60, 87, 4, 3_234, 157, 61, 2_667, 52_376, 19, 88, 23, 735] # fmt: on self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @slow def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = { """input_ids""": [[2, 108_825, 1_163, 15, 88_010, 473, 15_898, 157, 13_672, 1_857, 312, 8, 238_021, 1_163, 53, 13_672, 1_857, 312, 8, 53_283, 182_396, 8, 18_566, 16, 36_733, 4_101, 8, 230, 244_017, 122_553, 7, 15, 132_597, 4, 293, 12_511, 7_610, 4, 3_414, 132_597, 9, 4, 32_361, 362, 4, 734, 28_512, 32_569, 18, 4, 32_361, 26_096, 14_982, 73, 18_715, 21_433, 235_261, 15, 492, 12_427, 16, 53, 18_715, 21_433, 65_454, 15, 23_659, 563, 16, 278, 597, 2_843, 595, 7_931, 182_396, 64_186, 22, 886, 595, 132_981, 53, 25_540, 3_449, 43_982, 39_901, 5_951, 878, 330, 4, 27_694, 80_269, 312, 53, 6_517, 11_780, 611, 20_408, 5], [2, 6, 132_597, 67, 42_897, 33, 592, 8, 163_729, 25_540, 361, 136_997, 109_514, 173_230, 7, 501, 60, 102_913, 196, 5_631, 235, 63_243, 473, 6, 231_757, 74, 5_277, 7_905, 53, 3_095, 37_317, 22, 454, 183_874, 5], [2, 268, 31_298, 46_530, 6, 132_935, 43_831, 7, 597, 32, 24, 3_688, 9_865, 5]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name="""facebook/xglm-564M""" , padding=UpperCamelCase__ , )
650
0
'''simple docstring''' from functools import reduce a = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def UpperCAmelCase_ ( UpperCAmelCase__ = N ): return max( # mypy cannot properly interpret reduce int(reduce(lambda UpperCAmelCase__ , UpperCAmelCase__ : str(int(lowerCAmelCase__ ) * int(lowerCAmelCase__ ) ) , n[i : i + 1_3] ) ) for i in range(len(lowerCAmelCase__ ) - 1_2 ) ) if __name__ == "__main__": print(F'''{solution() = }''')
721
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: a = None a = logging.get_logger(__name__) a = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} a = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 a = { 't5-small': 5_1_2, 't5-base': 5_1_2, 't5-large': 5_1_2, 't5-3b': 5_1_2, 't5-11b': 5_1_2, } class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : str = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : Dict = TaTokenizer __SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self : int , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Any=None , UpperCamelCase__ : Dict="</s>" , UpperCamelCase__ : Tuple="<unk>" , UpperCamelCase__ : Optional[Any]="<pad>" , UpperCamelCase__ : Union[str, Any]=100 , UpperCamelCase__ : Optional[Any]=None , **UpperCamelCase__ : List[str] , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: lowercase_ = [F'''<extra_id_{i}>''' for i in range(UpperCamelCase__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowercase_ = len(set(filter(lambda UpperCamelCase__ : bool("""extra_id_""" in str(UpperCamelCase__ ) ) , UpperCamelCase__ ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , extra_ids=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , **UpperCamelCase__ , ) lowercase_ = vocab_file lowercase_ = False if not self.vocab_file else True lowercase_ = extra_ids @staticmethod def UpperCAmelCase__ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : int ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowercase_ = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" F''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" F''' {pretrained_model_name_or_path} automatically truncating your input to''' F''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' F''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , UpperCamelCase__ , ) return max_model_length def UpperCAmelCase__ ( self : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCamelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ = os.path.join( UpperCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ): copyfile(self.vocab_file , UpperCamelCase__ ) logger.info(F'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' lowercase_ = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowercase_ = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def UpperCAmelCase__ ( self : str , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' lowercase_ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return list( set(filter(lambda UpperCamelCase__ : bool(re.search(R"""<extra_id_\d+>""" , UpperCamelCase__ ) ) is not None , self.additional_special_tokens ) ) ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' return [self.convert_tokens_to_ids(UpperCamelCase__ ) for token in self.get_sentinel_tokens()]
650
0
import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input a = """Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine""" def UpperCAmelCase_ ( ): lowercase_ = _ask_options( """In which compute environment are you running?""" , ["""This machine""", """AWS (Amazon SageMaker)"""] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: lowercase_ = get_sagemaker_input() else: lowercase_ = get_cluster_input() return config def UpperCAmelCase_ ( UpperCAmelCase__=None ): if subparsers is not None: lowercase_ = subparsers.add_parser("""config""" , description=_lowerCamelCase ) else: lowercase_ = argparse.ArgumentParser("""Accelerate config command""" , description=_lowerCamelCase ) parser.add_argument( """--config_file""" , default=_lowerCamelCase , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have """ """such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed """ """with \'huggingface\'.""" ) , ) if subparsers is not None: parser.set_defaults(func=_lowerCamelCase ) return parser def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = get_user_input() if args.config_file is not None: lowercase_ = args.config_file else: if not os.path.isdir(_lowerCamelCase ): os.makedirs(_lowerCamelCase ) lowercase_ = default_yaml_config_file if config_file.endswith(""".json""" ): config.to_json_file(_lowerCamelCase ) else: config.to_yaml_file(_lowerCamelCase ) print(F'''accelerate configuration saved at {config_file}''' ) def UpperCAmelCase_ ( ): lowercase_ = config_command_parser() lowercase_ = parser.parse_args() config_command(_lowerCamelCase ) if __name__ == "__main__": main()
700
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionDiffEditPipeline __SCREAMING_SNAKE_CASE : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'height', 'width', 'image'} | {'image_latents'} __SCREAMING_SNAKE_CASE : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'image'} | {'image_latents'} __SCREAMING_SNAKE_CASE : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __SCREAMING_SNAKE_CASE : Any = frozenset([] ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase__ , ) lowercase_ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCamelCase__ , set_alpha_to_one=UpperCamelCase__ , ) lowercase_ = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCamelCase__ , set_alpha_to_zero=UpperCamelCase__ , ) torch.manual_seed(0 ) lowercase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=512 , ) lowercase_ = CLIPTextModel(UpperCamelCase__ ) lowercase_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase_ = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCAmelCase__ ( self : int , UpperCamelCase__ : Any , UpperCamelCase__ : Any=0 ): '''simple docstring''' lowercase_ = floats_tensor((1, 16, 16) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowercase_ = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) if str(UpperCamelCase__ ).startswith("""mps""" ): lowercase_ = torch.manual_seed(UpperCamelCase__ ) else: lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowercase_ = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str=0 ): '''simple docstring''' lowercase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowercase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase_ = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert("""RGB""" ) if str(UpperCamelCase__ ).startswith("""mps""" ): lowercase_ = torch.manual_seed(UpperCamelCase__ ) else: lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowercase_ = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple=0 ): '''simple docstring''' lowercase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowercase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase_ = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert("""RGB""" ) if str(UpperCamelCase__ ).startswith("""mps""" ): lowercase_ = torch.manual_seed(UpperCamelCase__ ) else: lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowercase_ = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : int ): '''simple docstring''' if not hasattr(self.pipeline_class , """_optional_components""" ): return lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowercase_ = self.get_dummy_inputs(UpperCamelCase__ ) lowercase_ = pipe(**UpperCamelCase__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCamelCase__ ) lowercase_ = self.pipeline_class.from_pretrained(UpperCamelCase__ ) pipe_loaded.to(UpperCamelCase__ ) pipe_loaded.set_progress_bar_config(disable=UpperCamelCase__ ) for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCamelCase__ , UpperCamelCase__ ) is None , F'''`{optional_component}` did not stay set to None after loading.''' , ) lowercase_ = self.get_dummy_inputs(UpperCamelCase__ ) lowercase_ = pipe_loaded(**UpperCamelCase__ )[0] lowercase_ = np.abs(output - output_loaded ).max() self.assertLess(UpperCamelCase__ , 1e-4 ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = """cpu""" lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_mask_inputs(UpperCamelCase__ ) lowercase_ = pipe.generate_mask(**UpperCamelCase__ ) lowercase_ = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowercase_ = np.array([0] * 9 ) lowercase_ = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = """cpu""" lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_inversion_inputs(UpperCamelCase__ ) lowercase_ = pipe.invert(**UpperCamelCase__ ).images lowercase_ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase_ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1e-3 ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = """cpu""" lowercase_ = self.get_dummy_components() lowercase_ = {"""beta_start""": 0.00_085, """beta_end""": 0.012, """beta_schedule""": """scaled_linear"""} lowercase_ = DPMSolverMultistepScheduler(**UpperCamelCase__ ) lowercase_ = DPMSolverMultistepInverseScheduler(**UpperCamelCase__ ) lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_inversion_inputs(UpperCamelCase__ ) lowercase_ = pipe.invert(**UpperCamelCase__ ).images lowercase_ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase_ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1e-3 ) @require_torch_gpu @slow class UpperCamelCase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def UpperCAmelCase__ ( cls : Dict ): '''simple docstring''' lowercase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) lowercase_ = raw_image.convert("""RGB""" ).resize((768, 768) ) lowercase_ = raw_image def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = torch.manual_seed(0 ) lowercase_ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa ) lowercase_ = DDIMScheduler.from_config(pipe.scheduler.config ) lowercase_ = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = """a bowl of fruit""" lowercase_ = """a bowl of pears""" lowercase_ = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCamelCase__ , target_prompt=UpperCamelCase__ , generator=UpperCamelCase__ , ) lowercase_ = pipe.invert( prompt=UpperCamelCase__ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCamelCase__ ).latents lowercase_ = pipe( prompt=UpperCamelCase__ , mask_image=UpperCamelCase__ , image_latents=UpperCamelCase__ , generator=UpperCamelCase__ , negative_prompt=UpperCamelCase__ , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0] lowercase_ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1 def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = torch.manual_seed(0 ) lowercase_ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa ) lowercase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase_ = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = """a bowl of fruit""" lowercase_ = """a bowl of pears""" lowercase_ = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCamelCase__ , target_prompt=UpperCamelCase__ , generator=UpperCamelCase__ , ) lowercase_ = pipe.invert( prompt=UpperCamelCase__ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCamelCase__ , num_inference_steps=25 , ).latents lowercase_ = pipe( prompt=UpperCamelCase__ , mask_image=UpperCamelCase__ , image_latents=UpperCamelCase__ , generator=UpperCamelCase__ , negative_prompt=UpperCamelCase__ , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0] lowercase_ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1
650
0
import copy import random from transformers import CLIPTokenizer class UpperCamelCase__ ( snake_case_ ): def __init__( self : List[Any] , *UpperCamelCase__ : int , **UpperCamelCase__ : List[Any] ): '''simple docstring''' super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) lowercase_ = {} def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : int , *UpperCamelCase__ : Any , **UpperCamelCase__ : Tuple ): '''simple docstring''' lowercase_ = super().add_tokens(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) if num_added_tokens == 0: raise ValueError( F'''The tokenizer already contains the token {placeholder_token}. Please pass a different''' """ `placeholder_token` that is not already in the tokenizer.""" ) def UpperCAmelCase__ ( self : Union[str, Any] , UpperCamelCase__ : Union[str, Any] , *UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any]=1 , **UpperCamelCase__ : Dict ): '''simple docstring''' lowercase_ = [] if num_vec_per_token == 1: self.try_adding_tokens(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) output.append(UpperCamelCase__ ) else: lowercase_ = [] for i in range(UpperCamelCase__ ): lowercase_ = placeholder_token + F'''_{i}''' self.try_adding_tokens(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) output.append(UpperCamelCase__ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F'''The tokenizer already has placeholder token {token} that can get confused with''' F''' {placeholder_token}keep placeholder tokens independent''' ) lowercase_ = output def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : Optional[Any]=1.0 ): '''simple docstring''' if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = [] for i in range(len(UpperCamelCase__ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=UpperCamelCase__ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: lowercase_ = self.token_map[placeholder_token] lowercase_ = tokens[: 1 + int(len(UpperCamelCase__ ) * prop_tokens_to_load )] if vector_shuffle: lowercase_ = copy.copy(UpperCamelCase__ ) random.shuffle(UpperCamelCase__ ) lowercase_ = text.replace(UpperCamelCase__ , """ """.join(UpperCamelCase__ ) ) return text def __call__( self : Optional[Any] , UpperCamelCase__ : Optional[Any] , *UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any]=False , UpperCamelCase__ : Optional[int]=1.0 , **UpperCamelCase__ : List[Any] ): '''simple docstring''' return super().__call__( self.replace_placeholder_tokens_in_text( UpperCamelCase__ , vector_shuffle=UpperCamelCase__ , prop_tokens_to_load=UpperCamelCase__ ) , *UpperCamelCase__ , **UpperCamelCase__ , ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : Optional[Any] , *UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : Optional[int]=1.0 , **UpperCamelCase__ : int ): '''simple docstring''' return super().encode( self.replace_placeholder_tokens_in_text( UpperCamelCase__ , vector_shuffle=UpperCamelCase__ , prop_tokens_to_load=UpperCamelCase__ ) , *UpperCamelCase__ , **UpperCamelCase__ , )
701
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging a = logging.get_logger(__name__) class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : str = ['pixel_values'] def __init__( self : List[Any] , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[int, float] = 1 / 255 , UpperCamelCase__ : bool = True , UpperCamelCase__ : int = 8 , **UpperCamelCase__ : Optional[Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowercase_ = do_rescale lowercase_ = rescale_factor lowercase_ = do_pad lowercase_ = pad_size def UpperCAmelCase__ ( self : int , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : float , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[Any] ): '''simple docstring''' return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None ): '''simple docstring''' lowercase_ , lowercase_ = get_image_size(UpperCamelCase__ ) lowercase_ = (old_height // size + 1) * size - old_height lowercase_ = (old_width // size + 1) * size - old_width return pad(UpperCamelCase__ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[float] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase__ : Dict , ): '''simple docstring''' lowercase_ = do_rescale if do_rescale is not None else self.do_rescale lowercase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ = do_pad if do_pad is not None else self.do_pad lowercase_ = pad_size if pad_size is not None else self.pad_size lowercase_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_rescale: lowercase_ = [self.rescale(image=UpperCamelCase__ , scale=UpperCamelCase__ ) for image in images] if do_pad: lowercase_ = [self.pad(UpperCamelCase__ , size=UpperCamelCase__ ) for image in images] lowercase_ = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] lowercase_ = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
650
0
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ): lowercase_ = coefficient_matrix.shape lowercase_ = constant_matrix.shape if rowsa != colsa: lowercase_ = F'''Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}''' raise ValueError(SCREAMING_SNAKE_CASE_ ) if colsa != 1: lowercase_ = F'''Constant matrix must be nx1 but received {rowsa}x{colsa}''' raise ValueError(SCREAMING_SNAKE_CASE_ ) if rowsa != rowsa: lowercase_ = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " F'''received {rowsa}x{colsa} and {rowsa}x{colsa}''' ) raise ValueError(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) != rowsa: lowercase_ = ( "Number of initial values must be equal to number of rows in coefficient " F'''matrix but received {len(SCREAMING_SNAKE_CASE_ )} and {rowsa}''' ) raise ValueError(SCREAMING_SNAKE_CASE_ ) if iterations <= 0: raise ValueError("""Iterations must be at least 1""" ) lowercase_ = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) lowercase_ = table.shape strictly_diagonally_dominant(SCREAMING_SNAKE_CASE_ ) # Iterates the whole matrix for given number of times for _ in range(SCREAMING_SNAKE_CASE_ ): lowercase_ = [] for row in range(SCREAMING_SNAKE_CASE_ ): lowercase_ = 0 for col in range(SCREAMING_SNAKE_CASE_ ): if col == row: lowercase_ = table[row][col] elif col == cols - 1: lowercase_ = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] lowercase_ = (temp + val) / denom new_val.append(SCREAMING_SNAKE_CASE_ ) lowercase_ = new_val return [float(SCREAMING_SNAKE_CASE_ ) for i in new_val] def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = table.shape lowercase_ = True for i in range(0 , SCREAMING_SNAKE_CASE_ ): lowercase_ = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
