code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class lowerCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" __lowercase : List[Any] = tempfile.mkdtemp() __lowercase : Optional[int] = 5 # Realm tok __lowercase : Optional[Any] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """test""", """question""", """this""", """is""", """the""", """first""", """second""", """third""", """fourth""", """fifth""", """record""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] __lowercase : Union[str, Any] = os.path.join(self.tmpdirname , """realm_tokenizer""" ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) __lowercase : List[Any] = os.path.join(__lowerCAmelCase , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) __lowercase : Union[str, Any] = os.path.join(self.tmpdirname , """realm_block_records""" ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) def lowerCAmelCase ( self : List[str] ) -> RealmTokenizer: """simple docstring""" return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , """realm_tokenizer""" ) ) def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase : Optional[int] = RealmConfig(num_block_records=self.num_block_records ) return config def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = Dataset.from_dict( { """id""": ["""0""", """1"""], """question""": ["""foo""", """bar"""], """answers""": [["""Foo""", """Bar"""], ["""Bar"""]], } ) return dataset def lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase : str = np.array( [ B"""This is the first record""", B"""This is the second record""", B"""This is the third record""", B"""This is the fourth record""", B"""This is the fifth record""", B"""This is a longer longer longer record""", ] , dtype=__lowerCAmelCase , ) return block_records def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" __lowercase : List[str] = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = self.get_config() __lowercase : str = self.get_dummy_retriever() __lowercase : Optional[Any] = retriever.tokenizer __lowercase : Dict = np.array([0, 3] , dtype="""long""" ) __lowercase : Tuple = tokenizer(["""Test question"""] ).input_ids __lowercase : int = tokenizer( ["""the fourth"""] , add_special_tokens=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ).input_ids __lowercase : Union[str, Any] = config.reader_seq_len __lowercase , __lowercase , __lowercase , __lowercase : int = retriever( __lowerCAmelCase , __lowerCAmelCase , answer_ids=__lowerCAmelCase , max_length=__lowerCAmelCase , return_tensors="""np""" ) self.assertEqual(len(__lowerCAmelCase ) , 2 ) self.assertEqual(len(__lowerCAmelCase ) , 2 ) self.assertEqual(len(__lowerCAmelCase ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["""[CLS]""", """test""", """question""", """[SEP]""", """this""", """is""", """the""", """first""", """record""", """[SEP]"""] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["""[CLS]""", """test""", """question""", """[SEP]""", """this""", """is""", """the""", """fourth""", """record""", """[SEP]"""] , ) def lowerCAmelCase ( self : int ) -> int: """simple docstring""" __lowercase : Dict = self.get_config() __lowercase : Union[str, Any] = self.get_dummy_retriever() __lowercase : Optional[Any] = retriever.tokenizer __lowercase : Tuple = np.array([0, 3, 5] , dtype="""long""" ) __lowercase : int = tokenizer(["""Test question"""] ).input_ids __lowercase : str = tokenizer( ["""the fourth""", """longer longer"""] , add_special_tokens=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ).input_ids __lowercase : Optional[int] = config.reader_seq_len __lowercase , __lowercase , __lowercase , __lowercase : Union[str, Any] = retriever( __lowerCAmelCase , __lowerCAmelCase , answer_ids=__lowerCAmelCase , max_length=__lowerCAmelCase , return_tensors="""np""" ) self.assertEqual([False, True, True] , __lowerCAmelCase ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , __lowerCAmelCase ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , __lowerCAmelCase ) def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase : Dict = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , """realm_block_records""" ) ) # Test local path __lowercase : Tuple = retriever.from_pretrained(os.path.join(self.tmpdirname , """realm_block_records""" ) ) self.assertEqual(retriever.block_records[0] , B"""This is the first record""" ) # Test mocked remote path with patch("""transformers.models.realm.retrieval_realm.hf_hub_download""" ) as mock_hf_hub_download: __lowercase : List[str] = os.path.join( os.path.join(self.tmpdirname , """realm_block_records""" ) , _REALM_BLOCK_RECORDS_FILENAME ) __lowercase : str = RealmRetriever.from_pretrained("""google/realm-cc-news-pretrained-openqa""" ) self.assertEqual(retriever.block_records[0] , B"""This is the first record""" )
710
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(1 ) != 0 ) def snake_case_ ( ): assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
649
0
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : int ) -> List[Any]: """simple docstring""" __lowercase : Any = """ylacombe/bark-small""" __lowercase : Optional[Any] = tempfile.mkdtemp() __lowercase : Optional[Any] = """en_speaker_1""" __lowercase : List[Any] = """This is a test string""" __lowercase : Optional[Any] = """speaker_embeddings_path.json""" __lowercase : str = """speaker_embeddings""" def lowerCAmelCase ( self : Union[str, Any] , **__a : int ) -> Union[str, Any]: """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" __lowercase : Tuple = self.get_tokenizer() __lowercase : Optional[Any] = BarkProcessor(tokenizer=UpperCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) __lowercase : Dict = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" __lowercase : Any = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __lowercase : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __lowercase : Optional[Any] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" __lowercase : List[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __lowercase : Dict = 35 __lowercase : Optional[Any] = 2 __lowercase : int = 8 __lowercase : Any = { """semantic_prompt""": np.ones(UpperCAmelCase_ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset __lowercase : List[str] = processor(text=self.input_string , voice_preset=UpperCAmelCase_ ) __lowercase : str = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(UpperCAmelCase_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file __lowercase : Tuple = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(UpperCAmelCase_ , **UpperCAmelCase_ ) __lowercase : Any = processor(text=self.input_string , voice_preset=UpperCAmelCase_ ) __lowercase : List[str] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(UpperCAmelCase_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub __lowercase : Any = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" __lowercase : str = self.get_tokenizer() __lowercase : Union[str, Any] = BarkProcessor(tokenizer=UpperCAmelCase_ ) __lowercase : Any = processor(text=self.input_string ) __lowercase : Optional[Any] = tokenizer( self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
711
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : int = { '''configuration_funnel''': ['''FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FunnelConfig'''], '''convert_funnel_original_tf_checkpoint_to_pytorch''': [], '''tokenization_funnel''': ['''FunnelTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = ['''FunnelTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = [ '''FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FunnelBaseModel''', '''FunnelForMaskedLM''', '''FunnelForMultipleChoice''', '''FunnelForPreTraining''', '''FunnelForQuestionAnswering''', '''FunnelForSequenceClassification''', '''FunnelForTokenClassification''', '''FunnelModel''', '''FunnelPreTrainedModel''', '''load_tf_weights_in_funnel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ '''TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFFunnelBaseModel''', '''TFFunnelForMaskedLM''', '''TFFunnelForMultipleChoice''', '''TFFunnelForPreTraining''', '''TFFunnelForQuestionAnswering''', '''TFFunnelForSequenceClassification''', '''TFFunnelForTokenClassification''', '''TFFunnelModel''', '''TFFunnelPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
649
0
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case_ ( ): __lowercase : Union[str, Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=_lowercase , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=_lowercase , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=_lowercase ) return parser.parse_args() def snake_case_ ( ): __lowercase : Optional[int] = parse_args() # Import training_script as a module. __lowercase : Optional[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __lowercase : Dict = script_fpath.stem __lowercase : List[str] = importlib.import_module(_lowercase ) # Patch sys.argv __lowercase : Union[str, Any] = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
712
import logging import os import threading import time try: import warnings except ImportError: lowerCamelCase : Any = None try: import msvcrt except ImportError: lowerCamelCase : str = None try: import fcntl except ImportError: lowerCamelCase : Optional[Any] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: lowerCamelCase : Union[str, Any] = OSError # Data # ------------------------------------------------ lowerCamelCase : Tuple = [ '''Timeout''', '''BaseFileLock''', '''WindowsFileLock''', '''UnixFileLock''', '''SoftFileLock''', '''FileLock''', ] lowerCamelCase : Tuple = '''3.0.12''' lowerCamelCase : Any = None def snake_case_ ( ): global _logger __lowercase : List[str] = _logger or logging.getLogger(__name__ ) return _logger class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Any , __a : Any ) -> List[Any]: """simple docstring""" __lowercase : List[str] = lock_file return None def __str__( self : str ) -> Any: """simple docstring""" __lowercase : Any = F"The file lock '{self.lock_file}' could not be acquired." return temp class lowerCAmelCase : '''simple docstring''' def __init__( self : List[Any] , __a : Optional[int] ) -> int: """simple docstring""" __lowercase : Optional[Any] = lock return None def __enter__( self : Dict ) -> Dict: """simple docstring""" return self.lock def __exit__( self : Optional[int] , __a : Dict , __a : Any , __a : Tuple ) -> Optional[Any]: """simple docstring""" self.lock.release() return None class lowerCAmelCase : '''simple docstring''' def __init__( self : Tuple , __a : Any , __a : Dict=-1 , __a : Optional[Any]=None ) -> Any: """simple docstring""" __lowercase : Optional[int] = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long __lowercase : Dict = self.hash_filename_if_too_long(__a , __a ) # The path to the lock file. __lowercase : Optional[Any] = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __lowercase : int = None # The default timeout value. __lowercase : Optional[int] = timeout # We use this lock primarily for the lock counter. __lowercase : Optional[Any] = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __lowercase : Union[str, Any] = 0 return None @property def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return self._lock_file @property def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return self._timeout @timeout.setter def lowerCAmelCase ( self : Tuple , __a : Tuple ) -> Dict: """simple docstring""" __lowercase : Tuple = float(__a ) return None def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" raise NotImplementedError() def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" raise NotImplementedError() @property def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" return self._lock_file_fd is not None def lowerCAmelCase ( self : Any , __a : Optional[Any]=None , __a : Union[str, Any]=0.05 ) -> List[str]: """simple docstring""" if timeout is None: __lowercase : Union[str, Any] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __lowercase : int = id(self ) __lowercase : Optional[Any] = self._lock_file __lowercase : List[str] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"Attempting to acquire lock {lock_id} on {lock_filename}" ) self._acquire() if self.is_locked: logger().debug(F"Lock {lock_id} acquired on {lock_filename}" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"Timeout on acquiring lock {lock_id} on {lock_filename}" ) raise Timeout(self._lock_file ) else: logger().debug( F"Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ..." ) time.sleep(__a ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __lowercase : Optional[int] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def lowerCAmelCase ( self : Union[str, Any] , __a : Optional[Any]=False ) -> Optional[Any]: """simple docstring""" with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __lowercase : Optional[Any] = id(self ) __lowercase : str = self._lock_file logger().debug(F"Attempting to release lock {lock_id} on {lock_filename}" ) self._release() __lowercase : List[str] = 0 logger().debug(F"Lock {lock_id} released on {lock_filename}" ) return None def __enter__( self : Any ) -> Optional[Any]: """simple docstring""" self.acquire() return self def __exit__( self : List[str] , __a : str , __a : int , __a : List[Any] ) -> Tuple: """simple docstring""" self.release() return None def __del__( self : Optional[int] ) -> Optional[int]: """simple docstring""" self.release(force=__a ) return None def lowerCAmelCase ( self : Tuple , __a : str , __a : int ) -> str: """simple docstring""" __lowercase : List[Any] = os.path.basename(__a ) if len(__a ) > max_length and max_length > 0: __lowercase : int = os.path.dirname(__a ) __lowercase : List[str] = str(hash(__a ) ) __lowercase : Optional[Any] = filename[: max_length - len(__a ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(__a , __a ) else: return path class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Union[str, Any] , __a : List[Any] , __a : Optional[int]=-1 , __a : Tuple=None ) -> List[Any]: """simple docstring""" from .file_utils import relative_to_absolute_path super().__init__(__a , timeout=__a , max_filename_length=__a ) __lowercase : Tuple = """\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __lowercase : Tuple = os.open(self._lock_file , __a ) except OSError: pass else: try: msvcrt.locking(__a , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__a ) else: __lowercase : Union[str, Any] = fd return None def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = self._lock_file_fd __lowercase : int = None msvcrt.locking(__a , msvcrt.LK_UNLCK , 1 ) os.close(__a ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : List[str] , __a : Optional[Any] , __a : str=-1 , __a : List[str]=None ) -> Any: """simple docstring""" __lowercase : Dict = os.statvfs(os.path.dirname(__a ) ).f_namemax super().__init__(__a , timeout=__a , max_filename_length=__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase : List[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC __lowercase : List[str] = os.open(self._lock_file , __a ) try: fcntl.flock(__a , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__a ) else: __lowercase : str = fd return None def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Any = self._lock_file_fd __lowercase : List[str] = None fcntl.flock(__a , fcntl.LOCK_UN ) os.close(__a ) return None class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __lowercase : Union[str, Any] = os.open(self._lock_file , __a ) except OSError: pass else: __lowercase : Optional[int] = fd return None def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" os.close(self._lock_file_fd ) __lowercase : int = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None lowerCamelCase : Optional[Any] = None if msvcrt: lowerCamelCase : List[Any] = WindowsFileLock elif fcntl: lowerCamelCase : List[Any] = UnixFileLock else: lowerCamelCase : Union[str, Any] = SoftFileLock if warnings is not None: warnings.warn('''only soft file lock is available''')
649
0
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def snake_case_ ( lowerCAmelCase_ : Tuple ): return np.dot(__UpperCamelCase , __UpperCamelCase ) class lowerCAmelCase : '''simple docstring''' def __init__( self : str , *, __a : Optional[int] = np.inf , __a : str = "linear" , __a : List[str] = 0.0 , ) -> None: """simple docstring""" __lowercase : int = regularization __lowercase : Dict = gamma if kernel == "linear": __lowercase : Union[str, Any] = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError("""rbf kernel requires gamma""" ) if not isinstance(self.gamma , (float, int) ): raise ValueError("""gamma must be float or int""" ) if not self.gamma > 0: raise ValueError("""gamma must be > 0""" ) __lowercase : Dict = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: __lowercase : Any = F"Unknown kernel: {kernel}" raise ValueError(_SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self : Union[str, Any] , __a : Any , __a : str ) -> float: """simple docstring""" return np.dot(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self : Optional[Any] , __a : List[Any] , __a : List[str] ) -> float: """simple docstring""" return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def lowerCAmelCase ( self : Optional[Any] , __a : Union[str, Any] , __a : Union[str, Any] ) -> None: """simple docstring""" __lowercase : str = observations __lowercase : Tuple = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((__lowercase) , ) : Union[str, Any] = np.shape(_SCREAMING_SNAKE_CASE ) def to_minimize(__a : List[Any] ) -> float: __lowercase : Optional[int] = 0 ((__lowercase) , ) : str = np.shape(_SCREAMING_SNAKE_CASE ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(_SCREAMING_SNAKE_CASE ) __lowercase : int = LinearConstraint(_SCREAMING_SNAKE_CASE , 0 , 0 ) __lowercase : Dict = Bounds(0 , self.regularization ) __lowercase : Tuple = minimize( _SCREAMING_SNAKE_CASE , np.ones(_SCREAMING_SNAKE_CASE ) , bounds=_SCREAMING_SNAKE_CASE , constraints=[ly_contraint] ).x __lowercase : Union[str, Any] = l_star # calculating mean offset of separation plane to points __lowercase : str = 0 for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) __lowercase : str = s / n def lowerCAmelCase ( self : Optional[int] , __a : Union[str, Any] ) -> int: """simple docstring""" __lowercase : List[str] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , _SCREAMING_SNAKE_CASE ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
713
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : Tuple = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = '''layoutlmv3''' def __init__( self : Dict , __a : List[str]=50265 , __a : str=768 , __a : List[Any]=12 , __a : List[Any]=12 , __a : List[str]=3072 , __a : Optional[Any]="gelu" , __a : Optional[int]=0.1 , __a : List[Any]=0.1 , __a : Tuple=512 , __a : int=2 , __a : Any=0.02 , __a : Union[str, Any]=1E-5 , __a : List[str]=1 , __a : List[Any]=0 , __a : int=2 , __a : str=1024 , __a : str=128 , __a : List[Any]=128 , __a : Tuple=True , __a : Optional[int]=32 , __a : Any=128 , __a : List[Any]=64 , __a : Tuple=256 , __a : str=True , __a : int=True , __a : Optional[Any]=True , __a : Any=224 , __a : str=3 , __a : List[str]=16 , __a : Union[str, Any]=None , **__a : List[Any] , ) -> List[str]: """simple docstring""" super().__init__( vocab_size=__a , hidden_size=__a , num_hidden_layers=__a , num_attention_heads=__a , intermediate_size=__a , hidden_act=__a , hidden_dropout_prob=__a , attention_probs_dropout_prob=__a , max_position_embeddings=__a , type_vocab_size=__a , initializer_range=__a , layer_norm_eps=__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a , ) __lowercase : int = max_ad_position_embeddings __lowercase : Any = coordinate_size __lowercase : Optional[Any] = shape_size __lowercase : str = has_relative_attention_bias __lowercase : int = rel_pos_bins __lowercase : Union[str, Any] = max_rel_pos __lowercase : str = has_spatial_attention_bias __lowercase : str = rel_ad_pos_bins __lowercase : List[Any] = max_rel_ad_pos __lowercase : Tuple = text_embed __lowercase : int = visual_embed __lowercase : Tuple = input_size __lowercase : Dict = num_channels __lowercase : str = patch_size __lowercase : Optional[int] = classifier_dropout class lowerCAmelCase ( __a ): '''simple docstring''' _A : str = version.parse('''1.12''' ) @property def lowerCAmelCase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def lowerCAmelCase ( self : Union[str, Any] ) -> float: """simple docstring""" return 1E-5 @property def lowerCAmelCase ( self : str ) -> int: """simple docstring""" return 12 def lowerCAmelCase ( self : List[Any] , __a : "ProcessorMixin" , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional["TensorType"] = None , __a : int = 3 , __a : int = 40 , __a : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , """apply_ocr""" , __a ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase : Tuple = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase : Tuple = processor.tokenizer.num_special_tokens_to_add(__a ) __lowercase : Tuple = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__a ) # Generate dummy inputs according to compute batch and sequence __lowercase : Union[str, Any] = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowercase : Tuple = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowercase : Tuple = self._generate_dummy_images(__a , __a , __a , __a ) __lowercase : int = dict( processor( __a , text=__a , boxes=__a , return_tensors=__a , ) ) return inputs
649
0
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger lowerCamelCase : Dict = get_logger(__name__) class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Optional[str] = None ) -> Any: """simple docstring""" __lowercase : Any = ( os.path.join(__a , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) __lowercase : Dict = Extractor def lowerCAmelCase ( self : int , __a : str ) -> str: """simple docstring""" from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" __lowercase : Union[str, Any] = os.path.abspath(__a ) return os.path.join(self.extract_dir , hash_url_to_filename(__a ) ) def lowerCAmelCase ( self : List[Any] , __a : str , __a : bool ) -> bool: """simple docstring""" return force_extract or ( not os.path.isfile(__a ) and not (os.path.isdir(__a ) and os.listdir(__a )) ) def lowerCAmelCase ( self : List[str] , __a : str , __a : bool = False ) -> str: """simple docstring""" __lowercase : Optional[int] = self.extractor.infer_extractor_format(__a ) if not extractor_format: return input_path __lowercase : int = self._get_output_path(__a ) if self._do_extract(__a , __a ): self.extractor.extract(__a , __a , __a ) return output_path class lowerCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' @classmethod @abstractmethod def lowerCAmelCase ( cls : Any , __a : Union[Path, str] , **__a : List[Any] ) -> bool: """simple docstring""" ... @staticmethod @abstractmethod def lowerCAmelCase ( __a : Union[Path, str] , __a : Union[Path, str] ) -> None: """simple docstring""" ... class lowerCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' _A : List[bytes] = [] @staticmethod def lowerCAmelCase ( __a : Union[Path, str] , __a : int ) -> Dict: """simple docstring""" with open(__a , """rb""" ) as f: return f.read(__a ) @classmethod def lowerCAmelCase ( cls : Tuple , __a : Union[Path, str] , __a : bytes = b"" ) -> bool: """simple docstring""" if not magic_number: __lowercase : str = max(len(__a ) for cls_magic_number in cls.magic_numbers ) try: __lowercase : Any = cls.read_magic_number(__a , __a ) except OSError: return False return any(magic_number.startswith(__a ) for cls_magic_number in cls.magic_numbers ) class lowerCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' @classmethod def lowerCAmelCase ( cls : str , __a : Union[Path, str] , **__a : Optional[Any] ) -> bool: """simple docstring""" return tarfile.is_tarfile(__a ) @staticmethod def lowerCAmelCase ( __a : Optional[Any] , __a : int ) -> Union[str, Any]: """simple docstring""" def resolved(__a : str ) -> str: return os.path.realpath(os.path.abspath(__a ) ) def badpath(__a : str , __a : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(__a , __a ) ).startswith(__a ) def badlink(__a : List[Any] , __a : str ) -> bool: # Links are interpreted relative to the directory containing the link __lowercase : str = resolved(os.path.join(__a , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=__a ) __lowercase : Dict = resolved(__a ) for finfo in members: if badpath(finfo.name , __a ): logger.error(F"Extraction of {finfo.name} is blocked (illegal path)" ) elif finfo.issym() and badlink(__a , __a ): logger.error(F"Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}" ) elif finfo.islnk() and badlink(__a , __a ): logger.error(F"Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}" ) else: yield finfo @staticmethod def lowerCAmelCase ( __a : Union[Path, str] , __a : Union[Path, str] ) -> None: """simple docstring""" os.makedirs(__a , exist_ok=__a ) __lowercase : Optional[int] = tarfile.open(__a ) tar_file.extractall(__a , members=TarExtractor.safemembers(__a , __a ) ) tar_file.close() class lowerCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' _A : str = [B'\x1F\x8B'] @staticmethod def lowerCAmelCase ( __a : Union[Path, str] , __a : Union[Path, str] ) -> None: """simple docstring""" with gzip.open(__a , """rb""" ) as gzip_file: with open(__a , """wb""" ) as extracted_file: shutil.copyfileobj(__a , __a ) class lowerCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' _A : Dict = [ B'PK\x03\x04', B'PK\x05\x06', # empty archive B'PK\x07\x08', # spanned archive ] @classmethod def lowerCAmelCase ( cls : List[Any] , __a : Union[Path, str] , __a : bytes = b"" ) -> bool: """simple docstring""" if super().is_extractable(__a , magic_number=__a ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(__a , """rb""" ) as fp: __lowercase : int = _EndRecData(__a ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: __lowercase : List[Any] = fp.read(__a ) # CD is where we expect it to be if len(__a ) == sizeCentralDir: __lowercase : Tuple = struct.unpack(__a , __a ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def lowerCAmelCase ( __a : Union[Path, str] , __a : Union[Path, str] ) -> None: """simple docstring""" os.makedirs(__a , exist_ok=__a ) with zipfile.ZipFile(__a , """r""" ) as zip_file: zip_file.extractall(__a ) zip_file.close() class lowerCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' _A : List[Any] = [B'\xFD\x37\x7A\x58\x5A\x00'] @staticmethod def lowerCAmelCase ( __a : Union[Path, str] , __a : Union[Path, str] ) -> None: """simple docstring""" with lzma.open(__a ) as compressed_file: with open(__a , """wb""" ) as extracted_file: shutil.copyfileobj(__a , __a ) class lowerCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' _A : List[str] = [B'Rar!\x1a\x07\x00', B'Rar!\x1a\x07\x01\x00'] # RAR_ID # RAR5_ID @staticmethod def lowerCAmelCase ( __a : Union[Path, str] , __a : Union[Path, str] ) -> None: """simple docstring""" if not config.RARFILE_AVAILABLE: raise ImportError("""Please pip install rarfile""" ) import rarfile os.makedirs(__a , exist_ok=__a ) __lowercase : Dict = rarfile.RarFile(__a ) rf.extractall(__a ) rf.close() class lowerCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' _A : List[str] = [B'\x28\xb5\x2F\xFD'] @staticmethod def lowerCAmelCase ( __a : Union[Path, str] , __a : Union[Path, str] ) -> None: """simple docstring""" if not config.ZSTANDARD_AVAILABLE: raise ImportError("""Please pip install zstandard""" ) import zstandard as zstd __lowercase : int = zstd.ZstdDecompressor() with open(__a , """rb""" ) as ifh, open(__a , """wb""" ) as ofh: dctx.copy_stream(__a , __a ) class lowerCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' _A : int = [B'\x42\x5A\x68'] @staticmethod def lowerCAmelCase ( __a : Union[Path, str] , __a : Union[Path, str] ) -> None: """simple docstring""" with bza.open(__a , """rb""" ) as compressed_file: with open(__a , """wb""" ) as extracted_file: shutil.copyfileobj(__a , __a ) class lowerCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' _A : int = [B'\x37\x7A\xBC\xAF\x27\x1C'] @staticmethod def lowerCAmelCase ( __a : Union[Path, str] , __a : Union[Path, str] ) -> None: """simple docstring""" if not config.PY7ZR_AVAILABLE: raise ImportError("""Please pip install py7zr""" ) import pyazr os.makedirs(__a , exist_ok=__a ) with pyazr.SevenZipFile(__a , """r""" ) as archive: archive.extractall(__a ) class lowerCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' _A : Optional[int] = [B'\x04\x22\x4D\x18'] @staticmethod def lowerCAmelCase ( __a : Union[Path, str] , __a : Union[Path, str] ) -> None: """simple docstring""" if not config.LZ4_AVAILABLE: raise ImportError("""Please pip install lz4""" ) import lza.frame with lza.frame.open(__a , """rb""" ) as compressed_file: with open(__a , """wb""" ) as extracted_file: shutil.copyfileobj(__a , __a ) class lowerCAmelCase : '''simple docstring''' _A : Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def lowerCAmelCase ( cls : List[Any] ) -> Optional[int]: """simple docstring""" return max( len(__a ) for extractor in cls.extractors.values() if issubclass(__a , __a ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def lowerCAmelCase ( __a : Union[Path, str] , __a : int ) -> Tuple: """simple docstring""" try: return MagicNumberBaseExtractor.read_magic_number(__a , magic_number_length=__a ) except OSError: return b"" @classmethod def lowerCAmelCase ( cls : str , __a : Union[Path, str] , __a : bool = False ) -> bool: """simple docstring""" warnings.warn( """Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'infer_extractor_format' instead.""" , category=__a , ) __lowercase : Union[str, Any] = cls.infer_extractor_format(__a ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def lowerCAmelCase ( cls : Any , __a : Union[Path, str] ) -> str: # <Added version="2.4.0"/> """simple docstring""" __lowercase : Dict = cls._get_magic_number_max_length() __lowercase : Optional[Any] = cls._read_magic_number(__a , __a ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(__a , magic_number=__a ): return extractor_format @classmethod def lowerCAmelCase ( cls : List[Any] , __a : Union[Path, str] , __a : Union[Path, str] , __a : Optional[str] = None , __a : Optional[BaseExtractor] = "deprecated" , ) -> None: """simple docstring""" os.makedirs(os.path.dirname(__a ) , exist_ok=__a ) # Prevent parallel extractions __lowercase : Dict = str(Path(__a ).with_suffix(""".lock""" ) ) with FileLock(__a ): shutil.rmtree(__a , ignore_errors=__a ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(__a , __a ): # passed as positional arg warnings.warn( """Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'extractor_format' instead.""" , category=__a , ) __lowercase : Any = extractor if extractor != """deprecated""" else extractor_format else: __lowercase : Any = cls.extractors[extractor_format] return extractor.extract(__a , __a ) else: warnings.warn( """Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an """ """exception in 3.0.0.""" , category=__a , ) for extractor in cls.extractors.values(): if extractor.is_extractable(__a ): return extractor.extract(__a , __a )
714
