code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import glob import os import random from string import ascii_lowercase, digits import cva lowerCamelCase : Optional[Any] = "" lowerCamelCase : Any = "" lowerCamelCase : str = "" lowerCamelCase : int = 1 # (0 is vertical, 1 is horizontal) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = get_dataset(__UpperCamelCase , __UpperCamelCase ) print('Processing...' ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = update_image_and_anno(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) for index, image in enumerate(__UpperCamelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' lowerCamelCase_ = random_chars(32 ) lowerCamelCase_ = paths[index].split(os.sep )[-1].rsplit('.' , 1 )[0] lowerCamelCase_ = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , __UpperCamelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Success {index+1}/{len(__UpperCamelCase )} with {file_name}""" ) lowerCamelCase_ = [] for anno in new_annos[index]: lowerCamelCase_ = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(__UpperCamelCase ) with open(f"""/{file_root}.txt""" , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def _SCREAMING_SNAKE_CASE ( lowercase : Tuple , lowercase : str ): '''simple docstring''' lowerCamelCase_ = [] lowerCamelCase_ = [] for label_file in glob.glob(os.path.join(__UpperCamelCase , '*.txt' ) ): lowerCamelCase_ = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(__UpperCamelCase ) as in_file: lowerCamelCase_ = in_file.readlines() lowerCamelCase_ = os.path.join(__UpperCamelCase , f"""{label_name}.jpg""" ) lowerCamelCase_ = [] for obj_list in obj_lists: lowerCamelCase_ = obj_list.rstrip('\n' ).split(' ' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__UpperCamelCase ) labels.append(__UpperCamelCase ) return img_paths, labels def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] , lowercase : Any , lowercase : Optional[Any] = 1 ): '''simple docstring''' lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = [] for idx in range(len(__UpperCamelCase ) ): lowerCamelCase_ = [] lowerCamelCase_ = img_list[idx] path_list.append(__UpperCamelCase ) lowerCamelCase_ = anno_list[idx] lowerCamelCase_ = cva.imread(__UpperCamelCase ) if flip_type == 1: lowerCamelCase_ = cva.flip(__UpperCamelCase , __UpperCamelCase ) for bbox in img_annos: lowerCamelCase_ = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: lowerCamelCase_ = cva.flip(__UpperCamelCase , __UpperCamelCase ) for bbox in img_annos: lowerCamelCase_ = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__UpperCamelCase ) new_imgs_list.append(__UpperCamelCase ) return new_imgs_list, new_annos_lists, path_list def _SCREAMING_SNAKE_CASE ( lowercase : str = 32 ): '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" lowerCamelCase_ = ascii_lowercase + digits return "".join(random.choice(__UpperCamelCase ) for _ in range(__UpperCamelCase ) ) if __name__ == "__main__": main() print("DONE ✅")
708
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Optional[int] , A_ : Tuple , A_ : str , A_ : int ) -> Any: """simple docstring""" self.assertEqual(len(A_ ) , len(A_ ) ) for a, b in zip(A_ , A_ ): self.assertAlmostEqual(A_ , A_ , delta=A_ ) def a__ ( self : int ) -> str: """simple docstring""" lowerCamelCase_ = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(A_ ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = None ops.enable_eager_execution_internal() lowerCamelCase_ = tf.config.list_physical_devices('CPU' ) if len(A_ ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) lowerCamelCase_ = tf.config.list_logical_devices(device_type='CPU' ) lowerCamelCase_ = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): lowerCamelCase_ = GradientAccumulator() lowerCamelCase_ = tf.Variable([4.0, 3.0] ) lowerCamelCase_ , lowerCamelCase_ = create_optimizer(5E-5 , 10 , 5 ) lowerCamelCase_ = tf.Variable([0.0, 0.0] , trainable=A_ ) def accumulate_on_replica(A_ : Any ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(A_ : List[Any] , A_ : Tuple ): with strategy.scope(): lowerCamelCase_ = strategy.experimental_local_results(A_ ) local_variables[0].assign(A_ ) local_variables[1].assign(A_ ) strategy.run(A_ , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(A_ ) def _check_local_values(A_ : List[Any] , A_ : str ): lowerCamelCase_ = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , A_ , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , A_ , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
651
0
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def _SCREAMING_SNAKE_CASE ( lowercase : List[str] ): '''simple docstring''' lowerCamelCase_ = int(number**0.5 ) return number == sq * sq def _SCREAMING_SNAKE_CASE ( lowercase : Any , lowercase : List[str] , lowercase : List[str] , lowercase : Any , lowercase : Optional[Any] , lowercase : List[str] ): '''simple docstring''' lowerCamelCase_ = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den lowerCamelCase_ = x_den * y_den * z_den lowerCamelCase_ = gcd(lowercase , lowercase ) top //= hcf bottom //= hcf return top, bottom def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] = 35 ): '''simple docstring''' lowerCamelCase_ = set() lowerCamelCase_ = 42 lowerCamelCase_ = Fraction(0 ) lowerCamelCase_ = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 lowerCamelCase_ = x_num * y_den + x_den * y_num lowerCamelCase_ = x_den * y_den lowerCamelCase_ = gcd(lowercase , lowercase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCamelCase_ = add_three( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) unique_s.add(lowercase ) # n=2 lowerCamelCase_ = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) lowerCamelCase_ = x_den * x_den * y_den * y_den if is_sq(lowercase ) and is_sq(lowercase ): lowerCamelCase_ = int(sqrt(lowercase ) ) lowerCamelCase_ = int(sqrt(lowercase ) ) lowerCamelCase_ = gcd(lowercase , lowercase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCamelCase_ = add_three( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) unique_s.add(lowercase ) # n=-1 lowerCamelCase_ = x_num * y_num lowerCamelCase_ = x_den * y_num + x_num * y_den lowerCamelCase_ = gcd(lowercase , lowercase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCamelCase_ = add_three( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) unique_s.add(lowercase ) # n=2 lowerCamelCase_ = x_num * x_num * y_num * y_num lowerCamelCase_ = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(lowercase ) and is_sq(lowercase ): lowerCamelCase_ = int(sqrt(lowercase ) ) lowerCamelCase_ = int(sqrt(lowercase ) ) lowerCamelCase_ = gcd(lowercase , lowercase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCamelCase_ = add_three( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) unique_s.add(lowercase ) for num, den in unique_s: total += Fraction(lowercase , lowercase ) return total.denominator + total.numerator if __name__ == "__main__": print(F"""{solution() = }""")
709
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCamelCase : str = imread(r"digital_image_processing/image_data/lena_small.jpg") lowerCamelCase : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = cn.convert_to_negative(lowercase ) # assert negative_img array for at least one True assert negative_img.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(lowercase , 1_10 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() lowerCamelCase_ = canny.canny(lowercase ) # assert canny array for at least one True assert canny_array.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' assert gg.gaussian_filter(lowercase , 5 , sigma=0.9 ).all() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) lowerCamelCase_ = conv.img_convolve(lowercase , lowercase ).astype(lowercase ) assert res.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' assert med.median_filter(lowercase , 3 ).any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = sob.sobel_filter(lowercase ) assert grad.any() and theta.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = sp.make_sepia(lowercase , 20 ) assert sepia.all() def _SCREAMING_SNAKE_CASE ( lowercase : str = "digital_image_processing/image_data/lena_small.jpg" ): '''simple docstring''' lowerCamelCase_ = bs.Burkes(imread(lowercase , 1 ) , 1_20 ) burkes.process() assert burkes.output_img.any() def _SCREAMING_SNAKE_CASE ( lowercase : str = "digital_image_processing/image_data/lena_small.jpg" , ): '''simple docstring''' lowerCamelCase_ = rs.NearestNeighbour(imread(lowercase , 1 ) , 4_00 , 2_00 ) nn.process() assert nn.output.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. lowerCamelCase_ = imread(lowercase , 0 ) # Test for get_neighbors_pixel function() return not None lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = image[x_coordinate][y_coordinate] lowerCamelCase_ = lbp.get_neighbors_pixel( lowercase , lowercase , lowercase , lowercase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCamelCase_ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): lowerCamelCase_ = lbp.local_binary_value(lowercase , lowercase , lowercase ) assert lbp_image.any()
651
0
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A: '''simple docstring''' def __init__( self : Optional[Any] , A_ : Optional[int] , A_ : List[Any]=13 , A_ : Dict=30 , A_ : str=2 , A_ : List[str]=3 , A_ : Optional[int]=True , A_ : str=True , A_ : List[Any]=32 , A_ : Any=2 , A_ : Any=4 , A_ : int=37 , A_ : Dict="gelu" , A_ : Tuple=0.1 , A_ : Optional[Any]=0.1 , A_ : Tuple=10 , A_ : Optional[Any]=0.02 , A_ : List[Any]=3 , A_ : Any=None , ) -> str: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = is_training lowerCamelCase_ = use_labels lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCamelCase_ = (image_size // patch_size) ** 2 lowerCamelCase_ = num_patches + 1 def a__ ( self : Optional[int] ) -> Any: """simple docstring""" lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def a__ ( self : Dict ) -> Any: """simple docstring""" return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_a , initializer_range=self.initializer_range , ) def a__ ( self : str , A_ : str , A_ : Optional[int] , A_ : Optional[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = TFViTModel(config=_a ) lowerCamelCase_ = model(_a , training=_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. lowerCamelCase_ = self.image_size // 2 lowerCamelCase_ = pixel_values[:, :, :image_size, :image_size] lowerCamelCase_ = model(_a , interpolate_pos_encoding=_a , training=_a ) lowerCamelCase_ = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def a__ ( self : Optional[int] , A_ : Tuple , A_ : List[str] , A_ : Tuple ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.type_sequence_label_size lowerCamelCase_ = TFViTForImageClassification(_a ) lowerCamelCase_ = model(_a , labels=_a , training=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. lowerCamelCase_ = self.image_size // 2 lowerCamelCase_ = pixel_values[:, :, :image_size, :image_size] lowerCamelCase_ = model(_a , interpolate_pos_encoding=_a , training=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = TFViTForImageClassification(_a ) lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class A( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () UpperCamelCase = ( {'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification} if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def a__ ( self : List[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = TFViTModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def a__ ( self : List[Any] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def a__ ( self : int ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason='ViT does not use inputs_embeds' ) def a__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" pass def a__ ( self : Dict ) -> Any: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowerCamelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , tf.keras.layers.Layer ) ) def a__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(_a ) lowerCamelCase_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _a ) def a__ ( self : Dict ) -> Any: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def a__ ( self : Any ) -> List[Any]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def a__ ( self : str ) -> Tuple: """simple docstring""" lowerCamelCase_ = TFViTModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(_a ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class A( unittest.TestCase ): '''simple docstring''' @cached_property def a__ ( self : int ) -> Optional[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None @slow def a__ ( self : Tuple ) -> Dict: """simple docstring""" lowerCamelCase_ = TFViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=_a , return_tensors='tf' ) # forward pass lowerCamelCase_ = model(**_a ) # verify the logits lowerCamelCase_ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _a ) lowerCamelCase_ = tf.constant([-0.2744, 0.8215, -0.0836] ) tf.debugging.assert_near(outputs.logits[0, :3] , _a , atol=1E-4 )
710
class A: '''simple docstring''' def __init__( self : Dict ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = {} def a__ ( self : Union[str, Any] , A_ : List[Any] ) -> int: """simple docstring""" if vertex not in self.adjacency: lowerCamelCase_ = {} self.num_vertices += 1 def a__ ( self : int , A_ : int , A_ : Optional[Any] , A_ : List[str] ) -> Tuple: """simple docstring""" self.add_vertex(A_ ) self.add_vertex(A_ ) if head == tail: return lowerCamelCase_ = weight lowerCamelCase_ = weight def a__ ( self : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.get_edges() for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge edges.remove((tail, head, weight) ) for i in range(len(A_ ) ): lowerCamelCase_ = list(edges[i] ) edges.sort(key=lambda A_ : e[2] ) for i in range(len(A_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowerCamelCase_ = edges[i][2] + 1 for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge lowerCamelCase_ = weight lowerCamelCase_ = weight def __str__( self : str ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = '' for tail in self.adjacency: for head in self.adjacency[tail]: lowerCamelCase_ = self.adjacency[head][tail] string += f"""{head} -> {tail} == {weight}\n""" return string.rstrip('\n' ) def a__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def a__ ( self : List[str] ) -> int: """simple docstring""" return self.adjacency.keys() @staticmethod def a__ ( A_ : Optional[Any]=None , A_ : List[str]=None ) -> List[str]: """simple docstring""" lowerCamelCase_ = Graph() if vertices is None: lowerCamelCase_ = [] if edges is None: lowerCamelCase_ = [] for vertex in vertices: g.add_vertex(A_ ) for edge in edges: g.add_edge(*A_ ) return g class A: '''simple docstring''' def __init__( self : Optional[int] ) -> int: """simple docstring""" lowerCamelCase_ = {} lowerCamelCase_ = {} def __len__( self : Any ) -> List[str]: """simple docstring""" return len(self.parent ) def a__ ( self : List[str] , A_ : Any ) -> Dict: """simple docstring""" if item in self.parent: return self.find(A_ ) lowerCamelCase_ = item lowerCamelCase_ = 0 return item def a__ ( self : List[str] , A_ : Tuple ) -> Optional[int]: """simple docstring""" if item not in self.parent: return self.make_set(A_ ) if item != self.parent[item]: lowerCamelCase_ = self.find(self.parent[item] ) return self.parent[item] def a__ ( self : Any , A_ : int , A_ : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.find(A_ ) lowerCamelCase_ = self.find(A_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowerCamelCase_ = roota return roota if self.rank[roota] < self.rank[roota]: lowerCamelCase_ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowerCamelCase_ = roota return roota return None @staticmethod def a__ ( A_ : int ) -> Tuple: """simple docstring""" lowerCamelCase_ = graph.num_vertices lowerCamelCase_ = Graph.UnionFind() lowerCamelCase_ = [] while num_components > 1: lowerCamelCase_ = {} for vertex in graph.get_vertices(): lowerCamelCase_ = -1 lowerCamelCase_ = graph.get_edges() for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge edges.remove((tail, head, weight) ) for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge lowerCamelCase_ = union_find.find(A_ ) lowerCamelCase_ = union_find.find(A_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowerCamelCase_ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowerCamelCase_ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = cheap_edge[vertex] if union_find.find(A_ ) != union_find.find(A_ ): union_find.union(A_ , A_ ) mst_edges.append(cheap_edge[vertex] ) lowerCamelCase_ = num_components - 1 lowerCamelCase_ = Graph.build(edges=A_ ) return mst
651
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : str = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( lowercase : Dict , lowercase : Optional[Any]=False , lowercase : int=False ): '''simple docstring''' lowerCamelCase_ = '''backbone.''' if is_semantic else '''''' lowerCamelCase_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""{prefix}blocks.{i}.norm1.weight""", f"""beit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm1.bias""", f"""beit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""{prefix}blocks.{i}.attn.proj.weight""", f"""beit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""{prefix}blocks.{i}.attn.proj.bias""", f"""beit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm2.weight""", f"""beit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm2.bias""", f"""beit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc1.weight""", f"""beit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc1.bias""", f"""beit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc2.weight""", f"""beit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc2.bias""", f"""beit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ (f"""{prefix}cls_token""", 'beit.embeddings.cls_token'), (f"""{prefix}patch_embed.proj.weight""", 'beit.embeddings.patch_embeddings.projection.weight'), (f"""{prefix}patch_embed.proj.bias""", 'beit.embeddings.patch_embeddings.projection.bias'), (f"""{prefix}pos_embed""", 'beit.embeddings.position_embeddings'), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('mask_token', 'beit.embeddings.mask_token'), ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) else: # layernorm + classification head rename_keys.extend( [ ('fc_norm.weight', 'beit.pooler.layernorm.weight'), ('fc_norm.bias', 'beit.pooler.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : int , lowercase : Optional[Any]=False , lowercase : str=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): lowerCamelCase_ = '''backbone.''' if is_semantic else '''''' # queries, keys and values lowerCamelCase_ = state_dict.pop(f"""{prefix}blocks.{i}.attn.qkv.weight""" ) lowerCamelCase_ = state_dict.pop(f"""{prefix}blocks.{i}.attn.q_bias""" ) lowerCamelCase_ = state_dict.pop(f"""{prefix}blocks.{i}.attn.v_bias""" ) lowerCamelCase_ = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase_ = q_bias lowerCamelCase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase_ = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase_ = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained lowerCamelCase_ = state_dict.pop(f"""{prefix}blocks.{i}.gamma_1""" ) lowerCamelCase_ = state_dict.pop(f"""{prefix}blocks.{i}.gamma_2""" ) lowerCamelCase_ = gamma_a lowerCamelCase_ = gamma_a def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : Dict , lowercase : Tuple ): '''simple docstring''' lowerCamelCase_ = dct.pop(__UpperCamelCase ) lowerCamelCase_ = val def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase_ = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] , lowercase : Union[str, Any] , lowercase : str=False ): '''simple docstring''' lowerCamelCase_ = False if '''rvlcdip''' in checkpoint_url else True lowerCamelCase_ = BeitConfig(use_absolute_position_embeddings=__UpperCamelCase , use_mask_token=__UpperCamelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: lowerCamelCase_ = 10_24 lowerCamelCase_ = 40_96 lowerCamelCase_ = 24 lowerCamelCase_ = 16 # labels if "rvlcdip" in checkpoint_url: lowerCamelCase_ = 16 lowerCamelCase_ = '''huggingface/label-files''' lowerCamelCase_ = '''rvlcdip-id2label.json''' lowerCamelCase_ = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='dataset' ) , 'r' ) ) lowerCamelCase_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} lowerCamelCase_ = idalabel lowerCamelCase_ = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys lowerCamelCase_ = torch.hub.load_state_dict_from_url(__UpperCamelCase , map_location='cpu' )['''model'''] lowerCamelCase_ = create_rename_keys(__UpperCamelCase , has_lm_head=__UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) read_in_q_k_v(__UpperCamelCase , __UpperCamelCase , has_lm_head=__UpperCamelCase ) # load HuggingFace model lowerCamelCase_ = BeitForMaskedImageModeling(__UpperCamelCase ) if has_lm_head else BeitForImageClassification(__UpperCamelCase ) model.eval() model.load_state_dict(__UpperCamelCase ) # Check outputs on an image lowerCamelCase_ = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=__UpperCamelCase ) lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=__UpperCamelCase , return_tensors='pt' ) lowerCamelCase_ = encoding['''pixel_values'''] lowerCamelCase_ = model(__UpperCamelCase ) lowerCamelCase_ = outputs.logits # verify logits lowerCamelCase_ = [1, 16] if '''rvlcdip''' in checkpoint_url else [1, 1_96, 81_92] assert logits.shape == torch.Size(__UpperCamelCase ), "Shape of logits not as expected" Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__UpperCamelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__UpperCamelCase ) if push_to_hub: if has_lm_head: lowerCamelCase_ = '''dit-base''' if '''base''' in checkpoint_url else '''dit-large''' else: lowerCamelCase_ = '''dit-base-finetuned-rvlcdip''' if '''dit-b''' in checkpoint_url else '''dit-large-finetuned-rvlcdip''' image_processor.push_to_hub( repo_path_or_name=Path(__UpperCamelCase , __UpperCamelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=__UpperCamelCase , ) model.push_to_hub( repo_path_or_name=Path(__UpperCamelCase , __UpperCamelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=__UpperCamelCase , ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", ) lowerCamelCase : str = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
711
def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 0 for i in range(1 , 10_01 ): total += i**i return str(lowercase )[-10:] if __name__ == "__main__": print(solution())
651
0
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : str = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : str ): '''simple docstring''' lowerCamelCase_ = RobertaPreLayerNormConfig.from_pretrained( lowerCamelCase_ , architectures=['RobertaPreLayerNormForMaskedLM'] ) # convert state_dict lowerCamelCase_ = torch.load(hf_hub_download(repo_id=lowerCamelCase_ , filename='pytorch_model.bin' ) ) lowerCamelCase_ = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('roberta.' ): lowerCamelCase_ = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ): continue lowerCamelCase_ = tensor_value lowerCamelCase_ = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=lowerCamelCase_ , config=lowerCamelCase_ , state_dict=lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) # convert tokenizer lowerCamelCase_ = AutoTokenizer.from_pretrained(lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint-repo", default=None, type=str, required=True, help="Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCamelCase : int = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
712
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase : Dict = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = ["ViTFeatureExtractor"] lowerCamelCase : Dict = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys lowerCamelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
651
0
def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' if n == 1 or not isinstance(__snake_case , __snake_case ): return 0 elif n == 2: return 1 else: lowerCamelCase_ = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = 0 lowerCamelCase_ = 2 while digits < n: index += 1 lowerCamelCase_ = len(str(fibonacci(__snake_case ) ) ) return index def _SCREAMING_SNAKE_CASE ( lowercase : int = 10_00 ): '''simple docstring''' return fibonacci_digits_index(__snake_case ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
713
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCamelCase : int = datasets.logging.get_logger(__name__) lowerCamelCase : Optional[Any] = "\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n" lowerCamelCase : Tuple = "\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n" lowerCamelCase : Optional[Any] = "\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting 'keep_singletons=False', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n 'mentions': mentions\n 'muc': MUC metric [Vilain et al, 1995]\n 'bcub': B-cubed [Bagga and Baldwin, 1998]\n 'ceafe': CEAFe [Luo et al., 2005]\n 'lea': LEA [Moosavi and Strube, 2016]\n 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric('coval')\n >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',\n ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',\n ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',\n ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',\n ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',\n ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {'mentions/recall': 1.0,[...] 'conll_score': 100.0}\n" def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Optional[int] , lowercase : Any=False , lowercase : Any=False , lowercase : Dict=True , lowercase : List[str]=False , lowercase : int="dummy_doc" ): '''simple docstring''' lowerCamelCase_ = {doc: key_lines} lowerCamelCase_ = {doc: sys_lines} lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowercase , key_doc_lines[doc] , lowercase ) key_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowercase , sys_doc_lines[doc] , lowercase ) sys_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) if remove_nested: lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowercase , lowercase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowercase , lowercase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowerCamelCase_ = reader.get_mention_assignments(lowercase , lowercase ) lowerCamelCase_ = reader.get_mention_assignments(lowercase , lowercase ) lowerCamelCase_ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( 'Number of removed nested coreferring mentions in the key ' f"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" ) logger.info( 'Number of resulting singleton clusters in the key ' f"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" ) if not keep_singletons: logger.info( f"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """ 'files, respectively' ) return doc_coref_infos def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Tuple , lowercase : List[str] , lowercase : List[Any] , lowercase : List[Any] , lowercase : Tuple , lowercase : str ): '''simple docstring''' lowerCamelCase_ = get_coref_infos(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 for name, metric in metrics: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = evaluator.evaluate_documents(lowercase , lowercase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f"""{name}/recall""": recall, f"""{name}/precision""": precision, f"""{name}/f1""": fa} ) logger.info( name.ljust(10 ) , f"""Recall: {recall * 1_00:.2f}""" , f""" Precision: {precision * 1_00:.2f}""" , f""" F1: {fa * 1_00:.2f}""" , ) if conll_subparts_num == 3: lowerCamelCase_ = (conll / 3) * 1_00 logger.info(f"""CoNLL score: {conll:.2f}""" ) output_scores.update({'conll_score': conll} ) return output_scores def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] ): '''simple docstring''' lowerCamelCase_ = False for line in key_lines: if not line.startswith('#' ): if len(line.split() ) > 6: lowerCamelCase_ = line.split()[5] if not parse_col == "-": lowerCamelCase_ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A( datasets.Metric ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Sequence(datasets.Value('string' ) ), } ) , codebase_urls=['https://github.com/ns-moosavi/coval'] , reference_urls=[ 'https://github.com/ns-moosavi/coval', 'https://www.aclweb.org/anthology/P16-1060', 'http://www.conll.cemantix.org/2012/data.html', ] , ) def a__ ( self : List[str] , A_ : Optional[Any] , A_ : Optional[int] , A_ : int=True , A_ : str=False , A_ : int=False , A_ : Union[str, Any]=False ) -> List[Any]: """simple docstring""" lowerCamelCase_ = [ ('mentions', evaluator.mentions), ('muc', evaluator.muc), ('bcub', evaluator.b_cubed), ('ceafe', evaluator.ceafe), ('lea', evaluator.lea), ] if min_span: lowerCamelCase_ = util.check_gold_parse_annotation(A_ ) if not has_gold_parse: raise NotImplementedError('References should have gold parse annotation to use \'min_span\'.' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowerCamelCase_ = evaluate( key_lines=A_ , sys_lines=A_ , metrics=A_ , NP_only=A_ , remove_nested=A_ , keep_singletons=A_ , min_span=A_ , ) return score
651
0
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class A: '''simple docstring''' def a__ ( self : Optional[Any] , A_ : Dict ) -> List[Any]: """simple docstring""" raise NotImplementedError() def a__ ( self : Tuple ) -> str: """simple docstring""" raise NotImplementedError() class A( __lowercase ): '''simple docstring''' def __init__( self : List[Any] , A_ : List[Any] , A_ : List[Any] = False , **A_ : Optional[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = tokenizer lowerCamelCase_ = skip_prompt lowerCamelCase_ = decode_kwargs # variables used in the streaming process lowerCamelCase_ = [] lowerCamelCase_ = 0 lowerCamelCase_ = True def a__ ( self : Tuple , A_ : Union[str, Any] ) -> int: """simple docstring""" if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError('TextStreamer only supports batch size 1' ) elif len(value.shape ) > 1: lowerCamelCase_ = value[0] if self.skip_prompt and self.next_tokens_are_prompt: lowerCamelCase_ = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) lowerCamelCase_ = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith('\n' ): lowerCamelCase_ = text[self.print_len :] lowerCamelCase_ = [] lowerCamelCase_ = 0 # If the last token is a CJK character, we print the characters. elif len(__A ) > 0 and self._is_chinese_char(ord(text[-1] ) ): lowerCamelCase_ = text[self.print_len :] self.print_len += len(__A ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: lowerCamelCase_ = text[self.print_len : text.rfind(' ' ) + 1] self.print_len += len(__A ) self.on_finalized_text(__A ) def a__ ( self : Any ) -> int: """simple docstring""" if len(self.token_cache ) > 0: lowerCamelCase_ = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) lowerCamelCase_ = text[self.print_len :] lowerCamelCase_ = [] lowerCamelCase_ = 0 else: lowerCamelCase_ = '' lowerCamelCase_ = True self.on_finalized_text(__A , stream_end=__A ) def a__ ( self : Dict , A_ : List[Any] , A_ : Dict = False ) -> Tuple: """simple docstring""" print(__A , flush=__A , end='' if not stream_end else None ) def a__ ( self : str , A_ : str ) -> str: """simple docstring""" if ( (cp >= 0X4E_00 and cp <= 0X9F_FF) or (cp >= 0X34_00 and cp <= 0X4D_BF) # or (cp >= 0X2_00_00 and cp <= 0X2_A6_DF) # or (cp >= 0X2_A7_00 and cp <= 0X2_B7_3F) # or (cp >= 0X2_B7_40 and cp <= 0X2_B8_1F) # or (cp >= 0X2_B8_20 and cp <= 0X2_CE_AF) # or (cp >= 0XF9_00 and cp <= 0XFA_FF) or (cp >= 0X2_F8_00 and cp <= 0X2_FA_1F) # ): # return True return False class A( __lowercase ): '''simple docstring''' def __init__( self : int , A_ : Dict , A_ : Any = False , A_ : Optional[int] = None , **A_ : str ) -> List[Any]: """simple docstring""" super().__init__(__A , __A , **__A ) lowerCamelCase_ = Queue() lowerCamelCase_ = None lowerCamelCase_ = timeout def a__ ( self : Dict , A_ : int , A_ : Optional[Any] = False ) -> Any: """simple docstring""" self.text_queue.put(__A , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return self def a__ ( self : Tuple ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
714
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase ) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCamelCase = Features({'''text''': Value('''string''' )} ) UpperCamelCase = Features({} ) UpperCamelCase = "text" @property def a__ ( self : List[Any] ) -> Dict[str, str]: """simple docstring""" return {self.text_column: "text"}
651
0
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowerCamelCase : Dict = logging.get_logger(__name__) class A( UpperCamelCase__ ): '''simple docstring''' def __init__( self : List[Any] , *A_ : Tuple , **A_ : Dict ) -> None: """simple docstring""" warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , __A , ) super().__init__(*__A , **__A )
715
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''new-model''' if is_tf_available(): class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = NewModelConfig @require_tf class A( unittest.TestCase ): '''simple docstring''' @slow def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = 'bert-base-cased' lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = 'bert-base-cased' lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForPreTraining.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForCausalLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForCausalLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : int ) -> str: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForMaskedLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForMaskedLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Any ) -> List[Any]: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Tuple ) -> str: """simple docstring""" for model_name in ["bert-base-uncased"]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForSequenceClassification.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Any: """simple docstring""" for model_name in ["bert-base-uncased"]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForQuestionAnswering.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow @require_tensorflow_probability def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForTableQuestionAnswering.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForTableQuestionAnswering.from_pretrained( A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=A_ ) , 14410 ) def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=A_ ) , 14410 ) def a__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = TFAutoModel.from_pretrained('sgugger/funnel-random-tiny' ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = copy.deepcopy(model.config ) lowerCamelCase_ = ['FunnelBaseModel'] lowerCamelCase_ = TFAutoModel.from_config(A_ ) self.assertIsInstance(A_ , A_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(A_ ) lowerCamelCase_ = TFAutoModel.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : Any ) -> Tuple: """simple docstring""" try: AutoConfig.register('new-model' , A_ ) lowerCamelCase_ = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(A_ ): auto_class.register(A_ , A_ ) auto_class.register(A_ , A_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(A_ ): auto_class.register(A_ , A_ ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCamelCase_ = BertModelTester(self ).get_config() lowerCamelCase_ = NewModelConfig(**tiny_config.to_dict() ) lowerCamelCase_ = auto_class.from_config(A_ ) self.assertIsInstance(A_ , A_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(A_ ) lowerCamelCase_ = auto_class.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def a__ ( self : int ) -> int: """simple docstring""" with self.assertRaisesRegex( A_ , 'bert-base is not a local folder and is not a valid model identifier' ): lowerCamelCase_ = TFAutoModel.from_pretrained('bert-base' ) def a__ ( self : Any ) -> Dict: """simple docstring""" with self.assertRaisesRegex( A_ , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowerCamelCase_ = TFAutoModel.from_pretrained(A_ , revision='aaaaaa' ) def a__ ( self : str ) -> int: """simple docstring""" with self.assertRaisesRegex( A_ , 'hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin' , ): lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def a__ ( self : Any ) -> List[Any]: """simple docstring""" with self.assertRaisesRegex(A_ , 'Use `from_pt=True` to load this model' ): lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint lowerCamelCase_ = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) with RequestCounter() as counter: lowerCamelCase_ = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
651
0
from __future__ import annotations def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] ): '''simple docstring''' return [ord(_UpperCAmelCase ) - 96 for elem in plain] def _SCREAMING_SNAKE_CASE ( lowercase : List[str] ): '''simple docstring''' return "".join(chr(elem + 96 ) for elem in encoded ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = encode(input('-> ' ).strip().lower() ) print('Encoded: ' , _UpperCAmelCase ) print('Decoded:' , decode(_UpperCAmelCase ) ) if __name__ == "__main__": main()
716
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : List[str] = { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json", } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''gpt_neox_japanese''' def __init__( self : int , A_ : Dict=32000 , A_ : List[Any]=2560 , A_ : Dict=32 , A_ : Union[str, Any]=32 , A_ : List[Any]=4 , A_ : List[str]="gelu" , A_ : Dict=1.00 , A_ : int=10000 , A_ : Dict=2048 , A_ : Dict=0.02 , A_ : Any=1E-5 , A_ : Union[str, Any]=True , A_ : int=31996 , A_ : List[str]=31999 , A_ : List[Any]=0.1 , A_ : List[Any]=0.0 , **A_ : Tuple , ) -> Dict: """simple docstring""" super().__init__(bos_token_id=A_ , eos_token_id=A_ , **A_ ) lowerCamelCase_ = vocab_size lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_multiple_size lowerCamelCase_ = hidden_act lowerCamelCase_ = rotary_pct lowerCamelCase_ = rotary_emb_base lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = use_cache lowerCamelCase_ = attention_dropout lowerCamelCase_ = hidden_dropout
651
0
'''simple docstring''' import re from filelock import FileLock try: import nltk lowerCamelCase : Optional[Any] = True except (ImportError, ModuleNotFoundError): lowerCamelCase : Any = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' re.sub('<n>' , '' , lowercase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(lowercase ) )
717
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow lowerCamelCase : List[Any] = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ "text-classification", "language-modeling", "summarization", "token-classification", "question-answering", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) lowerCamelCase : Tuple = logging.getLogger() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument('-f' ) lowerCamelCase_ = parser.parse_args() return args.f def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Dict="eval" ): '''simple docstring''' lowerCamelCase_ = os.path.join(lowercase , f"""{split}_results.json""" ) if os.path.exists(lowercase ): with open(lowercase , 'r' ) as f: return json.load(lowercase ) raise ValueError(f"""can't find {path}""" ) lowerCamelCase : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(A_ , 'argv' , A_ ): run_flax_glue.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) @slow def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A_ , 'argv' , A_ ): run_clm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertLess(result['eval_perplexity'] , 100 ) @slow def a__ ( self : str ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(A_ , 'argv' , A_ ): run_summarization_flax.main() lowerCamelCase_ = get_results(A_ , split='test' ) self.assertGreaterEqual(result['test_rouge1'] , 10 ) self.assertGreaterEqual(result['test_rouge2'] , 2 ) self.assertGreaterEqual(result['test_rougeL'] , 7 ) self.assertGreaterEqual(result['test_rougeLsum'] , 7 ) @slow def a__ ( self : Optional[int] ) -> str: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(A_ , 'argv' , A_ ): run_mlm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertLess(result['eval_perplexity'] , 42 ) @slow def a__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A_ , 'argv' , A_ ): run_ta_mlm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.42 ) @slow def a__ ( self : int ) -> Tuple: """simple docstring""" lowerCamelCase_ = 7 if get_gpu_count() > 1 else 2 lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(A_ , 'argv' , A_ ): run_flax_ner.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) self.assertGreaterEqual(result['eval_f1'] , 0.3 ) @slow def a__ ( self : str ) -> int: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(A_ , 'argv' , A_ ): run_qa.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_f1'] , 30 ) self.assertGreaterEqual(result['eval_exact'] , 30 )
651
0
import sys import turtle def _SCREAMING_SNAKE_CASE ( lowercase : Any , lowercase : Dict ): '''simple docstring''' return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : Union[str, Any] , lowercase : Optional[int] , lowercase : int , ): '''simple docstring''' my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(_lowercase , get_mid(_lowercase , _lowercase ) , get_mid(_lowercase , _lowercase ) , depth - 1 ) triangle(_lowercase , get_mid(_lowercase , _lowercase ) , get_mid(_lowercase , _lowercase ) , depth - 1 ) triangle(_lowercase , get_mid(_lowercase , _lowercase ) , get_mid(_lowercase , _lowercase ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( "Correct format for using this script: " "python fractals.py <int:depth_for_fractal>" ) lowerCamelCase : Any = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("red") lowerCamelCase : Any = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
718
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class A: '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = None UpperCamelCase = None lowerCamelCase : str = namedtuple("CoinsDistribResult", "moves excess") def _SCREAMING_SNAKE_CASE ( lowercase : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(lowercase : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowercase : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowercase ) != count_coins(lowercase ): raise ValueError('The nodes number should be same as the number of coins' ) # Main calculation def get_distrib(lowercase : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowerCamelCase_ , lowerCamelCase_ = get_distrib(node.left ) lowerCamelCase_ , lowerCamelCase_ = get_distrib(node.right ) lowerCamelCase_ = 1 - left_distrib_excess lowerCamelCase_ = 1 - right_distrib_excess lowerCamelCase_ = ( left_distrib_moves + right_distrib_moves + abs(lowercase ) + abs(lowercase ) ) lowerCamelCase_ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowercase , lowercase ) return get_distrib(lowercase )[0] if __name__ == "__main__": import doctest doctest.testmod()
651
0
from collections.abc import Iterable from typing import Any class A: '''simple docstring''' def __init__( self : List[Any] , A_ : Union[str, Any] = None ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = value lowerCamelCase_ = None # Added in order to delete a node easier lowerCamelCase_ = None lowerCamelCase_ = None def __repr__( self : Any ) -> Any: """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f"""{self.value}""": (self.left, self.right)} , indent=1 ) class A: '''simple docstring''' def __init__( self : Tuple , A_ : Union[str, Any] = None ) -> Any: """simple docstring""" lowerCamelCase_ = root def __str__( self : Dict ) -> int: """simple docstring""" return str(self.root ) def a__ ( self : Optional[int] , A_ : Dict , A_ : Union[str, Any] ) -> Any: """simple docstring""" if new_children is not None: # reset its kids lowerCamelCase_ = node.parent if node.parent is not None: # reset its parent if self.is_right(_lowercase ): # If it is the right children lowerCamelCase_ = new_children else: lowerCamelCase_ = new_children else: lowerCamelCase_ = new_children def a__ ( self : Optional[Any] , A_ : Union[str, Any] ) -> str: """simple docstring""" if node.parent and node.parent.right: return node == node.parent.right return False def a__ ( self : Optional[Any] ) -> str: """simple docstring""" return self.root is None def a__ ( self : Union[str, Any] , A_ : Dict ) -> int: """simple docstring""" lowerCamelCase_ = Node(_lowercase ) # create a new Node if self.empty(): # if Tree is empty lowerCamelCase_ = new_node # set its root else: # Tree is not empty lowerCamelCase_ = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: lowerCamelCase_ = new_node # We insert the new node in a leaf break else: lowerCamelCase_ = parent_node.left else: if parent_node.right is None: lowerCamelCase_ = new_node break else: lowerCamelCase_ = parent_node.right lowerCamelCase_ = parent_node def a__ ( self : str , *A_ : Tuple ) -> Dict: """simple docstring""" for value in values: self.__insert(_lowercase ) def a__ ( self : List[str] , A_ : Tuple ) -> Any: """simple docstring""" if self.empty(): raise IndexError('Warning: Tree is empty! please use another.' ) else: lowerCamelCase_ = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: lowerCamelCase_ = node.left if value < node.value else node.right return node def a__ ( self : int , A_ : str = None ) -> List[str]: """simple docstring""" if node is None: if self.root is None: return None lowerCamelCase_ = self.root if not self.empty(): while node.right is not None: lowerCamelCase_ = node.right return node def a__ ( self : str , A_ : Optional[int] = None ) -> Union[str, Any]: """simple docstring""" if node is None: lowerCamelCase_ = self.root if self.root is None: return None if not self.empty(): lowerCamelCase_ = self.root while node.left is not None: lowerCamelCase_ = node.left return node def a__ ( self : Dict , A_ : Any ) -> int: """simple docstring""" lowerCamelCase_ = self.search(_lowercase ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(_lowercase , _lowercase ) elif node.left is None: # Has only right children self.__reassign_nodes(_lowercase , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(_lowercase , node.left ) else: lowerCamelCase_ = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore lowerCamelCase_ = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def a__ ( self : Optional[Any] , A_ : Tuple ) -> Tuple: """simple docstring""" if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def a__ ( self : Any , A_ : Any=None ) -> Dict: """simple docstring""" if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def a__ ( self : Optional[int] , A_ : int , A_ : Union[str, Any] ) -> List[str]: """simple docstring""" if node: self.inorder(_lowercase , node.left ) arr.append(node.value ) self.inorder(_lowercase , node.right ) def a__ ( self : Optional[Any] , A_ : Any , A_ : List[str] ) -> Tuple: """simple docstring""" lowerCamelCase_ = [] self.inorder(_lowercase , _lowercase ) # append all values to list using inorder traversal return arr[k - 1] def _SCREAMING_SNAKE_CASE ( lowercase : Node | None ): '''simple docstring''' lowerCamelCase_ = [] if curr_node is not None: lowerCamelCase_ = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = (8, 3, 6, 1, 10, 14, 13, 4, 7) lowerCamelCase_ = BinarySearchTree() for i in testlist: t.insert(_lowerCamelCase ) # Prints all the elements of the list in order traversal print(_lowerCamelCase ) if t.search(6 ) is not None: print('The value 6 exists' ) else: print('The value 6 doesn\'t exist' ) if t.search(-1 ) is not None: print('The value -1 exists' ) else: print('The value -1 doesn\'t exist' ) if not t.empty(): print('Max Value: ' , t.get_max().value ) # type: ignore print('Min Value: ' , t.get_min().value ) # type: ignore for i in testlist: t.remove(_lowerCamelCase ) print(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
719
from manim import * class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = Rectangle(height=0.5 , width=0.5 ) lowerCamelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCamelCase_ = Rectangle(height=0.25 , width=0.25 ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(A_ , A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('CPU' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(A_ ) lowerCamelCase_ = [mem.copy() for i in range(4 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('GPU' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) gpu.move_to([-1, -1, 0] ) self.add(A_ ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('Model' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) model.move_to([3, -1.0, 0] ) self.add(A_ ) lowerCamelCase_ = [] lowerCamelCase_ = [] for i, rect in enumerate(A_ ): lowerCamelCase_ = fill.copy().set_fill(A_ , opacity=0.8 ) target.move_to(A_ ) model_arr.append(A_ ) lowerCamelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(A_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(A_ ) self.add(*A_ , *A_ ) lowerCamelCase_ = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(A_ , A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('Disk' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) disk.move_to([-4, -1.25, 0] ) self.add(A_ , A_ ) lowerCamelCase_ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase_ = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(A_ , A_ ) lowerCamelCase_ = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(A_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(A_ ) lowerCamelCase_ = MarkupText( f"""Now watch as an input is passed through the model\nand how the memory is utilized and handled.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ ) ) lowerCamelCase_ = Square(0.3 ) input.set_fill(A_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , A_ , buff=0.5 ) self.play(Write(A_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=A_ , buff=0.02 ) self.play(MoveToTarget(A_ ) ) self.play(FadeOut(A_ ) ) lowerCamelCase_ = Arrow(start=A_ , end=A_ , color=A_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , A_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowerCamelCase_ = MarkupText( f"""As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ , run_time=3 ) ) lowerCamelCase_ = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(A_ ) , Circumscribe(model_arr[0] , color=A_ , **A_ ) , Circumscribe(model_cpu_arr[0] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowerCamelCase_ = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , A_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowerCamelCase_ = AnimationGroup( FadeOut(A_ , run_time=0.5 ) , MoveToTarget(A_ , run_time=0.5 ) , FadeIn(A_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(A_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowerCamelCase_ = 0.7 self.play( Circumscribe(model_arr[i] , **A_ ) , Circumscribe(cpu_left_col_base[i] , **A_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , Circumscribe(model_arr[i + 1] , color=A_ , **A_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=A_ , **A_ ) , Circumscribe(cpu_left_col_base[-1] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowerCamelCase_ = a_c lowerCamelCase_ = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(A_ ) , FadeOut(A_ , run_time=0.5 ) , ) lowerCamelCase_ = MarkupText(f"""Inference on a model too large for GPU memory\nis successfully completed.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ , run_time=3 ) , MoveToTarget(A_ ) ) self.wait()
651
0
def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : int ): '''simple docstring''' while second != 0: lowerCamelCase_ = first & second first ^= second lowerCamelCase_ = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Optional[Any] = int(input("Enter the first number: ").strip()) lowerCamelCase : List[str] = int(input("Enter the second number: ").strip()) print(F"""{add(first, second) = }""")
720
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] ): '''simple docstring''' return EnvironmentCommand() class A( UpperCamelCase ): '''simple docstring''' @staticmethod def a__ ( A_ : ArgumentParser ) -> str: """simple docstring""" lowerCamelCase_ = parser.add_parser('env' ) download_parser.set_defaults(func=A_ ) def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = huggingface_hub.__version__ lowerCamelCase_ = 'not installed' lowerCamelCase_ = 'NA' if is_torch_available(): import torch lowerCamelCase_ = torch.__version__ lowerCamelCase_ = torch.cuda.is_available() lowerCamelCase_ = 'not installed' if is_transformers_available(): import transformers lowerCamelCase_ = transformers.__version__ lowerCamelCase_ = 'not installed' if is_accelerate_available(): import accelerate lowerCamelCase_ = accelerate.__version__ lowerCamelCase_ = 'not installed' if is_xformers_available(): import xformers lowerCamelCase_ = xformers.__version__ lowerCamelCase_ = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': f"""{pt_version} ({pt_cuda_available})""", 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(A_ ) ) return info @staticmethod def a__ ( A_ : Dict ) -> Any: """simple docstring""" return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
651
0
import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCamelCase : Optional[int] = abspath(join(dirname(dirname(dirname(__file__))), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] ): '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main lowerCamelCase_ = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(lowerCAmelCase__ , id=lowerCAmelCase__ )
721
from __future__ import annotations from fractions import Fraction def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : int ): '''simple docstring''' return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = [] lowerCamelCase_ = 11 lowerCamelCase_ = int('1' + '0' * digit_len ) for num in range(lowercase , lowercase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(lowercase , lowercase ): solutions.append(f"""{num}/{den}""" ) den += 1 num += 1 lowerCamelCase_ = 10 return solutions def _SCREAMING_SNAKE_CASE ( lowercase : int = 2 ): '''simple docstring''' lowerCamelCase_ = 1.0 for fraction in fraction_list(lowercase ): lowerCamelCase_ = Fraction(lowercase ) result *= frac.denominator / frac.numerator return int(lowercase ) if __name__ == "__main__": print(solution())
651
0