702
def UpperCAmelCase_ ( UpperCAmelCase__ ): if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise TypeError("""Input value must be an 'int' type""" ) lowercase_ = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
650
0
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer a = logging.get_logger(__name__) a = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} a = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } a = {'allegro/herbert-base-cased': 5_1_4} a = {} class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : List[str] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Dict = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : str = HerbertTokenizer def __init__( self : int , UpperCamelCase__ : Dict=None , UpperCamelCase__ : str=None , UpperCamelCase__ : str=None , UpperCamelCase__ : List[Any]="<s>" , UpperCamelCase__ : Union[str, Any]="<unk>" , UpperCamelCase__ : Union[str, Any]="<pad>" , UpperCamelCase__ : Union[str, Any]="<mask>" , UpperCamelCase__ : List[str]="</s>" , **UpperCamelCase__ : List[Any] , ): '''simple docstring''' super().__init__( UpperCamelCase__ , UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , cls_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , **UpperCamelCase__ , ) def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' lowercase_ = [self.cls_token_id] lowercase_ = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None , UpperCamelCase__ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase__ )) + [1] return [1] + ([0] * len(UpperCamelCase__ )) + [1] + ([0] * len(UpperCamelCase__ )) + [1] def UpperCAmelCase__ ( self : List[str] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): '''simple docstring''' lowercase_ = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ )
703
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ ): @register_to_config def __init__( self : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : bool = False , ): '''simple docstring''' super().__init__() lowercase_ = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = False lowercase_ = nn.Dropout(p=UpperCamelCase__ ) lowercase_ = TaConfig( vocab_size=UpperCamelCase__ , d_model=UpperCamelCase__ , num_heads=UpperCamelCase__ , d_kv=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ , feed_forward_proj=UpperCamelCase__ , is_decoder=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , ) lowercase_ = nn.ModuleList() for lyr_num in range(UpperCamelCase__ ): lowercase_ = TaBlock(UpperCamelCase__ ) self.encoders.append(UpperCamelCase__ ) lowercase_ = TaLayerNorm(UpperCamelCase__ ) lowercase_ = nn.Dropout(p=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = self.token_embedder(UpperCamelCase__ ) lowercase_ = encoder_input_tokens.shape[1] lowercase_ = torch.arange(UpperCamelCase__ , device=encoder_input_tokens.device ) x += self.position_encoding(UpperCamelCase__ ) lowercase_ = self.dropout_pre(UpperCamelCase__ ) # inverted the attention mask lowercase_ = encoder_input_tokens.size() lowercase_ = self.get_extended_attention_mask(UpperCamelCase__ , UpperCamelCase__ ) for lyr in self.encoders: lowercase_ = lyr(UpperCamelCase__ , UpperCamelCase__ )[0] lowercase_ = self.layer_norm(UpperCamelCase__ ) return self.dropout_post(UpperCamelCase__ ), encoder_inputs_mask
650
0
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class UpperCamelCase__ : def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : List[Any] ): '''simple docstring''' raise NotImplementedError() def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' raise NotImplementedError() class UpperCamelCase__ ( __A ): def __init__( self : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple = False , **UpperCamelCase__ : List[Any] ): '''simple docstring''' lowercase_ = tokenizer lowercase_ = skip_prompt lowercase_ = decode_kwargs # variables used in the streaming process lowercase_ = [] lowercase_ = 0 lowercase_ = True def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("""TextStreamer only supports batch size 1""" ) elif len(value.shape ) > 1: lowercase_ = value[0] if self.skip_prompt and self.next_tokens_are_prompt: lowercase_ = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) lowercase_ = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("""\n""" ): lowercase_ = text[self.print_len :] lowercase_ = [] lowercase_ = 0 # If the last token is a CJK character, we print the characters. elif len(UpperCamelCase__ ) > 0 and self._is_chinese_char(ord(text[-1] ) ): lowercase_ = text[self.print_len :] self.print_len += len(UpperCamelCase__ ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: lowercase_ = text[self.print_len : text.rfind(""" """ ) + 1] self.print_len += len(UpperCamelCase__ ) self.on_finalized_text(UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' if len(self.token_cache ) > 0: lowercase_ = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) lowercase_ = text[self.print_len :] lowercase_ = [] lowercase_ = 0 else: lowercase_ = '' lowercase_ = True self.on_finalized_text(UpperCamelCase__ , stream_end=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : str = False ): '''simple docstring''' print(UpperCamelCase__ , flush=UpperCamelCase__ , end="""""" if not stream_end else None ) def UpperCAmelCase__ ( self : Dict , UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' if ( (cp >= 0X4_e_0_0 and cp <= 0X9_f_f_f) or (cp >= 0X3_4_0_0 and cp <= 0X4_d_b_f) # or (cp >= 0X2_0_0_0_0 and cp <= 0X2_a_6_d_f) # or (cp >= 0X2_a_7_0_0 and cp <= 0X2_b_7_3_f) # or (cp >= 0X2_b_7_4_0 and cp <= 0X2_b_8_1_f) # or (cp >= 0X2_b_8_2_0 and cp <= 0X2_c_e_a_f) # or (cp >= 0Xf_9_0_0 and cp <= 0Xf_a_f_f) or (cp >= 0X2_f_8_0_0 and cp <= 0X2_f_a_1_f) # ): # return True return False class UpperCamelCase__ ( __A ): def __init__( self : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int] = False , UpperCamelCase__ : Union[str, Any] = None , **UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' super().__init__(UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) lowercase_ = Queue() lowercase_ = None lowercase_ = timeout def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Any = False ): '''simple docstring''' self.text_queue.put(UpperCamelCase__ , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self : List[Any] ): '''simple docstring''' return self def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
704
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar a = TypeVar('T') class UpperCamelCase__ ( Generic[T] ): __SCREAMING_SNAKE_CASE : deque[T] # Cache store of keys __SCREAMING_SNAKE_CASE : set[T] # References of the keys in cache __SCREAMING_SNAKE_CASE : int = 10 # Maximum capacity of cache def __init__( self : str , UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = deque() lowercase_ = set() if not n: lowercase_ = sys.maxsize elif n < 0: raise ValueError("""n should be an integer greater than 0.""" ) else: lowercase_ = n def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : T ): '''simple docstring''' if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: lowercase_ = self.dq_store.pop() self.key_reference.remove(UpperCamelCase__ ) else: self.dq_store.remove(UpperCamelCase__ ) self.dq_store.appendleft(UpperCamelCase__ ) self.key_reference.add(UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' for k in self.dq_store: print(UpperCamelCase__ ) def __repr__( self : Optional[Any] ): '''simple docstring''' return F'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() a = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
650
0
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = checkpoint lowercase_ = {} lowercase_ = vae_state_dict["""encoder.conv_in.weight"""] lowercase_ = vae_state_dict["""encoder.conv_in.bias"""] lowercase_ = vae_state_dict["""encoder.conv_out.weight"""] lowercase_ = vae_state_dict["""encoder.conv_out.bias"""] lowercase_ = vae_state_dict["""encoder.norm_out.weight"""] lowercase_ = vae_state_dict["""encoder.norm_out.bias"""] lowercase_ = vae_state_dict["""decoder.conv_in.weight"""] lowercase_ = vae_state_dict["""decoder.conv_in.bias"""] lowercase_ = vae_state_dict["""decoder.conv_out.weight"""] lowercase_ = vae_state_dict["""decoder.conv_out.bias"""] lowercase_ = vae_state_dict["""decoder.norm_out.weight"""] lowercase_ = vae_state_dict["""decoder.norm_out.bias"""] lowercase_ = vae_state_dict["""quant_conv.weight"""] lowercase_ = vae_state_dict["""quant_conv.bias"""] lowercase_ = vae_state_dict["""post_quant_conv.weight"""] lowercase_ = vae_state_dict["""post_quant_conv.bias"""] # Retrieves the keys for the encoder down blocks only lowercase_ = len({""".""".join(layer.split(""".""" )[:3] ) for layer in vae_state_dict if """encoder.down""" in layer} ) lowercase_ = { layer_id: [key for key in vae_state_dict if F'''down.{layer_id}''' in key] for layer_id in range(__snake_case ) } # Retrieves the keys for the decoder up blocks only lowercase_ = len({""".""".join(layer.split(""".""" )[:3] ) for layer in vae_state_dict if """decoder.up""" in layer} ) lowercase_ = { layer_id: [key for key in vae_state_dict if F'''up.{layer_id}''' in key] for layer_id in range(__snake_case ) } for i in range(__snake_case ): lowercase_ = [key for key in down_blocks[i] if F'''down.{i}''' in key and F'''down.{i}.downsample''' not in key] if F'''encoder.down.{i}.downsample.conv.weight''' in vae_state_dict: lowercase_ = vae_state_dict.pop( F'''encoder.down.{i}.downsample.conv.weight''' ) lowercase_ = vae_state_dict.pop( F'''encoder.down.{i}.downsample.conv.bias''' ) lowercase_ = renew_vae_resnet_paths(__snake_case ) lowercase_ = {"""old""": F'''down.{i}.block''', """new""": F'''down_blocks.{i}.resnets'''} assign_to_checkpoint(__snake_case , __snake_case , __snake_case , additional_replacements=[meta_path] , config=__snake_case ) lowercase_ = [key for key in vae_state_dict if """encoder.mid.block""" in key] lowercase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): lowercase_ = [key for key in mid_resnets if F'''encoder.mid.block_{i}''' in key] lowercase_ = renew_vae_resnet_paths(__snake_case ) lowercase_ = {"""old""": F'''mid.block_{i}''', """new""": F'''mid_block.resnets.{i - 1}'''} assign_to_checkpoint(__snake_case , __snake_case , __snake_case , additional_replacements=[meta_path] , config=__snake_case ) lowercase_ = [key for key in vae_state_dict if """encoder.mid.attn""" in key] lowercase_ = renew_vae_attention_paths(__snake_case ) lowercase_ = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""} assign_to_checkpoint(__snake_case , __snake_case , __snake_case , additional_replacements=[meta_path] , config=__snake_case ) conv_attn_to_linear(__snake_case ) for i in range(__snake_case ): lowercase_ = num_up_blocks - 1 - i lowercase_ = [ key for key in up_blocks[block_id] if F'''up.{block_id}''' in key and F'''up.{block_id}.upsample''' not in key ] if F'''decoder.up.{block_id}.upsample.conv.weight''' in vae_state_dict: lowercase_ = vae_state_dict[ F'''decoder.up.{block_id}.upsample.conv.weight''' ] lowercase_ = vae_state_dict[ F'''decoder.up.{block_id}.upsample.conv.bias''' ] lowercase_ = renew_vae_resnet_paths(__snake_case ) lowercase_ = {"""old""": F'''up.{block_id}.block''', """new""": F'''up_blocks.{i}.resnets'''} assign_to_checkpoint(__snake_case , __snake_case , __snake_case , additional_replacements=[meta_path] , config=__snake_case ) lowercase_ = [key for key in vae_state_dict if """decoder.mid.block""" in key] lowercase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): lowercase_ = [key for key in mid_resnets if F'''decoder.mid.block_{i}''' in key] lowercase_ = renew_vae_resnet_paths(__snake_case ) lowercase_ = {"""old""": F'''mid.block_{i}''', """new""": F'''mid_block.resnets.{i - 1}'''} assign_to_checkpoint(__snake_case , __snake_case , __snake_case , additional_replacements=[meta_path] , config=__snake_case ) lowercase_ = [key for key in vae_state_dict if """decoder.mid.attn""" in key] lowercase_ = renew_vae_attention_paths(__snake_case ) lowercase_ = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""} assign_to_checkpoint(__snake_case , __snake_case , __snake_case , additional_replacements=[meta_path] , config=__snake_case ) conv_attn_to_linear(__snake_case ) return new_checkpoint def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , ): # Only support V1 lowercase_ = requests.get( """ https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml""" ) lowercase_ = io.BytesIO(r.content ) lowercase_ = OmegaConf.load(__snake_case ) lowercase_ = 5_1_2 lowercase_ = """cuda""" if torch.cuda.is_available() else """cpu""" if checkpoint_path.endswith("""safetensors""" ): from safetensors import safe_open lowercase_ = {} with safe_open(__snake_case , framework="""pt""" , device="""cpu""" ) as f: for key in f.keys(): lowercase_ = f.get_tensor(__snake_case ) else: lowercase_ = torch.load(__snake_case , map_location=__snake_case )["""state_dict"""] # Convert the VAE model. lowercase_ = create_vae_diffusers_config(__snake_case , image_size=__snake_case ) lowercase_ = custom_convert_ldm_vae_checkpoint(__snake_case , __snake_case ) lowercase_ = AutoencoderKL(**__snake_case ) vae.load_state_dict(__snake_case ) vae.save_pretrained(__snake_case ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument('--vae_pt_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') a = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
705
def UpperCAmelCase_ ( UpperCAmelCase__ ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
650
0
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class UpperCamelCase__ ( __a ): __SCREAMING_SNAKE_CASE : "DiagonalGaussianDistribution" class UpperCamelCase__ ( __a , __a ): __SCREAMING_SNAKE_CASE : Tuple = True @register_to_config def __init__( self : Union[str, Any] , UpperCamelCase__ : int = 3 , UpperCamelCase__ : int = 3 , UpperCamelCase__ : Tuple[str] = ("DownEncoderBlock2D",) , UpperCamelCase__ : Tuple[str] = ("UpDecoderBlock2D",) , UpperCamelCase__ : Tuple[int] = (64,) , UpperCamelCase__ : int = 1 , UpperCamelCase__ : str = "silu" , UpperCamelCase__ : int = 4 , UpperCamelCase__ : int = 32 , UpperCamelCase__ : int = 32 , UpperCamelCase__ : float = 0.18_215 , ): '''simple docstring''' super().__init__() # pass init params to Encoder lowercase_ = Encoder( in_channels=snake_case__ , out_channels=snake_case__ , down_block_types=snake_case__ , block_out_channels=snake_case__ , layers_per_block=snake_case__ , act_fn=snake_case__ , norm_num_groups=snake_case__ , double_z=snake_case__ , ) # pass init params to Decoder lowercase_ = Decoder( in_channels=snake_case__ , out_channels=snake_case__ , up_block_types=snake_case__ , block_out_channels=snake_case__ , layers_per_block=snake_case__ , norm_num_groups=snake_case__ , act_fn=snake_case__ , ) lowercase_ = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) lowercase_ = nn.Convad(snake_case__ , snake_case__ , 1 ) lowercase_ = False lowercase_ = False # only relevant if vae tiling is enabled lowercase_ = self.config.sample_size lowercase_ = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) lowercase_ = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) lowercase_ = 0.25 def UpperCAmelCase__ ( self : int , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int]=False ): '''simple docstring''' if isinstance(snake_case__ , (Encoder, Decoder) ): lowercase_ = value def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : bool = True ): '''simple docstring''' lowercase_ = use_tiling def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' self.enable_tiling(snake_case__ ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = True def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ = {} def fn_recursive_add_processors(UpperCamelCase__ : str , UpperCamelCase__ : torch.nn.Module , UpperCamelCase__ : Dict[str, AttentionProcessor] ): if hasattr(snake_case__ , """set_processor""" ): lowercase_ = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'''{name}.{sub_name}''' , snake_case__ , snake_case__ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(snake_case__ , snake_case__ , snake_case__ ) return processors def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): '''simple docstring''' lowercase_ = len(self.attn_processors.keys() ) if isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) != count: raise ValueError( F'''A dict of processors was passed, but the number of processors {len(snake_case__ )} does not match the''' F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(UpperCamelCase__ : str , UpperCamelCase__ : torch.nn.Module , UpperCamelCase__ : List[Any] ): if hasattr(snake_case__ , """set_processor""" ): if not isinstance(snake_case__ , snake_case__ ): module.set_processor(snake_case__ ) else: module.set_processor(processor.pop(F'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'''{name}.{sub_name}''' , snake_case__ , snake_case__ ) for name, module in self.named_children(): fn_recursive_attn_processor(snake_case__ , snake_case__ , snake_case__ ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def UpperCAmelCase__ ( self : Union[str, Any] , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : bool = True ): '''simple docstring''' if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(snake_case__ , return_dict=snake_case__ ) if self.use_slicing and x.shape[0] > 1: lowercase_ = [self.encoder(snake_case__ ) for x_slice in x.split(1 )] lowercase_ = torch.cat(snake_case__ ) else: lowercase_ = self.encoder(snake_case__ ) lowercase_ = self.quant_conv(snake_case__ ) lowercase_ = DiagonalGaussianDistribution(snake_case__ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=snake_case__ ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : bool = True ): '''simple docstring''' if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(snake_case__ , return_dict=snake_case__ ) lowercase_ = self.post_quant_conv(snake_case__ ) lowercase_ = self.decoder(snake_case__ ) if not return_dict: return (dec,) return DecoderOutput(sample=snake_case__ ) @apply_forward_hook def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : bool = True ): '''simple docstring''' if self.use_slicing and z.shape[0] > 1: lowercase_ = [self._decode(snake_case__ ).sample for z_slice in z.split(1 )] lowercase_ = torch.cat(snake_case__ ) else: lowercase_ = self._decode(snake_case__ ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=snake_case__ ) def UpperCAmelCase__ ( self : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : Any ): '''simple docstring''' lowercase_ = min(a.shape[2] , b.shape[2] , snake_case__ ) for y in range(snake_case__ ): lowercase_ = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def UpperCAmelCase__ ( self : int , UpperCamelCase__ : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] ): '''simple docstring''' lowercase_ = min(a.shape[3] , b.shape[3] , snake_case__ ) for x in range(snake_case__ ): lowercase_ = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : bool = True ): '''simple docstring''' lowercase_ = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) lowercase_ = int(self.tile_latent_min_size * self.tile_overlap_factor ) lowercase_ = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. lowercase_ = [] for i in range(0 , x.shape[2] , snake_case__ ): lowercase_ = [] for j in range(0 , x.shape[3] , snake_case__ ): lowercase_ = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] lowercase_ = self.encoder(snake_case__ ) lowercase_ = self.quant_conv(snake_case__ ) row.append(snake_case__ ) rows.append(snake_case__ ) lowercase_ = [] for i, row in enumerate(snake_case__ ): lowercase_ = [] for j, tile in enumerate(snake_case__ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: lowercase_ = self.blend_v(rows[i - 1][j] , snake_case__ , snake_case__ ) if j > 0: lowercase_ = self.blend_h(row[j - 1] , snake_case__ , snake_case__ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(snake_case__ , dim=3 ) ) lowercase_ = torch.cat(snake_case__ , dim=2 ) lowercase_ = DiagonalGaussianDistribution(snake_case__ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=snake_case__ ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : bool = True ): '''simple docstring''' lowercase_ = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) lowercase_ = int(self.tile_sample_min_size * self.tile_overlap_factor ) lowercase_ = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. lowercase_ = [] for i in range(0 , z.shape[2] , snake_case__ ): lowercase_ = [] for j in range(0 , z.shape[3] , snake_case__ ): lowercase_ = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] lowercase_ = self.post_quant_conv(snake_case__ ) lowercase_ = self.decoder(snake_case__ ) row.append(snake_case__ ) rows.append(snake_case__ ) lowercase_ = [] for i, row in enumerate(snake_case__ ): lowercase_ = [] for j, tile in enumerate(snake_case__ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: lowercase_ = self.blend_v(rows[i - 1][j] , snake_case__ , snake_case__ ) if j > 0: lowercase_ = self.blend_h(row[j - 1] , snake_case__ , snake_case__ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(snake_case__ , dim=3 ) ) lowercase_ = torch.cat(snake_case__ , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=snake_case__ ) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[torch.Generator] = None , ): '''simple docstring''' lowercase_ = sample lowercase_ = self.encode(snake_case__ ).latent_dist if sample_posterior: lowercase_ = posterior.sample(generator=snake_case__ ) else: lowercase_ = posterior.mode() lowercase_ = self.decode(snake_case__ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=snake_case__ )