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowerCamelCase : List[Any] = logging.get_logger(__name__) class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , __a : str = None , __a : uuid.UUID = None , __a : Any=None , __a : List[Any]=None ) -> List[Any]: """simple docstring""" if not conversation_id: __lowercase : Any = uuid.uuida() if past_user_inputs is None: __lowercase : Dict = [] if generated_responses is None: __lowercase : Dict = [] __lowercase : uuid.UUID = conversation_id __lowercase : List[str] = past_user_inputs __lowercase : List[str] = generated_responses __lowercase : Optional[str] = text def __eq__( self : Dict , __a : Dict ) -> Any: """simple docstring""" if not isinstance(__a , __a ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCAmelCase ( self : List[str] , __a : str , __a : bool = False ) -> Dict: """simple docstring""" if self.new_user_input: if overwrite: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten " F"with: \"{text}\"." ) __lowercase : Optional[int] = text else: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" new input " F"ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input" ) else: __lowercase : Dict = text def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __lowercase : Dict = None def lowerCAmelCase ( self : Optional[int] , __a : str ) -> List[Any]: """simple docstring""" self.generated_responses.append(__a ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : int ) -> str: """simple docstring""" __lowercase : Optional[int] = F"Conversation id: {self.uuid} \n" for is_user, text in self.iter_texts(): __lowercase : Optional[Any] = """user""" if is_user else """bot""" output += F"{name} >> {text} \n" return output @add_end_docstrings( __a , r''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''' , ) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Any , *__a : int , **__a : str ) -> Union[str, Any]: """simple docstring""" super().__init__(*__a , **__a ) if self.tokenizer.pad_token_id is None: __lowercase : List[Any] = self.tokenizer.eos_token def lowerCAmelCase ( self : Union[str, Any] , __a : int=None , __a : Tuple=None , __a : Any=None , **__a : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = {} __lowercase : Tuple = {} __lowercase : List[str] = {} if min_length_for_response is not None: __lowercase : Dict = min_length_for_response if minimum_tokens is not None: __lowercase : Union[str, Any] = minimum_tokens if "max_length" in generate_kwargs: __lowercase : Union[str, Any] = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __lowercase : Union[str, Any] = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(__a ) return preprocess_params, forward_params, postprocess_params def __call__( self : Optional[int] , __a : Union[Conversation, List[Conversation]] , __a : Dict=0 , **__a : List[Any] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = super().__call__(__a , num_workers=__a , **__a ) if isinstance(__a , __a ) and len(__a ) == 1: return outputs[0] return outputs def lowerCAmelCase ( self : Union[str, Any] , __a : Conversation , __a : Tuple=32 ) -> Dict[str, Any]: """simple docstring""" if not isinstance(__a , __a ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( F"Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. " """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer , """_build_conversation_input_ids""" ): __lowercase : List[Any] = self.tokenizer._build_conversation_input_ids(__a ) else: # If the tokenizer cannot handle conversations, we default to only the old version __lowercase : Tuple = self._legacy_parse_and_tokenize(__a ) if self.framework == "pt": __lowercase : List[Any] = torch.LongTensor([input_ids] ) elif self.framework == "tf": __lowercase : List[str] = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCAmelCase ( self : Any , __a : Dict , __a : Any=10 , **__a : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = generate_kwargs.get("""max_length""" , self.model.config.max_length ) __lowercase : List[Any] = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(F"Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})" ) __lowercase : Any = max_length - minimum_tokens __lowercase : int = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: __lowercase : Dict = model_inputs["""attention_mask"""][:, -trim:] __lowercase : Union[str, Any] = model_inputs.pop("""conversation""" ) __lowercase : Tuple = max_length __lowercase : int = self.model.generate(**__a , **__a ) if self.model.config.is_encoder_decoder: __lowercase : Optional[int] = 1 else: __lowercase : str = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCAmelCase ( self : int , __a : Tuple , __a : List[Any]=True ) -> List[str]: """simple docstring""" __lowercase : int = model_outputs["""output_ids"""] __lowercase : Union[str, Any] = self.tokenizer.decode( output_ids[0] , skip_special_tokens=__a , clean_up_tokenization_spaces=__a , ) __lowercase : List[str] = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(__a ) return conversation def lowerCAmelCase ( self : int , __a : Conversation ) -> Dict: """simple docstring""" __lowercase : Optional[int] = self.tokenizer.eos_token_id __lowercase : Optional[Any] = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(__a , add_special_tokens=__a ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(__a , add_special_tokens=__a ) ) if len(__a ) > self.tokenizer.model_max_length: __lowercase : List[Any] = input_ids[-self.tokenizer.model_max_length :] return input_ids
649
0
lowerCamelCase : Optional[Any] = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowerCamelCase : List[Any] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowerCamelCase : Tuple = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
715
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__a , """tf_padding""" ) ) self.parent.assertTrue(hasattr(__a , """depth_multiplier""" ) ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Tuple , __a : str=13 , __a : Dict=3 , __a : List[Any]=32 , __a : Any=0.25 , __a : Any=8 , __a : Optional[int]=8 , __a : Optional[int]=6 , __a : Dict=32 , __a : Tuple=True , __a : List[Any]=True , __a : Optional[int]=True , __a : Tuple="relu6" , __a : Optional[Any]=1280 , __a : str=0.1 , __a : str=0.02 , __a : Optional[Any]=True , __a : Tuple=True , __a : Dict=10 , __a : Optional[Any]=None , ) -> Any: """simple docstring""" __lowercase : List[str] = parent __lowercase : Tuple = batch_size __lowercase : Dict = num_channels __lowercase : Optional[int] = image_size __lowercase : int = depth_multiplier __lowercase : str = depth_divisible_by __lowercase : int = min_depth __lowercase : Tuple = expand_ratio __lowercase : Optional[int] = tf_padding __lowercase : Dict = output_stride __lowercase : Dict = first_layer_is_expansion __lowercase : Optional[Any] = finegrained_output __lowercase : str = hidden_act __lowercase : Union[str, Any] = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) __lowercase : Optional[int] = classifier_dropout_prob __lowercase : int = use_labels __lowercase : Optional[int] = is_training __lowercase : Dict = num_labels __lowercase : Tuple = initializer_range __lowercase : Optional[Any] = scope def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : List[Any] = None __lowercase : Optional[Any] = None if self.use_labels: __lowercase : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __lowercase : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowercase : List[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : Tuple , __a : Dict , __a : Tuple , __a : Optional[int] , __a : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[int] = MobileNetVaModel(config=__a ) model.to(__a ) model.eval() __lowercase : Tuple = model(__a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def lowerCAmelCase ( self : List[str] , __a : Optional[int] , __a : List[str] , __a : str , __a : Optional[int] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = self.num_labels __lowercase : Dict = MobileNetVaForImageClassification(__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : int , __a : List[str] , __a : Tuple , __a : Any , __a : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : int = self.num_labels __lowercase : List[Any] = MobileNetVaForSemanticSegmentation(__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __lowercase : str = model(__a , labels=__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase : List[str] = config_and_inputs __lowercase : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Tuple = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) _A : Optional[Any] = ( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) _A : Tuple = False _A : List[str] = False _A : List[str] = False _A : Optional[int] = False def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = MobileNetVaModelTester(self ) __lowercase : int = MobileNetVaConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV2 does not use inputs_embeds""" ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not support input and output embeddings""" ) def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not output attentions""" ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[Any] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : int = [*signature.parameters.keys()] __lowercase : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" def check_hidden_states_output(__a : List[Any] , __a : Tuple , __a : List[str] ): __lowercase : Optional[Any] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : List[Any] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Tuple = outputs.hidden_states __lowercase : str = 16 self.assertEqual(len(__a ) , __a ) __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Any = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase : Union[str, Any] = True check_hidden_states_output(__a , __a , __a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : Optional[int] = MobileNetVaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def snake_case_ ( ): __lowercase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v2_1.0_224""" ) if is_vision_available() else None ) @slow def lowerCAmelCase ( self : str ) -> int: """simple docstring""" __lowercase : Tuple = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v2_1.0_224""" ).to(__a ) __lowercase : str = self.default_image_processor __lowercase : Tuple = prepare_img() __lowercase : Tuple = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : str = model(**__a ) # verify the logits __lowercase : Union[str, Any] = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , __a ) __lowercase : str = torch.tensor([0.2445, -1.1993, 0.1905] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : int = MobileNetVaForSemanticSegmentation.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __lowercase : Dict = model.to(__a ) __lowercase : Tuple = MobileNetVaImageProcessor.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __lowercase : List[str] = prepare_img() __lowercase : Optional[int] = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : Union[str, Any] = model(**__a ) __lowercase : Any = outputs.logits # verify the logits __lowercase : Dict = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , __a ) __lowercase : str = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=__a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __a , atol=1E-4 ) )
649
0
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 lowerCamelCase : Any = get_tests_dir('''fixtures''') class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" __lowercase : List[Any] = mock.Mock() __lowercase : Any = 500 __lowercase : Any = {} __lowercase : Optional[Any] = HTTPError __lowercase : str = {} # Download this model to make sure it's in the cache. __lowercase : Optional[Any] = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=A_ ) as mock_head: __lowercase : Union[str, Any] = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" __lowercase : str = ViTImageProcessor.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json""" ) def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" with self.assertRaises(A_ ): # config is in subfolder, the following should not work without specifying the subfolder __lowercase : List[str] = AutoImageProcessor.from_pretrained("""hf-internal-testing/stable-diffusion-all-variants""" ) __lowercase : Any = AutoImageProcessor.from_pretrained( """hf-internal-testing/stable-diffusion-all-variants""" , subfolder="""feature_extractor""" ) self.assertIsNotNone(A_ ) @is_staging_test class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def lowerCAmelCase ( cls : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase : Any = TOKEN HfFolder.save_token(A_ ) @classmethod def lowerCAmelCase ( cls : Union[str, Any] ) -> Optional[Any]: """simple docstring""" try: delete_repo(token=cls._token , repo_id="""test-image-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-image-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-image-processor""" ) except HTTPError: pass def lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = ViTImageProcessor.from_pretrained(A_ ) image_processor.push_to_hub("""test-image-processor""" , use_auth_token=self._token ) __lowercase : int = ViTImageProcessor.from_pretrained(F"{USER}/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(A_ , getattr(A_ , A_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( A_ , repo_id="""test-image-processor""" , push_to_hub=A_ , use_auth_token=self._token ) __lowercase : Union[str, Any] = ViTImageProcessor.from_pretrained(F"{USER}/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(A_ , getattr(A_ , A_ ) ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = ViTImageProcessor.from_pretrained(A_ ) image_processor.push_to_hub("""valid_org/test-image-processor""" , use_auth_token=self._token ) __lowercase : Optional[int] = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(A_ , getattr(A_ , A_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( A_ , repo_id="""valid_org/test-image-processor-org""" , push_to_hub=A_ , use_auth_token=self._token ) __lowercase : Any = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor-org""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(A_ , getattr(A_ , A_ ) ) def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" CustomImageProcessor.register_for_auto_class() __lowercase : str = CustomImageProcessor.from_pretrained(A_ ) image_processor.push_to_hub("""test-dynamic-image-processor""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"""AutoImageProcessor""": """custom_image_processing.CustomImageProcessor"""} , ) __lowercase : Any = AutoImageProcessor.from_pretrained( F"{USER}/test-dynamic-image-processor" , trust_remote_code=A_ ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , """CustomImageProcessor""" )
716
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def snake_case_ ( lowerCAmelCase_ : bool = True , *lowerCAmelCase_ : int , **lowerCAmelCase_ : List[str] ): if not is_tqdm_available(): raise ImportError("""Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.""" ) __lowercase : List[str] = False if main_process_only: __lowercase : Optional[int] = PartialState().local_process_index == 0 return _tqdm(*lowerCAmelCase_ , **lowerCAmelCase_ , disable=lowerCAmelCase_ )
649
0
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowerCamelCase : int = logging.get_logger(__name__) class lowerCAmelCase ( UpperCamelCase__ ): '''simple docstring''' _A : str = ["""input_values""", """attention_mask"""] def __init__( self : str , __a : str = 1 , __a : Optional[int] = 16000 , __a : Optional[Any] = 0.0 , __a : List[Any] = False , __a : Union[str, Any] = 80 , __a : int = 16 , __a : Optional[int] = 64 , __a : Tuple = "hann_window" , __a : Any = 1.0 , __a : List[str] = 80 , __a : List[str] = 7600 , __a : Any = 1E-10 , __a : Optional[int] = 2 , __a : Tuple = True , **__a : Union[str, Any] , ) -> Union[str, Any]: """simple docstring""" super().__init__(feature_size=__a , sampling_rate=__a , padding_value=__a , **__a ) __lowercase : Any = do_normalize __lowercase : Any = return_attention_mask __lowercase : Optional[Any] = num_mel_bins __lowercase : Optional[int] = hop_length __lowercase : int = win_length __lowercase : Any = win_function __lowercase : List[str] = frame_signal_scale __lowercase : Optional[Any] = fmin __lowercase : Optional[int] = fmax __lowercase : Union[str, Any] = mel_floor __lowercase : str = reduction_factor __lowercase : List[str] = win_length * sampling_rate // 1000 __lowercase : Tuple = hop_length * sampling_rate // 1000 __lowercase : Tuple = optimal_fft_length(self.sample_size ) __lowercase : List[Any] = (self.n_fft // 2) + 1 __lowercase : Optional[Any] = window_function(window_length=self.sample_size , name=self.win_function , periodic=__a ) __lowercase : Any = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm="""slaney""" , mel_scale="""slaney""" , ) if frame_signal_scale != 1.0: warnings.warn( """The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers""" , __a , ) if reduction_factor != 2.0: warnings.warn( """The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers""" , __a , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def lowerCAmelCase ( __a : Optional[int] , __a : str , __a : Tuple = 0.0 ) -> List[np.ndarray]: """simple docstring""" if attention_mask is not None: __lowercase : Optional[Any] = np.array(__a , np.intaa ) __lowercase : Tuple = [] for vector, length in zip(__a , attention_mask.sum(-1 ) ): __lowercase : Optional[Any] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: __lowercase : Optional[int] = padding_value normed_input_values.append(__a ) else: __lowercase : Optional[int] = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def lowerCAmelCase ( self : Dict , __a : Dict , ) -> np.ndarray: """simple docstring""" __lowercase : Any = spectrogram( __a , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel="""log10""" , ) return log_mel_spec.T def __call__( self : List[Any] , __a : int = None , __a : Optional[int] = None , __a : List[str] = False , __a : List[Any] = None , __a : Any = False , __a : str = None , __a : Optional[int] = None , __a : Optional[Any] = None , __a : Union[str, Any] = None , **__a : Any , ) -> BatchFeature: """simple docstring""" if audio is None and audio_target is None: raise ValueError("""You must provide either `audio` or `audio_target` values.""" ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" F" {self.sampling_rate}. Please make sure that the provided audio input was sampled with" F" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( """It is strongly recommended to pass the ``sampling_rate`` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if audio is not None: __lowercase : str = self._process_audio( __a , __a , __a , __a , __a , __a , __a , __a , **__a , ) else: __lowercase : List[str] = None if audio_target is not None: __lowercase : Dict = self._process_audio( __a , __a , __a , __a , __a , __a , __a , __a , **__a , ) if inputs is None: return inputs_target else: __lowercase : int = inputs_target["""input_values"""] __lowercase : int = inputs_target.get("""attention_mask""" ) if decoder_attention_mask is not None: __lowercase : Union[str, Any] = decoder_attention_mask return inputs def lowerCAmelCase ( self : Any , __a : str , __a : Tuple = False , __a : List[Any] = False , __a : str = None , __a : Tuple = False , __a : int = None , __a : Optional[int] = None , __a : str = None , **__a : Any , ) -> BatchFeature: """simple docstring""" __lowercase : List[Any] = isinstance(__a , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}" ) __lowercase : int = is_batched_numpy or ( isinstance(__a , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __lowercase : str = [np.asarray(__a , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(__a , np.ndarray ): __lowercase : Optional[Any] = np.asarray(__a , dtype=np.floataa ) elif isinstance(__a , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): __lowercase : Optional[Any] = speech.astype(np.floataa ) # always return batch if not is_batched: __lowercase : Dict = [speech] # needed to make pad() work on spectrogram inputs __lowercase : List[str] = self.feature_size # convert into correct format for padding if is_target: __lowercase : Tuple = [self._extract_mel_features(__a ) for waveform in speech] __lowercase : Optional[int] = BatchFeature({"""input_values""": features} ) __lowercase : Dict = self.num_mel_bins else: __lowercase : Union[str, Any] = BatchFeature({"""input_values""": speech} ) __lowercase : List[str] = self.pad( __a , padding=__a , max_length=__a , truncation=__a , pad_to_multiple_of=__a , return_attention_mask=__a , **__a , ) __lowercase : Dict = feature_size_hack # convert input values to correct format __lowercase : str = padded_inputs["""input_values"""] if not isinstance(input_values[0] , np.ndarray ): __lowercase : str = [np.asarray(__a , dtype=np.floataa ) for array in input_values] elif ( not isinstance(__a , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): __lowercase : int = [array.astype(np.floataa ) for array in input_values] elif isinstance(__a , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): __lowercase : Dict = input_values.astype(np.floataa ) # convert attention_mask to correct format __lowercase : Union[str, Any] = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: __lowercase : Tuple = [np.asarray(__a , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: __lowercase : Optional[int] = ( attention_mask if self._get_padding_strategies(__a , max_length=__a ) is not PaddingStrategy.DO_NOT_PAD else None ) __lowercase : Union[str, Any] = self.zero_mean_unit_var_norm( padded_inputs["""input_values"""] , attention_mask=__a , padding_value=self.padding_value ) if return_tensors is not None: __lowercase : Tuple = padded_inputs.convert_to_tensors(__a ) return padded_inputs def lowerCAmelCase ( self : Optional[int] ) -> Dict[str, Any]: """simple docstring""" __lowercase : Dict = super().to_dict() # Don't serialize these as they are derived from the other properties. __lowercase : List[str] = ["""window""", """mel_filters""", """sample_size""", """sample_stride""", """n_fft""", """n_freqs"""] for name in names: if name in output: del output[name] return output
717
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : list[int] ): if not nums: return 0 __lowercase : Tuple = nums[0] __lowercase : Tuple = 0 for num in nums[1:]: __lowercase , __lowercase : List[str] = ( max_excluding + num, max(lowerCAmelCase_ , lowerCAmelCase_ ), ) return max(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
649
0
import os import re import shutil import sys import tempfile import unittest import black lowerCamelCase : Any = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowerCamelCase : List[Any] = ''' \"""\n Output class for the scheduler\'s step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"""\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n''' class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" __lowercase : Optional[int] = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , """schedulers/""" ) ) __lowercase : Optional[Any] = self.diffusers_dir shutil.copy( os.path.join(lowerCamelCase__ , """src/diffusers/schedulers/scheduling_ddpm.py""" ) , os.path.join(self.diffusers_dir , """schedulers/scheduling_ddpm.py""" ) , ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase : int = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def lowerCAmelCase ( self : str , __a : List[str] , __a : Optional[Any] , __a : Union[str, Any] , __a : Any=None ) -> List[str]: """simple docstring""" __lowercase : Union[str, Any] = comment + F"\nclass {class_name}(nn.Module):\n" + class_code if overwrite_result is not None: __lowercase : Tuple = comment + F"\nclass {class_name}(nn.Module):\n" + overwrite_result __lowercase : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) __lowercase : Tuple = black.format_str(lowerCamelCase__ , mode=lowerCamelCase__ ) __lowercase : Optional[int] = os.path.join(self.diffusers_dir , """new_code.py""" ) with open(lowerCamelCase__ , """w""" , newline="""\n""" ) as f: f.write(lowerCamelCase__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowerCamelCase__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowerCamelCase__ ) with open(lowerCamelCase__ , """r""" ) as f: self.assertTrue(f.read() , lowerCamelCase__ ) def lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" __lowercase : Tuple = check_copies.find_code_in_diffusers("""schedulers.scheduling_ddpm.DDPMSchedulerOutput""" ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , lowerCamelCase__ , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , re.sub("""DDPM""" , """Test""" , lowerCamelCase__ ) , ) # Copy consistency with a really long name __lowercase : int = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( F"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}" , F"{long_class_name}SchedulerOutput" , re.sub("""Bert""" , lowerCamelCase__ , lowerCamelCase__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , lowerCamelCase__ , overwrite_result=re.sub("""DDPM""" , """Test""" , lowerCamelCase__ ) , )
718
lowerCamelCase : List[str] = '''0.18.2''' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
649
0
import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase : str = get_tests_dir('''fixtures/test_sentencepiece.model''') lowerCamelCase : int = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') lowerCamelCase : List[Any] = '''pt''' if is_torch_available() else '''tf''' @require_sentencepiece @require_tokenizers class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : str = CamembertTokenizer _A : Optional[int] = CamembertTokenizerFast _A : Dict = True _A : int = True def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __lowercase : Dict = CamembertTokenizer(lowerCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : int = """<pad>""" __lowercase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_ ) , lowerCAmelCase_ ) def lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" __lowercase : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(lowerCAmelCase_ ) , 1004 ) def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1005 ) def lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" __lowercase : Any = CamembertTokenizer(lowerCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) __lowercase : str = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) __lowercase : List[Any] = """I was born in 92000, and this is falsé.""" __lowercase : List[str] = tokenizer.encode(lowerCAmelCase_ ) __lowercase : Dict = rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : List[str] = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) __lowercase : List[Any] = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) __lowercase : Dict = tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) __lowercase : Any = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" if not self.test_rust_tokenizer: return __lowercase : Dict = self.get_tokenizer() __lowercase : Union[str, Any] = self.get_rust_tokenizer() __lowercase : Dict = """I was born in 92000, and this is falsé.""" __lowercase : Any = tokenizer.tokenize(lowerCAmelCase_ ) __lowercase : int = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : int = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) __lowercase : Optional[Any] = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Dict = self.get_rust_tokenizer() __lowercase : Union[str, Any] = tokenizer.encode(lowerCAmelCase_ ) __lowercase : str = rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase : Dict = {"""input_ids""": [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 27575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 22804, 18818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 10326, 24, 2267, 20, 416, 5072, 15612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. __lowercase : str = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=lowerCAmelCase_ , )
719
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : List[Any] = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : str=False , lowerCAmelCase_ : Any=False ): __lowercase : Any = """backbone.""" if is_semantic else """""" __lowercase : Optional[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"{prefix}blocks.{i}.norm1.weight", F"beit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm1.bias", F"beit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.weight", F"beit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.bias", F"beit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.weight", F"beit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.bias", F"beit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.weight", F"beit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.bias", F"beit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.weight", F"beit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.bias", F"beit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ (F"{prefix}cls_token", """beit.embeddings.cls_token"""), (F"{prefix}patch_embed.proj.weight", """beit.embeddings.patch_embeddings.projection.weight"""), (F"{prefix}patch_embed.proj.bias", """beit.embeddings.patch_embeddings.projection.bias"""), (F"{prefix}pos_embed", """beit.embeddings.position_embeddings"""), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("""mask_token""", """beit.embeddings.mask_token"""), ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) else: # layernorm + classification head rename_keys.extend( [ ("""fc_norm.weight""", """beit.pooler.layernorm.weight"""), ("""fc_norm.bias""", """beit.pooler.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : List[Any]=False ): for i in range(config.num_hidden_layers ): __lowercase : Tuple = """backbone.""" if is_semantic else """""" # queries, keys and values __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.attn.qkv.weight" ) __lowercase : Dict = state_dict.pop(F"{prefix}blocks.{i}.attn.q_bias" ) __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.attn.v_bias" ) __lowercase : List[str] = in_proj_weight[ : config.hidden_size, : ] __lowercase : Union[str, Any] = q_bias __lowercase : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] __lowercase : str = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.gamma_1" ) __lowercase : str = state_dict.pop(F"{prefix}blocks.{i}.gamma_2" ) __lowercase : List[str] = gamma_a __lowercase : Optional[int] = gamma_a def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : int ): __lowercase : Tuple = dct.pop(lowerCAmelCase_ ) __lowercase : Tuple = val def snake_case_ ( ): __lowercase : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase : Any = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]=False ): __lowercase : Dict = False if """rvlcdip""" in checkpoint_url else True __lowercase : Tuple = BeitConfig(use_absolute_position_embeddings=lowerCAmelCase_ , use_mask_token=lowerCAmelCase_ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: __lowercase : Union[str, Any] = 1024 __lowercase : Optional[int] = 4096 __lowercase : List[Any] = 24 __lowercase : Dict = 16 # labels if "rvlcdip" in checkpoint_url: __lowercase : Optional[int] = 16 __lowercase : Any = """huggingface/label-files""" __lowercase : Union[str, Any] = """rvlcdip-id2label.json""" __lowercase : List[str] = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) __lowercase : Optional[int] = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowercase : Union[str, Any] = idalabel __lowercase : Optional[Any] = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys __lowercase : Optional[int] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ , map_location="""cpu""" )["""model"""] __lowercase : Union[str, Any] = create_rename_keys(lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) # load HuggingFace model __lowercase : Dict = BeitForMaskedImageModeling(lowerCAmelCase_ ) if has_lm_head else BeitForImageClassification(lowerCAmelCase_ ) model.eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image __lowercase : List[str] = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=lowerCAmelCase_ ) __lowercase : List[str] = prepare_img() __lowercase : Optional[Any] = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""" ) __lowercase : Optional[int] = encoding["""pixel_values"""] __lowercase : str = model(lowerCAmelCase_ ) __lowercase : Tuple = outputs.logits # verify logits __lowercase : str = [1, 16] if """rvlcdip""" in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(lowerCAmelCase_ ), "Shape of logits not as expected" Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: if has_lm_head: __lowercase : Optional[Any] = """dit-base""" if """base""" in checkpoint_url else """dit-large""" else: __lowercase : Tuple = """dit-base-finetuned-rvlcdip""" if """dit-b""" in checkpoint_url else """dit-large-finetuned-rvlcdip""" image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=lowerCAmelCase_ , ) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=lowerCAmelCase_ , ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) lowerCamelCase : List[str] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