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 10 lowerCamelCase_ = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) lowerCamelCase_ = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [97], 'text': ['1976']}] * 10, 'id': list(range(_lowerCamelCase ) ), } , features=_lowerCamelCase , ) return dataset @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Optional[int] ): '''simple docstring''' lowerCamelCase_ = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=_lowerCamelCase ) return filename # FILE_CONTENT + files lowerCamelCase : List[Any] = """\ Text data. Second line of data.""" @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = tmp_path_factory.mktemp('data' ) / 'file.txt' lowerCamelCase_ = FILE_CONTENT with open(_lowerCamelCase , 'w' ) as f: f.write(_lowerCamelCase ) return filename @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] ): '''simple docstring''' import bza lowerCamelCase_ = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' lowerCamelCase_ = bytes(_lowerCamelCase , 'utf-8' ) with bza.open(_lowerCamelCase , 'wb' ) as f: f.write(_lowerCamelCase ) return path @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( lowercase : List[str] ): '''simple docstring''' import gzip lowerCamelCase_ = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) lowerCamelCase_ = bytes(_lowerCamelCase , 'utf-8' ) with gzip.open(_lowerCamelCase , 'wb' ) as f: f.write(_lowerCamelCase ) return path @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] ): '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame lowerCamelCase_ = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' lowerCamelCase_ = bytes(_lowerCamelCase , 'utf-8' ) with lza.frame.open(_lowerCamelCase , 'wb' ) as f: f.write(_lowerCamelCase ) return path @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( lowercase : Tuple , lowercase : Tuple ): '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr lowerCamelCase_ = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(_lowerCamelCase , 'w' ) as archive: archive.write(_lowerCamelCase , arcname=os.path.basename(_lowerCamelCase ) ) return path @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] , lowercase : Tuple ): '''simple docstring''' import tarfile lowerCamelCase_ = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(_lowerCamelCase , 'w' ) as f: f.add(_lowerCamelCase , arcname=os.path.basename(_lowerCamelCase ) ) return path @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( lowercase : Dict ): '''simple docstring''' import lzma lowerCamelCase_ = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' lowerCamelCase_ = bytes(_lowerCamelCase , 'utf-8' ) with lzma.open(_lowerCamelCase , 'wb' ) as f: f.write(_lowerCamelCase ) return path @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] , lowercase : int ): '''simple docstring''' import zipfile lowerCamelCase_ = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(_lowerCamelCase , 'w' ) as f: f.write(_lowerCamelCase , arcname=os.path.basename(_lowerCamelCase ) ) return path @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( lowercase : Dict ): '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd lowerCamelCase_ = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' lowerCamelCase_ = bytes(_lowerCamelCase , 'utf-8' ) with zstd.open(_lowerCamelCase , 'wb' ) as f: f.write(_lowerCamelCase ) return path @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( lowercase : Dict ): '''simple docstring''' lowerCamelCase_ = tmp_path_factory.mktemp('data' ) / 'file.xml' lowerCamelCase_ = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(_lowerCamelCase , 'w' ) as f: f.write(_lowerCamelCase ) return filename lowerCamelCase : Tuple = [ {"""col_1""": """0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """3""", """col_2""": 3, """col_3""": 3.0}, ] lowerCamelCase : Optional[Any] = [ {"""col_1""": """4""", """col_2""": 4, """col_3""": 4.0}, {"""col_1""": """5""", """col_2""": 5, """col_3""": 5.0}, ] lowerCamelCase : Optional[Any] = { """col_1""": ["""0""", """1""", """2""", """3"""], """col_2""": [0, 1, 2, 3], """col_3""": [0.0, 1.0, 2.0, 3.0], } lowerCamelCase : Optional[Any] = [ {"""col_3""": 0.0, """col_1""": """0""", """col_2""": 0}, {"""col_3""": 1.0, """col_1""": """1""", """col_2""": 1}, ] lowerCamelCase : Tuple = [ {"""col_1""": """s0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """s1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """s2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """s3""", """col_2""": 3, """col_3""": 3.0}, ] @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = datasets.Dataset.from_dict(_lowerCamelCase ) lowerCamelCase_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=_lowerCamelCase ) return path @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(_lowerCamelCase ) ) as con: lowerCamelCase_ = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(_lowerCamelCase , 'w' , newline='' ) as f: lowerCamelCase_ = csv.DictWriter(_lowerCamelCase , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(_lowerCamelCase ) return path @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( lowercase : Tuple ): '''simple docstring''' lowerCamelCase_ = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(_lowerCamelCase , 'w' , newline='' ) as f: lowerCamelCase_ = csv.DictWriter(_lowerCamelCase , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(_lowerCamelCase ) return path @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] , lowercase : List[str] ): '''simple docstring''' import bza lowerCamelCase_ = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(_lowerCamelCase , 'rb' ) as f: lowerCamelCase_ = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(_lowerCamelCase , 'wb' ) as f: f.write(_lowerCamelCase ) return path @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( lowercase : Dict , lowercase : Tuple , lowercase : Tuple ): '''simple docstring''' lowerCamelCase_ = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(_lowerCamelCase , 'w' ) as f: f.write(_lowerCamelCase , arcname=os.path.basename(_lowerCamelCase ) ) f.write(_lowerCamelCase , arcname=os.path.basename(_lowerCamelCase ) ) return path @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : Optional[int] , lowercase : Any ): '''simple docstring''' lowerCamelCase_ = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(_lowerCamelCase , 'w' ) as f: f.write(_lowerCamelCase , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(_lowerCamelCase , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( lowercase : List[str] , lowercase : str , lowercase : Optional[int] ): '''simple docstring''' lowerCamelCase_ = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(_lowerCamelCase , 'w' ) as f: f.write(_lowerCamelCase , arcname=os.path.join('main_dir' , os.path.basename(_lowerCamelCase ) ) ) f.write(_lowerCamelCase , arcname=os.path.join('main_dir' , os.path.basename(_lowerCamelCase ) ) ) return path @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( lowercase : List[str] ): '''simple docstring''' lowerCamelCase_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) lowerCamelCase_ = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(_lowerCamelCase , 'wb' ) as f: lowerCamelCase_ = pq.ParquetWriter(_lowerCamelCase , schema=_lowerCamelCase ) lowerCamelCase_ = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(_lowerCamelCase ) )] for k in DATA[0]} , schema=_lowerCamelCase ) writer.write_table(_lowerCamelCase ) writer.close() return path @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) lowerCamelCase_ = {'data': DATA} with open(_lowerCamelCase , 'w' ) as f: json.dump(_lowerCamelCase , _lowerCamelCase ) return path @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] ): '''simple docstring''' lowerCamelCase_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) lowerCamelCase_ = {'data': DATA_DICT_OF_LISTS} with open(_lowerCamelCase , 'w' ) as f: json.dump(_lowerCamelCase , _lowerCamelCase ) return path @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(_lowerCamelCase , 'w' ) as f: for item in DATA: f.write(json.dumps(_lowerCamelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] ): '''simple docstring''' lowerCamelCase_ = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(_lowerCamelCase , 'w' ) as f: for item in DATA: f.write(json.dumps(_lowerCamelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(_lowerCamelCase , 'w' ) as f: for item in DATA_312: f.write(json.dumps(_lowerCamelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] ): '''simple docstring''' lowerCamelCase_ = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(_lowerCamelCase , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(_lowerCamelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( lowercase : Dict , lowercase : Optional[Any] ): '''simple docstring''' import gzip lowerCamelCase_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(_lowerCamelCase , 'rb' ) as orig_file: with gzip.open(_lowerCamelCase , 'wb' ) as zipped_file: zipped_file.writelines(_lowerCamelCase ) return path @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : List[Any] ): '''simple docstring''' import gzip lowerCamelCase_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(_lowerCamelCase , 'rb' ) as orig_file: with gzip.open(_lowerCamelCase , 'wb' ) as zipped_file: zipped_file.writelines(_lowerCamelCase ) return path @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] , lowercase : Union[str, Any] , lowercase : Optional[int] ): '''simple docstring''' lowerCamelCase_ = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(_lowerCamelCase , 'w' ) as f: f.write(_lowerCamelCase , arcname=os.path.basename(_lowerCamelCase ) ) f.write(_lowerCamelCase , arcname=os.path.basename(_lowerCamelCase ) ) return path @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( lowercase : Dict , lowercase : str , lowercase : str , lowercase : Union[str, Any] ): '''simple docstring''' lowerCamelCase_ = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(_lowerCamelCase , 'w' ) as f: f.write(_lowerCamelCase , arcname=os.path.join('nested' , os.path.basename(_lowerCamelCase ) ) ) return path @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( lowercase : Dict , lowercase : int , lowercase : List[str] ): '''simple docstring''' lowerCamelCase_ = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(_lowerCamelCase , 'w' ) as f: f.write(_lowerCamelCase , arcname=os.path.join('main_dir' , os.path.basename(_lowerCamelCase ) ) ) f.write(_lowerCamelCase , arcname=os.path.join('main_dir' , os.path.basename(_lowerCamelCase ) ) ) return path @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] , lowercase : Optional[Any] , lowercase : str ): '''simple docstring''' lowerCamelCase_ = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(_lowerCamelCase , 'w' ) as f: f.add(_lowerCamelCase , arcname=os.path.basename(_lowerCamelCase ) ) f.add(_lowerCamelCase , arcname=os.path.basename(_lowerCamelCase ) ) return path @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : Optional[Any] , lowercase : str ): '''simple docstring''' lowerCamelCase_ = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(_lowerCamelCase , 'w' ) as f: f.add(_lowerCamelCase , arcname=os.path.join('nested' , os.path.basename(_lowerCamelCase ) ) ) return path @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( lowercase : Tuple ): '''simple docstring''' lowerCamelCase_ = ['0', '1', '2', '3'] lowerCamelCase_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(_lowerCamelCase , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( lowercase : List[str] ): '''simple docstring''' lowerCamelCase_ = ['0', '1', '2', '3'] lowerCamelCase_ = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(_lowerCamelCase , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( lowercase : Tuple ): '''simple docstring''' lowerCamelCase_ = ['0', '1', '2', '3'] lowerCamelCase_ = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(_lowerCamelCase , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Dict , lowercase : Dict ): '''simple docstring''' lowerCamelCase_ = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(_lowerCamelCase , 'w' ) as f: f.write(_lowerCamelCase , arcname=os.path.basename(_lowerCamelCase ) ) f.write(_lowerCamelCase , arcname=os.path.basename(_lowerCamelCase ) ) return path @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Optional[int] , lowercase : Optional[int] ): '''simple docstring''' lowerCamelCase_ = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(_lowerCamelCase , 'w' ) as f: f.write(_lowerCamelCase , arcname=os.path.join('main_dir' , os.path.basename(_lowerCamelCase ) ) ) f.write(_lowerCamelCase , arcname=os.path.join('main_dir' , os.path.basename(_lowerCamelCase ) ) ) return path @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Tuple , lowercase : Any ): '''simple docstring''' lowerCamelCase_ = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(_lowerCamelCase , 'w' ) as f: f.write(_lowerCamelCase , arcname=os.path.basename('unsupported.ext' ) ) f.write(_lowerCamelCase , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) lowerCamelCase_ = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(_lowerCamelCase ) return path @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( lowercase : Tuple , lowercase : List[str] ): '''simple docstring''' lowerCamelCase_ = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(_lowerCamelCase , 'w' ) as f: f.write(_lowerCamelCase , arcname=os.path.basename(_lowerCamelCase ) ) f.write(_lowerCamelCase , arcname=os.path.basename(_lowerCamelCase ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( lowercase : Dict ): '''simple docstring''' lowerCamelCase_ = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) return data_dir
700
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase : List[Any] = logging.get_logger(__name__) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : List[Any] , A_ : bool = True , A_ : Dict[str, int] = None , A_ : PILImageResampling = PILImageResampling.BICUBIC , A_ : bool = True , A_ : Dict[str, int] = None , A_ : bool = True , A_ : Union[int, float] = 1 / 255 , A_ : bool = True , A_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , A_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **A_ : Tuple , ) -> None: """simple docstring""" super().__init__(**A_ ) lowerCamelCase_ = size if size is not None else {'shortest_edge': 224} lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) lowerCamelCase_ = crop_size if crop_size is not None else {'height': 224, 'width': 224} lowerCamelCase_ = get_size_dict(A_ , param_name='crop_size' ) lowerCamelCase_ = do_resize lowerCamelCase_ = size lowerCamelCase_ = resample lowerCamelCase_ = do_center_crop lowerCamelCase_ = crop_size lowerCamelCase_ = do_rescale lowerCamelCase_ = rescale_factor lowerCamelCase_ = do_normalize lowerCamelCase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowerCamelCase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def a__ ( self : Optional[Any] , A_ : np.ndarray , A_ : Dict[str, int] , A_ : PILImageResampling = PILImageResampling.BICUBIC , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Tuple , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: lowerCamelCase_ = int((256 / 224) * size['shortest_edge'] ) lowerCamelCase_ = get_resize_output_image_size(A_ , size=A_ , default_to_square=A_ ) lowerCamelCase_ = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( A_ , size=(size_dict['height'], size_dict['width']) , resample=A_ , data_format=A_ , **A_ ) def a__ ( self : Any , A_ : np.ndarray , A_ : Dict[str, int] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Any , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(A_ , size=(size['height'], size['width']) , data_format=A_ , **A_ ) def a__ ( self : Optional[Any] , A_ : np.ndarray , A_ : Union[int, float] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Optional[int] , ) -> np.ndarray: """simple docstring""" return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def a__ ( self : List[str] , A_ : np.ndarray , A_ : Union[float, List[float]] , A_ : Union[float, List[float]] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : str , ) -> np.ndarray: """simple docstring""" return normalize(A_ , mean=A_ , std=A_ , data_format=A_ , **A_ ) def a__ ( self : Optional[int] , A_ : ImageInput , A_ : Optional[bool] = None , A_ : Optional[Dict[str, int]] = None , A_ : PILImageResampling = None , A_ : Optional[bool] = None , A_ : Optional[Dict[str, int]] = None , A_ : Optional[bool] = None , A_ : Optional[float] = None , A_ : Optional[bool] = None , A_ : Optional[Union[float, Iterable[float]]] = None , A_ : Optional[Union[float, Iterable[float]]] = None , A_ : Optional[TensorType] = None , A_ : ChannelDimension = ChannelDimension.FIRST , **A_ : List[Any] , ) -> BatchFeature: """simple docstring""" lowerCamelCase_ = do_resize if do_resize is not None else self.do_resize lowerCamelCase_ = resample if resample is not None else self.resample lowerCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase_ = image_mean if image_mean is not None else self.image_mean lowerCamelCase_ = image_std if image_std is not None else self.image_std lowerCamelCase_ = size if size is not None else self.size lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) lowerCamelCase_ = crop_size if crop_size is not None else self.crop_size lowerCamelCase_ = get_size_dict(A_ , param_name='crop_size' ) lowerCamelCase_ = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCamelCase_ = [to_numpy_array(A_ ) for image in images] if do_resize: lowerCamelCase_ = [self.resize(A_ , A_ , A_ ) for image in images] if do_center_crop: lowerCamelCase_ = [self.center_crop(A_ , A_ ) for image in images] if do_rescale: lowerCamelCase_ = [self.rescale(A_ , A_ ) for image in images] if do_normalize: lowerCamelCase_ = [self.normalize(A_ , A_ , A_ ) for image in images] lowerCamelCase_ = [to_channel_dimension_format(A_ , A_ ) for image in images] lowerCamelCase_ = {'pixel_values': images} return BatchFeature(data=A_ , tensor_type=A_ )
651
0
import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters lowerCamelCase : List[Any] = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : Union[str, Any] , lowercase : List[str] , lowercase : Tuple=None , lowercase : Tuple=None ): '''simple docstring''' if "." in tensor_name: lowerCamelCase_ = tensor_name.split('.' ) for split in splits[:-1]: lowerCamelCase_ = getattr(lowercase , lowercase ) if new_module is None: raise ValueError(f"""{module} has no attribute {split}.""" ) lowerCamelCase_ = new_module lowerCamelCase_ = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f"""{module} does not have a parameter or a buffer named {tensor_name}.""" ) lowerCamelCase_ = tensor_name in module._buffers lowerCamelCase_ = getattr(lowercase , lowercase ) if old_value.device == torch.device('meta' ) and device not in ["meta", torch.device('meta' )] and value is None: raise ValueError(f"""{tensor_name} is on the meta device, we need a `value` to put in on {device}.""" ) lowerCamelCase_ = False lowerCamelCase_ = False if is_buffer or not is_bitsandbytes_available(): lowerCamelCase_ = False lowerCamelCase_ = False else: lowerCamelCase_ = hasattr(bnb.nn , 'Params4bit' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) lowerCamelCase_ = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: lowerCamelCase_ = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: lowerCamelCase_ = old_value.to(lowercase ) elif isinstance(lowercase , torch.Tensor ): lowerCamelCase_ = value.to('cpu' ) if value.dtype == torch.inta: lowerCamelCase_ = version.parse(importlib.metadata.version('bitsandbytes' ) ) > version.parse( '0.37.2' ) if not is_abit_serializable: raise ValueError( 'Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ' 'Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.' ) else: lowerCamelCase_ = torch.tensor(lowercase , device='cpu' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , lowercase ) and fpaa_statistics is None: lowerCamelCase_ = new_value.T lowerCamelCase_ = old_value.__dict__ if is_abit: lowerCamelCase_ = bnb.nn.IntaParams(lowercase , requires_grad=lowercase , **lowercase ).to(lowercase ) elif is_abit: lowerCamelCase_ = bnb.nn.Paramsabit(lowercase , requires_grad=lowercase , **lowercase ).to(lowercase ) lowerCamelCase_ = new_value if fpaa_statistics is not None: setattr(module.weight , 'SCB' , fpaa_statistics.to(lowercase ) ) else: if value is None: lowerCamelCase_ = old_value.to(lowercase ) elif isinstance(lowercase , torch.Tensor ): lowerCamelCase_ = value.to(lowercase ) else: lowerCamelCase_ = torch.tensor(lowercase , device=lowercase ) if is_buffer: lowerCamelCase_ = new_value else: lowerCamelCase_ = nn.Parameter(lowercase , requires_grad=old_value.requires_grad ) lowerCamelCase_ = new_value def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] , lowercase : str=None , lowercase : str=None , lowercase : int=None , lowercase : Optional[Any]=False ): '''simple docstring''' for name, module in model.named_children(): if current_key_name is None: lowerCamelCase_ = [] current_key_name.append(lowercase ) if (isinstance(lowercase , nn.Linear ) or isinstance(lowercase , lowercase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '.'.join(lowercase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(lowercase , lowercase ): lowerCamelCase_ , lowerCamelCase_ = module.weight.shape else: lowerCamelCase_ = module.in_features lowerCamelCase_ = module.out_features if quantization_config.quantization_method() == "llm_int8": lowerCamelCase_ = bnb.nn.LinearabitLt( lowercase , lowercase , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) lowerCamelCase_ = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: lowerCamelCase_ = bnb.nn.Linearabit( lowercase , lowercase , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) lowerCamelCase_ = True # Store the module class in case we need to transpose the weight later lowerCamelCase_ = type(lowercase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(lowercase ) if len(list(module.children() ) ) > 0: lowerCamelCase_ , lowerCamelCase_ = _replace_with_bnb_linear( lowercase , lowercase , lowercase , lowercase , has_been_replaced=lowercase , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _SCREAMING_SNAKE_CASE ( lowercase : Tuple , lowercase : Union[str, Any]=None , lowercase : Any=None , lowercase : Any=None ): '''simple docstring''' lowerCamelCase_ = ['lm_head'] if modules_to_not_convert is None else modules_to_not_convert lowerCamelCase_ , lowerCamelCase_ = _replace_with_bnb_linear( lowercase , lowercase , lowercase , lowercase ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def _SCREAMING_SNAKE_CASE ( *lowercase : str , **lowercase : int ): '''simple docstring''' warnings.warn( '`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead' , lowercase , ) return replace_with_bnb_linear(*lowercase , **lowercase ) def _SCREAMING_SNAKE_CASE ( *lowercase : int , **lowercase : Optional[Any] ): '''simple docstring''' warnings.warn( '`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead' , lowercase , ) return set_module_quantized_tensor_to_device(*lowercase , **lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = deepcopy(lowercase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() lowerCamelCase_ = find_tied_parameters(lowercase ) # For compatibility with Accelerate < 0.18 if isinstance(lowercase , lowercase ): lowerCamelCase_ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: lowerCamelCase_ = sum(lowercase , [] ) lowerCamelCase_ = len(lowercase ) > 0 # Check if it is a base model lowerCamelCase_ = not hasattr(lowercase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowerCamelCase_ = list(model.named_children() ) lowerCamelCase_ = [list_modules[-1][0]] # add last module together with tied weights lowerCamelCase_ = set(lowercase ) - set(lowercase ) lowerCamelCase_ = list(set(lowercase ) ) + list(lowercase ) # remove ".weight" from the keys lowerCamelCase_ = ['.weight', '.bias'] lowerCamelCase_ = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowerCamelCase_ = name.replace(lowercase , '' ) filtered_module_names.append(lowercase ) return filtered_module_names
701
import cva import numpy as np class A: '''simple docstring''' def __init__( self : int , A_ : float , A_ : int ) -> List[Any]: """simple docstring""" if k in (0.04, 0.06): lowerCamelCase_ = k lowerCamelCase_ = window_size else: raise ValueError('invalid k value' ) def __str__( self : str ) -> str: """simple docstring""" return str(self.k ) def a__ ( self : Any , A_ : str ) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" lowerCamelCase_ = cva.imread(A_ , 0 ) lowerCamelCase_ , lowerCamelCase_ = img.shape lowerCamelCase_ = [] lowerCamelCase_ = img.copy() lowerCamelCase_ = cva.cvtColor(A_ , cva.COLOR_GRAY2RGB ) lowerCamelCase_ , lowerCamelCase_ = np.gradient(A_ ) lowerCamelCase_ = dx**2 lowerCamelCase_ = dy**2 lowerCamelCase_ = dx * dy lowerCamelCase_ = 0.04 lowerCamelCase_ = self.window_size // 2 for y in range(A_ , h - offset ): for x in range(A_ , w - offset ): lowerCamelCase_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = (wxx * wyy) - (wxy**2) lowerCamelCase_ = wxx + wyy lowerCamelCase_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase : Optional[int] = HarrisCorner(0.04, 3) lowerCamelCase , lowerCamelCase : Optional[int] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
651
0
def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : int ): '''simple docstring''' return int((input_a, input_a).count(1 ) != 0 ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
702
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } lowerCamelCase : int = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } lowerCamelCase : Tuple = {"facebook/blenderbot-3B": 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) lowerCamelCase_ = bs[:] lowerCamelCase_ = 0 for b in range(2**8 ): if b not in bs: bs.append(lowercase ) cs.append(2**8 + n ) n += 1 lowerCamelCase_ = [chr(lowercase ) for n in cs] return dict(zip(lowercase , lowercase ) ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = set() lowerCamelCase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase_ = char return pairs class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[Any] , A_ : List[Any] , A_ : List[Any] , A_ : Union[str, Any]="replace" , A_ : Dict="<s>" , A_ : Optional[int]="</s>" , A_ : Optional[Any]="</s>" , A_ : Dict="<s>" , A_ : Dict="<unk>" , A_ : Any="<pad>" , A_ : Dict="<mask>" , A_ : Union[str, Any]=False , **A_ : List[str] , ) -> Tuple: """simple docstring""" lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else bos_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else eos_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else sep_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else cls_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else unk_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token super().__init__( errors=A_ , bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , add_prefix_space=A_ , **A_ , ) with open(A_ , encoding='utf-8' ) as vocab_handle: lowerCamelCase_ = json.load(A_ ) lowerCamelCase_ = {v: k for k, v in self.encoder.items()} lowerCamelCase_ = errors # how to handle errors in decoding lowerCamelCase_ = bytes_to_unicode() lowerCamelCase_ = {v: k for k, v in self.byte_encoder.items()} with open(A_ , encoding='utf-8' ) as merges_handle: lowerCamelCase_ = merges_handle.read().split('\n' )[1:-1] lowerCamelCase_ = [tuple(merge.split() ) for merge in bpe_merges] lowerCamelCase_ = dict(zip(A_ , range(len(A_ ) ) ) ) lowerCamelCase_ = {} lowerCamelCase_ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCamelCase_ = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" return len(self.encoder ) def a__ ( self : List[Any] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def a__ ( self : Tuple , A_ : Tuple ) -> Optional[Any]: """simple docstring""" if token in self.cache: return self.cache[token] lowerCamelCase_ = tuple(A_ ) lowerCamelCase_ = get_pairs(A_ ) if not pairs: return token while True: lowerCamelCase_ = min(A_ , key=lambda A_ : self.bpe_ranks.get(A_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase_ , lowerCamelCase_ = bigram lowerCamelCase_ = [] lowerCamelCase_ = 0 while i < len(A_ ): try: lowerCamelCase_ = word.index(A_ , A_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase_ = j if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase_ = tuple(A_ ) lowerCamelCase_ = new_word if len(A_ ) == 1: break else: lowerCamelCase_ = get_pairs(A_ ) lowerCamelCase_ = ' '.join(A_ ) lowerCamelCase_ = word return word def a__ ( self : str , A_ : List[str] ) -> List[str]: """simple docstring""" lowerCamelCase_ = [] for token in re.findall(self.pat , A_ ): lowerCamelCase_ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A_ ).split(' ' ) ) return bpe_tokens def a__ ( self : Tuple , A_ : str ) -> Optional[Any]: """simple docstring""" return self.encoder.get(A_ , self.encoder.get(self.unk_token ) ) def a__ ( self : Tuple , A_ : Dict ) -> List[Any]: """simple docstring""" return self.decoder.get(A_ ) def a__ ( self : Optional[int] , A_ : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = ''.join(A_ ) lowerCamelCase_ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def a__ ( self : Tuple , A_ : str , A_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(A_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + '\n' ) lowerCamelCase_ = 0 with open(A_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) lowerCamelCase_ = token_index writer.write(' '.join(A_ ) + '\n' ) index += 1 return vocab_file, merge_file def a__ ( self : str , A_ : List[int] , A_ : Optional[List[int]] = None , A_ : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def a__ ( self : int , A_ : List[int] , A_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a__ ( self : str , A_ : Optional[Any] , A_ : Union[str, Any]=False , **A_ : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(A_ ) > 0 and not text[0].isspace()): lowerCamelCase_ = ' ' + text return (text, kwargs) def a__ ( self : List[Any] , A_ : List[int] , A_ : Optional[List[int]] = None ) -> Dict: """simple docstring""" return token_ids_a + [self.eos_token_id] def a__ ( self : Optional[int] , A_ : "Conversation" ) -> List[int]: """simple docstring""" lowerCamelCase_ = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(A_ ) lowerCamelCase_ = ' '.join(A_ ) lowerCamelCase_ = self.encode(A_ ) if len(A_ ) > self.model_max_length: lowerCamelCase_ = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
651
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase : int = { "configuration_table_transformer": [ "TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TableTransformerConfig", "TableTransformerOnnxConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ "TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TableTransformerForObjectDetection", "TableTransformerModel", "TableTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys lowerCamelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
703
lowerCamelCase : Dict = "Alexander Joslin" import operator as op from .stack import Stack def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} lowerCamelCase_ = Stack() lowerCamelCase_ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(lowercase ) elif i == ")": # RULE 4 lowerCamelCase_ = operator_stack.peek() operator_stack.pop() lowerCamelCase_ = operand_stack.peek() operand_stack.pop() lowerCamelCase_ = operand_stack.peek() operand_stack.pop() lowerCamelCase_ = operators[opr](lowercase , lowercase ) operand_stack.push(lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCamelCase : Any = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
651
0
from __future__ import annotations from typing import Any class A( __A ): '''simple docstring''' pass class A: '''simple docstring''' def __init__( self : Dict , A_ : Tuple ) -> Any: """simple docstring""" lowerCamelCase_ = data lowerCamelCase_ = None def __iter__( self : Any ) -> Tuple: """simple docstring""" lowerCamelCase_ = self lowerCamelCase_ = [] while node: if node in visited: raise ContainsLoopError visited.append(A_ ) yield node.data lowerCamelCase_ = node.next_node @property def a__ ( self : int ) -> Dict: """simple docstring""" try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": lowerCamelCase : Tuple = Node(1) lowerCamelCase : Tuple = Node(2) lowerCamelCase : Tuple = Node(3) lowerCamelCase : Union[str, Any] = Node(4) print(root_node.has_loop) # False lowerCamelCase : Dict = root_node.next_node print(root_node.has_loop) # True lowerCamelCase : Union[str, Any] = Node(5) lowerCamelCase : Tuple = Node(6) lowerCamelCase : Union[str, Any] = Node(5) lowerCamelCase : Union[str, Any] = Node(6) print(root_node.has_loop) # False lowerCamelCase : Optional[int] = Node(1) print(root_node.has_loop) # False
704
def _SCREAMING_SNAKE_CASE ( lowercase : list[int] , lowercase : list[int] ): '''simple docstring''' lowerCamelCase_ = len(lowercase ) print('The following activities are selected:' ) # The first activity is always selected lowerCamelCase_ = 0 print(lowercase , end=',' ) # Consider rest of the activities for j in range(lowercase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowercase , end=',' ) lowerCamelCase_ = j if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Tuple = [1, 3, 0, 5, 8, 5] lowerCamelCase : int = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
651
0
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class A( __lowercase ): '''simple docstring''' UpperCamelCase = ['''image_processor'''] UpperCamelCase = '''SamImageProcessor''' def __init__( self : List[str] , A_ : int ) -> Any: """simple docstring""" super().__init__(_A ) lowerCamelCase_ = self.image_processor lowerCamelCase_ = -10 lowerCamelCase_ = self.image_processor.size['longest_edge'] def __call__( self : Optional[Any] , A_ : Tuple=None , A_ : List[Any]=None , A_ : Dict=None , A_ : Any=None , A_ : Optional[Union[str, TensorType]] = None , **A_ : List[str] , ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.image_processor( _A , return_tensors=_A , **_A , ) # pop arguments that are not used in the foward but used nevertheless lowerCamelCase_ = encoding_image_processor['original_sizes'] if hasattr(_A , 'numpy' ): # Checks if Torch or TF tensor lowerCamelCase_ = original_sizes.numpy() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = self._check_and_preprocess_points( input_points=_A , input_labels=_A , input_boxes=_A , ) lowerCamelCase_ = self._normalize_and_convert( _A , _A , input_points=_A , input_labels=_A , input_boxes=_A , return_tensors=_A , ) return encoding_image_processor def a__ ( self : str , A_ : List[Any] , A_ : Optional[int] , A_ : Union[str, Any]=None , A_ : Optional[int]=None , A_ : Optional[Any]=None , A_ : Dict="pt" , ) -> Optional[Any]: """simple docstring""" if input_points is not None: if len(_A ) != len(_A ): lowerCamelCase_ = [ self._normalize_coordinates(self.target_size , _A , original_sizes[0] ) for point in input_points ] else: lowerCamelCase_ = [ self._normalize_coordinates(self.target_size , _A , _A ) for point, original_size in zip(_A , _A ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: lowerCamelCase_ , lowerCamelCase_ = self._pad_points_and_labels(_A , _A ) lowerCamelCase_ = np.array(_A ) if input_labels is not None: lowerCamelCase_ = np.array(_A ) if input_boxes is not None: if len(_A ) != len(_A ): lowerCamelCase_ = [ self._normalize_coordinates(self.target_size , _A , original_sizes[0] , is_bounding_box=_A ) for box in input_boxes ] else: lowerCamelCase_ = [ self._normalize_coordinates(self.target_size , _A , _A , is_bounding_box=_A ) for box, original_size in zip(_A , _A ) ] lowerCamelCase_ = np.array(_A ) if input_boxes is not None: if return_tensors == "pt": lowerCamelCase_ = torch.from_numpy(_A ) # boxes batch size of 1 by default lowerCamelCase_ = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": lowerCamelCase_ = tf.convert_to_tensor(_A ) # boxes batch size of 1 by default lowerCamelCase_ = tf.expand_dims(_A , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({'input_boxes': input_boxes} ) if input_points is not None: if return_tensors == "pt": lowerCamelCase_ = torch.from_numpy(_A ) # point batch size of 1 by default lowerCamelCase_ = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": lowerCamelCase_ = tf.convert_to_tensor(_A ) # point batch size of 1 by default lowerCamelCase_ = tf.expand_dims(_A , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({'input_points': input_points} ) if input_labels is not None: if return_tensors == "pt": lowerCamelCase_ = torch.from_numpy(_A ) # point batch size of 1 by default lowerCamelCase_ = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": lowerCamelCase_ = tf.convert_to_tensor(_A ) # point batch size of 1 by default lowerCamelCase_ = tf.expand_dims(_A , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({'input_labels': input_labels} ) return encoding_image_processor def a__ ( self : Any , A_ : str , A_ : Dict ) -> int: """simple docstring""" lowerCamelCase_ = max([point.shape[0] for point in input_points] ) lowerCamelCase_ = [] for i, point in enumerate(_A ): if point.shape[0] != expected_nb_points: lowerCamelCase_ = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) lowerCamelCase_ = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(_A ) lowerCamelCase_ = processed_input_points return input_points, input_labels def a__ ( self : List[Any] , A_ : int , A_ : np.ndarray , A_ : Any , A_ : Dict=False ) -> Optional[int]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = original_size lowerCamelCase_ , lowerCamelCase_ = self.image_processor._get_preprocess_shape(_A , longest_edge=_A ) lowerCamelCase_ = deepcopy(_A ).astype(_A ) if is_bounding_box: lowerCamelCase_ = coords.reshape(-1 , 2 , 2 ) lowerCamelCase_ = coords[..., 0] * (new_w / old_w) lowerCamelCase_ = coords[..., 1] * (new_h / old_h) if is_bounding_box: lowerCamelCase_ = coords.reshape(-1 , 4 ) return coords def a__ ( self : Any , A_ : Optional[int]=None , A_ : List[str]=None , A_ : Optional[int]=None , ) -> Union[str, Any]: """simple docstring""" if input_points is not None: if hasattr(_A , 'numpy' ): # Checks for TF or Torch tensor lowerCamelCase_ = input_points.numpy().tolist() if not isinstance(_A , _A ) or not isinstance(input_points[0] , _A ): raise ValueError('Input points must be a list of list of floating points.' ) lowerCamelCase_ = [np.array(_A ) for input_point in input_points] else: lowerCamelCase_ = None if input_labels is not None: if hasattr(_A , 'numpy' ): lowerCamelCase_ = input_labels.numpy().tolist() if not isinstance(_A , _A ) or not isinstance(input_labels[0] , _A ): raise ValueError('Input labels must be a list of list integers.' ) lowerCamelCase_ = [np.array(_A ) for label in input_labels] else: lowerCamelCase_ = None if input_boxes is not None: if hasattr(_A , 'numpy' ): lowerCamelCase_ = input_boxes.numpy().tolist() if ( not isinstance(_A , _A ) or not isinstance(input_boxes[0] , _A ) or not isinstance(input_boxes[0][0] , _A ) ): raise ValueError('Input boxes must be a list of list of list of floating points.' ) lowerCamelCase_ = [np.array(_A ).astype(np.floataa ) for box in input_boxes] else: lowerCamelCase_ = None return input_points, input_labels, input_boxes @property def a__ ( self : List[str] ) -> str: """simple docstring""" lowerCamelCase_ = self.image_processor.model_input_names return list(dict.fromkeys(_A ) ) def a__ ( self : List[Any] , *A_ : Union[str, Any] , **A_ : Optional[Any] ) -> int: """simple docstring""" return self.image_processor.post_process_masks(*_A , **_A )
705
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A: '''simple docstring''' def __init__( self : Optional[Any] , A_ : Union[str, Any] , A_ : str=13 , A_ : List[Any]=32 , A_ : Tuple=2 , A_ : Dict=3 , A_ : Union[str, Any]=16 , A_ : List[str]=[32, 64, 128] , A_ : Optional[Any]=[1, 2, 1] , A_ : Tuple=[2, 2, 4] , A_ : Dict=2 , A_ : Optional[Any]=2.0 , A_ : List[str]=True , A_ : Dict=0.0 , A_ : List[str]=0.0 , A_ : Optional[int]=0.1 , A_ : str="gelu" , A_ : Optional[Any]=False , A_ : Any=True , A_ : Optional[Any]=0.02 , A_ : Dict=1E-5 , A_ : int=True , A_ : Optional[int]=None , A_ : List[str]=True , A_ : Tuple=10 , A_ : Any=8 , A_ : Dict=["stage1", "stage2"] , A_ : Optional[Any]=[1, 2] , ) -> List[str]: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = embed_dim lowerCamelCase_ = hidden_sizes lowerCamelCase_ = depths lowerCamelCase_ = num_heads lowerCamelCase_ = window_size lowerCamelCase_ = mlp_ratio lowerCamelCase_ = qkv_bias lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = drop_path_rate lowerCamelCase_ = hidden_act lowerCamelCase_ = use_absolute_embeddings lowerCamelCase_ = patch_norm lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = initializer_range lowerCamelCase_ = is_training lowerCamelCase_ = scope lowerCamelCase_ = use_labels lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = encoder_stride lowerCamelCase_ = out_features lowerCamelCase_ = out_indices def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def a__ ( self : List[Any] ) -> Any: """simple docstring""" return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def a__ ( self : Union[str, Any] , A_ : Dict , A_ : int , A_ : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = FocalNetModel(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) lowerCamelCase_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCamelCase_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def a__ ( self : Tuple , A_ : List[str] , A_ : Optional[int] , A_ : Optional[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = FocalNetBackbone(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None lowerCamelCase_ = None lowerCamelCase_ = FocalNetBackbone(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a__ ( self : int , A_ : Optional[Any] , A_ : Optional[int] , A_ : Any ) -> Any: """simple docstring""" lowerCamelCase_ = FocalNetForMaskedImageModeling(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = FocalNetForMaskedImageModeling(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def a__ ( self : Tuple , A_ : List[Any] , A_ : int , A_ : Dict ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.type_sequence_label_size lowerCamelCase_ = FocalNetForImageClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = FocalNetForImageClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self : int ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) UpperCamelCase = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = FocalNetModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=A_ , embed_dim=37 , has_text_modality=A_ ) def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ ( self : Any ) -> Optional[int]: """simple docstring""" return def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*A_ ) def a__ ( self : Dict ) -> int: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A_ ) def a__ ( self : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def a__ ( self : int ) -> int: """simple docstring""" pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" pass def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def a__ ( self : int , A_ : List[Any] , A_ : int , A_ : Dict , A_ : Dict ) -> List[Any]: """simple docstring""" lowerCamelCase_ = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(A_ , A_ ) ) lowerCamelCase_ = outputs.hidden_states lowerCamelCase_ = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(A_ ) , A_ ) # FocalNet has a different seq_length lowerCamelCase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowerCamelCase_ = outputs.reshaped_hidden_states self.assertEqual(len(A_ ) , A_ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = reshaped_hidden_states[0].shape lowerCamelCase_ = ( reshaped_hidden_states[0].view(A_ , A_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , A_ ) def a__ ( self : List[str] ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = 3 lowerCamelCase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCamelCase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCamelCase_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , (padded_height, padded_width) ) @slow def a__ ( self : str ) -> Optional[Any]: """simple docstring""" for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = FocalNetModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def a__ ( self : List[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = _config_zero_init(A_ ) for model_class in self.all_model_classes: lowerCamelCase_ = model_class(config=A_ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class A( unittest.TestCase ): '''simple docstring''' @cached_property def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def a__ ( self : Tuple ) -> Any: """simple docstring""" lowerCamelCase_ = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(A_ ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCamelCase_ = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): lowerCamelCase_ = model(**A_ ) # verify the logits lowerCamelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A_ ) lowerCamelCase_ = torch.tensor([0.2166, -0.4368, 0.2191] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (FocalNetBackbone,) if is_torch_available() else () UpperCamelCase = FocalNetConfig UpperCamelCase = False def a__ ( self : List[str] ) -> Tuple: """simple docstring""" lowerCamelCase_ = FocalNetModelTester(self )
651
0
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] , lowercase : Optional[int] ): '''simple docstring''' lowerCamelCase_ = torch.load(lowerCAmelCase__ , map_location='cpu' ) lowerCamelCase_ = chkpt['model'] # We have the base model one level deeper than the original XLM repository lowerCamelCase_ = {} for k, v in state_dict.items(): if "pred_layer" in k: lowerCamelCase_ = v else: lowerCamelCase_ = v lowerCamelCase_ = chkpt['params'] lowerCamelCase_ = {n: v for n, v in config.items() if not isinstance(lowerCAmelCase__ , (torch.FloatTensor, numpy.ndarray) )} lowerCamelCase_ = chkpt['dico_word2id'] lowerCamelCase_ = {s + '</w>' if s.find('@@' ) == -1 and i > 13 else s.replace('@@' , '' ): i for s, i in vocab.items()} # Save pytorch-model lowerCamelCase_ = pytorch_dump_folder_path + '/' + WEIGHTS_NAME lowerCamelCase_ = pytorch_dump_folder_path + '/' + CONFIG_NAME lowerCamelCase_ = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['vocab_file'] print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(lowerCAmelCase__ , lowerCAmelCase__ ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(lowerCAmelCase__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase__ , indent=2 ) + '\n' ) print(f"""Save vocab file to {pytorch_config_dump_path}""" ) with open(lowerCAmelCase__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase__ , indent=2 ) + '\n' ) if __name__ == "__main__": lowerCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCamelCase : Optional[Any] = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
706
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class A( unittest.TestCase ): '''simple docstring''' UpperCamelCase = MODEL_FOR_CAUSAL_LM_MAPPING UpperCamelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='pt' ) # Using `do_sample=False` to force deterministic output lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ] , ) lowerCamelCase_ = text_generator(['This is a test', 'This is a second test'] ) self.assertEqual( A_ , [ [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ], [ { 'generated_text': ( 'This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy' ' oscope. oscope. FiliFili@@' ) } ], ] , ) lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ , num_return_sequences=2 , return_tensors=A_ ) self.assertEqual( A_ , [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ] , ) lowerCamelCase_ = text_generator.model.config.eos_token_id lowerCamelCase_ = '<pad>' lowerCamelCase_ = text_generator( ['This is a test', 'This is a second test'] , do_sample=A_ , num_return_sequences=2 , batch_size=2 , return_tensors=A_ , ) self.assertEqual( A_ , [ [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ], [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ], ] , ) @require_tf def a__ ( self : Optional[int] ) -> str: """simple docstring""" lowerCamelCase_ = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='tf' ) # Using `do_sample=False` to force deterministic output lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ] , ) lowerCamelCase_ = text_generator(['This is a test', 'This is a second test'] , do_sample=A_ ) self.assertEqual( A_ , [ [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ], [ { 'generated_text': ( 'This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes' ' Cannes 閲閲Cannes Cannes Cannes 攵 please,' ) } ], ] , ) def a__ ( self : Optional[int] , A_ : Dict , A_ : int , A_ : List[str] ) -> str: """simple docstring""" lowerCamelCase_ = TextGenerationPipeline(model=A_ , tokenizer=A_ ) return text_generator, ["This is a test", "Another test"] def a__ ( self : Dict ) -> str: """simple docstring""" lowerCamelCase_ = 'Hello I believe in' lowerCamelCase_ = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) lowerCamelCase_ = text_generator(A_ ) self.assertEqual( A_ , [{'generated_text': 'Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'}] , ) lowerCamelCase_ = text_generator(A_ , stop_sequence=' fe' ) self.assertEqual(A_ , [{'generated_text': 'Hello I believe in fe'}] ) def a__ ( self : Any , A_ : Optional[Any] , A_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = text_generator.model lowerCamelCase_ = text_generator.tokenizer lowerCamelCase_ = text_generator('This is a test' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) lowerCamelCase_ = text_generator('This is a test' , return_full_text=A_ ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) lowerCamelCase_ = pipeline(task='text-generation' , model=A_ , tokenizer=A_ , return_full_text=A_ ) lowerCamelCase_ = text_generator('This is a test' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) lowerCamelCase_ = text_generator('This is a test' , return_full_text=A_ ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) lowerCamelCase_ = text_generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=A_ ) self.assertEqual( A_ , [ [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], ] , ) if text_generator.tokenizer.pad_token is not None: lowerCamelCase_ = text_generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=A_ ) self.assertEqual( A_ , [ [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], ] , ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_full_text=A_ , return_text=A_ ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_full_text=A_ , return_tensors=A_ ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_text=A_ , return_tensors=A_ ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): lowerCamelCase_ = text_generator('' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) else: with self.assertRaises((ValueError, AssertionError) ): lowerCamelCase_ = text_generator('' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. lowerCamelCase_ = ['RwkvForCausalLM', 'XGLMForCausalLM', 'GPTNeoXForCausalLM'] if ( tokenizer.model_max_length < 10000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('This is a test' * 500 , max_new_tokens=20 ) lowerCamelCase_ = text_generator('This is a test' * 500 , handle_long_generation='hole' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(A_ ): text_generator( 'This is a test' * 500 , handle_long_generation='hole' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" import torch # Classic `model_kwargs` lowerCamelCase_ = pipeline( model='hf-internal-testing/tiny-random-bloom' , model_kwargs={'device_map': 'auto', 'torch_dtype': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) @require_torch @require_torch_gpu def a__ ( self : int ) -> str: """simple docstring""" import torch lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device=0 , torch_dtype=torch.floataa ) pipe('This is a test' ) @require_torch @require_accelerate @require_torch_gpu def a__ ( self : List[Any] ) -> Dict: """simple docstring""" import torch lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.floataa ) pipe('This is a test' , do_sample=A_ , top_p=0.5 ) def a__ ( self : Tuple ) -> Dict: """simple docstring""" lowerCamelCase_ = 'Hello world' lowerCamelCase_ = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) if text_generator.model.framework == "tf": lowerCamelCase_ = logging.get_logger('transformers.generation.tf_utils' ) else: lowerCamelCase_ = logging.get_logger('transformers.generation.utils' ) lowerCamelCase_ = 'Both `max_new_tokens`' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_length=10 , max_new_tokens=1 ) self.assertIn(A_ , cl.out ) # The user only sets one -> no warning with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_new_tokens=1 ) self.assertNotIn(A_ , cl.out ) with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_length=10 ) self.assertNotIn(A_ , cl.out )
651
0
def _SCREAMING_SNAKE_CASE ( lowercase : Dict ): '''simple docstring''' lowerCamelCase_ = [0] * len(lowerCAmelCase_ ) lowerCamelCase_ = [] lowerCamelCase_ = [1] * len(lowerCAmelCase_ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(lowerCAmelCase_ ) ): if indegree[i] == 0: queue.append(lowerCAmelCase_ ) while queue: lowerCamelCase_ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: lowerCamelCase_ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(lowerCAmelCase_ ) print(max(lowerCAmelCase_ ) ) # Adjacency list of Graph lowerCamelCase : List[str] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
707
import os import re import shutil import sys import tempfile import unittest import black lowerCamelCase : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowerCamelCase : Tuple = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) ) lowerCamelCase_ = self.diffusers_dir shutil.copy( os.path.join(A_ , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" lowerCamelCase_ = 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def a__ ( self : str , A_ : Optional[Any] , A_ : Optional[int] , A_ : str , A_ : Optional[Any]=None ) -> int: """simple docstring""" lowerCamelCase_ = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowerCamelCase_ = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowerCamelCase_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCamelCase_ = black.format_str(A_ , mode=A_ ) lowerCamelCase_ = os.path.join(self.diffusers_dir , 'new_code.py' ) with open(A_ , 'w' , newline='\n' ) as f: f.write(A_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(A_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=A_ ) with open(A_ , 'r' ) as f: self.assertTrue(f.read() , A_ ) def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" lowerCamelCase_ = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(A_ , A_ ) def a__ ( self : Any ) -> Dict: """simple docstring""" self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , A_ , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , A_ ) , ) # Copy consistency with a really long name lowerCamelCase_ = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('Bert' , A_ , A_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , A_ , overwrite_result=re.sub('DDPM' , 'Test' , A_ ) , )
651
0
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowerCamelCase : int = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def _SCREAMING_SNAKE_CASE ( lowercase : List[str] = "mumbai" ): '''simple docstring''' lowerCamelCase_ = BeautifulSoup(requests.get(url + location ).content , 'html.parser' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('div' , attrs={'data-tn-component': 'organicJob'} ): lowerCamelCase_ = job.find('a' , attrs={'data-tn-element': 'jobTitle'} ).text.strip() lowerCamelCase_ = job.find('span' , {'class': 'company'} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(F"""Job {i:>2} is {job[0]} at {job[1]}""")
708
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Optional[int] , A_ : Tuple , A_ : str , A_ : int ) -> Any: """simple docstring""" self.assertEqual(len(A_ ) , len(A_ ) ) for a, b in zip(A_ , A_ ): self.assertAlmostEqual(A_ , A_ , delta=A_ ) def a__ ( self : int ) -> str: """simple docstring""" lowerCamelCase_ = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(A_ ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = None ops.enable_eager_execution_internal() lowerCamelCase_ = tf.config.list_physical_devices('CPU' ) if len(A_ ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) lowerCamelCase_ = tf.config.list_logical_devices(device_type='CPU' ) lowerCamelCase_ = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): lowerCamelCase_ = GradientAccumulator() lowerCamelCase_ = tf.Variable([4.0, 3.0] ) lowerCamelCase_ , lowerCamelCase_ = create_optimizer(5E-5 , 10 , 5 ) lowerCamelCase_ = tf.Variable([0.0, 0.0] , trainable=A_ ) def accumulate_on_replica(A_ : Any ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(A_ : List[Any] , A_ : Tuple ): with strategy.scope(): lowerCamelCase_ = strategy.experimental_local_results(A_ ) local_variables[0].assign(A_ ) local_variables[1].assign(A_ ) strategy.run(A_ , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(A_ ) def _check_local_values(A_ : List[Any] , A_ : str ): lowerCamelCase_ = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , A_ , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , A_ , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
651
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : List[str] = { 'salesforce/blip2-opt-2.7b': 'https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json', } class A( lowerCAmelCase__ ): '''simple docstring''' UpperCamelCase = "blip_2_vision_model" def __init__( self : List[str] , A_ : Optional[Any]=1408 , A_ : str=6144 , A_ : str=39 , A_ : List[Any]=16 , A_ : Optional[int]=224 , A_ : Any=14 , A_ : List[str]="gelu" , A_ : List[str]=0.00001 , A_ : Optional[Any]=0.0 , A_ : int=1E-10 , A_ : List[Any]=True , **A_ : Union[str, Any] , ) -> Dict: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) lowerCamelCase_ = hidden_size lowerCamelCase_ = intermediate_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = patch_size lowerCamelCase_ = image_size lowerCamelCase_ = initializer_range lowerCamelCase_ = attention_dropout lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = hidden_act lowerCamelCase_ = qkv_bias @classmethod def a__ ( cls : Any , A_ : Any , **A_ : int ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ , lowerCamelCase_ = cls.get_config_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": lowerCamelCase_ = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) class A( lowerCAmelCase__ ): '''simple docstring''' UpperCamelCase = "blip_2_qformer" def __init__( self : Any , A_ : Tuple=30522 , A_ : str=768 , A_ : List[Any]=12 , A_ : List[Any]=12 , A_ : List[str]=3072 , A_ : Dict="gelu" , A_ : List[Any]=0.1 , A_ : Union[str, Any]=0.1 , A_ : Optional[Any]=512 , A_ : Optional[int]=0.02 , A_ : int=1E-12 , A_ : Optional[Any]=0 , A_ : str="absolute" , A_ : Tuple=2 , A_ : Optional[int]=1408 , **A_ : Optional[Any] , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = hidden_act lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = position_embedding_type lowerCamelCase_ = cross_attention_frequency lowerCamelCase_ = encoder_hidden_size @classmethod def a__ ( cls : Dict , A_ : Union[str, Any] , **A_ : Optional[Any] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ , lowerCamelCase_ = cls.get_config_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": lowerCamelCase_ = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) class A( lowerCAmelCase__ ): '''simple docstring''' UpperCamelCase = "blip-2" UpperCamelCase = True def __init__( self : int , A_ : Any=None , A_ : Tuple=None , A_ : int=None , A_ : Any=32 , **A_ : Optional[int] ) -> int: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) if vision_config is None: lowerCamelCase_ = {} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: lowerCamelCase_ = {} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: lowerCamelCase_ = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) lowerCamelCase_ = BlipaVisionConfig(**_SCREAMING_SNAKE_CASE ) lowerCamelCase_ = BlipaQFormerConfig(**_SCREAMING_SNAKE_CASE ) lowerCamelCase_ = text_config['model_type'] if 'model_type' in text_config else 'opt' lowerCamelCase_ = CONFIG_MAPPING[text_model_type](**_SCREAMING_SNAKE_CASE ) lowerCamelCase_ = self.text_config.tie_word_embeddings lowerCamelCase_ = self.text_config.is_encoder_decoder lowerCamelCase_ = num_query_tokens lowerCamelCase_ = self.vision_config.hidden_size lowerCamelCase_ = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES lowerCamelCase_ = 1.0 lowerCamelCase_ = 0.02 @classmethod def a__ ( cls : List[Any] , A_ : Any , A_ : Tuple , A_ : Dict , **A_ : Any , ) -> Any: """simple docstring""" return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_SCREAMING_SNAKE_CASE , ) def a__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = copy.deepcopy(self.__dict__ ) lowerCamelCase_ = self.vision_config.to_dict() lowerCamelCase_ = self.qformer_config.to_dict() lowerCamelCase_ = self.text_config.to_dict() lowerCamelCase_ = self.__class__.model_type return output
709
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCamelCase : str = imread(r"digital_image_processing/image_data/lena_small.jpg") lowerCamelCase : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = cn.convert_to_negative(lowercase ) # assert negative_img array for at least one True assert negative_img.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(lowercase , 1_10 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() lowerCamelCase_ = canny.canny(lowercase ) # assert canny array for at least one True assert canny_array.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' assert gg.gaussian_filter(lowercase , 5 , sigma=0.9 ).all() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) lowerCamelCase_ = conv.img_convolve(lowercase , lowercase ).astype(lowercase ) assert res.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' assert med.median_filter(lowercase , 3 ).any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = sob.sobel_filter(lowercase ) assert grad.any() and theta.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = sp.make_sepia(lowercase , 20 ) assert sepia.all() def _SCREAMING_SNAKE_CASE ( lowercase : str = "digital_image_processing/image_data/lena_small.jpg" ): '''simple docstring''' lowerCamelCase_ = bs.Burkes(imread(lowercase , 1 ) , 1_20 ) burkes.process() assert burkes.output_img.any() def _SCREAMING_SNAKE_CASE ( lowercase : str = "digital_image_processing/image_data/lena_small.jpg" , ): '''simple docstring''' lowerCamelCase_ = rs.NearestNeighbour(imread(lowercase , 1 ) , 4_00 , 2_00 ) nn.process() assert nn.output.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. lowerCamelCase_ = imread(lowercase , 0 ) # Test for get_neighbors_pixel function() return not None lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = image[x_coordinate][y_coordinate] lowerCamelCase_ = lbp.get_neighbors_pixel( lowercase , lowercase , lowercase , lowercase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCamelCase_ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): lowerCamelCase_ = lbp.local_binary_value(lowercase , lowercase , lowercase ) assert lbp_image.any()
651
0
import logging from transformers.configuration_utils import PretrainedConfig lowerCamelCase : List[Any] = logging.getLogger(__name__) class A( _A ): '''simple docstring''' UpperCamelCase = '''masked_bert''' def __init__( self : Optional[int] , A_ : Optional[int]=30522 , A_ : Union[str, Any]=768 , A_ : Optional[int]=12 , A_ : Union[str, Any]=12 , A_ : int=3072 , A_ : Union[str, Any]="gelu" , A_ : Union[str, Any]=0.1 , A_ : Tuple=0.1 , A_ : int=512 , A_ : List[Any]=2 , A_ : Optional[Any]=0.02 , A_ : Any=1E-12 , A_ : Union[str, Any]=0 , A_ : List[Any]="topK" , A_ : str="constant" , A_ : int=0.0 , **A_ : Any , ) -> Union[str, Any]: """simple docstring""" super().__init__(pad_token_id=UpperCamelCase__ , **UpperCamelCase__ ) lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = hidden_act lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = pruning_method lowerCamelCase_ = mask_init lowerCamelCase_ = mask_scale
710