706
def UpperCAmelCase_ ( UpperCAmelCase__=2_8_1_2_3 ): lowercase_ = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i lowercase_ = set() lowercase_ = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(UpperCAmelCase__ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
650
0
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process a = logging.getLogger(__name__) a = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) a = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowerCamelCase , metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowerCamelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(__lowerCamelCase )} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowerCamelCase , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowerCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowerCamelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowerCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) __SCREAMING_SNAKE_CASE : bool = field( default=__lowerCamelCase , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) __SCREAMING_SNAKE_CASE : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __SCREAMING_SNAKE_CASE : bool = field( default=__lowerCamelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( """--config_overrides can't be used in combination with --config_name or --model_name_or_path""" ) @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowerCamelCase , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowerCamelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field(default=__lowerCamelCase , metadata={'help': 'The input training data file (a text file).'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowerCamelCase , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowerCamelCase , metadata={'help': 'An optional input train ref data file for whole word masking in Chinese.'} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowerCamelCase , metadata={'help': 'An optional input validation ref data file for whole word masking in Chinese.'} , ) __SCREAMING_SNAKE_CASE : bool = field( default=__lowerCamelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=5 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__lowerCamelCase , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated. Default to the max input length of the model.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__lowerCamelCase , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) __SCREAMING_SNAKE_CASE : float = field( default=0.1_5 , metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) __SCREAMING_SNAKE_CASE : bool = field( default=__lowerCamelCase , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' if self.train_file is not None: lowercase_ = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: lowercase_ = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): with open(lowerCAmelCase_ , """r""" , encoding="""utf-8""" ) as f: lowercase_ = [json.loads(lowerCAmelCase_ ) for line in f.read().splitlines() if (len(lowerCAmelCase_ ) > 0 and not line.isspace())] assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) lowercase_ = {c: dataset[c] for c in dataset.column_names} lowercase_ = refs return Dataset.from_dict(lowerCAmelCase_ ) def UpperCAmelCase_ ( ): lowercase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase_ = parser.parse_args_into_dataclasses() # Detecting last checkpoint. lowercase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , lowerCAmelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowercase_ = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): lowercase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''train[:{data_args.validation_split_percentage}%]''' , ) lowercase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''train[{data_args.validation_split_percentage}%:]''' , ) else: lowercase_ = {} if data_args.train_file is not None: lowercase_ = data_args.train_file if data_args.validation_file is not None: lowercase_ = data_args.validation_file lowercase_ = data_args.train_file.split(""".""" )[-1] if extension == "txt": lowercase_ = "text" lowercase_ = load_dataset(lowerCAmelCase_ , data_files=lowerCAmelCase_ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase_ = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name: lowercase_ = AutoConfig.from_pretrained(model_args.config_name , **lowerCAmelCase_ ) elif model_args.model_name_or_path: lowercase_ = AutoConfig.from_pretrained(model_args.model_name_or_path , **lowerCAmelCase_ ) else: lowercase_ = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) lowercase_ = { "cache_dir": model_args.cache_dir, "use_fast": model_args.use_fast_tokenizer, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.tokenizer_name: lowercase_ = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **lowerCAmelCase_ ) elif model_args.model_name_or_path: lowercase_ = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **lowerCAmelCase_ ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported by this script.""" """You can do it from another script, save it, and load it from here, using --tokenizer_name.""" ) if model_args.model_name_or_path: lowercase_ = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) lowercase_ = AutoModelForMaskedLM.from_config(lowerCAmelCase_ ) model.resize_token_embeddings(len(lowerCAmelCase_ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: lowercase_ = datasets["train"].column_names else: lowercase_ = datasets["validation"].column_names lowercase_ = "text" if "text" in column_names else column_names[0] lowercase_ = "max_length" if data_args.pad_to_max_length else False def tokenize_function(UpperCAmelCase__ ): # Remove empty lines lowercase_ = [line for line in examples["text"] if len(lowerCAmelCase_ ) > 0 and not line.isspace()] return tokenizer(examples["""text"""] , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=data_args.max_seq_length ) lowercase_ = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: lowercase_ = add_chinese_references(tokenized_datasets["""train"""] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: lowercase_ = add_chinese_references( tokenized_datasets["""validation"""] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer lowercase_ = data_args.train_ref_file or data_args.validation_ref_file if has_ref: lowercase_ = False # Data collator # This one will take care of randomly masking the tokens. lowercase_ = DataCollatorForWholeWordMask(tokenizer=lowerCAmelCase_ , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer lowercase_ = Trainer( model=lowerCAmelCase_ , args=lowerCAmelCase_ , train_dataset=tokenized_datasets["""train"""] if training_args.do_train else None , eval_dataset=tokenized_datasets["""validation"""] if training_args.do_eval else None , tokenizer=lowerCAmelCase_ , data_collator=lowerCAmelCase_ , ) # Training if training_args.do_train: if last_checkpoint is not None: lowercase_ = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): lowercase_ = model_args.model_name_or_path else: lowercase_ = None lowercase_ = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() # Saves the tokenizer too for easy upload lowercase_ = os.path.join(training_args.output_dir , """train_results.txt""" ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_ , """w""" ) as writer: logger.info("""***** Train results *****""" ) for key, value in sorted(train_result.metrics.items() ): logger.info(F''' {key} = {value}''' ) writer.write(F'''{key} = {value}\n''' ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # Evaluation lowercase_ = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowercase_ = trainer.evaluate() lowercase_ = math.exp(eval_output["""eval_loss"""] ) lowercase_ = perplexity lowercase_ = os.path.join(training_args.output_dir , """eval_results_mlm_wwm.txt""" ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in sorted(results.items() ): logger.info(F''' {key} = {value}''' ) writer.write(F'''{key} = {value}\n''' ) return results def UpperCAmelCase_ ( UpperCAmelCase__ ): main() if __name__ == "__main__": main()
707
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase__ : def __init__( self : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str]=13 , UpperCamelCase__ : str=7 , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : str=False , UpperCamelCase__ : str=True , UpperCamelCase__ : Union[str, Any]=99 , UpperCamelCase__ : Dict=32 , UpperCamelCase__ : Union[str, Any]=5 , UpperCamelCase__ : Tuple=4 , UpperCamelCase__ : Dict=37 , UpperCamelCase__ : Any="gelu" , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Tuple=512 , UpperCamelCase__ : Union[str, Any]=16 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : int=0.02 , UpperCamelCase__ : int=3 , UpperCamelCase__ : Optional[Any]=4 , UpperCamelCase__ : int=None , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_input_mask lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_labels lowercase_ = num_choices lowercase_ = scope def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ = None if self.use_input_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ = None if self.use_token_type_ids: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ = None lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , use_stable_embedding=UpperCamelCase__ , ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] ): '''simple docstring''' lowercase_ = OpenLlamaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , ): '''simple docstring''' lowercase_ = True lowercase_ = OpenLlamaModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , ) lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , ) lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , ): '''simple docstring''' lowercase_ = OpenLlamaForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : Tuple , ): '''simple docstring''' lowercase_ = True lowercase_ = True lowercase_ = OpenLlamaForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # first forward pass lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , use_cache=UpperCamelCase__ , ) lowercase_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowercase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase_ = torch.cat([input_mask, next_mask] , dim=-1 ) lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , )["""hidden_states"""][0] lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , past_key_values=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , )["""hidden_states"""][0] # select random slice lowercase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase_ = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : List[str] = (OpenLlamaForCausalLM,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : List[Any] = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Optional[int] = False def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = OpenLlamaModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase_ = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = input_dict["""input_ids"""] lowercase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowercase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase_ = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = """single_label_classification""" lowercase_ = input_dict["""input_ids"""] lowercase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowercase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase_ = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = """multi_label_classification""" lowercase_ = input_dict["""input_ids"""] lowercase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowercase_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowercase_ = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = ids_tensor([1, 10] , config.vocab_size ) lowercase_ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase_ = OpenLlamaModel(UpperCamelCase__ ) original_model.to(UpperCamelCase__ ) original_model.eval() lowercase_ = original_model(UpperCamelCase__ ).last_hidden_state lowercase_ = original_model(UpperCamelCase__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase_ = {"""type""": scaling_type, """factor""": 10.0} lowercase_ = OpenLlamaModel(UpperCamelCase__ ) scaled_model.to(UpperCamelCase__ ) scaled_model.eval() lowercase_ = scaled_model(UpperCamelCase__ ).last_hidden_state lowercase_ = scaled_model(UpperCamelCase__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) )
650
0
a = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' a = [{'type': 'code', 'content': INSTALL_CONTENT}] a = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
708
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: a = False a = logging.get_logger(__name__) a = 'ybelkada/fonts' def UpperCAmelCase_ ( ): if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F'''You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ''' """Pix2StructImageProcessor. Please upgrade torch.""" ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): requires_backends(UpperCAmelCase__ , ["""torch"""] ) _check_torch_version() lowercase_ = image_tensor.unsqueeze(0 ) lowercase_ = torch.nn.functional.unfold(UpperCAmelCase__ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) lowercase_ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , UpperCAmelCase__ , UpperCAmelCase__ , -1 ) lowercase_ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ = 3_6 , UpperCAmelCase__ = "black" , UpperCAmelCase__ = "white" , UpperCAmelCase__ = 5 , UpperCAmelCase__ = 5 , UpperCAmelCase__ = 5 , UpperCAmelCase__ = 5 , UpperCAmelCase__ = None , UpperCAmelCase__ = None , ): requires_backends(UpperCAmelCase__ , """vision""" ) # Add new lines so that each line is no more than 80 characters. lowercase_ = textwrap.TextWrapper(width=8_0 ) lowercase_ = wrapper.wrap(text=UpperCAmelCase__ ) lowercase_ = """\n""".join(UpperCAmelCase__ ) if font_bytes is not None and font_path is None: lowercase_ = io.BytesIO(UpperCAmelCase__ ) elif font_path is not None: lowercase_ = font_path else: lowercase_ = hf_hub_download(UpperCAmelCase__ , """Arial.TTF""" ) lowercase_ = ImageFont.truetype(UpperCAmelCase__ , encoding="""UTF-8""" , size=UpperCAmelCase__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. lowercase_ = ImageDraw.Draw(Image.new("""RGB""" , (1, 1) , UpperCAmelCase__ ) ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = temp_draw.textbbox((0, 0) , UpperCAmelCase__ , UpperCAmelCase__ ) # Create the actual image with a bit of padding around the text. lowercase_ = text_width + left_padding + right_padding lowercase_ = text_height + top_padding + bottom_padding lowercase_ = Image.new("""RGB""" , (image_width, image_height) , UpperCAmelCase__ ) lowercase_ = ImageDraw.Draw(UpperCAmelCase__ ) draw.text(xy=(left_padding, top_padding) , text=UpperCAmelCase__ , fill=UpperCAmelCase__ , font=UpperCAmelCase__ ) return image def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ): requires_backends(UpperCAmelCase__ , """vision""" ) # Convert to PIL image if necessary lowercase_ = to_pil_image(UpperCAmelCase__ ) lowercase_ = render_text(UpperCAmelCase__ , **UpperCAmelCase__ ) lowercase_ = max(header_image.width , image.width ) lowercase_ = int(image.height * (new_width / image.width) ) lowercase_ = int(header_image.height * (new_width / header_image.width) ) lowercase_ = Image.new("""RGB""" , (new_width, new_height + new_header_height) , """white""" ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary lowercase_ = to_numpy_array(UpperCAmelCase__ ) if infer_channel_dimension_format(UpperCAmelCase__ ) == ChannelDimension.LAST: lowercase_ = to_channel_dimension_format(UpperCAmelCase__ , ChannelDimension.LAST ) return new_image class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Tuple = ['flattened_patches'] def __init__( self : str , UpperCamelCase__ : bool = True , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : int = 2_048 , UpperCamelCase__ : bool = False , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowercase_ = patch_size if patch_size is not None else {"""height""": 16, """width""": 16} lowercase_ = do_normalize lowercase_ = do_convert_rgb lowercase_ = max_patches lowercase_ = is_vqa def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : int , UpperCamelCase__ : dict , **UpperCamelCase__ : Optional[int] ): '''simple docstring''' requires_backends(self.extract_flattened_patches , """torch""" ) _check_torch_version() # convert to torch lowercase_ = to_channel_dimension_format(UpperCamelCase__ , ChannelDimension.FIRST ) lowercase_ = torch.from_numpy(UpperCamelCase__ ) lowercase_ , lowercase_ = patch_size["""height"""], patch_size["""width"""] lowercase_ , lowercase_ = get_image_size(UpperCamelCase__ ) # maximize scale s.t. lowercase_ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) lowercase_ = max(min(math.floor(scale * image_height / patch_height ) , UpperCamelCase__ ) , 1 ) lowercase_ = max(min(math.floor(scale * image_width / patch_width ) , UpperCamelCase__ ) , 1 ) lowercase_ = max(num_feasible_rows * patch_height , 1 ) lowercase_ = max(num_feasible_cols * patch_width , 1 ) lowercase_ = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="""bilinear""" , align_corners=UpperCamelCase__ , antialias=UpperCamelCase__ , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] lowercase_ = torch_extract_patches(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = patches.shape lowercase_ = patches_shape[1] lowercase_ = patches_shape[2] lowercase_ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] lowercase_ = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] lowercase_ = torch.arange(UpperCamelCase__ ).reshape([rows, 1] ).repeat(1 , UpperCamelCase__ ).reshape([rows * columns, 1] ) lowercase_ = torch.arange(UpperCamelCase__ ).reshape([1, columns] ).repeat(UpperCamelCase__ , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] lowercase_ = row_ids.to(torch.floataa ) lowercase_ = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] lowercase_ = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] lowercase_ = torch.nn.functional.pad(UpperCamelCase__ , [0, 0, 0, max_patches - (rows * columns)] ).float() lowercase_ = to_numpy_array(UpperCamelCase__ ) return result def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Dict ): '''simple docstring''' if image.dtype == np.uinta: lowercase_ = image.astype(np.floataa ) # take mean across the whole `image` lowercase_ = np.mean(UpperCamelCase__ ) lowercase_ = np.std(UpperCamelCase__ ) lowercase_ = max(UpperCamelCase__ , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase__ : Union[str, Any] , ): '''simple docstring''' lowercase_ = do_normalize if do_normalize is not None else self.do_normalize lowercase_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase_ = patch_size if patch_size is not None else self.patch_size lowercase_ = max_patches if max_patches is not None else self.max_patches lowercase_ = self.is_vqa if kwargs.get("""data_format""" , UpperCamelCase__ ) is not None: raise ValueError("""data_format is not an accepted input as the outputs are """ ) lowercase_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase_ = [convert_to_rgb(UpperCamelCase__ ) for image in images] # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(UpperCamelCase__ ) for image in images] if is_vqa: if header_text is None: raise ValueError("""A header text must be provided for VQA models.""" ) lowercase_ = kwargs.pop("""font_bytes""" , UpperCamelCase__ ) lowercase_ = kwargs.pop("""font_path""" , UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = [header_text] * len(UpperCamelCase__ ) lowercase_ = [ render_header(UpperCamelCase__ , header_text[i] , font_bytes=UpperCamelCase__ , font_path=UpperCamelCase__ ) for i, image in enumerate(UpperCamelCase__ ) ] if do_normalize: lowercase_ = [self.normalize(image=UpperCamelCase__ ) for image in images] # convert to torch tensor and permute lowercase_ = [ self.extract_flattened_patches(image=UpperCamelCase__ , max_patches=UpperCamelCase__ , patch_size=UpperCamelCase__ ) for image in images ] # create attention mask in numpy lowercase_ = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] lowercase_ = BatchFeature( data={"""flattened_patches""": images, """attention_mask""": attention_masks} , tensor_type=UpperCamelCase__ ) return encoded_outputs
650
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a = { 'configuration_informer': [ 'INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'InformerForPrediction', 'InformerModel', 'InformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
709
import cva import numpy as np class UpperCamelCase__ : def __init__( self : List[str] , UpperCamelCase__ : float , UpperCamelCase__ : int ): '''simple docstring''' if k in (0.04, 0.06): lowercase_ = k lowercase_ = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : Optional[int] ): '''simple docstring''' return str(self.k ) def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = cva.imread(UpperCamelCase__ , 0 ) lowercase_ , lowercase_ = img.shape lowercase_ = [] lowercase_ = img.copy() lowercase_ = cva.cvtColor(UpperCamelCase__ , cva.COLOR_GRAY2RGB ) lowercase_ , lowercase_ = np.gradient(UpperCamelCase__ ) lowercase_ = dx**2 lowercase_ = dy**2 lowercase_ = dx * dy lowercase_ = 0.04 lowercase_ = self.window_size // 2 for y in range(UpperCamelCase__ , h - offset ): for x in range(UpperCamelCase__ , w - offset ): lowercase_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase_ = (wxx * wyy) - (wxy**2) lowercase_ = wxx + wyy lowercase_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": a = HarrisCorner(0.04, 3) a , a = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
650
0
from typing import List import numpy as np def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = {key: len(A_ ) for key, value in gen_kwargs.items() if isinstance(A_ , A_ )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( """Sharding is ambiguous for this dataset: """ + """we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n""" + """\n""".join(F'''\t- key {key} has length {length}''' for key, length in lists_lengths.items() ) + """\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, """ + """and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.""" ) ) lowercase_ = max(lists_lengths.values() , default=0 ) return max(1 , A_ ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = [] for group_idx in range(A_ ): lowercase_ = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break lowercase_ = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 lowercase_ = range(A_ , start + num_shards_to_add ) shards_indices_per_group.append(A_ ) return shards_indices_per_group def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = _number_of_shards_in_gen_kwargs(A_ ) if num_shards == 1: return [dict(A_ )] else: lowercase_ = _distribute_shards(num_shards=A_ , max_num_jobs=A_ ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(A_ , A_ ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(A_ ) ) ] def UpperCAmelCase_ ( UpperCAmelCase__ ): return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , A_ ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = {len(A_ ) for value in gen_kwargs.values() if isinstance(A_ , A_ )} lowercase_ = {} for size in list_sizes: lowercase_ = list(range(A_ ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes lowercase_ = dict(A_ ) for key, value in shuffled_kwargs.items(): if isinstance(A_ , A_ ): lowercase_ = [value[i] for i in indices_per_size[len(A_ )]] return shuffled_kwargs
710
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): a = { 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: a = { 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = (images / 2 + 0.5).clamp(0 , 1 ) lowercase_ = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowercase_ = numpy_to_pil(UpperCAmelCase__ ) return images def UpperCAmelCase_ ( UpperCAmelCase__ ): if images.ndim == 3: lowercase_ = images[None, ...] lowercase_ = (images * 2_5_5).round().astype("""uint8""" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images lowercase_ = [Image.fromarray(image.squeeze() , mode="""L""" ) for image in images] else: lowercase_ = [Image.fromarray(UpperCAmelCase__ ) for image in images] return pil_images
650
0
def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = [] lowercase_ = [] lowercase_ = { '^': 3, '*': 2, '/': 2, '%': 2, '+': 1, '-': 1, } # Priority of each operator lowercase_ = len(UpperCAmelCase__ ) if (len(UpperCAmelCase__ ) > 7) else 7 # Print table header for output print( """Symbol""".center(8 ) , """Stack""".center(UpperCAmelCase__ ) , """Postfix""".center(UpperCAmelCase__ ) , sep=""" | """ , ) print("""-""" * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(UpperCAmelCase__ ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(UpperCAmelCase__ ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(UpperCAmelCase__ ) == 0: stack.append(UpperCAmelCase__ ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(UpperCAmelCase__ ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(UpperCAmelCase__ ) # push x to stack print( x.center(8 ) , ("""""".join(UpperCAmelCase__ )).ljust(UpperCAmelCase__ ) , ("""""".join(UpperCAmelCase__ )).ljust(UpperCAmelCase__ ) , sep=""" | """ , ) # Output in tabular format while len(UpperCAmelCase__ ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( """ """.center(8 ) , ("""""".join(UpperCAmelCase__ )).ljust(UpperCAmelCase__ ) , ("""""".join(UpperCAmelCase__ )).ljust(UpperCAmelCase__ ) , sep=""" | """ , ) # Output in tabular format return "".join(UpperCAmelCase__ ) # return Postfix as str def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = list(infix[::-1] ) # reverse the infix equation for i in range(len(UpperCAmelCase__ ) ): if infix[i] == "(": lowercase_ = ')' # change "(" to ")" elif infix[i] == ")": lowercase_ = '(' # change ")" to "(" return (infix_2_postfix("""""".join(UpperCAmelCase__ ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": a = input('\nEnter an Infix Equation = ') # Input an Infix equation a = ''''''.join(Infix.split()) # Remove spaces from the input print('\n\t', Infix, '(Infix) -> ', infix_2_prefix(Infix), '(Prefix)')
711
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : str = (UnCLIPScheduler,) def UpperCAmelCase__ ( self : int , **UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = { """num_train_timesteps""": 1_000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**UpperCamelCase__ ) return config def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=UpperCamelCase__ , prev_timestep=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config(variance_type="""fixed_small_log""" ) lowercase_ = scheduler_class(**UpperCamelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1e-5 def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config(variance_type="""learned_range""" ) lowercase_ = scheduler_class(**UpperCamelCase__ ) lowercase_ = 0.5 assert scheduler._get_variance(1 , predicted_variance=UpperCamelCase__ ) - -10.1_712_790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=UpperCamelCase__ ) - -5.7_998_052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=UpperCamelCase__ ) - -0.0_010_011 < 1e-5 def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**UpperCamelCase__ ) lowercase_ = scheduler.timesteps lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter lowercase_ = torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase__ ): # 1. predict noise residual lowercase_ = model(UpperCamelCase__ , UpperCamelCase__ ) # 2. predict previous mean of sample x_t-1 lowercase_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample lowercase_ = pred_prev_sample lowercase_ = torch.sum(torch.abs(UpperCamelCase__ ) ) lowercase_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1e-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1e-3 def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(25 ) lowercase_ = scheduler.timesteps lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter lowercase_ = torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase__ ): # 1. predict noise residual lowercase_ = model(UpperCamelCase__ , UpperCamelCase__ ) if i + 1 == timesteps.shape[0]: lowercase_ = None else: lowercase_ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 lowercase_ = scheduler.step( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , prev_timestep=UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample lowercase_ = pred_prev_sample lowercase_ = torch.sum(torch.abs(UpperCamelCase__ ) ) lowercase_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1e-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1e-3 def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' pass def UpperCAmelCase__ ( self : int ): '''simple docstring''' pass
650
0
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class UpperCamelCase__ ( unittest.TestCase ): def __init__( self : int , UpperCamelCase__ : str , UpperCamelCase__ : Any=2 , UpperCamelCase__ : Tuple=56 , UpperCamelCase__ : str=True , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : str=True , UpperCamelCase__ : str=99 , UpperCamelCase__ : int=32 , UpperCamelCase__ : Tuple=2 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : Any=7 , UpperCamelCase__ : List[Any]="gelu_new" , UpperCamelCase__ : str=0.1 , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : Union[str, Any]=512 , UpperCamelCase__ : int=16 , UpperCamelCase__ : Tuple=2 , UpperCamelCase__ : str=0.02 , UpperCamelCase__ : str=4 , UpperCamelCase__ : Dict="block_sparse" , UpperCamelCase__ : Dict=True , UpperCamelCase__ : Union[str, Any]=False , UpperCamelCase__ : Optional[int]=2 , UpperCamelCase__ : Union[str, Any]=3 , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_attention_mask lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_choices lowercase_ = rescale_embeddings lowercase_ = attention_type lowercase_ = use_bias lowercase_ = block_size lowercase_ = num_random_blocks def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ = None if self.use_attention_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ = None if self.use_token_type_ids: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ , lowercase_ = config_and_inputs lowercase_ = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask, } return config, inputs_dict @require_flax class UpperCamelCase__ ( __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase__ ( self : Any ): '''simple docstring''' super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase__ ( self : str ): '''simple docstring''' super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' super().test_hidden_states_output() @slow def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase_ = model_class_name.from_pretrained("""google/bigbird-roberta-base""" ) self.assertIsNotNone(__a ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase_ = self._prepare_for_class(__a , __a ) lowercase_ = model_class(__a ) @jax.jit def model_jitted(UpperCamelCase__ : List[str] , UpperCamelCase__ : Any=None , **UpperCamelCase__ : Any ): return model(input_ids=__a , attention_mask=__a , **__a ) with self.subTest("""JIT Enabled""" ): lowercase_ = model_jitted(**__a ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): lowercase_ = model_jitted(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) ) for jitted_output, output in zip(__a , __a ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase__ ( self : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict=1e-5 , UpperCamelCase__ : str="outputs" , UpperCamelCase__ : int=None ): '''simple docstring''' if name.startswith("""outputs.attentions""" ): return else: super().check_pt_flax_outputs(__a , __a , __a , __a , __a , __a )
712
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') a = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) a = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : Optional[str] = field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field(default=__magic_name__ , metadata={'help': 'A folder containing the training data.'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field(default=__magic_name__ , metadata={'help': 'A folder containing the validation data.'} ) __SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.1_5 , metadata={'help': 'Percent to split off of train for validation.'} ) __SCREAMING_SNAKE_CASE : int = field(default=32 , metadata={'help': 'The size of the square patches to use for masking.'} ) __SCREAMING_SNAKE_CASE : float = field( default=0.6 , metadata={'help': 'Percentage of patches to mask.'} , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = {} if self.train_dir is not None: lowercase_ = self.train_dir if self.validation_dir is not None: lowercase_ = self.validation_dir lowercase_ = data_files if data_files else None @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : str = field( default=__magic_name__ , metadata={ 'help': ( 'The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a ' 'checkpoint identifier on the hub. ' 'Don\'t set if you want to train a model from scratch.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(__magic_name__ )} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'} , ) __SCREAMING_SNAKE_CASE : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __SCREAMING_SNAKE_CASE : str = field(default=__magic_name__ , metadata={'help': 'Name or path of preprocessor config.'} ) __SCREAMING_SNAKE_CASE : bool = field( default=__magic_name__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'The size (resolution) of each image. If not specified, will use `image_size` of the configuration.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={'help': 'Stride to use for the encoder.'} , ) class UpperCamelCase__ : def __init__( self : Dict , UpperCamelCase__ : List[Any]=192 , UpperCamelCase__ : Tuple=32 , UpperCamelCase__ : Dict=4 , UpperCamelCase__ : str=0.6 ): '''simple docstring''' lowercase_ = input_size lowercase_ = mask_patch_size lowercase_ = model_patch_size lowercase_ = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError("""Input size must be divisible by mask patch size""" ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError("""Mask patch size must be divisible by model patch size""" ) lowercase_ = self.input_size // self.mask_patch_size lowercase_ = self.mask_patch_size // self.model_patch_size lowercase_ = self.rand_size**2 lowercase_ = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self : int ): '''simple docstring''' lowercase_ = np.random.permutation(self.token_count )[: self.mask_count] lowercase_ = np.zeros(self.token_count , dtype=UpperCamelCase__ ) lowercase_ = 1 lowercase_ = mask.reshape((self.rand_size, self.rand_size) ) lowercase_ = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = torch.stack([example["""pixel_values"""] for example in examples] ) lowercase_ = torch.stack([example["""mask"""] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def UpperCAmelCase_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase_ , lowercase_ , lowercase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase_ , lowercase_ , lowercase_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mim""" , UpperCAmelCase__ , UpperCAmelCase__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase_ = training_args.get_process_log_level() logger.setLevel(UpperCAmelCase__ ) transformers.utils.logging.set_verbosity(UpperCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. lowercase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. lowercase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowercase_ = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , UpperCAmelCase__ ) and data_args.train_val_split > 0.0: lowercase_ = ds["""train"""].train_test_split(data_args.train_val_split ) lowercase_ = split["""train"""] lowercase_ = split["""test"""] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase_ = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name_or_path: lowercase_ = AutoConfig.from_pretrained(model_args.config_name_or_path , **UpperCAmelCase__ ) elif model_args.model_name_or_path: lowercase_ = AutoConfig.