649
0
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : Tuple = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ : Dict ): print("""Loading config file...""" ) def flatten_yaml_as_dict(lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str]="" , lowerCAmelCase_ : List[str]="." ): __lowercase : List[Any] = [] for k, v in d.items(): __lowercase : int = parent_key + sep + k if parent_key else k if isinstance(UpperCamelCase__ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(UpperCamelCase__ , UpperCamelCase__ , sep=UpperCamelCase__ ).items() ) else: items.append((new_key, v) ) return dict(UpperCamelCase__ ) __lowercase : List[str] = argparse.Namespace() with open(UpperCamelCase__ , """r""" ) as yaml_file: try: __lowercase : str = yaml.load(UpperCamelCase__ , Loader=yaml.FullLoader ) __lowercase : Optional[int] = flatten_yaml_as_dict(UpperCamelCase__ ) for k, v in flat_cfg.items(): setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) except yaml.YAMLError as exc: logger.error("""Error while loading config file: {}. Error message: {}""".format(UpperCamelCase__ , str(UpperCamelCase__ ) ) ) return config def snake_case_ ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple ): __lowercase : Optional[int] = MobileViTVaConfig() __lowercase : Union[str, Any] = False # dataset if task_name.startswith("""imagenet1k_""" ): __lowercase : List[Any] = 1000 if int(task_name.strip().split("""_""" )[-1] ) == 384: __lowercase : Any = 384 else: __lowercase : str = 256 __lowercase : Tuple = """imagenet-1k-id2label.json""" elif task_name.startswith("""imagenet21k_to_1k_""" ): __lowercase : Optional[Any] = 21000 if int(task_name.strip().split("""_""" )[-1] ) == 384: __lowercase : Dict = 384 else: __lowercase : Tuple = 256 __lowercase : Dict = """imagenet-22k-id2label.json""" elif task_name.startswith("""ade20k_""" ): __lowercase : List[str] = 151 __lowercase : Dict = 512 __lowercase : Optional[Any] = """ade20k-id2label.json""" __lowercase : Tuple = True elif task_name.startswith("""voc_""" ): __lowercase : List[Any] = 21 __lowercase : Union[str, Any] = 512 __lowercase : str = """pascal-voc-id2label.json""" __lowercase : str = True # orig_config __lowercase : Optional[Any] = load_orig_config_file(UpperCamelCase__ ) assert getattr(UpperCamelCase__ , """model.classification.name""" , -1 ) == "mobilevit_v2", "Invalid model" __lowercase : str = getattr(UpperCamelCase__ , """model.classification.mitv2.width_multiplier""" , 1.0 ) assert ( getattr(UpperCamelCase__ , """model.classification.mitv2.attn_norm_layer""" , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" __lowercase : str = getattr(UpperCamelCase__ , """model.classification.activation.name""" , """swish""" ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: __lowercase : Tuple = getattr(UpperCamelCase__ , """model.segmentation.output_stride""" , 16 ) if "_deeplabv3" in task_name: __lowercase : int = getattr(UpperCamelCase__ , """model.segmentation.deeplabv3.aspp_rates""" , [12, 24, 36] ) __lowercase : Any = getattr(UpperCamelCase__ , """model.segmentation.deeplabv3.aspp_out_channels""" , 512 ) __lowercase : str = getattr(UpperCamelCase__ , """model.segmentation.deeplabv3.aspp_dropout""" , 0.1 ) # id2label __lowercase : Optional[Any] = """huggingface/label-files""" __lowercase : Optional[Any] = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) __lowercase : Dict = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} __lowercase : Union[str, Any] = idalabel __lowercase : Optional[Any] = {v: k for k, v in idalabel.items()} return config def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int ): __lowercase : Any = dct.pop(UpperCamelCase__ ) __lowercase : List[str] = val def snake_case_ ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any]=False ): if base_model: __lowercase : Any = """""" else: __lowercase : Dict = """mobilevitv2.""" __lowercase : List[str] = [] for k in state_dict.keys(): if k[:8] == "encoder.": __lowercase : List[Any] = k[8:] else: __lowercase : Optional[Any] = k if ".block." in k: __lowercase : Dict = k_new.replace(""".block.""" , """.""" ) if ".conv." in k: __lowercase : int = k_new.replace(""".conv.""" , """.convolution.""" ) if ".norm." in k: __lowercase : Union[str, Any] = k_new.replace(""".norm.""" , """.normalization.""" ) if "conv_1." in k: __lowercase : Optional[Any] = k_new.replace("""conv_1.""" , F"{model_prefix}conv_stem." ) for i in [1, 2]: if F"layer_{i}." in k: __lowercase : Tuple = k_new.replace(F"layer_{i}." , F"{model_prefix}encoder.layer.{i-1}.layer." ) if ".exp_1x1." in k: __lowercase : Optional[int] = k_new.replace(""".exp_1x1.""" , """.expand_1x1.""" ) if ".red_1x1." in k: __lowercase : int = k_new.replace(""".red_1x1.""" , """.reduce_1x1.""" ) for i in [3, 4, 5]: if F"layer_{i}.0." in k: __lowercase : List[str] = k_new.replace(F"layer_{i}.0." , F"{model_prefix}encoder.layer.{i-1}.downsampling_layer." ) if F"layer_{i}.1.local_rep.0." in k: __lowercase : Dict = k_new.replace(F"layer_{i}.1.local_rep.0." , F"{model_prefix}encoder.layer.{i-1}.conv_kxk." ) if F"layer_{i}.1.local_rep.1." in k: __lowercase : List[str] = k_new.replace(F"layer_{i}.1.local_rep.1." , F"{model_prefix}encoder.layer.{i-1}.conv_1x1." ) for i in [3, 4, 5]: if i == 3: __lowercase : Optional[int] = [0, 1] elif i == 4: __lowercase : Dict = [0, 1, 2, 3] elif i == 5: __lowercase : Dict = [0, 1, 2] for j in j_in: if F"layer_{i}.1.global_rep.{j}." in k: __lowercase : int = k_new.replace( F"layer_{i}.1.global_rep.{j}." , F"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." ) if F"layer_{i}.1.global_rep.{j+1}." in k: __lowercase : Optional[Any] = k_new.replace( F"layer_{i}.1.global_rep.{j+1}." , F"{model_prefix}encoder.layer.{i-1}.layernorm." ) if F"layer_{i}.1.conv_proj." in k: __lowercase : Dict = k_new.replace(F"layer_{i}.1.conv_proj." , F"{model_prefix}encoder.layer.{i-1}.conv_projection." ) if "pre_norm_attn.0." in k: __lowercase : str = k_new.replace("""pre_norm_attn.0.""" , """layernorm_before.""" ) if "pre_norm_attn.1." in k: __lowercase : Optional[Any] = k_new.replace("""pre_norm_attn.1.""" , """attention.""" ) if "pre_norm_ffn.0." in k: __lowercase : List[Any] = k_new.replace("""pre_norm_ffn.0.""" , """layernorm_after.""" ) if "pre_norm_ffn.1." in k: __lowercase : List[str] = k_new.replace("""pre_norm_ffn.1.""" , """ffn.conv1.""" ) if "pre_norm_ffn.3." in k: __lowercase : Optional[int] = k_new.replace("""pre_norm_ffn.3.""" , """ffn.conv2.""" ) if "classifier.1." in k: __lowercase : Optional[int] = k_new.replace("""classifier.1.""" , """classifier.""" ) if "seg_head." in k: __lowercase : Dict = k_new.replace("""seg_head.""" , """segmentation_head.""" ) if ".aspp_layer." in k: __lowercase : str = k_new.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in k: __lowercase : Any = k_new.replace(""".aspp_pool.""" , """.""" ) rename_keys.append((k, k_new) ) return rename_keys def snake_case_ ( lowerCAmelCase_ : Tuple ): __lowercase : List[str] = [] for k in state_dict.keys(): if k.startswith("""seg_head.aux_head.""" ): keys_to_ignore.append(UpperCamelCase__ ) for k in keys_to_ignore: state_dict.pop(UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( ): __lowercase : List[str] = """http://images.cocodataset.org/val2017/000000039769.jpg""" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" __lowercase : List[Any] = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return im @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict ): __lowercase : Any = get_mobilevitva_config(UpperCamelCase__ , UpperCamelCase__ ) # load original state_dict __lowercase : Any = torch.load(UpperCamelCase__ , map_location="""cpu""" ) # load huggingface model if task_name.startswith("""ade20k_""" ) or task_name.startswith("""voc_""" ): __lowercase : List[str] = MobileViTVaForSemanticSegmentation(UpperCamelCase__ ).eval() __lowercase : List[Any] = False else: __lowercase : int = MobileViTVaForImageClassification(UpperCamelCase__ ).eval() __lowercase : Dict = False # remove and rename some keys of load the original model __lowercase : List[str] = checkpoint remove_unused_keys(UpperCamelCase__ ) __lowercase : List[Any] = create_rename_keys(UpperCamelCase__ , base_model=UpperCamelCase__ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # load modified state_dict model.load_state_dict(UpperCamelCase__ ) # Check outputs on an image, prepared by MobileViTImageProcessor __lowercase : Optional[Any] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) __lowercase : Union[str, Any] = image_processor(images=prepare_img() , return_tensors="""pt""" ) __lowercase : Tuple = model(**UpperCamelCase__ ) # verify classification model if task_name.startswith("""imagenet""" ): __lowercase : Tuple = outputs.logits __lowercase : int = logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) if task_name.startswith("""imagenet1k_256""" ) and config.width_multiplier == 1.0: # expected_logits for base variant __lowercase : Optional[Any] = torch.tensor([-1.6_3_3_6e0_0, -7.3_2_0_4e-0_2, -5.1_8_8_3e-0_1] ) assert torch.allclose(logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(F"Saving model {task_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCamelCase__ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": lowerCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''imagenet1k_256''', type=str, help=( '''Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ''' '''\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n ''' ), choices=[ '''imagenet1k_256''', '''imagenet1k_384''', '''imagenet21k_to_1k_256''', '''imagenet21k_to_1k_384''', '''ade20k_deeplabv3''', '''voc_deeplabv3''', ], ) parser.add_argument( '''--orig_checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument('''--orig_config_path''', required=True, type=str, help='''Path to the original config file.''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCamelCase : Any = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
720
from torch import nn class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , __a : int , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" super().__init__() __lowercase : int = class_size __lowercase : int = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) __lowercase : str = nn.Linear(__a , __a ) def lowerCAmelCase ( self : Tuple , __a : int ) -> Tuple: """simple docstring""" __lowercase : str = self.mlp(__a ) return logits
649
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : Any = { "tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json", "tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json", } class lowerCAmelCase ( __a ): '''simple docstring''' _A : Any = '''falcon''' _A : Optional[Any] = ['''past_key_values'''] def __init__( self : Optional[Any] , __a : Optional[int]=65024 , __a : List[str]=4544 , __a : Dict=32 , __a : Optional[int]=71 , __a : Dict=1E-5 , __a : Union[str, Any]=0.02 , __a : Dict=True , __a : Union[str, Any]=0.0 , __a : Union[str, Any]=0.0 , __a : Dict=None , __a : int=False , __a : List[str]=False , __a : Any=True , __a : Optional[int]=True , __a : List[str]=False , __a : List[Any]=11 , __a : int=11 , **__a : Dict , ) -> Dict: """simple docstring""" __lowercase : Optional[Any] = vocab_size # Backward compatibility with n_embed kwarg __lowercase : Any = kwargs.pop("""n_embed""" , UpperCAmelCase__ ) __lowercase : Optional[Any] = hidden_size if n_embed is None else n_embed __lowercase : Tuple = num_hidden_layers __lowercase : Optional[Any] = num_attention_heads __lowercase : Optional[int] = layer_norm_epsilon __lowercase : List[str] = initializer_range __lowercase : List[str] = use_cache __lowercase : int = hidden_dropout __lowercase : Union[str, Any] = attention_dropout __lowercase : Dict = bos_token_id __lowercase : Optional[Any] = eos_token_id __lowercase : Tuple = num_attention_heads if num_kv_heads is None else num_kv_heads __lowercase : int = alibi __lowercase : List[Any] = new_decoder_architecture __lowercase : str = multi_query # Ignored when new_decoder_architecture is True __lowercase : Optional[int] = parallel_attn __lowercase : Dict = bias super().__init__(bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) @property def lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" return self.hidden_size // self.num_attention_heads @property def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" return not self.alibi
721
import fire from utils import calculate_rouge, save_json def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : str=None , **lowerCAmelCase_ : str ): __lowercase : Tuple = [x.strip() for x in open(lowerCAmelCase_ ).readlines()] __lowercase : Dict = [x.strip() for x in open(lowerCAmelCase_ ).readlines()][: len(lowerCAmelCase_ )] __lowercase : Tuple = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) if save_path is not None: save_json(lowerCAmelCase_ , lowerCAmelCase_ , indent=lowerCAmelCase_ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
649
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase : str = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
700
from argparse import ArgumentParser from . import BaseTransformersCLICommand def snake_case_ ( lowerCAmelCase_ : Dict ): return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class lowerCAmelCase ( __a ): '''simple docstring''' @staticmethod def lowerCAmelCase ( __a : ArgumentParser ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = parser.add_parser("""download""" ) download_parser.add_argument( """--cache-dir""" , type=__a , default=__a , help="""Path to location to store the models""" ) download_parser.add_argument( """--force""" , action="""store_true""" , help="""Force the model to be download even if already in cache-dir""" ) download_parser.add_argument( """--trust-remote-code""" , action="""store_true""" , help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" , ) download_parser.add_argument("""model""" , type=__a , help="""Name of the model to download""" ) download_parser.set_defaults(func=__a ) def __init__( self : Dict , __a : str , __a : str , __a : bool , __a : bool ) -> Union[str, Any]: """simple docstring""" __lowercase : Dict = model __lowercase : List[Any] = cache __lowercase : Any = force __lowercase : Optional[int] = trust_remote_code def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
649
0
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCamelCase : Union[str, Any] = logging.getLogger() lowerCamelCase : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] , __a : List[str] ) -> str: """simple docstring""" os.makedirs(__a , exist_ok=__a ) __lowercase : Any = {"""source""": """What is love ?""", """target""": """life"""} __lowercase : Any = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: __lowercase : Dict = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(__a , F"{split}.{field}" ) , """w""" ) as f: f.write(__a ) def lowerCAmelCase ( self : Any , __a : int , __a : str = "pytorch" ) -> int: """simple docstring""" __lowercase : List[str] = self.get_auto_remove_tmp_dir() __lowercase : Optional[int] = os.path.join(__a , """output""" ) __lowercase : Optional[Any] = os.path.join(__a , """data""" ) self._create_dummy_data(data_dir=__a ) __lowercase : Dict = F"\n --data_dir {data_dir} \\n --output_dir {output_dir} \\n --model_name_or_path facebook/rag-sequence-base \\n --model_type rag_sequence \\n --do_train \\n --do_predict \\n --n_val -1 \\n --val_check_interval 1.0 \\n --train_batch_size 2 \\n --eval_batch_size 1 \\n --max_source_length 25 \\n --max_target_length 25 \\n --val_max_target_length 25 \\n --test_max_target_length 25 \\n --label_smoothing 0.1 \\n --dropout 0.1 \\n --attention_dropout 0.1 \\n --weight_decay 0.001 \\n --adam_epsilon 1e-08 \\n --max_grad_norm 0.1 \\n --lr_scheduler polynomial \\n --learning_rate 3e-04 \\n --num_train_epochs 1 \\n --warmup_steps 4 \\n --gradient_accumulation_steps 1 \\n --distributed-port 8787 \\n --use_dummy_dataset 1 \\n --distributed_retriever {distributed_retriever} \\n ".split() if gpus > 0: testargs.append(F"--gpus={gpus}" ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) __lowercase : int = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(__a , env=self.get_env() ) __lowercase : int = os.path.join(__a , """metrics.json""" ) with open(__a ) as f: __lowercase : int = json.load(__a ) return result @require_torch_gpu def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Dict = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" __lowercase : Union[str, Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
701
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowerCamelCase : Union[str, Any] = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , __a : List[str] , __a : Optional[int]=16 , __a : Optional[Any]=13 , __a : str=7 , __a : List[str]=14 , __a : Any=10 , __a : str=19 , __a : int=5 , __a : Any=4 , __a : List[Any]=True , __a : Tuple=16 , __a : Dict=2 , __a : Tuple=4 , __a : int=4 , __a : List[Any]="gelu" , __a : Tuple=0.1 , __a : List[str]=0.1 , __a : int=[1, 2, 3, 4, 5] , __a : str=25 , __a : Any=5 , ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = d_model __lowercase : Dict = parent __lowercase : Tuple = batch_size __lowercase : Optional[int] = prediction_length __lowercase : List[str] = context_length __lowercase : Any = cardinality __lowercase : str = num_time_features __lowercase : Optional[int] = lags_sequence __lowercase : Optional[Any] = embedding_dimension __lowercase : List[Any] = is_training __lowercase : List[str] = hidden_size __lowercase : int = num_hidden_layers __lowercase : Any = num_attention_heads __lowercase : List[Any] = intermediate_size __lowercase : int = hidden_act __lowercase : str = hidden_dropout_prob __lowercase : List[Any] = attention_probs_dropout_prob __lowercase : str = context_length __lowercase : int = prediction_length + label_length __lowercase : Union[str, Any] = label_length __lowercase : Optional[int] = moving_average __lowercase : Optional[Any] = autocorrelation_factor def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def lowerCAmelCase ( self : Tuple , __a : str ) -> int: """simple docstring""" __lowercase : Any = config.context_length + max(config.lags_sequence ) __lowercase : Any = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __lowercase : Optional[int] = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __lowercase : List[str] = floats_tensor([self.batch_size, _past_length] ) __lowercase : List[str] = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __lowercase : Dict = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __lowercase : str = floats_tensor([self.batch_size, config.prediction_length] ) __lowercase : List[str] = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.get_config() __lowercase : Any = self.prepare_autoformer_inputs_dict(__a ) return config, inputs_dict def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase , __lowercase : List[str] = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase ( self : Optional[Any] , __a : Tuple , __a : Optional[int] ) -> Any: """simple docstring""" __lowercase : List[str] = AutoformerModel(config=__a ).to(__a ).eval() __lowercase : Optional[int] = model(**__a ) __lowercase : Dict = outputs.encoder_last_hidden_state __lowercase : Tuple = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : List[str] = model.get_encoder() encoder.save_pretrained(__a ) __lowercase : List[str] = AutoformerEncoder.from_pretrained(__a ).to(__a ) __lowercase , __lowercase , __lowercase , __lowercase , __lowercase : Any = model.create_network_inputs(**__a ) __lowercase , __lowercase : Any = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __lowercase : Optional[Any] = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __lowercase : Union[str, Any] = encoder(inputs_embeds=__a )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) __lowercase : str = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __lowercase : Optional[int] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __lowercase : Any = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __lowercase : Dict = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : Optional[Any] = model.get_decoder() decoder.save_pretrained(__a ) __lowercase : Tuple = AutoformerDecoder.from_pretrained(__a ).to(__a ) __lowercase : str = decoder( trend=__a , inputs_embeds=__a , encoder_hidden_states=__a , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[str] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _A : List[Any] = (AutoformerForPrediction,) if is_torch_available() else () _A : Any = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} _A : Dict = False _A : Tuple = False _A : Optional[int] = False _A : Tuple = False _A : str = False _A : Union[str, Any] = False def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" __lowercase : List[str] = AutoformerModelTester(self ) __lowercase : Dict = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowercase : Dict = model_class(__a ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowercase , __lowercase : Tuple = model_class.from_pretrained(__a , output_loading_info=__a ) self.assertEqual(info["""missing_keys"""] , [] ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__a ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def lowerCAmelCase ( self : str ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : Any = inspect.signature(getattr(__a , """forward""" ) ) # The main input is the name of the argument after `self` __lowercase : Optional[int] = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , __a ) def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Dict = model_class(__a ) __lowercase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : Any = [*signature.parameters.keys()] __lowercase : int = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(__a )] , __a ) def lowerCAmelCase ( self : int ) -> int: """simple docstring""" __lowercase , __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : int = True __lowercase : Tuple = getattr(self.model_tester , """seq_length""" , __a ) __lowercase : Union[str, Any] = getattr(self.model_tester , """decoder_seq_length""" , __a ) __lowercase : List[str] = getattr(self.model_tester , """encoder_seq_length""" , __a ) __lowercase : List[Any] = getattr(self.model_tester , """d_model""" , __a ) __lowercase : Optional[int] = getattr(self.model_tester , """num_attention_heads""" , __a ) __lowercase : Any = d_model // num_attention_heads for model_class in self.all_model_classes: __lowercase : Dict = True __lowercase : List[str] = False __lowercase : Optional[int] = True __lowercase : str = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : int = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase : Optional[int] = True __lowercase : List[str] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Union[str, Any] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Dict = outputs.encoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __lowercase : Tuple = len(__a ) __lowercase : str = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__a , __a ) # decoder attentions __lowercase : List[Any] = outputs.decoder_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __lowercase : Optional[int] = outputs.cross_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __lowercase : Tuple = True __lowercase : Union[str, Any] = True __lowercase : Tuple = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Any = model(**self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + 2 , len(__a ) ) __lowercase : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def snake_case_ ( lowerCAmelCase_ : Optional[int]="train-batch.pt" ): __lowercase : Dict = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=lowerCAmelCase_ , repo_type="""dataset""" ) __lowercase : Optional[int] = torch.load(lowerCAmelCase_ , map_location=lowerCAmelCase_ ) return batch @require_torch @slow class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" __lowercase : List[str] = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : List[Any] = prepare_batch() with torch.no_grad(): __lowercase : Tuple = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] __lowercase : List[str] = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , __a ) __lowercase : Optional[int] = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" __lowercase : int = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : List[str] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowercase : Optional[Any] = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state __lowercase : List[str] = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , __a ) __lowercase : Optional[int] = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : Optional[int] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowercase : int = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) __lowercase : int = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , __a ) __lowercase : Optional[Any] = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=__a ) __lowercase : Dict = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __a , rtol=1E-1 ) )
649
0
def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] ): if density <= 0: raise ValueError("""Impossible fluid density""" ) if bulk_modulus <= 0: raise ValueError("""Impossible bulk modulus""" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
702
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowerCAmelCase ( __a , __a ): '''simple docstring''' _A : str = 1 @register_to_config def __init__( self : Optional[int] , __a : Tuple=2000 , __a : List[str]=0.1 , __a : str=20 , __a : Optional[int]=1E-3 ) -> int: """simple docstring""" __lowercase : Tuple = None __lowercase : Union[str, Any] = None __lowercase : int = None def lowerCAmelCase ( self : List[Any] , __a : Any , __a : Union[str, torch.device] = None ) -> str: """simple docstring""" __lowercase : List[str] = torch.linspace(1 , self.config.sampling_eps , __a , device=__a ) def lowerCAmelCase ( self : Tuple , __a : List[Any] , __a : Tuple , __a : int , __a : Optional[int]=None ) -> str: """simple docstring""" if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __lowercase : Dict = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __lowercase : int = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __lowercase : Union[str, Any] = std.flatten() while len(std.shape ) < len(score.shape ): __lowercase : Optional[Any] = std.unsqueeze(-1 ) __lowercase : List[Any] = -score / std # compute __lowercase : Dict = -1.0 / len(self.timesteps ) __lowercase : int = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __lowercase : List[Any] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __lowercase : Union[str, Any] = beta_t.unsqueeze(-1 ) __lowercase : List[str] = -0.5 * beta_t * x __lowercase : int = torch.sqrt(__a ) __lowercase : Union[str, Any] = drift - diffusion**2 * score __lowercase : Optional[Any] = x + drift * dt # add noise __lowercase : List[str] = randn_tensor(x.shape , layout=x.layout , generator=__a , device=x.device , dtype=x.dtype ) __lowercase : str = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Tuple ) -> Optional[int]: """simple docstring""" return self.config.num_train_timesteps
649
0