class A: '''simple docstring''' def __init__( self : Dict ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = {} def a__ ( self : Union[str, Any] , A_ : List[Any] ) -> int: """simple docstring""" if vertex not in self.adjacency: lowerCamelCase_ = {} self.num_vertices += 1 def a__ ( self : int , A_ : int , A_ : Optional[Any] , A_ : List[str] ) -> Tuple: """simple docstring""" self.add_vertex(A_ ) self.add_vertex(A_ ) if head == tail: return lowerCamelCase_ = weight lowerCamelCase_ = weight def a__ ( self : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.get_edges() for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge edges.remove((tail, head, weight) ) for i in range(len(A_ ) ): lowerCamelCase_ = list(edges[i] ) edges.sort(key=lambda A_ : e[2] ) for i in range(len(A_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowerCamelCase_ = edges[i][2] + 1 for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge lowerCamelCase_ = weight lowerCamelCase_ = weight def __str__( self : str ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = '' for tail in self.adjacency: for head in self.adjacency[tail]: lowerCamelCase_ = self.adjacency[head][tail] string += f"""{head} -> {tail} == {weight}\n""" return string.rstrip('\n' ) def a__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def a__ ( self : List[str] ) -> int: """simple docstring""" return self.adjacency.keys() @staticmethod def a__ ( A_ : Optional[Any]=None , A_ : List[str]=None ) -> List[str]: """simple docstring""" lowerCamelCase_ = Graph() if vertices is None: lowerCamelCase_ = [] if edges is None: lowerCamelCase_ = [] for vertex in vertices: g.add_vertex(A_ ) for edge in edges: g.add_edge(*A_ ) return g class A: '''simple docstring''' def __init__( self : Optional[int] ) -> int: """simple docstring""" lowerCamelCase_ = {} lowerCamelCase_ = {} def __len__( self : Any ) -> List[str]: """simple docstring""" return len(self.parent ) def a__ ( self : List[str] , A_ : Any ) -> Dict: """simple docstring""" if item in self.parent: return self.find(A_ ) lowerCamelCase_ = item lowerCamelCase_ = 0 return item def a__ ( self : List[str] , A_ : Tuple ) -> Optional[int]: """simple docstring""" if item not in self.parent: return self.make_set(A_ ) if item != self.parent[item]: lowerCamelCase_ = self.find(self.parent[item] ) return self.parent[item] def a__ ( self : Any , A_ : int , A_ : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.find(A_ ) lowerCamelCase_ = self.find(A_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowerCamelCase_ = roota return roota if self.rank[roota] < self.rank[roota]: lowerCamelCase_ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowerCamelCase_ = roota return roota return None @staticmethod def a__ ( A_ : int ) -> Tuple: """simple docstring""" lowerCamelCase_ = graph.num_vertices lowerCamelCase_ = Graph.UnionFind() lowerCamelCase_ = [] while num_components > 1: lowerCamelCase_ = {} for vertex in graph.get_vertices(): lowerCamelCase_ = -1 lowerCamelCase_ = graph.get_edges() for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge edges.remove((tail, head, weight) ) for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge lowerCamelCase_ = union_find.find(A_ ) lowerCamelCase_ = union_find.find(A_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowerCamelCase_ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowerCamelCase_ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = cheap_edge[vertex] if union_find.find(A_ ) != union_find.find(A_ ): union_find.union(A_ , A_ ) mst_edges.append(cheap_edge[vertex] ) lowerCamelCase_ = num_components - 1 lowerCamelCase_ = Graph.build(edges=A_ ) return mst
651
0
def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] , lowercase : Union[str, Any] ): '''simple docstring''' if not isinstance(lowercase , lowercase ): raise ValueError('iterations must be defined as integers' ) if not isinstance(lowercase , lowercase ) or not number >= 1: raise ValueError( 'starting number must be\n and integer and be more than 0' ) if not iterations >= 1: raise ValueError('Iterations must be done more than 0 times to play FizzBuzz' ) lowerCamelCase_ = '' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(lowercase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
711
def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 0 for i in range(1 , 10_01 ): total += i**i return str(lowercase )[-10:] if __name__ == "__main__": print(solution())
651
0
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : List[Any] = Dict[str, Any] lowerCamelCase : int = List[Prediction] @add_end_docstrings(UpperCamelCase ) class A( UpperCamelCase ): '''simple docstring''' def __init__( self : Optional[Any] , *A_ : Optional[Any] , **A_ : List[str] ) -> Union[str, Any]: """simple docstring""" super().__init__(*__a , **__a ) if self.framework == "tf": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , 'vision' ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def a__ ( self : str , **A_ : Dict ) -> List[Any]: """simple docstring""" lowerCamelCase_ = {} if "threshold" in kwargs: lowerCamelCase_ = kwargs['threshold'] return {}, {}, postprocess_kwargs def __call__( self : Dict , *A_ : Dict , **A_ : List[Any] ) -> Union[Predictions, List[Prediction]]: """simple docstring""" return super().__call__(*__a , **__a ) def a__ ( self : Dict , A_ : Any ) -> Any: """simple docstring""" lowerCamelCase_ = load_image(__a ) lowerCamelCase_ = torch.IntTensor([[image.height, image.width]] ) lowerCamelCase_ = self.image_processor(images=[image] , return_tensors='pt' ) if self.tokenizer is not None: lowerCamelCase_ = self.tokenizer(text=inputs['words'] , boxes=inputs['boxes'] , return_tensors='pt' ) lowerCamelCase_ = target_size return inputs def a__ ( self : List[Any] , A_ : Optional[Any] ) -> int: """simple docstring""" lowerCamelCase_ = model_inputs.pop('target_size' ) lowerCamelCase_ = self.model(**__a ) lowerCamelCase_ = outputs.__class__({'target_size': target_size, **outputs} ) if self.tokenizer is not None: lowerCamelCase_ = model_inputs['bbox'] return model_outputs def a__ ( self : Dict , A_ : Dict , A_ : Union[str, Any]=0.9 ) -> List[Any]: """simple docstring""" lowerCamelCase_ = model_outputs['target_size'] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. lowerCamelCase_ , lowerCamelCase_ = target_size[0].tolist() def unnormalize(A_ : List[Any] ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) lowerCamelCase_ , lowerCamelCase_ = model_outputs['logits'].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) lowerCamelCase_ = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] lowerCamelCase_ = [unnormalize(__a ) for bbox in model_outputs['bbox'].squeeze(0 )] lowerCamelCase_ = ['score', 'label', 'box'] lowerCamelCase_ = [dict(zip(__a , __a ) ) for vals in zip(scores.tolist() , __a , __a ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel lowerCamelCase_ = self.image_processor.post_process_object_detection(__a , __a , __a ) lowerCamelCase_ = raw_annotations[0] lowerCamelCase_ = raw_annotation['scores'] lowerCamelCase_ = raw_annotation['labels'] lowerCamelCase_ = raw_annotation['boxes'] lowerCamelCase_ = scores.tolist() lowerCamelCase_ = [self.model.config.idalabel[label.item()] for label in labels] lowerCamelCase_ = [self._get_bounding_box(__a ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] lowerCamelCase_ = ['score', 'label', 'box'] lowerCamelCase_ = [ dict(zip(__a , __a ) ) for vals in zip(raw_annotation['scores'] , raw_annotation['labels'] , raw_annotation['boxes'] ) ] return annotation def a__ ( self : int , A_ : Any ) -> Dict[str, int]: """simple docstring""" if self.framework != "pt": raise ValueError('The ObjectDetectionPipeline is only available in PyTorch.' ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = box.int().tolist() lowerCamelCase_ = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
712
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase : Dict = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = ["ViTFeatureExtractor"] lowerCamelCase : Dict = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys lowerCamelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
651
0
import math import qiskit def _SCREAMING_SNAKE_CASE ( lowercase : Any = 1 , lowercase : Dict = 1 , lowercase : Any = 1 ): '''simple docstring''' if ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) or isinstance(lowerCamelCase_ , lowerCamelCase_ ) or isinstance(lowerCamelCase_ , lowerCamelCase_ ) ): raise TypeError('inputs must be integers.' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('inputs must be positive.' ) if ( (math.floor(lowerCamelCase_ ) != input_a) or (math.floor(lowerCamelCase_ ) != input_a) or (math.floor(lowerCamelCase_ ) != carry_in) ): raise ValueError('inputs must be exact integers.' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('inputs must be less or equal to 2.' ) # build registers lowerCamelCase_ = qiskit.QuantumRegister(4 , 'qr' ) lowerCamelCase_ = qiskit.ClassicalRegister(2 , 'cr' ) # list the entries lowerCamelCase_ = [input_a, input_a, carry_in] lowerCamelCase_ = qiskit.QuantumCircuit(lowerCamelCase_ , lowerCamelCase_ ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(lowerCamelCase_ ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(lowerCamelCase_ ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(lowerCamelCase_ ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , lowerCamelCase_ ) # measure the last two qbits lowerCamelCase_ = qiskit.Aer.get_backend('aer_simulator' ) lowerCamelCase_ = qiskit.execute(lowerCamelCase_ , lowerCamelCase_ , shots=10_00 ) return job.result().get_counts(lowerCamelCase_ ) if __name__ == "__main__": print(F"""Total sum count for state is: {quantum_full_adder(1, 1, 1)}""")
713
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCamelCase : int = datasets.logging.get_logger(__name__) lowerCamelCase : Optional[Any] = "\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n" lowerCamelCase : Tuple = "\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n" lowerCamelCase : Optional[Any] = "\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting 'keep_singletons=False', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n 'mentions': mentions\n 'muc': MUC metric [Vilain et al, 1995]\n 'bcub': B-cubed [Bagga and Baldwin, 1998]\n 'ceafe': CEAFe [Luo et al., 2005]\n 'lea': LEA [Moosavi and Strube, 2016]\n 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric('coval')\n >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',\n ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',\n ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',\n ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',\n ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',\n ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {'mentions/recall': 1.0,[...] 'conll_score': 100.0}\n" def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Optional[int] , lowercase : Any=False , lowercase : Any=False , lowercase : Dict=True , lowercase : List[str]=False , lowercase : int="dummy_doc" ): '''simple docstring''' lowerCamelCase_ = {doc: key_lines} lowerCamelCase_ = {doc: sys_lines} lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowercase , key_doc_lines[doc] , lowercase ) key_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowercase , sys_doc_lines[doc] , lowercase ) sys_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) if remove_nested: lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowercase , lowercase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowercase , lowercase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowerCamelCase_ = reader.get_mention_assignments(lowercase , lowercase ) lowerCamelCase_ = reader.get_mention_assignments(lowercase , lowercase ) lowerCamelCase_ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( 'Number of removed nested coreferring mentions in the key ' f"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" ) logger.info( 'Number of resulting singleton clusters in the key ' f"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" ) if not keep_singletons: logger.info( f"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """ 'files, respectively' ) return doc_coref_infos def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Tuple , lowercase : List[str] , lowercase : List[Any] , lowercase : List[Any] , lowercase : Tuple , lowercase : str ): '''simple docstring''' lowerCamelCase_ = get_coref_infos(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 for name, metric in metrics: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = evaluator.evaluate_documents(lowercase , lowercase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f"""{name}/recall""": recall, f"""{name}/precision""": precision, f"""{name}/f1""": fa} ) logger.info( name.ljust(10 ) , f"""Recall: {recall * 1_00:.2f}""" , f""" Precision: {precision * 1_00:.2f}""" , f""" F1: {fa * 1_00:.2f}""" , ) if conll_subparts_num == 3: lowerCamelCase_ = (conll / 3) * 1_00 logger.info(f"""CoNLL score: {conll:.2f}""" ) output_scores.update({'conll_score': conll} ) return output_scores def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] ): '''simple docstring''' lowerCamelCase_ = False for line in key_lines: if not line.startswith('#' ): if len(line.split() ) > 6: lowerCamelCase_ = line.split()[5] if not parse_col == "-": lowerCamelCase_ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A( datasets.Metric ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Sequence(datasets.Value('string' ) ), } ) , codebase_urls=['https://github.com/ns-moosavi/coval'] , reference_urls=[ 'https://github.com/ns-moosavi/coval', 'https://www.aclweb.org/anthology/P16-1060', 'http://www.conll.cemantix.org/2012/data.html', ] , ) def a__ ( self : List[str] , A_ : Optional[Any] , A_ : Optional[int] , A_ : int=True , A_ : str=False , A_ : int=False , A_ : Union[str, Any]=False ) -> List[Any]: """simple docstring""" lowerCamelCase_ = [ ('mentions', evaluator.mentions), ('muc', evaluator.muc), ('bcub', evaluator.b_cubed), ('ceafe', evaluator.ceafe), ('lea', evaluator.lea), ] if min_span: lowerCamelCase_ = util.check_gold_parse_annotation(A_ ) if not has_gold_parse: raise NotImplementedError('References should have gold parse annotation to use \'min_span\'.' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowerCamelCase_ = evaluate( key_lines=A_ , sys_lines=A_ , metrics=A_ , NP_only=A_ , remove_nested=A_ , keep_singletons=A_ , min_span=A_ , ) return score
651
0
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class A: '''simple docstring''' def __init__( self : str , A_ : Union[str, Any] , A_ : List[str]=13 , A_ : List[Any]=64 , A_ : List[Any]=2 , A_ : List[Any]=3 , A_ : Tuple=True , A_ : int=True , A_ : List[str]=32 , A_ : Dict=5 , A_ : List[Any]=4 , A_ : Optional[int]=37 , A_ : str="gelu" , A_ : Optional[int]=0.1 , A_ : List[str]=0.1 , A_ : Tuple=10 , A_ : Optional[int]=0.02 , A_ : List[str]=[1, 16, 4, 4] , A_ : Optional[int]=None , ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = is_training lowerCamelCase_ = use_labels lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = scope lowerCamelCase_ = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size lowerCamelCase_ = (self.image_size // 32) ** 2 lowerCamelCase_ = num_patches + 1 def a__ ( self : Any ) -> Dict: """simple docstring""" lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [4, 8, 16, 32], 'num_groups': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=UpperCamelCase_ , ) def a__ ( self : Optional[int] , A_ : List[str] , A_ : Any , A_ : str ) -> List[str]: """simple docstring""" lowerCamelCase_ = ViTHybridModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCamelCase_ = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self : int , A_ : Union[str, Any] , A_ : str , A_ : Tuple ) -> Dict: """simple docstring""" lowerCamelCase_ = self.type_sequence_label_size lowerCamelCase_ = ViTHybridForImageClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCamelCase_ = model(UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self : int ) -> int: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () UpperCamelCase = ( {'feature-extraction': ViTHybridModel, 'image-classification': ViTHybridForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = ViTHybridModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=37 ) def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def a__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" pass def a__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(UpperCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase_ , nn.Linear ) ) def a__ ( self : Dict ) -> str: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(UpperCamelCase_ ) lowerCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def a__ ( self : str ) -> Dict: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def a__ ( self : Tuple ) -> Any: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_ ) def a__ ( self : int ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = _config_zero_init(UpperCamelCase_ ) for model_class in self.all_model_classes: lowerCamelCase_ = model_class(config=UpperCamelCase_ ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": lowerCamelCase_ = [f"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @slow def a__ ( self : Tuple ) -> int: """simple docstring""" for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = ViTHybridModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A( unittest.TestCase ): '''simple docstring''' @cached_property def a__ ( self : str ) -> Tuple: """simple docstring""" return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( UpperCamelCase_ ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=UpperCamelCase_ , return_tensors='pt' ).to(UpperCamelCase_ ) # forward pass with torch.no_grad(): lowerCamelCase_ = model(**UpperCamelCase_ ) # verify the logits lowerCamelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) lowerCamelCase_ = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(UpperCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase_ , atol=1E-4 ) ) @slow @require_accelerate def a__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = ViTHybridImageProcessor.from_pretrained('google/vit-hybrid-base-bit-384' ) lowerCamelCase_ = ViTHybridForImageClassification.from_pretrained('google/vit-hybrid-base-bit-384' , device_map='auto' ) lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=UpperCamelCase_ , return_tensors='pt' ) lowerCamelCase_ = model(**UpperCamelCase_ ) lowerCamelCase_ = outputs.logits # model predicts one of the 1000 ImageNet classes lowerCamelCase_ = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , 'tabby, tabby cat' )
714
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase ) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCamelCase = Features({'''text''': Value('''string''' )} ) UpperCamelCase = Features({} ) UpperCamelCase = "text" @property def a__ ( self : List[Any] ) -> Dict[str, str]: """simple docstring""" return {self.text_column: "text"}
651
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase : int = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[Any] = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[Any] = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
715
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''new-model''' if is_tf_available(): class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = NewModelConfig @require_tf class A( unittest.TestCase ): '''simple docstring''' @slow def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = 'bert-base-cased' lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = 'bert-base-cased' lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForPreTraining.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForCausalLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForCausalLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : int ) -> str: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForMaskedLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForMaskedLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Any ) -> List[Any]: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Tuple ) -> str: """simple docstring""" for model_name in ["bert-base-uncased"]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForSequenceClassification.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Any: """simple docstring""" for model_name in ["bert-base-uncased"]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForQuestionAnswering.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow @require_tensorflow_probability def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForTableQuestionAnswering.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForTableQuestionAnswering.from_pretrained( A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=A_ ) , 14410 ) def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=A_ ) , 14410 ) def a__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = TFAutoModel.from_pretrained('sgugger/funnel-random-tiny' ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = copy.deepcopy(model.config ) lowerCamelCase_ = ['FunnelBaseModel'] lowerCamelCase_ = TFAutoModel.from_config(A_ ) self.assertIsInstance(A_ , A_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(A_ ) lowerCamelCase_ = TFAutoModel.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : Any ) -> Tuple: """simple docstring""" try: AutoConfig.register('new-model' , A_ ) lowerCamelCase_ = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(A_ ): auto_class.register(A_ , A_ ) auto_class.register(A_ , A_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(A_ ): auto_class.register(A_ , A_ ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCamelCase_ = BertModelTester(self ).get_config() lowerCamelCase_ = NewModelConfig(**tiny_config.to_dict() ) lowerCamelCase_ = auto_class.from_config(A_ ) self.assertIsInstance(A_ , A_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(A_ ) lowerCamelCase_ = auto_class.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def a__ ( self : int ) -> int: """simple docstring""" with self.assertRaisesRegex( A_ , 'bert-base is not a local folder and is not a valid model identifier' ): lowerCamelCase_ = TFAutoModel.from_pretrained('bert-base' ) def a__ ( self : Any ) -> Dict: """simple docstring""" with self.assertRaisesRegex( A_ , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowerCamelCase_ = TFAutoModel.from_pretrained(A_ , revision='aaaaaa' ) def a__ ( self : str ) -> int: """simple docstring""" with self.assertRaisesRegex( A_ , 'hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin' , ): lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def a__ ( self : Any ) -> List[Any]: """simple docstring""" with self.assertRaisesRegex(A_ , 'Use `from_pt=True` to load this model' ): lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint lowerCamelCase_ = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) with RequestCounter() as counter: lowerCamelCase_ = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
651
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : int = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json" ), "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''bert''' def __init__( self : Union[str, Any] , A_ : Tuple=30522 , A_ : Any=768 , A_ : Dict=12 , A_ : Optional[Any]=12 , A_ : Tuple=3072 , A_ : Union[str, Any]="gelu" , A_ : Union[str, Any]=0.1 , A_ : Optional[int]=0.1 , A_ : Any=512 , A_ : Dict=2 , A_ : Optional[int]=0.02 , A_ : Tuple=1E-12 , A_ : Union[str, Any]=0 , A_ : str="absolute" , A_ : int=True , A_ : str=None , **A_ : Dict , ) -> Optional[Any]: """simple docstring""" super().__init__(pad_token_id=lowercase_ , **lowercase_ ) lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = hidden_act lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = position_embedding_type lowerCamelCase_ = use_cache lowerCamelCase_ = classifier_dropout class A( UpperCamelCase ): '''simple docstring''' @property def a__ ( self : Dict ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowerCamelCase_ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCamelCase_ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
716
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : List[str] = { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json", } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''gpt_neox_japanese''' def __init__( self : int , A_ : Dict=32000 , A_ : List[Any]=2560 , A_ : Dict=32 , A_ : Union[str, Any]=32 , A_ : List[Any]=4 , A_ : List[str]="gelu" , A_ : Dict=1.00 , A_ : int=10000 , A_ : Dict=2048 , A_ : Dict=0.02 , A_ : Any=1E-5 , A_ : Union[str, Any]=True , A_ : int=31996 , A_ : List[str]=31999 , A_ : List[Any]=0.1 , A_ : List[Any]=0.0 , **A_ : Tuple , ) -> Dict: """simple docstring""" super().__init__(bos_token_id=A_ , eos_token_id=A_ , **A_ ) lowerCamelCase_ = vocab_size lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_multiple_size lowerCamelCase_ = hidden_act lowerCamelCase_ = rotary_pct lowerCamelCase_ = rotary_emb_base lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = use_cache lowerCamelCase_ = attention_dropout lowerCamelCase_ = hidden_dropout
651
0
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : list ): '''simple docstring''' _enforce_args(snake_case__ , snake_case__ ) if n == 0: return 0 lowerCamelCase_ = float('-inf' ) for i in range(1 , n + 1 ): lowerCamelCase_ = max( snake_case__ , prices[i - 1] + naive_cut_rod_recursive(n - i , snake_case__ ) ) return max_revue def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : list ): '''simple docstring''' _enforce_args(snake_case__ , snake_case__ ) lowerCamelCase_ = [float('-inf' ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(snake_case__ , snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : list , lowercase : list ): '''simple docstring''' if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: lowerCamelCase_ = float('-inf' ) for i in range(1 , n + 1 ): lowerCamelCase_ = max( snake_case__ , prices[i - 1] + _top_down_cut_rod_recursive(n - i , snake_case__ , snake_case__ ) , ) lowerCamelCase_ = max_revenue return max_rev[n] def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : list ): '''simple docstring''' _enforce_args(snake_case__ , snake_case__ ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. lowerCamelCase_ = [float('-inf' ) for _ in range(n + 1 )] lowerCamelCase_ = 0 for i in range(1 , n + 1 ): lowerCamelCase_ = max_rev[i] for j in range(1 , i + 1 ): lowerCamelCase_ = max(snake_case__ , prices[j - 1] + max_rev[i - j] ) lowerCamelCase_ = max_revenue_i return max_rev[n] def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : list ): '''simple docstring''' if n < 0: lowerCamelCase_ = f"""n must be greater than or equal to 0. Got n = {n}""" raise ValueError(snake_case__ ) if n > len(snake_case__ ): lowerCamelCase_ = ( 'Each integral piece of rod must have a corresponding price. ' f"""Got n = {n} but length of prices = {len(snake_case__ )}""" ) raise ValueError(snake_case__ ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = [6, 10, 12, 15, 20, 23] lowerCamelCase_ = len(snake_case__ ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. lowerCamelCase_ = 36 lowerCamelCase_ = top_down_cut_rod(snake_case__ , snake_case__ ) lowerCamelCase_ = bottom_up_cut_rod(snake_case__ , snake_case__ ) lowerCamelCase_ = naive_cut_rod_recursive(snake_case__ , snake_case__ ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
717
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow lowerCamelCase : List[Any] = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ "text-classification", "language-modeling", "summarization", "token-classification", "question-answering", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) lowerCamelCase : Tuple = logging.getLogger() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument('-f' ) lowerCamelCase_ = parser.parse_args() return args.f def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Dict="eval" ): '''simple docstring''' lowerCamelCase_ = os.path.join(lowercase , f"""{split}_results.json""" ) if os.path.exists(lowercase ): with open(lowercase , 'r' ) as f: return json.load(lowercase ) raise ValueError(f"""can't find {path}""" ) lowerCamelCase : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(A_ , 'argv' , A_ ): run_flax_glue.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) @slow def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A_ , 'argv' , A_ ): run_clm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertLess(result['eval_perplexity'] , 100 ) @slow def a__ ( self : str ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(A_ , 'argv' , A_ ): run_summarization_flax.main() lowerCamelCase_ = get_results(A_ , split='test' ) self.assertGreaterEqual(result['test_rouge1'] , 10 ) self.assertGreaterEqual(result['test_rouge2'] , 2 ) self.assertGreaterEqual(result['test_rougeL'] , 7 ) self.assertGreaterEqual(result['test_rougeLsum'] , 7 ) @slow def a__ ( self : Optional[int] ) -> str: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(A_ , 'argv' , A_ ): run_mlm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertLess(result['eval_perplexity'] , 42 ) @slow def a__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A_ , 'argv' , A_ ): run_ta_mlm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.42 ) @slow def a__ ( self : int ) -> Tuple: """simple docstring""" lowerCamelCase_ = 7 if get_gpu_count() > 1 else 2 lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(A_ , 'argv' , A_ ): run_flax_ner.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) self.assertGreaterEqual(result['eval_f1'] , 0.3 ) @slow def a__ ( self : str ) -> int: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(A_ , 'argv' , A_ ): run_qa.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_f1'] , 30 ) self.assertGreaterEqual(result['eval_exact'] , 30 )
651
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = ['image_processor', 'tokenizer'] UpperCamelCase = 'CLIPImageProcessor' UpperCamelCase = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : Union[str, Any] , A_ : str=None , A_ : Union[str, Any]=None , **A_ : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCAmelCase__ , ) lowerCamelCase_ = kwargs.pop('feature_extractor' ) lowerCamelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCAmelCase__ , UpperCAmelCase__ ) def __call__( self : Any , A_ : Dict=None , A_ : Union[str, Any]=None , A_ : int=None , **A_ : Union[str, Any] ) -> int: """simple docstring""" if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: lowerCamelCase_ = self.tokenizer(UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , **UpperCAmelCase__ ) if images is not None: lowerCamelCase_ = self.image_processor(UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , **UpperCAmelCase__ ) if text is not None and images is not None: lowerCamelCase_ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase__ ) , tensor_type=UpperCAmelCase__ ) def a__ ( self : List[str] , *A_ : Dict , **A_ : int ) -> List[Any]: """simple docstring""" return self.tokenizer.batch_decode(*UpperCAmelCase__ , **UpperCAmelCase__ ) def a__ ( self : Optional[int] , *A_ : Optional[Any] , **A_ : str ) -> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*UpperCAmelCase__ , **UpperCAmelCase__ ) @property def a__ ( self : Tuple ) -> Dict: """simple docstring""" lowerCamelCase_ = self.tokenizer.model_input_names lowerCamelCase_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def a__ ( self : Tuple ) -> Any: """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCAmelCase__ , ) return self.image_processor_class @property def a__ ( self : Any ) -> str: """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , UpperCAmelCase__ , ) return self.image_processor
718
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class A: '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = None UpperCamelCase = None lowerCamelCase : str = namedtuple("CoinsDistribResult", "moves excess") def _SCREAMING_SNAKE_CASE ( lowercase : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(lowercase : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowercase : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowercase ) != count_coins(lowercase ): raise ValueError('The nodes number should be same as the number of coins' ) # Main calculation def get_distrib(lowercase : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowerCamelCase_ , lowerCamelCase_ = get_distrib(node.left ) lowerCamelCase_ , lowerCamelCase_ = get_distrib(node.right ) lowerCamelCase_ = 1 - left_distrib_excess lowerCamelCase_ = 1 - right_distrib_excess lowerCamelCase_ = ( left_distrib_moves + right_distrib_moves + abs(lowercase ) + abs(lowercase ) ) lowerCamelCase_ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowercase , lowercase ) return get_distrib(lowercase )[0] if __name__ == "__main__": import doctest doctest.testmod()
651
0
import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = """T5Config""" def _SCREAMING_SNAKE_CASE ( lowercase : Dict , lowercase : Tuple , lowercase : Tuple ): '''simple docstring''' lowerCamelCase_ = jnp.zeros_like(lowercase ) lowerCamelCase_ = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) lowerCamelCase_ = shifted_input_ids.at[:, 0].set(lowercase ) lowerCamelCase_ = jnp.where(shifted_input_ids == -1_00 , lowercase , lowercase ) return shifted_input_ids class A( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' UpperCamelCase = '''mt5''' UpperCamelCase = MTaConfig class A( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' UpperCamelCase = '''mt5''' UpperCamelCase = MTaConfig class A( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' UpperCamelCase = '''mt5''' UpperCamelCase = MTaConfig
719
from manim import * class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = Rectangle(height=0.5 , width=0.5 ) lowerCamelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCamelCase_ = Rectangle(height=0.25 , width=0.25 ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(A_ , A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('CPU' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(A_ ) lowerCamelCase_ = [mem.copy() for i in range(4 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('GPU' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) gpu.move_to([-1, -1, 0] ) self.add(A_ ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('Model' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) model.move_to([3, -1.0, 0] ) self.add(A_ ) lowerCamelCase_ = [] lowerCamelCase_ = [] for i, rect in enumerate(A_ ): lowerCamelCase_ = fill.copy().set_fill(A_ , opacity=0.8 ) target.move_to(A_ ) model_arr.append(A_ ) lowerCamelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(A_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(A_ ) self.add(*A_ , *A_ ) lowerCamelCase_ = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(A_ , A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('Disk' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) disk.move_to([-4, -1.25, 0] ) self.add(A_ , A_ ) lowerCamelCase_ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase_ = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(A_ , A_ ) lowerCamelCase_ = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(A_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(A_ ) lowerCamelCase_ = MarkupText( f"""Now watch as an input is passed through the model\nand how the memory is utilized and handled.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ ) ) lowerCamelCase_ = Square(0.3 ) input.set_fill(A_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , A_ , buff=0.5 ) self.play(Write(A_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=A_ , buff=0.02 ) self.play(MoveToTarget(A_ ) ) self.play(FadeOut(A_ ) ) lowerCamelCase_ = Arrow(start=A_ , end=A_ , color=A_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , A_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowerCamelCase_ = MarkupText( f"""As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ , run_time=3 ) ) lowerCamelCase_ = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(A_ ) , Circumscribe(model_arr[0] , color=A_ , **A_ ) , Circumscribe(model_cpu_arr[0] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowerCamelCase_ = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , A_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowerCamelCase_ = AnimationGroup( FadeOut(A_ , run_time=0.5 ) , MoveToTarget(A_ , run_time=0.5 ) , FadeIn(A_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(A_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowerCamelCase_ = 0.7 self.play( Circumscribe(model_arr[i] , **A_ ) , Circumscribe(cpu_left_col_base[i] , **A_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , Circumscribe(model_arr[i + 1] , color=A_ , **A_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=A_ , **A_ ) , Circumscribe(cpu_left_col_base[-1] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowerCamelCase_ = a_c lowerCamelCase_ = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(A_ ) , FadeOut(A_ , run_time=0.5 ) , ) lowerCamelCase_ = MarkupText(f"""Inference on a model too large for GPU memory\nis successfully completed.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ , run_time=3 ) , MoveToTarget(A_ ) ) self.wait()
651
0
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() lowerCamelCase : List[str] = logging.get_logger("transformers.models.speecht5") lowerCamelCase : List[str] = { "speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm", "speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection", "speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv", "speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed", } lowerCamelCase : Optional[int] = { "text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens", "text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha", } lowerCamelCase : Dict = { "speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0", "speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1", "speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer", "speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha", "speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer", } lowerCamelCase : Union[str, Any] = { "speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out", "speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out", "speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv", "speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm", "speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv", "speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm", "speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv", "speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm", "speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv", "speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm", "speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv", "speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm", } lowerCamelCase : Tuple = { "text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens", } lowerCamelCase : Optional[Any] = { "text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head", } lowerCamelCase : Union[str, Any] = { "encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj", "encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj", "encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj", "encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj", "encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm", "encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense", "encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense", "encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm", "encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm", "encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k", } lowerCamelCase : Tuple = { "decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj", "decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj", "decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj", "decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj", "decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm", "decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj", "decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj", "decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj", "decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj", "decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm", "decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense", "decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense", "decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm", } lowerCamelCase : str = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } lowerCamelCase : str = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } lowerCamelCase : Optional[Any] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } lowerCamelCase : str = [] lowerCamelCase : str = [ "encoder.version", "encoder.layers.*.norm_k.weight", "encoder.layers.*.norm_k.bias", "decoder.version", "decoder.layers.*.norm_k.weight", "decoder.layers.*.norm_k.bias", "decoder.pos_emb.pe_k", "speech_encoder_prenet.embed_positions._float_tensor", "text_decoder_prenet.embed_positions._float_tensor", ] lowerCamelCase : Dict = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "speech_decoder_prenet.*", "speech_decoder_postnet.*", ] lowerCamelCase : List[Any] = IGNORE_KEYS + [ "encoder.proj", "speech_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] lowerCamelCase : Tuple = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] , lowercase : Optional[int] , lowercase : List[str] , lowercase : List[str] , lowercase : str ): '''simple docstring''' for attribute in key.split('.' ): lowerCamelCase_ = getattr(__a , __a ) if weight_type is not None: lowerCamelCase_ = getattr(__a , __a ).shape else: lowerCamelCase_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCamelCase_ = value elif weight_type == "weight_g": lowerCamelCase_ = value elif weight_type == "weight_v": lowerCamelCase_ = value elif weight_type == "bias": lowerCamelCase_ = value elif weight_type == "running_mean": lowerCamelCase_ = value elif weight_type == "running_var": lowerCamelCase_ = value elif weight_type == "num_batches_tracked": lowerCamelCase_ = value else: lowerCamelCase_ = value logger.info(f"""{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.""" ) def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : Any ): '''simple docstring''' for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowerCamelCase_ , lowerCamelCase_ = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] , lowercase : Dict , lowercase : Dict ): '''simple docstring''' lowerCamelCase_ = [] if task == "s2t": lowerCamelCase_ = hf_model.speechta.encoder.prenet.feature_encoder lowerCamelCase_ = MAPPING_S2T lowerCamelCase_ = IGNORE_KEYS_S2T elif task == "t2s": lowerCamelCase_ = None lowerCamelCase_ = MAPPING_T2S lowerCamelCase_ = IGNORE_KEYS_T2S elif task == "s2s": lowerCamelCase_ = hf_model.speechta.encoder.prenet.feature_encoder lowerCamelCase_ = MAPPING_S2S lowerCamelCase_ = IGNORE_KEYS_S2S else: raise ValueError(f"""Unsupported task: {task}""" ) for name, value in fairseq_dict.items(): if should_ignore(__a , __a ): logger.info(f"""{name} was ignored""" ) continue lowerCamelCase_ = False if "conv_layers" in name: load_conv_layer( __a , __a , __a , __a , hf_model.config.feat_extract_norm == 'group' , ) lowerCamelCase_ = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: lowerCamelCase_ , lowerCamelCase_ = key.split('.*.' ) if prefix in name and suffix in name: lowerCamelCase_ = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: lowerCamelCase_ = True if "*" in mapped_key: lowerCamelCase_ = name.split(__a )[0].split('.' )[-2] lowerCamelCase_ = mapped_key.replace('*' , __a ) if "weight_g" in name: lowerCamelCase_ = 'weight_g' elif "weight_v" in name: lowerCamelCase_ = 'weight_v' elif "bias" in name: lowerCamelCase_ = 'bias' elif "weight" in name: lowerCamelCase_ = 'weight' elif "running_mean" in name: lowerCamelCase_ = 'running_mean' elif "running_var" in name: lowerCamelCase_ = 'running_var' elif "num_batches_tracked" in name: lowerCamelCase_ = 'num_batches_tracked' else: lowerCamelCase_ = None set_recursively(__a , __a , __a , __a , __a ) continue if not is_used: unused_weights.append(__a ) logger.warning(f"""Unused weights: {unused_weights}""" ) def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : Union[str, Any] , lowercase : int , lowercase : Tuple , lowercase : List[Any] ): '''simple docstring''' lowerCamelCase_ = full_name.split('conv_layers.' )[-1] lowerCamelCase_ = name.split('.' ) lowerCamelCase_ = int(items[0] ) lowerCamelCase_ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCamelCase_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCamelCase_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) lowerCamelCase_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCamelCase_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] , lowercase : List[str] , lowercase : List[str] , lowercase : Any=None , lowercase : str=None , lowercase : Union[str, Any]=None , ): '''simple docstring''' if config_path is not None: lowerCamelCase_ = SpeechTaConfig.from_pretrained(__a ) else: lowerCamelCase_ = SpeechTaConfig() if task == "s2t": lowerCamelCase_ = config.max_text_positions lowerCamelCase_ = SpeechTaForSpeechToText(__a ) elif task == "t2s": lowerCamelCase_ = 18_76 lowerCamelCase_ = 6_00 lowerCamelCase_ = config.max_speech_positions lowerCamelCase_ = SpeechTaForTextToSpeech(__a ) elif task == "s2s": lowerCamelCase_ = 18_76 lowerCamelCase_ = config.max_speech_positions lowerCamelCase_ = SpeechTaForSpeechToSpeech(__a ) else: raise ValueError(f"""Unknown task name: {task}""" ) if vocab_path: lowerCamelCase_ = SpeechTaTokenizer(__a , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken('<mask>' , lstrip=__a , rstrip=__a ) lowerCamelCase_ = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) lowerCamelCase_ = SpeechTaFeatureExtractor() lowerCamelCase_ = SpeechTaProcessor(tokenizer=__a , feature_extractor=__a ) processor.save_pretrained(__a ) lowerCamelCase_ = torch.load(__a ) recursively_load_weights(fairseq_checkpoint['model'] , __a , __a ) model.save_pretrained(__a ) if repo_id: print('Pushing to the hub...' ) processor.push_to_hub(__a ) model.push_to_hub(__a ) if __name__ == "__main__": lowerCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( "--task", default="s2t", type=str, help="Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) lowerCamelCase : Dict = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
720
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] ): '''simple docstring''' return EnvironmentCommand() class A( UpperCamelCase ): '''simple docstring''' @staticmethod def a__ ( A_ : ArgumentParser ) -> str: """simple docstring""" lowerCamelCase_ = parser.add_parser('env' ) download_parser.set_defaults(func=A_ ) def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = huggingface_hub.__version__ lowerCamelCase_ = 'not installed' lowerCamelCase_ = 'NA' if is_torch_available(): import torch lowerCamelCase_ = torch.__version__ lowerCamelCase_ = torch.cuda.is_available() lowerCamelCase_ = 'not installed' if is_transformers_available(): import transformers lowerCamelCase_ = transformers.__version__ lowerCamelCase_ = 'not installed' if is_accelerate_available(): import accelerate lowerCamelCase_ = accelerate.__version__ lowerCamelCase_ = 'not installed' if is_xformers_available(): import xformers lowerCamelCase_ = xformers.__version__ lowerCamelCase_ = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': f"""{pt_version} ({pt_cuda_available})""", 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(A_ ) ) return info @staticmethod def a__ ( A_ : Dict ) -> Any: """simple docstring""" return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
651
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCamelCase : Any = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
721
from __future__ import annotations from fractions import Fraction def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : int ): '''simple docstring''' return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = [] lowerCamelCase_ = 11 lowerCamelCase_ = int('1' + '0' * digit_len ) for num in range(lowercase , lowercase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(lowercase , lowercase ): solutions.append(f"""{num}/{den}""" ) den += 1 num += 1 lowerCamelCase_ = 10 return solutions def _SCREAMING_SNAKE_CASE ( lowercase : int = 2 ): '''simple docstring''' lowerCamelCase_ = 1.0 for fraction in fraction_list(lowercase ): lowerCamelCase_ = Fraction(lowercase ) result *= frac.denominator / frac.numerator return int(lowercase ) if __name__ == "__main__": print(solution())
651
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin lowerCamelCase : List[str] = False @skip_mps class A( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' UpperCamelCase = StableDiffusionAttendAndExcitePipeline UpperCamelCase = False UpperCamelCase = TEXT_TO_IMAGE_PARAMS UpperCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS.union({'''token_indices'''} ) UpperCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def a__ ( cls : Any ) -> Any: """simple docstring""" super().setUpClass() torch.use_deterministic_algorithms(UpperCAmelCase__ ) @classmethod def a__ ( cls : Optional[int] ) -> int: """simple docstring""" super().tearDownClass() torch.use_deterministic_algorithms(UpperCAmelCase__ ) def a__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCAmelCase__ , ) lowerCamelCase_ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=UpperCAmelCase__ , set_alpha_to_one=UpperCAmelCase__ , ) torch.manual_seed(0 ) lowerCamelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowerCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) lowerCamelCase_ = CLIPTextModel(UpperCAmelCase__ ) lowerCamelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCamelCase_ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def a__ ( self : int , A_ : List[Any] , A_ : Optional[int]=0 ) -> List[Any]: """simple docstring""" if str(UpperCAmelCase__ ).startswith('mps' ): lowerCamelCase_ = torch.manual_seed(UpperCAmelCase__ ) else: lowerCamelCase_ = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) lowerCamelCase_ = { '''prompt''': '''a cat and a frog''', '''token_indices''': [2, 5], '''generator''': generator, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''max_iter_to_alter''': 2, '''thresholds''': {0: 0.7}, } return inputs def a__ ( self : Optional[Any] ) -> int: """simple docstring""" lowerCamelCase_ = '''cpu''' lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = self.pipeline_class(**UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) lowerCamelCase_ = self.get_dummy_inputs(UpperCAmelCase__ ) lowerCamelCase_ = pipe(**UpperCAmelCase__ ).images lowerCamelCase_ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) lowerCamelCase_ = np.array( [0.63905364, 0.62897307, 0.48599017, 0.5133624, 0.5550048, 0.45769516, 0.50326973, 0.5023139, 0.45384496] ) lowerCamelCase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase__ , 1E-3 ) def a__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 ) def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7E-4 ) def a__ ( self : Optional[int] ) -> int: """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def a__ ( self : str ) -> str: """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 ) def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" super().test_save_load_local(expected_max_difference=5E-4 ) def a__ ( self : List[str] ) -> str: """simple docstring""" super().test_save_load_optional_components(expected_max_difference=4E-4 ) @require_torch_gpu @slow class A( unittest.TestCase ): '''simple docstring''' @classmethod def a__ ( cls : Tuple ) -> Union[str, Any]: """simple docstring""" super().setUpClass() torch.use_deterministic_algorithms(UpperCAmelCase__ ) @classmethod def a__ ( cls : Optional[Any] ) -> Union[str, Any]: """simple docstring""" super().tearDownClass() torch.use_deterministic_algorithms(UpperCAmelCase__ ) def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = torch.manual_seed(51 ) lowerCamelCase_ = StableDiffusionAttendAndExcitePipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , safety_checker=UpperCAmelCase__ , torch_dtype=torch.floataa ) pipe.to('cuda' ) lowerCamelCase_ = '''a painting of an elephant with glasses''' lowerCamelCase_ = [5, 7] lowerCamelCase_ = pipe( prompt=UpperCAmelCase__ , token_indices=UpperCAmelCase__ , guidance_scale=7.5 , generator=UpperCAmelCase__ , num_inference_steps=5 , max_iter_to_alter=5 , output_type='numpy' , ).images[0] lowerCamelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy' ) assert np.abs((expected_image - image).max() ) < 5E-1
700
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase : List[Any] = logging.get_logger(__name__) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : List[Any] , A_ : bool = True , A_ : Dict[str, int] = None , A_ : PILImageResampling = PILImageResampling.BICUBIC , A_ : bool = True , A_ : Dict[str, int] = None , A_ : bool = True , A_ : Union[int, float] = 1 / 255 , A_ : bool = True , A_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , A_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **A_ : Tuple , ) -> None: """simple docstring""" super().__init__(**A_ ) lowerCamelCase_ = size if size is not None else {'shortest_edge': 224} lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) lowerCamelCase_ = crop_size if crop_size is not None else {'height': 224, 'width': 224} lowerCamelCase_ = get_size_dict(A_ , param_name='crop_size' ) lowerCamelCase_ = do_resize lowerCamelCase_ = size lowerCamelCase_ = resample lowerCamelCase_ = do_center_crop lowerCamelCase_ = crop_size lowerCamelCase_ = do_rescale lowerCamelCase_ = rescale_factor lowerCamelCase_ = do_normalize lowerCamelCase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowerCamelCase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def a__ ( self : Optional[Any] , A_ : np.ndarray , A_ : Dict[str, int] , A_ : PILImageResampling = PILImageResampling.BICUBIC , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Tuple , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: lowerCamelCase_ = int((256 / 224) * size['shortest_edge'] ) lowerCamelCase_ = get_resize_output_image_size(A_ , size=A_ , default_to_square=A_ ) lowerCamelCase_ = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( A_ , size=(size_dict['height'], size_dict['width']) , resample=A_ , data_format=A_ , **A_ ) def a__ ( self : Any , A_ : np.ndarray , A_ : Dict[str, int] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Any , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(A_ , size=(size['height'], size['width']) , data_format=A_ , **A_ ) def a__ ( self : Optional[Any] , A_ : np.ndarray , A_ : Union[int, float] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Optional[int] , ) -> np.ndarray: """simple docstring""" return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def a__ ( self : List[str] , A_ : np.ndarray , A_ : Union[float, List[float]] , A_ : Union[float, List[float]] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : str , ) -> np.ndarray: """simple docstring""" return normalize(A_ , mean=A_ , std=A_ , data_format=A_ , **A_ ) def a__ ( self : Optional[int] , A_ : ImageInput , A_ : Optional[bool] = None , A_ : Optional[Dict[str, int]] = None , A_ : PILImageResampling = None , A_ : Optional[bool] = None , A_ : Optional[Dict[str, int]] = None , A_ : Optional[bool] = None , A_ : Optional[float] = None , A_ : Optional[bool] = None , A_ : Optional[Union[float, Iterable[float]]] = None , A_ : Optional[Union[float, Iterable[float]]] = None , A_ : Optional[TensorType] = None , A_ : ChannelDimension = ChannelDimension.FIRST , **A_ : List[Any] , ) -> BatchFeature: """simple docstring""" lowerCamelCase_ = do_resize if do_resize is not None else self.do_resize lowerCamelCase_ = resample if resample is not None else self.resample lowerCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase_ = image_mean if image_mean is not None else self.image_mean lowerCamelCase_ = image_std if image_std is not None else self.image_std lowerCamelCase_ = size if size is not None else self.size lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) lowerCamelCase_ = crop_size if crop_size is not None else self.crop_size lowerCamelCase_ = get_size_dict(A_ , param_name='crop_size' ) lowerCamelCase_ = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCamelCase_ = [to_numpy_array(A_ ) for image in images] if do_resize: lowerCamelCase_ = [self.resize(A_ , A_ , A_ ) for image in images] if do_center_crop: lowerCamelCase_ = [self.center_crop(A_ , A_ ) for image in images] if do_rescale: lowerCamelCase_ = [self.rescale(A_ , A_ ) for image in images] if do_normalize: lowerCamelCase_ = [self.normalize(A_ , A_ , A_ ) for image in images] lowerCamelCase_ = [to_channel_dimension_format(A_ , A_ ) for image in images] lowerCamelCase_ = {'pixel_values': images} return BatchFeature(data=A_ , tensor_type=A_ )
651
0
from __future__ import annotations lowerCamelCase : str = tuple[int, int, int] lowerCamelCase : List[str] = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase lowerCamelCase : Tuple = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" # -------------------------- default selection -------------------------- # rotors -------------------------- lowerCamelCase : Tuple = "EGZWVONAHDCLFQMSIPJBYUKXTR" lowerCamelCase : Dict = "FOBHMDKEXQNRAULPGSJVTYICZW" lowerCamelCase : Optional[Any] = "ZJXESIUQLHAVRMDOYGTNFWPBKC" # reflector -------------------------- lowerCamelCase : List[str] = { "A": "N", "N": "A", "B": "O", "O": "B", "C": "P", "P": "C", "D": "Q", "Q": "D", "E": "R", "R": "E", "F": "S", "S": "F", "G": "T", "T": "G", "H": "U", "U": "H", "I": "V", "V": "I", "J": "W", "W": "J", "K": "X", "X": "K", "L": "Y", "Y": "L", "M": "Z", "Z": "M", } # -------------------------- extra rotors -------------------------- lowerCamelCase : int = "RMDJXFUWGISLHVTCQNKYPBEZOA" lowerCamelCase : str = "SGLCPQWZHKXAREONTFBVIYJUDM" lowerCamelCase : Any = "HVSICLTYKQUBXDWAJZOMFGPREN" lowerCamelCase : Tuple = "RZWQHFMVDBKICJLNTUXAGYPSOE" lowerCamelCase : str = "LFKIJODBEGAMQPXVUHYSTCZRWN" lowerCamelCase : Union[str, Any] = "KOAEGVDHXPQZMLFTYWJNBRCIUS" def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : List[str] , lowercase : Dict ): '''simple docstring''' if (unique_rotsel := len(set(_lowerCAmelCase ) )) < 3: lowerCamelCase_ = f"""Please use 3 unique rotors (not {unique_rotsel})""" raise Exception(_lowerCAmelCase ) # Checks if rotor positions are valid lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = rotpos if not 0 < rotorposa <= len(_lowerCAmelCase ): lowerCamelCase_ = f"""First rotor position is not within range of 1..26 ({rotorposa}""" raise ValueError(_lowerCAmelCase ) if not 0 < rotorposa <= len(_lowerCAmelCase ): lowerCamelCase_ = f"""Second rotor position is not within range of 1..26 ({rotorposa})""" raise ValueError(_lowerCAmelCase ) if not 0 < rotorposa <= len(_lowerCAmelCase ): lowerCamelCase_ = f"""Third rotor position is not within range of 1..26 ({rotorposa})""" raise ValueError(_lowerCAmelCase ) # Validates string and returns dict lowerCamelCase_ = _plugboard(_lowerCAmelCase ) return rotpos, rotsel, pbdict def _SCREAMING_SNAKE_CASE ( lowercase : List[str] ): '''simple docstring''' if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowerCamelCase_ = f"""Plugboard setting isn't type string ({type(_lowerCAmelCase )})""" raise TypeError(_lowerCAmelCase ) elif len(_lowerCAmelCase ) % 2 != 0: lowerCamelCase_ = f"""Odd number of symbols ({len(_lowerCAmelCase )})""" raise Exception(_lowerCAmelCase ) elif pbstring == "": return {} pbstring.replace(' ' , '' ) # Checks if all characters are unique lowerCamelCase_ = set() for i in pbstring: if i not in abc: lowerCamelCase_ = f"""'{i}' not in list of symbols""" raise Exception(_lowerCAmelCase ) elif i in tmppbl: lowerCamelCase_ = f"""Duplicate symbol ({i})""" raise Exception(_lowerCAmelCase ) else: tmppbl.add(_lowerCAmelCase ) del tmppbl # Created the dictionary lowerCamelCase_ = {} for j in range(0 , len(_lowerCAmelCase ) - 1 , 2 ): lowerCamelCase_ = pbstring[j + 1] lowerCamelCase_ = pbstring[j] return pb def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] , lowercase : Dict , lowercase : Dict = (rotora, rotora, rotora) , lowercase : List[str] = "" , ): '''simple docstring''' lowerCamelCase_ = text.upper() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = _validator( _lowerCAmelCase , _lowerCAmelCase , plugb.upper() ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = rotor_position lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 lowerCamelCase_ = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: lowerCamelCase_ = plugboard[symbol] # rotor ra -------------------------- lowerCamelCase_ = abc.index(_lowerCAmelCase ) + rotorposa lowerCamelCase_ = rotora[index % len(_lowerCAmelCase )] # rotor rb -------------------------- lowerCamelCase_ = abc.index(_lowerCAmelCase ) + rotorposa lowerCamelCase_ = rotora[index % len(_lowerCAmelCase )] # rotor rc -------------------------- lowerCamelCase_ = abc.index(_lowerCAmelCase ) + rotorposa lowerCamelCase_ = rotora[index % len(_lowerCAmelCase )] # reflector -------------------------- # this is the reason you don't need another machine to decipher lowerCamelCase_ = reflector[symbol] # 2nd rotors lowerCamelCase_ = abc[rotora.index(_lowerCAmelCase ) - rotorposa] lowerCamelCase_ = abc[rotora.index(_lowerCAmelCase ) - rotorposa] lowerCamelCase_ = abc[rotora.index(_lowerCAmelCase ) - rotorposa] # 2nd plugboard if symbol in plugboard: lowerCamelCase_ = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(_lowerCAmelCase ): lowerCamelCase_ = 0 rotorposa += 1 if rotorposa >= len(_lowerCAmelCase ): lowerCamelCase_ = 0 rotorposa += 1 if rotorposa >= len(_lowerCAmelCase ): lowerCamelCase_ = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(_lowerCAmelCase ) return "".join(_lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase : Optional[int] = "This is my Python script that emulates the Enigma machine from WWII." lowerCamelCase : List[Any] = (1, 1, 1) lowerCamelCase : List[str] = "pictures" lowerCamelCase : Any = (rotora, rotora, rotora) lowerCamelCase : int = enigma(message, rotor_pos, rotor_sel, pb) print("Encrypted message:", en) print("Decrypted message:", enigma(en, rotor_pos, rotor_sel, pb))