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase__ ) else: lowercase_ = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(UpperCAmelCase__ , """decoder_type""" ): lowercase_ = """simmim""" # adapt config lowercase_ = model_args.image_size if model_args.image_size is not None else config.image_size lowercase_ = model_args.patch_size if model_args.patch_size is not None else config.patch_size lowercase_ = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { """image_size""": model_args.image_size, """patch_size""": model_args.patch_size, """encoder_stride""": model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: lowercase_ = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **UpperCAmelCase__ ) elif model_args.model_name_or_path: lowercase_ = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase__ ) else: lowercase_ = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } lowercase_ = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: lowercase_ = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) lowercase_ = AutoModelForMaskedImageModeling.from_config(UpperCAmelCase__ ) if training_args.do_train: lowercase_ = ds["""train"""].column_names else: lowercase_ = ds["""validation"""].column_names if data_args.image_column_name is not None: lowercase_ = data_args.image_column_name elif "image" in column_names: lowercase_ = """image""" elif "img" in column_names: lowercase_ = """img""" else: lowercase_ = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py lowercase_ = Compose( [ Lambda(lambda UpperCAmelCase__ : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator lowercase_ = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(UpperCAmelCase__ ): lowercase_ = [transforms(UpperCAmelCase__ ) for image in examples[image_column_name]] lowercase_ = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: lowercase_ = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(UpperCAmelCase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: lowercase_ = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(UpperCAmelCase__ ) # Initialize our trainer lowercase_ = Trainer( model=UpperCAmelCase__ , args=UpperCAmelCase__ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=UpperCAmelCase__ , data_collator=UpperCAmelCase__ , ) # Training if training_args.do_train: lowercase_ = None if training_args.resume_from_checkpoint is not None: lowercase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase_ = last_checkpoint lowercase_ = trainer.train(resume_from_checkpoint=UpperCAmelCase__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase_ = trainer.evaluate() trainer.log_metrics("""eval""" , UpperCAmelCase__ ) trainer.save_metrics("""eval""" , UpperCAmelCase__ ) # Write model card and (optionally) push to hub lowercase_ = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """masked-image-modeling""", """dataset""": data_args.dataset_name, """tags""": ["""masked-image-modeling"""], } if training_args.push_to_hub: trainer.push_to_hub(**UpperCAmelCase__ ) else: trainer.create_model_card(**UpperCAmelCase__ ) if __name__ == "__main__": main()
650
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { 'studio-ousia/luke-base': 'https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json', 'studio-ousia/luke-large': 'https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json', } class UpperCamelCase__ ( lowercase_ ): __SCREAMING_SNAKE_CASE : Any = 'luke' def __init__( self : str , UpperCamelCase__ : Tuple=50_267 , UpperCamelCase__ : Union[str, Any]=500_000 , UpperCamelCase__ : int=768 , UpperCamelCase__ : Union[str, Any]=256 , UpperCamelCase__ : Union[str, Any]=12 , UpperCamelCase__ : Tuple=12 , UpperCamelCase__ : List[Any]=3_072 , UpperCamelCase__ : Any="gelu" , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : Any=512 , UpperCamelCase__ : Union[str, Any]=2 , UpperCamelCase__ : Optional[int]=0.02 , UpperCamelCase__ : Optional[Any]=1e-12 , UpperCamelCase__ : Any=True , UpperCamelCase__ : Dict=None , UpperCamelCase__ : List[Any]=1 , UpperCamelCase__ : Any=0 , UpperCamelCase__ : str=2 , **UpperCamelCase__ : int , ): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) lowercase_ = vocab_size lowercase_ = entity_vocab_size lowercase_ = hidden_size lowercase_ = entity_emb_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = hidden_act lowercase_ = intermediate_size lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = use_entity_aware_attention lowercase_ = classifier_dropout
713
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging a = logging.get_logger(__name__) class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : List[Any] = ['pixel_values'] def __init__( self : List[str] , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[int, float] = 1 / 255 , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **UpperCamelCase__ : Dict , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowercase_ = size if size is not None else {"""shortest_edge""": 224} lowercase_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) lowercase_ = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} lowercase_ = get_size_dict(UpperCamelCase__ , param_name="""crop_size""" ) lowercase_ = do_resize lowercase_ = size lowercase_ = resample lowercase_ = do_center_crop lowercase_ = crop_size lowercase_ = do_rescale lowercase_ = rescale_factor lowercase_ = do_normalize lowercase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase__ ( self : int , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' lowercase_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: lowercase_ = int((256 / 224) * size["""shortest_edge"""] ) lowercase_ = get_resize_output_image_size(UpperCamelCase__ , size=UpperCamelCase__ , default_to_square=UpperCamelCase__ ) lowercase_ = {"""height""": output_size[0], """width""": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( UpperCamelCase__ , size=(size_dict["""height"""], size_dict["""width"""]) , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : str , ): '''simple docstring''' lowercase_ = get_size_dict(UpperCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(UpperCamelCase__ , size=(size["""height"""], size["""width"""]) , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[int, float] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : str , ): '''simple docstring''' return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[str] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : Dict , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : PILImageResampling = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[float] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = None , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = None , UpperCamelCase__ : Optional[TensorType] = None , UpperCamelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' lowercase_ = do_resize if do_resize is not None else self.do_resize lowercase_ = resample if resample is not None else self.resample lowercase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase_ = do_rescale if do_rescale is not None else self.do_rescale lowercase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ = do_normalize if do_normalize is not None else self.do_normalize lowercase_ = image_mean if image_mean is not None else self.image_mean lowercase_ = image_std if image_std is not None else self.image_std lowercase_ = size if size is not None else self.size lowercase_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) lowercase_ = crop_size if crop_size is not None else self.crop_size lowercase_ = get_size_dict(UpperCamelCase__ , param_name="""crop_size""" ) lowercase_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_resize: lowercase_ = [self.resize(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for image in images] if do_center_crop: lowercase_ = [self.center_crop(UpperCamelCase__ , UpperCamelCase__ ) for image in images] if do_rescale: lowercase_ = [self.rescale(UpperCamelCase__ , UpperCamelCase__ ) for image in images] if do_normalize: lowercase_ = [self.normalize(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for image in images] lowercase_ = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] lowercase_ = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
650
0
'''simple docstring''' import os from collections.abc import Iterator def UpperCAmelCase_ ( UpperCAmelCase__ = "." ): for dir_path, dir_names, filenames in os.walk(A__ ): lowercase_ = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(A__ )[1] in (".py", ".ipynb"): yield os.path.join(A__ , A__ ).lstrip("""./""" ) def UpperCAmelCase_ ( UpperCAmelCase__ ): return F'''{i * " "}*''' if i else "\n##" def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(A__ ) or old_parts[i] != new_part) and new_part: print(F'''{md_prefix(A__ )} {new_part.replace("_" , " " ).title()}''' ) return new_path def UpperCAmelCase_ ( UpperCAmelCase__ = "." ): lowercase_ = """""" for filepath in sorted(good_file_paths(A__ ) ): lowercase_ , lowercase_ = os.path.split(A__ ) if filepath != old_path: lowercase_ = print_path(A__ , A__ ) lowercase_ = (filepath.count(os.sep ) + 1) if filepath else 0 lowercase_ = F'''{filepath}/{filename}'''.replace(""" """ , """%20""" ) lowercase_ = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0] print(F'''{md_prefix(A__ )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md('.')
714
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) a = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
650
0
def UpperCAmelCase_ ( UpperCAmelCase__ ): return str(lowerCamelCase__ ) == str(lowerCamelCase__ )[::-1] def UpperCAmelCase_ ( UpperCAmelCase__ ): return int(lowerCamelCase__ ) + int(str(lowerCamelCase__ )[::-1] ) def UpperCAmelCase_ ( UpperCAmelCase__ = 1_0_0_0_0 ): lowercase_ = [] for num in range(1 , lowerCamelCase__ ): lowercase_ = 0 lowercase_ = num while iterations < 5_0: lowercase_ = sum_reverse(lowerCamelCase__ ) iterations += 1 if is_palindrome(lowerCamelCase__ ): break else: lychrel_nums.append(lowerCamelCase__ ) return len(lowerCamelCase__ ) if __name__ == "__main__": print(F'''{solution() = }''')
715
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() a = logging.get_logger(__name__) a = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } a = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): for attribute in key.split(""".""" ): lowercase_ = getattr(UpperCAmelCase__ , UpperCAmelCase__ ) if weight_type is not None: lowercase_ = getattr(UpperCAmelCase__ , UpperCAmelCase__ ).shape else: lowercase_ = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase_ = value elif weight_type == "weight_g": lowercase_ = value elif weight_type == "weight_v": lowercase_ = value elif weight_type == "bias": lowercase_ = value else: lowercase_ = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = [] lowercase_ = fairseq_model.state_dict() lowercase_ = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight lowercase_ = None for name, value in fairseq_dict.items(): lowercase_ = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , hf_model.config.feat_extract_norm == """group""" , ) lowercase_ = True elif name.split(""".""" )[0] == "proj": lowercase_ = fairseq_model.proj lowercase_ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: lowercase_ = True if "*" in mapped_key: lowercase_ = name.split(UpperCAmelCase__ )[0].split(""".""" )[-2] lowercase_ = mapped_key.replace("""*""" , UpperCAmelCase__ ) if "weight_g" in name: lowercase_ = """weight_g""" elif "weight_v" in name: lowercase_ = """weight_v""" elif "bias" in name: lowercase_ = """bias""" elif "weight" in name: lowercase_ = """weight""" else: lowercase_ = None set_recursively(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) continue if not is_used: unused_weights.append(UpperCAmelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) return proj_weight def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = full_name.split("""conv_layers.""" )[-1] lowercase_ = name.split(""".""" ) lowercase_ = int(items[0] ) lowercase_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowercase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(UpperCAmelCase__ ) def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ , lowercase_ = emb.weight.shape lowercase_ = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ , bias=UpperCAmelCase__ ) lowercase_ = emb.weight.data return lin_layer def UpperCAmelCase_ ( UpperCAmelCase__ ): with open(UpperCAmelCase__ , """r""" , encoding="""utf-8""" ) as f: lowercase_ = f.readlines() lowercase_ = [line.split(""" """ )[0] for line in lines] lowercase_ = len(UpperCAmelCase__ ) lowercase_ = { """<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3, } vocab_dict.update(dict(zip(UpperCAmelCase__ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ): lowercase_ = WavaVecaConfig.from_pretrained(UpperCAmelCase__ ) lowercase_ = SpeechaTextaConfig.from_pretrained( UpperCAmelCase__ , vocab_size=UpperCAmelCase__ , decoder_layers=UpperCAmelCase__ , do_stable_layer_norm=UpperCAmelCase__ ) lowercase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , ) lowercase_ , lowercase_ , lowercase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) lowercase_ = model[0].eval() # set weights for wav2vec2 encoder lowercase_ = WavaVecaModel(UpperCAmelCase__ ) lowercase_ = recursively_load_weights_wavaveca(model.encoder , UpperCAmelCase__ ) lowercase_ = SpeechaTextaForCausalLM(UpperCAmelCase__ ) lowercase_ , lowercase_ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=UpperCAmelCase__ ) # set output linear layer unexpected_keys.remove("""embed_out""" ) lowercase_ = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) lowercase_ = SpeechEncoderDecoderModel(encoder=UpperCAmelCase__ , decoder=UpperCAmelCase__ ) lowercase_ = False # add projection layer lowercase_ = nn.Parameter(projection_layer.weight ) lowercase_ = nn.Parameter(projection_layer.bias ) lowercase_ = create_vocab_dict(UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__ , """vocab.json""" ) , """w""" ) as fp: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ = SpeechaTextaTokenizer(os.path.join(UpperCAmelCase__ , """vocab.json""" ) ) tokenizer.save_pretrained(UpperCAmelCase__ ) lowercase_ = hf_wavavec.config.to_dict() lowercase_ = tokenizer.pad_token_id lowercase_ = tokenizer.bos_token_id lowercase_ = tokenizer.eos_token_id lowercase_ = """speech_to_text_2""" lowercase_ = """wav2vec2""" lowercase_ = SpeechEncoderDecoderConfig.from_dict(UpperCAmelCase__ ) hf_wavavec.save_pretrained(UpperCAmelCase__ ) feature_extractor.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-large-lv60', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/s2t-small-mustc-en-fr-st', type=str, help='Path to hf decoder s2t checkpoint config', ) parser.add_argument('--vocab_size', default=1_0_2_2_4, type=int, help='Vocab size of decoder') parser.add_argument('--num_decoder_layers', default=7, type=int, help='Number of decoder layers') a = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
650
0
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING a = logging.get_logger(__name__) class UpperCamelCase__ ( enum.Enum ): __SCREAMING_SNAKE_CASE : List[Any] = 0 __SCREAMING_SNAKE_CASE : Union[str, Any] = 1 @add_end_docstrings(__magic_name__ ) class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : List[str] = 'generated' def __init__( self : Any , *UpperCamelCase__ : Dict , **UpperCamelCase__ : Tuple ): '''simple docstring''' super().__init__(*lowercase_ , **lowercase_ ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Any=None , UpperCamelCase__ : Union[str, Any]=None , **UpperCamelCase__ : Optional[Any] , ): '''simple docstring''' lowercase_ = {} if truncation is not None: lowercase_ = truncation lowercase_ = generate_kwargs lowercase_ = {} if return_tensors is not None and return_type is None: lowercase_ = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: lowercase_ = return_type if clean_up_tokenization_spaces is not None: lowercase_ = clean_up_tokenization_spaces if stop_sequence is not None: lowercase_ = self.tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) if len(lowercase_ ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) lowercase_ = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCAmelCase__ ( self : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int ): '''simple docstring''' return True def UpperCAmelCase__ ( self : Dict , *UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] ): '''simple docstring''' lowercase_ = self.model.config.prefix if self.model.config.prefix is not None else """""" if isinstance(args[0] , lowercase_ ): if self.tokenizer.pad_token_id is None: raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" ) lowercase_ = ([prefix + arg for arg in args[0]],) lowercase_ = True elif isinstance(args[0] , lowercase_ ): lowercase_ = (prefix + args[0],) lowercase_ = False else: raise ValueError( F''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' ) lowercase_ = self.tokenizer(*lowercase_ , padding=lowercase_ , truncation=lowercase_ , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : List[Any] , *UpperCamelCase__ : Any , **UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = super().__call__(*lowercase_ , **lowercase_ ) if ( isinstance(args[0] , lowercase_ ) and all(isinstance(lowercase_ , lowercase_ ) for el in args[0] ) and all(len(lowercase_ ) == 1 for res in result ) ): return [res[0] for res in result] return result def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str=TruncationStrategy.DO_NOT_TRUNCATE , **UpperCamelCase__ : Dict ): '''simple docstring''' lowercase_ = self._parse_and_tokenize(lowercase_ , truncation=lowercase_ , **lowercase_ ) return inputs def UpperCAmelCase__ ( self : str , UpperCamelCase__ : str , **UpperCamelCase__ : str ): '''simple docstring''' if self.framework == "pt": lowercase_ , lowercase_ = model_inputs["""input_ids"""].shape elif self.framework == "tf": lowercase_ , lowercase_ = tf.shape(model_inputs["""input_ids"""] ).numpy() lowercase_ = generate_kwargs.get("""min_length""" , self.model.config.min_length ) lowercase_ = generate_kwargs.get("""max_length""" , self.model.config.max_length ) self.check_inputs(lowercase_ , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] ) lowercase_ = self.model.generate(**lowercase_ , **lowercase_ ) lowercase_ = output_ids.shape[0] if self.framework == "pt": lowercase_ = output_ids.reshape(lowercase_ , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": lowercase_ = tf.reshape(lowercase_ , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def UpperCAmelCase__ ( self : Dict , UpperCamelCase__ : str , UpperCamelCase__ : int=ReturnType.TEXT , UpperCamelCase__ : int=False ): '''simple docstring''' lowercase_ = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: lowercase_ = {F'''{self.return_name}_token_ids''': output_ids} elif return_type == ReturnType.TEXT: lowercase_ = { F'''{self.return_name}_text''': self.tokenizer.decode( lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ , ) } records.append(lowercase_ ) return records @add_end_docstrings(__magic_name__ ) class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : List[str] = 'summary' def __call__( self : Optional[Any] , *UpperCamelCase__ : int , **UpperCamelCase__ : Dict ): '''simple docstring''' return super().__call__(*lowercase_ , **lowercase_ ) def UpperCAmelCase__ ( self : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int ): '''simple docstring''' if max_length < min_length: logger.warning(F'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' ) if input_length < max_length: logger.warning( F'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is ''' """a summarization task, where outputs shorter than the input are typically wanted, you might """ F'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' ) @add_end_docstrings(__magic_name__ ) class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = 'translation' def UpperCAmelCase__ ( self : Dict , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int ): '''simple docstring''' if input_length > 0.9 * max_length: logger.warning( F'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider ''' """increasing your max_length manually, e.g. translator('...', max_length=400)""" ) return True def UpperCAmelCase__ ( self : Tuple , *UpperCamelCase__ : Any , UpperCamelCase__ : List[Any]=TruncationStrategy.DO_NOT_TRUNCATE , UpperCamelCase__ : Any=None , UpperCamelCase__ : Optional[Any]=None ): '''simple docstring''' if getattr(self.tokenizer , """_build_translation_inputs""" , lowercase_ ): return self.tokenizer._build_translation_inputs( *lowercase_ , return_tensors=self.framework , truncation=lowercase_ , src_lang=lowercase_ , tgt_lang=lowercase_ ) else: return super()._parse_and_tokenize(*lowercase_ , truncation=lowercase_ ) def UpperCAmelCase__ ( self : List[str] , UpperCamelCase__ : Dict=None , UpperCamelCase__ : str=None , **UpperCamelCase__ : List[Any] ): '''simple docstring''' lowercase_ , lowercase_ , lowercase_ = super()._sanitize_parameters(**lowercase_ ) if src_lang is not None: lowercase_ = src_lang if tgt_lang is not None: lowercase_ = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. lowercase_ = kwargs.get("""task""" , self.task ) lowercase_ = task.split("""_""" ) if task and len(lowercase_ ) == 4: # translation, XX, to YY lowercase_ = items[1] lowercase_ = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : List[str] , *UpperCamelCase__ : List[str] , **UpperCamelCase__ : str ): '''simple docstring''' return super().__call__(*lowercase_ , **lowercase_ )