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase ( a__ ): '''simple docstring''' def __init__( self : Any , __a : Union[str, Any] , __a : List[Any]=13 , __a : Any=7 , __a : Optional[int]=True , __a : Dict=True , __a : int=True , __a : Optional[Any]=True , __a : Any=True , __a : Union[str, Any]=False , __a : Union[str, Any]=False , __a : Optional[Any]=False , __a : List[str]=2 , __a : Union[str, Any]=99 , __a : Union[str, Any]=0 , __a : List[Any]=32 , __a : Any=5 , __a : Tuple=4 , __a : List[Any]=0.1 , __a : str=0.1 , __a : Optional[int]=512 , __a : str=12 , __a : str=2 , __a : Optional[Any]=0.02 , __a : Dict=3 , __a : List[Any]=4 , __a : List[Any]="last" , __a : Tuple=None , __a : List[str]=None , ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = parent __lowercase : int = batch_size __lowercase : Union[str, Any] = seq_length __lowercase : Tuple = is_training __lowercase : int = use_input_lengths __lowercase : List[str] = use_token_type_ids __lowercase : List[Any] = use_labels __lowercase : Union[str, Any] = gelu_activation __lowercase : int = sinusoidal_embeddings __lowercase : Union[str, Any] = causal __lowercase : Any = asm __lowercase : Union[str, Any] = n_langs __lowercase : int = vocab_size __lowercase : str = n_special __lowercase : Optional[int] = hidden_size __lowercase : Dict = num_hidden_layers __lowercase : Union[str, Any] = num_attention_heads __lowercase : Tuple = hidden_dropout_prob __lowercase : str = attention_probs_dropout_prob __lowercase : Tuple = max_position_embeddings __lowercase : List[str] = type_vocab_size __lowercase : Dict = type_sequence_label_size __lowercase : Dict = initializer_range __lowercase : Optional[int] = num_labels __lowercase : Tuple = num_choices __lowercase : List[str] = summary_type __lowercase : Union[str, Any] = use_proj __lowercase : List[Any] = scope def lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : str = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : Union[str, Any] = None if self.use_input_lengths: __lowercase : Union[str, Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __lowercase : Union[str, Any] = None if self.use_token_type_ids: __lowercase : int = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __lowercase : Any = None __lowercase : Union[str, Any] = None __lowercase : List[Any] = None if self.use_labels: __lowercase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : Optional[Any] = ids_tensor([self.batch_size] , 2 ).float() __lowercase : str = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : Union[str, Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def lowerCAmelCase ( self : Dict , __a : Tuple , __a : Optional[int] , __a : Optional[Any] , __a : str , __a : List[str] , __a : Dict , __a : List[str] , __a : int , __a : int , ) -> Tuple: """simple docstring""" __lowercase : List[Any] = FlaubertModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase : Dict = model(lowercase__ , lengths=lowercase__ , langs=lowercase__ ) __lowercase : Dict = model(lowercase__ , langs=lowercase__ ) __lowercase : Union[str, Any] = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : List[str] , __a : List[str] , __a : Any , __a : Union[str, Any] , __a : Union[str, Any] , __a : Optional[int] , __a : Any , __a : Optional[int] , __a : List[Any] , __a : List[Any] , ) -> Any: """simple docstring""" __lowercase : List[str] = FlaubertWithLMHeadModel(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase : Optional[int] = model(lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : int , __a : Any , __a : Dict , __a : Union[str, Any] , __a : Tuple , __a : Union[str, Any] , __a : int , __a : Dict , __a : Tuple , __a : Dict , ) -> Tuple: """simple docstring""" __lowercase : List[Any] = FlaubertForQuestionAnsweringSimple(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase : List[str] = model(lowercase__ ) __lowercase : Tuple = model(lowercase__ , start_positions=lowercase__ , end_positions=lowercase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Optional[int] , __a : Dict , __a : Optional[int] , __a : List[Any] , __a : str , __a : List[Any] , __a : Tuple , __a : Tuple , __a : str , __a : Optional[Any] , ) -> str: """simple docstring""" __lowercase : Union[str, Any] = FlaubertForQuestionAnswering(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase : int = model(lowercase__ ) __lowercase : Dict = model( lowercase__ , start_positions=lowercase__ , end_positions=lowercase__ , cls_index=lowercase__ , is_impossible=lowercase__ , p_mask=lowercase__ , ) __lowercase : str = model( lowercase__ , start_positions=lowercase__ , end_positions=lowercase__ , cls_index=lowercase__ , is_impossible=lowercase__ , ) (__lowercase ) : Tuple = result_with_labels.to_tuple() __lowercase : List[Any] = model(lowercase__ , start_positions=lowercase__ , end_positions=lowercase__ ) (__lowercase ) : Dict = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowerCAmelCase ( self : List[Any] , __a : Optional[Any] , __a : Optional[int] , __a : Any , __a : Union[str, Any] , __a : List[str] , __a : Optional[int] , __a : Tuple , __a : List[Any] , __a : List[str] , ) -> Dict: """simple docstring""" __lowercase : Any = FlaubertForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase : List[str] = model(lowercase__ ) __lowercase : str = model(lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : Optional[int] , __a : Any , __a : Tuple , __a : Optional[int] , __a : List[str] , __a : Dict , __a : Any , __a : Optional[Any] , ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = self.num_labels __lowercase : Union[str, Any] = FlaubertForTokenClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Union[str, Any] , __a : str , __a : List[str] , __a : str , __a : Optional[Any] , __a : str , __a : Union[str, Any] , __a : Tuple , __a : str , __a : Optional[int] , ) -> int: """simple docstring""" __lowercase : str = self.num_choices __lowercase : List[Any] = FlaubertForMultipleChoice(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase : Dict = model( lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : Any = self.prepare_config_and_inputs() ( __lowercase ) : Optional[int] = config_and_inputs __lowercase : Dict = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase ( a__ , a__ , unittest.TestCase ): '''simple docstring''' _A : Optional[int] = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) _A : int = ( { """feature-extraction""": FlaubertModel, """fill-mask""": FlaubertWithLMHeadModel, """question-answering""": FlaubertForQuestionAnsweringSimple, """text-classification""": FlaubertForSequenceClassification, """token-classification""": FlaubertForTokenClassification, """zero-shot""": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def lowerCAmelCase ( self : Dict , __a : Union[str, Any] , __a : Optional[int] , __a : List[str] , __a : Dict , __a : Optional[int] ) -> List[str]: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowerCAmelCase ( self : Tuple , __a : Any , __a : List[str] , __a : str=False ) -> List[Any]: """simple docstring""" __lowercase : Optional[int] = super()._prepare_for_class(lowercase__ , lowercase__ , return_labels=lowercase__ ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": __lowercase : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase__ ) __lowercase : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase__ ) return inputs_dict def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase : Dict = FlaubertModelTester(self ) __lowercase : Optional[int] = ConfigTester(self , config_class=lowercase__ , emb_dim=37 ) def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowercase__ ) def lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowercase__ ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*lowercase__ ) def lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowercase__ ) def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowercase__ ) def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" __lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*lowercase__ ) def lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" __lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*lowercase__ ) @slow def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : List[str] = FlaubertModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @slow @require_torch_gpu def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return __lowercase : List[str] = True __lowercase : List[Any] = model_class(config=lowercase__ ) __lowercase : str = self._prepare_for_class(lowercase__ , lowercase__ ) __lowercase : int = torch.jit.trace( lowercase__ , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase__ , os.path.join(lowercase__ , """traced_model.pt""" ) ) __lowercase : Dict = torch.jit.load(os.path.join(lowercase__ , """traced_model.pt""" ) , map_location=lowercase__ ) loaded(inputs_dict["""input_ids"""].to(lowercase__ ) , inputs_dict["""attention_mask"""].to(lowercase__ ) ) @require_torch class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" __lowercase : Tuple = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) __lowercase : int = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): __lowercase : str = model(lowercase__ )[0] __lowercase : int = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , lowercase__ ) __lowercase : List[Any] = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase__ , atol=1E-4 ) )
703
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : str = LongformerTokenizer _A : int = True _A : Optional[int] = LongformerTokenizerFast _A : int = True def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __lowercase : Union[str, Any] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Any = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __lowercase : Optional[int] = {"""unk_token""": """<unk>"""} __lowercase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__a ) ) def lowerCAmelCase ( self : Optional[int] , **__a : Optional[Any] ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Tuple , **__a : Tuple ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : str , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = """lower newer""" __lowercase : int = """lower newer""" return input_text, output_text def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowercase : Dict = """lower newer""" __lowercase : Optional[Any] = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] __lowercase : str = tokenizer.tokenize(__a ) # , add_prefix_space=True) self.assertListEqual(__a , __a ) __lowercase : int = tokens + [tokenizer.unk_token] __lowercase : str = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=__a ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=__a ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : Any = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" ) __lowercase : Optional[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=__a ) __lowercase : List[str] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__a ) __lowercase : Optional[Any] = tokenizer.encode( """sequence builders""" , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Union[str, Any] = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : List[Any] = tokenizer.build_inputs_with_special_tokens(__a ) __lowercase : Any = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() __lowercase : Tuple = """Encode this sequence.""" __lowercase : Optional[Any] = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments __lowercase : Dict = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__a , __a ) __lowercase : List[str] = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__a , __a ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) __lowercase : str = tokenizer.encode(__a , add_special_tokens=__a ) __lowercase : Dict = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__a , __a ) # Testing spaces after special tokens __lowercase : List[Any] = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(__a , lstrip=__a , rstrip=__a )} ) # mask token has a left space __lowercase : Dict = tokenizer.convert_tokens_to_ids(__a ) __lowercase : List[str] = """Encode <mask> sequence""" __lowercase : List[str] = """Encode <mask>sequence""" __lowercase : Union[str, Any] = tokenizer.encode(__a ) __lowercase : Dict = encoded.index(__a ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__a , __a ) __lowercase : int = tokenizer.encode(__a ) __lowercase : Union[str, Any] = encoded.index(__a ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__a , __a ) def lowerCAmelCase ( self : int ) -> str: """simple docstring""" pass def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) __lowercase : List[Any] = self.tokenizer_class.from_pretrained(__a , **__a ) __lowercase : Optional[Any] = """A, <mask> AllenNLP sentence.""" __lowercase : Union[str, Any] = tokenizer_r.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) __lowercase : Optional[Any] = tokenizer_p.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) __lowercase : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __lowercase : str = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __lowercase : Dict = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __lowercase : Any = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""trim_offsets"""] , __a ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : List[str] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` __lowercase : int = F"{text_of_1_token} {text_of_1_token}" __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Any = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) __lowercase : str = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Tuple = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) __lowercase : Optional[int] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : str = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) __lowercase : str = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : int = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) __lowercase : Any = F" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : str = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ) + 1, 1 + len(__a ) + 1 + len(__a )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Dict = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Tuple = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , )
649
0
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' _A : Union[str, Any] = IFInpaintingPipeline _A : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} _A : Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _A : str = PipelineTesterMixin.required_optional_params - {"""latents"""} def lowerCAmelCase ( self : str ) -> int: """simple docstring""" return self._get_dummy_components() def lowerCAmelCase ( self : Optional[int] , __a : List[str] , __a : List[Any]=0 ) -> List[Any]: """simple docstring""" if str(lowercase__ ).startswith("""mps""" ): __lowercase : Optional[Any] = torch.manual_seed(lowercase__ ) else: __lowercase : Optional[Any] = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __lowercase : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase__ ) ).to(lowercase__ ) __lowercase : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase__ ) ).to(lowercase__ ) __lowercase : Tuple = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" self._test_save_load_local() def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
704
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Dict , __a : Union[str, Any]=13 , __a : Dict=7 , __a : Dict=True , __a : Dict=True , __a : Any=True , __a : List[str]=True , __a : int=99 , __a : Optional[int]=32 , __a : str=2 , __a : int=4 , __a : List[str]=37 , __a : Union[str, Any]="gelu" , __a : Union[str, Any]=0.1 , __a : Union[str, Any]=0.1 , __a : List[Any]=512 , __a : int=16 , __a : Union[str, Any]=2 , __a : Union[str, Any]=0.02 , __a : List[str]=3 , __a : Dict=4 , __a : Optional[Any]=None , ) -> Optional[Any]: """simple docstring""" __lowercase : Any = parent __lowercase : Tuple = 13 __lowercase : Dict = 7 __lowercase : List[Any] = True __lowercase : Tuple = True __lowercase : List[str] = True __lowercase : Any = True __lowercase : Optional[int] = 99 __lowercase : str = 384 __lowercase : Optional[Any] = 2 __lowercase : Dict = 4 __lowercase : str = 37 __lowercase : Optional[int] = """gelu""" __lowercase : int = 0.1 __lowercase : Union[str, Any] = 0.1 __lowercase : Tuple = 512 __lowercase : Tuple = 16 __lowercase : Optional[int] = 2 __lowercase : Optional[Any] = 0.02 __lowercase : Dict = 3 __lowercase : Union[str, Any] = 4 __lowercase : Tuple = 128 __lowercase : Optional[Any] = 2 __lowercase : int = 9 __lowercase : List[Any] = 1 __lowercase : Union[str, Any] = None def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" __lowercase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : Optional[Any] = None if self.use_input_mask: __lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : Dict = None if self.use_token_type_ids: __lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase : Optional[Any] = None __lowercase : str = None __lowercase : Tuple = None if self.use_labels: __lowercase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : str = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : Optional[int] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Dict , __a : List[Any] , __a : List[str] , __a : Union[str, Any] , __a : str , __a : Union[str, Any] , __a : Tuple , __a : Tuple ) -> Dict: """simple docstring""" __lowercase : Dict = TFConvBertModel(config=__a ) __lowercase : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowercase : Any = [input_ids, input_mask] __lowercase : Dict = model(__a ) __lowercase : str = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : Any , __a : Tuple , __a : Union[str, Any] , __a : str , __a : Dict , __a : str ) -> Dict: """simple docstring""" __lowercase : Optional[int] = TFConvBertForMaskedLM(config=__a ) __lowercase : List[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : Any = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[int] , __a : int , __a : Any , __a : Optional[int] , __a : int , __a : int , __a : List[Any] , __a : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase : str = self.num_labels __lowercase : List[Any] = TFConvBertForSequenceClassification(config=__a ) __lowercase : int = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : List[str] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Optional[int] , __a : Any , __a : Optional[Any] , __a : int , __a : Optional[int] , __a : Tuple , __a : int , __a : int ) -> Dict: """simple docstring""" __lowercase : Tuple = self.num_choices __lowercase : Dict = TFConvBertForMultipleChoice(config=__a ) __lowercase : List[str] = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : int = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : str = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : str = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __lowercase : Dict = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : List[str] , __a : str , __a : List[str] , __a : List[str] , __a : List[str] , __a : Any , __a : Tuple , __a : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = self.num_labels __lowercase : Tuple = TFConvBertForTokenClassification(config=__a ) __lowercase : Dict = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : str = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : List[Any] , __a : Optional[int] , __a : List[str] , __a : Optional[Any] , __a : int , __a : Tuple , __a : Any , __a : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Any = TFConvBertForQuestionAnswering(config=__a ) __lowercase : str = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : List[Any] = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : Tuple = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : int = config_and_inputs __lowercase : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Dict = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _A : str = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _A : Union[str, Any] = False _A : List[str] = False _A : Dict = False def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : int = TFConvBertModelTester(self ) __lowercase : Tuple = ConfigTester(self , config_class=__a , hidden_size=37 ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__a ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Union[str, Any] = True __lowercase : List[Any] = True if hasattr(__a , """use_cache""" ): __lowercase : Optional[Any] = True __lowercase : List[str] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) __lowercase : int = getattr(self.model_tester , """key_length""" , __a ) for model_class in self.all_model_classes: __lowercase : Optional[Any] = self._prepare_for_class(__a , __a ) __lowercase : Tuple = model_class(__a ) __lowercase : Tuple = len(model(__a ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a , saved_model=__a ) __lowercase : List[Any] = os.path.join(__a , """saved_model""" , """1""" ) __lowercase : str = tf.keras.models.load_model(__a ) __lowercase : Optional[int] = model(__a ) if self.is_encoder_decoder: __lowercase : Union[str, Any] = outputs["""encoder_hidden_states"""] __lowercase : Union[str, Any] = outputs["""encoder_attentions"""] else: __lowercase : Union[str, Any] = outputs["""hidden_states"""] __lowercase : List[str] = outputs["""attentions"""] self.assertEqual(len(__a ) , __a ) __lowercase : List[Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : str = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) self.assertIsNotNone(__a ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : List[str] = True __lowercase : List[Any] = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length ) __lowercase : Optional[int] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) __lowercase : List[str] = getattr(self.model_tester , """key_length""" , __a ) __lowercase : List[Any] = getattr(self.model_tester , """key_length""" , __a ) def check_decoder_attentions_output(__a : List[str] ): __lowercase : Union[str, Any] = len(__a ) self.assertEqual(out_len % 2 , 0 ) __lowercase : Any = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__a : str ): __lowercase : str = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __lowercase : int = True __lowercase : Any = False __lowercase : List[Any] = model_class(__a ) __lowercase : Tuple = model(self._prepare_for_class(__a , __a ) ) __lowercase : Dict = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: __lowercase : Any = model_class(__a ) __lowercase : List[str] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __lowercase : Dict = True __lowercase : Optional[Any] = model_class(__a ) __lowercase : Optional[int] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine __lowercase : List[str] = True __lowercase : List[Any] = True __lowercase : Any = model_class(__a ) __lowercase : Optional[int] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @require_tf class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) __lowercase : str = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowercase : Tuple = model(__a )[0] __lowercase : Any = [1, 6, 768] self.assertEqual(output.shape , __a ) __lowercase : Optional[Any] = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-4 )
649
0
import numpy class lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , __a : numpy.ndarray , __a : numpy.ndarray ) -> Union[str, Any]: """simple docstring""" __lowercase : Dict = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. __lowercase : Dict = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. __lowercase : Dict = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. __lowercase : Any = numpy.random.rand(3 , 1 ) # Real output values provided. __lowercase : Union[str, Any] = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. __lowercase : List[str] = numpy.zeros(output_array.shape ) def lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase : Any = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. __lowercase : Any = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. __lowercase : Dict = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) __lowercase : Dict = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) __lowercase : int = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def lowerCAmelCase ( self : Dict , __a : numpy.ndarray , __a : int , __a : bool ) -> Any: """simple docstring""" for iteration in range(1 , iterations + 1 ): __lowercase : Union[str, Any] = self.feedforward() self.back_propagation() if give_loss: __lowercase : Tuple = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"Iteration {iteration} Loss: {loss}" ) def lowerCAmelCase ( self : Optional[int] , __a : numpy.ndarray ) -> str: """simple docstring""" __lowercase : int = input_arr __lowercase : Union[str, Any] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) __lowercase : Optional[Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) __lowercase : Optional[int] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def snake_case_ ( lowerCAmelCase_ : numpy.ndarray ): return 1 / (1 + numpy.exp(-value )) def snake_case_ ( lowerCAmelCase_ : numpy.ndarray ): return (value) * (1 - (value)) def snake_case_ ( ): __lowercase : Optional[Any] = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. __lowercase : int = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. __lowercase : List[Any] = TwoHiddenLayerNeuralNetwork( input_array=a_ , output_array=a_ ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=a_ , iterations=10 , give_loss=a_ ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
705
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : int , *__a : Dict , **__a : Optional[Any] ) -> None: """simple docstring""" warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , __a , ) super().__init__(*__a , **__a )
649
0
import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] ): __lowercase : Dict = multiprocessing.Manager() __lowercase : List[str] = manager.list() __lowercase : Union[str, Any] = multiprocessing.Process(target=lowerCAmelCase_ , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append("""timed out""" ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil __lowercase : Tuple = shutil.rmtree __lowercase : Optional[Any] = os.rmdir __lowercase : Optional[int] = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: __lowercase : List[str] = {} with swallow_io(): with time_limit(lowerCAmelCase_ ): exec(lowerCAmelCase_ , lowerCAmelCase_ ) result.append("""passed""" ) except TimeoutException: result.append("""timed out""" ) except BaseException as e: result.append(F"failed: {e}" ) # Needed for cleaning up. __lowercase : List[str] = rmtree __lowercase : Optional[Any] = rmdir __lowercase : List[str] = chdir @contextlib.contextmanager def snake_case_ ( lowerCAmelCase_ : Dict ): def signal_handler(lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] ): raise TimeoutException("""Timed out!""" ) signal.setitimer(signal.ITIMER_REAL , lowerCAmelCase_ ) signal.signal(signal.SIGALRM , lowerCAmelCase_ ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def snake_case_ ( ): __lowercase : List[str] = WriteOnlyStringIO() with contextlib.redirect_stdout(lowerCAmelCase_ ): with contextlib.redirect_stderr(lowerCAmelCase_ ): with redirect_stdin(lowerCAmelCase_ ): yield @contextlib.contextmanager def snake_case_ ( ): with tempfile.TemporaryDirectory() as dirname: with chdir(lowerCAmelCase_ ): yield dirname class lowerCAmelCase ( __a ): '''simple docstring''' pass class lowerCAmelCase ( io.StringIO ): '''simple docstring''' def lowerCAmelCase ( self : int , *__a : int , **__a : Union[str, Any] ) -> int: """simple docstring""" raise OSError def lowerCAmelCase ( self : int , *__a : Tuple , **__a : int ) -> str: """simple docstring""" raise OSError def lowerCAmelCase ( self : Any , *__a : Union[str, Any] , **__a : Any ) -> Dict: """simple docstring""" raise OSError def lowerCAmelCase ( self : Tuple , *__a : Any , **__a : Union[str, Any] ) -> List[Any]: """simple docstring""" return False class lowerCAmelCase ( contextlib._RedirectStream ): # type: ignore '''simple docstring''' _A : List[str] = "stdin" @contextlib.contextmanager def snake_case_ ( lowerCAmelCase_ : int ): if root == ".": yield return __lowercase : Any = os.getcwd() os.chdir(lowerCAmelCase_ ) try: yield except BaseException as exc: raise exc finally: os.chdir(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : Union[str, Any]=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins __lowercase : Dict = None __lowercase : Any = None import os __lowercase : Optional[int] = """1""" __lowercase : List[Any] = None __lowercase : Dict = None __lowercase : Optional[int] = None __lowercase : Union[str, Any] = None __lowercase : Union[str, Any] = None __lowercase : List[str] = None __lowercase : List[str] = None __lowercase : Dict = None __lowercase : Optional[Any] = None __lowercase : int = None __lowercase : Union[str, Any] = None __lowercase : Dict = None __lowercase : Dict = None __lowercase : Optional[int] = None __lowercase : Optional[Any] = None __lowercase : List[str] = None __lowercase : Dict = None __lowercase : Optional[Any] = None __lowercase : List[str] = None __lowercase : Union[str, Any] = None __lowercase : Union[str, Any] = None __lowercase : Optional[Any] = None __lowercase : Tuple = None __lowercase : Optional[Any] = None __lowercase : str = None __lowercase : Any = None __lowercase : Union[str, Any] = None import shutil __lowercase : Any = None __lowercase : Union[str, Any] = None __lowercase : Union[str, Any] = None import subprocess __lowercase : List[str] = None # type: ignore __lowercase : Any = None import sys __lowercase : Dict = None __lowercase : Optional[int] = None __lowercase : Tuple = None __lowercase : Union[str, Any] = None __lowercase : Dict = None
706