701
import cva import numpy as np class A: '''simple docstring''' def __init__( self : int , A_ : float , A_ : int ) -> List[Any]: """simple docstring""" if k in (0.04, 0.06): lowerCamelCase_ = k lowerCamelCase_ = window_size else: raise ValueError('invalid k value' ) def __str__( self : str ) -> str: """simple docstring""" return str(self.k ) def a__ ( self : Any , A_ : str ) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" lowerCamelCase_ = cva.imread(A_ , 0 ) lowerCamelCase_ , lowerCamelCase_ = img.shape lowerCamelCase_ = [] lowerCamelCase_ = img.copy() lowerCamelCase_ = cva.cvtColor(A_ , cva.COLOR_GRAY2RGB ) lowerCamelCase_ , lowerCamelCase_ = np.gradient(A_ ) lowerCamelCase_ = dx**2 lowerCamelCase_ = dy**2 lowerCamelCase_ = dx * dy lowerCamelCase_ = 0.04 lowerCamelCase_ = self.window_size // 2 for y in range(A_ , h - offset ): for x in range(A_ , w - offset ): lowerCamelCase_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = (wxx * wyy) - (wxy**2) lowerCamelCase_ = wxx + wyy lowerCamelCase_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase : Optional[int] = HarrisCorner(0.04, 3) lowerCamelCase , lowerCamelCase : Optional[int] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
651
0
import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset lowerCamelCase : Any = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) lowerCamelCase : Any = dataset.iloc[:, 1:2].values lowerCamelCase : int = dataset.iloc[:, 2].values lowerCamelCase : Union[str, Any] = train_test_split(X, y, test_size=0.2, random_state=0) lowerCamelCase : str = PolynomialFeatures(degree=4) lowerCamelCase : Optional[Any] = poly_reg.fit_transform(X) lowerCamelCase : List[Any] = LinearRegression() pol_reg.fit(X_poly, y) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' plt.scatter(lowerCamelCase_ , lowerCamelCase_ , color='red' ) plt.plot(lowerCamelCase_ , pol_reg.predict(poly_reg.fit_transform(lowerCamelCase_ ) ) , color='blue' ) plt.title('Truth or Bluff (Linear Regression)' ) plt.xlabel('Position level' ) plt.ylabel('Salary' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
702
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } lowerCamelCase : int = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } lowerCamelCase : Tuple = {"facebook/blenderbot-3B": 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) lowerCamelCase_ = bs[:] lowerCamelCase_ = 0 for b in range(2**8 ): if b not in bs: bs.append(lowercase ) cs.append(2**8 + n ) n += 1 lowerCamelCase_ = [chr(lowercase ) for n in cs] return dict(zip(lowercase , lowercase ) ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = set() lowerCamelCase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase_ = char return pairs class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[Any] , A_ : List[Any] , A_ : List[Any] , A_ : Union[str, Any]="replace" , A_ : Dict="<s>" , A_ : Optional[int]="</s>" , A_ : Optional[Any]="</s>" , A_ : Dict="<s>" , A_ : Dict="<unk>" , A_ : Any="<pad>" , A_ : Dict="<mask>" , A_ : Union[str, Any]=False , **A_ : List[str] , ) -> Tuple: """simple docstring""" lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else bos_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else eos_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else sep_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else cls_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else unk_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token super().__init__( errors=A_ , bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , add_prefix_space=A_ , **A_ , ) with open(A_ , encoding='utf-8' ) as vocab_handle: lowerCamelCase_ = json.load(A_ ) lowerCamelCase_ = {v: k for k, v in self.encoder.items()} lowerCamelCase_ = errors # how to handle errors in decoding lowerCamelCase_ = bytes_to_unicode() lowerCamelCase_ = {v: k for k, v in self.byte_encoder.items()} with open(A_ , encoding='utf-8' ) as merges_handle: lowerCamelCase_ = merges_handle.read().split('\n' )[1:-1] lowerCamelCase_ = [tuple(merge.split() ) for merge in bpe_merges] lowerCamelCase_ = dict(zip(A_ , range(len(A_ ) ) ) ) lowerCamelCase_ = {} lowerCamelCase_ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCamelCase_ = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" return len(self.encoder ) def a__ ( self : List[Any] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def a__ ( self : Tuple , A_ : Tuple ) -> Optional[Any]: """simple docstring""" if token in self.cache: return self.cache[token] lowerCamelCase_ = tuple(A_ ) lowerCamelCase_ = get_pairs(A_ ) if not pairs: return token while True: lowerCamelCase_ = min(A_ , key=lambda A_ : self.bpe_ranks.get(A_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase_ , lowerCamelCase_ = bigram lowerCamelCase_ = [] lowerCamelCase_ = 0 while i < len(A_ ): try: lowerCamelCase_ = word.index(A_ , A_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase_ = j if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase_ = tuple(A_ ) lowerCamelCase_ = new_word if len(A_ ) == 1: break else: lowerCamelCase_ = get_pairs(A_ ) lowerCamelCase_ = ' '.join(A_ ) lowerCamelCase_ = word return word def a__ ( self : str , A_ : List[str] ) -> List[str]: """simple docstring""" lowerCamelCase_ = [] for token in re.findall(self.pat , A_ ): lowerCamelCase_ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A_ ).split(' ' ) ) return bpe_tokens def a__ ( self : Tuple , A_ : str ) -> Optional[Any]: """simple docstring""" return self.encoder.get(A_ , self.encoder.get(self.unk_token ) ) def a__ ( self : Tuple , A_ : Dict ) -> List[Any]: """simple docstring""" return self.decoder.get(A_ ) def a__ ( self : Optional[int] , A_ : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = ''.join(A_ ) lowerCamelCase_ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def a__ ( self : Tuple , A_ : str , A_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(A_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + '\n' ) lowerCamelCase_ = 0 with open(A_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) lowerCamelCase_ = token_index writer.write(' '.join(A_ ) + '\n' ) index += 1 return vocab_file, merge_file def a__ ( self : str , A_ : List[int] , A_ : Optional[List[int]] = None , A_ : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def a__ ( self : int , A_ : List[int] , A_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a__ ( self : str , A_ : Optional[Any] , A_ : Union[str, Any]=False , **A_ : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(A_ ) > 0 and not text[0].isspace()): lowerCamelCase_ = ' ' + text return (text, kwargs) def a__ ( self : List[Any] , A_ : List[int] , A_ : Optional[List[int]] = None ) -> Dict: """simple docstring""" return token_ids_a + [self.eos_token_id] def a__ ( self : Optional[int] , A_ : "Conversation" ) -> List[int]: """simple docstring""" lowerCamelCase_ = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(A_ ) lowerCamelCase_ = ' '.join(A_ ) lowerCamelCase_ = self.encode(A_ ) if len(A_ ) > self.model_max_length: lowerCamelCase_ = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
651
0
import argparse import datetime def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] ): '''simple docstring''' lowerCamelCase_ = { '0': 'Sunday', '1': 'Monday', '2': 'Tuesday', '3': 'Wednesday', '4': 'Thursday', '5': 'Friday', '6': 'Saturday', } lowerCamelCase_ = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(UpperCamelCase__ ) < 11: raise ValueError('Must be 10 characters long' ) # Get month lowerCamelCase_ = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError('Month must be between 1 - 12' ) lowerCamelCase_ = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get day lowerCamelCase_ = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError('Date must be between 1 - 31' ) # Get second separator lowerCamelCase_ = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get year lowerCamelCase_ = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 85_00: raise ValueError( 'Year out of range. There has to be some sort of limit...right?' ) # Get datetime obj for validation lowerCamelCase_ = datetime.date(int(UpperCamelCase__ ) , int(UpperCamelCase__ ) , int(UpperCamelCase__ ) ) # Start math if m <= 2: lowerCamelCase_ = y - 1 lowerCamelCase_ = m + 12 # maths var lowerCamelCase_ = int(str(UpperCamelCase__ )[:2] ) lowerCamelCase_ = int(str(UpperCamelCase__ )[2:] ) lowerCamelCase_ = int(2.6 * m - 5.39 ) lowerCamelCase_ = int(c / 4 ) lowerCamelCase_ = int(k / 4 ) lowerCamelCase_ = int(d + k ) lowerCamelCase_ = int(t + u + v + x ) lowerCamelCase_ = int(z - (2 * c) ) lowerCamelCase_ = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('The date was evaluated incorrectly. Contact developer.' ) # Response lowerCamelCase_ = f"""Your date {date_input}, is a {days[str(UpperCamelCase__ )]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Tuple = argparse.ArgumentParser( description=( "Find out what day of the week nearly any date is or was. Enter " "date as a string in the mm-dd-yyyy or mm/dd/yyyy format" ) ) parser.add_argument( "date_input", type=str, help="Date as a string (mm-dd-yyyy or mm/dd/yyyy)" ) lowerCamelCase : List[Any] = parser.parse_args() zeller(args.date_input)
703
lowerCamelCase : Dict = "Alexander Joslin" import operator as op from .stack import Stack def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} lowerCamelCase_ = Stack() lowerCamelCase_ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(lowercase ) elif i == ")": # RULE 4 lowerCamelCase_ = operator_stack.peek() operator_stack.pop() lowerCamelCase_ = operand_stack.peek() operand_stack.pop() lowerCamelCase_ = operand_stack.peek() operand_stack.pop() lowerCamelCase_ = operators[opr](lowercase , lowercase ) operand_stack.push(lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCamelCase : Any = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
651
0
def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] ): '''simple docstring''' if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowerCamelCase_ = f"""Input value of [number={number}] must be an integer""" raise TypeError(__SCREAMING_SNAKE_CASE ) if number < 1: lowerCamelCase_ = f"""Input value of [number={number}] must be > 0""" raise ValueError(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = 1 for i in range(1 , __SCREAMING_SNAKE_CASE ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
704
def _SCREAMING_SNAKE_CASE ( lowercase : list[int] , lowercase : list[int] ): '''simple docstring''' lowerCamelCase_ = len(lowercase ) print('The following activities are selected:' ) # The first activity is always selected lowerCamelCase_ = 0 print(lowercase , end=',' ) # Consider rest of the activities for j in range(lowercase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowercase , end=',' ) lowerCamelCase_ = j if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Tuple = [1, 3, 0, 5, 8, 5] lowerCamelCase : int = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
651
0
from __future__ import annotations def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : Optional[Any] ): '''simple docstring''' if b == 0: return (1, 0) ((lowerCamelCase_) , (lowerCamelCase_)) = extended_euclid(lowercase , a % b ) lowerCamelCase_ = a // b return (y, x - k * y) def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] , lowercase : str , lowercase : Dict , lowercase : int ): '''simple docstring''' ((lowerCamelCase_) , (lowerCamelCase_)) = extended_euclid(lowercase , lowercase ) lowerCamelCase_ = na * na lowerCamelCase_ = ra * x * na + ra * y * na return (n % m + m) % m def _SCREAMING_SNAKE_CASE ( lowercase : Dict , lowercase : List[str] ): '''simple docstring''' ((lowerCamelCase_) , (lowerCamelCase_)) = extended_euclid(lowercase , lowercase ) if b < 0: lowerCamelCase_ = (b % n + n) % n return b def _SCREAMING_SNAKE_CASE ( lowercase : Dict , lowercase : Optional[int] , lowercase : Optional[Any] , lowercase : List[str] ): '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = invert_modulo(lowercase , lowercase ), invert_modulo(lowercase , lowercase ) lowerCamelCase_ = na * na lowerCamelCase_ = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
705
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A: '''simple docstring''' def __init__( self : Optional[Any] , A_ : Union[str, Any] , A_ : str=13 , A_ : List[Any]=32 , A_ : Tuple=2 , A_ : Dict=3 , A_ : Union[str, Any]=16 , A_ : List[str]=[32, 64, 128] , A_ : Optional[Any]=[1, 2, 1] , A_ : Tuple=[2, 2, 4] , A_ : Dict=2 , A_ : Optional[Any]=2.0 , A_ : List[str]=True , A_ : Dict=0.0 , A_ : List[str]=0.0 , A_ : Optional[int]=0.1 , A_ : str="gelu" , A_ : Optional[Any]=False , A_ : Any=True , A_ : Optional[Any]=0.02 , A_ : Dict=1E-5 , A_ : int=True , A_ : Optional[int]=None , A_ : List[str]=True , A_ : Tuple=10 , A_ : Any=8 , A_ : Dict=["stage1", "stage2"] , A_ : Optional[Any]=[1, 2] , ) -> List[str]: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = embed_dim lowerCamelCase_ = hidden_sizes lowerCamelCase_ = depths lowerCamelCase_ = num_heads lowerCamelCase_ = window_size lowerCamelCase_ = mlp_ratio lowerCamelCase_ = qkv_bias lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = drop_path_rate lowerCamelCase_ = hidden_act lowerCamelCase_ = use_absolute_embeddings lowerCamelCase_ = patch_norm lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = initializer_range lowerCamelCase_ = is_training lowerCamelCase_ = scope lowerCamelCase_ = use_labels lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = encoder_stride lowerCamelCase_ = out_features lowerCamelCase_ = out_indices def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def a__ ( self : List[Any] ) -> Any: """simple docstring""" return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def a__ ( self : Union[str, Any] , A_ : Dict , A_ : int , A_ : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = FocalNetModel(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) lowerCamelCase_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCamelCase_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def a__ ( self : Tuple , A_ : List[str] , A_ : Optional[int] , A_ : Optional[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = FocalNetBackbone(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None lowerCamelCase_ = None lowerCamelCase_ = FocalNetBackbone(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a__ ( self : int , A_ : Optional[Any] , A_ : Optional[int] , A_ : Any ) -> Any: """simple docstring""" lowerCamelCase_ = FocalNetForMaskedImageModeling(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = FocalNetForMaskedImageModeling(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def a__ ( self : Tuple , A_ : List[Any] , A_ : int , A_ : Dict ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.type_sequence_label_size lowerCamelCase_ = FocalNetForImageClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = FocalNetForImageClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self : int ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) UpperCamelCase = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = FocalNetModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=A_ , embed_dim=37 , has_text_modality=A_ ) def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ ( self : Any ) -> Optional[int]: """simple docstring""" return def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*A_ ) def a__ ( self : Dict ) -> int: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A_ ) def a__ ( self : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def a__ ( self : int ) -> int: """simple docstring""" pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" pass def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def a__ ( self : int , A_ : List[Any] , A_ : int , A_ : Dict , A_ : Dict ) -> List[Any]: """simple docstring""" lowerCamelCase_ = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(A_ , A_ ) ) lowerCamelCase_ = outputs.hidden_states lowerCamelCase_ = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(A_ ) , A_ ) # FocalNet has a different seq_length lowerCamelCase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowerCamelCase_ = outputs.reshaped_hidden_states self.assertEqual(len(A_ ) , A_ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = reshaped_hidden_states[0].shape lowerCamelCase_ = ( reshaped_hidden_states[0].view(A_ , A_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , A_ ) def a__ ( self : List[str] ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = 3 lowerCamelCase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCamelCase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCamelCase_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , (padded_height, padded_width) ) @slow def a__ ( self : str ) -> Optional[Any]: """simple docstring""" for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = FocalNetModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def a__ ( self : List[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = _config_zero_init(A_ ) for model_class in self.all_model_classes: lowerCamelCase_ = model_class(config=A_ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class A( unittest.TestCase ): '''simple docstring''' @cached_property def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def a__ ( self : Tuple ) -> Any: """simple docstring""" lowerCamelCase_ = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(A_ ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCamelCase_ = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): lowerCamelCase_ = model(**A_ ) # verify the logits lowerCamelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A_ ) lowerCamelCase_ = torch.tensor([0.2166, -0.4368, 0.2191] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (FocalNetBackbone,) if is_torch_available() else () UpperCamelCase = FocalNetConfig UpperCamelCase = False def a__ ( self : List[str] ) -> Tuple: """simple docstring""" lowerCamelCase_ = FocalNetModelTester(self )
651
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase : Optional[Any] = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys lowerCamelCase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
706
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class A( unittest.TestCase ): '''simple docstring''' UpperCamelCase = MODEL_FOR_CAUSAL_LM_MAPPING UpperCamelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='pt' ) # Using `do_sample=False` to force deterministic output lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ] , ) lowerCamelCase_ = text_generator(['This is a test', 'This is a second test'] ) self.assertEqual( A_ , [ [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ], [ { 'generated_text': ( 'This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy' ' oscope. oscope. FiliFili@@' ) } ], ] , ) lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ , num_return_sequences=2 , return_tensors=A_ ) self.assertEqual( A_ , [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ] , ) lowerCamelCase_ = text_generator.model.config.eos_token_id lowerCamelCase_ = '<pad>' lowerCamelCase_ = text_generator( ['This is a test', 'This is a second test'] , do_sample=A_ , num_return_sequences=2 , batch_size=2 , return_tensors=A_ , ) self.assertEqual( A_ , [ [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ], [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ], ] , ) @require_tf def a__ ( self : Optional[int] ) -> str: """simple docstring""" lowerCamelCase_ = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='tf' ) # Using `do_sample=False` to force deterministic output lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ] , ) lowerCamelCase_ = text_generator(['This is a test', 'This is a second test'] , do_sample=A_ ) self.assertEqual( A_ , [ [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ], [ { 'generated_text': ( 'This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes' ' Cannes 閲閲Cannes Cannes Cannes 攵 please,' ) } ], ] , ) def a__ ( self : Optional[int] , A_ : Dict , A_ : int , A_ : List[str] ) -> str: """simple docstring""" lowerCamelCase_ = TextGenerationPipeline(model=A_ , tokenizer=A_ ) return text_generator, ["This is a test", "Another test"] def a__ ( self : Dict ) -> str: """simple docstring""" lowerCamelCase_ = 'Hello I believe in' lowerCamelCase_ = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) lowerCamelCase_ = text_generator(A_ ) self.assertEqual( A_ , [{'generated_text': 'Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'}] , ) lowerCamelCase_ = text_generator(A_ , stop_sequence=' fe' ) self.assertEqual(A_ , [{'generated_text': 'Hello I believe in fe'}] ) def a__ ( self : Any , A_ : Optional[Any] , A_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = text_generator.model lowerCamelCase_ = text_generator.tokenizer lowerCamelCase_ = text_generator('This is a test' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) lowerCamelCase_ = text_generator('This is a test' , return_full_text=A_ ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) lowerCamelCase_ = pipeline(task='text-generation' , model=A_ , tokenizer=A_ , return_full_text=A_ ) lowerCamelCase_ = text_generator('This is a test' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) lowerCamelCase_ = text_generator('This is a test' , return_full_text=A_ ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) lowerCamelCase_ = text_generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=A_ ) self.assertEqual( A_ , [ [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], ] , ) if text_generator.tokenizer.pad_token is not None: lowerCamelCase_ = text_generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=A_ ) self.assertEqual( A_ , [ [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], ] , ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_full_text=A_ , return_text=A_ ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_full_text=A_ , return_tensors=A_ ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_text=A_ , return_tensors=A_ ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): lowerCamelCase_ = text_generator('' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) else: with self.assertRaises((ValueError, AssertionError) ): lowerCamelCase_ = text_generator('' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. lowerCamelCase_ = ['RwkvForCausalLM', 'XGLMForCausalLM', 'GPTNeoXForCausalLM'] if ( tokenizer.model_max_length < 10000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('This is a test' * 500 , max_new_tokens=20 ) lowerCamelCase_ = text_generator('This is a test' * 500 , handle_long_generation='hole' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(A_ ): text_generator( 'This is a test' * 500 , handle_long_generation='hole' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" import torch # Classic `model_kwargs` lowerCamelCase_ = pipeline( model='hf-internal-testing/tiny-random-bloom' , model_kwargs={'device_map': 'auto', 'torch_dtype': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) @require_torch @require_torch_gpu def a__ ( self : int ) -> str: """simple docstring""" import torch lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device=0 , torch_dtype=torch.floataa ) pipe('This is a test' ) @require_torch @require_accelerate @require_torch_gpu def a__ ( self : List[Any] ) -> Dict: """simple docstring""" import torch lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.floataa ) pipe('This is a test' , do_sample=A_ , top_p=0.5 ) def a__ ( self : Tuple ) -> Dict: """simple docstring""" lowerCamelCase_ = 'Hello world' lowerCamelCase_ = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) if text_generator.model.framework == "tf": lowerCamelCase_ = logging.get_logger('transformers.generation.tf_utils' ) else: lowerCamelCase_ = logging.get_logger('transformers.generation.utils' ) lowerCamelCase_ = 'Both `max_new_tokens`' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_length=10 , max_new_tokens=1 ) self.assertIn(A_ , cl.out ) # The user only sets one -> no warning with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_new_tokens=1 ) self.assertNotIn(A_ , cl.out ) with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_length=10 ) self.assertNotIn(A_ , cl.out )
651
0
import argparse import struct import unittest class A: '''simple docstring''' def __init__( self : List[Any] , A_ : bytes ) -> None: """simple docstring""" lowerCamelCase_ = data # Initialize hash values lowerCamelCase_ = [ 0X6A_09_E6_67, 0XBB_67_AE_85, 0X3C_6E_F3_72, 0XA5_4F_F5_3A, 0X51_0E_52_7F, 0X9B_05_68_8C, 0X1F_83_D9_AB, 0X5B_E0_CD_19, ] # Initialize round constants lowerCamelCase_ = [ 0X42_8A_2F_98, 0X71_37_44_91, 0XB5_C0_FB_CF, 0XE9_B5_DB_A5, 0X39_56_C2_5B, 0X59_F1_11_F1, 0X92_3F_82_A4, 0XAB_1C_5E_D5, 0XD8_07_AA_98, 0X12_83_5B_01, 0X24_31_85_BE, 0X55_0C_7D_C3, 0X72_BE_5D_74, 0X80_DE_B1_FE, 0X9B_DC_06_A7, 0XC1_9B_F1_74, 0XE4_9B_69_C1, 0XEF_BE_47_86, 0X0F_C1_9D_C6, 0X24_0C_A1_CC, 0X2D_E9_2C_6F, 0X4A_74_84_AA, 0X5C_B0_A9_DC, 0X76_F9_88_DA, 0X98_3E_51_52, 0XA8_31_C6_6D, 0XB0_03_27_C8, 0XBF_59_7F_C7, 0XC6_E0_0B_F3, 0XD5_A7_91_47, 0X06_CA_63_51, 0X14_29_29_67, 0X27_B7_0A_85, 0X2E_1B_21_38, 0X4D_2C_6D_FC, 0X53_38_0D_13, 0X65_0A_73_54, 0X76_6A_0A_BB, 0X81_C2_C9_2E, 0X92_72_2C_85, 0XA2_BF_E8_A1, 0XA8_1A_66_4B, 0XC2_4B_8B_70, 0XC7_6C_51_A3, 0XD1_92_E8_19, 0XD6_99_06_24, 0XF4_0E_35_85, 0X10_6A_A0_70, 0X19_A4_C1_16, 0X1E_37_6C_08, 0X27_48_77_4C, 0X34_B0_BC_B5, 0X39_1C_0C_B3, 0X4E_D8_AA_4A, 0X5B_9C_CA_4F, 0X68_2E_6F_F3, 0X74_8F_82_EE, 0X78_A5_63_6F, 0X84_C8_78_14, 0X8C_C7_02_08, 0X90_BE_FF_FA, 0XA4_50_6C_EB, 0XBE_F9_A3_F7, 0XC6_71_78_F2, ] lowerCamelCase_ = self.preprocessing(self.data ) self.final_hash() @staticmethod def a__ ( A_ : bytes ) -> bytes: """simple docstring""" lowerCamelCase_ = b'\x80' + (b'\x00' * (63 - (len(__UpperCamelCase ) + 8) % 64)) lowerCamelCase_ = struct.pack('>Q' , (len(__UpperCamelCase ) * 8) ) return data + padding + big_endian_integer def a__ ( self : Tuple ) -> None: """simple docstring""" lowerCamelCase_ = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers lowerCamelCase_ = list(struct.unpack('>16L' , __UpperCamelCase ) ) # add 48 0-ed integers words += [0] * 48 lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array lowerCamelCase_ = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) lowerCamelCase_ = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) lowerCamelCase_ = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X1_00_00_00_00 # Compression lowerCamelCase_ = self.ror(__UpperCamelCase , 6 ) ^ self.ror(__UpperCamelCase , 11 ) ^ self.ror(__UpperCamelCase , 25 ) lowerCamelCase_ = (e & f) ^ ((~e & 0XFF_FF_FF_FF) & g) lowerCamelCase_ = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_00_00_00_00 lowerCamelCase_ = self.ror(__UpperCamelCase , 2 ) ^ self.ror(__UpperCamelCase , 13 ) ^ self.ror(__UpperCamelCase , 22 ) lowerCamelCase_ = (a & b) ^ (a & c) ^ (b & c) lowerCamelCase_ = (sa + maj) % 0X1_00_00_00_00 lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = ( g, f, e, ((d + tempa) % 0X1_00_00_00_00), c, b, a, ((tempa + tempa) % 0X1_00_00_00_00), ) lowerCamelCase_ = [a, b, c, d, e, f, g, h] # Modify final values lowerCamelCase_ = [ ((element + mutated_hash_values[index]) % 0X1_00_00_00_00) for index, element in enumerate(self.hashes ) ] lowerCamelCase_ = ''.join([hex(__UpperCamelCase )[2:].zfill(8 ) for value in self.hashes] ) def a__ ( self : str , A_ : int , A_ : int ) -> int: """simple docstring""" return 0XFF_FF_FF_FF & (value << (32 - rotations)) | (value >> rotations) class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Any ) -> None: """simple docstring""" import hashlib lowerCamelCase_ = bytes('Test String' , 'utf-8' ) self.assertEqual(SHAaaa(__UpperCamelCase ).hash , hashlib.shaaaa(__UpperCamelCase ).hexdigest() ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' import doctest doctest.testmod() lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) lowerCamelCase_ = parser.parse_args() lowerCamelCase_ = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: lowerCamelCase_ = f.read() else: lowerCamelCase_ = bytes(_SCREAMING_SNAKE_CASE , 'utf-8' ) print(SHAaaa(_SCREAMING_SNAKE_CASE ).hash ) if __name__ == "__main__": main()
707
import os import re import shutil import sys import tempfile import unittest import black lowerCamelCase : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowerCamelCase : Tuple = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) ) lowerCamelCase_ = self.diffusers_dir shutil.copy( os.path.join(A_ , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" lowerCamelCase_ = 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def a__ ( self : str , A_ : Optional[Any] , A_ : Optional[int] , A_ : str , A_ : Optional[Any]=None ) -> int: """simple docstring""" lowerCamelCase_ = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowerCamelCase_ = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowerCamelCase_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCamelCase_ = black.format_str(A_ , mode=A_ ) lowerCamelCase_ = os.path.join(self.diffusers_dir , 'new_code.py' ) with open(A_ , 'w' , newline='\n' ) as f: f.write(A_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(A_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=A_ ) with open(A_ , 'r' ) as f: self.assertTrue(f.read() , A_ ) def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" lowerCamelCase_ = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(A_ , A_ ) def a__ ( self : Any ) -> Dict: """simple docstring""" self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , A_ , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , A_ ) , ) # Copy consistency with a really long name lowerCamelCase_ = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('Bert' , A_ , A_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , A_ , overwrite_result=re.sub('DDPM' , 'Test' , A_ ) , )
651
0
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class A: '''simple docstring''' def a__ ( self : Any , A_ : int , A_ : Optional[Any] , A_ : Tuple ) -> str: """simple docstring""" return None class A: '''simple docstring''' def a__ ( self : List[str] , A_ : Tuple , A_ : List[Any] , A_ : Union[str, Any] , A_ : int ) -> List[Any]: """simple docstring""" return None class A( unittest.TestCase ): '''simple docstring''' UpperCamelCase = [ # (model_name, model_kwargs) ('''bert-base-cased''', {}), ('''gpt2''', {'''use_cache''': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def a__ ( self : Any ) -> List[str]: """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(A_ , 'tf' , 12 , **A_ ) @require_torch @slow def a__ ( self : int ) -> Tuple: """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(A_ , 'pt' , 12 , **A_ ) @require_torch @slow def a__ ( self : Tuple ) -> Dict: """simple docstring""" from transformers import BertModel lowerCamelCase_ = ["""[UNK]""", """[SEP]""", """[CLS]""", """[PAD]""", """[MASK]""", """some""", """other""", """words"""] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(A_ ) ) vocab_file.flush() lowerCamelCase_ = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: lowerCamelCase_ = BertModel(BertConfig(vocab_size=len(A_ ) ) ) model.save_pretrained(A_ ) self._test_export(A_ , 'pt' , 12 , A_ ) @require_tf @slow def a__ ( self : Dict ) -> List[Any]: """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowerCamelCase_ = self._test_export(A_ , 'tf' , 12 , **A_ ) lowerCamelCase_ = quantize(Path(A_ ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(A_ ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def a__ ( self : Dict ) -> str: """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowerCamelCase_ = self._test_export(A_ , 'pt' , 12 , **A_ ) lowerCamelCase_ = quantize(A_ ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(A_ ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def a__ ( self : Optional[int] , A_ : List[str] , A_ : List[Any] , A_ : Optional[Any] , A_ : Any=None , **A_ : Any ) -> List[str]: """simple docstring""" try: # Compute path with TemporaryDirectory() as tempdir: lowerCamelCase_ = Path(A_ ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(A_ , A_ , A_ , A_ , A_ , **A_ ) return path except Exception as e: self.fail(A_ ) @require_torch @require_tokenizers @slow def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" from transformers import BertModel lowerCamelCase_ = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowerCamelCase_ = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(A_ , A_ , 'pt' ) @require_tf @require_tokenizers @slow def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" from transformers import TFBertModel lowerCamelCase_ = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowerCamelCase_ = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(A_ , A_ , 'tf' ) def a__ ( self : Any , A_ : str , A_ : Union[str, Any] , A_ : Optional[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = FeatureExtractionPipeline(A_ , A_ ) lowerCamelCase_ = ["""input_ids""", """token_type_ids""", """attention_mask""", """output_0""", """output_1"""] lowerCamelCase_ = infer_shapes(A_ , A_ ) # Assert all variables are present self.assertEqual(len(A_ ) , len(A_ ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , A_ ) self.assertSequenceEqual(variable_names[3:] , A_ ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'] , {0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'] , {0: 'batch'} ) def a__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = ["""input_ids""", """attention_mask""", """token_type_ids"""] lowerCamelCase_ = {"""input_ids""": [1, 2, 3, 4], """attention_mask""": [0, 0, 0, 0], """token_type_ids""": [1, 1, 1, 1]} lowerCamelCase_ = ensure_valid_input(FuncContiguousArgs() , A_ , A_ ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(A_ ) , 3 ) # Should have exactly the same input names self.assertEqual(set(A_ ) , set(A_ ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(A_ , (tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowerCamelCase_ = ensure_valid_input(FuncNonContiguousArgs() , A_ , A_ ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(A_ ) , 1 ) self.assertEqual(len(A_ ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens['input_ids'] ) self.assertEqual(ordered_input_names[0] , 'input_ids' ) def a__ ( self : Any ) -> str: """simple docstring""" lowerCamelCase_ = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) , '-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx' , generated.as_posix() )
708
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Optional[int] , A_ : Tuple , A_ : str , A_ : int ) -> Any: """simple docstring""" self.assertEqual(len(A_ ) , len(A_ ) ) for a, b in zip(A_ , A_ ): self.assertAlmostEqual(A_ , A_ , delta=A_ ) def a__ ( self : int ) -> str: """simple docstring""" lowerCamelCase_ = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(A_ ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = None ops.enable_eager_execution_internal() lowerCamelCase_ = tf.config.list_physical_devices('CPU' ) if len(A_ ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) lowerCamelCase_ = tf.config.list_logical_devices(device_type='CPU' ) lowerCamelCase_ = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): lowerCamelCase_ = GradientAccumulator() lowerCamelCase_ = tf.Variable([4.0, 3.0] ) lowerCamelCase_ , lowerCamelCase_ = create_optimizer(5E-5 , 10 , 5 ) lowerCamelCase_ = tf.Variable([0.0, 0.0] , trainable=A_ ) def accumulate_on_replica(A_ : Any ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(A_ : List[Any] , A_ : Tuple ): with strategy.scope(): lowerCamelCase_ = strategy.experimental_local_results(A_ ) local_variables[0].assign(A_ ) local_variables[1].assign(A_ ) strategy.run(A_ , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(A_ ) def _check_local_values(A_ : List[Any] , A_ : str ): lowerCamelCase_ = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , A_ , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , A_ , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
651
0
import functools from typing import Any def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : list[str] ): '''simple docstring''' if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or len(lowerCAmelCase__ ) == 0: raise ValueError('the string should be not empty string' ) if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not all( isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(lowerCAmelCase__ ) > 0 for item in words ): raise ValueError('the words should be a list of non-empty strings' ) # Build trie lowerCamelCase_ = {} lowerCamelCase_ = 'WORD_KEEPER' for word in words: lowerCamelCase_ = trie for c in word: if c not in trie_node: lowerCamelCase_ = {} lowerCamelCase_ = trie_node[c] lowerCamelCase_ = True lowerCamelCase_ = len(lowerCAmelCase__ ) # Dynamic programming method @functools.cache def is_breakable(lowercase : int ) -> bool: if index == len_string: return True lowerCamelCase_ = trie for i in range(lowerCAmelCase__ , lowerCAmelCase__ ): lowerCamelCase_ = trie_node.get(string[i] , lowerCAmelCase__ ) if trie_node is None: return False if trie_node.get(lowerCAmelCase__ , lowerCAmelCase__ ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
709
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCamelCase : str = imread(r"digital_image_processing/image_data/lena_small.jpg") lowerCamelCase : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = cn.convert_to_negative(lowercase ) # assert negative_img array for at least one True assert negative_img.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(lowercase , 1_10 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() lowerCamelCase_ = canny.canny(lowercase ) # assert canny array for at least one True assert canny_array.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' assert gg.gaussian_filter(lowercase , 5 , sigma=0.9 ).all() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) lowerCamelCase_ = conv.img_convolve(lowercase , lowercase ).astype(lowercase ) assert res.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' assert med.median_filter(lowercase , 3 ).any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = sob.sobel_filter(lowercase ) assert grad.any() and theta.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = sp.make_sepia(lowercase , 20 ) assert sepia.all() def _SCREAMING_SNAKE_CASE ( lowercase : str = "digital_image_processing/image_data/lena_small.jpg" ): '''simple docstring''' lowerCamelCase_ = bs.Burkes(imread(lowercase , 1 ) , 1_20 ) burkes.process() assert burkes.output_img.any() def _SCREAMING_SNAKE_CASE ( lowercase : str = "digital_image_processing/image_data/lena_small.jpg" , ): '''simple docstring''' lowerCamelCase_ = rs.NearestNeighbour(imread(lowercase , 1 ) , 4_00 , 2_00 ) nn.process() assert nn.output.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. lowerCamelCase_ = imread(lowercase , 0 ) # Test for get_neighbors_pixel function() return not None lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = image[x_coordinate][y_coordinate] lowerCamelCase_ = lbp.get_neighbors_pixel( lowercase , lowercase , lowercase , lowercase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCamelCase_ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): lowerCamelCase_ = lbp.local_binary_value(lowercase , lowercase , lowercase ) assert lbp_image.any()
651
0
import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib lowerCamelCase : List[str] = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } lowerCamelCase : Any = logging.WARNING def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = os.getenv('DATASETS_VERBOSITY' , lowercase ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option DATASETS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ", ".join(log_levels.keys() ) }""" ) return _default_log_level def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' return __name__.split('.' )[0] def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' return logging.getLogger(_get_library_name() ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] = None ): '''simple docstring''' if name is None: lowerCamelCase_ = _get_library_name() return logging.getLogger(lowercase ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' return _get_library_root_logger().getEffectiveLevel() def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] ): '''simple docstring''' _get_library_root_logger().setLevel(lowercase ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' return set_verbosity(lowercase ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' return set_verbosity(lowercase ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' return set_verbosity(lowercase ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' return set_verbosity(lowercase ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = False def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class A: '''simple docstring''' def __init__( self : Any , *A_ : str , **A_ : Optional[Any] ) -> int: # pylint: disable=unused-argument """simple docstring""" lowerCamelCase_ = args[0] if args else None def __iter__( self : Optional[int] ) -> Any: """simple docstring""" return iter(self._iterator ) def __getattr__( self : int , A_ : Optional[int] ) -> Dict: """simple docstring""" def empty_fn(*A_ : Optional[int] , **A_ : str ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Tuple ) -> List[Any]: """simple docstring""" return self def __exit__( self : int , A_ : Optional[int] , A_ : Union[str, Any] , A_ : Optional[int] ) -> str: """simple docstring""" return lowerCamelCase : Dict = True class A: '''simple docstring''' def __call__( self : Dict , *A_ : int , A_ : Any=False , **A_ : Any ) -> Optional[int]: """simple docstring""" if _tqdm_active and not disable: return tqdm_lib.tqdm(*lowerCamelCase_ , **lowerCamelCase_ ) else: return EmptyTqdm(*lowerCamelCase_ , **lowerCamelCase_ ) def a__ ( self : str , *A_ : Union[str, Any] , **A_ : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*lowerCamelCase_ , **lowerCamelCase_ ) def a__ ( self : int ) -> Any: """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() lowerCamelCase : Union[str, Any] = _tqdm_cls() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' global _tqdm_active return bool(_tqdm_active ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' global _tqdm_active lowerCamelCase_ = True def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' global _tqdm_active lowerCamelCase_ = False
710
class A: '''simple docstring''' def __init__( self : Dict ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = {} def a__ ( self : Union[str, Any] , A_ : List[Any] ) -> int: """simple docstring""" if vertex not in self.adjacency: lowerCamelCase_ = {} self.num_vertices += 1 def a__ ( self : int , A_ : int , A_ : Optional[Any] , A_ : List[str] ) -> Tuple: """simple docstring""" self.add_vertex(A_ ) self.add_vertex(A_ ) if head == tail: return lowerCamelCase_ = weight lowerCamelCase_ = weight def a__ ( self : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.get_edges() for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge edges.remove((tail, head, weight) ) for i in range(len(A_ ) ): lowerCamelCase_ = list(edges[i] ) edges.sort(key=lambda A_ : e[2] ) for i in range(len(A_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowerCamelCase_ = edges[i][2] + 1 for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge lowerCamelCase_ = weight lowerCamelCase_ = weight def __str__( self : str ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = '' for tail in self.adjacency: for head in self.adjacency[tail]: lowerCamelCase_ = self.adjacency[head][tail] string += f"""{head} -> {tail} == {weight}\n""" return string.rstrip('\n' ) def a__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def a__ ( self : List[str] ) -> int: """simple docstring""" return self.adjacency.keys() @staticmethod def a__ ( A_ : Optional[Any]=None , A_ : List[str]=None ) -> List[str]: """simple docstring""" lowerCamelCase_ = Graph() if vertices is None: lowerCamelCase_ = [] if edges is None: lowerCamelCase_ = [] for vertex in vertices: g.add_vertex(A_ ) for edge in edges: g.add_edge(*A_ ) return g class A: '''simple docstring''' def __init__( self : Optional[int] ) -> int: """simple docstring""" lowerCamelCase_ = {} lowerCamelCase_ = {} def __len__( self : Any ) -> List[str]: """simple docstring""" return len(self.parent ) def a__ ( self : List[str] , A_ : Any ) -> Dict: """simple docstring""" if item in self.parent: return self.find(A_ ) lowerCamelCase_ = item lowerCamelCase_ = 0 return item def a__ ( self : List[str] , A_ : Tuple ) -> Optional[int]: """simple docstring""" if item not in self.parent: return self.make_set(A_ ) if item != self.parent[item]: lowerCamelCase_ = self.find(self.parent[item] ) return self.parent[item] def a__ ( self : Any , A_ : int , A_ : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.find(A_ ) lowerCamelCase_ = self.find(A_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowerCamelCase_ = roota return roota if self.rank[roota] < self.rank[roota]: lowerCamelCase_ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowerCamelCase_ = roota return roota return None @staticmethod def a__ ( A_ : int ) -> Tuple: """simple docstring""" lowerCamelCase_ = graph.num_vertices lowerCamelCase_ = Graph.UnionFind() lowerCamelCase_ = [] while num_components > 1: lowerCamelCase_ = {} for vertex in graph.get_vertices(): lowerCamelCase_ = -1 lowerCamelCase_ = graph.get_edges() for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge edges.remove((tail, head, weight) ) for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge lowerCamelCase_ = union_find.find(A_ ) lowerCamelCase_ = union_find.find(A_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowerCamelCase_ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowerCamelCase_ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = cheap_edge[vertex] if union_find.find(A_ ) != union_find.find(A_ ): union_find.union(A_ , A_ ) mst_edges.append(cheap_edge[vertex] ) lowerCamelCase_ = num_components - 1 lowerCamelCase_ = Graph.build(edges=A_ ) return mst
651
0
def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] ): '''simple docstring''' lowerCamelCase_ = len(lowercase ) while cur > 1: # Find the maximum number in arr lowerCamelCase_ = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowerCamelCase_ = arr[mi::-1] + arr[mi + 1 : len(lowercase )] # Reverse whole list lowerCamelCase_ = arr[cur - 1 :: -1] + arr[cur : len(lowercase )] cur -= 1 return arr if __name__ == "__main__": lowerCamelCase : Any = input("Enter numbers separated by a comma:\n").strip() lowerCamelCase : int = [int(item) for item in user_input.split(",")] print(pancake_sort(unsorted))
711
def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 0 for i in range(1 , 10_01 ): total += i**i return str(lowercase )[-10:] if __name__ == "__main__": print(solution())
651
0
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def _SCREAMING_SNAKE_CASE ( lowercase : Any , lowercase : Tuple , lowercase : List[Any]=None ): '''simple docstring''' assert torch_layer.weight.shape == weight.shape, f"""{torch_layer} layer.weight does not match""" lowerCamelCase_ = nn.Parameter(__lowerCAmelCase ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"""{torch_layer} layer.bias does not match""" lowerCamelCase_ = nn.Parameter(__lowerCAmelCase ) def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Tuple , lowercase : Any ): '''simple docstring''' lowerCamelCase_ = np.asarray(weights[0] ) lowerCamelCase_ = np.asarray(weights[1] ) lowerCamelCase_ = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(__lowerCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , __lowerCAmelCase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__lowerCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , __lowerCAmelCase ) , ) set_param( torch_layer.output.dense , torch.tensor(__lowerCAmelCase ).view(-1 , __lowerCAmelCase ).contiguous().transpose(0 , 1 ) , ) def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Tuple , lowercase : Optional[Any] ): '''simple docstring''' lowerCamelCase_ = np.asarray(weights[0] ) lowerCamelCase_ = np.asarray(weights[1] ) lowerCamelCase_ = np.asarray(weights[2] ) lowerCamelCase_ = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(__lowerCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , __lowerCAmelCase ) , ) set_param( torch_layer.self_attention.key , torch.tensor(__lowerCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , __lowerCAmelCase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__lowerCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , __lowerCAmelCase ) , ) set_param( torch_layer.output.dense , torch.tensor(__lowerCAmelCase ).view(-1 , __lowerCAmelCase ).contiguous().transpose(0 , 1 ) , ) def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] , lowercase : Optional[int] , lowercase : Optional[int] ): '''simple docstring''' lowerCamelCase_ = weights[0][0][0] lowerCamelCase_ = np.asarray(layer_norm_a[0] ) lowerCamelCase_ = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(__lowerCAmelCase ) , torch.tensor(__lowerCAmelCase ) , ) # lsh weights + output lowerCamelCase_ = weights[0][1] if len(__lowerCAmelCase ) < 4: set_layer_weights_in_torch_lsh(__lowerCAmelCase , torch_block.attention , __lowerCAmelCase ) else: set_layer_weights_in_torch_local(__lowerCAmelCase , torch_block.attention , __lowerCAmelCase ) # intermediate weighs lowerCamelCase_ = weights[2][0][1][2] # Chunked Feed Forward if len(__lowerCAmelCase ) == 4: lowerCamelCase_ = intermediate_weights[2] # layernorm 2 lowerCamelCase_ = np.asarray(intermediate_weights[0][0] ) lowerCamelCase_ = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(__lowerCAmelCase ) , torch.tensor(__lowerCAmelCase ) , ) # intermediate dense lowerCamelCase_ = np.asarray(intermediate_weights[1][0] ) lowerCamelCase_ = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(__lowerCAmelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(__lowerCAmelCase ) , ) # intermediate out lowerCamelCase_ = np.asarray(intermediate_weights[4][0] ) lowerCamelCase_ = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(__lowerCAmelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(__lowerCAmelCase ) , ) def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : Optional[int] ): '''simple docstring''' lowerCamelCase_ = torch_model.reformer # word embeds lowerCamelCase_ = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(__lowerCAmelCase ) , ) if isinstance(weights[3] , __lowerCAmelCase ): lowerCamelCase_ = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): lowerCamelCase_ = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"""{position_embeddings[emb_idx]} emb does not match""" lowerCamelCase_ = nn.Parameter(torch.tensor(__lowerCAmelCase ) ) lowerCamelCase_ = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( __lowerCAmelCase ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): lowerCamelCase_ = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # output layer norm lowerCamelCase_ = np.asarray(weights[7][0] ) lowerCamelCase_ = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(__lowerCAmelCase ) , torch.tensor(__lowerCAmelCase ) , ) # output embeddings lowerCamelCase_ = np.asarray(weights[9][0] ) lowerCamelCase_ = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(__lowerCAmelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(__lowerCAmelCase ) , ) def _SCREAMING_SNAKE_CASE ( lowercase : List[str] , lowercase : Optional[int] , lowercase : int ): '''simple docstring''' lowerCamelCase_ = ReformerConfig.from_json_file(__lowerCAmelCase ) print(f"""Building PyTorch model from configuration: {config}""" ) lowerCamelCase_ = ReformerModelWithLMHead(__lowerCAmelCase ) with open(__lowerCAmelCase , 'rb' ) as f: lowerCamelCase_ = pickle.load(__lowerCAmelCase )['weights'] set_model_weights_in_torch(__lowerCAmelCase , __lowerCAmelCase , config.hidden_size ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , __lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCamelCase : Optional[Any] = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
712
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase : Dict = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = ["ViTFeatureExtractor"] lowerCamelCase : Dict = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys lowerCamelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
651
0
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer lowerCamelCase : Tuple = ["bert-base-uncased", "bert-base-cased"] lowerCamelCase : Union[str, Any] = "hf-internal-testing/tiny-bert-tf-only" if is_tf_available(): class A( tf.keras.Model ): '''simple docstring''' def __init__( self : int , A_ : Any ) -> Optional[int]: """simple docstring""" super().__init__() lowerCamelCase_ = tokenizer lowerCamelCase_ = AutoConfig.from_pretrained(_UpperCAmelCase ) lowerCamelCase_ = TFAutoModel.from_config(_UpperCAmelCase ) def a__ ( self : Dict , A_ : str ) -> str: """simple docstring""" lowerCamelCase_ = self.tokenizer(_UpperCAmelCase ) lowerCamelCase_ = self.bert(**_UpperCAmelCase ) return out["pooler_output"] @require_tf @require_tensorflow_text class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : List[Any] ) -> int: """simple docstring""" super().setUp() lowerCamelCase_ = [ BertTokenizer.from_pretrained(_UpperCAmelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false lowerCamelCase_ = [TFBertTokenizer.from_pretrained(_UpperCAmelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(_UpperCAmelCase , use_fast_bert_tokenizer=_UpperCAmelCase ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) lowerCamelCase_ = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] lowerCamelCase_ = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def a__ ( self : List[str] ) -> Tuple: """simple docstring""" for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): lowerCamelCase_ = tokenizer(_UpperCAmelCase , return_tensors='tf' , padding='longest' ) lowerCamelCase_ = tf_tokenizer(_UpperCAmelCase ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def a__ ( self : Dict ) -> List[str]: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: lowerCamelCase_ = tf_tokenizer(self.paired_sentences ) lowerCamelCase_ = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def a__ ( self : Tuple ) -> Tuple: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: lowerCamelCase_ = tf.function(_UpperCAmelCase ) for test_inputs in (self.test_sentences, self.paired_sentences): lowerCamelCase_ = tf.constant(_UpperCAmelCase ) lowerCamelCase_ = compiled_tokenizer(_UpperCAmelCase ) lowerCamelCase_ = tf_tokenizer(_UpperCAmelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: lowerCamelCase_ = ModelToSave(tokenizer=_UpperCAmelCase ) lowerCamelCase_ = tf.convert_to_tensor(self.test_sentences ) lowerCamelCase_ = model(_UpperCAmelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: lowerCamelCase_ = Path(_UpperCAmelCase ) / '''saved.model''' model.save(_UpperCAmelCase ) lowerCamelCase_ = tf.keras.models.load_model(_UpperCAmelCase ) lowerCamelCase_ = loaded_model(_UpperCAmelCase ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
713
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCamelCase : int = datasets.logging.get_logger(__name__) lowerCamelCase : Optional[Any] = "\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n" lowerCamelCase : Tuple = "\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n" lowerCamelCase : Optional[Any] = "\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting 'keep_singletons=False', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n 'mentions': mentions\n 'muc': MUC metric [Vilain et al, 1995]\n 'bcub': B-cubed [Bagga and Baldwin, 1998]\n 'ceafe': CEAFe [Luo et al., 2005]\n 'lea': LEA [Moosavi and Strube, 2016]\n 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric('coval')\n >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',\n ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',\n ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',\n ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',\n ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',\n ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {'mentions/recall': 1.0,[...] 'conll_score': 100.0}\n" def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Optional[int] , lowercase : Any=False , lowercase : Any=False , lowercase : Dict=True , lowercase : List[str]=False , lowercase : int="dummy_doc" ): '''simple docstring''' lowerCamelCase_ = {doc: key_lines} lowerCamelCase_ = {doc: sys_lines} lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowercase , key_doc_lines[doc] , lowercase ) key_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowercase , sys_doc_lines[doc] , lowercase ) sys_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) if remove_nested: lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowercase , lowercase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowercase , lowercase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowerCamelCase_ = reader.get_mention_assignments(lowercase , lowercase ) lowerCamelCase_ = reader.get_mention_assignments(lowercase , lowercase ) lowerCamelCase_ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( 'Number of removed nested coreferring mentions in the key ' f"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" ) logger.info( 'Number of resulting singleton clusters in the key ' f"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" ) if not keep_singletons: logger.info( f"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """ 'files, respectively' ) return doc_coref_infos def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Tuple , lowercase : List[str] , lowercase : List[Any] , lowercase : List[Any] , lowercase : Tuple , lowercase : str ): '''simple docstring''' lowerCamelCase_ = get_coref_infos(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 for name, metric in metrics: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = evaluator.evaluate_documents(lowercase , lowercase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f"""{name}/recall""": recall, f"""{name}/precision""": precision, f"""{name}/f1""": fa} ) logger.info( name.ljust(10 ) , f"""Recall: {recall * 1_00:.2f}""" , f""" Precision: {precision * 1_00:.2f}""" , f""" F1: {fa * 1_00:.2f}""" , ) if conll_subparts_num == 3: lowerCamelCase_ = (conll / 3) * 1_00 logger.info(f"""CoNLL score: {conll:.2f}""" ) output_scores.update({'conll_score': conll} ) return output_scores def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] ): '''simple docstring''' lowerCamelCase_ = False for line in key_lines: if not line.startswith('#' ): if len(line.split() ) > 6: lowerCamelCase_ = line.split()[5] if not parse_col == "-": lowerCamelCase_ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A( datasets.Metric ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Sequence(datasets.Value('string' ) ), } ) , codebase_urls=['https://github.com/ns-moosavi/coval'] , reference_urls=[ 'https://github.com/ns-moosavi/coval', 'https://www.aclweb.org/anthology/P16-1060', 'http://www.conll.cemantix.org/2012/data.html', ] , ) def a__ ( self : List[str] , A_ : Optional[Any] , A_ : Optional[int] , A_ : int=True , A_ : str=False , A_ : int=False , A_ : Union[str, Any]=False ) -> List[Any]: """simple docstring""" lowerCamelCase_ = [ ('mentions', evaluator.mentions), ('muc', evaluator.muc), ('bcub', evaluator.b_cubed), ('ceafe', evaluator.ceafe), ('lea', evaluator.lea), ] if min_span: lowerCamelCase_ = util.check_gold_parse_annotation(A_ ) if not has_gold_parse: raise NotImplementedError('References should have gold parse annotation to use \'min_span\'.' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowerCamelCase_ = evaluate( key_lines=A_ , sys_lines=A_ , metrics=A_ , NP_only=A_ , remove_nested=A_ , keep_singletons=A_ , min_span=A_ , ) return score