716
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) # TODO Update this a = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Tuple = 'esm' def __init__( self : Optional[Any] , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : List[Any]=768 , UpperCamelCase__ : Tuple=12 , UpperCamelCase__ : Optional[int]=12 , UpperCamelCase__ : Dict=3_072 , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : Optional[int]=1_026 , UpperCamelCase__ : Any=0.02 , UpperCamelCase__ : Dict=1e-12 , UpperCamelCase__ : List[str]="absolute" , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Union[str, Any]=False , UpperCamelCase__ : Optional[int]=False , UpperCamelCase__ : Dict=None , UpperCamelCase__ : str=None , **UpperCamelCase__ : str , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , mask_token_id=UpperCamelCase__ , **UpperCamelCase__ ) lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = position_embedding_type lowercase_ = use_cache lowercase_ = emb_layer_norm_before lowercase_ = token_dropout lowercase_ = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("""No esmfold_config supplied for folding model, using default values.""" ) lowercase_ = EsmFoldConfig() elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = EsmFoldConfig(**UpperCamelCase__ ) lowercase_ = esmfold_config if vocab_list is None: logger.warning("""No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!""" ) lowercase_ = get_default_vocab_list() else: lowercase_ = vocab_list else: lowercase_ = None lowercase_ = None if self.esmfold_config is not None and getattr(self.esmfold_config , """use_esm_attn_map""" , UpperCamelCase__ ): raise ValueError("""The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!""" ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = super().to_dict() if isinstance(self.esmfold_config , UpperCamelCase__ ): lowercase_ = self.esmfold_config.to_dict() return output @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : str = None __SCREAMING_SNAKE_CASE : bool = True __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : float = 0 __SCREAMING_SNAKE_CASE : bool = True __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : "TrunkConfig" = None def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' if self.trunk is None: lowercase_ = TrunkConfig() elif isinstance(self.trunk , UpperCamelCase__ ): lowercase_ = TrunkConfig(**self.trunk ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = asdict(self ) lowercase_ = self.trunk.to_dict() return output @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : int = 48 __SCREAMING_SNAKE_CASE : int = 1024 __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : float = 0 __SCREAMING_SNAKE_CASE : float = 0 __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : int = 4 __SCREAMING_SNAKE_CASE : Optional[int] = 128 __SCREAMING_SNAKE_CASE : "StructureModuleConfig" = None def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' if self.structure_module is None: lowercase_ = StructureModuleConfig() elif isinstance(self.structure_module , UpperCamelCase__ ): lowercase_ = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( """`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got""" F''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( """`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got""" F''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) lowercase_ = self.sequence_state_dim // self.sequence_head_width lowercase_ = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( """`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got""" F''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( """`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got""" F''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(F'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = asdict(self ) lowercase_ = self.structure_module.to_dict() return output @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : int = 384 __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : int = 16 __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : int = 12 __SCREAMING_SNAKE_CASE : int = 4 __SCREAMING_SNAKE_CASE : int = 8 __SCREAMING_SNAKE_CASE : float = 0.1 __SCREAMING_SNAKE_CASE : int = 8 __SCREAMING_SNAKE_CASE : int = 1 __SCREAMING_SNAKE_CASE : int = 2 __SCREAMING_SNAKE_CASE : int = 7 __SCREAMING_SNAKE_CASE : int = 10 __SCREAMING_SNAKE_CASE : float = 1e-8 __SCREAMING_SNAKE_CASE : float = 1e5 def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' return asdict(self ) def UpperCAmelCase_ ( ): return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
650
0
def UpperCAmelCase_ ( UpperCAmelCase__ = 1_0_0_0_0_0_0 ): lowercase_ = set(range(3 , snake_case__ , 2 ) ) primes.add(2 ) for p in range(3 , snake_case__ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , snake_case__ , snake_case__ ) ) ) lowercase_ = [float(snake_case__ ) for n in range(limit + 1 )] for p in primes: for n in range(snake_case__ , limit + 1 , snake_case__ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F'''{solution() = }''')
717
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def UpperCAmelCase_ ( UpperCAmelCase__=None ): if subparsers is not None: lowercase_ = subparsers.add_parser("""env""" ) else: lowercase_ = argparse.ArgumentParser("""Accelerate env command""" ) parser.add_argument( """--config_file""" , default=UpperCAmelCase__ , help="""The config file to use for the default values in the launching script.""" ) if subparsers is not None: parser.set_defaults(func=UpperCAmelCase__ ) return parser def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = torch.__version__ lowercase_ = torch.cuda.is_available() lowercase_ = is_xpu_available() lowercase_ = is_npu_available() lowercase_ = """Not found""" # Get the default from the config file. if args.config_file is not None or os.path.isfile(UpperCAmelCase__ ): lowercase_ = load_config_from_file(args.config_file ).to_dict() lowercase_ = { """`Accelerate` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Numpy version""": np.__version__, """PyTorch version (GPU?)""": F'''{pt_version} ({pt_cuda_available})''', """PyTorch XPU available""": str(UpperCAmelCase__ ), """PyTorch NPU available""": str(UpperCAmelCase__ ), """System RAM""": F'''{psutil.virtual_memory().total / 1_0_2_4 ** 3:.2f} GB''', } if pt_cuda_available: lowercase_ = torch.cuda.get_device_name() print("""\nCopy-and-paste the text below in your GitHub issue\n""" ) print("""\n""".join([F'''- {prop}: {val}''' for prop, val in info.items()] ) ) print("""- `Accelerate` default config:""" if args.config_file is None else """- `Accelerate` config passed:""" ) lowercase_ = ( """\n""".join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else F'''\t{accelerate_config}''' ) print(UpperCAmelCase__ ) lowercase_ = accelerate_config return info def UpperCAmelCase_ ( ): lowercase_ = env_command_parser() lowercase_ = parser.parse_args() env_command(UpperCAmelCase__ ) return 0 if __name__ == "__main__": raise SystemExit(main())
650
0
from sklearn.metrics import fa_score import datasets a = '\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n' a = '\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n\n - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {\'f1\': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results[\'f1\'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results[\'f1\'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro")\n >>> print(round(results[\'f1\'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'f1\': array([0.8, 0. , 0. ])}\n' a = '\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): def UpperCAmelCase__ ( self : Any ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"""] , ) def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Optional[Any]=1 , UpperCamelCase__ : List[str]="binary" , UpperCamelCase__ : str=None ): '''simple docstring''' lowercase_ = fa_score( UpperCAmelCase__ , UpperCAmelCase__ , labels=UpperCAmelCase__ , pos_label=UpperCAmelCase__ , average=UpperCAmelCase__ , sample_weight=UpperCAmelCase__ ) return {"f1": float(UpperCAmelCase__ ) if score.size == 1 else score}
718
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class UpperCamelCase__ : def __init__( self : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple=13 , UpperCamelCase__ : Tuple=30 , UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : Union[str, Any]=3 , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : int=32 , UpperCamelCase__ : Tuple=5 , UpperCamelCase__ : List[Any]=4 , UpperCamelCase__ : Dict=37 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : Any=10 , UpperCamelCase__ : Optional[int]=0.02 , UpperCamelCase__ : Dict=3 , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Union[str, Any]=2 , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = is_training lowercase_ = use_labels lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = scope lowercase_ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowercase_ = (image_size // patch_size) ** 2 lowercase_ = num_patches + 2 def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple ): '''simple docstring''' lowercase_ = DeiTModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = DeiTForMaskedImageModeling(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase_ = 1 lowercase_ = DeiTForMaskedImageModeling(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] ): '''simple docstring''' lowercase_ = self.type_sequence_label_size lowercase_ = DeiTForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ = 1 lowercase_ = DeiTForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : str = ( { 'feature-extraction': DeiTModel, 'image-classification': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : List[Any] = False def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = DeiTModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' pass def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCamelCase__ ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any]=False ): '''simple docstring''' lowercase_ = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' if not self.model_tester.is_training: return lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(UpperCamelCase__ ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue lowercase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.train() lowercase_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) lowercase_ = model(**UpperCamelCase__ ).loss loss.backward() def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase_ = False lowercase_ = True for model_class in self.all_model_classes: if model_class in get_values(UpperCamelCase__ ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue lowercase_ = model_class(UpperCamelCase__ ) model.gradient_checkpointing_enable() model.to(UpperCamelCase__ ) model.train() lowercase_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) lowercase_ = model(**UpperCamelCase__ ).loss loss.backward() def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(UpperCamelCase__ ), *get_values(UpperCamelCase__ ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'''Testing {model_class} with {problem_type["title"]}''' ): lowercase_ = problem_type["""title"""] lowercase_ = problem_type["""num_labels"""] lowercase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.train() lowercase_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if problem_type["num_labels"] > 1: lowercase_ = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) lowercase_ = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=UpperCamelCase__ ) as warning_list: lowercase_ = model(**UpperCamelCase__ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def UpperCAmelCase__ ( self : int ): '''simple docstring''' for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = DeiTModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def UpperCAmelCase_ ( ): lowercase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = DeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ).to( UpperCamelCase__ ) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowercase_ = model(**UpperCamelCase__ ) # verify the logits lowercase_ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) lowercase_ = torch.tensor([-1.0_266, 0.1_912, -1.2_861] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = DeiTModel.from_pretrained( """facebook/deit-base-distilled-patch16-224""" , torch_dtype=torch.floataa , device_map="""auto""" ) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ) lowercase_ = inputs.pixel_values.to(UpperCamelCase__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowercase_ = model(UpperCamelCase__ )
650
0
def UpperCAmelCase_ ( UpperCAmelCase__ = 1_0_0 ): lowercase_ = set() lowercase_ = 0 lowercase_ = n + 1 # maximum limit for a in range(2 , UpperCAmelCase__ ): for b in range(2 , UpperCAmelCase__ ): lowercase_ = a**b # calculates the current power collect_powers.add(UpperCAmelCase__ ) # adds the result to the set return len(UpperCAmelCase__ ) if __name__ == "__main__": print('Number of terms ', solution(int(str(input()).strip())))
719
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
650
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { 'microsoft/trocr-base-handwritten': ( 'https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class UpperCamelCase__ ( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : List[Any] = 'trocr' __SCREAMING_SNAKE_CASE : Any = ['past_key_values'] __SCREAMING_SNAKE_CASE : List[Any] = { 'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'decoder_layers', } def __init__( self : Dict , UpperCamelCase__ : str=50_265 , UpperCamelCase__ : List[str]=1_024 , UpperCamelCase__ : int=12 , UpperCamelCase__ : List[str]=16 , UpperCamelCase__ : Union[str, Any]=4_096 , UpperCamelCase__ : List[str]="gelu" , UpperCamelCase__ : List[str]=512 , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Union[str, Any]=0.0 , UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : str=0.02 , UpperCamelCase__ : Union[str, Any]=0.0 , UpperCamelCase__ : Dict=True , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : Dict=True , UpperCamelCase__ : Dict=1 , UpperCamelCase__ : str=0 , UpperCamelCase__ : Optional[Any]=2 , **UpperCamelCase__ : Any , ): '''simple docstring''' lowercase_ = vocab_size lowercase_ = d_model lowercase_ = decoder_layers lowercase_ = decoder_attention_heads lowercase_ = decoder_ffn_dim lowercase_ = activation_function lowercase_ = max_position_embeddings lowercase_ = dropout lowercase_ = attention_dropout lowercase_ = activation_dropout lowercase_ = init_std lowercase_ = decoder_layerdrop lowercase_ = use_cache lowercase_ = scale_embedding lowercase_ = use_learned_position_embeddings lowercase_ = layernorm_embedding super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
720
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = XGLMTokenizer __SCREAMING_SNAKE_CASE : List[Any] = XGLMTokenizerFast __SCREAMING_SNAKE_CASE : List[Any] = True __SCREAMING_SNAKE_CASE : int = True def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase_ = XGLMTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = """<pad>""" lowercase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(len(UpperCamelCase__ ) , 1_008 ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_008 ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = XGLMTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) lowercase_ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCamelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowercase_ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowercase_ = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase_ = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def UpperCAmelCase__ ( self : str ): '''simple docstring''' return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(UpperCamelCase__ , f.name ) lowercase_ = XGLMTokenizer(f.name , keep_accents=UpperCamelCase__ ) lowercase_ = pickle.dumps(UpperCamelCase__ ) pickle.loads(UpperCamelCase__ ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' if not self.test_rust_tokenizer: return lowercase_ = self.get_tokenizer() lowercase_ = self.get_rust_tokenizer() lowercase_ = """I was born in 92000, and this is falsé.""" lowercase_ = tokenizer.tokenize(UpperCamelCase__ ) lowercase_ = rust_tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) lowercase_ = rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = self.get_rust_tokenizer() lowercase_ = tokenizer.encode(UpperCamelCase__ ) lowercase_ = rust_tokenizer.encode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) @slow def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = """Hello World!""" lowercase_ = [2, 31_227, 4_447, 35] self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @slow def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth""" ) # fmt: off lowercase_ = [2, 1_018, 67, 11, 1_988, 2_617, 5_631, 278, 11, 3_407, 48, 71_630, 28_085, 4, 3_234, 157, 13, 6, 5, 6, 4, 3_526, 768, 15, 659, 57, 298, 3_983, 864, 129, 21, 6, 5, 13_675, 377, 652, 7_580, 10_341, 155, 2_817, 422, 1_666, 7, 1_674, 53, 113, 202_277, 17_892, 33, 60, 87, 4, 3_234, 157, 61, 2_667, 52_376, 19, 88, 23, 735] # fmt: on self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @slow def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = { """input_ids""": [[2, 108_825, 1_163, 15, 88_010, 473, 15_898, 157, 13_672, 1_857, 312, 8, 238_021, 1_163, 53, 13_672, 1_857, 312, 8, 53_283, 182_396, 8, 18_566, 16, 36_733, 4_101, 8, 230, 244_017, 122_553, 7, 15, 132_597, 4, 293, 12_511, 7_610, 4, 3_414, 132_597, 9, 4, 32_361, 362, 4, 734, 28_512, 32_569, 18, 4, 32_361, 26_096, 14_982, 73, 18_715, 21_433, 235_261, 15, 492, 12_427, 16, 53, 18_715, 21_433, 65_454, 15, 23_659, 563, 16, 278, 597, 2_843, 595, 7_931, 182_396, 64_186, 22, 886, 595, 132_981, 53, 25_540, 3_449, 43_982, 39_901, 5_951, 878, 330, 4, 27_694, 80_269, 312, 53, 6_517, 11_780, 611, 20_408, 5], [2, 6, 132_597, 67, 42_897, 33, 592, 8, 163_729, 25_540, 361, 136_997, 109_514, 173_230, 7, 501, 60, 102_913, 196, 5_631, 235, 63_243, 473, 6, 231_757, 74, 5_277, 7_905, 53, 3_095, 37_317, 22, 454, 183_874, 5], [2, 268, 31_298, 46_530, 6, 132_935, 43_831, 7, 597, 32, 24, 3_688, 9_865, 5]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name="""facebook/xglm-564M""" , padding=UpperCamelCase__ , )