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Optional[int] = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() __lowercase : List[str] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Dict = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } __lowercase : List[str] = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 16000, """return_attention_mask""": False, """do_normalize""": True, } __lowercase : Tuple = tempfile.mkdtemp() __lowercase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : str = os.path.join(self.tmpdirname , __a ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) # load decoder from hub __lowercase : Optional[int] = """hf-internal-testing/ngram-beam-search-decoder""" def lowerCAmelCase ( self : Optional[Any] , **__a : Dict ) -> Tuple: """simple docstring""" __lowercase : Union[str, Any] = self.add_kwargs_tokens_map.copy() kwargs.update(__a ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : str , **__a : int ) -> Tuple: """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Union[str, Any] , **__a : Union[str, Any] ) -> List[Any]: """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__a ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() __lowercase : Any = self.get_feature_extractor() __lowercase : str = self.get_decoder() __lowercase : Tuple = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) processor.save_pretrained(self.tmpdirname ) __lowercase : Tuple = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __a ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __a ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __a ) def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Any = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __lowercase : str = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : List[str] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(__a , """include""" ): WavaVecaProcessorWithLM( tokenizer=__a , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : List[Any] = self.get_feature_extractor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : int = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Optional[int] = floats_list((3, 1000) ) __lowercase : List[Any] = feature_extractor(__a , return_tensors="""np""" ) __lowercase : List[str] = processor(__a , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : List[Any] = self.get_feature_extractor() __lowercase : int = self.get_tokenizer() __lowercase : Dict = self.get_decoder() __lowercase : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Dict = """This is a test string""" __lowercase : Any = processor(text=__a ) __lowercase : Dict = tokenizer(__a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase ( self : str , __a : Tuple=(2, 10, 16) , __a : int=77 ) -> Optional[Any]: """simple docstring""" np.random.seed(__a ) return np.random.rand(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : List[str] = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : str = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : List[str] = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __lowercase : Optional[Any] = processor.decode(__a ) __lowercase : Any = decoder.decode_beams(__a )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def lowerCAmelCase ( self : List[str] , __a : Dict ) -> List[Any]: """simple docstring""" __lowercase : str = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : Optional[int] = self.get_decoder() __lowercase : Any = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Optional[Any] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __lowercase : Union[str, Any] = processor.batch_decode(__a ) else: with get_context(__a ).Pool() as pool: __lowercase : Optional[Any] = processor.batch_decode(__a , __a ) __lowercase : Union[str, Any] = list(__a ) with get_context("""fork""" ).Pool() as p: __lowercase : Optional[Any] = decoder.decode_beams_batch(__a , __a ) __lowercase , __lowercase , __lowercase : Any = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__a , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(__a , decoded_processor.logit_score ) self.assertListEqual(__a , decoded_processor.lm_score ) def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase : int = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : List[str] = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Dict = self._get_dummy_logits() __lowercase : Tuple = 15 __lowercase : Tuple = -20.0 __lowercase : Dict = -4.0 __lowercase : Dict = processor.batch_decode( __a , beam_width=__a , beam_prune_logp=__a , token_min_logp=__a , ) __lowercase : Tuple = decoded_processor_out.text __lowercase : List[Any] = list(__a ) with get_context("""fork""" ).Pool() as pool: __lowercase : Any = decoder.decode_beams_batch( __a , __a , beam_width=__a , beam_prune_logp=__a , token_min_logp=__a , ) __lowercase : Optional[Any] = [d[0][0] for d in decoded_decoder_out] __lowercase : Optional[int] = [d[0][2] for d in decoded_decoder_out] __lowercase : Optional[int] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__a , __a ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , __a ) self.assertTrue(np.array_equal(__a , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , __a , atol=1E-3 ) ) self.assertTrue(np.array_equal(__a , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , __a , atol=1E-3 ) ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase : str = self.get_feature_extractor() __lowercase : List[Any] = self.get_tokenizer() __lowercase : List[Any] = self.get_decoder() __lowercase : Dict = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : List[Any] = self._get_dummy_logits() __lowercase : Optional[int] = 2.0 __lowercase : Tuple = 5.0 __lowercase : Optional[Any] = -20.0 __lowercase : Tuple = True __lowercase : Union[str, Any] = processor.batch_decode( __a , alpha=__a , beta=__a , unk_score_offset=__a , lm_score_boundary=__a , ) __lowercase : Any = decoded_processor_out.text __lowercase : List[Any] = list(__a ) decoder.reset_params( alpha=__a , beta=__a , unk_score_offset=__a , lm_score_boundary=__a , ) with get_context("""fork""" ).Pool() as pool: __lowercase : Tuple = decoder.decode_beams_batch( __a , __a , ) __lowercase : int = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__a , __a ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , __a ) __lowercase : str = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , __a ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] __lowercase : str = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __lowercase : int = os.listdir(__a ) __lowercase : Optional[Any] = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = snapshot_download("""hf-internal-testing/processor_with_lm""" ) __lowercase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(__a ) __lowercase : Dict = processor.decoder.model_container[processor.decoder._model_key] __lowercase : List[Any] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __lowercase : Dict = os.listdir(__a ) __lowercase : List[Any] = os.listdir(__a ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" __lowercase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Dict = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Any = floats_list((3, 1000) ) __lowercase : List[str] = processor_wavaveca(__a , return_tensors="""np""" ) __lowercase : List[Any] = processor_auto(__a , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) __lowercase : List[str] = self._get_dummy_logits() __lowercase : List[str] = processor_wavaveca.batch_decode(__a ) __lowercase : Optional[int] = processor_auto.batch_decode(__a ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Any = self.get_feature_extractor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : Dict = self.get_decoder() __lowercase : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def lowerCAmelCase ( __a : Union[str, Any] , __a : List[Any] ) -> Dict: """simple docstring""" __lowercase : Any = [d[key] for d in offsets] return retrieved_list def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" __lowercase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Optional[Any] = self._get_dummy_logits()[0] __lowercase : Dict = processor.decode(__a , output_word_offsets=__a ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__a , __a ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : List[str] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Any = self._get_dummy_logits() __lowercase : Dict = processor.batch_decode(__a , output_word_offsets=__a ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__a , __a ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(__a , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" import torch __lowercase : Any = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=__a ) __lowercase : str = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=16000 ) ) __lowercase : Tuple = iter(__a ) __lowercase : Union[str, Any] = next(__a ) __lowercase : int = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) __lowercase : int = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __lowercase : Union[str, Any] = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): __lowercase : List[Any] = model(__a ).logits.cpu().numpy() __lowercase : Tuple = processor.decode(logits[0] , output_word_offsets=__a ) __lowercase : int = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __lowercase : Optional[Any] = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] __lowercase : str = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(__a , """word""" ) ) , __a ) self.assertEqual(""" """.join(self.get_from_offsets(__a , """word""" ) ) , output.text ) # output times __lowercase : Tuple = torch.tensor(self.get_from_offsets(__a , """start_time""" ) ) __lowercase : Dict = torch.tensor(self.get_from_offsets(__a , """end_time""" ) ) # fmt: off __lowercase : List[Any] = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) __lowercase : Optional[int] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(__a , __a , atol=0.01 ) ) self.assertTrue(torch.allclose(__a , __a , atol=0.01 ) )
649
0
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple ): return params[F"{prefix}/{prefix}/relpos_bias/rel_embedding"][:, i, :] def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any]="attention" ): __lowercase : List[Any] = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/key/kernel"][:, i, :, :] ) __lowercase : Tuple = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) __lowercase : Optional[Any] = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/out/kernel"][:, i, :, :] ) __lowercase : Dict = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) __lowercase : str = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/query/kernel"][:, i, :, :] ) __lowercase : int = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) __lowercase : Dict = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/value/kernel"][:, i, :, :] ) __lowercase : Optional[Any] = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any]=False ): if split_mlp_wi: __lowercase : Dict = params[F"{prefix}/{prefix}/mlp/wi_0/kernel"][:, i, :] __lowercase : Optional[Any] = params[F"{prefix}/{prefix}/mlp/wi_1/kernel"][:, i, :] __lowercase : Union[str, Any] = (wi_a, wi_a) else: __lowercase : Optional[Any] = params[F"{prefix}/{prefix}/mlp/wi/kernel"][:, i, :] __lowercase : int = params[F"{prefix}/{prefix}/mlp/wo/kernel"][:, i, :] return wi, wo def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any ): return params[F"{prefix}/{prefix}/{layer_name}/scale"][:, i] def snake_case_ ( lowerCAmelCase_ : List[str] , *, lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] = False ): __lowercase : int = traverse_util.flatten_dict(variables["""target"""] ) __lowercase : str = {"/".join(lowercase_ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __lowercase : Union[str, Any] = "encoder/encoder/mlp/wi_0/kernel" in old print("""Split MLP:""" , lowercase_ ) __lowercase : List[Any] = collections.OrderedDict() # Shared embeddings. __lowercase : str = old["token_embedder/embedding"] # Encoder. for i in range(lowercase_ ): # Block i, layer 0 (Self Attention). __lowercase : int = tax_layer_norm_lookup(lowercase_ , lowercase_ , """encoder""" , """pre_attention_layer_norm""" ) __lowercase : str = tax_attention_lookup(lowercase_ , lowercase_ , """encoder""" , """attention""" ) __lowercase : List[Any] = layer_norm __lowercase : str = k.T __lowercase : Optional[Any] = o.T __lowercase : List[str] = q.T __lowercase : int = v.T # Block i, layer 1 (MLP). __lowercase : Dict = tax_layer_norm_lookup(lowercase_ , lowercase_ , """encoder""" , """pre_mlp_layer_norm""" ) __lowercase : int = tax_mlp_lookup(lowercase_ , lowercase_ , """encoder""" , lowercase_ ) __lowercase : int = layer_norm if split_mlp_wi: __lowercase : Optional[int] = wi[0].T __lowercase : Optional[Any] = wi[1].T else: __lowercase : Any = wi.T __lowercase : Optional[Any] = wo.T if scalable_attention: # convert the rel_embedding of each layer __lowercase : Optional[int] = tax_relpos_bias_lookup( lowercase_ , lowercase_ , """encoder""" ).T __lowercase : str = old["encoder/encoder_norm/scale"] if not scalable_attention: __lowercase : Any = tax_relpos_bias_lookup( lowercase_ , 0 , """encoder""" ).T __lowercase : str = tax_relpos_bias_lookup( lowercase_ , 0 , """decoder""" ).T if not is_encoder_only: # Decoder. for i in range(lowercase_ ): # Block i, layer 0 (Self Attention). __lowercase : List[Any] = tax_layer_norm_lookup(lowercase_ , lowercase_ , """decoder""" , """pre_self_attention_layer_norm""" ) __lowercase : Any = tax_attention_lookup(lowercase_ , lowercase_ , """decoder""" , """self_attention""" ) __lowercase : List[str] = layer_norm __lowercase : Union[str, Any] = k.T __lowercase : str = o.T __lowercase : List[str] = q.T __lowercase : Union[str, Any] = v.T # Block i, layer 1 (Cross Attention). __lowercase : Dict = tax_layer_norm_lookup(lowercase_ , lowercase_ , """decoder""" , """pre_cross_attention_layer_norm""" ) __lowercase : int = tax_attention_lookup(lowercase_ , lowercase_ , """decoder""" , """encoder_decoder_attention""" ) __lowercase : List[str] = layer_norm __lowercase : str = k.T __lowercase : List[Any] = o.T __lowercase : int = q.T __lowercase : List[Any] = v.T # Block i, layer 2 (MLP). __lowercase : Tuple = tax_layer_norm_lookup(lowercase_ , lowercase_ , """decoder""" , """pre_mlp_layer_norm""" ) __lowercase : Tuple = tax_mlp_lookup(lowercase_ , lowercase_ , """decoder""" , lowercase_ ) __lowercase : Optional[int] = layer_norm if split_mlp_wi: __lowercase : List[Any] = wi[0].T __lowercase : Optional[int] = wi[1].T else: __lowercase : str = wi.T __lowercase : Union[str, Any] = wo.T if scalable_attention: # convert the rel_embedding of each layer __lowercase : Optional[int] = tax_relpos_bias_lookup(lowercase_ , lowercase_ , """decoder""" ).T __lowercase : Tuple = old["decoder/decoder_norm/scale"] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __lowercase : Any = old["decoder/logits_dense/kernel"].T return new def snake_case_ ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] ): __lowercase : Dict = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __lowercase : str = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __lowercase : Optional[int] = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) __lowercase : int = state_dict["shared.weight"] return state_dict def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict ): __lowercase : int = checkpoints.load_tax_checkpoint(lowercase_ ) __lowercase : List[str] = convert_tax_to_pytorch( lowercase_ , num_layers=config.num_layers , is_encoder_only=lowercase_ , scalable_attention=lowercase_ ) __lowercase : Union[str, Any] = make_state_dict(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ , strict=lowercase_ ) def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str = False , lowerCAmelCase_ : Any = False , ): __lowercase : int = MTaConfig.from_json_file(lowercase_ ) print(F"Building PyTorch model from configuration: {config}" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __lowercase : Optional[int] = UMTaEncoderModel(lowercase_ ) else: __lowercase : Optional[int] = UMTaForConditionalGeneration(lowercase_ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(lowercase_ ) # Verify that we can load the checkpoint. model.from_pretrained(lowercase_ ) print("""Done""" ) if __name__ == "__main__": lowerCamelCase : Any = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) lowerCamelCase : Dict = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
707
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(0 ) == 0 ) def snake_case_ ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
649
0
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _A : List[Any] = RobertaTokenizer _A : Optional[int] = RobertaTokenizerFast _A : Union[str, Any] = True _A : Union[str, Any] = {"cls_token": "<s>"} def lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase : List[Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __lowercase : Union[str, Any] = dict(zip(_snake_case , range(len(_snake_case ) ) ) ) __lowercase : int = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __lowercase : Any = {"""unk_token""": """<unk>"""} __lowercase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_snake_case ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_snake_case ) ) def lowerCAmelCase ( self : Optional[Any] , **__a : str ) -> int: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_snake_case ) def lowerCAmelCase ( self : Union[str, Any] , **__a : Dict ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **_snake_case ) def lowerCAmelCase ( self : Optional[Any] , __a : Optional[int] ) -> List[str]: """simple docstring""" __lowercase : Any = """lower newer""" __lowercase : List[Any] = """lower newer""" return input_text, output_text def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowercase : Optional[int] = """lower newer""" __lowercase : Union[str, Any] = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] __lowercase : Any = tokenizer.tokenize(_snake_case ) # , add_prefix_space=True) self.assertListEqual(_snake_case , _snake_case ) __lowercase : Optional[Any] = tokens + [tokenizer.unk_token] __lowercase : Optional[Any] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) , _snake_case ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase : Tuple = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=_snake_case ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=_snake_case ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = self.tokenizer_class.from_pretrained("""roberta-base""" ) __lowercase : Optional[int] = tokenizer.encode("""sequence builders""" , add_special_tokens=_snake_case ) __lowercase : Optional[int] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_snake_case ) __lowercase : Optional[int] = tokenizer.encode( """sequence builders""" , add_special_tokens=_snake_case , add_prefix_space=_snake_case ) __lowercase : Dict = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=_snake_case , add_prefix_space=_snake_case ) __lowercase : Optional[int] = tokenizer.build_inputs_with_special_tokens(_snake_case ) __lowercase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_snake_case , _snake_case ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase : Tuple = self.get_tokenizer() __lowercase : Optional[int] = """Encode this sequence.""" __lowercase : Union[str, Any] = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments __lowercase : Optional[int] = tokenizer.encode(_snake_case , add_special_tokens=_snake_case , add_prefix_space=_snake_case ) __lowercase : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(_snake_case , _snake_case ) __lowercase : List[Any] = tokenizer.encode(_snake_case , add_special_tokens=_snake_case , add_prefix_space=_snake_case ) __lowercase : int = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(_snake_case , _snake_case ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) __lowercase : Optional[int] = tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(_snake_case , _snake_case ) # Testing spaces after special tokens __lowercase : Tuple = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case )} ) # mask token has a left space __lowercase : Any = tokenizer.convert_tokens_to_ids(_snake_case ) __lowercase : Optional[Any] = """Encode <mask> sequence""" __lowercase : Tuple = """Encode <mask>sequence""" __lowercase : List[Any] = tokenizer.encode(_snake_case ) __lowercase : Any = encoded.index(_snake_case ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(_snake_case , _snake_case ) __lowercase : Any = tokenizer.encode(_snake_case ) __lowercase : Dict = encoded.index(_snake_case ) __lowercase : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(_snake_case , _snake_case ) def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" pass def lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : str = self.rust_tokenizer_class.from_pretrained(_snake_case , **_snake_case ) __lowercase : List[str] = self.tokenizer_class.from_pretrained(_snake_case , **_snake_case ) __lowercase : str = """A, <mask> AllenNLP sentence.""" __lowercase : Any = tokenizer_r.encode_plus(_snake_case , add_special_tokens=_snake_case , return_token_type_ids=_snake_case ) __lowercase : List[str] = tokenizer_p.encode_plus(_snake_case , add_special_tokens=_snake_case , return_token_type_ids=_snake_case ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) __lowercase : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __lowercase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( _snake_case , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( _snake_case , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __lowercase : Any = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=_snake_case , add_prefix_space=_snake_case , trim_offsets=_snake_case ) __lowercase : str = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __lowercase : str = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , _snake_case ) self.assertEqual(post_processor_state["""add_prefix_space"""] , _snake_case ) self.assertEqual(post_processor_state["""trim_offsets"""] , _snake_case ) def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : str = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` __lowercase : Optional[Any] = F"{text_of_1_token} {text_of_1_token}" __lowercase : Any = self.rust_tokenizer_class.from_pretrained( _snake_case , use_fast=_snake_case , add_prefix_space=_snake_case , trim_offsets=_snake_case ) __lowercase : Tuple = tokenizer_r(_snake_case , return_offsets_mapping=_snake_case , add_special_tokens=_snake_case ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_snake_case ) + 1, len(_snake_case ) + 1 + len(_snake_case )) , ) __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained( _snake_case , use_fast=_snake_case , add_prefix_space=_snake_case , trim_offsets=_snake_case ) __lowercase : str = tokenizer_r(_snake_case , return_offsets_mapping=_snake_case , add_special_tokens=_snake_case ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_snake_case ) + 1, len(_snake_case ) + 1 + len(_snake_case )) , ) __lowercase : Dict = self.rust_tokenizer_class.from_pretrained( _snake_case , use_fast=_snake_case , add_prefix_space=_snake_case , trim_offsets=_snake_case ) __lowercase : Tuple = tokenizer_r(_snake_case , return_offsets_mapping=_snake_case , add_special_tokens=_snake_case ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_snake_case ), len(_snake_case ) + 1 + len(_snake_case )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( _snake_case , use_fast=_snake_case , add_prefix_space=_snake_case , trim_offsets=_snake_case ) __lowercase : str = tokenizer_r(_snake_case , return_offsets_mapping=_snake_case , add_special_tokens=_snake_case ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_snake_case ), len(_snake_case ) + 1 + len(_snake_case )) , ) __lowercase : Any = F" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( _snake_case , use_fast=_snake_case , add_prefix_space=_snake_case , trim_offsets=_snake_case ) __lowercase : Any = tokenizer_r(_snake_case , return_offsets_mapping=_snake_case , add_special_tokens=_snake_case ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_snake_case ) + 1, 1 + len(_snake_case ) + 1 + len(_snake_case )) , ) __lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( _snake_case , use_fast=_snake_case , add_prefix_space=_snake_case , trim_offsets=_snake_case ) __lowercase : Dict = tokenizer_r(_snake_case , return_offsets_mapping=_snake_case , add_special_tokens=_snake_case ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_snake_case ), 1 + len(_snake_case ) + 1 + len(_snake_case )) , ) __lowercase : Any = self.rust_tokenizer_class.from_pretrained( _snake_case , use_fast=_snake_case , add_prefix_space=_snake_case , trim_offsets=_snake_case ) __lowercase : Tuple = tokenizer_r(_snake_case , return_offsets_mapping=_snake_case , add_special_tokens=_snake_case ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_snake_case ), 1 + len(_snake_case ) + 1 + len(_snake_case )) , )
708
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCamelCase : int = '''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine''' def snake_case_ ( ): __lowercase : List[Any] = _ask_options( """In which compute environment are you running?""" , ["""This machine""", """AWS (Amazon SageMaker)"""] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __lowercase : Union[str, Any] = get_sagemaker_input() else: __lowercase : str = get_cluster_input() return config def snake_case_ ( lowerCAmelCase_ : List[str]=None ): if subparsers is not None: __lowercase : Optional[int] = subparsers.add_parser("""config""" , description=lowerCAmelCase_ ) else: __lowercase : List[str] = argparse.ArgumentParser("""Accelerate config command""" , description=lowerCAmelCase_ ) parser.add_argument( """--config_file""" , default=lowerCAmelCase_ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def snake_case_ ( lowerCAmelCase_ : Tuple ): __lowercase : Union[str, Any] = get_user_input() if args.config_file is not None: __lowercase : List[Any] = args.config_file else: if not os.path.isdir(lowerCAmelCase_ ): os.makedirs(lowerCAmelCase_ ) __lowercase : Any = default_yaml_config_file if config_file.endswith(""".json""" ): config.to_json_file(lowerCAmelCase_ ) else: config.to_yaml_file(lowerCAmelCase_ ) print(F"accelerate configuration saved at {config_file}" ) def snake_case_ ( ): __lowercase : str = config_command_parser() __lowercase : str = parser.parse_args() config_command(lowerCAmelCase_ ) if __name__ == "__main__": main()
649
0
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": lowerCamelCase : Any = input('''Enter image url: ''').strip() print(f'''Downloading image from {url} ...''') lowerCamelCase : List[str] = BeautifulSoup(requests.get(url).content, '''html.parser''') # The image URL is in the content field of the first meta tag with property og:image lowerCamelCase : Union[str, Any] = soup.find('''meta''', {'''property''': '''og:image'''})["""content"""] lowerCamelCase : int = requests.get(image_url).content lowerCamelCase : Dict = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg''' with open(file_name, '''wb''') as fp: fp.write(image_data) print(f'''Done. Image saved to disk as {file_name}.''')
709
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : list[str] | None = None ): __lowercase : Tuple = word_bank or [] # create a table __lowercase : int = len(lowerCAmelCase_ ) + 1 __lowercase : list[list[list[str]]] = [] for _ in range(lowerCAmelCase_ ): table.append([] ) # seed value __lowercase : Dict = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowerCAmelCase_ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowerCAmelCase_ )] == word: __lowercase : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowerCAmelCase_ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowerCAmelCase_ )]: combination.reverse() return table[len(lowerCAmelCase_ )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
649
0
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig lowerCamelCase : Optional[Any] = logging.get_logger(__name__) # General docstring lowerCamelCase : Union[str, Any] = '''PoolFormerConfig''' # Base docstring lowerCamelCase : Union[str, Any] = '''sail/poolformer_s12''' lowerCamelCase : str = [1, 5_12, 7, 7] # Image classification docstring lowerCamelCase : int = '''sail/poolformer_s12''' lowerCamelCase : str = '''tabby, tabby cat''' lowerCamelCase : int = [ '''sail/poolformer_s12''', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str = 0.0 , lowerCAmelCase_ : Dict = False ): if drop_prob == 0.0 or not training: return input __lowercase : List[str] = 1 - drop_prob __lowercase : Optional[int] = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets __lowercase : str = keep_prob + torch.rand(snake_case_ , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize __lowercase : List[str] = input.div(snake_case_ ) * random_tensor return output class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , __a : int = None ) -> None: """simple docstring""" super().__init__() __lowercase : List[str] = drop_prob def lowerCAmelCase ( self : Tuple , __a : List[Any] ) -> torch.Tensor: """simple docstring""" return drop_path(_a , self.drop_prob , self.training ) def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" return "p={}".format(self.drop_prob ) class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , __a : List[str] , __a : Tuple , __a : Dict , __a : List[Any] , __a : Dict , __a : Optional[Any]=None ) -> List[str]: """simple docstring""" super().__init__() __lowercase : int = patch_size if isinstance(_a , collections.abc.Iterable ) else (patch_size, patch_size) __lowercase : Optional[Any] = stride if isinstance(_a , collections.abc.Iterable ) else (stride, stride) __lowercase : Dict = padding if isinstance(_a , collections.abc.Iterable ) else (padding, padding) __lowercase : Optional[Any] = nn.Convad(_a , _a , kernel_size=_a , stride=_a , padding=_a ) __lowercase : str = norm_layer(_a ) if norm_layer else nn.Identity() def lowerCAmelCase ( self : Optional[int] , __a : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Any = self.projection(_a ) __lowercase : List[Any] = self.norm(_a ) return embeddings class lowerCAmelCase ( nn.GroupNorm ): '''simple docstring''' def __init__( self : Union[str, Any] , __a : Optional[int] , **__a : Tuple ) -> List[Any]: """simple docstring""" super().__init__(1 , _a , **_a ) class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , __a : Union[str, Any] ) -> int: """simple docstring""" super().__init__() __lowercase : Union[str, Any] = nn.AvgPoolad(_a , stride=1 , padding=pool_size // 2 , count_include_pad=_a ) def lowerCAmelCase ( self : Any , __a : int ) -> Tuple: """simple docstring""" return self.pool(_a ) - hidden_states class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : str , __a : Dict , __a : List[Any] , __a : int , __a : List[str] ) -> int: """simple docstring""" super().__init__() __lowercase : Tuple = nn.Convad(_a , _a , 1 ) __lowercase : Tuple = nn.Convad(_a , _a , 1 ) __lowercase : Any = PoolFormerDropPath(_a ) if isinstance(config.hidden_act , _a ): __lowercase : Optional[int] = ACTaFN[config.hidden_act] else: __lowercase : Optional[Any] = config.hidden_act def lowerCAmelCase ( self : List[str] , __a : Optional[int] ) -> Any: """simple docstring""" __lowercase : Tuple = self.conva(_a ) __lowercase : int = self.act_fn(_a ) __lowercase : List[str] = self.drop(_a ) __lowercase : Union[str, Any] = self.conva(_a ) __lowercase : Optional[int] = self.drop(_a ) return hidden_states class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , __a : Dict , __a : Optional[Any] , __a : Any , __a : str , __a : Optional[int] , __a : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" super().__init__() __lowercase : List[str] = PoolFormerPooling(_a ) __lowercase : int = PoolFormerOutput(_a , _a , _a , _a ) __lowercase : Optional[Any] = PoolFormerGroupNorm(_a ) __lowercase : Optional[Any] = PoolFormerGroupNorm(_a ) # Useful for training neural nets __lowercase : List[Any] = PoolFormerDropPath(_a ) if drop_path > 0.0 else nn.Identity() __lowercase : List[str] = config.use_layer_scale if config.use_layer_scale: __lowercase : Tuple = nn.Parameter( config.layer_scale_init_value * torch.ones((_a) ) , requires_grad=_a ) __lowercase : Tuple = nn.Parameter( config.layer_scale_init_value * torch.ones((_a) ) , requires_grad=_a ) def lowerCAmelCase ( self : Optional[Any] , __a : Any ) -> Union[str, Any]: """simple docstring""" if self.use_layer_scale: __lowercase : Optional[Any] = self.pooling(self.before_norm(_a ) ) __lowercase : Union[str, Any] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection __lowercase : Union[str, Any] = hidden_states + self.drop_path(_a ) __lowercase : List[Any] = () __lowercase : List[str] = self.output(self.after_norm(_a ) ) __lowercase : Optional[Any] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection __lowercase : List[Any] = hidden_states + self.drop_path(_a ) __lowercase : Union[str, Any] = (output,) + outputs return outputs else: __lowercase : int = self.drop_path(self.pooling(self.before_norm(_a ) ) ) # First residual connection __lowercase : int = pooling_output + hidden_states __lowercase : Dict = () # Second residual connection inside the PoolFormerOutput block __lowercase : int = self.drop_path(self.output(self.after_norm(_a ) ) ) __lowercase : Union[str, Any] = hidden_states + layer_output __lowercase : Dict = (output,) + outputs return outputs class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , __a : Tuple ) -> Optional[int]: """simple docstring""" super().