651
0
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging lowerCamelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class A( _a ): '''simple docstring''' def __init__( self : int , A_ : Optional[Any] , A_ : Union[str, Any] , A_ : Optional[int] , A_ : str , A_ : List[Any] , A_ : Optional[Any] , A_ : Optional[int] , A_ : Union[str, Any] , A_ : Tuple , ) -> List[Any]: """simple docstring""" super().__init__() if safety_checker is None: logger.warning( f"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( speech_model=_A , speech_processor=_A , vae=_A , text_encoder=_A , tokenizer=_A , unet=_A , scheduler=_A , feature_extractor=_A , ) def a__ ( self : Optional[Any] , A_ : Union[str, Any] = "auto" ) -> Optional[int]: """simple docstring""" if slice_size == "auto": lowerCamelCase_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_A ) def a__ ( self : Any ) -> List[Any]: """simple docstring""" self.enable_attention_slicing(_A ) @torch.no_grad() def __call__( self : List[Any] , A_ : List[Any] , A_ : Tuple=16000 , A_ : Optional[Any] = 512 , A_ : str = 512 , A_ : List[Any] = 50 , A_ : Any = 7.5 , A_ : List[str] = None , A_ : Optional[int] = 1 , A_ : Dict = 0.0 , A_ : Dict = None , A_ : Optional[int] = None , A_ : str = "pil" , A_ : str = True , A_ : Optional[int] = None , A_ : Optional[Any] = 1 , **A_ : Dict , ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.speech_processor.feature_extractor( _A , return_tensors='pt' , sampling_rate=_A ).input_features.to(self.device ) lowerCamelCase_ = self.speech_model.generate(_A , max_length=480000 ) lowerCamelCase_ = self.speech_processor.tokenizer.batch_decode(_A , skip_special_tokens=_A , normalize=_A )[ 0 ] if isinstance(_A , _A ): lowerCamelCase_ = 1 elif isinstance(_A , _A ): lowerCamelCase_ = len(_A ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(_A )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_A , _A ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(_A )}.""" ) # get prompt text embeddings lowerCamelCase_ = self.tokenizer( _A , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) lowerCamelCase_ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCamelCase_ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) lowerCamelCase_ = text_input_ids[:, : self.tokenizer.model_max_length] lowerCamelCase_ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = text_embeddings.shape lowerCamelCase_ = text_embeddings.repeat(1 , _A , 1 ) lowerCamelCase_ = text_embeddings.view(bs_embed * num_images_per_prompt , _A , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCamelCase_ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCamelCase_ = 42 if negative_prompt is None: lowerCamelCase_ = [''] * batch_size elif type(_A ) is not type(_A ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(_A )} !=""" f""" {type(_A )}.""" ) elif isinstance(_A , _A ): lowerCamelCase_ = [negative_prompt] elif batch_size != len(_A ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(_A )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ' the batch size of `prompt`.' ) else: lowerCamelCase_ = negative_prompt lowerCamelCase_ = text_input_ids.shape[-1] lowerCamelCase_ = self.tokenizer( _A , padding='max_length' , max_length=_A , truncation=_A , return_tensors='pt' , ) lowerCamelCase_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCamelCase_ = uncond_embeddings.shape[1] lowerCamelCase_ = uncond_embeddings.repeat(1 , _A , 1 ) lowerCamelCase_ = uncond_embeddings.view(batch_size * num_images_per_prompt , _A , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase_ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCamelCase_ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCamelCase_ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCamelCase_ = torch.randn(_A , generator=_A , device='cpu' , dtype=_A ).to( self.device ) else: lowerCamelCase_ = torch.randn(_A , generator=_A , device=self.device , dtype=_A ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) lowerCamelCase_ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCamelCase_ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCamelCase_ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCamelCase_ = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCamelCase_ = {} if accepts_eta: lowerCamelCase_ = eta for i, t in enumerate(self.progress_bar(_A ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase_ = self.scheduler.scale_model_input(_A , _A ) # predict the noise residual lowerCamelCase_ = self.unet(_A , _A , encoder_hidden_states=_A ).sample # perform guidance if do_classifier_free_guidance: lowerCamelCase_ , lowerCamelCase_ = noise_pred.chunk(2 ) lowerCamelCase_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase_ = self.scheduler.step(_A , _A , _A , **_A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_A , _A , _A ) lowerCamelCase_ = 1 / 0.18215 * latents lowerCamelCase_ = self.vae.decode(_A ).sample lowerCamelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCamelCase_ = self.numpy_to_pil(_A ) if not return_dict: return image return StableDiffusionPipelineOutput(images=_A , nsfw_content_detected=_A )
714
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase ) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCamelCase = Features({'''text''': Value('''string''' )} ) UpperCamelCase = Features({} ) UpperCamelCase = "text" @property def a__ ( self : List[Any] ) -> Dict[str, str]: """simple docstring""" return {self.text_column: "text"}
651
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : int = { "google/switch-base-8": "https://huggingface.co/google/switch-base-8/blob/main/config.json", } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''switch_transformers''' UpperCamelCase = ['''past_key_values'''] UpperCamelCase = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : str , A_ : int=32128 , A_ : Optional[Any]=768 , A_ : Optional[Any]=64 , A_ : Optional[int]=2048 , A_ : List[str]=64 , A_ : int=12 , A_ : List[Any]=3 , A_ : Union[str, Any]=12 , A_ : Optional[int]=3 , A_ : str=12 , A_ : Optional[int]=8 , A_ : List[str]=False , A_ : Any=0.01 , A_ : Union[str, Any]="float32" , A_ : List[str]=False , A_ : int=32 , A_ : Tuple=128 , A_ : List[str]=0.1 , A_ : Union[str, Any]=1E-6 , A_ : Union[str, Any]=0.001 , A_ : Any=0.001 , A_ : Dict=1.0 , A_ : Optional[int]="relu" , A_ : List[str]=True , A_ : List[str]=False , A_ : int=True , A_ : Tuple=0 , A_ : Optional[Any]=1 , **A_ : Optional[int] , ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = vocab_size lowerCamelCase_ = d_model lowerCamelCase_ = d_kv lowerCamelCase_ = d_ff lowerCamelCase_ = num_sparse_encoder_layers lowerCamelCase_ = num_layers lowerCamelCase_ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowerCamelCase_ = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: lowerCamelCase_ = self.num_layers // self.num_sparse_encoder_layers else: lowerCamelCase_ = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: lowerCamelCase_ = self.num_decoder_layers // self.num_sparse_decoder_layers else: lowerCamelCase_ = self.num_decoder_layers # HACK: this will create 0 sparse layers lowerCamelCase_ = num_heads lowerCamelCase_ = num_experts lowerCamelCase_ = expert_capacity lowerCamelCase_ = router_bias lowerCamelCase_ = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"""`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}""" ) lowerCamelCase_ = router_dtype lowerCamelCase_ = router_ignore_padding_tokens lowerCamelCase_ = relative_attention_num_buckets lowerCamelCase_ = relative_attention_max_distance lowerCamelCase_ = dropout_rate lowerCamelCase_ = layer_norm_epsilon lowerCamelCase_ = initializer_factor lowerCamelCase_ = feed_forward_proj lowerCamelCase_ = use_cache lowerCamelCase_ = add_router_probs lowerCamelCase_ = router_z_loss_coef lowerCamelCase_ = router_aux_loss_coef lowerCamelCase_ = self.feed_forward_proj.split('-' ) lowerCamelCase_ = act_info[-1] lowerCamelCase_ = act_info[0] == 'gated' if len(__UpperCamelCase ) > 1 and act_info[0] != "gated" or len(__UpperCamelCase ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": lowerCamelCase_ = 'gelu_new' super().__init__( pad_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , is_encoder_decoder=__UpperCamelCase , **__UpperCamelCase , )
715
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''new-model''' if is_tf_available(): class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = NewModelConfig @require_tf class A( unittest.TestCase ): '''simple docstring''' @slow def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = 'bert-base-cased' lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = 'bert-base-cased' lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForPreTraining.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForCausalLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForCausalLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : int ) -> str: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForMaskedLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForMaskedLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Any ) -> List[Any]: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Tuple ) -> str: """simple docstring""" for model_name in ["bert-base-uncased"]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForSequenceClassification.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Any: """simple docstring""" for model_name in ["bert-base-uncased"]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForQuestionAnswering.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow @require_tensorflow_probability def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForTableQuestionAnswering.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForTableQuestionAnswering.from_pretrained( A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=A_ ) , 14410 ) def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=A_ ) , 14410 ) def a__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = TFAutoModel.from_pretrained('sgugger/funnel-random-tiny' ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = copy.deepcopy(model.config ) lowerCamelCase_ = ['FunnelBaseModel'] lowerCamelCase_ = TFAutoModel.from_config(A_ ) self.assertIsInstance(A_ , A_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(A_ ) lowerCamelCase_ = TFAutoModel.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : Any ) -> Tuple: """simple docstring""" try: AutoConfig.register('new-model' , A_ ) lowerCamelCase_ = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(A_ ): auto_class.register(A_ , A_ ) auto_class.register(A_ , A_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(A_ ): auto_class.register(A_ , A_ ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCamelCase_ = BertModelTester(self ).get_config() lowerCamelCase_ = NewModelConfig(**tiny_config.to_dict() ) lowerCamelCase_ = auto_class.from_config(A_ ) self.assertIsInstance(A_ , A_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(A_ ) lowerCamelCase_ = auto_class.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def a__ ( self : int ) -> int: """simple docstring""" with self.assertRaisesRegex( A_ , 'bert-base is not a local folder and is not a valid model identifier' ): lowerCamelCase_ = TFAutoModel.from_pretrained('bert-base' ) def a__ ( self : Any ) -> Dict: """simple docstring""" with self.assertRaisesRegex( A_ , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowerCamelCase_ = TFAutoModel.from_pretrained(A_ , revision='aaaaaa' ) def a__ ( self : str ) -> int: """simple docstring""" with self.assertRaisesRegex( A_ , 'hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin' , ): lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def a__ ( self : Any ) -> List[Any]: """simple docstring""" with self.assertRaisesRegex(A_ , 'Use `from_pt=True` to load this model' ): lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint lowerCamelCase_ = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) with RequestCounter() as counter: lowerCamelCase_ = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
651
0
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset lowerCamelCase : int = random.Random() def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Tuple=1.0 , lowercase : Optional[int]=None , lowercase : List[Any]=None ): '''simple docstring''' if rng is None: lowerCamelCase_ = global_rng lowerCamelCase_ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class A( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , A_ : str , A_ : int=7 , A_ : Union[str, Any]=400 , A_ : Dict=2000 , A_ : Optional[int]=2048 , A_ : List[Any]=128 , A_ : str=1 , A_ : Optional[int]=512 , A_ : Optional[int]=30 , A_ : List[Any]=44100 , ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = min_seq_length lowerCamelCase_ = max_seq_length lowerCamelCase_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCamelCase_ = spectrogram_length lowerCamelCase_ = feature_size lowerCamelCase_ = num_audio_channels lowerCamelCase_ = hop_length lowerCamelCase_ = chunk_length lowerCamelCase_ = sampling_rate def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def a__ ( self : Any , A_ : Dict=False , A_ : List[str]=False ) -> List[str]: """simple docstring""" def _flatten(A_ : List[Any] ): return list(itertools.chain(*A_ ) ) if equal_length: lowerCamelCase_ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowerCamelCase_ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCamelCase_ = [np.asarray(A_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = TvltFeatureExtractor def a__ ( self : Any ) -> Any: """simple docstring""" lowerCamelCase_ = TvltFeatureExtractionTester(self ) def a__ ( self : str ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(A_ , 'spectrogram_length' ) ) self.assertTrue(hasattr(A_ , 'feature_size' ) ) self.assertTrue(hasattr(A_ , 'num_audio_channels' ) ) self.assertTrue(hasattr(A_ , 'hop_length' ) ) self.assertTrue(hasattr(A_ , 'chunk_length' ) ) self.assertTrue(hasattr(A_ , 'sampling_rate' ) ) def a__ ( self : List[str] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase_ = feat_extract_first.save_pretrained(A_ )[0] check_json_file_has_correct_format(A_ ) lowerCamelCase_ = self.feature_extraction_class.from_pretrained(A_ ) lowerCamelCase_ = feat_extract_first.to_dict() lowerCamelCase_ = feat_extract_second.to_dict() lowerCamelCase_ = dict_first.pop('mel_filters' ) lowerCamelCase_ = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(A_ , A_ ) ) self.assertEqual(A_ , A_ ) def a__ ( self : Tuple ) -> Dict: """simple docstring""" lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase_ = os.path.join(A_ , 'feat_extract.json' ) feat_extract_first.to_json_file(A_ ) lowerCamelCase_ = self.feature_extraction_class.from_json_file(A_ ) lowerCamelCase_ = feat_extract_first.to_dict() lowerCamelCase_ = feat_extract_second.to_dict() lowerCamelCase_ = dict_first.pop('mel_filters' ) lowerCamelCase_ = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(A_ , A_ ) ) self.assertEqual(A_ , A_ ) def a__ ( self : Tuple ) -> Dict: """simple docstring""" lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 lowerCamelCase_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowerCamelCase_ = [np.asarray(A_ ) for speech_input in speech_inputs] # Test not batched input lowerCamelCase_ = feature_extractor(np_speech_inputs[0] , return_tensors='np' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched lowerCamelCase_ = feature_extractor(A_ , return_tensors='np' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking lowerCamelCase_ = feature_extractor( A_ , return_tensors='np' , sampling_rate=44100 , mask_audio=A_ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. lowerCamelCase_ = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowerCamelCase_ = np.asarray(A_ ) lowerCamelCase_ = feature_extractor(A_ , return_tensors='np' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def a__ ( self : Union[str, Any] , A_ : Union[str, Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech lowerCamelCase_ = ds.sort('id' ).select(range(A_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def a__ ( self : str ) -> List[str]: """simple docstring""" lowerCamelCase_ = self._load_datasamples(1 ) lowerCamelCase_ = TvltFeatureExtractor() lowerCamelCase_ = feature_extractor(A_ , return_tensors='pt' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) lowerCamelCase_ = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , A_ , atol=1E-4 ) )
716
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : List[str] = { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json", } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''gpt_neox_japanese''' def __init__( self : int , A_ : Dict=32000 , A_ : List[Any]=2560 , A_ : Dict=32 , A_ : Union[str, Any]=32 , A_ : List[Any]=4 , A_ : List[str]="gelu" , A_ : Dict=1.00 , A_ : int=10000 , A_ : Dict=2048 , A_ : Dict=0.02 , A_ : Any=1E-5 , A_ : Union[str, Any]=True , A_ : int=31996 , A_ : List[str]=31999 , A_ : List[Any]=0.1 , A_ : List[Any]=0.0 , **A_ : Tuple , ) -> Dict: """simple docstring""" super().__init__(bos_token_id=A_ , eos_token_id=A_ , **A_ ) lowerCamelCase_ = vocab_size lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_multiple_size lowerCamelCase_ = hidden_act lowerCamelCase_ = rotary_pct lowerCamelCase_ = rotary_emb_base lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = use_cache lowerCamelCase_ = attention_dropout lowerCamelCase_ = hidden_dropout
651
0
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : Tuple = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) lowerCamelCase : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class A: '''simple docstring''' UpperCamelCase = field( default=__UpperCAmelCase , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(__UpperCAmelCase )} ) UpperCamelCase = field( default=__UpperCAmelCase , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) UpperCamelCase = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCamelCase = field( default=128 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) UpperCamelCase = field( default=64 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) UpperCamelCase = field( default=30 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) UpperCamelCase = field( default=__UpperCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase = field( default=__UpperCAmelCase , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) UpperCamelCase = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) UpperCamelCase = field( default=20 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) UpperCamelCase = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) UpperCamelCase = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class A( __UpperCAmelCase ): '''simple docstring''' UpperCamelCase = '''train''' UpperCamelCase = '''dev''' class A( __UpperCAmelCase ): '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 def __init__( self : Optional[int] , A_ : str , A_ : Any , A_ : Any = None , A_ : int = Split.train , A_ : str = False , A_ : Optional[Any] = None , A_ : List[str] = "pt" , ) -> Dict: """simple docstring""" lowerCamelCase_ = args lowerCamelCase_ = is_language_sensitive lowerCamelCase_ = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(A_ , A_ ): try: lowerCamelCase_ = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) lowerCamelCase_ = mode # Load data features from cache or dataset file lowerCamelCase_ = 'v2' if args.version_2_with_negative else 'v1' lowerCamelCase_ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}""" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase_ = cached_features_file + '.lock' with FileLock(A_ ): if os.path.exists(A_ ) and not args.overwrite_cache: lowerCamelCase_ = time.time() lowerCamelCase_ = torch.load(A_ ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. lowerCamelCase_ = self.old_features['features'] lowerCamelCase_ = self.old_features.get('dataset' , A_ ) lowerCamelCase_ = self.old_features.get('examples' , A_ ) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f"""Deleting cached file {cached_features_file} will allow dataset and examples to be cached in""" ' future run' ) else: if mode == Split.dev: lowerCamelCase_ = self.processor.get_dev_examples(args.data_dir ) else: lowerCamelCase_ = self.processor.get_train_examples(args.data_dir ) lowerCamelCase_ , lowerCamelCase_ = squad_convert_examples_to_features( examples=self.examples , tokenizer=A_ , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=A_ , ) lowerCamelCase_ = time.time() torch.save( {'features': self.features, 'dataset': self.dataset, 'examples': self.examples} , A_ , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self : List[Any] ) -> Optional[int]: """simple docstring""" return len(self.features ) def __getitem__( self : Any , A_ : List[str] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.features[i] lowerCamelCase_ = torch.tensor(feature.input_ids , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.attention_mask , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.token_type_ids , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.cls_index , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.p_mask , dtype=torch.float ) lowerCamelCase_ = torch.tensor(feature.is_impossible , dtype=torch.float ) lowerCamelCase_ = { 'input_ids': input_ids, 'attention_mask': attention_mask, 'token_type_ids': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'cls_index': cls_index, 'p_mask': p_mask} ) if self.args.version_2_with_negative: inputs.update({'is_impossible': is_impossible} ) if self.is_language_sensitive: inputs.update({'langs': (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: lowerCamelCase_ = torch.tensor(feature.start_position , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({'start_positions': start_positions, 'end_positions': end_positions} ) return inputs
717
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow lowerCamelCase : List[Any] = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ "text-classification", "language-modeling", "summarization", "token-classification", "question-answering", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) lowerCamelCase : Tuple = logging.getLogger() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument('-f' ) lowerCamelCase_ = parser.parse_args() return args.f def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Dict="eval" ): '''simple docstring''' lowerCamelCase_ = os.path.join(lowercase , f"""{split}_results.json""" ) if os.path.exists(lowercase ): with open(lowercase , 'r' ) as f: return json.load(lowercase ) raise ValueError(f"""can't find {path}""" ) lowerCamelCase : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(A_ , 'argv' , A_ ): run_flax_glue.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) @slow def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A_ , 'argv' , A_ ): run_clm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertLess(result['eval_perplexity'] , 100 ) @slow def a__ ( self : str ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(A_ , 'argv' , A_ ): run_summarization_flax.main() lowerCamelCase_ = get_results(A_ , split='test' ) self.assertGreaterEqual(result['test_rouge1'] , 10 ) self.assertGreaterEqual(result['test_rouge2'] , 2 ) self.assertGreaterEqual(result['test_rougeL'] , 7 ) self.assertGreaterEqual(result['test_rougeLsum'] , 7 ) @slow def a__ ( self : Optional[int] ) -> str: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(A_ , 'argv' , A_ ): run_mlm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertLess(result['eval_perplexity'] , 42 ) @slow def a__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A_ , 'argv' , A_ ): run_ta_mlm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.42 ) @slow def a__ ( self : int ) -> Tuple: """simple docstring""" lowerCamelCase_ = 7 if get_gpu_count() > 1 else 2 lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(A_ , 'argv' , A_ ): run_flax_ner.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) self.assertGreaterEqual(result['eval_f1'] , 0.3 ) @slow def a__ ( self : str ) -> int: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(A_ , 'argv' , A_ ): run_qa.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_f1'] , 30 ) self.assertGreaterEqual(result['eval_exact'] , 30 )
651
0
import argparse from collections import defaultdict def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : Union[str, Any] , lowercase : Tuple , lowercase : List[Any] , lowercase : Any ): '''simple docstring''' lowerCamelCase_ = f"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(lowercase , 'r' ) as f: lowerCamelCase_ = f.readlines() lowerCamelCase_ = f"""class {class_name}(""" lowerCamelCase_ = f"""{4 * " "}def {test_name}(""" lowerCamelCase_ = f"""{8 * " "}{correct_line.split()[0]}""" lowerCamelCase_ = f"""{16 * " "}{correct_line.split()[0]}""" lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = [] for line in lines: if line.startswith(lowercase ): lowerCamelCase_ = True elif in_class and line.startswith(lowercase ): lowerCamelCase_ = True elif in_class and in_func and (line.startswith(lowercase ) or line.startswith(lowercase )): lowerCamelCase_ = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: lowerCamelCase_ = True if in_class and in_func and in_line: if ")" not in line: continue else: lowerCamelCase_ = True if in_class and in_func and in_line and insert_line: new_lines.append(f"""{spaces * " "}{correct_line}""" ) lowerCamelCase_ = False else: new_lines.append(lowercase ) with open(lowercase , 'w' ) as f: for line in new_lines: f.write(lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] , lowercase : List[Any]=None ): '''simple docstring''' if fail is not None: with open(lowercase , 'r' ) as f: lowerCamelCase_ = {l.strip() for l in f.readlines()} else: lowerCamelCase_ = None with open(lowercase , 'r' ) as f: lowerCamelCase_ = f.readlines() lowerCamelCase_ = defaultdict(lowercase ) for line in correct_lines: lowerCamelCase_ = line.split(';' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(lowercase , lowercase , lowercase , lowercase , lowercase ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument("--correct_filename", help="filename of tests with expected result") parser.add_argument("--fail_filename", help="filename of test failures", type=str, default=None) lowerCamelCase : Tuple = parser.parse_args() main(args.correct_filename, args.fail_filename)
718
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class A: '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = None UpperCamelCase = None lowerCamelCase : str = namedtuple("CoinsDistribResult", "moves excess") def _SCREAMING_SNAKE_CASE ( lowercase : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(lowercase : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowercase : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowercase ) != count_coins(lowercase ): raise ValueError('The nodes number should be same as the number of coins' ) # Main calculation def get_distrib(lowercase : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowerCamelCase_ , lowerCamelCase_ = get_distrib(node.left ) lowerCamelCase_ , lowerCamelCase_ = get_distrib(node.right ) lowerCamelCase_ = 1 - left_distrib_excess lowerCamelCase_ = 1 - right_distrib_excess lowerCamelCase_ = ( left_distrib_moves + right_distrib_moves + abs(lowercase ) + abs(lowercase ) ) lowerCamelCase_ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowercase , lowercase ) return get_distrib(lowercase )[0] if __name__ == "__main__": import doctest doctest.testmod()
651
0
lowerCamelCase : Optional[int] = '0.18.2' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
719
from manim import * class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = Rectangle(height=0.5 , width=0.5 ) lowerCamelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCamelCase_ = Rectangle(height=0.25 , width=0.25 ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(A_ , A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('CPU' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(A_ ) lowerCamelCase_ = [mem.copy() for i in range(4 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('GPU' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) gpu.move_to([-1, -1, 0] ) self.add(A_ ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('Model' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) model.move_to([3, -1.0, 0] ) self.add(A_ ) lowerCamelCase_ = [] lowerCamelCase_ = [] for i, rect in enumerate(A_ ): lowerCamelCase_ = fill.copy().set_fill(A_ , opacity=0.8 ) target.move_to(A_ ) model_arr.append(A_ ) lowerCamelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(A_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(A_ ) self.add(*A_ , *A_ ) lowerCamelCase_ = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(A_ , A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('Disk' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) disk.move_to([-4, -1.25, 0] ) self.add(A_ , A_ ) lowerCamelCase_ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase_ = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(A_ , A_ ) lowerCamelCase_ = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(A_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(A_ ) lowerCamelCase_ = MarkupText( f"""Now watch as an input is passed through the model\nand how the memory is utilized and handled.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ ) ) lowerCamelCase_ = Square(0.3 ) input.set_fill(A_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , A_ , buff=0.5 ) self.play(Write(A_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=A_ , buff=0.02 ) self.play(MoveToTarget(A_ ) ) self.play(FadeOut(A_ ) ) lowerCamelCase_ = Arrow(start=A_ , end=A_ , color=A_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , A_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowerCamelCase_ = MarkupText( f"""As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ , run_time=3 ) ) lowerCamelCase_ = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(A_ ) , Circumscribe(model_arr[0] , color=A_ , **A_ ) , Circumscribe(model_cpu_arr[0] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowerCamelCase_ = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , A_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowerCamelCase_ = AnimationGroup( FadeOut(A_ , run_time=0.5 ) , MoveToTarget(A_ , run_time=0.5 ) , FadeIn(A_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(A_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowerCamelCase_ = 0.7 self.play( Circumscribe(model_arr[i] , **A_ ) , Circumscribe(cpu_left_col_base[i] , **A_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , Circumscribe(model_arr[i + 1] , color=A_ , **A_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=A_ , **A_ ) , Circumscribe(cpu_left_col_base[-1] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowerCamelCase_ = a_c lowerCamelCase_ = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(A_ ) , FadeOut(A_ , run_time=0.5 ) , ) lowerCamelCase_ = MarkupText(f"""Inference on a model too large for GPU memory\nis successfully completed.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ , run_time=3 ) , MoveToTarget(A_ ) ) self.wait()
651
0
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin lowerCamelCase : Optional[int] = """ Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] """ class A( unittest.TestCase , lowercase_ ): '''simple docstring''' def a__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = load_tool('text-question-answering' ) self.tool.setup() lowerCamelCase_ = load_tool('text-question-answering' , remote=A_ ) def a__ ( self : Tuple ) -> int: """simple docstring""" lowerCamelCase_ = self.tool(A_ , 'What did Hugging Face do in April 2021?' ) self.assertEqual(A_ , 'launched the BigScience Research Workshop' ) def a__ ( self : Optional[int] ) -> str: """simple docstring""" lowerCamelCase_ = self.remote_tool(A_ , 'What did Hugging Face do in April 2021?' ) self.assertEqual(A_ , 'launched the BigScience Research Workshop' ) def a__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.tool(text=A_ , question='What did Hugging Face do in April 2021?' ) self.assertEqual(A_ , 'launched the BigScience Research Workshop' ) def a__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.remote_tool(text=A_ , question='What did Hugging Face do in April 2021?' ) self.assertEqual(A_ , 'launched the BigScience Research Workshop' )
720
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] ): '''simple docstring''' return EnvironmentCommand() class A( UpperCamelCase ): '''simple docstring''' @staticmethod def a__ ( A_ : ArgumentParser ) -> str: """simple docstring""" lowerCamelCase_ = parser.add_parser('env' ) download_parser.set_defaults(func=A_ ) def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = huggingface_hub.__version__ lowerCamelCase_ = 'not installed' lowerCamelCase_ = 'NA' if is_torch_available(): import torch lowerCamelCase_ = torch.__version__ lowerCamelCase_ = torch.cuda.is_available() lowerCamelCase_ = 'not installed' if is_transformers_available(): import transformers lowerCamelCase_ = transformers.__version__ lowerCamelCase_ = 'not installed' if is_accelerate_available(): import accelerate lowerCamelCase_ = accelerate.__version__ lowerCamelCase_ = 'not installed' if is_xformers_available(): import xformers lowerCamelCase_ = xformers.__version__ lowerCamelCase_ = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': f"""{pt_version} ({pt_cuda_available})""", 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(A_ ) ) return info @staticmethod def a__ ( A_ : Dict ) -> Any: """simple docstring""" return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
651
0
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device lowerCamelCase : int = False class A( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : List[Any] ) -> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self : Optional[int] ) -> Any: """simple docstring""" lowerCamelCase_ = VersatileDiffusionTextToImagePipeline.from_pretrained('shi-labs/versatile-diffusion' ) # remove text_unet pipe.remove_unused_weights() pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) lowerCamelCase_ = 'A painting of a squirrel eating a burger ' lowerCamelCase_ = torch.manual_seed(0 ) lowerCamelCase_ = pipe( prompt=A_ , generator=A_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(A_ ) lowerCamelCase_ = VersatileDiffusionTextToImagePipeline.from_pretrained(A_ ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) lowerCamelCase_ = generator.manual_seed(0 ) lowerCamelCase_ = pipe( prompt=A_ , generator=A_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def a__ ( self : int ) -> int: """simple docstring""" lowerCamelCase_ = VersatileDiffusionTextToImagePipeline.from_pretrained( 'shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) lowerCamelCase_ = 'A painting of a squirrel eating a burger ' lowerCamelCase_ = torch.manual_seed(0 ) lowerCamelCase_ = pipe( prompt=A_ , generator=A_ , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' ).images lowerCamelCase_ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase_ = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
721
from __future__ import annotations from fractions import Fraction def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : int ): '''simple docstring''' return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = [] lowerCamelCase_ = 11 lowerCamelCase_ = int('1' + '0' * digit_len ) for num in range(lowercase , lowercase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(lowercase , lowercase ): solutions.append(f"""{num}/{den}""" ) den += 1 num += 1 lowerCamelCase_ = 10 return solutions def _SCREAMING_SNAKE_CASE ( lowercase : int = 2 ): '''simple docstring''' lowerCamelCase_ = 1.0 for fraction in fraction_list(lowercase ): lowerCamelCase_ = Fraction(lowercase ) result *= frac.denominator / frac.numerator return int(lowercase ) if __name__ == "__main__": print(solution())
651
0
import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class A: '''simple docstring''' def __init__( self : Optional[int] , A_ : List[str] , A_ : Optional[int]=3 , A_ : List[str]=7 , A_ : Dict=True , A_ : Tuple=True , A_ : List[Any]=False , A_ : Tuple=True , A_ : Union[str, Any]=99 , A_ : List[str]=32 , A_ : List[str]=5 , A_ : Tuple=4 , A_ : Union[str, Any]=37 , A_ : Optional[int]="gelu" , A_ : str=0.1 , A_ : List[str]=0.1 , A_ : Tuple=512 , A_ : Any=16 , A_ : int=2 , A_ : List[Any]=0.02 , A_ : int=3 , A_ : int=4 , A_ : List[str]=None , ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_input_mask lowerCamelCase_ = use_token_type_ids lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = num_labels lowerCamelCase_ = num_choices lowerCamelCase_ = scope def a__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_input_mask: lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A_ , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=A_ , ) def a__ ( self : Optional[int] , A_ : str , A_ : str , A_ : str , A_ : List[str] , A_ : Optional[int] , A_ : Union[str, Any] , A_ : int ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = FalconModel(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , attention_mask=A_ ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self : Any , A_ : Optional[int] , A_ : Any , A_ : List[str] , A_ : Union[str, Any] , A_ : Optional[Any] , A_ : Union[str, Any] , A_ : Optional[Any] , A_ : Optional[int] , A_ : Tuple , ) -> Any: """simple docstring""" lowerCamelCase_ = True lowerCamelCase_ = FalconModel(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , ) lowerCamelCase_ = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , ) lowerCamelCase_ = model(A_ , attention_mask=A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self : Optional[int] , A_ : Dict , A_ : Any , A_ : Union[str, Any] , A_ : Optional[Any] , A_ : str , A_ : Optional[Any] , A_ : Dict , A_ : List[str] , A_ : Union[str, Any] , ) -> int: """simple docstring""" lowerCamelCase_ = FalconForCausalLM(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , attention_mask=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : Tuple , A_ : str , A_ : Any , A_ : List[Any] , A_ : List[str] , A_ : Dict , A_ : str , A_ : Union[str, Any] , A_ : int , A_ : List[Any] , ) -> Tuple: """simple docstring""" lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = FalconForCausalLM(config=A_ ) model.to(A_ ) model.eval() # first forward pass lowerCamelCase_ = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , use_cache=A_ , ) lowerCamelCase_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCamelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCamelCase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCamelCase_ = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCamelCase_ = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , output_hidden_states=A_ , )['hidden_states'][0] lowerCamelCase_ = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , past_key_values=A_ , output_hidden_states=A_ , )['hidden_states'][0] # select random slice lowerCamelCase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCamelCase_ = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCamelCase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A_ , A_ , atol=1E-3 ) ) def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) UpperCamelCase = (FalconForCausalLM,) if is_torch_available() else () UpperCamelCase = ( { '''feature-extraction''': FalconModel, '''text-classification''': FalconForSequenceClassification, '''text-generation''': FalconForCausalLM, '''question-answering''': FalconForQuestionAnswering, '''token-classification''': FalconForTokenClassification, '''zero-shot''': FalconForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = FalconModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=A_ , hidden_size=37 ) def a__ ( self : Any ) -> int: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ , *lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: lowerCamelCase_ = alibi self.model_tester.create_and_check_model(A_ , *A_ ) def a__ ( self : Dict ) -> List[str]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = 3 lowerCamelCase_ = input_dict['input_ids'] lowerCamelCase_ = input_ids.ne(1 ).to(A_ ) lowerCamelCase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCamelCase_ = FalconForSequenceClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , attention_mask=A_ , labels=A_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__ ( self : List[Any] ) -> int: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = 3 lowerCamelCase_ = 'single_label_classification' lowerCamelCase_ = input_dict['input_ids'] lowerCamelCase_ = input_ids.ne(1 ).to(A_ ) lowerCamelCase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCamelCase_ = FalconForSequenceClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , attention_mask=A_ , labels=A_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__ ( self : List[str] ) -> List[str]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = input_dict['input_ids'] lowerCamelCase_ = FalconForCausalLM(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , use_cache=A_ ) lowerCamelCase_ = input_ids.shape[0] lowerCamelCase_ = model._convert_to_rw_cache(result.past_key_values ) lowerCamelCase_ = model._convert_cache_to_standard_format(A_ , A_ ) for layer in range(len(A_ ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def a__ ( self : Dict ) -> str: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = 3 lowerCamelCase_ = 'multi_label_classification' lowerCamelCase_ = input_dict['input_ids'] lowerCamelCase_ = input_ids.ne(1 ).to(A_ ) lowerCamelCase_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCamelCase_ = FalconForSequenceClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , attention_mask=A_ , labels=A_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__ ( self : str ) -> Dict: """simple docstring""" for model_class in self.all_generative_model_classes: lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(A_ , 'use_cache' ): return lowerCamelCase_ = model_class(A_ ).to(A_ ) if "use_cache" not in inputs: lowerCamelCase_ = True lowerCamelCase_ = model(**A_ ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return lowerCamelCase_ = ( getattr(A_ , 'decoder_layers' , A_ ) or getattr(A_ , 'num_decoder_layers' , A_ ) or config.num_hidden_layers ) lowerCamelCase_ = getattr(A_ , 'num_kv_heads' , config.num_attention_heads ) lowerCamelCase_ = getattr(A_ , 'd_model' , config.hidden_size ) lowerCamelCase_ = embed_dim // num_attention_heads lowerCamelCase_ = outputs['past_key_values'] self.assertEqual(len(A_ ) , A_ ) lowerCamelCase_ , lowerCamelCase_ = inputs['input_ids'].shape for i in range(A_ ): if config.new_decoder_architecture: lowerCamelCase_ = config.num_attention_heads elif config.multi_query: lowerCamelCase_ = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class A( unittest.TestCase ): '''simple docstring''' @slow def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = AutoTokenizer.from_pretrained('Rocketknight1/falcon-rw-1b' ) lowerCamelCase_ = FalconForCausalLM.from_pretrained('Rocketknight1/falcon-rw-1b' ) model.eval() model.to(A_ ) lowerCamelCase_ = tokenizer('My favorite food is' , return_tensors='pt' ).to(A_ ) lowerCamelCase_ = ( 'My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.' ) lowerCamelCase_ = model.generate(**A_ , do_sample=A_ , max_new_tokens=19 ) lowerCamelCase_ = tokenizer.batch_decode(A_ )[0] self.assertEqual(A_ , A_ ) @slow def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: lowerCamelCase_ = AutoTokenizer.from_pretrained(A_ ) lowerCamelCase_ = FalconForCausalLM.from_pretrained(A_ ) model.eval() model.to(A_ ) lowerCamelCase_ = tokenizer('My favorite food is' , return_tensors='pt' ).to(A_ ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**A_ , do_sample=A_ , max_new_tokens=4 ) model.generate(**A_ , do_sample=A_ , max_new_tokens=4 ) model.generate(**A_ , num_beams=2 , max_new_tokens=4 ) @slow def a__ ( self : str ) -> Optional[int]: """simple docstring""" with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: lowerCamelCase_ = AutoTokenizer.from_pretrained(A_ ) lowerCamelCase_ = FalconForCausalLM.from_pretrained(A_ ) model.eval() model.to(device=A_ ) lowerCamelCase_ = tokenizer('My favorite food is' , return_tensors='pt' ).to(A_ ) # Test results are the same with and without cache lowerCamelCase_ = model.generate(**A_ , do_sample=A_ , max_new_tokens=20 , use_cache=A_ ) lowerCamelCase_ = model.generate(**A_ , do_sample=A_ , max_new_tokens=20 , use_cache=A_ ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
700
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase : List[Any] = logging.get_logger(__name__) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : List[Any] , A_ : bool = True , A_ : Dict[str, int] = None , A_ : PILImageResampling = PILImageResampling.BICUBIC , A_ : bool = True , A_ : Dict[str, int] = None , A_ : bool = True , A_ : Union[int, float] = 1 / 255 , A_ : bool = True , A_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , A_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **A_ : Tuple , ) -> None: """simple docstring""" super().__init__(**A_ ) lowerCamelCase_ = size if size is not None else {'shortest_edge': 224} lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) lowerCamelCase_ = crop_size if crop_size is not None else {'height': 224, 'width': 224} lowerCamelCase_ = get_size_dict(A_ , param_name='crop_size' ) lowerCamelCase_ = do_resize lowerCamelCase_ = size lowerCamelCase_ = resample lowerCamelCase_ = do_center_crop lowerCamelCase_ = crop_size lowerCamelCase_ = do_rescale lowerCamelCase_ = rescale_factor lowerCamelCase_ = do_normalize lowerCamelCase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowerCamelCase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def a__ ( self : Optional[Any] , A_ : np.ndarray , A_ : Dict[str, int] , A_ : PILImageResampling = PILImageResampling.BICUBIC , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Tuple , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: lowerCamelCase_ = int((256 / 224) * size['shortest_edge'] ) lowerCamelCase_ = get_resize_output_image_size(A_ , size=A_ , default_to_square=A_ ) lowerCamelCase_ = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( A_ , size=(size_dict['height'], size_dict['width']) , resample=A_ , data_format=A_ , **A_ ) def a__ ( self : Any , A_ : np.ndarray , A_ : Dict[str, int] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Any , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(A_ , size=(size['height'], size['width']) , data_format=A_ , **A_ ) def a__ ( self : Optional[Any] , A_ : np.ndarray , A_ : Union[int, float] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Optional[int] , ) -> np.ndarray: """simple docstring""" return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def a__ ( self : List[str] , A_ : np.ndarray , A_ : Union[float, List[float]] , A_ : Union[float, List[float]] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : str , ) -> np.ndarray: """simple docstring""" return normalize(A_ , mean=A_ , std=A_ , data_format=A_ , **A_ ) def a__ ( self : Optional[int] , A_ : ImageInput , A_ : Optional[bool] = None , A_ : Optional[Dict[str, int]] = None , A_ : PILImageResampling = None , A_ : Optional[bool] = None , A_ : Optional[Dict[str, int]] = None , A_ : Optional[bool] = None , A_ : Optional[float] = None , A_ : Optional[bool] = None , A_ : Optional[Union[float, Iterable[float]]] = None , A_ : Optional[Union[float, Iterable[float]]] = None , A_ : Optional[TensorType] = None , A_ : ChannelDimension = ChannelDimension.FIRST , **A_ : List[Any] , ) -> BatchFeature: """simple docstring""" lowerCamelCase_ = do_resize if do_resize is not None else self.do_resize lowerCamelCase_ = resample if resample is not None else self.resample lowerCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase_ = image_mean if image_mean is not None else self.image_mean lowerCamelCase_ = image_std if image_std is not None else self.image_std lowerCamelCase_ = size if size is not None else self.size lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) lowerCamelCase_ = crop_size if crop_size is not None else self.crop_size lowerCamelCase_ = get_size_dict(A_ , param_name='crop_size' ) lowerCamelCase_ = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCamelCase_ = [to_numpy_array(A_ ) for image in images] if do_resize: lowerCamelCase_ = [self.resize(A_ , A_ , A_ ) for image in images] if do_center_crop: lowerCamelCase_ = [self.center_crop(A_ , A_ ) for image in images] if do_rescale: lowerCamelCase_ = [self.rescale(A_ , A_ ) for image in images] if do_normalize: lowerCamelCase_ = [self.normalize(A_ , A_ , A_ ) for image in images] lowerCamelCase_ = [to_channel_dimension_format(A_ , A_ ) for image in images] lowerCamelCase_ = {'pixel_values': images} return BatchFeature(data=A_ , tensor_type=A_ )
651
0
import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowerCamelCase : Optional[int] = logging.get_logger(__name__) class A( UpperCamelCase ): '''simple docstring''' def __init__( self : Optional[Any] , *A_ : Dict , **A_ : Union[str, Any] ) -> None: """simple docstring""" warnings.warn( 'The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ChineseCLIPImageProcessor instead.' , A_ , ) super().__init__(*A_ , **A_ )
701
import cva import numpy as np class A: '''simple docstring''' def __init__( self : int , A_ : float , A_ : int ) -> List[Any]: """simple docstring""" if k in (0.04, 0.06): lowerCamelCase_ = k lowerCamelCase_ = window_size else: raise ValueError('invalid k value' ) def __str__( self : str ) -> str: """simple docstring""" return str(self.k ) def a__ ( self : Any , A_ : str ) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" lowerCamelCase_ = cva.imread(A_ , 0 ) lowerCamelCase_ , lowerCamelCase_ = img.shape lowerCamelCase_ = [] lowerCamelCase_ = img.copy() lowerCamelCase_ = cva.cvtColor(A_ , cva.COLOR_GRAY2RGB ) lowerCamelCase_ , lowerCamelCase_ = np.gradient(A_ ) lowerCamelCase_ = dx**2 lowerCamelCase_ = dy**2 lowerCamelCase_ = dx * dy lowerCamelCase_ = 0.04 lowerCamelCase_ = self.window_size // 2 for y in range(A_ , h - offset ): for x in range(A_ , w - offset ): lowerCamelCase_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = (wxx * wyy) - (wxy**2) lowerCamelCase_ = wxx + wyy lowerCamelCase_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase : Optional[int] = HarrisCorner(0.04, 3) lowerCamelCase , lowerCamelCase : Optional[int] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
651
0
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("0.12.2"): raise Exception("requires fairseq >= 0.12.2") if version.parse(fairseq.__version__) > version.parse("2"): raise Exception("requires fairseq < v2") logging.set_verbosity_info() lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Tuple = "Hello, World!" lowerCamelCase : Union[str, Any] = "en_XX" def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : str , lowercase : bool ): '''simple docstring''' lowerCamelCase_ = Path('data_bin' ) lowerCamelCase_ = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(lowercase ).parent ) , checkpoint_file=Path(lowercase ).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(lowercase ) , bpe='sentencepiece' , sentencepiece_model=str(Path(lowercase ).parent / 'sentencepiece.bpe.model' ) , src_dict=str(data_dir / 'dict.txt' ) , ) xmod.eval() # disable dropout print(lowercase ) lowerCamelCase_ = xmod.model.encoder.sentence_encoder lowerCamelCase_ = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: lowerCamelCase_ = xmod.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our X-MOD config:' , lowercase ) lowerCamelCase_ = XmodForSequenceClassification(lowercase ) if classification_head else XmodForMaskedLM(lowercase ) model.eval() # Now let's copy all the weights. # Embeddings lowerCamelCase_ = xmod_sent_encoder.embed_tokens.weight lowerCamelCase_ = xmod_sent_encoder.embed_positions.weight lowerCamelCase_ = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. lowerCamelCase_ = xmod_sent_encoder.layernorm_embedding.weight lowerCamelCase_ = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowerCamelCase_ = model.roberta.encoder.layer[i] lowerCamelCase_ = xmod_sent_encoder.layers[i] # self attention lowerCamelCase_ = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('Dimensions of self-attention weights do not match.' ) lowerCamelCase_ = xmod_layer.self_attn.q_proj.weight lowerCamelCase_ = xmod_layer.self_attn.q_proj.bias lowerCamelCase_ = xmod_layer.self_attn.k_proj.weight lowerCamelCase_ = xmod_layer.self_attn.k_proj.bias lowerCamelCase_ = xmod_layer.self_attn.v_proj.weight lowerCamelCase_ = xmod_layer.self_attn.v_proj.bias # self-attention output lowerCamelCase_ = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('Dimensions of self-attention output weights do not match.' ) lowerCamelCase_ = xmod_layer.self_attn.out_proj.weight lowerCamelCase_ = xmod_layer.self_attn.out_proj.bias lowerCamelCase_ = xmod_layer.self_attn_layer_norm.weight lowerCamelCase_ = xmod_layer.self_attn_layer_norm.bias # intermediate lowerCamelCase_ = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of intermediate weights do not match.' ) lowerCamelCase_ = xmod_layer.fca.weight lowerCamelCase_ = xmod_layer.fca.bias # output lowerCamelCase_ = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of feed-forward weights do not match.' ) lowerCamelCase_ = xmod_layer.fca.weight lowerCamelCase_ = xmod_layer.fca.bias lowerCamelCase_ = xmod_layer.final_layer_norm.weight lowerCamelCase_ = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowerCamelCase_ = xmod_layer.adapter_layer_norm.weight lowerCamelCase_ = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('Lists of language adapters do not match.' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): lowerCamelCase_ = bert_output.adapter_modules[lang_code] lowerCamelCase_ = xmod_layer.adapter_modules[lang_code] lowerCamelCase_ = from_adapter.fca.weight lowerCamelCase_ = from_adapter.fca.bias lowerCamelCase_ = from_adapter.fca.weight lowerCamelCase_ = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowerCamelCase_ = xmod_sent_encoder.layer_norm.weight lowerCamelCase_ = xmod_sent_encoder.layer_norm.bias if classification_head: lowerCamelCase_ = xmod.model.classification_heads['mnli'].dense.weight lowerCamelCase_ = xmod.model.classification_heads['mnli'].dense.bias lowerCamelCase_ = xmod.model.classification_heads['mnli'].out_proj.weight lowerCamelCase_ = xmod.model.classification_heads['mnli'].out_proj.bias else: # LM Head lowerCamelCase_ = xmod.model.encoder.lm_head.dense.weight lowerCamelCase_ = xmod.model.encoder.lm_head.dense.bias lowerCamelCase_ = xmod.model.encoder.lm_head.layer_norm.weight lowerCamelCase_ = xmod.model.encoder.lm_head.layer_norm.bias lowerCamelCase_ = xmod.model.encoder.lm_head.weight lowerCamelCase_ = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCamelCase_ = xmod.encode(lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(lowercase ) lowerCamelCase_ = model(lowercase )[0] if classification_head: lowerCamelCase_ = xmod.model.classification_heads['mnli'](xmod.extract_features(lowercase ) ) else: lowerCamelCase_ = xmod.model(lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) lowerCamelCase_ = torch.max(torch.abs(our_output - their_output ) ).item() print(f"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 lowerCamelCase_ = torch.allclose(lowercase , lowercase , atol=1e-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) Path(lowercase ).mkdir(parents=lowercase , exist_ok=lowercase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase ) if __name__ == "__main__": lowerCamelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xmod_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) lowerCamelCase : List[Any] = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
702
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } lowerCamelCase : int = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } lowerCamelCase : Tuple = {"facebook/blenderbot-3B": 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) lowerCamelCase_ = bs[:] lowerCamelCase_ = 0 for b in range(2**8 ): if b not in bs: bs.append(lowercase ) cs.append(2**8 + n ) n += 1 lowerCamelCase_ = [chr(lowercase ) for n in cs] return dict(zip(lowercase , lowercase ) ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = set() lowerCamelCase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase_ = char return pairs class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[Any] , A_ : List[Any] , A_ : List[Any] , A_ : Union[str, Any]="replace" , A_ : Dict="<s>" , A_ : Optional[int]="</s>" , A_ : Optional[Any]="</s>" , A_ : Dict="<s>" , A_ : Dict="<unk>" , A_ : Any="<pad>" , A_ : Dict="<mask>" , A_ : Union[str, Any]=False , **A_ : List[str] , ) -> Tuple: """simple docstring""" lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else bos_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else eos_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else sep_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else cls_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else unk_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token super().__init__( errors=A_ , bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , add_prefix_space=A_ , **A_ , ) with open(A_ , encoding='utf-8' ) as vocab_handle: lowerCamelCase_ = json.load(A_ ) lowerCamelCase_ = {v: k for k, v in self.encoder.items()} lowerCamelCase_ = errors # how to handle errors in decoding lowerCamelCase_ = bytes_to_unicode() lowerCamelCase_ = {v: k for k, v in self.byte_encoder.items()} with open(A_ , encoding='utf-8' ) as merges_handle: lowerCamelCase_ = merges_handle.read().split('\n' )[1:-1] lowerCamelCase_ = [tuple(merge.split() ) for merge in bpe_merges] lowerCamelCase_ = dict(zip(A_ , range(len(A_ ) ) ) ) lowerCamelCase_ = {} lowerCamelCase_ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCamelCase_ = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" return len(self.encoder ) def a__ ( self : List[Any] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def a__ ( self : Tuple , A_ : Tuple ) -> Optional[Any]: """simple docstring""" if token in self.cache: return self.cache[token] lowerCamelCase_ = tuple(A_ ) lowerCamelCase_ = get_pairs(A_ ) if not pairs: return token while True: lowerCamelCase_ = min(A_ , key=lambda A_ : self.bpe_ranks.get(A_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase_ , lowerCamelCase_ = bigram lowerCamelCase_ = [] lowerCamelCase_ = 0 while i < len(A_ ): try: lowerCamelCase_ = word.index(A_ , A_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase_ = j if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase_ = tuple(A_ ) lowerCamelCase_ = new_word if len(A_ ) == 1: break else: lowerCamelCase_ = get_pairs(A_ ) lowerCamelCase_ = ' '.join(A_ ) lowerCamelCase_ = word return word def a__ ( self : str , A_ : List[str] ) -> List[str]: """simple docstring""" lowerCamelCase_ = [] for token in re.findall(self.pat , A_ ): lowerCamelCase_ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A_ ).split(' ' ) ) return bpe_tokens def a__ ( self : Tuple , A_ : str ) -> Optional[Any]: """simple docstring""" return self.encoder.get(A_ , self.encoder.get(self.unk_token ) ) def a__ ( self : Tuple , A_ : Dict ) -> List[Any]: """simple docstring""" return self.decoder.get(A_ ) def a__ ( self : Optional[int] , A_ : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = ''.join(A_ ) lowerCamelCase_ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def a__ ( self : Tuple , A_ : str , A_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(A_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + '\n' ) lowerCamelCase_ = 0 with open(A_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) lowerCamelCase_ = token_index writer.write(' '.join(A_ ) + '\n' ) index += 1 return vocab_file, merge_file def a__ ( self : str , A_ : List[int] , A_ : Optional[List[int]] = None , A_ : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def a__ ( self : int , A_ : List[int] , A_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a__ ( self : str , A_ : Optional[Any] , A_ : Union[str, Any]=False , **A_ : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(A_ ) > 0 and not text[0].isspace()): lowerCamelCase_ = ' ' + text return (text, kwargs) def a__ ( self : List[Any] , A_ : List[int] , A_ : Optional[List[int]] = None ) -> Dict: """simple docstring""" return token_ids_a + [self.eos_token_id] def a__ ( self : Optional[int] , A_ : "Conversation" ) -> List[int]: """simple docstring""" lowerCamelCase_ = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(A_ ) lowerCamelCase_ = ' '.join(A_ ) lowerCamelCase_ = self.encode(A_ ) if len(A_ ) > self.model_max_length: lowerCamelCase_ = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