650
0
'''simple docstring''' import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = BigBirdConfig.from_json_file(UpperCAmelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) if is_trivia_qa: lowercase_ = BigBirdForQuestionAnswering(UpperCAmelCase__ ) else: lowercase_ = BigBirdForPreTraining(UpperCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(UpperCAmelCase__ , UpperCAmelCase__ , is_trivia_qa=UpperCAmelCase__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--big_bird_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_trivia_qa', action='store_true', help='Whether to convert a model with a trivia_qa head.' ) a = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
721
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: a = None a = logging.get_logger(__name__) a = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} a = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 a = { 't5-small': 5_1_2, 't5-base': 5_1_2, 't5-large': 5_1_2, 't5-3b': 5_1_2, 't5-11b': 5_1_2, } class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : str = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : Dict = TaTokenizer __SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self : int , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Any=None , UpperCamelCase__ : Dict="</s>" , UpperCamelCase__ : Tuple="<unk>" , UpperCamelCase__ : Optional[Any]="<pad>" , UpperCamelCase__ : Union[str, Any]=100 , UpperCamelCase__ : Optional[Any]=None , **UpperCamelCase__ : List[str] , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: lowercase_ = [F'''<extra_id_{i}>''' for i in range(UpperCamelCase__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowercase_ = len(set(filter(lambda UpperCamelCase__ : bool("""extra_id_""" in str(UpperCamelCase__ ) ) , UpperCamelCase__ ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , extra_ids=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , **UpperCamelCase__ , ) lowercase_ = vocab_file lowercase_ = False if not self.vocab_file else True lowercase_ = extra_ids @staticmethod def UpperCAmelCase__ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : int ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowercase_ = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" F''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" F''' {pretrained_model_name_or_path} automatically truncating your input to''' F''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' F''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , UpperCamelCase__ , ) return max_model_length def UpperCAmelCase__ ( self : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCamelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ = os.path.join( UpperCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ): copyfile(self.vocab_file , UpperCamelCase__ ) logger.info(F'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' lowercase_ = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowercase_ = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def UpperCAmelCase__ ( self : str , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' lowercase_ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return list( set(filter(lambda UpperCamelCase__ : bool(re.search(R"""<extra_id_\d+>""" , UpperCamelCase__ ) ) is not None , self.additional_special_tokens ) ) ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' return [self.convert_tokens_to_ids(UpperCamelCase__ ) for token in self.get_sentinel_tokens()]
650
0
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class UpperCamelCase__ : def __init__( self : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any=2 , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : List[Any]=False , UpperCamelCase__ : Any=10 , UpperCamelCase__ : List[Any]=3 , UpperCamelCase__ : int=32 * 8 , UpperCamelCase__ : Union[str, Any]=32 * 8 , UpperCamelCase__ : int=4 , UpperCamelCase__ : Any=64 , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = is_training lowercase_ = use_auxiliary_loss lowercase_ = num_queries lowercase_ = num_channels lowercase_ = min_size lowercase_ = max_size lowercase_ = num_labels lowercase_ = hidden_dim lowercase_ = hidden_dim def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( UpperCAmelCase__ ) lowercase_ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=UpperCAmelCase__ ) lowercase_ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=UpperCAmelCase__ ) > 0.5 ).float() lowercase_ = (torch.rand((self.batch_size, self.num_labels) , device=UpperCAmelCase__ ) > 0.5).long() lowercase_ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = MaskaFormerConfig( hidden_size=self.hidden_dim , ) lowercase_ = self.num_queries lowercase_ = self.num_labels lowercase_ = [1, 1, 1, 1] lowercase_ = self.num_channels lowercase_ = 64 lowercase_ = 128 lowercase_ = self.hidden_dim lowercase_ = self.hidden_dim lowercase_ = self.hidden_dim return config def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() lowercase_ = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def UpperCAmelCase__ ( self : Dict , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] ): '''simple docstring''' lowercase_ = output.encoder_hidden_states lowercase_ = output.pixel_decoder_hidden_states lowercase_ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(UpperCAmelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCAmelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCAmelCase__ ) , config.decoder_layers ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : int=False ): '''simple docstring''' with torch.no_grad(): lowercase_ = MaskaFormerModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowercase_ = model(pixel_values=UpperCAmelCase__ , pixel_mask=UpperCAmelCase__ ) lowercase_ = model(UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(UpperCAmelCase__ , UpperCAmelCase__ ) def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] ): '''simple docstring''' lowercase_ = MaskaFormerForUniversalSegmentation(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() def comm_check_on_output(UpperCamelCase__ : Union[str, Any] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): lowercase_ = model(pixel_values=UpperCAmelCase__ , pixel_mask=UpperCAmelCase__ ) lowercase_ = model(UpperCAmelCase__ ) comm_check_on_output(UpperCAmelCase__ ) lowercase_ = model( pixel_values=UpperCAmelCase__ , pixel_mask=UpperCAmelCase__ , mask_labels=UpperCAmelCase__ , class_labels=UpperCAmelCase__ ) comm_check_on_output(UpperCAmelCase__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class UpperCamelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[int] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () __SCREAMING_SNAKE_CASE : Any = {'feature-extraction': MaskaFormerModel} if is_torch_available() else {} __SCREAMING_SNAKE_CASE : Optional[int] = False __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Optional[int] = False __SCREAMING_SNAKE_CASE : List[Any] = False def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = MaskaFormerModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(UpperCAmelCase__ , **UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*UpperCAmelCase__ ) @unittest.skip(reason="""Mask2Former does not use inputs_embeds""" ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former is not a generative model""" ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not use token embeddings""" ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason="""Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`""" ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' pass def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCAmelCase__ ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase__ ) @slow def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: lowercase_ = MaskaFormerModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = (self.model_tester.min_size,) * 2 lowercase_ = { '''pixel_values''': torch.randn((2, 3, *size) , device=UpperCAmelCase__ ), '''mask_labels''': torch.randn((2, 10, *size) , device=UpperCAmelCase__ ), '''class_labels''': torch.zeros(2 , 10 , device=UpperCAmelCase__ ).long(), } lowercase_ = self.model_tester.get_config() lowercase_ = MaskaFormerForUniversalSegmentation(UpperCAmelCase__ ).to(UpperCAmelCase__ ) lowercase_ = model(**UpperCAmelCase__ ) self.assertTrue(outputs.loss is not None ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(UpperCAmelCase__ , **UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCAmelCase__ ).to(UpperCAmelCase__ ) lowercase_ = model(**UpperCAmelCase__ , output_attentions=UpperCAmelCase__ ) self.assertTrue(outputs.attentions is not None ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' if not self.model_tester.is_training: return lowercase_ = self.all_model_classes[1] lowercase_ = self.model_tester.prepare_config_and_inputs() lowercase_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.train() lowercase_ = model(UpperCAmelCase__ , mask_labels=UpperCAmelCase__ , class_labels=UpperCAmelCase__ ).loss loss.backward() def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = self.all_model_classes[1] lowercase_ = self.model_tester.prepare_config_and_inputs() lowercase_ = True lowercase_ = True lowercase_ = model_class(UpperCAmelCase__ ).to(UpperCAmelCase__ ) model.train() lowercase_ = model(UpperCAmelCase__ , mask_labels=UpperCAmelCase__ , class_labels=UpperCAmelCase__ ) lowercase_ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowercase_ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() lowercase_ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowercase_ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=UpperCAmelCase__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) a = 1E-4 def UpperCAmelCase_ ( ): lowercase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class UpperCamelCase__ ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(UpperCAmelCase__ ) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(UpperCAmelCase__ , return_tensors="""pt""" ).to(UpperCAmelCase__ ) lowercase_ = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCAmelCase__ , (1, 3, 384, 384) ) with torch.no_grad(): lowercase_ = model(**UpperCAmelCase__ ) lowercase_ = torch.tensor( [[-0.2_790, -1.0_717, -1.1_668], [-0.5_128, -0.3_128, -0.4_987], [-0.5_832, 0.1_971, -0.0_197]] ).to(UpperCAmelCase__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase__ , atol=UpperCAmelCase__ ) ) lowercase_ = torch.tensor( [[0.8_973, 1.1_847, 1.1_776], [1.1_934, 1.5_040, 1.5_128], [1.1_153, 1.4_486, 1.4_951]] ).to(UpperCAmelCase__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase__ , atol=UpperCAmelCase__ ) ) lowercase_ = torch.tensor( [[2.1_152, 1.7_000, -0.8_603], [1.5_808, 1.8_004, -0.9_353], [1.6_043, 1.7_495, -0.5_999]] ).to(UpperCAmelCase__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , UpperCAmelCase__ , atol=UpperCAmelCase__ ) ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(UpperCAmelCase__ ).eval() lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(UpperCAmelCase__ , return_tensors="""pt""" ).to(UpperCAmelCase__ ) lowercase_ = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCAmelCase__ , (1, 3, 384, 384) ) with torch.no_grad(): lowercase_ = model(**UpperCAmelCase__ ) # masks_queries_logits lowercase_ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) lowercase_ = [ [-8.7_839, -9.0_056, -8.8_121], [-7.4_104, -7.0_313, -6.5_401], [-6.6_105, -6.3_427, -6.4_675], ] lowercase_ = torch.tensor(UpperCAmelCase__ ).to(UpperCAmelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase__ , atol=UpperCAmelCase__ ) ) # class_queries_logits lowercase_ = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) lowercase_ = torch.tensor( [ [1.8_324, -8.0_835, -4.1_922], [0.8_450, -9.0_050, -3.6_053], [0.3_045, -7.7_293, -3.0_275], ] ).to(UpperCAmelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase__ , atol=UpperCAmelCase__ ) ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(UpperCAmelCase__ ).eval() lowercase_ = self.default_image_processor lowercase_ = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="""pt""" , ) lowercase_ = inputs['''pixel_values'''].to(UpperCAmelCase__ ) lowercase_ = [el.to(UpperCAmelCase__ ) for el in inputs['''mask_labels''']] lowercase_ = [el.to(UpperCAmelCase__ ) for el in inputs['''class_labels''']] with torch.no_grad(): lowercase_ = model(**UpperCAmelCase__ ) self.assertTrue(outputs.loss is not None )
700
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionDiffEditPipeline __SCREAMING_SNAKE_CASE : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'height', 'width', 'image'} | {'image_latents'} __SCREAMING_SNAKE_CASE : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'image'} | {'image_latents'} __SCREAMING_SNAKE_CASE : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __SCREAMING_SNAKE_CASE : Any = frozenset([] ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase__ , ) lowercase_ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCamelCase__ , set_alpha_to_one=UpperCamelCase__ , ) lowercase_ = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCamelCase__ , set_alpha_to_zero=UpperCamelCase__ , ) torch.manual_seed(0 ) lowercase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=512 , ) lowercase_ = CLIPTextModel(UpperCamelCase__ ) lowercase_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase_ = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCAmelCase__ ( self : int , UpperCamelCase__ : Any , UpperCamelCase__ : Any=0 ): '''simple docstring''' lowercase_ = floats_tensor((1, 16, 16) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowercase_ = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) if str(UpperCamelCase__ ).startswith("""mps""" ): lowercase_ = torch.manual_seed(UpperCamelCase__ ) else: lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowercase_ = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str=0 ): '''simple docstring''' lowercase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowercase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase_ = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert("""RGB""" ) if str(UpperCamelCase__ ).startswith("""mps""" ): lowercase_ = torch.manual_seed(UpperCamelCase__ ) else: lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowercase_ = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple=0 ): '''simple docstring''' lowercase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowercase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase_ = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert("""RGB""" ) if str(UpperCamelCase__ ).startswith("""mps""" ): lowercase_ = torch.manual_seed(UpperCamelCase__ ) else: lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowercase_ = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : int ): '''simple docstring''' if not hasattr(self.pipeline_class , """_optional_components""" ): return lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowercase_ = self.get_dummy_inputs(UpperCamelCase__ ) lowercase_ = pipe(**UpperCamelCase__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCamelCase__ ) lowercase_ = self.pipeline_class.from_pretrained(UpperCamelCase__ ) pipe_loaded.to(UpperCamelCase__ ) pipe_loaded.set_progress_bar_config(disable=UpperCamelCase__ ) for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCamelCase__ , UpperCamelCase__ ) is None , F'''`{optional_component}` did not stay set to None after loading.''' , ) lowercase_ = self.get_dummy_inputs(UpperCamelCase__ ) lowercase_ = pipe_loaded(**UpperCamelCase__ )[0] lowercase_ = np.abs(output - output_loaded ).max() self.assertLess(UpperCamelCase__ , 1e-4 ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = """cpu""" lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_mask_inputs(UpperCamelCase__ ) lowercase_ = pipe.generate_mask(**UpperCamelCase__ ) lowercase_ = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowercase_ = np.array([0] * 9 ) lowercase_ = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = """cpu""" lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_inversion_inputs(UpperCamelCase__ ) lowercase_ = pipe.invert(**UpperCamelCase__ ).images lowercase_ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase_ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1e-3 ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = """cpu""" lowercase_ = self.get_dummy_components() lowercase_ = {"""beta_start""": 0.00_085, """beta_end""": 0.012, """beta_schedule""": """scaled_linear"""} lowercase_ = DPMSolverMultistepScheduler(**UpperCamelCase__ ) lowercase_ = DPMSolverMultistepInverseScheduler(**UpperCamelCase__ ) lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_inversion_inputs(UpperCamelCase__ ) lowercase_ = pipe.invert(**UpperCamelCase__ ).images lowercase_ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase_ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1e-3 ) @require_torch_gpu @slow class UpperCamelCase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def UpperCAmelCase__ ( cls : Dict ): '''simple docstring''' lowercase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) lowercase_ = raw_image.convert("""RGB""" ).resize((768, 768) ) lowercase_ = raw_image def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = torch.manual_seed(0 ) lowercase_ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa ) lowercase_ = DDIMScheduler.from_config(pipe.scheduler.config ) lowercase_ = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = """a bowl of fruit""" lowercase_ = """a bowl of pears""" lowercase_ = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCamelCase__ , target_prompt=UpperCamelCase__ , generator=UpperCamelCase__ , ) lowercase_ = pipe.invert( prompt=UpperCamelCase__ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCamelCase__ ).latents lowercase_ = pipe( prompt=UpperCamelCase__ , mask_image=UpperCamelCase__ , image_latents=UpperCamelCase__ , generator=UpperCamelCase__ , negative_prompt=UpperCamelCase__ , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0] lowercase_ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1 def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = torch.manual_seed(0 ) lowercase_ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa ) lowercase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase_ = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = """a bowl of fruit""" lowercase_ = """a bowl of pears""" lowercase_ = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCamelCase__ , target_prompt=UpperCamelCase__ , generator=UpperCamelCase__ , ) lowercase_ = pipe.invert( prompt=UpperCamelCase__ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCamelCase__ , num_inference_steps=25 , ).latents lowercase_ = pipe( prompt=UpperCamelCase__ , mask_image=UpperCamelCase__ , image_latents=UpperCamelCase__ , generator=UpperCamelCase__ , negative_prompt=UpperCamelCase__ , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0] lowercase_ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1