__init__() __lowercase : Union[str, Any] = config # stochastic depth decay rule __lowercase : Union[str, Any] = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings __lowercase : Optional[Any] = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) __lowercase : Optional[int] = nn.ModuleList(_a ) # Transformer blocks __lowercase : Optional[Any] = [] __lowercase : Tuple = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers __lowercase : List[Any] = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( _a , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(_a ) ) __lowercase : List[Any] = nn.ModuleList(_a ) def lowerCAmelCase ( self : List[str] , __a : List[Any] , __a : str=False , __a : Dict=True ) -> Tuple: """simple docstring""" __lowercase : Tuple = () if output_hidden_states else None __lowercase : List[str] = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): __lowercase : Union[str, Any] = layers # Get patch embeddings from hidden_states __lowercase : str = embedding_layer(_a ) # Send the embeddings through the blocks for _, blk in enumerate(_a ): __lowercase : Optional[Any] = blk(_a ) __lowercase : List[str] = layer_outputs[0] if output_hidden_states: __lowercase : Any = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_a , hidden_states=_a ) class lowerCAmelCase ( UpperCamelCase__ ): '''simple docstring''' _A : Any = PoolFormerConfig _A : Optional[Any] = '''poolformer''' _A : Optional[Any] = '''pixel_values''' _A : Optional[Any] = True def lowerCAmelCase ( self : Dict , __a : Tuple ) -> Tuple: """simple docstring""" if isinstance(_a , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_a , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def lowerCAmelCase ( self : Optional[Any] , __a : List[str] , __a : Union[str, Any]=False ) -> Union[str, Any]: """simple docstring""" if isinstance(_a , _a ): __lowercase : List[str] = value lowerCamelCase : Optional[int] = r'''\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n''' lowerCamelCase : List[str] = r'''\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n''' @add_start_docstrings( '''The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.''' , UpperCamelCase__ , ) class lowerCAmelCase ( UpperCamelCase__ ): '''simple docstring''' def __init__( self : str , __a : int ) -> List[str]: """simple docstring""" super().__init__(_a ) __lowercase : Any = config __lowercase : Union[str, Any] = PoolFormerEncoder(_a ) # Initialize weights and apply final processing self.post_init() def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(_a ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_a , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase ( self : Tuple , __a : Dict = None , __a : List[Any] = None , __a : Tuple = None , ) -> Union[Tuple, BaseModelOutputWithNoAttention]: """simple docstring""" __lowercase : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowercase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) __lowercase : Any = self.encoder( _a , output_hidden_states=_a , return_dict=_a , ) __lowercase : Optional[int] = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=_a , hidden_states=encoder_outputs.hidden_states , ) class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Any , __a : Any ) -> Tuple: """simple docstring""" super().__init__() __lowercase : List[str] = nn.Linear(config.hidden_size , config.hidden_size ) def lowerCAmelCase ( self : List[str] , __a : Tuple ) -> Tuple: """simple docstring""" __lowercase : str = self.dense(_a ) return output @add_start_docstrings( '''\n PoolFormer Model transformer with an image classification head on top\n ''' , UpperCamelCase__ , ) class lowerCAmelCase ( UpperCamelCase__ ): '''simple docstring''' def __init__( self : Optional[Any] , __a : Dict ) -> List[Any]: """simple docstring""" super().__init__(_a ) __lowercase : Tuple = config.num_labels __lowercase : Optional[Any] = PoolFormerModel(_a ) # Final norm __lowercase : Optional[int] = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head __lowercase : str = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_a ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_a , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase ( self : Tuple , __a : Any = None , __a : Union[str, Any] = None , __a : List[Any] = None , __a : Optional[int] = None , ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: """simple docstring""" __lowercase : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict __lowercase : Optional[Any] = self.poolformer( _a , output_hidden_states=_a , return_dict=_a , ) __lowercase : Tuple = outputs[0] __lowercase : Any = self.classifier(self.norm(_a ).mean([-2, -1] ) ) __lowercase : Dict = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __lowercase : Union[str, Any] = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __lowercase : Optional[int] = """single_label_classification""" else: __lowercase : List[Any] = """multi_label_classification""" if self.config.problem_type == "regression": __lowercase : Union[str, Any] = MSELoss() if self.num_labels == 1: __lowercase : str = loss_fct(logits.squeeze() , labels.squeeze() ) else: __lowercase : Optional[Any] = loss_fct(_a , _a ) elif self.config.problem_type == "single_label_classification": __lowercase : List[str] = CrossEntropyLoss() __lowercase : Any = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __lowercase : List[Any] = BCEWithLogitsLoss() __lowercase : Dict = loss_fct(_a , _a ) if not return_dict: __lowercase : List[str] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_a , logits=_a , hidden_states=outputs.hidden_states )
710
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(1 ) != 0 ) def snake_case_ ( ): assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
649
0
import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : Any = logging.get_logger(__name__) set_seed(7_70) lowerCamelCase : Optional[Any] = { 'c_attn': 'att_proj', 'c_proj': 'out_proj', 'c_fc': 'in_proj', 'transformer.': '', 'h.': 'layers.', 'ln_1': 'layernorm_1', 'ln_2': 'layernorm_2', 'ln_f': 'layernorm_final', 'wpe': 'position_embeds_layer', 'wte': 'input_embeds_layer', } lowerCamelCase : Optional[int] = { 'text_small': { 'repo_id': 'suno/bark', 'file_name': 'text.pt', }, 'coarse_small': { 'repo_id': 'suno/bark', 'file_name': 'coarse.pt', }, 'fine_small': { 'repo_id': 'suno/bark', 'file_name': 'fine.pt', }, 'text': { 'repo_id': 'suno/bark', 'file_name': 'text_2.pt', }, 'coarse': { 'repo_id': 'suno/bark', 'file_name': 'coarse_2.pt', }, 'fine': { 'repo_id': 'suno/bark', 'file_name': 'fine_2.pt', }, } lowerCamelCase : Tuple = os.path.dirname(os.path.abspath(__file__)) lowerCamelCase : List[str] = os.path.join(os.path.expanduser('''~'''), '''.cache''') lowerCamelCase : Tuple = os.path.join(os.getenv('''XDG_CACHE_HOME''', default_cache_dir), '''suno''', '''bark_v0''') def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any]=False ): __lowercase : Optional[Any] = model_type if use_small: key += "_small" return os.path.join(__UpperCamelCase , REMOTE_MODEL_PATHS[key]["""file_name"""] ) def snake_case_ ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict ): os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) hf_hub_download(repo_id=__UpperCamelCase , filename=__UpperCamelCase , local_dir=__UpperCamelCase ) def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Optional[int]="text" ): if model_type == "text": __lowercase : Optional[int] = BarkSemanticModel __lowercase : str = BarkSemanticConfig __lowercase : int = BarkSemanticGenerationConfig elif model_type == "coarse": __lowercase : Optional[int] = BarkCoarseModel __lowercase : Tuple = BarkCoarseConfig __lowercase : Optional[int] = BarkCoarseGenerationConfig elif model_type == "fine": __lowercase : str = BarkFineModel __lowercase : List[Any] = BarkFineConfig __lowercase : Optional[Any] = BarkFineGenerationConfig else: raise NotImplementedError() __lowercase : Optional[Any] = F"{model_type}_small" if use_small else model_type __lowercase : str = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(__UpperCamelCase ): logger.info(F"{model_type} model not found, downloading into `{CACHE_DIR}`." ) _download(model_info["""repo_id"""] , model_info["""file_name"""] ) __lowercase : int = torch.load(__UpperCamelCase , map_location=__UpperCamelCase ) # this is a hack __lowercase : Union[str, Any] = checkpoint['''model_args'''] if "input_vocab_size" not in model_args: __lowercase : Any = model_args['''vocab_size'''] __lowercase : int = model_args['''vocab_size'''] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments __lowercase : Optional[Any] = model_args.pop("""n_head""" ) __lowercase : Tuple = model_args.pop("""n_embd""" ) __lowercase : Tuple = model_args.pop("""n_layer""" ) __lowercase : Any = ConfigClass(**checkpoint["""model_args"""] ) __lowercase : Tuple = ModelClass(config=__UpperCamelCase ) __lowercase : Any = GenerationConfigClass() __lowercase : Optional[int] = model_generation_config __lowercase : Union[str, Any] = checkpoint['''model'''] # fixup checkpoint __lowercase : List[str] = '''_orig_mod.''' for k, v in list(state_dict.items() ): if k.startswith(__UpperCamelCase ): # replace part of the key with corresponding layer name in HF implementation __lowercase : List[Any] = k[len(__UpperCamelCase ) :] for old_layer_name in new_layer_name_dict: __lowercase : List[Any] = new_k.replace(__UpperCamelCase , new_layer_name_dict[old_layer_name] ) __lowercase : Optional[int] = state_dict.pop(__UpperCamelCase ) __lowercase : List[str] = set(state_dict.keys() ) - set(model.state_dict().keys() ) __lowercase : Optional[int] = {k for k in extra_keys if not k.endswith(""".attn.bias""" )} __lowercase : Optional[int] = set(model.state_dict().keys() ) - set(state_dict.keys() ) __lowercase : Any = {k for k in missing_keys if not k.endswith(""".attn.bias""" )} if len(__UpperCamelCase ) != 0: raise ValueError(F"extra keys found: {extra_keys}" ) if len(__UpperCamelCase ) != 0: raise ValueError(F"missing keys: {missing_keys}" ) model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase ) __lowercase : Optional[Any] = model.num_parameters(exclude_embeddings=__UpperCamelCase ) __lowercase : str = checkpoint['''best_val_loss'''].item() logger.info(F"model loaded: {round(n_params/1e6 , 1 )}M params, {round(__UpperCamelCase , 3 )} loss" ) model.eval() model.to(__UpperCamelCase ) del checkpoint, state_dict return model def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Tuple="text" ): if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() __lowercase : str = '''cpu''' # do conversion on cpu __lowercase : int = _get_ckpt_path(__UpperCamelCase , use_small=__UpperCamelCase ) __lowercase : Optional[int] = _load_model(__UpperCamelCase , __UpperCamelCase , model_type=__UpperCamelCase , use_small=__UpperCamelCase ) # load bark initial model __lowercase : List[Any] = _bark_load_model(__UpperCamelCase , """cpu""" , model_type=__UpperCamelCase , use_small=__UpperCamelCase ) if model_type == "text": __lowercase : Optional[int] = bark_model['''model'''] if model.num_parameters(exclude_embeddings=__UpperCamelCase ) != bark_model.get_num_params(): raise ValueError("""initial and new models don\'t have the same number of parameters""" ) # check if same output as the bark model __lowercase : Optional[Any] = 5 __lowercase : Dict = 10 if model_type in ["text", "coarse"]: __lowercase : Tuple = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) __lowercase : Tuple = bark_model(__UpperCamelCase )[0] __lowercase : int = model(__UpperCamelCase ) # take last logits __lowercase : int = output_new_model_total.logits[:, [-1], :] else: __lowercase : str = 3 __lowercase : List[str] = 8 __lowercase : List[Any] = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) __lowercase : List[Any] = model(__UpperCamelCase , __UpperCamelCase ) __lowercase : Union[str, Any] = bark_model(__UpperCamelCase , __UpperCamelCase ) __lowercase : Optional[Any] = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("""initial and new outputs don\'t have the same shape""" ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError("""initial and new outputs are not equal""" ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[int] , ): __lowercase : int = os.path.join(__UpperCamelCase , __UpperCamelCase ) __lowercase : List[str] = BarkSemanticConfig.from_pretrained(os.path.join(__UpperCamelCase , """config.json""" ) ) __lowercase : Optional[Any] = BarkCoarseConfig.from_pretrained(os.path.join(__UpperCamelCase , """config.json""" ) ) __lowercase : str = BarkFineConfig.from_pretrained(os.path.join(__UpperCamelCase , """config.json""" ) ) __lowercase : int = EncodecConfig.from_pretrained("""facebook/encodec_24khz""" ) __lowercase : Dict = BarkSemanticModel.from_pretrained(__UpperCamelCase ) __lowercase : str = BarkCoarseModel.from_pretrained(__UpperCamelCase ) __lowercase : Optional[int] = BarkFineModel.from_pretrained(__UpperCamelCase ) __lowercase : int = EncodecModel.from_pretrained("""facebook/encodec_24khz""" ) __lowercase : str = BarkConfig.from_sub_model_configs( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) __lowercase : Any = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) __lowercase : List[Any] = BarkModel(__UpperCamelCase ) __lowercase : List[Any] = semantic __lowercase : Tuple = coarseAcoustic __lowercase : Union[str, Any] = fineAcoustic __lowercase : Any = codec __lowercase : Union[str, Any] = bark_generation_config Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) bark.save_pretrained(__UpperCamelCase , repo_id=__UpperCamelCase , push_to_hub=__UpperCamelCase ) if __name__ == "__main__": lowerCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument('''model_type''', type=str, help='''text, coarse or fine.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--is_small''', action='''store_true''', help='''convert the small version instead of the large.''') lowerCamelCase : Tuple = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
711
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : int = { '''configuration_funnel''': ['''FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FunnelConfig'''], '''convert_funnel_original_tf_checkpoint_to_pytorch''': [], '''tokenization_funnel''': ['''FunnelTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = ['''FunnelTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = [ '''FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FunnelBaseModel''', '''FunnelForMaskedLM''', '''FunnelForMultipleChoice''', '''FunnelForPreTraining''', '''FunnelForQuestionAnswering''', '''FunnelForSequenceClassification''', '''FunnelForTokenClassification''', '''FunnelModel''', '''FunnelPreTrainedModel''', '''load_tf_weights_in_funnel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ '''TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFFunnelBaseModel''', '''TFFunnelForMaskedLM''', '''TFFunnelForMultipleChoice''', '''TFFunnelForPreTraining''', '''TFFunnelForQuestionAnswering''', '''TFFunnelForSequenceClassification''', '''TFFunnelForTokenClassification''', '''TFFunnelModel''', '''TFFunnelPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
649
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase : Union[str, Any] = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
712
import logging import os import threading import time try: import warnings except ImportError: lowerCamelCase : Any = None try: import msvcrt except ImportError: lowerCamelCase : str = None try: import fcntl except ImportError: lowerCamelCase : Optional[Any] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: lowerCamelCase : Union[str, Any] = OSError # Data # ------------------------------------------------ lowerCamelCase : Tuple = [ '''Timeout''', '''BaseFileLock''', '''WindowsFileLock''', '''UnixFileLock''', '''SoftFileLock''', '''FileLock''', ] lowerCamelCase : Tuple = '''3.0.12''' lowerCamelCase : Any = None def snake_case_ ( ): global _logger __lowercase : List[str] = _logger or logging.getLogger(__name__ ) return _logger class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Any , __a : Any ) -> List[Any]: """simple docstring""" __lowercase : List[str] = lock_file return None def __str__( self : str ) -> Any: """simple docstring""" __lowercase : Any = F"The file lock '{self.lock_file}' could not be acquired." return temp class lowerCAmelCase : '''simple docstring''' def __init__( self : List[Any] , __a : Optional[int] ) -> int: """simple docstring""" __lowercase : Optional[Any] = lock return None def __enter__( self : Dict ) -> Dict: """simple docstring""" return self.lock def __exit__( self : Optional[int] , __a : Dict , __a : Any , __a : Tuple ) -> Optional[Any]: """simple docstring""" self.lock.release() return None class lowerCAmelCase : '''simple docstring''' def __init__( self : Tuple , __a : Any , __a : Dict=-1 , __a : Optional[Any]=None ) -> Any: """simple docstring""" __lowercase : Optional[int] = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long __lowercase : Dict = self.hash_filename_if_too_long(__a , __a ) # The path to the lock file. __lowercase : Optional[Any] = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __lowercase : int = None # The default timeout value. __lowercase : Optional[int] = timeout # We use this lock primarily for the lock counter. __lowercase : Optional[Any] = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __lowercase : Union[str, Any] = 0 return None @property def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return self._lock_file @property def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return self._timeout @timeout.setter def lowerCAmelCase ( self : Tuple , __a : Tuple ) -> Dict: """simple docstring""" __lowercase : Tuple = float(__a ) return None def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" raise NotImplementedError() def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" raise NotImplementedError() @property def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" return self._lock_file_fd is not None def lowerCAmelCase ( self : Any , __a : Optional[Any]=None , __a : Union[str, Any]=0.05 ) -> List[str]: """simple docstring""" if timeout is None: __lowercase : Union[str, Any] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __lowercase : int = id(self ) __lowercase : Optional[Any] = self._lock_file __lowercase : List[str] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"Attempting to acquire lock {lock_id} on {lock_filename}" ) self._acquire() if self.is_locked: logger().debug(F"Lock {lock_id} acquired on {lock_filename}" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"Timeout on acquiring lock {lock_id} on {lock_filename}" ) raise Timeout(self._lock_file ) else: logger().debug( F"Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ..." ) time.sleep(__a ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __lowercase : Optional[int] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def lowerCAmelCase ( self : Union[str, Any] , __a : Optional[Any]=False ) -> Optional[Any]: """simple docstring""" with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __lowercase : Optional[Any] = id(self ) __lowercase : str = self._lock_file logger().debug(F"Attempting to release lock {lock_id} on {lock_filename}" ) self._release() __lowercase : List[str] = 0 logger().debug(F"Lock {lock_id} released on {lock_filename}" ) return None def __enter__( self : Any ) -> Optional[Any]: """simple docstring""" self.acquire() return self def __exit__( self : List[str] , __a : str , __a : int , __a : List[Any] ) -> Tuple: """simple docstring""" self.release() return None def __del__( self : Optional[int] ) -> Optional[int]: """simple docstring""" self.release(force=__a ) return None def lowerCAmelCase ( self : Tuple , __a : str , __a : int ) -> str: """simple docstring""" __lowercase : List[Any] = os.path.basename(__a ) if len(__a ) > max_length and max_length > 0: __lowercase : int = os.path.dirname(__a ) __lowercase : List[str] = str(hash(__a ) ) __lowercase : Optional[Any] = filename[: max_length - len(__a ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(__a , __a ) else: return path class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Union[str, Any] , __a : List[Any] , __a : Optional[int]=-1 , __a : Tuple=None ) -> List[Any]: """simple docstring""" from .file_utils import relative_to_absolute_path super().__init__(__a , timeout=__a , max_filename_length=__a ) __lowercase : Tuple = """\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __lowercase : Tuple = os.open(self._lock_file , __a ) except OSError: pass else: try: msvcrt.locking(__a , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__a ) else: __lowercase : Union[str, Any] = fd return None def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = self._lock_file_fd __lowercase : int = None msvcrt.locking(__a , msvcrt.LK_UNLCK , 1 ) os.close(__a ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : List[str] , __a : Optional[Any] , __a : str=-1 , __a : List[str]=None ) -> Any: """simple docstring""" __lowercase : Dict = os.statvfs(os.path.dirname(__a ) ).f_namemax super().__init__(__a , timeout=__a , max_filename_length=__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase : List[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC __lowercase : List[str] = os.open(self._lock_file , __a ) try: fcntl.flock(__a , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__a ) else: __lowercase : str = fd return None def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Any = self._lock_file_fd __lowercase : List[str] = None fcntl.flock(__a , fcntl.LOCK_UN ) os.close(__a ) return None class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __lowercase : Union[str, Any] = os.open(self._lock_file , __a ) except OSError: pass else: __lowercase : Optional[int] = fd return None def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" os.close(self._lock_file_fd ) __lowercase : int = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None lowerCamelCase : Optional[Any] = None if msvcrt: lowerCamelCase : List[Any] = WindowsFileLock elif fcntl: lowerCamelCase : List[Any] = UnixFileLock else: lowerCamelCase : Union[str, Any] = SoftFileLock if warnings is not None: warnings.warn('''only soft file lock is available''')
649
0
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : Optional[int] = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def snake_case_ ( lowerCAmelCase_ : List[str] ): if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __lowercase : Optional[Any] = k.replace(__snake_case , __snake_case ) if k.startswith("""encoder""" ): __lowercase : int = k.replace(""".attn""" , """.self_attn""" ) __lowercase : int = k.replace("""norm1""" , """self_attn_layer_norm""" ) __lowercase : List[str] = k.replace("""norm2""" , """final_layer_norm""" ) elif k.startswith("""decoder""" ): __lowercase : Optional[Any] = k.replace("""norm1""" , """self_attn_layer_norm""" ) __lowercase : Optional[int] = k.replace("""norm2""" , """encoder_attn_layer_norm""" ) __lowercase : Dict = k.replace("""norm3""" , """final_layer_norm""" ) return k def snake_case_ ( lowerCAmelCase_ : Optional[Any] ): __lowercase : str = [ "model.encoder.layernorm_embedding.weight", "model.encoder.layernorm_embedding.bias", "model.decoder.layernorm_embedding.weight", "model.decoder.layernorm_embedding.bias", ] for k in keys: __lowercase : int = sd.pop(__snake_case ) __lowercase : int = k.replace("""layernorm_embedding""" , """layer_norm""" ) assert new_k not in sd __lowercase : str = v lowerCamelCase : Tuple = ["START"] @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] ): __lowercase : int = torch.load(__snake_case , map_location="""cpu""" ) __lowercase : int = model["model"] __lowercase : List[Any] = BlenderbotConfig.from_json_file(__snake_case ) __lowercase : Optional[Any] = BlenderbotForConditionalGeneration(__snake_case ) __lowercase : List[Any] = m.model.state_dict().keys() __lowercase : int = [] __lowercase : List[str] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __lowercase : Any = rename_state_dict_key(__snake_case ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __lowercase : List[Any] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__snake_case ) m.model.load_state_dict(__snake_case , strict=__snake_case ) m.half() m.save_pretrained(__snake_case ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''') parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''') parser.add_argument( '''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use''' ) lowerCamelCase : Optional[Any] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
713
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : Tuple = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = '''layoutlmv3''' def __init__( self : Dict , __a : List[str]=50265 , __a : str=768 , __a : List[Any]=12 , __a : List[Any]=12 , __a : List[str]=3072 , __a : Optional[Any]="gelu" , __a : Optional[int]=0.1 , __a : List[Any]=0.1 , __a : Tuple=512 , __a : int=2 , __a : Any=0.02 , __a : Union[str, Any]=1E-5 , __a : List[str]=1 , __a : List[Any]=0 , __a : int=2 , __a : str=1024 , __a : str=128 , __a : List[Any]=128 , __a : Tuple=True , __a : Optional[int]=32 , __a : Any=128 , __a : List[Any]=64 , __a : Tuple=256 , __a : str=True , __a : int=True , __a : Optional[Any]=True , __a : Any=224 , __a : str=3 , __a : List[str]=16 , __a : Union[str, Any]=None , **__a : List[Any] , ) -> List[str]: """simple docstring""" super().__init__( vocab_size=__a , hidden_size=__a , num_hidden_layers=__a , num_attention_heads=__a , intermediate_size=__a , hidden_act=__a , hidden_dropout_prob=__a , attention_probs_dropout_prob=__a , max_position_embeddings=__a , type_vocab_size=__a , initializer_range=__a , layer_norm_eps=__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a , ) __lowercase : int = max_ad_position_embeddings __lowercase : Any = coordinate_size __lowercase : Optional[Any] = shape_size __lowercase : str = has_relative_attention_bias __lowercase : int = rel_pos_bins __lowercase : Union[str, Any] = max_rel_pos __lowercase : str = has_spatial_attention_bias __lowercase : str = rel_ad_pos_bins __lowercase : List[Any] = max_rel_ad_pos __lowercase : Tuple = text_embed __lowercase : int = visual_embed __lowercase : Tuple = input_size __lowercase : Dict = num_channels __lowercase : str = patch_size __lowercase : Optional[int] = classifier_dropout class lowerCAmelCase ( __a ): '''simple docstring''' _A : str = version.parse('''1.12''' ) @property def lowerCAmelCase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def lowerCAmelCase ( self : Union[str, Any] ) -> float: """simple docstring""" return 1E-5 @property def lowerCAmelCase ( self : str ) -> int: """simple docstring""" return 12 def lowerCAmelCase ( self : List[Any] , __a : "ProcessorMixin" , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional["TensorType"] = None , __a : int = 3 , __a : int = 40 , __a : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , """apply_ocr""" , __a ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase : Tuple = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase : Tuple = processor.tokenizer.num_special_tokens_to_add(__a ) __lowercase : Tuple = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__a ) # Generate dummy inputs according to compute batch and sequence __lowercase : Union[str, Any] = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowercase : Tuple = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowercase : Tuple = self._generate_dummy_images(__a , __a , __a , __a ) __lowercase : int = dict( processor( __a , text=__a , boxes=__a , return_tensors=__a , ) ) return inputs
649
0
import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() lowerCamelCase : Tuple = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str ): __lowercase : Tuple = WavaVecaForSequenceClassification.from_pretrained(a__ , config=a__ ) __lowercase : Union[str, Any] = downstream_dict["""projector.weight"""] __lowercase : str = downstream_dict["""projector.bias"""] __lowercase : Dict = downstream_dict["""model.post_net.linear.weight"""] __lowercase : Any = downstream_dict["""model.post_net.linear.bias"""] return model def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] ): __lowercase : List[Any] = WavaVecaForAudioFrameClassification.from_pretrained(a__ , config=a__ ) __lowercase : Union[str, Any] = downstream_dict["""model.linear.weight"""] __lowercase : Dict = downstream_dict["""model.linear.bias"""] return model def snake_case_ ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str ): __lowercase : Union[str, Any] = WavaVecaForXVector.from_pretrained(a__ , config=a__ ) __lowercase : Optional[Any] = downstream_dict["""connector.weight"""] __lowercase : Optional[int] = downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __lowercase : Optional[int] = downstream_dict[ F"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] __lowercase : int = downstream_dict[F"model.framelevel_feature_extractor.module.{i}.kernel.bias"] __lowercase : List[Any] = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] __lowercase : str = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] __lowercase : str = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] __lowercase : Optional[Any] = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] __lowercase : List[Any] = downstream_dict["""objective.W"""] return model @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ): __lowercase : Dict = torch.load(a__ , map_location="""cpu""" ) __lowercase : Union[str, Any] = checkpoint["""Downstream"""] __lowercase : Optional[Any] = WavaVecaConfig.from_pretrained(a__ ) __lowercase : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained( a__ , return_attention_mask=a__ , do_normalize=a__ ) __lowercase : int = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): __lowercase : Dict = convert_classification(a__ , a__ , a__ ) elif arch.endswith("""ForAudioFrameClassification""" ): __lowercase : Tuple = convert_diarization(a__ , a__ , a__ ) elif arch.endswith("""ForXVector""" ): __lowercase : Tuple = convert_xvector(a__ , a__ , a__ ) else: raise NotImplementedError(F"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: __lowercase : Union[str, Any] = checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(a__ ) hf_model.save_pretrained(a__ ) if __name__ == "__main__": lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') lowerCamelCase : Any = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
714