651
0
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : int ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() def a__ ( self : Tuple ) -> str: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = FlaxStableDiffusionPipeline.from_pretrained( 'stabilityai/stable-diffusion-2' , revision='bf16' , dtype=jnp.bfloataa , ) lowerCamelCase_ = 'A painting of a squirrel eating a burger' lowerCamelCase_ = jax.device_count() lowerCamelCase_ = num_samples * [prompt] lowerCamelCase_ = sd_pipe.prepare_inputs(A_ ) lowerCamelCase_ = replicate(A_ ) lowerCamelCase_ = shard(A_ ) lowerCamelCase_ = jax.random.PRNGKey(0 ) lowerCamelCase_ = jax.random.split(A_ , jax.device_count() ) lowerCamelCase_ = sd_pipe(A_ , A_ , A_ , num_inference_steps=25 , jit=A_ )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) lowerCamelCase_ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCamelCase_ = images[0, 253:256, 253:256, -1] lowerCamelCase_ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCamelCase_ = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.45508, 0.4512] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def a__ ( self : Any ) -> int: """simple docstring""" lowerCamelCase_ = 'stabilityai/stable-diffusion-2' lowerCamelCase_ , lowerCamelCase_ = FlaxDPMSolverMultistepScheduler.from_pretrained(A_ , subfolder='scheduler' ) lowerCamelCase_ , lowerCamelCase_ = FlaxStableDiffusionPipeline.from_pretrained( A_ , scheduler=A_ , revision='bf16' , dtype=jnp.bfloataa , ) lowerCamelCase_ = scheduler_params lowerCamelCase_ = 'A painting of a squirrel eating a burger' lowerCamelCase_ = jax.device_count() lowerCamelCase_ = num_samples * [prompt] lowerCamelCase_ = sd_pipe.prepare_inputs(A_ ) lowerCamelCase_ = replicate(A_ ) lowerCamelCase_ = shard(A_ ) lowerCamelCase_ = jax.random.PRNGKey(0 ) lowerCamelCase_ = jax.random.split(A_ , jax.device_count() ) lowerCamelCase_ = sd_pipe(A_ , A_ , A_ , num_inference_steps=25 , jit=A_ )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) lowerCamelCase_ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCamelCase_ = images[0, 253:256, 253:256, -1] lowerCamelCase_ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCamelCase_ = jnp.array([0.4336, 0.42969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
703
lowerCamelCase : Dict = "Alexander Joslin" import operator as op from .stack import Stack def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} lowerCamelCase_ = Stack() lowerCamelCase_ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(lowercase ) elif i == ")": # RULE 4 lowerCamelCase_ = operator_stack.peek() operator_stack.pop() lowerCamelCase_ = operand_stack.peek() operand_stack.pop() lowerCamelCase_ = operand_stack.peek() operand_stack.pop() lowerCamelCase_ = operators[opr](lowercase , lowercase ) operand_stack.push(lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCamelCase : Any = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
651
0
def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
704
def _SCREAMING_SNAKE_CASE ( lowercase : list[int] , lowercase : list[int] ): '''simple docstring''' lowerCamelCase_ = len(lowercase ) print('The following activities are selected:' ) # The first activity is always selected lowerCamelCase_ = 0 print(lowercase , end=',' ) # Consider rest of the activities for j in range(lowercase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowercase , end=',' ) lowerCamelCase_ = j if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Tuple = [1, 3, 0, 5, 8, 5] lowerCamelCase : int = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
651
0
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType lowerCamelCase = None lowerCamelCase = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image lowerCamelCase = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class A: '''simple docstring''' UpperCamelCase = True UpperCamelCase = None # Automatically constructed UpperCamelCase = '''PIL.Image.Image''' UpperCamelCase = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) UpperCamelCase = field(default='''Image''' , init=UpperCamelCase , repr=UpperCamelCase ) def __call__( self : str ) -> Optional[int]: """simple docstring""" return self.pa_type def a__ ( self : Optional[Any] , A_ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ) -> dict: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if isinstance(A_ , A_ ): lowerCamelCase_ = np.array(A_ ) if isinstance(A_ , A_ ): return {"path": value, "bytes": None} elif isinstance(A_ , A_ ): return {"path": None, "bytes": value} elif isinstance(A_ , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(A_ ) elif isinstance(A_ , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(A_ ) elif value.get('path' ) is not None and os.path.isfile(value['path'] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('path' )} elif value.get('bytes' ) is not None or value.get('path' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('bytes' ), "path": value.get('path' )} else: raise ValueError( f"""An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" ) def a__ ( self : Optional[int] , A_ : dict , A_ : Dict=None ) -> "PIL.Image.Image": """simple docstring""" if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Image(decode=True) instead.' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support decoding images, please install \'Pillow\'.' ) if token_per_repo_id is None: lowerCamelCase_ = {} lowerCamelCase_ , lowerCamelCase_ = value['path'], value['bytes'] if bytes_ is None: if path is None: raise ValueError(f"""An image should have one of 'path' or 'bytes' but both are None in {value}.""" ) else: if is_local_path(A_ ): lowerCamelCase_ = PIL.Image.open(A_ ) else: lowerCamelCase_ = path.split('::' )[-1] try: lowerCamelCase_ = string_to_dict(A_ , config.HUB_DATASETS_URL )['repo_id'] lowerCamelCase_ = token_per_repo_id.get(A_ ) except ValueError: lowerCamelCase_ = None with xopen(A_ , 'rb' , use_auth_token=A_ ) as f: lowerCamelCase_ = BytesIO(f.read() ) lowerCamelCase_ = PIL.Image.open(bytes_ ) else: lowerCamelCase_ = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def a__ ( self : int ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return ( self if self.decode else { "bytes": Value('binary' ), "path": Value('string' ), } ) def a__ ( self : Optional[int] , A_ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ) -> pa.StructArray: """simple docstring""" if pa.types.is_string(storage.type ): lowerCamelCase_ = pa.array([None] * len(A_ ) , type=pa.binary() ) lowerCamelCase_ = pa.StructArray.from_arrays([bytes_array, storage] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowerCamelCase_ = pa.array([None] * len(A_ ) , type=pa.string() ) lowerCamelCase_ = pa.StructArray.from_arrays([storage, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('bytes' ) >= 0: lowerCamelCase_ = storage.field('bytes' ) else: lowerCamelCase_ = pa.array([None] * len(A_ ) , type=pa.binary() ) if storage.type.get_field_index('path' ) >= 0: lowerCamelCase_ = storage.field('path' ) else: lowerCamelCase_ = pa.array([None] * len(A_ ) , type=pa.string() ) lowerCamelCase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): lowerCamelCase_ = pa.array( [encode_np_array(np.array(A_ ) )['bytes'] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) lowerCamelCase_ = pa.array([None] * len(A_ ) , type=pa.string() ) lowerCamelCase_ = pa.StructArray.from_arrays( [bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(A_ , self.pa_type ) def a__ ( self : str , A_ : pa.StructArray ) -> pa.StructArray: """simple docstring""" @no_op_if_value_is_null def path_to_bytes(A_ : List[Any] ): with xopen(A_ , 'rb' ) as f: lowerCamelCase_ = f.read() return bytes_ lowerCamelCase_ = pa.array( [ (path_to_bytes(x['path'] ) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowerCamelCase_ = pa.array( [os.path.basename(A_ ) if path is not None else None for path in storage.field('path' ).to_pylist()] , type=pa.string() , ) lowerCamelCase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(A_ , self.pa_type ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() lowerCamelCase_ = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def _SCREAMING_SNAKE_CASE ( lowercase : "PIL.Image.Image" ): '''simple docstring''' lowerCamelCase_ = BytesIO() if image.format in list_image_compression_formats(): lowerCamelCase_ = image.format else: lowerCamelCase_ = 'PNG' if image.mode in ['1', 'L', 'LA', 'RGB', 'RGBA'] else 'TIFF' image.save(lowercase , format=lowercase ) return buffer.getvalue() def _SCREAMING_SNAKE_CASE ( lowercase : "PIL.Image.Image" ): '''simple docstring''' if hasattr(lowercase , 'filename' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(lowercase )} def _SCREAMING_SNAKE_CASE ( lowercase : np.ndarray ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) lowerCamelCase_ = array.dtype lowerCamelCase_ = dtype.byteorder if dtype.byteorder != '=' else _NATIVE_BYTEORDER lowerCamelCase_ = dtype.kind lowerCamelCase_ = dtype.itemsize lowerCamelCase_ = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: lowerCamelCase_ = np.dtype('|u1' ) if dtype_kind not in ["u", "i"]: raise TypeError( f"""Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.""" ) if dtype is not dest_dtype: warnings.warn(f"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: lowerCamelCase_ = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: lowerCamelCase_ = dtype_byteorder + dtype_kind + str(lowercase ) lowerCamelCase_ = np.dtype(lowercase ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f"""Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}""" ) lowerCamelCase_ = PIL.Image.fromarray(array.astype(lowercase ) ) return {"path": None, "bytes": image_to_bytes(lowercase )} def _SCREAMING_SNAKE_CASE ( lowercase : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if objs: lowerCamelCase_ , lowerCamelCase_ = first_non_null_value(lowercase ) if isinstance(lowercase , lowercase ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(lowercase , np.ndarray ): lowerCamelCase_ = no_op_if_value_is_null(lowercase ) return [obj_to_image_dict_func(lowercase ) for obj in objs] elif isinstance(lowercase , PIL.Image.Image ): lowerCamelCase_ = no_op_if_value_is_null(lowercase ) return [obj_to_image_dict_func(lowercase ) for obj in objs] else: return objs else: return objs
705
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A: '''simple docstring''' def __init__( self : Optional[Any] , A_ : Union[str, Any] , A_ : str=13 , A_ : List[Any]=32 , A_ : Tuple=2 , A_ : Dict=3 , A_ : Union[str, Any]=16 , A_ : List[str]=[32, 64, 128] , A_ : Optional[Any]=[1, 2, 1] , A_ : Tuple=[2, 2, 4] , A_ : Dict=2 , A_ : Optional[Any]=2.0 , A_ : List[str]=True , A_ : Dict=0.0 , A_ : List[str]=0.0 , A_ : Optional[int]=0.1 , A_ : str="gelu" , A_ : Optional[Any]=False , A_ : Any=True , A_ : Optional[Any]=0.02 , A_ : Dict=1E-5 , A_ : int=True , A_ : Optional[int]=None , A_ : List[str]=True , A_ : Tuple=10 , A_ : Any=8 , A_ : Dict=["stage1", "stage2"] , A_ : Optional[Any]=[1, 2] , ) -> List[str]: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = embed_dim lowerCamelCase_ = hidden_sizes lowerCamelCase_ = depths lowerCamelCase_ = num_heads lowerCamelCase_ = window_size lowerCamelCase_ = mlp_ratio lowerCamelCase_ = qkv_bias lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = drop_path_rate lowerCamelCase_ = hidden_act lowerCamelCase_ = use_absolute_embeddings lowerCamelCase_ = patch_norm lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = initializer_range lowerCamelCase_ = is_training lowerCamelCase_ = scope lowerCamelCase_ = use_labels lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = encoder_stride lowerCamelCase_ = out_features lowerCamelCase_ = out_indices def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def a__ ( self : List[Any] ) -> Any: """simple docstring""" return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def a__ ( self : Union[str, Any] , A_ : Dict , A_ : int , A_ : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = FocalNetModel(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) lowerCamelCase_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCamelCase_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def a__ ( self : Tuple , A_ : List[str] , A_ : Optional[int] , A_ : Optional[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = FocalNetBackbone(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None lowerCamelCase_ = None lowerCamelCase_ = FocalNetBackbone(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a__ ( self : int , A_ : Optional[Any] , A_ : Optional[int] , A_ : Any ) -> Any: """simple docstring""" lowerCamelCase_ = FocalNetForMaskedImageModeling(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = FocalNetForMaskedImageModeling(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def a__ ( self : Tuple , A_ : List[Any] , A_ : int , A_ : Dict ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.type_sequence_label_size lowerCamelCase_ = FocalNetForImageClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = FocalNetForImageClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self : int ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) UpperCamelCase = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = FocalNetModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=A_ , embed_dim=37 , has_text_modality=A_ ) def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ ( self : Any ) -> Optional[int]: """simple docstring""" return def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*A_ ) def a__ ( self : Dict ) -> int: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A_ ) def a__ ( self : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def a__ ( self : int ) -> int: """simple docstring""" pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" pass def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def a__ ( self : int , A_ : List[Any] , A_ : int , A_ : Dict , A_ : Dict ) -> List[Any]: """simple docstring""" lowerCamelCase_ = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(A_ , A_ ) ) lowerCamelCase_ = outputs.hidden_states lowerCamelCase_ = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(A_ ) , A_ ) # FocalNet has a different seq_length lowerCamelCase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowerCamelCase_ = outputs.reshaped_hidden_states self.assertEqual(len(A_ ) , A_ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = reshaped_hidden_states[0].shape lowerCamelCase_ = ( reshaped_hidden_states[0].view(A_ , A_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , A_ ) def a__ ( self : List[str] ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = 3 lowerCamelCase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCamelCase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCamelCase_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , (padded_height, padded_width) ) @slow def a__ ( self : str ) -> Optional[Any]: """simple docstring""" for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = FocalNetModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def a__ ( self : List[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = _config_zero_init(A_ ) for model_class in self.all_model_classes: lowerCamelCase_ = model_class(config=A_ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class A( unittest.TestCase ): '''simple docstring''' @cached_property def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def a__ ( self : Tuple ) -> Any: """simple docstring""" lowerCamelCase_ = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(A_ ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCamelCase_ = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): lowerCamelCase_ = model(**A_ ) # verify the logits lowerCamelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A_ ) lowerCamelCase_ = torch.tensor([0.2166, -0.4368, 0.2191] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (FocalNetBackbone,) if is_torch_available() else () UpperCamelCase = FocalNetConfig UpperCamelCase = False def a__ ( self : List[str] ) -> Tuple: """simple docstring""" lowerCamelCase_ = FocalNetModelTester(self )
651
0
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowerCamelCase : List[str] = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Optional[Any] ): '''simple docstring''' inspect_dataset(lowercase , lowercase ) lowerCamelCase_ = path + '.py' assert script_name in os.listdir(lowercase ) assert "__pycache__" not in os.listdir(lowercase ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] , lowercase : List[Any] ): '''simple docstring''' inspect_metric(lowercase , lowercase ) lowerCamelCase_ = path + '.py' assert script_name in os.listdir(lowercase ) assert "__pycache__" not in os.listdir(lowercase ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] , lowercase : Any , lowercase : Optional[int] ): '''simple docstring''' lowerCamelCase_ = get_dataset_config_info(lowercase , config_name=lowercase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] , lowercase : Any , lowercase : Any ): '''simple docstring''' with pytest.raises(lowercase ): get_dataset_config_info(lowercase , config_name=lowercase ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] , lowercase : int ): '''simple docstring''' lowerCamelCase_ = get_dataset_config_names(lowercase ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Any , lowercase : Dict ): '''simple docstring''' lowerCamelCase_ = get_dataset_infos(lowercase ) assert list(infos.keys() ) == expected_configs lowerCamelCase_ = expected_configs[0] assert expected_config in infos lowerCamelCase_ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] , lowercase : Dict , lowercase : List[Any] ): '''simple docstring''' lowerCamelCase_ = get_dataset_infos(lowercase ) assert expected_config in infos lowerCamelCase_ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def _SCREAMING_SNAKE_CASE ( lowercase : Dict , lowercase : str , lowercase : List[str] ): '''simple docstring''' with pytest.raises(lowercase ): get_dataset_split_names(lowercase , config_name=lowercase )
706
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class A( unittest.TestCase ): '''simple docstring''' UpperCamelCase = MODEL_FOR_CAUSAL_LM_MAPPING UpperCamelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='pt' ) # Using `do_sample=False` to force deterministic output lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ] , ) lowerCamelCase_ = text_generator(['This is a test', 'This is a second test'] ) self.assertEqual( A_ , [ [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ], [ { 'generated_text': ( 'This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy' ' oscope. oscope. FiliFili@@' ) } ], ] , ) lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ , num_return_sequences=2 , return_tensors=A_ ) self.assertEqual( A_ , [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ] , ) lowerCamelCase_ = text_generator.model.config.eos_token_id lowerCamelCase_ = '<pad>' lowerCamelCase_ = text_generator( ['This is a test', 'This is a second test'] , do_sample=A_ , num_return_sequences=2 , batch_size=2 , return_tensors=A_ , ) self.assertEqual( A_ , [ [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ], [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ], ] , ) @require_tf def a__ ( self : Optional[int] ) -> str: """simple docstring""" lowerCamelCase_ = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='tf' ) # Using `do_sample=False` to force deterministic output lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ] , ) lowerCamelCase_ = text_generator(['This is a test', 'This is a second test'] , do_sample=A_ ) self.assertEqual( A_ , [ [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ], [ { 'generated_text': ( 'This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes' ' Cannes 閲閲Cannes Cannes Cannes 攵 please,' ) } ], ] , ) def a__ ( self : Optional[int] , A_ : Dict , A_ : int , A_ : List[str] ) -> str: """simple docstring""" lowerCamelCase_ = TextGenerationPipeline(model=A_ , tokenizer=A_ ) return text_generator, ["This is a test", "Another test"] def a__ ( self : Dict ) -> str: """simple docstring""" lowerCamelCase_ = 'Hello I believe in' lowerCamelCase_ = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) lowerCamelCase_ = text_generator(A_ ) self.assertEqual( A_ , [{'generated_text': 'Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'}] , ) lowerCamelCase_ = text_generator(A_ , stop_sequence=' fe' ) self.assertEqual(A_ , [{'generated_text': 'Hello I believe in fe'}] ) def a__ ( self : Any , A_ : Optional[Any] , A_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = text_generator.model lowerCamelCase_ = text_generator.tokenizer lowerCamelCase_ = text_generator('This is a test' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) lowerCamelCase_ = text_generator('This is a test' , return_full_text=A_ ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) lowerCamelCase_ = pipeline(task='text-generation' , model=A_ , tokenizer=A_ , return_full_text=A_ ) lowerCamelCase_ = text_generator('This is a test' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) lowerCamelCase_ = text_generator('This is a test' , return_full_text=A_ ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) lowerCamelCase_ = text_generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=A_ ) self.assertEqual( A_ , [ [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], ] , ) if text_generator.tokenizer.pad_token is not None: lowerCamelCase_ = text_generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=A_ ) self.assertEqual( A_ , [ [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], ] , ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_full_text=A_ , return_text=A_ ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_full_text=A_ , return_tensors=A_ ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_text=A_ , return_tensors=A_ ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): lowerCamelCase_ = text_generator('' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) else: with self.assertRaises((ValueError, AssertionError) ): lowerCamelCase_ = text_generator('' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. lowerCamelCase_ = ['RwkvForCausalLM', 'XGLMForCausalLM', 'GPTNeoXForCausalLM'] if ( tokenizer.model_max_length < 10000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('This is a test' * 500 , max_new_tokens=20 ) lowerCamelCase_ = text_generator('This is a test' * 500 , handle_long_generation='hole' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(A_ ): text_generator( 'This is a test' * 500 , handle_long_generation='hole' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" import torch # Classic `model_kwargs` lowerCamelCase_ = pipeline( model='hf-internal-testing/tiny-random-bloom' , model_kwargs={'device_map': 'auto', 'torch_dtype': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) @require_torch @require_torch_gpu def a__ ( self : int ) -> str: """simple docstring""" import torch lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device=0 , torch_dtype=torch.floataa ) pipe('This is a test' ) @require_torch @require_accelerate @require_torch_gpu def a__ ( self : List[Any] ) -> Dict: """simple docstring""" import torch lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.floataa ) pipe('This is a test' , do_sample=A_ , top_p=0.5 ) def a__ ( self : Tuple ) -> Dict: """simple docstring""" lowerCamelCase_ = 'Hello world' lowerCamelCase_ = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) if text_generator.model.framework == "tf": lowerCamelCase_ = logging.get_logger('transformers.generation.tf_utils' ) else: lowerCamelCase_ = logging.get_logger('transformers.generation.utils' ) lowerCamelCase_ = 'Both `max_new_tokens`' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_length=10 , max_new_tokens=1 ) self.assertIn(A_ , cl.out ) # The user only sets one -> no warning with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_new_tokens=1 ) self.assertNotIn(A_ , cl.out ) with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_length=10 ) self.assertNotIn(A_ , cl.out )
651
0
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCamelCase : List[str] = TypeVar("KEY") lowerCamelCase : str = TypeVar("VAL") @dataclass(frozen=UpperCamelCase , slots=UpperCamelCase ) class A( Generic[KEY, VAL] ): '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = 42 class A( _Item ): '''simple docstring''' def __init__( self : Tuple ) -> None: """simple docstring""" super().__init__(A_ , A_ ) def __bool__( self : List[Any] ) -> bool: """simple docstring""" return False lowerCamelCase : Optional[Any] = _DeletedItem() class A( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__( self : str , A_ : int = 8 , A_ : float = 0.75 ) -> None: """simple docstring""" lowerCamelCase_ = initial_block_size lowerCamelCase_ = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowerCamelCase_ = capacity_factor lowerCamelCase_ = 0 def a__ ( self : Dict , A_ : KEY ) -> int: """simple docstring""" return hash(A_ ) % len(self._buckets ) def a__ ( self : List[Any] , A_ : int ) -> int: """simple docstring""" return (ind + 1) % len(self._buckets ) def a__ ( self : Tuple , A_ : int , A_ : KEY , A_ : VAL ) -> bool: """simple docstring""" lowerCamelCase_ = self._buckets[ind] if not stored: lowerCamelCase_ = _Item(A_ , A_ ) self._len += 1 return True elif stored.key == key: lowerCamelCase_ = _Item(A_ , A_ ) return True else: return False def a__ ( self : List[str] ) -> bool: """simple docstring""" lowerCamelCase_ = len(self._buckets ) * self._capacity_factor return len(self ) >= int(A_ ) def a__ ( self : Dict ) -> bool: """simple docstring""" if len(self._buckets ) <= self._initial_block_size: return False lowerCamelCase_ = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def a__ ( self : Any , A_ : int ) -> None: """simple docstring""" lowerCamelCase_ = self._buckets lowerCamelCase_ = [None] * new_size lowerCamelCase_ = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def a__ ( self : Tuple ) -> None: """simple docstring""" self._resize(len(self._buckets ) * 2 ) def a__ ( self : Any ) -> None: """simple docstring""" self._resize(len(self._buckets ) // 2 ) def a__ ( self : Tuple , A_ : KEY ) -> Iterator[int]: """simple docstring""" lowerCamelCase_ = self._get_bucket_index(A_ ) for _ in range(len(self._buckets ) ): yield ind lowerCamelCase_ = self._get_next_ind(A_ ) def a__ ( self : int , A_ : KEY , A_ : VAL ) -> None: """simple docstring""" for ind in self._iterate_buckets(A_ ): if self._try_set(A_ , A_ , A_ ): break def __setitem__( self : List[str] , A_ : KEY , A_ : VAL ) -> None: """simple docstring""" if self._is_full(): self._size_up() self._add_item(A_ , A_ ) def __delitem__( self : int , A_ : KEY ) -> None: """simple docstring""" for ind in self._iterate_buckets(A_ ): lowerCamelCase_ = self._buckets[ind] if item is None: raise KeyError(A_ ) if item is _deleted: continue if item.key == key: lowerCamelCase_ = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Optional[int] , A_ : KEY ) -> VAL: """simple docstring""" for ind in self._iterate_buckets(A_ ): lowerCamelCase_ = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(A_ ) def __len__( self : int ) -> int: """simple docstring""" return self._len def __iter__( self : List[Any] ) -> Iterator[KEY]: """simple docstring""" yield from (item.key for item in self._buckets if item) def __repr__( self : Dict ) -> str: """simple docstring""" lowerCamelCase_ = ' ,'.join( f"""{item.key}: {item.val}""" for item in self._buckets if item ) return f"""HashMap({val_string})"""
707
import os import re import shutil import sys import tempfile import unittest import black lowerCamelCase : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowerCamelCase : Tuple = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) ) lowerCamelCase_ = self.diffusers_dir shutil.copy( os.path.join(A_ , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" lowerCamelCase_ = 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def a__ ( self : str , A_ : Optional[Any] , A_ : Optional[int] , A_ : str , A_ : Optional[Any]=None ) -> int: """simple docstring""" lowerCamelCase_ = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowerCamelCase_ = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowerCamelCase_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCamelCase_ = black.format_str(A_ , mode=A_ ) lowerCamelCase_ = os.path.join(self.diffusers_dir , 'new_code.py' ) with open(A_ , 'w' , newline='\n' ) as f: f.write(A_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(A_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=A_ ) with open(A_ , 'r' ) as f: self.assertTrue(f.read() , A_ ) def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" lowerCamelCase_ = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(A_ , A_ ) def a__ ( self : Any ) -> Dict: """simple docstring""" self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , A_ , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , A_ ) , ) # Copy consistency with a really long name lowerCamelCase_ = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('Bert' , A_ , A_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , A_ , overwrite_result=re.sub('DDPM' , 'Test' , A_ ) , )
651
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : str = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''ibert''' def __init__( self : List[str] , A_ : Optional[Any]=30522 , A_ : str=768 , A_ : List[str]=12 , A_ : int=12 , A_ : List[str]=3072 , A_ : Tuple="gelu" , A_ : Optional[int]=0.1 , A_ : Union[str, Any]=0.1 , A_ : Any=512 , A_ : int=2 , A_ : Optional[Any]=0.02 , A_ : Optional[Any]=1E-12 , A_ : List[Any]=1 , A_ : Optional[Any]=0 , A_ : List[Any]=2 , A_ : Dict="absolute" , A_ : Any=False , A_ : List[str]="none" , **A_ : Optional[Any] , ) -> int: """simple docstring""" super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = hidden_act lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = position_embedding_type lowerCamelCase_ = quant_mode lowerCamelCase_ = force_dequant class A( UpperCamelCase ): '''simple docstring''' @property def a__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowerCamelCase_ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCamelCase_ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
708
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Optional[int] , A_ : Tuple , A_ : str , A_ : int ) -> Any: """simple docstring""" self.assertEqual(len(A_ ) , len(A_ ) ) for a, b in zip(A_ , A_ ): self.assertAlmostEqual(A_ , A_ , delta=A_ ) def a__ ( self : int ) -> str: """simple docstring""" lowerCamelCase_ = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(A_ ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = None ops.enable_eager_execution_internal() lowerCamelCase_ = tf.config.list_physical_devices('CPU' ) if len(A_ ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) lowerCamelCase_ = tf.config.list_logical_devices(device_type='CPU' ) lowerCamelCase_ = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): lowerCamelCase_ = GradientAccumulator() lowerCamelCase_ = tf.Variable([4.0, 3.0] ) lowerCamelCase_ , lowerCamelCase_ = create_optimizer(5E-5 , 10 , 5 ) lowerCamelCase_ = tf.Variable([0.0, 0.0] , trainable=A_ ) def accumulate_on_replica(A_ : Any ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(A_ : List[Any] , A_ : Tuple ): with strategy.scope(): lowerCamelCase_ = strategy.experimental_local_results(A_ ) local_variables[0].assign(A_ ) local_variables[1].assign(A_ ) strategy.run(A_ , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(A_ ) def _check_local_values(A_ : List[Any] , A_ : str ): lowerCamelCase_ = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , A_ , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , A_ , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
651
0
from jiwer import compute_measures import datasets lowerCamelCase : List[Any] = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" lowerCamelCase : Union[str, Any] = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n" lowerCamelCase : Union[str, Any] = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A( datasets.Metric ): '''simple docstring''' def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/jitsi/jiwer/'] , reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', ] , ) def a__ ( self : int , A_ : List[str]=None , A_ : Union[str, Any]=None , A_ : Dict=False ) -> Any: """simple docstring""" if concatenate_texts: return compute_measures(A_ , A_ )["wer"] else: lowerCamelCase_ = 0 lowerCamelCase_ = 0 for prediction, reference in zip(A_ , A_ ): lowerCamelCase_ = compute_measures(A_ , A_ ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
709
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCamelCase : str = imread(r"digital_image_processing/image_data/lena_small.jpg") lowerCamelCase : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = cn.convert_to_negative(lowercase ) # assert negative_img array for at least one True assert negative_img.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(lowercase , 1_10 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() lowerCamelCase_ = canny.canny(lowercase ) # assert canny array for at least one True assert canny_array.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' assert gg.gaussian_filter(lowercase , 5 , sigma=0.9 ).all() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) lowerCamelCase_ = conv.img_convolve(lowercase , lowercase ).astype(lowercase ) assert res.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' assert med.median_filter(lowercase , 3 ).any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = sob.sobel_filter(lowercase ) assert grad.any() and theta.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = sp.make_sepia(lowercase , 20 ) assert sepia.all() def _SCREAMING_SNAKE_CASE ( lowercase : str = "digital_image_processing/image_data/lena_small.jpg" ): '''simple docstring''' lowerCamelCase_ = bs.Burkes(imread(lowercase , 1 ) , 1_20 ) burkes.process() assert burkes.output_img.any() def _SCREAMING_SNAKE_CASE ( lowercase : str = "digital_image_processing/image_data/lena_small.jpg" , ): '''simple docstring''' lowerCamelCase_ = rs.NearestNeighbour(imread(lowercase , 1 ) , 4_00 , 2_00 ) nn.process() assert nn.output.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. lowerCamelCase_ = imread(lowercase , 0 ) # Test for get_neighbors_pixel function() return not None lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = image[x_coordinate][y_coordinate] lowerCamelCase_ = lbp.get_neighbors_pixel( lowercase , lowercase , lowercase , lowercase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCamelCase_ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): lowerCamelCase_ = lbp.local_binary_value(lowercase , lowercase , lowercase ) assert lbp_image.any()
651
0
import math def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = [True] * n lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): lowerCamelCase_ = i * 2 while index < n: lowerCamelCase_ = False lowerCamelCase_ = index + i lowerCamelCase_ = [2] for i in range(3 , lowercase , 2 ): if is_prime[i]: primes.append(lowercase ) return primes def _SCREAMING_SNAKE_CASE ( lowercase : int = 99_99_66_66_33_33 ): '''simple docstring''' lowerCamelCase_ = math.floor(math.sqrt(lowercase ) ) + 1_00 lowerCamelCase_ = prime_sieve(lowercase ) lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = primes[prime_index] while (last_prime**2) <= limit: lowerCamelCase_ = primes[prime_index + 1] lowerCamelCase_ = last_prime**2 lowerCamelCase_ = next_prime**2 # Get numbers divisible by lps(current) lowerCamelCase_ = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) lowerCamelCase_ = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps lowerCamelCase_ = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair lowerCamelCase_ = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
710
class A: '''simple docstring''' def __init__( self : Dict ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = {} def a__ ( self : Union[str, Any] , A_ : List[Any] ) -> int: """simple docstring""" if vertex not in self.adjacency: lowerCamelCase_ = {} self.num_vertices += 1 def a__ ( self : int , A_ : int , A_ : Optional[Any] , A_ : List[str] ) -> Tuple: """simple docstring""" self.add_vertex(A_ ) self.add_vertex(A_ ) if head == tail: return lowerCamelCase_ = weight lowerCamelCase_ = weight def a__ ( self : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.get_edges() for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge edges.remove((tail, head, weight) ) for i in range(len(A_ ) ): lowerCamelCase_ = list(edges[i] ) edges.sort(key=lambda A_ : e[2] ) for i in range(len(A_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowerCamelCase_ = edges[i][2] + 1 for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge lowerCamelCase_ = weight lowerCamelCase_ = weight def __str__( self : str ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = '' for tail in self.adjacency: for head in self.adjacency[tail]: lowerCamelCase_ = self.adjacency[head][tail] string += f"""{head} -> {tail} == {weight}\n""" return string.rstrip('\n' ) def a__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def a__ ( self : List[str] ) -> int: """simple docstring""" return self.adjacency.keys() @staticmethod def a__ ( A_ : Optional[Any]=None , A_ : List[str]=None ) -> List[str]: """simple docstring""" lowerCamelCase_ = Graph() if vertices is None: lowerCamelCase_ = [] if edges is None: lowerCamelCase_ = [] for vertex in vertices: g.add_vertex(A_ ) for edge in edges: g.add_edge(*A_ ) return g class A: '''simple docstring''' def __init__( self : Optional[int] ) -> int: """simple docstring""" lowerCamelCase_ = {} lowerCamelCase_ = {} def __len__( self : Any ) -> List[str]: """simple docstring""" return len(self.parent ) def a__ ( self : List[str] , A_ : Any ) -> Dict: """simple docstring""" if item in self.parent: return self.find(A_ ) lowerCamelCase_ = item lowerCamelCase_ = 0 return item def a__ ( self : List[str] , A_ : Tuple ) -> Optional[int]: """simple docstring""" if item not in self.parent: return self.make_set(A_ ) if item != self.parent[item]: lowerCamelCase_ = self.find(self.parent[item] ) return self.parent[item] def a__ ( self : Any , A_ : int , A_ : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.find(A_ ) lowerCamelCase_ = self.find(A_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowerCamelCase_ = roota return roota if self.rank[roota] < self.rank[roota]: lowerCamelCase_ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowerCamelCase_ = roota return roota return None @staticmethod def a__ ( A_ : int ) -> Tuple: """simple docstring""" lowerCamelCase_ = graph.num_vertices lowerCamelCase_ = Graph.UnionFind() lowerCamelCase_ = [] while num_components > 1: lowerCamelCase_ = {} for vertex in graph.get_vertices(): lowerCamelCase_ = -1 lowerCamelCase_ = graph.get_edges() for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge edges.remove((tail, head, weight) ) for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge lowerCamelCase_ = union_find.find(A_ ) lowerCamelCase_ = union_find.find(A_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowerCamelCase_ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowerCamelCase_ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = cheap_edge[vertex] if union_find.find(A_ ) != union_find.find(A_ ): union_find.union(A_ , A_ ) mst_edges.append(cheap_edge[vertex] ) lowerCamelCase_ = num_components - 1 lowerCamelCase_ = Graph.build(edges=A_ ) return mst
651
0
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCamelCase : Optional[Any] = version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize lowerCamelCase : Optional[int] = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" lowerCamelCase : str = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" lowerCamelCase : Tuple = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A( datasets.Metric ): '''simple docstring''' def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'] , reference_urls=[ 'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score', 'https://en.wikipedia.org/wiki/METEOR', ] , ) def a__ ( self : int , A_ : Union[str, Any] ) -> Tuple: """simple docstring""" import nltk nltk.download('wordnet' ) if NLTK_VERSION >= version.Version('3.6.5' ): nltk.download('punkt' ) if NLTK_VERSION >= version.Version('3.6.6' ): nltk.download('omw-1.4' ) def a__ ( self : Dict , A_ : Optional[Any] , A_ : Any , A_ : Tuple=0.9 , A_ : List[Any]=3 , A_ : Optional[Any]=0.5 ) -> Optional[int]: """simple docstring""" if NLTK_VERSION >= version.Version('3.6.5' ): lowerCamelCase_ = [ meteor_score.single_meteor_score( word_tokenize(A_ ) , word_tokenize(A_ ) , alpha=A_ , beta=A_ , gamma=A_ ) for ref, pred in zip(A_ , A_ ) ] else: lowerCamelCase_ = [ meteor_score.single_meteor_score(A_ , A_ , alpha=A_ , beta=A_ , gamma=A_ ) for ref, pred in zip(A_ , A_ ) ] return {"meteor": np.mean(A_ )}
711
def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 0 for i in range(1 , 10_01 ): total += i**i return str(lowercase )[-10:] if __name__ == "__main__": print(solution())
651
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : int = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = { "asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''sew-d''' def __init__( self : int , A_ : Optional[int]=32 , A_ : int=768 , A_ : List[str]=12 , A_ : str=12 , A_ : int=3072 , A_ : Tuple=2 , A_ : str=512 , A_ : List[str]=256 , A_ : Any=True , A_ : List[Any]=True , A_ : str=("p2c", "c2p") , A_ : Dict="layer_norm" , A_ : List[str]="gelu_python" , A_ : str=0.1 , A_ : Optional[int]=0.1 , A_ : Optional[Any]=0.1 , A_ : Tuple=0.0 , A_ : Tuple=0.1 , A_ : Union[str, Any]=0.02 , A_ : Dict=1E-7 , A_ : Union[str, Any]=1E-5 , A_ : Any="group" , A_ : Union[str, Any]="gelu" , A_ : Optional[int]=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , A_ : Dict=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , A_ : List[Any]=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , A_ : Any=False , A_ : List[str]=128 , A_ : Tuple=16 , A_ : int=True , A_ : Tuple=0.05 , A_ : Any=10 , A_ : int=2 , A_ : Any=0.0 , A_ : int=10 , A_ : List[str]=0 , A_ : Optional[int]="mean" , A_ : str=False , A_ : List[Any]=False , A_ : Union[str, Any]=256 , A_ : Optional[Any]=0 , A_ : List[Any]=1 , A_ : int=2 , **A_ : Union[str, Any] , ) -> int: """simple docstring""" super().__init__(**A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ ) lowerCamelCase_ = hidden_size lowerCamelCase_ = feat_extract_norm lowerCamelCase_ = feat_extract_activation lowerCamelCase_ = list(A_ ) lowerCamelCase_ = list(A_ ) lowerCamelCase_ = list(A_ ) lowerCamelCase_ = conv_bias lowerCamelCase_ = num_conv_pos_embeddings lowerCamelCase_ = num_conv_pos_embedding_groups lowerCamelCase_ = len(self.conv_dim ) lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = intermediate_size lowerCamelCase_ = squeeze_factor lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = position_buckets lowerCamelCase_ = share_att_key lowerCamelCase_ = relative_attention lowerCamelCase_ = norm_rel_ebd lowerCamelCase_ = list(A_ ) lowerCamelCase_ = hidden_act lowerCamelCase_ = num_attention_heads lowerCamelCase_ = hidden_dropout lowerCamelCase_ = attention_dropout lowerCamelCase_ = activation_dropout lowerCamelCase_ = feat_proj_dropout lowerCamelCase_ = final_dropout lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = feature_layer_norm_eps lowerCamelCase_ = initializer_range lowerCamelCase_ = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase_ = apply_spec_augment lowerCamelCase_ = mask_time_prob lowerCamelCase_ = mask_time_length lowerCamelCase_ = mask_time_min_masks lowerCamelCase_ = mask_feature_prob lowerCamelCase_ = mask_feature_length lowerCamelCase_ = mask_feature_min_masks # ctc loss lowerCamelCase_ = ctc_loss_reduction lowerCamelCase_ = ctc_zero_infinity # sequence classification lowerCamelCase_ = use_weighted_layer_sum lowerCamelCase_ = classifier_proj_size @property def a__ ( self : str ) -> Dict: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
712
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase : Dict = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = ["ViTFeatureExtractor"] lowerCamelCase : Dict = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys lowerCamelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
651
0
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) lowerCamelCase : Optional[int] = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="relu") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation="relu")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation="relu")) classifier.add(layers.Dense(units=1, activation="sigmoid")) # Compiling the CNN classifier.compile( optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') lowerCamelCase : Tuple = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) lowerCamelCase : Optional[int] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) lowerCamelCase : Any = train_datagen.flow_from_directory( "dataset/training_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) lowerCamelCase : str = test_datagen.flow_from_directory( "dataset/test_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save("cnn.h5") # Part 3 - Making new predictions lowerCamelCase : Optional[int] = tf.keras.preprocessing.image.load_img( "dataset/single_prediction/image.png", target_size=(64, 64) ) lowerCamelCase : str = tf.keras.preprocessing.image.img_to_array(test_image) lowerCamelCase : str = np.expand_dims(test_image, axis=0) lowerCamelCase : str = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: lowerCamelCase : Any = "Normal" if result[0][0] == 1: lowerCamelCase : str = "Abnormality detected"
713
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCamelCase : int = datasets.logging.get_logger(__name__) lowerCamelCase : Optional[Any] = "\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n" lowerCamelCase : Tuple = "\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n" lowerCamelCase : Optional[Any] = "\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting 'keep_singletons=False', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n 'mentions': mentions\n 'muc': MUC metric [Vilain et al, 1995]\n 'bcub': B-cubed [Bagga and Baldwin, 1998]\n 'ceafe': CEAFe [Luo et al., 2005]\n 'lea': LEA [Moosavi and Strube, 2016]\n 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric('coval')\n >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',\n ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',\n ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',\n ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',\n ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',\n ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {'mentions/recall': 1.0,[...] 'conll_score': 100.0}\n" def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Optional[int] , lowercase : Any=False , lowercase : Any=False , lowercase : Dict=True , lowercase : List[str]=False , lowercase : int="dummy_doc" ): '''simple docstring''' lowerCamelCase_ = {doc: key_lines} lowerCamelCase_ = {doc: sys_lines} lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowercase , key_doc_lines[doc] , lowercase ) key_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowercase , sys_doc_lines[doc] , lowercase ) sys_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) if remove_nested: lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowercase , lowercase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowercase , lowercase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowerCamelCase_ = reader.get_mention_assignments(lowercase , lowercase ) lowerCamelCase_ = reader.get_mention_assignments(lowercase , lowercase ) lowerCamelCase_ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( 'Number of removed nested coreferring mentions in the key ' f"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" ) logger.info( 'Number of resulting singleton clusters in the key ' f"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" ) if not keep_singletons: logger.info( f"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """ 'files, respectively' ) return doc_coref_infos def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Tuple , lowercase : List[str] , lowercase : List[Any] , lowercase : List[Any] , lowercase : Tuple , lowercase : str ): '''simple docstring''' lowerCamelCase_ = get_coref_infos(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 for name, metric in metrics: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = evaluator.evaluate_documents(lowercase , lowercase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f"""{name}/recall""": recall, f"""{name}/precision""": precision, f"""{name}/f1""": fa} ) logger.info( name.ljust(10 ) , f"""Recall: {recall * 1_00:.2f}""" , f""" Precision: {precision * 1_00:.2f}""" , f""" F1: {fa * 1_00:.2f}""" , ) if conll_subparts_num == 3: lowerCamelCase_ = (conll / 3) * 1_00 logger.info(f"""CoNLL score: {conll:.2f}""" ) output_scores.update({'conll_score': conll} ) return output_scores def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] ): '''simple docstring''' lowerCamelCase_ = False for line in key_lines: if not line.startswith('#' ): if len(line.split() ) > 6: lowerCamelCase_ = line.split()[5] if not parse_col == "-": lowerCamelCase_ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A( datasets.Metric ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Sequence(datasets.Value('string' ) ), } ) , codebase_urls=['https://github.com/ns-moosavi/coval'] , reference_urls=[ 'https://github.com/ns-moosavi/coval', 'https://www.aclweb.org/anthology/P16-1060', 'http://www.conll.cemantix.org/2012/data.html', ] , ) def a__ ( self : List[str] , A_ : Optional[Any] , A_ : Optional[int] , A_ : int=True , A_ : str=False , A_ : int=False , A_ : Union[str, Any]=False ) -> List[Any]: """simple docstring""" lowerCamelCase_ = [ ('mentions', evaluator.mentions), ('muc', evaluator.muc), ('bcub', evaluator.b_cubed), ('ceafe', evaluator.ceafe), ('lea', evaluator.lea), ] if min_span: lowerCamelCase_ = util.check_gold_parse_annotation(A_ ) if not has_gold_parse: raise NotImplementedError('References should have gold parse annotation to use \'min_span\'.' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowerCamelCase_ = evaluate( key_lines=A_ , sys_lines=A_ , metrics=A_ , NP_only=A_ , remove_nested=A_ , keep_singletons=A_ , min_span=A_ , ) return score
651
0
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class A( UpperCamelCase ): '''simple docstring''' def __init__( self : Any , A_ : Distribution , A_ : Any=None , A_ : str=None , A_ : Optional[int]=0 ) -> List[str]: """simple docstring""" lowerCamelCase_ = 1.0 if scale is None else scale lowerCamelCase_ = 0.0 if loc is None else loc super().__init__(A_ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=A_ )] ) @property def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" return self.base_dist.mean * self.scale + self.loc @property def a__ ( self : Any ) -> Optional[int]: """simple docstring""" return self.base_dist.variance * self.scale**2 @property def a__ ( self : str ) -> int: """simple docstring""" return self.variance.sqrt() class A( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , A_ : int , A_ : Dict[str, int] , A_ : Callable[..., Tuple[torch.Tensor]] , **A_ : Any ) -> None: """simple docstring""" super().__init__(**A_ ) lowerCamelCase_ = args_dim lowerCamelCase_ = nn.ModuleList([nn.Linear(A_ , A_ ) for dim in args_dim.values()] ) lowerCamelCase_ = domain_map def a__ ( self : Any , A_ : torch.Tensor ) -> Tuple[torch.Tensor]: """simple docstring""" lowerCamelCase_ = [proj(A_ ) for proj in self.proj] return self.domain_map(*A_ ) class A( nn.Module ): '''simple docstring''' def __init__( self : List[str] , A_ : int ) -> Dict: """simple docstring""" super().__init__() lowerCamelCase_ = function def a__ ( self : Dict , A_ : Dict , *A_ : str ) -> Any: """simple docstring""" return self.function(A_ , *A_ ) class A: '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 def __init__( self : List[Any] , A_ : int = 1 ) -> None: """simple docstring""" lowerCamelCase_ = dim lowerCamelCase_ = {k: dim * self.args_dim[k] for k in self.args_dim} def a__ ( self : Any , A_ : Tuple ) -> Union[str, Any]: """simple docstring""" if self.dim == 1: return self.distribution_class(*A_ ) else: return Independent(self.distribution_class(*A_ ) , 1 ) def a__ ( self : List[Any] , A_ : Tuple , A_ : Optional[torch.Tensor] = None , A_ : Optional[torch.Tensor] = None , ) -> Distribution: """simple docstring""" lowerCamelCase_ = self._base_distribution(A_ ) if loc is None and scale is None: return distr else: return AffineTransformed(A_ , loc=A_ , scale=A_ , event_dim=self.event_dim ) @property def a__ ( self : List[str] ) -> Tuple: """simple docstring""" return () if self.dim == 1 else (self.dim,) @property def a__ ( self : Optional[Any] ) -> int: """simple docstring""" return len(self.event_shape ) @property def a__ ( self : Tuple ) -> float: """simple docstring""" return 0.0 def a__ ( self : int , A_ : int ) -> nn.Module: """simple docstring""" return ParameterProjection( in_features=A_ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def a__ ( self : Any , *A_ : torch.Tensor ) -> Optional[Any]: """simple docstring""" raise NotImplementedError() @staticmethod def a__ ( A_ : torch.Tensor ) -> torch.Tensor: """simple docstring""" return (x + torch.sqrt(torch.square(A_ ) + 4.0 )) / 2.0 class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = {'''df''': 1, '''loc''': 1, '''scale''': 1} UpperCamelCase = StudentT @classmethod def a__ ( cls : Dict , A_ : torch.Tensor , A_ : torch.Tensor , A_ : torch.Tensor ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = cls.squareplus(A_ ).clamp_min(torch.finfo(scale.dtype ).eps ) lowerCamelCase_ = 2.0 + cls.squareplus(A_ ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = {'''loc''': 1, '''scale''': 1} UpperCamelCase = Normal @classmethod def a__ ( cls : Any , A_ : torch.Tensor , A_ : torch.Tensor ) -> str: """simple docstring""" lowerCamelCase_ = cls.squareplus(A_ ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = {'''total_count''': 1, '''logits''': 1} UpperCamelCase = NegativeBinomial @classmethod def a__ ( cls : Optional[int] , A_ : torch.Tensor , A_ : torch.Tensor ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = cls.squareplus(A_ ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def a__ ( self : List[Any] , A_ : Union[str, Any] ) -> Distribution: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = distr_args if self.dim == 1: return self.distribution_class(total_count=A_ , logits=A_ ) else: return Independent(self.distribution_class(total_count=A_ , logits=A_ ) , 1 ) def a__ ( self : Optional[Any] , A_ : Optional[int] , A_ : Optional[torch.Tensor] = None , A_ : Optional[torch.Tensor] = None ) -> Distribution: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
714
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase ) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCamelCase = Features({'''text''': Value('''string''' )} ) UpperCamelCase = Features({} ) UpperCamelCase = "text" @property def a__ ( self : List[Any] ) -> Dict[str, str]: """simple docstring""" return {self.text_column: "text"}
651
0
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCamelCase : List[str] = logging.get_logger(__name__) lowerCamelCase : List[Any] = { "nielsr/canine-s": 2_048, } # Unicode defines 1,114,112 total “codepoints” lowerCamelCase : int = 1_114_112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py lowerCamelCase : Optional[int] = 0 lowerCamelCase : List[Any] = 0xe0_00 lowerCamelCase : List[Any] = 0xe0_01 lowerCamelCase : Any = 0xe0_02 lowerCamelCase : Dict = 0xe0_03 lowerCamelCase : Union[str, Any] = 0xe0_04 # Maps special codepoints to human-readable names. lowerCamelCase : Dict[int, str] = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. lowerCamelCase : Dict[str, int] = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[Any] , A_ : int=chr(A_ ) , A_ : Tuple=chr(A_ ) , A_ : Dict=chr(A_ ) , A_ : Optional[int]=chr(A_ ) , A_ : Any=chr(A_ ) , A_ : List[str]=chr(A_ ) , A_ : str=False , A_ : Dict=2048 , **A_ : Dict , ) -> Any: """simple docstring""" lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else bos_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else eos_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else sep_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else cls_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token super().__init__( bos_token=A_ , eos_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , add_prefix_space=A_ , model_max_length=A_ , **A_ , ) # Creates a mapping for looking up the IDs of special symbols. lowerCamelCase_ = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): lowerCamelCase_ = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. lowerCamelCase_ = { codepoint: name for name, codepoint in self._special_codepoints.items() } lowerCamelCase_ = UNICODE_VOCAB_SIZE lowerCamelCase_ = len(self._special_codepoints ) @property def a__ ( self : int ) -> int: """simple docstring""" return self._unicode_vocab_size def a__ ( self : List[str] , A_ : str ) -> List[str]: """simple docstring""" return list(A_ ) def a__ ( self : int , A_ : str ) -> int: """simple docstring""" try: return ord(A_ ) except TypeError: raise ValueError(f"""invalid token: '{token}'""" ) def a__ ( self : List[str] , A_ : int ) -> str: """simple docstring""" try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(A_ ) except TypeError: raise ValueError(f"""invalid id: {index}""" ) def a__ ( self : Tuple , A_ : List[Any] ) -> Any: """simple docstring""" return "".join(A_ ) def a__ ( self : List[str] , A_ : List[int] , A_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] lowerCamelCase_ = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def a__ ( self : Dict , A_ : List[int] , A_ : Optional[List[int]] = None , A_ : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) lowerCamelCase_ = [1] + ([0] * len(A_ )) + [1] if token_ids_a is not None: result += ([0] * len(A_ )) + [1] return result def a__ ( self : Dict , A_ : List[int] , A_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] lowerCamelCase_ = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def a__ ( self : List[Any] , A_ : str , A_ : Optional[str] = None ) -> Any: """simple docstring""" return ()
715