650
0
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a = { 'facebook/mask2former-swin-small-coco-instance': ( 'https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json' ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } a = logging.get_logger(__name__) class UpperCamelCase__ ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : Dict = "mask2former" __SCREAMING_SNAKE_CASE : Union[str, Any] = ["swin"] __SCREAMING_SNAKE_CASE : Optional[Any] = {"hidden_size": "hidden_dim"} def __init__( self : Tuple , UpperCamelCase__ : Optional[Dict] = None , UpperCamelCase__ : int = 256 , UpperCamelCase__ : int = 256 , UpperCamelCase__ : int = 256 , UpperCamelCase__ : int = 1_024 , UpperCamelCase__ : str = "relu" , UpperCamelCase__ : int = 6 , UpperCamelCase__ : int = 10 , UpperCamelCase__ : int = 8 , UpperCamelCase__ : float = 0.0 , UpperCamelCase__ : int = 2_048 , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : int = 4 , UpperCamelCase__ : int = 255 , UpperCamelCase__ : int = 100 , UpperCamelCase__ : float = 0.1 , UpperCamelCase__ : float = 2.0 , UpperCamelCase__ : float = 5.0 , UpperCamelCase__ : float = 5.0 , UpperCamelCase__ : int = 12_544 , UpperCamelCase__ : float = 3.0 , UpperCamelCase__ : float = 0.75 , UpperCamelCase__ : float = 0.02 , UpperCamelCase__ : float = 1.0 , UpperCamelCase__ : bool = True , UpperCamelCase__ : List[int] = [4, 8, 16, 32] , UpperCamelCase__ : bool = None , **UpperCamelCase__ : Union[str, Any] , ): '''simple docstring''' if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.""" ) lowercase_ = CONFIG_MAPPING["""swin"""]( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_lowerCamelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(_lowerCamelCase , _lowerCamelCase ): lowercase_ = backbone_config.pop("""model_type""" ) lowercase_ = CONFIG_MAPPING[backbone_model_type] lowercase_ = config_class.from_dict(_lowerCamelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ''' F'''Supported model types: {",".join(self.backbones_supported )}''' ) lowercase_ = backbone_config lowercase_ = feature_size lowercase_ = mask_feature_size lowercase_ = hidden_dim lowercase_ = encoder_feedforward_dim lowercase_ = activation_function lowercase_ = encoder_layers lowercase_ = decoder_layers lowercase_ = num_attention_heads lowercase_ = dropout lowercase_ = dim_feedforward lowercase_ = pre_norm lowercase_ = enforce_input_projection lowercase_ = common_stride lowercase_ = ignore_value lowercase_ = num_queries lowercase_ = no_object_weight lowercase_ = class_weight lowercase_ = mask_weight lowercase_ = dice_weight lowercase_ = train_num_points lowercase_ = oversample_ratio lowercase_ = importance_sample_ratio lowercase_ = init_std lowercase_ = init_xavier_std lowercase_ = use_auxiliary_loss lowercase_ = feature_strides lowercase_ = output_auxiliary_logits lowercase_ = decoder_layers super().__init__(**_lowerCamelCase ) @classmethod def UpperCAmelCase__ ( cls : Dict , UpperCamelCase__ : PretrainedConfig , **UpperCamelCase__ : Tuple ): '''simple docstring''' return cls( backbone_config=_lowerCamelCase , **_lowerCamelCase , ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = copy.deepcopy(self.__dict__ ) lowercase_ = self.backbone_config.to_dict() lowercase_ = self.__class__.model_type return output
701
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging a = logging.get_logger(__name__) class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : str = ['pixel_values'] def __init__( self : List[Any] , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[int, float] = 1 / 255 , UpperCamelCase__ : bool = True , UpperCamelCase__ : int = 8 , **UpperCamelCase__ : Optional[Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowercase_ = do_rescale lowercase_ = rescale_factor lowercase_ = do_pad lowercase_ = pad_size def UpperCAmelCase__ ( self : int , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : float , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[Any] ): '''simple docstring''' return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None ): '''simple docstring''' lowercase_ , lowercase_ = get_image_size(UpperCamelCase__ ) lowercase_ = (old_height // size + 1) * size - old_height lowercase_ = (old_width // size + 1) * size - old_width return pad(UpperCamelCase__ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[float] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase__ : Dict , ): '''simple docstring''' lowercase_ = do_rescale if do_rescale is not None else self.do_rescale lowercase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ = do_pad if do_pad is not None else self.do_pad lowercase_ = pad_size if pad_size is not None else self.pad_size lowercase_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_rescale: lowercase_ = [self.rescale(image=UpperCamelCase__ , scale=UpperCamelCase__ ) for image in images] if do_pad: lowercase_ = [self.pad(UpperCamelCase__ , size=UpperCamelCase__ ) for image in images] lowercase_ = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] lowercase_ = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
650
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: a = None a = logging.get_logger(__name__) a = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} a = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), }, 'tokenizer_file': { 'google/bigbird-roberta-base': ( 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json' ), 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json' ), }, } a = { 'google/bigbird-roberta-base': 4_0_9_6, 'google/bigbird-roberta-large': 4_0_9_6, 'google/bigbird-base-trivia-itc': 4_0_9_6, } a = '▁' class UpperCamelCase__ ( lowerCamelCase__ ): __SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Dict = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : str = BigBirdTokenizer __SCREAMING_SNAKE_CASE : Any = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : Optional[Any] = [] def __init__( self : List[Any] , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Any="<unk>" , UpperCamelCase__ : Optional[Any]="<s>" , UpperCamelCase__ : str="</s>" , UpperCamelCase__ : Optional[Any]="<pad>" , UpperCamelCase__ : Union[str, Any]="[SEP]" , UpperCamelCase__ : Tuple="[MASK]" , UpperCamelCase__ : List[str]="[CLS]" , **UpperCamelCase__ : Union[str, Any] , ): '''simple docstring''' lowercase_ = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token lowercase_ = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token lowercase_ = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token lowercase_ = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token lowercase_ = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token lowercase_ = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it lowercase_ = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( __lowerCamelCase , tokenizer_file=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , **__lowerCamelCase , ) lowercase_ = vocab_file lowercase_ = False if not self.vocab_file else True def UpperCAmelCase__ ( self : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] = None ): '''simple docstring''' lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] = None , UpperCamelCase__ : Optional[Any] = False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) + [1] def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str = None ): '''simple docstring''' lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ ( self : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__lowerCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ = os.path.join( __lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ): copyfile(self.vocab_file , __lowerCamelCase ) return (out_vocab_file,)
702
def UpperCAmelCase_ ( UpperCAmelCase__ ): if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise TypeError("""Input value must be an 'int' type""" ) lowercase_ = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
650
0
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class UpperCamelCase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = tf.convert_to_tensor( [ [ 8.2_220_991, # 3rd highest value; idx. 0 -0.5_620_044, 5.23_229_752, 4.0_386_393, -6.8_798_378, -0.54_785_802, -3.2_012_153, 2.92_777_176, 1.88_171_953, 7.35_341_276, # 5th highest value; idx. 9 8.43_207_833, # 2nd highest value; idx. 10 -9.85_711_836, -5.96_209_236, -1.13_039_161, -7.1_115_294, -0.8_369_633, -5.3_186_408, 7.06_427_407, 0.81_369_344, -0.82_023_817, -5.9_179_796, 0.58_813_443, -6.99_778_438, 4.71_551_189, -0.18_771_637, 7.44_020_759, # 4th highest value; idx. 25 9.38_450_987, # 1st highest value; idx. 26 2.12_662_941, -9.32_562_038, 2.35_652_522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58_425_518, 4.53_139_238, -5.57_510_464, -6.28_030_699, -7.19_529_503, -4.02_122_551, 1.39_337_037, -6.06_707_057, 1.59_480_517, -9.643_119, 0.03_907_799, 0.67_231_762, -8.88_206_726, 6.27_115_922, # 4th highest value; idx. 13 2.28_520_723, 4.82_767_506, 4.30_421_368, 8.8_275_313, # 2nd highest value; idx. 17 5.44_029_958, # 5th highest value; idx. 18 -4.4_735_794, 7.38_579_536, # 3rd highest value; idx. 20 -2.91_051_663, 2.61_946_077, -2.5_674_762, -9.48_959_302, -4.02_922_645, -1.35_416_918, 9.67_702_323, # 1st highest value; idx. 27 -5.89_478_553, 1.85_370_467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) lowercase_ = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above lowercase_ = tf.convert_to_tensor( [8.222_099, 7.3_534_126, 8.432_078, 7.4_402_075, 9.38_451, 6.271_159, 8.827_531, 5.4_402_995, 7.3_857_956, 9.677_023] , dtype=tf.floataa , ) # expected non filtered values as noted above lowercase_ = tf_top_k_top_p_filtering(_lowercase , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) lowercase_ = output[output != -float("""inf""" )] lowercase_ = tf.cast( tf.where(tf.not_equal(_lowercase , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(_lowercase , _lowercase , rtol=1e-12 ) tf.debugging.assert_equal(_lowercase , _lowercase ) @require_tf class UpperCamelCase__ ( unittest.TestCase , UpperCAmelCase_ ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): __SCREAMING_SNAKE_CASE : Optional[Any] = { 'AutoModelForCausalLM': TFAutoModelForCausalLM, 'AutoModelForSpeechSeq2Seq': TFAutoModelForSpeechSeqaSeq, 'AutoModelForSeq2SeqLM': TFAutoModelForSeqaSeqLM, 'AutoModelForVision2Seq': TFAutoModelForVisionaSeq, 'LogitsProcessorList': TFLogitsProcessorList, 'MinLengthLogitsProcessor': TFMinLengthLogitsProcessor, 'create_tensor_fn': tf.convert_to_tensor, 'floats_tensor': floats_tensor, 'return_tensors': 'tf', } @slow def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) lowercase_ = 2 lowercase_ = 2 class UpperCamelCase__ ( tf.Module ): def __init__( self : int , UpperCamelCase__ : str ): '''simple docstring''' super(_lowercase , self ).__init__() lowercase_ = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=_lowercase , ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = self.model.generate( input_ids=_lowercase , attention_mask=_lowercase , max_new_tokens=_lowercase , return_dict_in_generate=_lowercase , ) return {"sequences": outputs["sequences"]} lowercase_ = [[2, 0], [102, 103]] lowercase_ = [[1, 0], [1, 1]] lowercase_ = DummyModel(model=_lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_lowercase , _lowercase , signatures={"""serving_default""": dummy_model.serving} ) lowercase_ = tf.saved_model.load(_lowercase ).signatures["""serving_default"""] for batch_size in range(1 , len(_lowercase ) + 1 ): lowercase_ = { """input_ids""": tf.constant(dummy_input_ids[:batch_size] ), """attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ), } lowercase_ = serving_func(**_lowercase )["""sequences"""] lowercase_ = test_model.generate(**_lowercase , max_new_tokens=_lowercase ) tf.debugging.assert_equal(_lowercase , _lowercase ) @slow def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) lowercase_ = 1 lowercase_ = 2 class UpperCamelCase__ ( tf.Module ): def __init__( self : Any , UpperCamelCase__ : Any ): '''simple docstring''' super(_lowercase , self ).__init__() lowercase_ = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=_lowercase , ) def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = self.model.generate( input_ids=_lowercase , attention_mask=_lowercase , max_new_tokens=_lowercase , return_dict_in_generate=_lowercase , ) return {"sequences": outputs["sequences"]} lowercase_ = [[2], [102, 103]] lowercase_ = [[1], [1, 1]] lowercase_ = DummyModel(model=_lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_lowercase , _lowercase , signatures={"""serving_default""": dummy_model.serving} ) lowercase_ = tf.saved_model.load(_lowercase ).signatures["""serving_default"""] for input_row in range(len(_lowercase ) ): lowercase_ = { """input_ids""": tf.constant([dummy_input_ids[input_row]] ), """attention_mask""": tf.constant([dummy_attention_masks[input_row]] ), } lowercase_ = serving_func(**_lowercase )["""sequences"""] lowercase_ = test_model.generate(**_lowercase , max_new_tokens=_lowercase ) tf.debugging.assert_equal(_lowercase , _lowercase ) @slow @require_tensorflow_text def UpperCAmelCase__ ( self : str ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=_lowercase ) class UpperCamelCase__ ( tf.keras.layers.Layer ): def __init__( self : str ): '''simple docstring''' super().__init__() lowercase_ = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(_lowercase , """spiece.model""" ) , """rb""" ).read() ) lowercase_ = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : Optional[Any] , *UpperCamelCase__ : str , **UpperCamelCase__ : Tuple ): '''simple docstring''' lowercase_ = self.tokenizer.tokenize(_lowercase ) lowercase_ , lowercase_ = text.pad_model_inputs( _lowercase , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) lowercase_ = self.model.generate(input_ids=_lowercase , attention_mask=_lowercase ) return self.tokenizer.detokenize(_lowercase ) lowercase_ = CompleteSentenceTransformer() lowercase_ = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" ) lowercase_ = complete_model(_lowercase ) lowercase_ = tf.keras.Model(_lowercase , _lowercase ) keras_model.save(_lowercase ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = { """do_sample""": True, """num_beams""": 1, """top_p""": 0.7, """top_k""": 10, """temperature""": 0.7, } lowercase_ = 14 lowercase_ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) lowercase_ = """Hello, my dog is cute and""" lowercase_ = tokenizer(_lowercase , return_tensors="""tf""" ) lowercase_ = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) lowercase_ = 638 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) lowercase_ = model.generate(**_lowercase , eos_token_id=_lowercase , **_lowercase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) lowercase_ = [638, 198] with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) lowercase_ = model.generate(**_lowercase , eos_token_id=_lowercase , **_lowercase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) lowercase_ = """Hugging Face is a technology company based in New York and Paris.""" lowercase_ = bart_tokenizer(_lowercase , return_tensors="""tf""" ).input_ids lowercase_ = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) lowercase_ = bart_model.generate(_lowercase ).numpy() class UpperCamelCase__ ( UpperCAmelCase_ ): def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any]=None , **UpperCamelCase__ : Optional[int] ): '''simple docstring''' return super().call(_lowercase , **_lowercase ) lowercase_ = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) lowercase_ = bart_model.generate(_lowercase , foo="""bar""" ).numpy() self.assertTrue(np.array_equal(_lowercase , _lowercase ) ) class UpperCamelCase__ ( bart_model.model.encoder.__class__ ): def UpperCAmelCase__ ( self : List[str] , UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' return super().call(_lowercase , **_lowercase ) lowercase_ = FakeEncoder(bart_model.config , bart_model.model.shared ) lowercase_ = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) lowercase_ = bart_model.generate(_lowercase ).numpy() with self.assertRaises(_lowercase ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(_lowercase , foo="""bar""" )
703
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ ): @register_to_config def __init__( self : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : bool = False , ): '''simple docstring''' super().__init__() lowercase_ = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = False lowercase_ = nn.Dropout(p=UpperCamelCase__ ) lowercase_ = TaConfig( vocab_size=UpperCamelCase__ , d_model=UpperCamelCase__ , num_heads=UpperCamelCase__ , d_kv=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ , feed_forward_proj=UpperCamelCase__ , is_decoder=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , ) lowercase_ = nn.ModuleList() for lyr_num in range(UpperCamelCase__ ): lowercase_ = TaBlock(UpperCamelCase__ ) self.encoders.append(UpperCamelCase__ ) lowercase_ = TaLayerNorm(UpperCamelCase__ ) lowercase_ = nn.Dropout(p=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = self.token_embedder(UpperCamelCase__ ) lowercase_ = encoder_input_tokens.shape[1] lowercase_ = torch.arange(UpperCamelCase__ , device=encoder_input_tokens.device ) x += self.position_encoding(UpperCamelCase__ ) lowercase_ = self.dropout_pre(UpperCamelCase__ ) # inverted the attention mask lowercase_ = encoder_input_tokens.size() lowercase_ = self.get_extended_attention_mask(UpperCamelCase__ , UpperCamelCase__ ) for lyr in self.encoders: lowercase_ = lyr(UpperCamelCase__ , UpperCamelCase__ )[0] lowercase_ = self.layer_norm(UpperCamelCase__ ) return self.dropout_post(UpperCamelCase__ ), encoder_inputs_mask
650
0