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowerCamelCase : List[Any] = logging.get_logger(__name__) class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , __a : str = None , __a : uuid.UUID = None , __a : Any=None , __a : List[Any]=None ) -> List[Any]: """simple docstring""" if not conversation_id: __lowercase : Any = uuid.uuida() if past_user_inputs is None: __lowercase : Dict = [] if generated_responses is None: __lowercase : Dict = [] __lowercase : uuid.UUID = conversation_id __lowercase : List[str] = past_user_inputs __lowercase : List[str] = generated_responses __lowercase : Optional[str] = text def __eq__( self : Dict , __a : Dict ) -> Any: """simple docstring""" if not isinstance(__a , __a ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCAmelCase ( self : List[str] , __a : str , __a : bool = False ) -> Dict: """simple docstring""" if self.new_user_input: if overwrite: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten " F"with: \"{text}\"." ) __lowercase : Optional[int] = text else: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" new input " F"ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input" ) else: __lowercase : Dict = text def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __lowercase : Dict = None def lowerCAmelCase ( self : Optional[int] , __a : str ) -> List[Any]: """simple docstring""" self.generated_responses.append(__a ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : int ) -> str: """simple docstring""" __lowercase : Optional[int] = F"Conversation id: {self.uuid} \n" for is_user, text in self.iter_texts(): __lowercase : Optional[Any] = """user""" if is_user else """bot""" output += F"{name} >> {text} \n" return output @add_end_docstrings( __a , r''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''' , ) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Any , *__a : int , **__a : str ) -> Union[str, Any]: """simple docstring""" super().__init__(*__a , **__a ) if self.tokenizer.pad_token_id is None: __lowercase : List[Any] = self.tokenizer.eos_token def lowerCAmelCase ( self : Union[str, Any] , __a : int=None , __a : Tuple=None , __a : Any=None , **__a : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = {} __lowercase : Tuple = {} __lowercase : List[str] = {} if min_length_for_response is not None: __lowercase : Dict = min_length_for_response if minimum_tokens is not None: __lowercase : Union[str, Any] = minimum_tokens if "max_length" in generate_kwargs: __lowercase : Union[str, Any] = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __lowercase : Union[str, Any] = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(__a ) return preprocess_params, forward_params, postprocess_params def __call__( self : Optional[int] , __a : Union[Conversation, List[Conversation]] , __a : Dict=0 , **__a : List[Any] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = super().__call__(__a , num_workers=__a , **__a ) if isinstance(__a , __a ) and len(__a ) == 1: return outputs[0] return outputs def lowerCAmelCase ( self : Union[str, Any] , __a : Conversation , __a : Tuple=32 ) -> Dict[str, Any]: """simple docstring""" if not isinstance(__a , __a ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( F"Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. " """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer , """_build_conversation_input_ids""" ): __lowercase : List[Any] = self.tokenizer._build_conversation_input_ids(__a ) else: # If the tokenizer cannot handle conversations, we default to only the old version __lowercase : Tuple = self._legacy_parse_and_tokenize(__a ) if self.framework == "pt": __lowercase : List[Any] = torch.LongTensor([input_ids] ) elif self.framework == "tf": __lowercase : List[str] = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCAmelCase ( self : Any , __a : Dict , __a : Any=10 , **__a : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = generate_kwargs.get("""max_length""" , self.model.config.max_length ) __lowercase : List[Any] = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(F"Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})" ) __lowercase : Any = max_length - minimum_tokens __lowercase : int = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: __lowercase : Dict = model_inputs["""attention_mask"""][:, -trim:] __lowercase : Union[str, Any] = model_inputs.pop("""conversation""" ) __lowercase : Tuple = max_length __lowercase : int = self.model.generate(**__a , **__a ) if self.model.config.is_encoder_decoder: __lowercase : Optional[int] = 1 else: __lowercase : str = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCAmelCase ( self : int , __a : Tuple , __a : List[Any]=True ) -> List[str]: """simple docstring""" __lowercase : int = model_outputs["""output_ids"""] __lowercase : Union[str, Any] = self.tokenizer.decode( output_ids[0] , skip_special_tokens=__a , clean_up_tokenization_spaces=__a , ) __lowercase : List[str] = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(__a ) return conversation def lowerCAmelCase ( self : int , __a : Conversation ) -> Dict: """simple docstring""" __lowercase : Optional[int] = self.tokenizer.eos_token_id __lowercase : Optional[Any] = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(__a , add_special_tokens=__a ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(__a , add_special_tokens=__a ) ) if len(__a ) > self.tokenizer.model_max_length: __lowercase : List[Any] = input_ids[-self.tokenizer.model_max_length :] return input_ids
649
0
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : List[Any] , __a : List[Any] , __a : Optional[Any]=13 , __a : Optional[int]=7 , __a : Tuple=True , __a : Union[str, Any]=True , __a : List[Any]=True , __a : str=True , __a : Tuple=99 , __a : Union[str, Any]=64 , __a : Tuple=32 , __a : Optional[int]=5 , __a : int=4 , __a : Optional[int]=37 , __a : str="gelu" , __a : List[str]=0.1 , __a : str=0.1 , __a : List[Any]=512 , __a : str=16 , __a : int=2 , __a : List[str]=0.02 , __a : List[Any]=3 , __a : Optional[int]=4 , __a : Tuple=None , ) -> List[Any]: """simple docstring""" __lowercase : List[str] = parent __lowercase : Union[str, Any] = batch_size __lowercase : Tuple = seq_length __lowercase : Union[str, Any] = is_training __lowercase : Tuple = use_input_mask __lowercase : Union[str, Any] = use_token_type_ids __lowercase : Union[str, Any] = use_labels __lowercase : Dict = vocab_size __lowercase : Union[str, Any] = hidden_size __lowercase : str = embedding_size __lowercase : Union[str, Any] = num_hidden_layers __lowercase : Union[str, Any] = num_attention_heads __lowercase : str = intermediate_size __lowercase : Optional[Any] = hidden_act __lowercase : List[str] = hidden_dropout_prob __lowercase : List[str] = attention_probs_dropout_prob __lowercase : List[Any] = max_position_embeddings __lowercase : Optional[Any] = type_vocab_size __lowercase : Optional[int] = type_sequence_label_size __lowercase : List[Any] = initializer_range __lowercase : Any = num_labels __lowercase : Optional[int] = num_choices __lowercase : int = scope def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" __lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : Union[str, Any] = None if self.use_input_mask: __lowercase : int = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : Optional[Any] = None if self.use_token_type_ids: __lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase : List[str] = None __lowercase : Dict = None __lowercase : Union[str, Any] = None if self.use_labels: __lowercase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : int = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__A , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : List[str] , __a : Optional[int] , __a : List[Any] , __a : List[Any] , __a : Any , __a : List[Any] , __a : Any , __a : Union[str, Any] ) -> str: """simple docstring""" __lowercase : List[Any] = MegatronBertModel(config=__A ) model.to(__A ) model.eval() __lowercase : Optional[Any] = model(__A , attention_mask=__A , token_type_ids=__A ) __lowercase : str = model(__A , token_type_ids=__A ) __lowercase : Tuple = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : Any , __a : Union[str, Any] , __a : List[str] , __a : Union[str, Any] , __a : Any , __a : Tuple , __a : int , __a : int ) -> Any: """simple docstring""" __lowercase : Dict = MegatronBertForMaskedLM(config=__A ) model.to(__A ) model.eval() __lowercase : Dict = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : str , __a : Tuple , __a : List[Any] , __a : Any , __a : Optional[Any] , __a : int , __a : Union[str, Any] , __a : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = MegatronBertForCausalLM(config=__A ) model.to(__A ) model.eval() __lowercase : Dict = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[int] , __a : Optional[Any] , __a : Dict , __a : List[str] , __a : List[str] , __a : List[Any] , __a : Optional[int] , __a : str ) -> str: """simple docstring""" __lowercase : List[Any] = MegatronBertForNextSentencePrediction(config=__A ) model.to(__A ) model.eval() __lowercase : Optional[int] = model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowerCAmelCase ( self : Optional[int] , __a : Optional[Any] , __a : str , __a : int , __a : List[str] , __a : Optional[Any] , __a : List[Any] , __a : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = MegatronBertForPreTraining(config=__A ) model.to(__A ) model.eval() __lowercase : str = model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , next_sentence_label=__A , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowerCAmelCase ( self : Dict , __a : List[Any] , __a : int , __a : Any , __a : Optional[int] , __a : int , __a : Union[str, Any] , __a : int ) -> int: """simple docstring""" __lowercase : Tuple = MegatronBertForQuestionAnswering(config=__A ) model.to(__A ) model.eval() __lowercase : Dict = model( __A , attention_mask=__A , token_type_ids=__A , start_positions=__A , end_positions=__A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : str , __a : Union[str, Any] , __a : Any , __a : Optional[Any] , __a : Union[str, Any] , __a : str , __a : int , __a : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase : Dict = self.num_labels __lowercase : str = MegatronBertForSequenceClassification(__A ) model.to(__A ) model.eval() __lowercase : Union[str, Any] = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : List[Any] , __a : Tuple , __a : Union[str, Any] , __a : Optional[Any] , __a : List[Any] , __a : Union[str, Any] , __a : List[str] , __a : List[str] ) -> Dict: """simple docstring""" __lowercase : Optional[int] = self.num_labels __lowercase : Optional[Any] = MegatronBertForTokenClassification(config=__A ) model.to(__A ) model.eval() __lowercase : Tuple = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Dict , __a : str , __a : List[str] , __a : Dict , __a : Union[str, Any] , __a : List[str] , __a : List[str] , __a : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = self.num_choices __lowercase : Optional[Any] = MegatronBertForMultipleChoice(config=__A ) model.to(__A ) model.eval() __lowercase : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase : List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase : Tuple = model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase : Optional[int] = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : Optional[Any] = config_and_inputs __lowercase : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): '''simple docstring''' _A : Any = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) _A : str = ( { '''feature-extraction''': MegatronBertModel, '''fill-mask''': MegatronBertForMaskedLM, '''question-answering''': MegatronBertForQuestionAnswering, '''text-classification''': MegatronBertForSequenceClassification, '''text-generation''': MegatronBertForCausalLM, '''token-classification''': MegatronBertForTokenClassification, '''zero-shot''': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) _A : List[Any] = True # test_resize_embeddings = False _A : str = False def lowerCAmelCase ( self : Optional[Any] , __a : Union[str, Any] , __a : List[Any] , __a : Optional[int]=False ) -> List[Any]: """simple docstring""" __lowercase : int = super()._prepare_for_class(__A , __A , return_labels=__A ) if return_labels: if model_class in get_values(__A ): __lowercase : List[str] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__A ) __lowercase : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) return inputs_dict def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" __lowercase : Optional[int] = MegatronBertModelTester(self ) __lowercase : Union[str, Any] = ConfigTester(self , config_class=__A , hidden_size=37 ) def lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" __lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__A ) def lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__A ) def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__A ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__A ) def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__A ) def lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__A ) def lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__A ) def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__A ) def snake_case_ ( lowerCAmelCase_ : Tuple ): return torch.tensor( UpperCamelCase__ , dtype=torch.long , device=UpperCamelCase__ , ) lowerCamelCase : Tuple = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip("""Model is not available.""" ) def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" __lowercase : Any = """nvidia/megatron-bert-uncased-345m""" if "MYDIR" in os.environ: __lowercase : str = os.path.join(os.environ["""MYDIR"""] , __A ) __lowercase : str = MegatronBertModel.from_pretrained(__A ) model.to(__A ) model.half() __lowercase : Dict = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): __lowercase : str = model(__A )[0] __lowercase : Union[str, Any] = torch.Size((1, 9, 1024) ) self.assertEqual(output.shape , __A ) __lowercase : Tuple = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3 ): for jj in range(3 ): __lowercase : List[str] = output[0, ii, jj] __lowercase : Optional[int] = expected[3 * ii + jj] __lowercase : List[Any] = """ii={} jj={} a={} b={}""".format(__A , __A , __A , __A ) self.assertTrue(math.isclose(__A , __A , rel_tol=__A , abs_tol=__A ) , msg=__A )
715
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__a , """tf_padding""" ) ) self.parent.assertTrue(hasattr(__a , """depth_multiplier""" ) ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Tuple , __a : str=13 , __a : Dict=3 , __a : List[Any]=32 , __a : Any=0.25 , __a : Any=8 , __a : Optional[int]=8 , __a : Optional[int]=6 , __a : Dict=32 , __a : Tuple=True , __a : List[Any]=True , __a : Optional[int]=True , __a : Tuple="relu6" , __a : Optional[Any]=1280 , __a : str=0.1 , __a : str=0.02 , __a : Optional[Any]=True , __a : Tuple=True , __a : Dict=10 , __a : Optional[Any]=None , ) -> Any: """simple docstring""" __lowercase : List[str] = parent __lowercase : Tuple = batch_size __lowercase : Dict = num_channels __lowercase : Optional[int] = image_size __lowercase : int = depth_multiplier __lowercase : str = depth_divisible_by __lowercase : int = min_depth __lowercase : Tuple = expand_ratio __lowercase : Optional[int] = tf_padding __lowercase : Dict = output_stride __lowercase : Dict = first_layer_is_expansion __lowercase : Optional[Any] = finegrained_output __lowercase : str = hidden_act __lowercase : Union[str, Any] = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) __lowercase : Optional[int] = classifier_dropout_prob __lowercase : int = use_labels __lowercase : Optional[int] = is_training __lowercase : Dict = num_labels __lowercase : Tuple = initializer_range __lowercase : Optional[Any] = scope def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : List[Any] = None __lowercase : Optional[Any] = None if self.use_labels: __lowercase : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __lowercase : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowercase : List[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : Tuple , __a : Dict , __a : Tuple , __a : Optional[int] , __a : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[int] = MobileNetVaModel(config=__a ) model.to(__a ) model.eval() __lowercase : Tuple = model(__a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def lowerCAmelCase ( self : List[str] , __a : Optional[int] , __a : List[str] , __a : str , __a : Optional[int] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = self.num_labels __lowercase : Dict = MobileNetVaForImageClassification(__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : int , __a : List[str] , __a : Tuple , __a : Any , __a : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : int = self.num_labels __lowercase : List[Any] = MobileNetVaForSemanticSegmentation(__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __lowercase : str = model(__a , labels=__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase : List[str] = config_and_inputs __lowercase : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Tuple = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) _A : Optional[Any] = ( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) _A : Tuple = False _A : List[str] = False _A : List[str] = False _A : Optional[int] = False def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = MobileNetVaModelTester(self ) __lowercase : int = MobileNetVaConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV2 does not use inputs_embeds""" ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not support input and output embeddings""" ) def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not output attentions""" ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[Any] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : int = [*signature.parameters.keys()] __lowercase : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" def check_hidden_states_output(__a : List[Any] , __a : Tuple , __a : List[str] ): __lowercase : Optional[Any] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : List[Any] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Tuple = outputs.hidden_states __lowercase : str = 16 self.assertEqual(len(__a ) , __a ) __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Any = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase : Union[str, Any] = True check_hidden_states_output(__a , __a , __a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : Optional[int] = MobileNetVaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def snake_case_ ( ): __lowercase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v2_1.0_224""" ) if is_vision_available() else None ) @slow def lowerCAmelCase ( self : str ) -> int: """simple docstring""" __lowercase : Tuple = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v2_1.0_224""" ).to(__a ) __lowercase : str = self.default_image_processor __lowercase : Tuple = prepare_img() __lowercase : Tuple = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : str = model(**__a ) # verify the logits __lowercase : Union[str, Any] = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , __a ) __lowercase : str = torch.tensor([0.2445, -1.1993, 0.1905] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : int = MobileNetVaForSemanticSegmentation.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __lowercase : Dict = model.to(__a ) __lowercase : Tuple = MobileNetVaImageProcessor.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __lowercase : List[str] = prepare_img() __lowercase : Optional[int] = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : Union[str, Any] = model(**__a ) __lowercase : Any = outputs.logits # verify the logits __lowercase : Dict = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , __a ) __lowercase : str = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=__a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __a , atol=1E-4 ) )
649
0
def snake_case_ ( lowerCAmelCase_ : List[Any] ): __lowercase : Optional[int] = 0 while len(_UpperCAmelCase ) > 1: __lowercase : int = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): __lowercase : Dict = files.index(min(_UpperCAmelCase ) ) temp += files[min_index] files.pop(_UpperCAmelCase ) files.append(_UpperCAmelCase ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
716
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def snake_case_ ( lowerCAmelCase_ : bool = True , *lowerCAmelCase_ : int , **lowerCAmelCase_ : List[str] ): if not is_tqdm_available(): raise ImportError("""Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.""" ) __lowercase : List[str] = False if main_process_only: __lowercase : Optional[int] = PartialState().local_process_index == 0 return _tqdm(*lowerCAmelCase_ , **lowerCAmelCase_ , disable=lowerCAmelCase_ )
649
0
from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) lowerCamelCase : Optional[Any] = '''pytorch_model.bin''' lowerCamelCase : Optional[Any] = '''pytorch_model.bin.index.json''' lowerCamelCase : Optional[Any] = '''adapter_config.json''' lowerCamelCase : int = '''adapter_model.bin''' lowerCamelCase : Union[str, Any] = '''adapter_model.safetensors''' lowerCamelCase : Tuple = '''tf_model.h5''' lowerCamelCase : Optional[int] = '''tf_model.h5.index.json''' lowerCamelCase : Any = '''model.ckpt''' lowerCamelCase : List[str] = '''flax_model.msgpack''' lowerCamelCase : str = '''flax_model.msgpack.index.json''' lowerCamelCase : Tuple = '''model.safetensors''' lowerCamelCase : Optional[Any] = '''model.safetensors.index.json''' lowerCamelCase : Tuple = '''config.json''' lowerCamelCase : Dict = '''preprocessor_config.json''' lowerCamelCase : List[str] = FEATURE_EXTRACTOR_NAME lowerCamelCase : Tuple = '''generation_config.json''' lowerCamelCase : Dict = '''modelcard.json''' lowerCamelCase : List[Any] = '''▁''' lowerCamelCase : Tuple = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility lowerCamelCase : List[Any] = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. lowerCamelCase : str = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] lowerCamelCase : Optional[Any] = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def snake_case_ ( lowerCAmelCase_ : Optional[int] ): if version.parse(lowerCAmelCase_ ) < version.parse(lowerCAmelCase_ ): if "dev" in min_version: __lowercase : Optional[Any] = ( 'This example requires a source install from HuggingFace Transformers (see ' '`https://huggingface.co/docs/transformers/installation#install-from-source`),' ) else: __lowercase : Union[str, Any] = F"This example requires a minimum version of {min_version}," error_message += F" but the version found is {__version__}.\n" raise ImportError( error_message + """Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other """ """versions of HuggingFace Transformers.""" )
717
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : list[int] ): if not nums: return 0 __lowercase : Tuple = nums[0] __lowercase : Tuple = 0 for num in nums[1:]: __lowercase , __lowercase : List[str] = ( max_excluding + num, max(lowerCAmelCase_ , lowerCAmelCase_ ), ) return max(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
649
0
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : Union[str, Any] = { '''Helsinki-NLP/opus-mt-en-de''': '''https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json''', # See all Marian models at https://huggingface.co/models?filter=marian } class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = '''marian''' _A : Any = ['''past_key_values'''] _A : List[Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Union[str, Any] , __a : Any=58101 , __a : Optional[Any]=None , __a : List[str]=1024 , __a : Any=12 , __a : Tuple=4096 , __a : Union[str, Any]=16 , __a : Tuple=12 , __a : Optional[int]=4096 , __a : List[Any]=16 , __a : Optional[Any]=0.0 , __a : Optional[Any]=0.0 , __a : Optional[int]=True , __a : str=True , __a : Tuple="gelu" , __a : str=1024 , __a : str=0.1 , __a : Dict=0.0 , __a : List[str]=0.0 , __a : List[Any]=0.02 , __a : int=58100 , __a : Tuple=False , __a : Optional[int]=58100 , __a : int=0 , __a : Optional[int]=0 , __a : Optional[int]=True , **__a : Dict , ) -> Dict: """simple docstring""" __lowercase : str = vocab_size __lowercase : Any = decoder_vocab_size or vocab_size __lowercase : Optional[int] = max_position_embeddings __lowercase : Dict = d_model __lowercase : Any = encoder_ffn_dim __lowercase : List[Any] = encoder_layers __lowercase : Optional[Any] = encoder_attention_heads __lowercase : str = decoder_ffn_dim __lowercase : Any = decoder_layers __lowercase : Optional[Any] = decoder_attention_heads __lowercase : Any = dropout __lowercase : Optional[int] = attention_dropout __lowercase : Union[str, Any] = activation_dropout __lowercase : Tuple = activation_function __lowercase : Any = init_std __lowercase : Optional[Any] = encoder_layerdrop __lowercase : int = decoder_layerdrop __lowercase : List[str] = use_cache __lowercase : List[str] = encoder_layers __lowercase : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True __lowercase : Optional[Any] = share_encoder_decoder_embeddings super().__init__( pad_token_id=__A , eos_token_id=__A , is_encoder_decoder=__A , decoder_start_token_id=__A , forced_eos_token_id=__A , **__A , ) class lowerCAmelCase ( __a ): '''simple docstring''' @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def lowerCAmelCase ( self : Any ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __lowercase : int = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: __lowercase : Optional[int] = {0: """batch"""} __lowercase : Optional[int] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: __lowercase : Any = {0: """batch""", 1: """decoder_sequence"""} __lowercase : int = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(__A , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. __lowercase : Any = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: __lowercase , __lowercase : int = self.num_layers for i in range(__A ): __lowercase : Optional[Any] = {0: """batch""", 2: """past_sequence + sequence"""} __lowercase : Any = {0: """batch""", 2: """past_sequence + sequence"""} else: __lowercase : Dict = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def lowerCAmelCase ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __lowercase : List[Any] = super().outputs else: __lowercase : List[Any] = super(__A , self ).outputs if self.use_past: __lowercase , __lowercase : Tuple = self.num_layers for i in range(__A ): __lowercase : Any = {0: """batch""", 2: """past_sequence + sequence"""} __lowercase : Any = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def lowerCAmelCase ( self : Optional[Any] , __a : PreTrainedTokenizer , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" __lowercase : Optional[Any] = self._generate_dummy_inputs_for_encoder_and_decoder( __A , __A , __A , __A , __A ) # Generate decoder inputs __lowercase : Optional[Any] = seq_length if not self.use_past else 1 __lowercase : Optional[int] = self._generate_dummy_inputs_for_encoder_and_decoder( __A , __A , __A , __A , __A ) __lowercase : List[str] = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} __lowercase : List[Any] = dict(**__A , **__A ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __lowercase , __lowercase : Any = common_inputs["""input_ids"""].shape __lowercase : int = common_inputs["""decoder_input_ids"""].shape[1] __lowercase , __lowercase : Dict = self.num_attention_heads __lowercase : Optional[int] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase : Union[str, Any] = decoder_seq_length + 3 __lowercase : Optional[Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowercase : Tuple = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(__A , __A )] , dim=1 ) __lowercase : Any = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowercase , __lowercase : Tuple = self.num_layers __lowercase : int = min(__A , __A ) __lowercase : Tuple = max(__A , __A ) - min_num_layers __lowercase : List[str] = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(__A ): common_inputs["past_key_values"].append( ( torch.zeros(__A ), torch.zeros(__A ), torch.zeros(__A ), torch.zeros(__A ), ) ) # TODO: test this. __lowercase : Optional[Any] = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(__A , __A ): common_inputs["past_key_values"].append((torch.zeros(__A ), torch.zeros(__A )) ) return common_inputs def lowerCAmelCase ( self : List[str] , __a : PreTrainedTokenizer , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" __lowercase : int = self._generate_dummy_inputs_for_encoder_and_decoder( __A , __A , __A , __A , __A ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __lowercase , __lowercase : str = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __lowercase : Optional[int] = seqlen + 2 __lowercase , __lowercase : Dict = self.num_layers __lowercase , __lowercase : Optional[int] = self.num_attention_heads __lowercase : Union[str, Any] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase : Optional[int] = common_inputs["""attention_mask"""].dtype __lowercase : int = torch.cat( [common_inputs["""attention_mask"""], torch.ones(__A , __A , dtype=__A )] , dim=1 ) __lowercase : str = [ (torch.zeros(__A ), torch.zeros(__A )) for _ in range(__A ) ] return common_inputs def lowerCAmelCase ( self : int , __a : PreTrainedTokenizer , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" __lowercase : int = compute_effective_axis_dimension( __A , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase : Any = tokenizer.num_special_tokens_to_add(__A ) __lowercase : str = compute_effective_axis_dimension( __A , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__A ) # Generate dummy inputs according to compute batch and sequence __lowercase : Tuple = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size __lowercase : Dict = dict(tokenizer(__A , return_tensors=__A ) ) return common_inputs def lowerCAmelCase ( self : Union[str, Any] , __a : PreTrainedTokenizer , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __lowercase : Union[str, Any] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __A , batch_size=__A , seq_length=__A , is_pair=__A , framework=__A ) else: __lowercase : Any = self._generate_dummy_inputs_for_causal_lm( __A , batch_size=__A , seq_length=__A , is_pair=__A , framework=__A ) return common_inputs def lowerCAmelCase ( self : Dict , __a : Any , __a : Any , __a : Tuple , __a : Dict ) -> Union[str, Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __lowercase : Union[str, Any] = super()._flatten_past_key_values_(__A , __A , __A , __A ) else: __lowercase : List[str] = super(__A , self )._flatten_past_key_values_( __A , __A , __A , __A ) @property def lowerCAmelCase ( self : Any ) -> float: """simple docstring""" return 1E-4
718
lowerCamelCase : List[str] = '''0.18.2''' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
649
0