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''new-model''' if is_tf_available(): class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = NewModelConfig @require_tf class A( unittest.TestCase ): '''simple docstring''' @slow def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = 'bert-base-cased' lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = 'bert-base-cased' lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForPreTraining.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForCausalLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForCausalLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : int ) -> str: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForMaskedLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForMaskedLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Any ) -> List[Any]: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Tuple ) -> str: """simple docstring""" for model_name in ["bert-base-uncased"]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForSequenceClassification.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Any: """simple docstring""" for model_name in ["bert-base-uncased"]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForQuestionAnswering.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow @require_tensorflow_probability def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForTableQuestionAnswering.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForTableQuestionAnswering.from_pretrained( A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=A_ ) , 14410 ) def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=A_ ) , 14410 ) def a__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = TFAutoModel.from_pretrained('sgugger/funnel-random-tiny' ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = copy.deepcopy(model.config ) lowerCamelCase_ = ['FunnelBaseModel'] lowerCamelCase_ = TFAutoModel.from_config(A_ ) self.assertIsInstance(A_ , A_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(A_ ) lowerCamelCase_ = TFAutoModel.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : Any ) -> Tuple: """simple docstring""" try: AutoConfig.register('new-model' , A_ ) lowerCamelCase_ = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(A_ ): auto_class.register(A_ , A_ ) auto_class.register(A_ , A_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(A_ ): auto_class.register(A_ , A_ ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCamelCase_ = BertModelTester(self ).get_config() lowerCamelCase_ = NewModelConfig(**tiny_config.to_dict() ) lowerCamelCase_ = auto_class.from_config(A_ ) self.assertIsInstance(A_ , A_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(A_ ) lowerCamelCase_ = auto_class.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def a__ ( self : int ) -> int: """simple docstring""" with self.assertRaisesRegex( A_ , 'bert-base is not a local folder and is not a valid model identifier' ): lowerCamelCase_ = TFAutoModel.from_pretrained('bert-base' ) def a__ ( self : Any ) -> Dict: """simple docstring""" with self.assertRaisesRegex( A_ , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowerCamelCase_ = TFAutoModel.from_pretrained(A_ , revision='aaaaaa' ) def a__ ( self : str ) -> int: """simple docstring""" with self.assertRaisesRegex( A_ , 'hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin' , ): lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def a__ ( self : Any ) -> List[Any]: """simple docstring""" with self.assertRaisesRegex(A_ , 'Use `from_pt=True` to load this model' ): lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint lowerCamelCase_ = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) with RequestCounter() as counter: lowerCamelCase_ = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
651
0
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : int ) -> Tuple: """simple docstring""" debug_launcher(test_script.main ) def a__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" debug_launcher(test_ops.main )
716
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : List[str] = { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json", } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''gpt_neox_japanese''' def __init__( self : int , A_ : Dict=32000 , A_ : List[Any]=2560 , A_ : Dict=32 , A_ : Union[str, Any]=32 , A_ : List[Any]=4 , A_ : List[str]="gelu" , A_ : Dict=1.00 , A_ : int=10000 , A_ : Dict=2048 , A_ : Dict=0.02 , A_ : Any=1E-5 , A_ : Union[str, Any]=True , A_ : int=31996 , A_ : List[str]=31999 , A_ : List[Any]=0.1 , A_ : List[Any]=0.0 , **A_ : Tuple , ) -> Dict: """simple docstring""" super().__init__(bos_token_id=A_ , eos_token_id=A_ , **A_ ) lowerCamelCase_ = vocab_size lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_multiple_size lowerCamelCase_ = hidden_act lowerCamelCase_ = rotary_pct lowerCamelCase_ = rotary_emb_base lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = use_cache lowerCamelCase_ = attention_dropout lowerCamelCase_ = hidden_dropout
651
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline lowerCamelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class A( UpperCamelCase ): '''simple docstring''' def __init__( self : Dict , A_ : Dict , A_ : Optional[int] ) -> List[str]: """simple docstring""" super().__init__() self.register_modules(unet=A_ , scheduler=A_ ) @torch.no_grad() def __call__( self : int , A_ : int = 1 , A_ : int = 100 , A_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A_ : Optional[float] = None , A_ : bool = True , ) -> Union[AudioPipelineOutput, Tuple]: """simple docstring""" if audio_length_in_s is None: lowerCamelCase_ = self.unet.config.sample_size / self.unet.config.sample_rate lowerCamelCase_ = audio_length_in_s * self.unet.config.sample_rate lowerCamelCase_ = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f"""{audio_length_in_s} is too small. Make sure it's bigger or equal to""" f""" {3 * down_scale_factor / self.unet.config.sample_rate}.""" ) lowerCamelCase_ = int(A_ ) if sample_size % down_scale_factor != 0: lowerCamelCase_ = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f"""{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled""" f""" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising""" ' process.' ) lowerCamelCase_ = int(A_ ) lowerCamelCase_ = next(iter(self.unet.parameters() ) ).dtype lowerCamelCase_ = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(A_ , A_ ) and len(A_ ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(A_ )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) lowerCamelCase_ = randn_tensor(A_ , generator=A_ , device=self.device , dtype=A_ ) # set step values self.scheduler.set_timesteps(A_ , device=audio.device ) lowerCamelCase_ = self.scheduler.timesteps.to(A_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCamelCase_ = self.unet(A_ , A_ ).sample # 2. compute previous image: x_t -> t_t-1 lowerCamelCase_ = self.scheduler.step(A_ , A_ , A_ ).prev_sample lowerCamelCase_ = audio.clamp(-1 , 1 ).float().cpu().numpy() lowerCamelCase_ = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=A_ )
717
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow lowerCamelCase : List[Any] = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ "text-classification", "language-modeling", "summarization", "token-classification", "question-answering", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) lowerCamelCase : Tuple = logging.getLogger() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument('-f' ) lowerCamelCase_ = parser.parse_args() return args.f def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Dict="eval" ): '''simple docstring''' lowerCamelCase_ = os.path.join(lowercase , f"""{split}_results.json""" ) if os.path.exists(lowercase ): with open(lowercase , 'r' ) as f: return json.load(lowercase ) raise ValueError(f"""can't find {path}""" ) lowerCamelCase : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(A_ , 'argv' , A_ ): run_flax_glue.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) @slow def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A_ , 'argv' , A_ ): run_clm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertLess(result['eval_perplexity'] , 100 ) @slow def a__ ( self : str ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(A_ , 'argv' , A_ ): run_summarization_flax.main() lowerCamelCase_ = get_results(A_ , split='test' ) self.assertGreaterEqual(result['test_rouge1'] , 10 ) self.assertGreaterEqual(result['test_rouge2'] , 2 ) self.assertGreaterEqual(result['test_rougeL'] , 7 ) self.assertGreaterEqual(result['test_rougeLsum'] , 7 ) @slow def a__ ( self : Optional[int] ) -> str: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(A_ , 'argv' , A_ ): run_mlm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertLess(result['eval_perplexity'] , 42 ) @slow def a__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A_ , 'argv' , A_ ): run_ta_mlm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.42 ) @slow def a__ ( self : int ) -> Tuple: """simple docstring""" lowerCamelCase_ = 7 if get_gpu_count() > 1 else 2 lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(A_ , 'argv' , A_ ): run_flax_ner.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) self.assertGreaterEqual(result['eval_f1'] , 0.3 ) @slow def a__ ( self : str ) -> int: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(A_ , 'argv' , A_ ): run_qa.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_f1'] , 30 ) self.assertGreaterEqual(result['eval_exact'] , 30 )
651
0
import requests lowerCamelCase : List[Any] = "https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=" def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['articles'] , 1 ): print(f"""{i}.) {article["title"]}""" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="<Your BBC News API key goes here>")
718
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class A: '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = None UpperCamelCase = None lowerCamelCase : str = namedtuple("CoinsDistribResult", "moves excess") def _SCREAMING_SNAKE_CASE ( lowercase : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(lowercase : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowercase : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowercase ) != count_coins(lowercase ): raise ValueError('The nodes number should be same as the number of coins' ) # Main calculation def get_distrib(lowercase : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowerCamelCase_ , lowerCamelCase_ = get_distrib(node.left ) lowerCamelCase_ , lowerCamelCase_ = get_distrib(node.right ) lowerCamelCase_ = 1 - left_distrib_excess lowerCamelCase_ = 1 - right_distrib_excess lowerCamelCase_ = ( left_distrib_moves + right_distrib_moves + abs(lowercase ) + abs(lowercase ) ) lowerCamelCase_ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowercase , lowercase ) return get_distrib(lowercase )[0] if __name__ == "__main__": import doctest doctest.testmod()
651
0
from ...configuration_utils import PretrainedConfig lowerCamelCase : List[Any] = { "google/tapas-base-finetuned-sqa": ( "https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json" ), "google/tapas-base-finetuned-wtq": ( "https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json" ), "google/tapas-base-finetuned-wikisql-supervised": ( "https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json" ), "google/tapas-base-finetuned-tabfact": ( "https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json" ), } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''tapas''' def __init__( self : int , A_ : str=30522 , A_ : Tuple=768 , A_ : List[str]=12 , A_ : int=12 , A_ : Tuple=3072 , A_ : List[Any]="gelu" , A_ : int=0.1 , A_ : Dict=0.1 , A_ : List[Any]=1024 , A_ : Optional[Any]=[3, 256, 256, 2, 256, 256, 10] , A_ : Optional[Any]=0.02 , A_ : Any=1E-12 , A_ : List[Any]=0 , A_ : Optional[int]=10.0 , A_ : int=0 , A_ : Any=1.0 , A_ : Tuple=None , A_ : List[str]=1.0 , A_ : Optional[Any]=False , A_ : Tuple=None , A_ : Optional[Any]=1.0 , A_ : List[str]=1.0 , A_ : int=False , A_ : Optional[Any]=False , A_ : Union[str, Any]="ratio" , A_ : Any=None , A_ : int=None , A_ : str=64 , A_ : Any=32 , A_ : List[Any]=False , A_ : List[Any]=True , A_ : List[str]=False , A_ : Union[str, Any]=False , A_ : str=True , A_ : Tuple=False , A_ : List[Any]=None , A_ : Any=None , **A_ : Tuple , ) -> int: """simple docstring""" super().__init__(pad_token_id=A_ , **A_ ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = hidden_act lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_sizes lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps # Fine-tuning task hyperparameters lowerCamelCase_ = positive_label_weight lowerCamelCase_ = num_aggregation_labels lowerCamelCase_ = aggregation_loss_weight lowerCamelCase_ = use_answer_as_supervision lowerCamelCase_ = answer_loss_importance lowerCamelCase_ = use_normalized_answer_loss lowerCamelCase_ = huber_loss_delta lowerCamelCase_ = temperature lowerCamelCase_ = aggregation_temperature lowerCamelCase_ = use_gumbel_for_cells lowerCamelCase_ = use_gumbel_for_aggregation lowerCamelCase_ = average_approximation_function lowerCamelCase_ = cell_selection_preference lowerCamelCase_ = answer_loss_cutoff lowerCamelCase_ = max_num_rows lowerCamelCase_ = max_num_columns lowerCamelCase_ = average_logits_per_cell lowerCamelCase_ = select_one_column lowerCamelCase_ = allow_empty_column_selection lowerCamelCase_ = init_cell_selection_weights_to_zero lowerCamelCase_ = reset_position_index_per_cell lowerCamelCase_ = disable_per_token_loss # Aggregation hyperparameters lowerCamelCase_ = aggregation_labels lowerCamelCase_ = no_aggregation_label_index if isinstance(self.aggregation_labels , A_ ): lowerCamelCase_ = {int(A_ ): v for k, v in aggregation_labels.items()}
719
from manim import * class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = Rectangle(height=0.5 , width=0.5 ) lowerCamelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCamelCase_ = Rectangle(height=0.25 , width=0.25 ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(A_ , A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('CPU' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(A_ ) lowerCamelCase_ = [mem.copy() for i in range(4 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('GPU' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) gpu.move_to([-1, -1, 0] ) self.add(A_ ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('Model' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) model.move_to([3, -1.0, 0] ) self.add(A_ ) lowerCamelCase_ = [] lowerCamelCase_ = [] for i, rect in enumerate(A_ ): lowerCamelCase_ = fill.copy().set_fill(A_ , opacity=0.8 ) target.move_to(A_ ) model_arr.append(A_ ) lowerCamelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(A_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(A_ ) self.add(*A_ , *A_ ) lowerCamelCase_ = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(A_ , A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('Disk' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) disk.move_to([-4, -1.25, 0] ) self.add(A_ , A_ ) lowerCamelCase_ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase_ = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(A_ , A_ ) lowerCamelCase_ = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(A_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(A_ ) lowerCamelCase_ = MarkupText( f"""Now watch as an input is passed through the model\nand how the memory is utilized and handled.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ ) ) lowerCamelCase_ = Square(0.3 ) input.set_fill(A_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , A_ , buff=0.5 ) self.play(Write(A_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=A_ , buff=0.02 ) self.play(MoveToTarget(A_ ) ) self.play(FadeOut(A_ ) ) lowerCamelCase_ = Arrow(start=A_ , end=A_ , color=A_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , A_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowerCamelCase_ = MarkupText( f"""As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ , run_time=3 ) ) lowerCamelCase_ = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(A_ ) , Circumscribe(model_arr[0] , color=A_ , **A_ ) , Circumscribe(model_cpu_arr[0] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowerCamelCase_ = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , A_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowerCamelCase_ = AnimationGroup( FadeOut(A_ , run_time=0.5 ) , MoveToTarget(A_ , run_time=0.5 ) , FadeIn(A_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(A_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowerCamelCase_ = 0.7 self.play( Circumscribe(model_arr[i] , **A_ ) , Circumscribe(cpu_left_col_base[i] , **A_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , Circumscribe(model_arr[i + 1] , color=A_ , **A_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=A_ , **A_ ) , Circumscribe(cpu_left_col_base[-1] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowerCamelCase_ = a_c lowerCamelCase_ = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(A_ ) , FadeOut(A_ , run_time=0.5 ) , ) lowerCamelCase_ = MarkupText(f"""Inference on a model too large for GPU memory\nis successfully completed.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ , run_time=3 ) , MoveToTarget(A_ ) ) self.wait()
651
0
import heapq as hq import math from collections.abc import Iterator class A: '''simple docstring''' def __init__( self : List[str] , A_ : Optional[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = str(id_ ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = [] lowerCamelCase_ = {} # {vertex:distance} def __lt__( self : Dict , A_ : Optional[Any] ) -> Optional[int]: """simple docstring""" return self.key < other.key def __repr__( self : Optional[Any] ) -> Dict: """simple docstring""" return self.id def a__ ( self : int , A_ : Optional[Any] ) -> List[str]: """simple docstring""" self.neighbors.append(A_ ) def a__ ( self : Optional[Any] , A_ : Any , A_ : Any ) -> List[Any]: """simple docstring""" lowerCamelCase_ = weight def _SCREAMING_SNAKE_CASE ( lowercase : Dict , lowercase : Tuple , lowercase : Optional[int] , lowercase : Optional[int] ): '''simple docstring''' graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , lowercase ) graph[b - 1].add_edge(graph[a - 1] , lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : list , lowercase : Vertex ): '''simple docstring''' lowerCamelCase_ = [] for u in graph: lowerCamelCase_ = math.inf lowerCamelCase_ = None lowerCamelCase_ = 0 lowerCamelCase_ = graph[:] while q: lowerCamelCase_ = min(lowercase ) q.remove(lowercase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): lowerCamelCase_ = u lowerCamelCase_ = u.edges[v.id] for i in range(1 , len(lowercase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def _SCREAMING_SNAKE_CASE ( lowercase : list , lowercase : Vertex ): '''simple docstring''' for u in graph: lowerCamelCase_ = math.inf lowerCamelCase_ = None lowerCamelCase_ = 0 lowerCamelCase_ = list(lowercase ) hq.heapify(lowercase ) while h: lowerCamelCase_ = hq.heappop(lowercase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): lowerCamelCase_ = u lowerCamelCase_ = u.edges[v.id] hq.heapify(lowercase ) for i in range(1 , len(lowercase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
720
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] ): '''simple docstring''' return EnvironmentCommand() class A( UpperCamelCase ): '''simple docstring''' @staticmethod def a__ ( A_ : ArgumentParser ) -> str: """simple docstring""" lowerCamelCase_ = parser.add_parser('env' ) download_parser.set_defaults(func=A_ ) def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = huggingface_hub.__version__ lowerCamelCase_ = 'not installed' lowerCamelCase_ = 'NA' if is_torch_available(): import torch lowerCamelCase_ = torch.__version__ lowerCamelCase_ = torch.cuda.is_available() lowerCamelCase_ = 'not installed' if is_transformers_available(): import transformers lowerCamelCase_ = transformers.__version__ lowerCamelCase_ = 'not installed' if is_accelerate_available(): import accelerate lowerCamelCase_ = accelerate.__version__ lowerCamelCase_ = 'not installed' if is_xformers_available(): import xformers lowerCamelCase_ = xformers.__version__ lowerCamelCase_ = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': f"""{pt_version} ({pt_cuda_available})""", 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(A_ ) ) return info @staticmethod def a__ ( A_ : Dict ) -> Any: """simple docstring""" return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
651
0
from itertools import product def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : int ): '''simple docstring''' lowerCamelCase_ = sides_number lowerCamelCase_ = max_face_number * dice_number lowerCamelCase_ = [0] * (max_total + 1) lowerCamelCase_ = 1 lowerCamelCase_ = range(lowercase , max_face_number + 1 ) for dice_numbers in product(lowercase , repeat=lowercase ): lowerCamelCase_ = sum(lowercase ) totals_frequencies[total] += 1 return totals_frequencies def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = total_frequency_distribution( sides_number=4 , dice_number=9 ) lowerCamelCase_ = total_frequency_distribution( sides_number=6 , dice_number=6 ) lowerCamelCase_ = 0 lowerCamelCase_ = 9 lowerCamelCase_ = 4 * 9 lowerCamelCase_ = 6 for peter_total in range(lowercase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) lowerCamelCase_ = (4**9) * (6**6) lowerCamelCase_ = peter_wins_count / total_games_number lowerCamelCase_ = round(lowercase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
721
from __future__ import annotations from fractions import Fraction def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : int ): '''simple docstring''' return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = [] lowerCamelCase_ = 11 lowerCamelCase_ = int('1' + '0' * digit_len ) for num in range(lowercase , lowercase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(lowercase , lowercase ): solutions.append(f"""{num}/{den}""" ) den += 1 num += 1 lowerCamelCase_ = 10 return solutions def _SCREAMING_SNAKE_CASE ( lowercase : int = 2 ): '''simple docstring''' lowerCamelCase_ = 1.0 for fraction in fraction_list(lowercase ): lowerCamelCase_ = Fraction(lowercase ) result *= frac.denominator / frac.numerator return int(lowercase ) if __name__ == "__main__": print(solution())
651
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCamelCase : str = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") lowerCamelCase : Union[str, Any] = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) lowerCamelCase : Any = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class A: '''simple docstring''' UpperCamelCase = field( default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'''} , ) UpperCamelCase = field(default=UpperCamelCase , metadata={'''help''': '''A folder containing the training data.'''} ) UpperCamelCase = field(default=UpperCamelCase , metadata={'''help''': '''A folder containing the validation data.'''} ) UpperCamelCase = field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) UpperCamelCase = field(default=32 , metadata={'''help''': '''The size of the square patches to use for masking.'''} ) UpperCamelCase = field( default=0.6 , metadata={'''help''': '''Percentage of patches to mask.'''} , ) UpperCamelCase = field( default=UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCamelCase = field( default=UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def a__ ( self : str ) -> List[Any]: """simple docstring""" lowerCamelCase_ = {} if self.train_dir is not None: lowerCamelCase_ = self.train_dir if self.validation_dir is not None: lowerCamelCase_ = self.validation_dir lowerCamelCase_ = data_files if data_files else None @dataclass class A: '''simple docstring''' UpperCamelCase = field( default=UpperCamelCase , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a ''' '''checkpoint identifier on the hub. ''' '''Don\'t set if you want to train a model from scratch.''' ) } , ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(UpperCamelCase )} , ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase = field( default=UpperCamelCase , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'''} , ) UpperCamelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase = field(default=UpperCamelCase , metadata={'''help''': '''Name or path of preprocessor config.'''} ) UpperCamelCase = field( default=UpperCamelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) UpperCamelCase = field( default=UpperCamelCase , metadata={ '''help''': ( '''The size (resolution) of each image. If not specified, will use `image_size` of the configuration.''' ) } , ) UpperCamelCase = field( default=UpperCamelCase , metadata={ '''help''': ( '''The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.''' ) } , ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''Stride to use for the encoder.'''} , ) class A: '''simple docstring''' def __init__( self : Any , A_ : List[str]=192 , A_ : Optional[Any]=32 , A_ : Tuple=4 , A_ : str=0.6 ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = input_size lowerCamelCase_ = mask_patch_size lowerCamelCase_ = model_patch_size lowerCamelCase_ = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError('Input size must be divisible by mask patch size' ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError('Mask patch size must be divisible by model patch size' ) lowerCamelCase_ = self.input_size // self.mask_patch_size lowerCamelCase_ = self.mask_patch_size // self.model_patch_size lowerCamelCase_ = self.rand_size**2 lowerCamelCase_ = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self : Any ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = np.random.permutation(self.token_count )[: self.mask_count] lowerCamelCase_ = np.zeros(self.token_count , dtype=A_ ) lowerCamelCase_ = 1 lowerCamelCase_ = mask.reshape((self.rand_size, self.rand_size) ) lowerCamelCase_ = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def _SCREAMING_SNAKE_CASE ( lowercase : List[str] ): '''simple docstring''' lowerCamelCase_ = torch.stack([example['pixel_values'] for example in examples] ) lowerCamelCase_ = torch.stack([example['mask'] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mim' , lowercase , lowercase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase_ = training_args.get_process_log_level() logger.setLevel(lowercase ) transformers.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowerCamelCase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. lowerCamelCase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowerCamelCase_ = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowercase ) and data_args.train_val_split > 0.0: lowerCamelCase_ = ds['train'].train_test_split(data_args.train_val_split ) lowerCamelCase_ = split['train'] lowerCamelCase_ = split['test'] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name_or_path: lowerCamelCase_ = AutoConfig.from_pretrained(model_args.config_name_or_path , **lowercase ) elif model_args.model_name_or_path: lowerCamelCase_ = AutoConfig.from_pretrained(model_args.model_name_or_path , **lowercase ) else: lowerCamelCase_ = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(f"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(f"""New config: {config}""" ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(lowercase , 'decoder_type' ): lowerCamelCase_ = 'simmim' # adapt config lowerCamelCase_ = model_args.image_size if model_args.image_size is not None else config.image_size lowerCamelCase_ = model_args.patch_size if model_args.patch_size is not None else config.patch_size lowerCamelCase_ = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { 'image_size': model_args.image_size, 'patch_size': model_args.patch_size, 'encoder_stride': model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: lowerCamelCase_ = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **lowercase ) elif model_args.model_name_or_path: lowerCamelCase_ = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **lowercase ) else: lowerCamelCase_ = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } lowerCamelCase_ = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: lowerCamelCase_ = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) lowerCamelCase_ = AutoModelForMaskedImageModeling.from_config(lowercase ) if training_args.do_train: lowerCamelCase_ = ds['train'].column_names else: lowerCamelCase_ = ds['validation'].column_names if data_args.image_column_name is not None: lowerCamelCase_ = data_args.image_column_name elif "image" in column_names: lowerCamelCase_ = 'image' elif "img" in column_names: lowerCamelCase_ = 'img' else: lowerCamelCase_ = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py lowerCamelCase_ = Compose( [ Lambda(lambda lowercase : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator lowerCamelCase_ = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(lowercase : Any ): lowerCamelCase_ = [transforms(lowercase ) for image in examples[image_column_name]] lowerCamelCase_ = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: lowerCamelCase_ = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(lowercase ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: lowerCamelCase_ = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(lowercase ) # Initialize our trainer lowerCamelCase_ = Trainer( model=lowercase , args=lowercase , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=lowercase , data_collator=lowercase , ) # Training if training_args.do_train: lowerCamelCase_ = None if training_args.resume_from_checkpoint is not None: lowerCamelCase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase_ = last_checkpoint lowerCamelCase_ = trainer.train(resume_from_checkpoint=lowercase ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowerCamelCase_ = trainer.evaluate() trainer.log_metrics('eval' , lowercase ) trainer.save_metrics('eval' , lowercase ) # Write model card and (optionally) push to hub lowerCamelCase_ = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'masked-image-modeling', 'dataset': data_args.dataset_name, 'tags': ['masked-image-modeling'], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase ) else: trainer.create_model_card(**lowercase ) if __name__ == "__main__": main()
700
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase : List[Any] = logging.get_logger(__name__) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : List[Any] , A_ : bool = True , A_ : Dict[str, int] = None , A_ : PILImageResampling = PILImageResampling.BICUBIC , A_ : bool = True , A_ : Dict[str, int] = None , A_ : bool = True , A_ : Union[int, float] = 1 / 255 , A_ : bool = True , A_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , A_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **A_ : Tuple , ) -> None: """simple docstring""" super().__init__(**A_ ) lowerCamelCase_ = size if size is not None else {'shortest_edge': 224} lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) lowerCamelCase_ = crop_size if crop_size is not None else {'height': 224, 'width': 224} lowerCamelCase_ = get_size_dict(A_ , param_name='crop_size' ) lowerCamelCase_ = do_resize lowerCamelCase_ = size lowerCamelCase_ = resample lowerCamelCase_ = do_center_crop lowerCamelCase_ = crop_size lowerCamelCase_ = do_rescale lowerCamelCase_ = rescale_factor lowerCamelCase_ = do_normalize lowerCamelCase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowerCamelCase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def a__ ( self : Optional[Any] , A_ : np.ndarray , A_ : Dict[str, int] , A_ : PILImageResampling = PILImageResampling.BICUBIC , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Tuple , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: lowerCamelCase_ = int((256 / 224) * size['shortest_edge'] ) lowerCamelCase_ = get_resize_output_image_size(A_ , size=A_ , default_to_square=A_ ) lowerCamelCase_ = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( A_ , size=(size_dict['height'], size_dict['width']) , resample=A_ , data_format=A_ , **A_ ) def a__ ( self : Any , A_ : np.ndarray , A_ : Dict[str, int] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Any , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(A_ , size=(size['height'], size['width']) , data_format=A_ , **A_ ) def a__ ( self : Optional[Any] , A_ : np.ndarray , A_ : Union[int, float] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Optional[int] , ) -> np.ndarray: """simple docstring""" return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def a__ ( self : List[str] , A_ : np.ndarray , A_ : Union[float, List[float]] , A_ : Union[float, List[float]] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : str , ) -> np.ndarray: """simple docstring""" return normalize(A_ , mean=A_ , std=A_ , data_format=A_ , **A_ ) def a__ ( self : Optional[int] , A_ : ImageInput , A_ : Optional[bool] = None , A_ : Optional[Dict[str, int]] = None , A_ : PILImageResampling = None , A_ : Optional[bool] = None , A_ : Optional[Dict[str, int]] = None , A_ : Optional[bool] = None , A_ : Optional[float] = None , A_ : Optional[bool] = None , A_ : Optional[Union[float, Iterable[float]]] = None , A_ : Optional[Union[float, Iterable[float]]] = None , A_ : Optional[TensorType] = None , A_ : ChannelDimension = ChannelDimension.FIRST , **A_ : List[Any] , ) -> BatchFeature: """simple docstring""" lowerCamelCase_ = do_resize if do_resize is not None else self.do_resize lowerCamelCase_ = resample if resample is not None else self.resample lowerCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase_ = image_mean if image_mean is not None else self.image_mean lowerCamelCase_ = image_std if image_std is not None else self.image_std lowerCamelCase_ = size if size is not None else self.size lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) lowerCamelCase_ = crop_size if crop_size is not None else self.crop_size lowerCamelCase_ = get_size_dict(A_ , param_name='crop_size' ) lowerCamelCase_ = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCamelCase_ = [to_numpy_array(A_ ) for image in images] if do_resize: lowerCamelCase_ = [self.resize(A_ , A_ , A_ ) for image in images] if do_center_crop: lowerCamelCase_ = [self.center_crop(A_ , A_ ) for image in images] if do_rescale: lowerCamelCase_ = [self.rescale(A_ , A_ ) for image in images] if do_normalize: lowerCamelCase_ = [self.normalize(A_ , A_ , A_ ) for image in images] lowerCamelCase_ = [to_channel_dimension_format(A_ , A_ ) for image in images] lowerCamelCase_ = {'pixel_values': images} return BatchFeature(data=A_ , tensor_type=A_ )
651
0
import math from collections.abc import Callable def _SCREAMING_SNAKE_CASE ( lowercase : Callable[[float], float] , lowercase : float , lowercase : float ): '''simple docstring''' lowerCamelCase_ = xa lowerCamelCase_ = xa while True: if x_n == x_na or function(lowercase ) == function(lowercase ): raise ZeroDivisionError('float division by zero, could not find root' ) lowerCamelCase_ = x_na - ( function(lowercase ) / ((function(lowercase ) - function(lowercase )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na lowerCamelCase_ = x_na lowerCamelCase_ = x_na def _SCREAMING_SNAKE_CASE ( lowercase : float ): '''simple docstring''' return math.pow(lowercase , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
701
import cva import numpy as np class A: '''simple docstring''' def __init__( self : int , A_ : float , A_ : int ) -> List[Any]: """simple docstring""" if k in (0.04, 0.06): lowerCamelCase_ = k lowerCamelCase_ = window_size else: raise ValueError('invalid k value' ) def __str__( self : str ) -> str: """simple docstring""" return str(self.k ) def a__ ( self : Any , A_ : str ) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" lowerCamelCase_ = cva.imread(A_ , 0 ) lowerCamelCase_ , lowerCamelCase_ = img.shape lowerCamelCase_ = [] lowerCamelCase_ = img.copy() lowerCamelCase_ = cva.cvtColor(A_ , cva.COLOR_GRAY2RGB ) lowerCamelCase_ , lowerCamelCase_ = np.gradient(A_ ) lowerCamelCase_ = dx**2 lowerCamelCase_ = dy**2 lowerCamelCase_ = dx * dy lowerCamelCase_ = 0.04 lowerCamelCase_ = self.window_size // 2 for y in range(A_ , h - offset ): for x in range(A_ , w - offset ): lowerCamelCase_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = (wxx * wyy) - (wxy**2) lowerCamelCase_ = wxx + wyy lowerCamelCase_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase : Optional[int] = HarrisCorner(0.04, 3) lowerCamelCase , lowerCamelCase : Optional[int] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
651
0
import math def _SCREAMING_SNAKE_CASE ( lowercase : int = 1_00 ): '''simple docstring''' lowerCamelCase_ = sum(i * i for i in range(1 , n + 1 ) ) lowerCamelCase_ = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
702
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } lowerCamelCase : int = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } lowerCamelCase : Tuple = {"facebook/blenderbot-3B": 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) lowerCamelCase_ = bs[:] lowerCamelCase_ = 0 for b in range(2**8 ): if b not in bs: bs.append(lowercase ) cs.append(2**8 + n ) n += 1 lowerCamelCase_ = [chr(lowercase ) for n in cs] return dict(zip(lowercase , lowercase ) ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = set() lowerCamelCase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase_ = char return pairs class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[Any] , A_ : List[Any] , A_ : List[Any] , A_ : Union[str, Any]="replace" , A_ : Dict="<s>" , A_ : Optional[int]="</s>" , A_ : Optional[Any]="</s>" , A_ : Dict="<s>" , A_ : Dict="<unk>" , A_ : Any="<pad>" , A_ : Dict="<mask>" , A_ : Union[str, Any]=False , **A_ : List[str] , ) -> Tuple: """simple docstring""" lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else bos_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else eos_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else sep_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else cls_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else unk_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token super().__init__( errors=A_ , bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , add_prefix_space=A_ , **A_ , ) with open(A_ , encoding='utf-8' ) as vocab_handle: lowerCamelCase_ = json.load(A_ ) lowerCamelCase_ = {v: k for k, v in self.encoder.items()} lowerCamelCase_ = errors # how to handle errors in decoding lowerCamelCase_ = bytes_to_unicode() lowerCamelCase_ = {v: k for k, v in self.byte_encoder.items()} with open(A_ , encoding='utf-8' ) as merges_handle: lowerCamelCase_ = merges_handle.read().split('\n' )[1:-1] lowerCamelCase_ = [tuple(merge.split() ) for merge in bpe_merges] lowerCamelCase_ = dict(zip(A_ , range(len(A_ ) ) ) ) lowerCamelCase_ = {} lowerCamelCase_ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCamelCase_ = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" return len(self.encoder ) def a__ ( self : List[Any] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def a__ ( self : Tuple , A_ : Tuple ) -> Optional[Any]: """simple docstring""" if token in self.cache: return self.cache[token] lowerCamelCase_ = tuple(A_ ) lowerCamelCase_ = get_pairs(A_ ) if not pairs: return token while True: lowerCamelCase_ = min(A_ , key=lambda A_ : self.bpe_ranks.get(A_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase_ , lowerCamelCase_ = bigram lowerCamelCase_ = [] lowerCamelCase_ = 0 while i < len(A_ ): try: lowerCamelCase_ = word.index(A_ , A_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase_ = j if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase_ = tuple(A_ ) lowerCamelCase_ = new_word if len(A_ ) == 1: break else: lowerCamelCase_ = get_pairs(A_ ) lowerCamelCase_ = ' '.join(A_ ) lowerCamelCase_ = word return word def a__ ( self : str , A_ : List[str] ) -> List[str]: """simple docstring""" lowerCamelCase_ = [] for token in re.findall(self.pat , A_ ): lowerCamelCase_ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A_ ).split(' ' ) ) return bpe_tokens def a__ ( self : Tuple , A_ : str ) -> Optional[Any]: """simple docstring""" return self.encoder.get(A_ , self.encoder.get(self.unk_token ) ) def a__ ( self : Tuple , A_ : Dict ) -> List[Any]: """simple docstring""" return self.decoder.get(A_ ) def a__ ( self : Optional[int] , A_ : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = ''.join(A_ ) lowerCamelCase_ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def a__ ( self : Tuple , A_ : str , A_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(A_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + '\n' ) lowerCamelCase_ = 0 with open(A_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) lowerCamelCase_ = token_index writer.write(' '.join(A_ ) + '\n' ) index += 1 return vocab_file, merge_file def a__ ( self : str , A_ : List[int] , A_ : Optional[List[int]] = None , A_ : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def a__ ( self : int , A_ : List[int] , A_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a__ ( self : str , A_ : Optional[Any] , A_ : Union[str, Any]=False , **A_ : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(A_ ) > 0 and not text[0].isspace()): lowerCamelCase_ = ' ' + text return (text, kwargs) def a__ ( self : List[Any] , A_ : List[int] , A_ : Optional[List[int]] = None ) -> Dict: """simple docstring""" return token_ids_a + [self.eos_token_id] def a__ ( self : Optional[int] , A_ : "Conversation" ) -> List[int]: """simple docstring""" lowerCamelCase_ = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(A_ ) lowerCamelCase_ = ' '.join(A_ ) lowerCamelCase_ = self.encode(A_ ) if len(A_ ) > self.model_max_length: lowerCamelCase_ = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
651
0
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Any ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def a__ ( self : str ) -> Any: """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , ) return model @property def a__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , cross_attention_dim=10 , ) return model @property def a__ ( self : Tuple ) -> int: """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , ) lowerCamelCase_ = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , ) return vqvae, unet @slow def a__ ( self : Dict ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) lowerCamelCase_ = DDPMScheduler() lowerCamelCase_ = AudioDiffusionPipeline(vqvae=A_ , unet=self.dummy_unet , mel=A_ , scheduler=A_ ) lowerCamelCase_ = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) lowerCamelCase_ = torch.Generator(device=A_ ).manual_seed(42 ) lowerCamelCase_ = pipe(generator=A_ , steps=4 ) lowerCamelCase_ = output.audios[0] lowerCamelCase_ = output.images[0] lowerCamelCase_ = torch.Generator(device=A_ ).manual_seed(42 ) lowerCamelCase_ = pipe(generator=A_ , steps=4 , return_dict=A_ ) lowerCamelCase_ = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) lowerCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.frombuffer(image_from_tuple.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 lowerCamelCase_ = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) lowerCamelCase_ = DDIMScheduler() lowerCamelCase_ = self.dummy_vqvae_and_unet lowerCamelCase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=A_ , scheduler=A_ ) lowerCamelCase_ = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) np.random.seed(0 ) lowerCamelCase_ = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) lowerCamelCase_ = torch.Generator(device=A_ ).manual_seed(42 ) lowerCamelCase_ = pipe(raw_audio=A_ , generator=A_ , start_step=5 , steps=10 ) lowerCamelCase_ = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) lowerCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 lowerCamelCase_ = self.dummy_unet_condition lowerCamelCase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=A_ , mel=A_ , scheduler=A_ ) lowerCamelCase_ = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) np.random.seed(0 ) lowerCamelCase_ = torch.rand((1, 1, 10) ) lowerCamelCase_ = pipe(generator=A_ , encoding=A_ ) lowerCamelCase_ = output.images[0] lowerCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : str ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self : str ) -> Any: """simple docstring""" lowerCamelCase_ = torch_device lowerCamelCase_ = DiffusionPipeline.from_pretrained('teticio/audio-diffusion-ddim-256' ) lowerCamelCase_ = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) lowerCamelCase_ = torch.Generator(device=A_ ).manual_seed(42 ) lowerCamelCase_ = pipe(generator=A_ ) lowerCamelCase_ = output.audios[0] lowerCamelCase_ = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] lowerCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
703
lowerCamelCase : Dict = "Alexander Joslin" import operator as op from .stack import Stack def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} lowerCamelCase_ = Stack() lowerCamelCase_ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(lowercase ) elif i == ")": # RULE 4 lowerCamelCase_ = operator_stack.peek() operator_stack.pop() lowerCamelCase_ = operand_stack.peek() operand_stack.pop() lowerCamelCase_ = operand_stack.peek() operand_stack.pop() lowerCamelCase_ = operators[opr](lowercase , lowercase ) operand_stack.push(lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCamelCase : Any = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
651
0
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class A( unittest.TestCase ): '''simple docstring''' UpperCamelCase = MODEL_FOR_CAUSAL_LM_MAPPING UpperCamelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='pt' ) # Using `do_sample=False` to force deterministic output lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ] , ) lowerCamelCase_ = text_generator(['This is a test', 'This is a second test'] ) self.assertEqual( A_ , [ [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ], [ { 'generated_text': ( 'This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy' ' oscope. oscope. FiliFili@@' ) } ], ] , ) lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ , num_return_sequences=2 , return_tensors=A_ ) self.assertEqual( A_ , [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ] , ) lowerCamelCase_ = text_generator.model.config.eos_token_id lowerCamelCase_ = '<pad>' lowerCamelCase_ = text_generator( ['This is a test', 'This is a second test'] , do_sample=A_ , num_return_sequences=2 , batch_size=2 , return_tensors=A_ , ) self.assertEqual( A_ , [ [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ], [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ], ] , ) @require_tf def a__ ( self : Optional[int] ) -> str: """simple docstring""" lowerCamelCase_ = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='tf' ) # Using `do_sample=False` to force deterministic output lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ] , ) lowerCamelCase_ = text_generator(['This is a test', 'This is a second test'] , do_sample=A_ ) self.assertEqual( A_ , [ [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ], [ { 'generated_text': ( 'This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes' ' Cannes 閲閲Cannes Cannes Cannes 攵 please,' ) } ], ] , ) def a__ ( self : Optional[int] , A_ : Dict , A_ : int , A_ : List[str] ) -> str: """simple docstring""" lowerCamelCase_ = TextGenerationPipeline(model=A_ , tokenizer=A_ ) return text_generator, ["This is a test", "Another test"] def a__ ( self : Dict ) -> str: """simple docstring""" lowerCamelCase_ = 'Hello I believe in' lowerCamelCase_ = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) lowerCamelCase_ = text_generator(A_ ) self.assertEqual( A_ , [{'generated_text': 'Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'}] , ) lowerCamelCase_ = text_generator(A_ , stop_sequence=' fe' ) self.assertEqual(A_ , [{'generated_text': 'Hello I believe in fe'}] ) def a__ ( self : Any , A_ : Optional[Any] , A_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = text_generator.model lowerCamelCase_ = text_generator.tokenizer lowerCamelCase_ = text_generator('This is a test' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) lowerCamelCase_ = text_generator('This is a test' , return_full_text=A_ ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) lowerCamelCase_ = pipeline(task='text-generation' , model=A_ , tokenizer=A_ , return_full_text=A_ ) lowerCamelCase_ = text_generator('This is a test' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) lowerCamelCase_ = text_generator('This is a test' , return_full_text=A_ ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) lowerCamelCase_ = text_generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=A_ ) self.assertEqual( A_ , [ [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], ] , ) if text_generator.tokenizer.pad_token is not None: lowerCamelCase_ = text_generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=A_ ) self.assertEqual( A_ , [ [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], ] , ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_full_text=A_ , return_text=A_ ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_full_text=A_ , return_tensors=A_ ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_text=A_ , return_tensors=A_ ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): lowerCamelCase_ = text_generator('' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) else: with self.assertRaises((ValueError, AssertionError) ): lowerCamelCase_ = text_generator('' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. lowerCamelCase_ = ['RwkvForCausalLM', 'XGLMForCausalLM', 'GPTNeoXForCausalLM'] if ( tokenizer.model_max_length < 10000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('This is a test' * 500 , max_new_tokens=20 ) lowerCamelCase_ = text_generator('This is a test' * 500 , handle_long_generation='hole' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(A_ ): text_generator( 'This is a test' * 500 , handle_long_generation='hole' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" import torch # Classic `model_kwargs` lowerCamelCase_ = pipeline( model='hf-internal-testing/tiny-random-bloom' , model_kwargs={'device_map': 'auto', 'torch_dtype': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) @require_torch @require_torch_gpu def a__ ( self : int ) -> str: """simple docstring""" import torch lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device=0 , torch_dtype=torch.floataa ) pipe('This is a test' ) @require_torch @require_accelerate @require_torch_gpu def a__ ( self : List[Any] ) -> Dict: """simple docstring""" import torch lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.floataa ) pipe('This is a test' , do_sample=A_ , top_p=0.5 ) def a__ ( self : Tuple ) -> Dict: """simple docstring""" lowerCamelCase_ = 'Hello world' lowerCamelCase_ = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) if text_generator.model.framework == "tf": lowerCamelCase_ = logging.get_logger('transformers.generation.tf_utils' ) else: lowerCamelCase_ = logging.get_logger('transformers.generation.utils' ) lowerCamelCase_ = 'Both `max_new_tokens`' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_length=10 , max_new_tokens=1 ) self.assertIn(A_ , cl.out ) # The user only sets one -> no warning with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_new_tokens=1 ) self.assertNotIn(A_ , cl.out ) with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_length=10 ) self.assertNotIn(A_ , cl.out )
704
def _SCREAMING_SNAKE_CASE ( lowercase : list[int] , lowercase : list[int] ): '''simple docstring''' lowerCamelCase_ = len(lowercase ) print('The following activities are selected:' ) # The first activity is always selected lowerCamelCase_ = 0 print(lowercase , end=',' ) # Consider rest of the activities for j in range(lowercase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowercase , end=',' ) lowerCamelCase_ = j if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Tuple = [1, 3, 0, 5, 8, 5] lowerCamelCase : int = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
651
0
from math import ceil, sqrt def _SCREAMING_SNAKE_CASE ( lowercase : int = 1_00_00_00 ): '''simple docstring''' lowerCamelCase_ = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: lowerCamelCase_ = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: lowerCamelCase_ = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(F"""{solution() = }""")
705
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A: '''simple docstring''' def __init__( self : Optional[Any] , A_ : Union[str, Any] , A_ : str=13 , A_ : List[Any]=32 , A_ : Tuple=2 , A_ : Dict=3 , A_ : Union[str, Any]=16 , A_ : List[str]=[32, 64, 128] , A_ : Optional[Any]=[1, 2, 1] , A_ : Tuple=[2, 2, 4] , A_ : Dict=2 , A_ : Optional[Any]=2.0 , A_ : List[str]=True , A_ : Dict=0.0 , A_ : List[str]=0.0 , A_ : Optional[int]=0.1 , A_ : str="gelu" , A_ : Optional[Any]=False , A_ : Any=True , A_ : Optional[Any]=0.02 , A_ : Dict=1E-5 , A_ : int=True , A_ : Optional[int]=None , A_ : List[str]=True , A_ : Tuple=10 , A_ : Any=8 , A_ : Dict=["stage1", "stage2"] , A_ : Optional[Any]=[1, 2] , ) -> List[str]: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = embed_dim lowerCamelCase_ = hidden_sizes lowerCamelCase_ = depths lowerCamelCase_ = num_heads lowerCamelCase_ = window_size lowerCamelCase_ = mlp_ratio lowerCamelCase_ = qkv_bias lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = drop_path_rate lowerCamelCase_ = hidden_act lowerCamelCase_ = use_absolute_embeddings lowerCamelCase_ = patch_norm lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = initializer_range lowerCamelCase_ = is_training lowerCamelCase_ = scope lowerCamelCase_ = use_labels lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = encoder_stride lowerCamelCase_ = out_features lowerCamelCase_ = out_indices def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def a__ ( self : List[Any] ) -> Any: """simple docstring""" return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def a__ ( self : Union[str, Any] , A_ : Dict , A_ : int , A_ : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = FocalNetModel(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) lowerCamelCase_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCamelCase_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def a__ ( self : Tuple , A_ : List[str] , A_ : Optional[int] , A_ : Optional[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = FocalNetBackbone(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None lowerCamelCase_ = None lowerCamelCase_ = FocalNetBackbone(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a__ ( self : int , A_ : Optional[Any] , A_ : Optional[int] , A_ : Any ) -> Any: """simple docstring""" lowerCamelCase_ = FocalNetForMaskedImageModeling(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = FocalNetForMaskedImageModeling(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def a__ ( self : Tuple , A_ : List[Any] , A_ : int , A_ : Dict ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.type_sequence_label_size lowerCamelCase_ = FocalNetForImageClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = FocalNetForImageClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self : int ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) UpperCamelCase = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = FocalNetModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=A_ , embed_dim=37 , has_text_modality=A_ ) def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ ( self : Any ) -> Optional[int]: """simple docstring""" return def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*A_ ) def a__ ( self : Dict ) -> int: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A_ ) def a__ ( self : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def a__ ( self : int ) -> int: """simple docstring""" pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" pass def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def a__ ( self : int , A_ : List[Any] , A_ : int , A_ : Dict , A_ : Dict ) -> List[Any]: """simple docstring""" lowerCamelCase_ = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(A_ , A_ ) ) lowerCamelCase_ = outputs.hidden_states lowerCamelCase_ = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(A_ ) , A_ ) # FocalNet has a different seq_length lowerCamelCase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowerCamelCase_ = outputs.reshaped_hidden_states self.assertEqual(len(A_ ) , A_ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = reshaped_hidden_states[0].shape lowerCamelCase_ = ( reshaped_hidden_states[0].view(A_ , A_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , A_ ) def a__ ( self : List[str] ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = 3 lowerCamelCase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCamelCase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCamelCase_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , (padded_height, padded_width) ) @slow def a__ ( self : str ) -> Optional[Any]: """simple docstring""" for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = FocalNetModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def a__ ( self : List[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = _config_zero_init(A_ ) for model_class in self.all_model_classes: lowerCamelCase_ = model_class(config=A_ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class A( unittest.TestCase ): '''simple docstring''' @cached_property def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def a__ ( self : Tuple ) -> Any: """simple docstring""" lowerCamelCase_ = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(A_ ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCamelCase_ = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): lowerCamelCase_ = model(**A_ ) # verify the logits lowerCamelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A_ ) lowerCamelCase_ = torch.tensor([0.2166, -0.4368, 0.2191] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (FocalNetBackbone,) if is_torch_available() else () UpperCamelCase = FocalNetConfig UpperCamelCase = False def a__ ( self : List[str] ) -> Tuple: """simple docstring""" lowerCamelCase_ = FocalNetModelTester(self )
651
0
import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging lowerCamelCase : Optional[int] = logging.get_logger(__name__) class A: '''simple docstring''' UpperCamelCase = None @experimental def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : int , lowercase : Union[str, Any] , lowercase : int , lowercase : List[Any] , lowercase : Optional[int] , lowercase : str ): '''simple docstring''' if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) return _map_with_joblib(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] , lowercase : str , lowercase : List[Any] , lowercase : List[str] , lowercase : Optional[int] , lowercase : List[str] , lowercase : List[Any] ): '''simple docstring''' lowerCamelCase_ = num_proc if num_proc <= len(lowercase ) else len(lowercase ) lowerCamelCase_ = [] # We organize the splits ourselve (contiguous splits) for index in range(lowercase ): lowerCamelCase_ = len(lowercase ) // num_proc lowerCamelCase_ = len(lowercase ) % num_proc lowerCamelCase_ = div * index + min(lowercase , lowercase ) lowerCamelCase_ = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(lowercase ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( f"""Error dividing inputs iterable among processes. """ f"""Total number of objects {len(lowercase )}, """ f"""length: {sum(len(i[1] ) for i in split_kwds )}""" ) logger.info( f"""Spawning {num_proc} processes for {len(lowercase )} objects in slices of {[len(i[1] ) for i in split_kwds]}""" ) lowerCamelCase_ , lowerCamelCase_ = None, None if not disable_tqdm: lowerCamelCase_ , lowerCamelCase_ = (RLock(),), tqdm.set_lock with Pool(lowercase , initargs=lowercase , initializer=lowercase ) as pool: lowerCamelCase_ = pool.map(lowercase , lowercase ) logger.info(f"""Finished {num_proc} processes""" ) lowerCamelCase_ = [obj for proc_res in mapped for obj in proc_res] logger.info(f"""Unpacked {len(lowercase )} objects""" ) return mapped def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : Optional[Any] , lowercase : int , lowercase : List[str] , lowercase : Any , lowercase : str , lowercase : List[str] ): '''simple docstring''' import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=lowercase ): return joblib.Parallel()( joblib.delayed(lowercase )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: lowerCamelCase_ = None
706
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class A( unittest.TestCase ): '''simple docstring''' UpperCamelCase = MODEL_FOR_CAUSAL_LM_MAPPING UpperCamelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='pt' ) # Using `do_sample=False` to force deterministic output lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ] , ) lowerCamelCase_ = text_generator(['This is a test', 'This is a second test'] ) self.assertEqual( A_ , [ [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ], [ { 'generated_text': ( 'This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy' ' oscope. oscope. FiliFili@@' ) } ], ] , ) lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ , num_return_sequences=2 , return_tensors=A_ ) self.assertEqual( A_ , [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ] , ) lowerCamelCase_ = text_generator.model.config.eos_token_id lowerCamelCase_ = '<pad>' lowerCamelCase_ = text_generator( ['This is a test', 'This is a second test'] , do_sample=A_ , num_return_sequences=2 , batch_size=2 , return_tensors=A_ , ) self.assertEqual( A_ , [ [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ], [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ], ] , ) @require_tf def a__ ( self : Optional[int] ) -> str: """simple docstring""" lowerCamelCase_ = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='tf' ) # Using `do_sample=False` to force deterministic output lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ] , ) lowerCamelCase_ = text_generator(['This is a test', 'This is a second test'] , do_sample=A_ ) self.assertEqual( A_ , [ [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ], [ { 'generated_text': ( 'This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes' ' Cannes 閲閲Cannes Cannes Cannes 攵 please,' ) } ], ] , ) def a__ ( self : Optional[int] , A_ : Dict , A_ : int , A_ : List[str] ) -> str: """simple docstring""" lowerCamelCase_ = TextGenerationPipeline(model=A_ , tokenizer=A_ ) return text_generator, ["This is a test", "Another test"] def a__ ( self : Dict ) -> str: """simple docstring""" lowerCamelCase_ = 'Hello I believe in' lowerCamelCase_ = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) lowerCamelCase_ = text_generator(A_ ) self.assertEqual( A_ , [{'generated_text': 'Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'}] , ) lowerCamelCase_ = text_generator(A_ , stop_sequence=' fe' ) self.assertEqual(A_ , [{'generated_text': 'Hello I believe in fe'}] ) def a__ ( self : Any , A_ : Optional[Any] , A_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = text_generator.model lowerCamelCase_ = text_generator.tokenizer lowerCamelCase_ = text_generator('This is a test' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) lowerCamelCase_ = text_generator('This is a test' , return_full_text=A_ ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) lowerCamelCase_ = pipeline(task='text-generation' , model=A_ , tokenizer=A_ , return_full_text=A_ ) lowerCamelCase_ = text_generator('This is a test' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) lowerCamelCase_ = text_generator('This is a test' , return_full_text=A_ ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) lowerCamelCase_ = text_generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=A_ ) self.assertEqual( A_ , [ [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], ] , ) if text_generator.tokenizer.pad_token is not None: lowerCamelCase_ = text_generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=A_ ) self.assertEqual( A_ , [ [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], ] , ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_full_text=A_ , return_text=A_ ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_full_text=A_ , return_tensors=A_ ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_text=A_ , return_tensors=A_ ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): lowerCamelCase_ = text_generator('' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) else: with self.assertRaises((ValueError, AssertionError) ): lowerCamelCase_ = text_generator('' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. lowerCamelCase_ = ['RwkvForCausalLM', 'XGLMForCausalLM', 'GPTNeoXForCausalLM'] if ( tokenizer.model_max_length < 10000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('This is a test' * 500 , max_new_tokens=20 ) lowerCamelCase_ = text_generator('This is a test' * 500 , handle_long_generation='hole' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(A_ ): text_generator( 'This is a test' * 500 , handle_long_generation='hole' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" import torch # Classic `model_kwargs` lowerCamelCase_ = pipeline( model='hf-internal-testing/tiny-random-bloom' , model_kwargs={'device_map': 'auto', 'torch_dtype': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) @require_torch @require_torch_gpu def a__ ( self : int ) -> str: """simple docstring""" import torch lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device=0 , torch_dtype=torch.floataa ) pipe('This is a test' ) @require_torch @require_accelerate @require_torch_gpu def a__ ( self : List[Any] ) -> Dict: """simple docstring""" import torch lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.floataa ) pipe('This is a test' , do_sample=A_ , top_p=0.5 ) def a__ ( self : Tuple ) -> Dict: """simple docstring""" lowerCamelCase_ = 'Hello world' lowerCamelCase_ = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) if text_generator.model.framework == "tf": lowerCamelCase_ = logging.get_logger('transformers.generation.tf_utils' ) else: lowerCamelCase_ = logging.get_logger('transformers.generation.utils' ) lowerCamelCase_ = 'Both `max_new_tokens`' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_length=10 , max_new_tokens=1 ) self.assertIn(A_ , cl.out ) # The user only sets one -> no warning with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_new_tokens=1 ) self.assertNotIn(A_ , cl.out ) with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_length=10 ) self.assertNotIn(A_ , cl.out )
651
0
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor lowerCamelCase : int = logging.get_logger(__name__) class A( UpperCamelCase ): '''simple docstring''' def __init__( self : str , *A_ : Union[str, Any] , **A_ : Union[str, Any] ) -> None: """simple docstring""" warnings.warn( 'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DPTImageProcessor instead.' , A_ , ) super().__init__(*A_ , **A_ )
707
import os import re import shutil import sys import tempfile import unittest import black lowerCamelCase : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowerCamelCase : Tuple = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) ) lowerCamelCase_ = self.diffusers_dir shutil.copy( os.path.join(A_ , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" lowerCamelCase_ = 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def a__ ( self : str , A_ : Optional[Any] , A_ : Optional[int] , A_ : str , A_ : Optional[Any]=None ) -> int: """simple docstring""" lowerCamelCase_ = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowerCamelCase_ = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowerCamelCase_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCamelCase_ = black.format_str(A_ , mode=A_ ) lowerCamelCase_ = os.path.join(self.diffusers_dir , 'new_code.py' ) with open(A_ , 'w' , newline='\n' ) as f: f.write(A_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(A_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=A_ ) with open(A_ , 'r' ) as f: self.assertTrue(f.read() , A_ ) def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" lowerCamelCase_ = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(A_ , A_ ) def a__ ( self : Any ) -> Dict: """simple docstring""" self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , A_ , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , A_ ) , ) # Copy consistency with a really long name lowerCamelCase_ = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('Bert' , A_ , A_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , A_ , overwrite_result=re.sub('DDPM' , 'Test' , A_ ) , )
651
0
from math import sqrt def _SCREAMING_SNAKE_CASE ( lowercase : int = 1_00_00_00 ): '''simple docstring''' lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(lowercase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F"""{solution() = }""")
708
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Optional[int] , A_ : Tuple , A_ : str , A_ : int ) -> Any: """simple docstring""" self.assertEqual(len(A_ ) , len(A_ ) ) for a, b in zip(A_ , A_ ): self.assertAlmostEqual(A_ , A_ , delta=A_ ) def a__ ( self : int ) -> str: """simple docstring""" lowerCamelCase_ = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(A_ ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = None ops.enable_eager_execution_internal() lowerCamelCase_ = tf.config.list_physical_devices('CPU' ) if len(A_ ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) lowerCamelCase_ = tf.config.list_logical_devices(device_type='CPU' ) lowerCamelCase_ = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): lowerCamelCase_ = GradientAccumulator() lowerCamelCase_ = tf.Variable([4.0, 3.0] ) lowerCamelCase_ , lowerCamelCase_ = create_optimizer(5E-5 , 10 , 5 ) lowerCamelCase_ = tf.Variable([0.0, 0.0] , trainable=A_ ) def accumulate_on_replica(A_ : Any ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(A_ : List[Any] , A_ : Tuple ): with strategy.scope(): lowerCamelCase_ = strategy.experimental_local_results(A_ ) local_variables[0].assign(A_ ) local_variables[1].assign(A_ ) strategy.run(A_ , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(A_ ) def _check_local_values(A_ : List[Any] , A_ : str ): lowerCamelCase_ = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , A_ , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , A_ , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
651
0
from __future__ import annotations from fractions import Fraction def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : int ): '''simple docstring''' return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = [] lowerCamelCase_ = 11 lowerCamelCase_ = int('1' + '0' * digit_len ) for num in range(lowercase , lowercase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(lowercase , lowercase ): solutions.append(f"""{num}/{den}""" ) den += 1 num += 1 lowerCamelCase_ = 10 return solutions def _SCREAMING_SNAKE_CASE ( lowercase : int = 2 ): '''simple docstring''' lowerCamelCase_ = 1.0 for fraction in fraction_list(lowercase ): lowerCamelCase_ = Fraction(lowercase ) result *= frac.denominator / frac.numerator return int(lowercase ) if __name__ == "__main__": print(solution())
709
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCamelCase : str = imread(r"digital_image_processing/image_data/lena_small.jpg") lowerCamelCase : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = cn.convert_to_negative(lowercase ) # assert negative_img array for at least one True assert negative_img.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(lowercase , 1_10 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() lowerCamelCase_ = canny.canny(lowercase ) # assert canny array for at least one True assert canny_array.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' assert gg.gaussian_filter(lowercase , 5 , sigma=0.9 ).all() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) lowerCamelCase_ = conv.img_convolve(lowercase , lowercase ).astype(lowercase ) assert res.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' assert med.median_filter(lowercase , 3 ).any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = sob.sobel_filter(lowercase ) assert grad.any() and theta.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = sp.make_sepia(lowercase , 20 ) assert sepia.all() def _SCREAMING_SNAKE_CASE ( lowercase : str = "digital_image_processing/image_data/lena_small.jpg" ): '''simple docstring''' lowerCamelCase_ = bs.Burkes(imread(lowercase , 1 ) , 1_20 ) burkes.process() assert burkes.output_img.any() def _SCREAMING_SNAKE_CASE ( lowercase : str = "digital_image_processing/image_data/lena_small.jpg" , ): '''simple docstring''' lowerCamelCase_ = rs.NearestNeighbour(imread(lowercase , 1 ) , 4_00 , 2_00 ) nn.process() assert nn.output.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. lowerCamelCase_ = imread(lowercase , 0 ) # Test for get_neighbors_pixel function() return not None lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = image[x_coordinate][y_coordinate] lowerCamelCase_ = lbp.get_neighbors_pixel( lowercase , lowercase , lowercase , lowercase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCamelCase_ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): lowerCamelCase_ = lbp.local_binary_value(lowercase , lowercase , lowercase ) assert lbp_image.any()
651
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Union[str, Any] = { "google/bit-50": "https://huggingface.co/google/bit-50/resolve/main/config.json", } class A( UpperCamelCase , UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''bit''' UpperCamelCase = ['''preactivation''', '''bottleneck'''] UpperCamelCase = ['''SAME''', '''VALID'''] def __init__( self : Optional[Any] , A_ : int=3 , A_ : Any=64 , A_ : Optional[int]=[256, 512, 1024, 2048] , A_ : str=[3, 4, 6, 3] , A_ : Any="preactivation" , A_ : Optional[int]="relu" , A_ : List[Any]=None , A_ : Tuple=32 , A_ : List[str]=0.0 , A_ : str=False , A_ : Optional[int]=32 , A_ : List[str]=1 , A_ : List[str]=None , A_ : str=None , **A_ : int , ) -> Union[str, Any]: """simple docstring""" super().__init__(**A_ ) if layer_type not in self.layer_types: raise ValueError(f"""layer_type={layer_type} is not one of {",".join(self.layer_types )}""" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: lowerCamelCase_ = global_padding.upper() else: raise ValueError(f"""Padding strategy {global_padding} not supported""" ) lowerCamelCase_ = num_channels lowerCamelCase_ = embedding_size lowerCamelCase_ = hidden_sizes lowerCamelCase_ = depths lowerCamelCase_ = layer_type lowerCamelCase_ = hidden_act lowerCamelCase_ = global_padding lowerCamelCase_ = num_groups lowerCamelCase_ = drop_path_rate lowerCamelCase_ = embedding_dynamic_padding lowerCamelCase_ = output_stride lowerCamelCase_ = width_factor lowerCamelCase_ = ['stem'] + [f"""stage{idx}""" for idx in range(1 , len(A_ ) + 1 )] lowerCamelCase_ , lowerCamelCase_ = get_aligned_output_features_output_indices( out_features=A_ , out_indices=A_ , stage_names=self.stage_names )
710
class A: '''simple docstring''' def __init__( self : Dict ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = {} def a__ ( self : Union[str, Any] , A_ : List[Any] ) -> int: """simple docstring""" if vertex not in self.adjacency: lowerCamelCase_ = {} self.num_vertices += 1 def a__ ( self : int , A_ : int , A_ : Optional[Any] , A_ : List[str] ) -> Tuple: """simple docstring""" self.add_vertex(A_ ) self.add_vertex(A_ ) if head == tail: return lowerCamelCase_ = weight lowerCamelCase_ = weight def a__ ( self : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.get_edges() for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge edges.remove((tail, head, weight) ) for i in range(len(A_ ) ): lowerCamelCase_ = list(edges[i] ) edges.sort(key=lambda A_ : e[2] ) for i in range(len(A_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowerCamelCase_ = edges[i][2] + 1 for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge lowerCamelCase_ = weight lowerCamelCase_ = weight def __str__( self : str ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = '' for tail in self.adjacency: for head in self.adjacency[tail]: lowerCamelCase_ = self.adjacency[head][tail] string += f"""{head} -> {tail} == {weight}\n""" return string.rstrip('\n' ) def a__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def a__ ( self : List[str] ) -> int: """simple docstring""" return self.adjacency.keys() @staticmethod def a__ ( A_ : Optional[Any]=None , A_ : List[str]=None ) -> List[str]: """simple docstring""" lowerCamelCase_ = Graph() if vertices is None: lowerCamelCase_ = [] if edges is None: lowerCamelCase_ = [] for vertex in vertices: g.add_vertex(A_ ) for edge in edges: g.add_edge(*A_ ) return g class A: '''simple docstring''' def __init__( self : Optional[int] ) -> int: """simple docstring""" lowerCamelCase_ = {} lowerCamelCase_ = {} def __len__( self : Any ) -> List[str]: """simple docstring""" return len(self.parent ) def a__ ( self : List[str] , A_ : Any ) -> Dict: """simple docstring""" if item in self.parent: return self.find(A_ ) lowerCamelCase_ = item lowerCamelCase_ = 0 return item def a__ ( self : List[str] , A_ : Tuple ) -> Optional[int]: """simple docstring""" if item not in self.parent: return self.make_set(A_ ) if item != self.parent[item]: lowerCamelCase_ = self.find(self.parent[item] ) return self.parent[item] def a__ ( self : Any , A_ : int , A_ : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.find(A_ ) lowerCamelCase_ = self.find(A_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowerCamelCase_ = roota return roota if self.rank[roota] < self.rank[roota]: lowerCamelCase_ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowerCamelCase_ = roota return roota return None @staticmethod def a__ ( A_ : int ) -> Tuple: """simple docstring""" lowerCamelCase_ = graph.num_vertices lowerCamelCase_ = Graph.UnionFind() lowerCamelCase_ = [] while num_components > 1: lowerCamelCase_ = {} for vertex in graph.get_vertices(): lowerCamelCase_ = -1 lowerCamelCase_ = graph.get_edges() for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge edges.remove((tail, head, weight) ) for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge lowerCamelCase_ = union_find.find(A_ ) lowerCamelCase_ = union_find.find(A_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowerCamelCase_ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowerCamelCase_ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = cheap_edge[vertex] if union_find.find(A_ ) != union_find.find(A_ ): union_find.union(A_ , A_ ) mst_edges.append(cheap_edge[vertex] ) lowerCamelCase_ = num_components - 1 lowerCamelCase_ = Graph.build(edges=A_ ) return mst
651
0
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : Tuple = "▁" lowerCamelCase : int = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", } lowerCamelCase : Dict = { "vocab_file": { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json" ), }, "spm_file": { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model" ) }, } lowerCamelCase : str = { "facebook/s2t-small-librispeech-asr": 1_024, } lowerCamelCase : Optional[Any] = ["pt", "fr", "ru", "nl", "ro", "it", "es", "de"] lowerCamelCase : Tuple = {"mustc": MUSTC_LANGS} class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = MAX_MODEL_INPUT_SIZES UpperCamelCase = ['''input_ids''', '''attention_mask'''] UpperCamelCase = [] def __init__( self : Tuple , A_ : Optional[int] , A_ : List[Any] , A_ : Tuple="<s>" , A_ : Any="</s>" , A_ : str="<pad>" , A_ : Tuple="<unk>" , A_ : List[Any]=False , A_ : Union[str, Any]=False , A_ : Union[str, Any]=None , A_ : Tuple=None , A_ : Optional[Dict[str, Any]] = None , **A_ : int , ) -> None: """simple docstring""" lowerCamelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A_ , eos_token=A_ , unk_token=A_ , pad_token=A_ , do_upper_case=A_ , do_lower_case=A_ , tgt_lang=A_ , lang_codes=A_ , sp_model_kwargs=self.sp_model_kwargs , **A_ , ) lowerCamelCase_ = do_upper_case lowerCamelCase_ = do_lower_case lowerCamelCase_ = load_json(A_ ) lowerCamelCase_ = {v: k for k, v in self.encoder.items()} lowerCamelCase_ = spm_file lowerCamelCase_ = load_spm(A_ , self.sp_model_kwargs ) if lang_codes is not None: lowerCamelCase_ = lang_codes lowerCamelCase_ = LANGUAGES[lang_codes] lowerCamelCase_ = [f"""<lang:{lang}>""" for lang in self.langs] lowerCamelCase_ = {lang: self.sp_model.PieceToId(f"""<lang:{lang}>""" ) for lang in self.langs} lowerCamelCase_ = self.lang_tokens lowerCamelCase_ = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: lowerCamelCase_ = {} @property def a__ ( self : List[Any] ) -> int: """simple docstring""" return len(self.encoder ) @property def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" return self._tgt_lang @tgt_lang.setter def a__ ( self : Dict , A_ : List[str] ) -> None: """simple docstring""" lowerCamelCase_ = new_tgt_lang self.set_tgt_lang_special_tokens(A_ ) def a__ ( self : Any , A_ : str ) -> None: """simple docstring""" lowerCamelCase_ = self.lang_code_to_id[tgt_lang] lowerCamelCase_ = [lang_code_id] def a__ ( self : Any , A_ : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(A_ , out_type=A_ ) def a__ ( self : Optional[int] , A_ : Optional[Any] ) -> List[Any]: """simple docstring""" return self.encoder.get(A_ , self.encoder[self.unk_token] ) def a__ ( self : Optional[int] , A_ : int ) -> str: """simple docstring""" return self.decoder.get(A_ , self.unk_token ) def a__ ( self : List[str] , A_ : List[str] ) -> str: """simple docstring""" lowerCamelCase_ = [] lowerCamelCase_ = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: lowerCamelCase_ = self.sp_model.decode(A_ ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " lowerCamelCase_ = [] else: current_sub_tokens.append(A_ ) lowerCamelCase_ = self.sp_model.decode(A_ ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def a__ ( self : List[str] , A_ : List[str] , A_ : Union[str, Any]=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def a__ ( self : Dict , A_ : List[int] , A_ : Optional[List[int]] = None , A_ : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) lowerCamelCase_ = [1] * len(self.prefix_tokens ) lowerCamelCase_ = [1] if token_ids_a is None: return prefix_ones + ([0] * len(A_ )) + suffix_ones return prefix_ones + ([0] * len(A_ )) + ([0] * len(A_ )) + suffix_ones def a__ ( self : int ) -> Dict: """simple docstring""" lowerCamelCase_ = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ) -> Dict: """simple docstring""" lowerCamelCase_ = self.__dict__.copy() lowerCamelCase_ = None return state def __setstate__( self : Union[str, Any] , A_ : Dict ) -> None: """simple docstring""" lowerCamelCase_ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCamelCase_ = {} lowerCamelCase_ = load_spm(self.spm_file , self.sp_model_kwargs ) def a__ ( self : Dict , A_ : str , A_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" lowerCamelCase_ = Path(A_ ) assert save_dir.is_dir(), f"""{save_directory} should be a directory""" lowerCamelCase_ = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) lowerCamelCase_ = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , A_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(A_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , A_ ) elif not os.path.isfile(self.spm_file ): with open(A_ , 'wb' ) as fi: lowerCamelCase_ = self.sp_model.serialized_model_proto() fi.write(A_ ) return (str(A_ ), str(A_ )) def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Dict[str, Any] ): '''simple docstring''' lowerCamelCase_ = sentencepiece.SentencePieceProcessor(**lowercase ) spm.Load(str(lowercase ) ) return spm def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' with open(lowercase , 'r' ) as f: return json.load(lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : Dict , lowercase : str ): '''simple docstring''' with open(lowercase , 'w' ) as f: json.dump(lowercase , lowercase , indent=2 )
711
def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 0 for i in range(1 , 10_01 ): total += i**i return str(lowercase )[-10:] if __name__ == "__main__": print(solution())
651
0
import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = LxmertTokenizer UpperCamelCase = LxmertTokenizerFast UpperCamelCase = True UpperCamelCase = True def a__ ( self : Any ) -> List[Any]: """simple docstring""" super().setUp() lowerCamelCase_ = [ '[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def a__ ( self : Any , A_ : str ) -> Any: """simple docstring""" lowerCamelCase_ = 'UNwant\u00E9d,running' lowerCamelCase_ = 'unwanted, running' return input_text, output_text def a__ ( self : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.tokenizer_class(self.vocab_file ) lowerCamelCase_ = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(A_ , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [7, 4, 5, 10, 8, 9] ) def a__ ( self : Optional[Any] ) -> str: """simple docstring""" if not self.test_rust_tokenizer: return lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = 'I was born in 92000, and this is falsé.' lowerCamelCase_ = tokenizer.tokenize(A_ ) lowerCamelCase_ = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = tokenizer.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = tokenizer.encode(A_ ) lowerCamelCase_ = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ )
712
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase : Dict = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = ["ViTFeatureExtractor"] lowerCamelCase : Dict = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys lowerCamelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
651
0
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings lowerCamelCase : int = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = field(default=UpperCamelCase , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) UpperCamelCase = field( default=UpperCamelCase , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) UpperCamelCase = field( default=UpperCamelCase , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) UpperCamelCase = field( default=UpperCamelCase , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def a__ ( self : List[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = super().to_dict() for k, v in d.items(): if isinstance(A_ , A_ ): lowerCamelCase_ = v.to_dict() return d
713
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCamelCase : int = datasets.logging.get_logger(__name__) lowerCamelCase : Optional[Any] = "\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n" lowerCamelCase : Tuple = "\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n" lowerCamelCase : Optional[Any] = "\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting 'keep_singletons=False', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n 'mentions': mentions\n 'muc': MUC metric [Vilain et al, 1995]\n 'bcub': B-cubed [Bagga and Baldwin, 1998]\n 'ceafe': CEAFe [Luo et al., 2005]\n 'lea': LEA [Moosavi and Strube, 2016]\n 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric('coval')\n >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',\n ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',\n ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',\n ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',\n ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',\n ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {'mentions/recall': 1.0,[...] 'conll_score': 100.0}\n" def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Optional[int] , lowercase : Any=False , lowercase : Any=False , lowercase : Dict=True , lowercase : List[str]=False , lowercase : int="dummy_doc" ): '''simple docstring''' lowerCamelCase_ = {doc: key_lines} lowerCamelCase_ = {doc: sys_lines} lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowercase , key_doc_lines[doc] , lowercase ) key_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowercase , sys_doc_lines[doc] , lowercase ) sys_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) if remove_nested: lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowercase , lowercase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowercase , lowercase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowerCamelCase_ = reader.get_mention_assignments(lowercase , lowercase ) lowerCamelCase_ = reader.get_mention_assignments(lowercase , lowercase ) lowerCamelCase_ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( 'Number of removed nested coreferring mentions in the key ' f"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" ) logger.info( 'Number of resulting singleton clusters in the key ' f"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" ) if not keep_singletons: logger.info( f"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """ 'files, respectively' ) return doc_coref_infos def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Tuple , lowercase : List[str] , lowercase : List[Any] , lowercase : List[Any] , lowercase : Tuple , lowercase : str ): '''simple docstring''' lowerCamelCase_ = get_coref_infos(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 for name, metric in metrics: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = evaluator.evaluate_documents(lowercase , lowercase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f"""{name}/recall""": recall, f"""{name}/precision""": precision, f"""{name}/f1""": fa} ) logger.info( name.ljust(10 ) , f"""Recall: {recall * 1_00:.2f}""" , f""" Precision: {precision * 1_00:.2f}""" , f""" F1: {fa * 1_00:.2f}""" , ) if conll_subparts_num == 3: lowerCamelCase_ = (conll / 3) * 1_00 logger.info(f"""CoNLL score: {conll:.2f}""" ) output_scores.update({'conll_score': conll} ) return output_scores def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] ): '''simple docstring''' lowerCamelCase_ = False for line in key_lines: if not line.startswith('#' ): if len(line.split() ) > 6: lowerCamelCase_ = line.split()[5] if not parse_col == "-": lowerCamelCase_ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A( datasets.Metric ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Sequence(datasets.Value('string' ) ), } ) , codebase_urls=['https://github.com/ns-moosavi/coval'] , reference_urls=[ 'https://github.com/ns-moosavi/coval', 'https://www.aclweb.org/anthology/P16-1060', 'http://www.conll.cemantix.org/2012/data.html', ] , ) def a__ ( self : List[str] , A_ : Optional[Any] , A_ : Optional[int] , A_ : int=True , A_ : str=False , A_ : int=False , A_ : Union[str, Any]=False ) -> List[Any]: """simple docstring""" lowerCamelCase_ = [ ('mentions', evaluator.mentions), ('muc', evaluator.muc), ('bcub', evaluator.b_cubed), ('ceafe', evaluator.ceafe), ('lea', evaluator.lea), ] if min_span: lowerCamelCase_ = util.check_gold_parse_annotation(A_ ) if not has_gold_parse: raise NotImplementedError('References should have gold parse annotation to use \'min_span\'.' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowerCamelCase_ = evaluate( key_lines=A_ , sys_lines=A_ , metrics=A_ , NP_only=A_ , remove_nested=A_ , keep_singletons=A_ , min_span=A_ , ) return score
651
0
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''new-model''' if is_tf_available(): class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = NewModelConfig @require_tf class A( unittest.TestCase ): '''simple docstring''' @slow def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = 'bert-base-cased' lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = 'bert-base-cased' lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForPreTraining.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForCausalLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForCausalLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : int ) -> str: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForMaskedLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForMaskedLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Any ) -> List[Any]: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Tuple ) -> str: """simple docstring""" for model_name in ["bert-base-uncased"]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForSequenceClassification.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Any: """simple docstring""" for model_name in ["bert-base-uncased"]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForQuestionAnswering.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow @require_tensorflow_probability def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForTableQuestionAnswering.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForTableQuestionAnswering.from_pretrained( A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=A_ ) , 14410 ) def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=A_ ) , 14410 ) def a__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = TFAutoModel.from_pretrained('sgugger/funnel-random-tiny' ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = copy.deepcopy(model.config ) lowerCamelCase_ = ['FunnelBaseModel'] lowerCamelCase_ = TFAutoModel.from_config(A_ ) self.assertIsInstance(A_ , A_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(A_ ) lowerCamelCase_ = TFAutoModel.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : Any ) -> Tuple: """simple docstring""" try: AutoConfig.register('new-model' , A_ ) lowerCamelCase_ = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(A_ ): auto_class.register(A_ , A_ ) auto_class.register(A_ , A_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(A_ ): auto_class.register(A_ , A_ ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCamelCase_ = BertModelTester(self ).get_config() lowerCamelCase_ = NewModelConfig(**tiny_config.to_dict() ) lowerCamelCase_ = auto_class.from_config(A_ ) self.assertIsInstance(A_ , A_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(A_ ) lowerCamelCase_ = auto_class.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def a__ ( self : int ) -> int: """simple docstring""" with self.assertRaisesRegex( A_ , 'bert-base is not a local folder and is not a valid model identifier' ): lowerCamelCase_ = TFAutoModel.from_pretrained('bert-base' ) def a__ ( self : Any ) -> Dict: """simple docstring""" with self.assertRaisesRegex( A_ , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowerCamelCase_ = TFAutoModel.from_pretrained(A_ , revision='aaaaaa' ) def a__ ( self : str ) -> int: """simple docstring""" with self.assertRaisesRegex( A_ , 'hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin' , ): lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def a__ ( self : Any ) -> List[Any]: """simple docstring""" with self.assertRaisesRegex(A_ , 'Use `from_pt=True` to load this model' ): lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint lowerCamelCase_ = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) with RequestCounter() as counter: lowerCamelCase_ = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
714
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase ) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCamelCase = Features({'''text''': Value('''string''' )} ) UpperCamelCase = Features({} ) UpperCamelCase = "text" @property def a__ ( self : List[Any] ) -> Dict[str, str]: """simple docstring""" return {self.text_column: "text"}
651
0
def _SCREAMING_SNAKE_CASE ( lowercase : str ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = [int(lowercase ) for i in ip_va_address.split('.' ) if i.isdigit()] return len(lowercase ) == 4 and all(0 <= int(lowercase ) <= 2_54 for octet in octets ) if __name__ == "__main__": lowerCamelCase : str = input().strip() lowerCamelCase : List[str] = "valid" if is_ip_va_address_valid(ip) else "invalid" print(F"""{ip} is a {valid_or_invalid} IP v4 address.""")
715
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''new-model''' if is_tf_available(): class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = NewModelConfig @require_tf class A( unittest.TestCase ): '''simple docstring''' @slow def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = 'bert-base-cased' lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = 'bert-base-cased' lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForPreTraining.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForCausalLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForCausalLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : int ) -> str: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForMaskedLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForMaskedLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Any ) -> List[Any]: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Tuple ) -> str: """simple docstring""" for model_name in ["bert-base-uncased"]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForSequenceClassification.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Any: """simple docstring""" for model_name in ["bert-base-uncased"]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForQuestionAnswering.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow @require_tensorflow_probability def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForTableQuestionAnswering.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForTableQuestionAnswering.from_pretrained( A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=A_ ) , 14410 ) def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=A_ ) , 14410 ) def a__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = TFAutoModel.from_pretrained('sgugger/funnel-random-tiny' ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = copy.deepcopy(model.config ) lowerCamelCase_ = ['FunnelBaseModel'] lowerCamelCase_ = TFAutoModel.from_config(A_ ) self.assertIsInstance(A_ , A_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(A_ ) lowerCamelCase_ = TFAutoModel.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : Any ) -> Tuple: """simple docstring""" try: AutoConfig.register('new-model' , A_ ) lowerCamelCase_ = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(A_ ): auto_class.register(A_ , A_ ) auto_class.register(A_ , A_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(A_ ): auto_class.register(A_ , A_ ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCamelCase_ = BertModelTester(self ).get_config() lowerCamelCase_ = NewModelConfig(**tiny_config.to_dict() ) lowerCamelCase_ = auto_class.from_config(A_ ) self.assertIsInstance(A_ , A_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(A_ ) lowerCamelCase_ = auto_class.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def a__ ( self : int ) -> int: """simple docstring""" with self.assertRaisesRegex( A_ , 'bert-base is not a local folder and is not a valid model identifier' ): lowerCamelCase_ = TFAutoModel.from_pretrained('bert-base' ) def a__ ( self : Any ) -> Dict: """simple docstring""" with self.assertRaisesRegex( A_ , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowerCamelCase_ = TFAutoModel.from_pretrained(A_ , revision='aaaaaa' ) def a__ ( self : str ) -> int: """simple docstring""" with self.assertRaisesRegex( A_ , 'hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin' , ): lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def a__ ( self : Any ) -> List[Any]: """simple docstring""" with self.assertRaisesRegex(A_ , 'Use `from_pt=True` to load this model' ): lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint lowerCamelCase_ = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) with RequestCounter() as counter: lowerCamelCase_ = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
651
0
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase : Dict = get_tests_dir("fixtures/test_sentencepiece_with_bytefallback.model") @require_sentencepiece @require_tokenizers class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = GPTSwaTokenizer UpperCamelCase = False UpperCamelCase = True UpperCamelCase = False def a__ ( self : Optional[int] ) -> Any: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ = GPTSwaTokenizer(A_ , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def a__ ( self : str , A_ : Union[str, Any] ) -> str: """simple docstring""" lowerCamelCase_ = 'This is a test' lowerCamelCase_ = 'This is a test' return input_text, output_text def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" lowerCamelCase_ = '<s>' lowerCamelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) , A_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) , A_ ) def a__ ( self : Optional[int] ) -> Any: """simple docstring""" lowerCamelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(A_ ) , 2000 ) def a__ ( self : Optional[int] ) -> Any: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def a__ ( self : List[str] ) -> int: """simple docstring""" lowerCamelCase_ = GPTSwaTokenizer(A_ ) lowerCamelCase_ = tokenizer.tokenize('This is a test' ) self.assertListEqual(A_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [465, 287, 265, 631, 842] ) lowerCamelCase_ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( A_ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on lowerCamelCase_ = tokenizer.convert_tokens_to_ids(A_ ) self.assertListEqual( A_ , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) lowerCamelCase_ = tokenizer.convert_ids_to_tokens(A_ ) # fmt: off self.assertListEqual( A_ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def a__ ( self : List[str] ) -> List[str]: """simple docstring""" lowerCamelCase_ = GPTSwaTokenizer(A_ ) lowerCamelCase_ = ['This is a test', 'I was born in 92000, and this is falsé.'] lowerCamelCase_ = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(A_ , A_ ): self.assertListEqual(tokenizer.encode_fast(A_ ) , A_ ) # Test that decode_fast returns the input text for text, token_ids in zip(A_ , A_ ): self.assertEqual(tokenizer.decode_fast(A_ ) , A_ ) @slow def a__ ( self : Optional[int] ) -> Tuple: """simple docstring""" lowerCamelCase_ = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off lowerCamelCase_ = {'input_ids': [[63423, 5, 6811, 14954, 282, 816, 3821, 63466, 63425, 63462, 18, 63978, 678, 301, 1320, 63423, 63455, 63458, 18, 63982, 4246, 3940, 1901, 47789, 5547, 18994], [19630, 1100, 63446, 1342, 633, 544, 4488, 593, 5102, 2416, 63495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 58593, 22413, 9106, 546, 268, 33213, 63979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [55130, 63450, 924, 63449, 2249, 4062, 1558, 318, 63504, 21498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 63443, 26801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=A_ , model_name='AI-Sweden/gpt-sw3-126m' , sequences=A_ , )
716
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : List[str] = { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json", } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''gpt_neox_japanese''' def __init__( self : int , A_ : Dict=32000 , A_ : List[Any]=2560 , A_ : Dict=32 , A_ : Union[str, Any]=32 , A_ : List[Any]=4 , A_ : List[str]="gelu" , A_ : Dict=1.00 , A_ : int=10000 , A_ : Dict=2048 , A_ : Dict=0.02 , A_ : Any=1E-5 , A_ : Union[str, Any]=True , A_ : int=31996 , A_ : List[str]=31999 , A_ : List[Any]=0.1 , A_ : List[Any]=0.0 , **A_ : Tuple , ) -> Dict: """simple docstring""" super().__init__(bos_token_id=A_ , eos_token_id=A_ , **A_ ) lowerCamelCase_ = vocab_size lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_multiple_size lowerCamelCase_ = hidden_act lowerCamelCase_ = rotary_pct lowerCamelCase_ = rotary_emb_base lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = use_cache lowerCamelCase_ = attention_dropout lowerCamelCase_ = hidden_dropout
651
0
'''simple docstring''' from collections.abc import Sequence def _SCREAMING_SNAKE_CASE ( lowercase : Sequence[float] , lowercase : bool = False ): '''simple docstring''' if not arr: return 0 lowerCamelCase_ = 0 if allow_empty_subarrays else float('-inf' ) lowerCamelCase_ = 0.0 for num in arr: lowerCamelCase_ = max(0 if allow_empty_subarrays else num , curr_sum + num ) lowerCamelCase_ = max(lowercase , lowercase ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() lowerCamelCase : Dict = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F"""{max_subarray_sum(nums) = }""")
717
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow lowerCamelCase : List[Any] = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ "text-classification", "language-modeling", "summarization", "token-classification", "question-answering", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) lowerCamelCase : Tuple = logging.getLogger() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument('-f' ) lowerCamelCase_ = parser.parse_args() return args.f def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Dict="eval" ): '''simple docstring''' lowerCamelCase_ = os.path.join(lowercase , f"""{split}_results.json""" ) if os.path.exists(lowercase ): with open(lowercase , 'r' ) as f: return json.load(lowercase ) raise ValueError(f"""can't find {path}""" ) lowerCamelCase : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(A_ , 'argv' , A_ ): run_flax_glue.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) @slow def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A_ , 'argv' , A_ ): run_clm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertLess(result['eval_perplexity'] , 100 ) @slow def a__ ( self : str ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(A_ , 'argv' , A_ ): run_summarization_flax.main() lowerCamelCase_ = get_results(A_ , split='test' ) self.assertGreaterEqual(result['test_rouge1'] , 10 ) self.assertGreaterEqual(result['test_rouge2'] , 2 ) self.assertGreaterEqual(result['test_rougeL'] , 7 ) self.assertGreaterEqual(result['test_rougeLsum'] , 7 ) @slow def a__ ( self : Optional[int] ) -> str: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(A_ , 'argv' , A_ ): run_mlm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertLess(result['eval_perplexity'] , 42 ) @slow def a__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A_ , 'argv' , A_ ): run_ta_mlm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.42 ) @slow def a__ ( self : int ) -> Tuple: """simple docstring""" lowerCamelCase_ = 7 if get_gpu_count() > 1 else 2 lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(A_ , 'argv' , A_ ): run_flax_ner.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) self.assertGreaterEqual(result['eval_f1'] , 0.3 ) @slow def a__ ( self : str ) -> int: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(A_ , 'argv' , A_ ): run_qa.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_f1'] , 30 ) self.assertGreaterEqual(result['eval_exact'] , 30 )
651
0
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: lowerCamelCase : str = None lowerCamelCase : List[Any] = logging.get_logger(__name__) lowerCamelCase : Tuple = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} lowerCamelCase : Optional[Any] = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json" ), }, } lowerCamelCase : Union[str, Any] = { "facebook/nllb-large-en-ro": 1_024, "facebook/nllb-200-distilled-600M": 1_024, } # fmt: off lowerCamelCase : List[Any] = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = ['''input_ids''', '''attention_mask'''] UpperCamelCase = NllbTokenizer UpperCamelCase = [] UpperCamelCase = [] def __init__( self : Optional[int] , A_ : str=None , A_ : Any=None , A_ : List[str]="<s>" , A_ : List[Any]="</s>" , A_ : List[str]="</s>" , A_ : Optional[int]="<s>" , A_ : Dict="<unk>" , A_ : Dict="<pad>" , A_ : Any="<mask>" , A_ : List[str]=None , A_ : List[Any]=None , A_ : List[Any]=None , A_ : str=False , **A_ : int , ) -> Tuple: """simple docstring""" lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token lowerCamelCase_ = legacy_behaviour super().__init__( vocab_file=A_ , tokenizer_file=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , cls_token=A_ , unk_token=A_ , pad_token=A_ , mask_token=A_ , src_lang=A_ , tgt_lang=A_ , additional_special_tokens=A_ , legacy_behaviour=A_ , **A_ , ) lowerCamelCase_ = vocab_file lowerCamelCase_ = False if not self.vocab_file else True lowerCamelCase_ = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) lowerCamelCase_ = { lang_code: self.convert_tokens_to_ids(A_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCamelCase_ = src_lang if src_lang is not None else 'eng_Latn' lowerCamelCase_ = self.convert_tokens_to_ids(self._src_lang ) lowerCamelCase_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def a__ ( self : Optional[Any] ) -> str: """simple docstring""" return self._src_lang @src_lang.setter def a__ ( self : Dict , A_ : str ) -> None: """simple docstring""" lowerCamelCase_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def a__ ( self : Any , A_ : List[int] , A_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a__ ( self : Optional[int] , A_ : List[int] , A_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a__ ( self : str , A_ : int , A_ : str , A_ : Optional[str] , A_ : Optional[str] , **A_ : int ) -> int: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowerCamelCase_ = src_lang lowerCamelCase_ = self(A_ , add_special_tokens=A_ , return_tensors=A_ , **A_ ) lowerCamelCase_ = self.convert_tokens_to_ids(A_ ) lowerCamelCase_ = tgt_lang_id return inputs def a__ ( self : Tuple , A_ : List[str] , A_ : str = "eng_Latn" , A_ : Optional[List[str]] = None , A_ : str = "fra_Latn" , **A_ : Tuple , ) -> BatchEncoding: """simple docstring""" lowerCamelCase_ = src_lang lowerCamelCase_ = tgt_lang return super().prepare_seqaseq_batch(A_ , A_ , **A_ ) def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def a__ ( self : str ) -> str: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a__ ( self : Optional[int] , A_ : Dict ) -> None: """simple docstring""" lowerCamelCase_ = self.convert_tokens_to_ids(A_ ) if self.legacy_behaviour: lowerCamelCase_ = [] lowerCamelCase_ = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase_ = [self.cur_lang_code] lowerCamelCase_ = [self.eos_token_id] lowerCamelCase_ = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase_ = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase_ = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def a__ ( self : str , A_ : str ) -> None: """simple docstring""" lowerCamelCase_ = self.convert_tokens_to_ids(A_ ) if self.legacy_behaviour: lowerCamelCase_ = [] lowerCamelCase_ = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase_ = [self.cur_lang_code] lowerCamelCase_ = [self.eos_token_id] lowerCamelCase_ = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase_ = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase_ = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def a__ ( self : List[str] , A_ : str , A_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(A_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ): copyfile(self.vocab_file , A_ ) return (out_vocab_file,)
718
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class A: '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = None UpperCamelCase = None lowerCamelCase : str = namedtuple("CoinsDistribResult", "moves excess") def _SCREAMING_SNAKE_CASE ( lowercase : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(lowercase : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowercase : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowercase ) != count_coins(lowercase ): raise ValueError('The nodes number should be same as the number of coins' ) # Main calculation def get_distrib(lowercase : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowerCamelCase_ , lowerCamelCase_ = get_distrib(node.left ) lowerCamelCase_ , lowerCamelCase_ = get_distrib(node.right ) lowerCamelCase_ = 1 - left_distrib_excess lowerCamelCase_ = 1 - right_distrib_excess lowerCamelCase_ = ( left_distrib_moves + right_distrib_moves + abs(lowercase ) + abs(lowercase ) ) lowerCamelCase_ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowercase , lowercase ) return get_distrib(lowercase )[0] if __name__ == "__main__": import doctest doctest.testmod()
651
0
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() lowerCamelCase : Optional[int] = 2 class A: '''simple docstring''' def __init__( self : Tuple , *, # begin keyword-only arguments A_ : Optional[Any]="<s>" , A_ : Tuple="<pad>" , A_ : Any="</s>" , A_ : Optional[int]="<unk>" , A_ : int=None , ) -> List[Any]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = bos, unk, pad, eos lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = {} lowerCamelCase_ = self.add_symbol(A_ ) lowerCamelCase_ = self.add_symbol(A_ ) lowerCamelCase_ = self.add_symbol(A_ ) lowerCamelCase_ = self.add_symbol(A_ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(A_ ) lowerCamelCase_ = len(self.symbols ) def __eq__( self : str , A_ : Dict ) -> str: """simple docstring""" return self.indices == other.indices def __getitem__( self : Tuple , A_ : List[Any] ) -> Any: """simple docstring""" if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : List[str] ) -> Union[str, Any]: """simple docstring""" return len(self.symbols ) def __contains__( self : Any , A_ : Dict ) -> Union[str, Any]: """simple docstring""" return sym in self.indices @classmethod def a__ ( cls : Dict , A_ : List[str] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = cls() d.add_from_file(A_ ) return d def a__ ( self : Any , A_ : Tuple , A_ : Tuple=1 , A_ : Tuple=False ) -> Dict: """simple docstring""" if word in self.indices and not overwrite: lowerCamelCase_ = self.indices[word] lowerCamelCase_ = self.count[idx] + n return idx else: lowerCamelCase_ = len(self.symbols ) lowerCamelCase_ = idx self.symbols.append(A_ ) self.count.append(A_ ) return idx def a__ ( self : int , A_ : List[Any] ) -> Optional[int]: """simple docstring""" return 0 def a__ ( self : Dict , A_ : Optional[Any] ) -> Optional[int]: """simple docstring""" if isinstance(A_ , A_ ): try: with open(A_ , 'r' , encoding='utf-8' ) as fd: self.add_from_file(A_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(A_ ) ) return lowerCamelCase_ = f.readlines() lowerCamelCase_ = self._load_meta(A_ ) for line in lines[indices_start_line:]: try: lowerCamelCase_ , lowerCamelCase_ = line.rstrip().rsplit(' ' , 1 ) if field == "#fairseq:overwrite": lowerCamelCase_ = True lowerCamelCase_ , lowerCamelCase_ = line.rsplit(' ' , 1 ) else: lowerCamelCase_ = False lowerCamelCase_ = int(A_ ) lowerCamelCase_ = line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(A_ ) ) self.add_symbol(A_ , n=A_ , overwrite=A_ ) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' ) def _SCREAMING_SNAKE_CASE ( lowercase : List[str] ): '''simple docstring''' lowerCamelCase_ = dict((re.sub(r'@@$' , '' , lowercase ), v) if k.endswith('@@' ) else (re.sub(r'$' , '</w>' , lowercase ), v) for k, v in d.items() ) lowerCamelCase_ = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f"""{k}</w>"""] lowerCamelCase_ = d[k] # restore return da def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Optional[int] ): '''simple docstring''' if not os.path.exists(lowercase ): raise ValueError(f"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(lowercase , exist_ok=lowercase ) print(f"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models lowerCamelCase_ = os.path.join(lowercase , 'checkpoint.pt' ) if not os.path.isfile(lowercase ): raise ValueError(f"""path to the file {checkpoint_file} does not exist!""" ) lowerCamelCase_ = torch.load(lowercase , map_location='cpu' ) lowerCamelCase_ = chkpt['cfg']['model'] # dicts lowerCamelCase_ = os.path.join(lowercase , 'dict.txt' ) if not os.path.isfile(lowercase ): raise ValueError(f"""path to the file {dict_file} does not exist!""" ) lowerCamelCase_ = Dictionary.load(lowercase ) lowerCamelCase_ = rewrite_dict_keys(src_dict.indices ) lowerCamelCase_ = len(lowercase ) lowerCamelCase_ = os.path.join(lowercase , VOCAB_FILES_NAMES['vocab_file'] ) print(f"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(lowercase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(lowercase , ensure_ascii=lowercase , indent=lowercase ) ) # merges_file (bpecodes) lowerCamelCase_ = os.path.join(lowercase , 'bpecodes' ) if not os.path.isfile(lowercase ): raise ValueError(f"""path to the file {bpecodes_file} does not exist!""" ) lowerCamelCase_ = os.path.join(lowercase , VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(lowercase , lowercase ) # model config lowerCamelCase_ = os.path.join(lowercase , 'config.json' ) lowerCamelCase_ = { 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1e-1_2, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(f"""Generating {biogpt_model_config_file}""" ) with open(lowercase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(lowercase , ensure_ascii=lowercase , indent=lowercase ) ) # tokenizer config lowerCamelCase_ = os.path.join(lowercase , lowercase ) lowerCamelCase_ = { 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 10_24, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(f"""Generating {biogpt_tokenizer_config_file}""" ) with open(lowercase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(lowercase , ensure_ascii=lowercase , indent=lowercase ) ) # model lowerCamelCase_ = chkpt['model'] # remove unneeded keys lowerCamelCase_ = [ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(lowercase , lowercase ) lowerCamelCase_ = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): lowerCamelCase_ = model_state_dict.pop(lowercase ) else: lowerCamelCase_ = model_state_dict.pop(lowercase ) lowerCamelCase_ = BioGptConfig.from_pretrained(lowercase ) lowerCamelCase_ = BioGptForCausalLM(lowercase ) # check that it loads ok model_new.load_state_dict(lowercase ) # save lowerCamelCase_ = os.path.join(lowercase , lowercase ) print(f"""Generating {pytorch_weights_dump_path}""" ) torch.save(lowercase , lowercase ) print('Conversion is done!' ) if __name__ == "__main__": lowerCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--biogpt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCamelCase : str = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
719
from manim import * class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = Rectangle(height=0.5 , width=0.5 ) lowerCamelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCamelCase_ = Rectangle(height=0.25 , width=0.25 ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(A_ , A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('CPU' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(A_ ) lowerCamelCase_ = [mem.copy() for i in range(4 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('GPU' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) gpu.move_to([-1, -1, 0] ) self.add(A_ ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('Model' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) model.move_to([3, -1.0, 0] ) self.add(A_ ) lowerCamelCase_ = [] lowerCamelCase_ = [] for i, rect in enumerate(A_ ): lowerCamelCase_ = fill.copy().set_fill(A_ , opacity=0.8 ) target.move_to(A_ ) model_arr.append(A_ ) lowerCamelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(A_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(A_ ) self.add(*A_ , *A_ ) lowerCamelCase_ = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(A_ , A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('Disk' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) disk.move_to([-4, -1.25, 0] ) self.add(A_ , A_ ) lowerCamelCase_ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase_ = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(A_ , A_ ) lowerCamelCase_ = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(A_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(A_ ) lowerCamelCase_ = MarkupText( f"""Now watch as an input is passed through the model\nand how the memory is utilized and handled.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ ) ) lowerCamelCase_ = Square(0.3 ) input.set_fill(A_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , A_ , buff=0.5 ) self.play(Write(A_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=A_ , buff=0.02 ) self.play(MoveToTarget(A_ ) ) self.play(FadeOut(A_ ) ) lowerCamelCase_ = Arrow(start=A_ , end=A_ , color=A_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , A_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowerCamelCase_ = MarkupText( f"""As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ , run_time=3 ) ) lowerCamelCase_ = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(A_ ) , Circumscribe(model_arr[0] , color=A_ , **A_ ) , Circumscribe(model_cpu_arr[0] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowerCamelCase_ = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , A_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowerCamelCase_ = AnimationGroup( FadeOut(A_ , run_time=0.5 ) , MoveToTarget(A_ , run_time=0.5 ) , FadeIn(A_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(A_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowerCamelCase_ = 0.7 self.play( Circumscribe(model_arr[i] , **A_ ) , Circumscribe(cpu_left_col_base[i] , **A_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , Circumscribe(model_arr[i + 1] , color=A_ , **A_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=A_ , **A_ ) , Circumscribe(cpu_left_col_base[-1] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowerCamelCase_ = a_c lowerCamelCase_ = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(A_ ) , FadeOut(A_ , run_time=0.5 ) , ) lowerCamelCase_ = MarkupText(f"""Inference on a model too large for GPU memory\nis successfully completed.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ , run_time=3 ) , MoveToTarget(A_ ) ) self.wait()
651
0