from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , __a : Any , ) -> Union[str, Any]: """simple docstring""" __lowercase : List[Any] = parent __lowercase : Optional[int] = 13 __lowercase : Optional[int] = 7 __lowercase : Any = True __lowercase : Optional[int] = True __lowercase : Any = False __lowercase : str = True __lowercase : Optional[Any] = 99 __lowercase : Dict = 32 __lowercase : List[Any] = 2 __lowercase : int = 4 __lowercase : List[str] = 37 __lowercase : Dict = """gelu""" __lowercase : Any = 0.1 __lowercase : Tuple = 0.1 __lowercase : Tuple = 512 __lowercase : Optional[int] = 16 __lowercase : Any = 2 __lowercase : Optional[int] = 0.02 __lowercase : str = 3 __lowercase : Optional[int] = 4 __lowercase : List[str] = None def lowerCAmelCase ( self : int ) -> int: """simple docstring""" __lowercase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : List[str] = None if self.use_input_mask: __lowercase : Any = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : str = None __lowercase : List[Any] = None __lowercase : Union[str, Any] = None if self.use_labels: __lowercase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : List[str] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Union[str, Any] , __a : Any , __a : Tuple , __a : Dict , __a : str , __a : int , __a : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase : int = TFDistilBertModel(config=_lowercase ) __lowercase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} __lowercase : str = model(_lowercase ) __lowercase : Optional[Any] = [input_ids, input_mask] __lowercase : Any = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Union[str, Any] , __a : List[Any] , __a : str , __a : Dict , __a : List[str] , __a : Union[str, Any] , __a : List[str] ) -> Any: """simple docstring""" __lowercase : Dict = TFDistilBertForMaskedLM(config=_lowercase ) __lowercase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask} __lowercase : Any = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Tuple , __a : Optional[int] , __a : Union[str, Any] , __a : Dict , __a : Optional[Any] , __a : Any , __a : Optional[int] ) -> Tuple: """simple docstring""" __lowercase : Optional[int] = TFDistilBertForQuestionAnswering(config=_lowercase ) __lowercase : str = { """input_ids""": input_ids, """attention_mask""": input_mask, } __lowercase : Tuple = model(_lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Optional[Any] , __a : Optional[int] , __a : List[str] , __a : Optional[Any] , __a : str , __a : Optional[Any] , __a : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Optional[int] = self.num_labels __lowercase : Union[str, Any] = TFDistilBertForSequenceClassification(_lowercase ) __lowercase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} __lowercase : Tuple = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : str , __a : List[str] , __a : Union[str, Any] , __a : Dict , __a : Any , __a : Tuple , __a : Tuple ) -> Dict: """simple docstring""" __lowercase : Optional[int] = self.num_choices __lowercase : List[Any] = TFDistilBertForMultipleChoice(_lowercase ) __lowercase : List[str] = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) __lowercase : int = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) __lowercase : int = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, } __lowercase : Optional[int] = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : Any , __a : Optional[int] , __a : Optional[int] , __a : List[str] , __a : Dict , __a : Optional[int] , __a : Dict ) -> Dict: """simple docstring""" __lowercase : List[str] = self.num_labels __lowercase : Tuple = TFDistilBertForTokenClassification(_lowercase ) __lowercase : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} __lowercase : List[str] = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" __lowercase : Any = self.prepare_config_and_inputs() (__lowercase) : List[str] = config_and_inputs __lowercase : Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' _A : List[str] = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) _A : str = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) _A : Union[str, Any] = False _A : Union[str, Any] = False def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : List[str] = TFDistilBertModelTester(self ) __lowercase : Optional[int] = ConfigTester(self , config_class=_lowercase , dim=37 ) def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*_lowercase ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*_lowercase ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*_lowercase ) def lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*_lowercase ) def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*_lowercase ) def lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*_lowercase ) @slow def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): __lowercase : Any = TFDistilBertModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) @require_tf class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = TFDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) __lowercase : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowercase : Optional[Any] = model(_lowercase )[0] __lowercase : List[Any] = [1, 6, 768] self.assertEqual(output.shape , _lowercase ) __lowercase : int = tf.constant( [ [ [0.19261885, -0.13732955, 0.4119799], [0.22150156, -0.07422661, 0.39037204], [0.22756018, -0.0896414, 0.3701467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _lowercase , atol=1E-4 )
719
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : List[Any] = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : str=False , lowerCAmelCase_ : Any=False ): __lowercase : Any = """backbone.""" if is_semantic else """""" __lowercase : Optional[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"{prefix}blocks.{i}.norm1.weight", F"beit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm1.bias", F"beit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.weight", F"beit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.bias", F"beit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.weight", F"beit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.bias", F"beit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.weight", F"beit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.bias", F"beit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.weight", F"beit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.bias", F"beit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ (F"{prefix}cls_token", """beit.embeddings.cls_token"""), (F"{prefix}patch_embed.proj.weight", """beit.embeddings.patch_embeddings.projection.weight"""), (F"{prefix}patch_embed.proj.bias", """beit.embeddings.patch_embeddings.projection.bias"""), (F"{prefix}pos_embed", """beit.embeddings.position_embeddings"""), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("""mask_token""", """beit.embeddings.mask_token"""), ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) else: # layernorm + classification head rename_keys.extend( [ ("""fc_norm.weight""", """beit.pooler.layernorm.weight"""), ("""fc_norm.bias""", """beit.pooler.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : List[Any]=False ): for i in range(config.num_hidden_layers ): __lowercase : Tuple = """backbone.""" if is_semantic else """""" # queries, keys and values __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.attn.qkv.weight" ) __lowercase : Dict = state_dict.pop(F"{prefix}blocks.{i}.attn.q_bias" ) __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.attn.v_bias" ) __lowercase : List[str] = in_proj_weight[ : config.hidden_size, : ] __lowercase : Union[str, Any] = q_bias __lowercase : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] __lowercase : str = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.gamma_1" ) __lowercase : str = state_dict.pop(F"{prefix}blocks.{i}.gamma_2" ) __lowercase : List[str] = gamma_a __lowercase : Optional[int] = gamma_a def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : int ): __lowercase : Tuple = dct.pop(lowerCAmelCase_ ) __lowercase : Tuple = val def snake_case_ ( ): __lowercase : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase : Any = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]=False ): __lowercase : Dict = False if """rvlcdip""" in checkpoint_url else True __lowercase : Tuple = BeitConfig(use_absolute_position_embeddings=lowerCAmelCase_ , use_mask_token=lowerCAmelCase_ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: __lowercase : Union[str, Any] = 1024 __lowercase : Optional[int] = 4096 __lowercase : List[Any] = 24 __lowercase : Dict = 16 # labels if "rvlcdip" in checkpoint_url: __lowercase : Optional[int] = 16 __lowercase : Any = """huggingface/label-files""" __lowercase : Union[str, Any] = """rvlcdip-id2label.json""" __lowercase : List[str] = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) __lowercase : Optional[int] = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowercase : Union[str, Any] = idalabel __lowercase : Optional[Any] = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys __lowercase : Optional[int] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ , map_location="""cpu""" )["""model"""] __lowercase : Union[str, Any] = create_rename_keys(lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) # load HuggingFace model __lowercase : Dict = BeitForMaskedImageModeling(lowerCAmelCase_ ) if has_lm_head else BeitForImageClassification(lowerCAmelCase_ ) model.eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image __lowercase : List[str] = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=lowerCAmelCase_ ) __lowercase : List[str] = prepare_img() __lowercase : Optional[Any] = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""" ) __lowercase : Optional[int] = encoding["""pixel_values"""] __lowercase : str = model(lowerCAmelCase_ ) __lowercase : Tuple = outputs.logits # verify logits __lowercase : str = [1, 16] if """rvlcdip""" in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(lowerCAmelCase_ ), "Shape of logits not as expected" Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: if has_lm_head: __lowercase : Optional[Any] = """dit-base""" if """base""" in checkpoint_url else """dit-large""" else: __lowercase : Tuple = """dit-base-finetuned-rvlcdip""" if """dit-b""" in checkpoint_url else """dit-large-finetuned-rvlcdip""" image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=lowerCAmelCase_ , ) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=lowerCAmelCase_ , ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) lowerCamelCase : List[str] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
649
0
def snake_case_ ( lowerCAmelCase_ : float , lowerCAmelCase_ : float ): if mass < 0: raise ValueError("""The mass of a body cannot be negative""" ) return 0.5 * mass * abs(lowercase_ ) * abs(lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
720
from torch import nn class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , __a : int , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" super().__init__() __lowercase : int = class_size __lowercase : int = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) __lowercase : str = nn.Linear(__a , __a ) def lowerCAmelCase ( self : Tuple , __a : int ) -> Tuple: """simple docstring""" __lowercase : str = self.mlp(__a ) return logits
649
0
from ...processing_utils import ProcessorMixin class lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' _A : Tuple = 'SpeechT5FeatureExtractor' _A : int = 'SpeechT5Tokenizer' def __init__( self : Dict , __a : int , __a : Union[str, Any] ) -> Tuple: """simple docstring""" super().__init__(_a , _a ) def __call__( self : Optional[Any] , *__a : Any , **__a : Dict ) -> int: """simple docstring""" __lowercase : List[str] = kwargs.pop("""audio""" , _a ) __lowercase : List[str] = kwargs.pop("""text""" , _a ) __lowercase : Dict = kwargs.pop("""text_target""" , _a ) __lowercase : int = kwargs.pop("""audio_target""" , _a ) __lowercase : List[str] = kwargs.pop("""sampling_rate""" , _a ) if audio is not None and text is not None: raise ValueError( """Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?""" ) if audio_target is not None and text_target is not None: raise ValueError( """Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?""" ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( """You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.""" ) if audio is not None: __lowercase : Dict = self.feature_extractor(_a , *_a , sampling_rate=_a , **_a ) elif text is not None: __lowercase : List[str] = self.tokenizer(_a , **_a ) else: __lowercase : Tuple = None if audio_target is not None: __lowercase : Optional[Any] = self.feature_extractor(audio_target=_a , *_a , sampling_rate=_a , **_a ) __lowercase : Tuple = targets["""input_values"""] elif text_target is not None: __lowercase : Dict = self.tokenizer(_a , **_a ) __lowercase : Optional[Any] = targets["""input_ids"""] else: __lowercase : Any = None if inputs is None: return targets if targets is not None: __lowercase : str = labels __lowercase : Any = targets.get("""attention_mask""" ) if decoder_attention_mask is not None: __lowercase : Tuple = decoder_attention_mask return inputs def lowerCAmelCase ( self : Union[str, Any] , *__a : Optional[int] , **__a : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = kwargs.pop("""input_values""" , _a ) __lowercase : Dict = kwargs.pop("""input_ids""" , _a ) __lowercase : Dict = kwargs.pop("""labels""" , _a ) if input_values is not None and input_ids is not None: raise ValueError("""Cannot process both `input_values` and `input_ids` inputs.""" ) if input_values is None and input_ids is None and labels is None: raise ValueError( """You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.""" ) if input_values is not None: __lowercase : Any = self.feature_extractor.pad(_a , *_a , **_a ) elif input_ids is not None: __lowercase : Optional[Any] = self.tokenizer.pad(_a , **_a ) else: __lowercase : List[str] = None if labels is not None: if "input_ids" in labels or (isinstance(_a , _a ) and "input_ids" in labels[0]): __lowercase : List[str] = self.tokenizer.pad(_a , **_a ) __lowercase : int = targets["""input_ids"""] else: __lowercase : Optional[Any] = self.feature_extractor.feature_size __lowercase : Dict = self.feature_extractor.num_mel_bins __lowercase : Union[str, Any] = self.feature_extractor.pad(_a , *_a , **_a ) __lowercase : str = feature_size_hack __lowercase : List[str] = targets["""input_values"""] else: __lowercase : List[str] = None if inputs is None: return targets if targets is not None: __lowercase : List[Any] = labels __lowercase : Tuple = targets.get("""attention_mask""" ) if decoder_attention_mask is not None: __lowercase : Optional[int] = decoder_attention_mask return inputs def lowerCAmelCase ( self : str , *__a : Dict , **__a : str ) -> str: """simple docstring""" return self.tokenizer.batch_decode(*_a , **_a ) def lowerCAmelCase ( self : Tuple , *__a : Dict , **__a : List[str] ) -> List[Any]: """simple docstring""" return self.tokenizer.decode(*_a , **_a )
721
import fire from utils import calculate_rouge, save_json def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : str=None , **lowerCAmelCase_ : str ): __lowercase : Tuple = [x.strip() for x in open(lowerCAmelCase_ ).readlines()] __lowercase : Dict = [x.strip() for x in open(lowerCAmelCase_ ).readlines()][: len(lowerCAmelCase_ )] __lowercase : Tuple = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) if save_path is not None: save_json(lowerCAmelCase_ , lowerCAmelCase_ , indent=lowerCAmelCase_ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
649
0
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = "" _A : List[str] = "hf-legacy" # "hf://"" is reserved for hffs def __init__( self : str , __a : str = None , __a : Optional[Any] = None , **__a : str , ) -> Union[str, Any]: """simple docstring""" super().__init__(self , **UpperCamelCase__ ) __lowercase : Optional[int] = repo_info __lowercase : Union[str, Any] = token __lowercase : Optional[Any] = None def lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" if self.dir_cache is None: __lowercase : List[Any] = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes __lowercase : Union[str, Any] = { """name""": hf_file.rfilename, """size""": None, """type""": """file""", } self.dir_cache.update( { str(UpperCamelCase__ ): {"""name""": str(UpperCamelCase__ ), """size""": None, """type""": """directory"""} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowerCAmelCase ( self : Optional[int] , __a : Union[str, Any] , __a : List[Any] = "rb" , **__a : Tuple , ) -> str: """simple docstring""" if not isinstance(self.repo_info , UpperCamelCase__ ): raise NotImplementedError(F"Open is only implemented for dataset repositories, but got {self.repo_info}" ) __lowercase : List[Any] = hf_hub_url(self.repo_info.id , UpperCamelCase__ , revision=self.repo_info.sha ) return fsspec.open( UpperCamelCase__ , mode=UpperCamelCase__ , headers=get_authentication_headers_for_url(UpperCamelCase__ , use_auth_token=self.token ) , client_kwargs={"""trust_env""": True} , ).open() def lowerCAmelCase ( self : List[str] , __a : int , **__a : Optional[Any] ) -> Dict: """simple docstring""" self._get_dirs() __lowercase : Optional[int] = self._strip_protocol(UpperCamelCase__ ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(UpperCamelCase__ ) def lowerCAmelCase ( self : Optional[int] , __a : Union[str, Any] , __a : Optional[int]=False , **__a : Any ) -> Optional[Any]: """simple docstring""" self._get_dirs() __lowercase : str = PurePosixPath(path.strip("""/""" ) ) __lowercase : Union[str, Any] = {} for p, f in self.dir_cache.items(): __lowercase : Any = PurePosixPath(p.strip("""/""" ) ) __lowercase : int = p.parent if root == path: __lowercase : int = f __lowercase : Tuple = list(paths.values() ) if detail: return out else: return sorted(f["""name"""] for f in out )
700
from argparse import ArgumentParser from . import BaseTransformersCLICommand def snake_case_ ( lowerCAmelCase_ : Dict ): return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class lowerCAmelCase ( __a ): '''simple docstring''' @staticmethod def lowerCAmelCase ( __a : ArgumentParser ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = parser.add_parser("""download""" ) download_parser.add_argument( """--cache-dir""" , type=__a , default=__a , help="""Path to location to store the models""" ) download_parser.add_argument( """--force""" , action="""store_true""" , help="""Force the model to be download even if already in cache-dir""" ) download_parser.add_argument( """--trust-remote-code""" , action="""store_true""" , help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" , ) download_parser.add_argument("""model""" , type=__a , help="""Name of the model to download""" ) download_parser.set_defaults(func=__a ) def __init__( self : Dict , __a : str , __a : str , __a : bool , __a : bool ) -> Union[str, Any]: """simple docstring""" __lowercase : Dict = model __lowercase : List[Any] = cache __lowercase : Any = force __lowercase : Optional[int] = trust_remote_code def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
649
0
from ...configuration_utils import PretrainedConfig class lowerCAmelCase ( snake_case_ ): '''simple docstring''' _A : Dict = """bert-generation""" def __init__( self : Dict , __a : Optional[int]=50358 , __a : int=1024 , __a : Tuple=24 , __a : Optional[int]=16 , __a : List[Any]=4096 , __a : List[str]="gelu" , __a : List[Any]=0.1 , __a : Union[str, Any]=0.1 , __a : Optional[Any]=512 , __a : Optional[int]=0.02 , __a : Dict=1E-12 , __a : Union[str, Any]=0 , __a : Optional[int]=2 , __a : Union[str, Any]=1 , __a : List[Any]="absolute" , __a : Any=True , **__a : Optional[Any] , ) -> List[str]: """simple docstring""" super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) __lowercase : List[Any] = vocab_size __lowercase : Union[str, Any] = hidden_size __lowercase : Any = num_hidden_layers __lowercase : Any = num_attention_heads __lowercase : Optional[int] = hidden_act __lowercase : Optional[int] = intermediate_size __lowercase : Any = hidden_dropout_prob __lowercase : Any = attention_probs_dropout_prob __lowercase : Optional[Any] = max_position_embeddings __lowercase : List[str] = initializer_range __lowercase : Dict = layer_norm_eps __lowercase : Optional[Any] = position_embedding_type __lowercase : Union[str, Any] = use_cache
701
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowerCamelCase : Union[str, Any] = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , __a : List[str] , __a : Optional[int]=16 , __a : Optional[Any]=13 , __a : str=7 , __a : List[str]=14 , __a : Any=10 , __a : str=19 , __a : int=5 , __a : Any=4 , __a : List[Any]=True , __a : Tuple=16 , __a : Dict=2 , __a : Tuple=4 , __a : int=4 , __a : List[Any]="gelu" , __a : Tuple=0.1 , __a : List[str]=0.1 , __a : int=[1, 2, 3, 4, 5] , __a : str=25 , __a : Any=5 , ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = d_model __lowercase : Dict = parent __lowercase : Tuple = batch_size __lowercase : Optional[int] = prediction_length __lowercase : List[str] = context_length __lowercase : Any = cardinality __lowercase : str = num_time_features __lowercase : Optional[int] = lags_sequence __lowercase : Optional[Any] = embedding_dimension __lowercase : List[Any] = is_training __lowercase : List[str] = hidden_size __lowercase : int = num_hidden_layers __lowercase : Any = num_attention_heads __lowercase : List[Any] = intermediate_size __lowercase : int = hidden_act __lowercase : str = hidden_dropout_prob __lowercase : List[Any] = attention_probs_dropout_prob __lowercase : str = context_length __lowercase : int = prediction_length + label_length __lowercase : Union[str, Any] = label_length __lowercase : Optional[int] = moving_average __lowercase : Optional[Any] = autocorrelation_factor def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def lowerCAmelCase ( self : Tuple , __a : str ) -> int: """simple docstring""" __lowercase : Any = config.context_length + max(config.lags_sequence ) __lowercase : Any = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __lowercase : Optional[int] = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __lowercase : List[str] = floats_tensor([self.batch_size, _past_length] ) __lowercase : List[str] = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __lowercase : Dict = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __lowercase : str = floats_tensor([self.batch_size, config.prediction_length] ) __lowercase : List[str] = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.get_config() __lowercase : Any = self.prepare_autoformer_inputs_dict(__a ) return config, inputs_dict def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase , __lowercase : List[str] = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase ( self : Optional[Any] , __a : Tuple , __a : Optional[int] ) -> Any: """simple docstring""" __lowercase : List[str] = AutoformerModel(config=__a ).to(__a ).eval() __lowercase : Optional[int] = model(**__a ) __lowercase : Dict = outputs.encoder_last_hidden_state __lowercase : Tuple = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : List[str] = model.get_encoder() encoder.save_pretrained(__a ) __lowercase : List[str] = AutoformerEncoder.from_pretrained(__a ).to(__a ) __lowercase , __lowercase , __lowercase , __lowercase , __lowercase : Any = model.create_network_inputs(**__a ) __lowercase , __lowercase : Any = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __lowercase : Optional[Any] = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __lowercase : Union[str, Any] = encoder(inputs_embeds=__a )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) __lowercase : str = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __lowercase : Optional[int] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __lowercase : Any = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __lowercase : Dict = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : Optional[Any] = model.get_decoder() decoder.save_pretrained(__a ) __lowercase : Tuple = AutoformerDecoder.from_pretrained(__a ).to(__a ) __lowercase : str = decoder( trend=__a , inputs_embeds=__a , encoder_hidden_states=__a , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[str] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _A : List[Any] = (AutoformerForPrediction,) if is_torch_available() else () _A : Any = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} _A : Dict = False _A : Tuple = False _A : Optional[int] = False _A : Tuple = False _A : str = False _A : Union[str, Any] = False def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" __lowercase : List[str] = AutoformerModelTester(self ) __lowercase : Dict = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowercase : Dict = model_class(__a ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowercase , __lowercase : Tuple = model_class.from_pretrained(__a , output_loading_info=__a ) self.assertEqual(info["""missing_keys"""] , [] ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__a ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def lowerCAmelCase ( self : str ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : Any = inspect.signature(getattr(__a , """forward""" ) ) # The main input is the name of the argument after `self` __lowercase : Optional[int] = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , __a ) def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Dict = model_class(__a ) __lowercase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : Any = [*signature.parameters.keys()] __lowercase : int = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(__a )] , __a ) def lowerCAmelCase ( self : int ) -> int: """simple docstring""" __lowercase , __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : int = True __lowercase : Tuple = getattr(self.model_tester , """seq_length""" , __a ) __lowercase : Union[str, Any] = getattr(self.model_tester , """decoder_seq_length""" , __a ) __lowercase : List[str] = getattr(self.model_tester , """encoder_seq_length""" , __a ) __lowercase : List[Any] = getattr(self.model_tester , """d_model""" , __a ) __lowercase : Optional[int] = getattr(self.model_tester , """num_attention_heads""" , __a ) __lowercase : Any = d_model // num_attention_heads for model_class in self.all_model_classes: __lowercase : Dict = True __lowercase : List[str] = False __lowercase : Optional[int] = True __lowercase : str = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : int = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase : Optional[int] = True __lowercase : List[str] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Union[str, Any] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Dict = outputs.encoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __lowercase : Tuple = len(__a ) __lowercase : str = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__a , __a ) # decoder attentions __lowercase : List[Any] = outputs.decoder_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __lowercase : Optional[int] = outputs.cross_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __lowercase : Tuple = True __lowercase : Union[str, Any] = True __lowercase : Tuple = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Any = model(**self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + 2 , len(__a ) ) __lowercase : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def snake_case_ ( lowerCAmelCase_ : Optional[int]="train-batch.pt" ): __lowercase : Dict = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=lowerCAmelCase_ , repo_type="""dataset""" ) __lowercase : Optional[int] = torch.load(lowerCAmelCase_ , map_location=lowerCAmelCase_ ) return batch @require_torch @slow class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" __lowercase : List[str] = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : List[Any] = prepare_batch() with torch.no_grad(): __lowercase : Tuple = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] __lowercase : List[str] = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , __a ) __lowercase : Optional[int] = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" __lowercase : int = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : List[str] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowercase : Optional[Any] = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state __lowercase : List[str] = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , __a ) __lowercase : Optional[int] = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : Optional[int] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowercase : int = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) __lowercase : int = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , __a ) __lowercase : Optional[Any] = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=__a ) __lowercase : Dict = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __a , rtol=1E-1 ) )
649
0
import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() lowerCamelCase : Union[str, Any] = logging.get_logger('''transformers.models.encodec''') lowerCamelCase : Tuple = { '''quantizer.vq.layers.*._codebook.inited''': '''quantizer.layers.*.codebook.inited''', '''quantizer.vq.layers.*._codebook.cluster_size''': '''quantizer.layers.*.codebook.cluster_size''', '''quantizer.vq.layers.*._codebook.embed''': '''quantizer.layers.*.codebook.embed''', '''quantizer.vq.layers.*._codebook.embed_avg''': '''quantizer.layers.*.codebook.embed_avg''', } lowerCamelCase : Optional[int] = { '''encoder.model.0.conv.conv''': '''encoder.layers.0.conv''', '''encoder.model.1.block.1.conv.conv''': '''encoder.layers.1.block.1.conv''', '''encoder.model.1.block.3.conv.conv''': '''encoder.layers.1.block.3.conv''', '''encoder.model.1.shortcut.conv.conv''': '''encoder.layers.1.shortcut.conv''', '''encoder.model.3.conv.conv''': '''encoder.layers.3.conv''', '''encoder.model.4.block.1.conv.conv''': '''encoder.layers.4.block.1.conv''', '''encoder.model.4.block.3.conv.conv''': '''encoder.layers.4.block.3.conv''', '''encoder.model.4.shortcut.conv.conv''': '''encoder.layers.4.shortcut.conv''', '''encoder.model.6.conv.conv''': '''encoder.layers.6.conv''', '''encoder.model.7.block.1.conv.conv''': '''encoder.layers.7.block.1.conv''', '''encoder.model.7.block.3.conv.conv''': '''encoder.layers.7.block.3.conv''', '''encoder.model.7.shortcut.conv.conv''': '''encoder.layers.7.shortcut.conv''', '''encoder.model.9.conv.conv''': '''encoder.layers.9.conv''', '''encoder.model.10.block.1.conv.conv''': '''encoder.layers.10.block.1.conv''', '''encoder.model.10.block.3.conv.conv''': '''encoder.layers.10.block.3.conv''', '''encoder.model.10.shortcut.conv.conv''': '''encoder.layers.10.shortcut.conv''', '''encoder.model.12.conv.conv''': '''encoder.layers.12.conv''', '''encoder.model.13.lstm''': '''encoder.layers.13.lstm''', '''encoder.model.15.conv.conv''': '''encoder.layers.15.conv''', } lowerCamelCase : int = { '''encoder.model.0.conv.norm''': '''encoder.layers.0.norm''', '''encoder.model.1.block.1.conv.norm''': '''encoder.layers.1.block.1.norm''', '''encoder.model.1.block.3.conv.norm''': '''encoder.layers.1.block.3.norm''', '''encoder.model.1.shortcut.conv.norm''': '''encoder.layers.1.shortcut.norm''', '''encoder.model.3.conv.norm''': '''encoder.layers.3.norm''', '''encoder.model.4.block.1.conv.norm''': '''encoder.layers.4.block.1.norm''', '''encoder.model.4.block.3.conv.norm''': '''encoder.layers.4.block.3.norm''', '''encoder.model.4.shortcut.conv.norm''': '''encoder.layers.4.shortcut.norm''', '''encoder.model.6.conv.norm''': '''encoder.layers.6.norm''', '''encoder.model.7.block.1.conv.norm''': '''encoder.layers.7.block.1.norm''', '''encoder.model.7.block.3.conv.norm''': '''encoder.layers.7.block.3.norm''', '''encoder.model.7.shortcut.conv.norm''': '''encoder.layers.7.shortcut.norm''', '''encoder.model.9.conv.norm''': '''encoder.layers.9.norm''', '''encoder.model.10.block.1.conv.norm''': '''encoder.layers.10.block.1.norm''', '''encoder.model.10.block.3.conv.norm''': '''encoder.layers.10.block.3.norm''', '''encoder.model.10.shortcut.conv.norm''': '''encoder.layers.10.shortcut.norm''', '''encoder.model.12.conv.norm''': '''encoder.layers.12.norm''', '''encoder.model.15.conv.norm''': '''encoder.layers.15.norm''', } lowerCamelCase : Optional[int] = { '''decoder.model.0.conv.conv''': '''decoder.layers.0.conv''', '''decoder.model.1.lstm''': '''decoder.layers.1.lstm''', '''decoder.model.3.convtr.convtr''': '''decoder.layers.3.conv''', '''decoder.model.4.block.1.conv.conv''': '''decoder.layers.4.block.1.conv''', '''decoder.model.4.block.3.conv.conv''': '''decoder.layers.4.block.3.conv''', '''decoder.model.4.shortcut.conv.conv''': '''decoder.layers.4.shortcut.conv''', '''decoder.model.6.convtr.convtr''': '''decoder.layers.6.conv''', '''decoder.model.7.block.1.conv.conv''': '''decoder.layers.7.block.1.conv''', '''decoder.model.7.block.3.conv.conv''': '''decoder.layers.7.block.3.conv''', '''decoder.model.7.shortcut.conv.conv''': '''decoder.layers.7.shortcut.conv''', '''decoder.model.9.convtr.convtr''': '''decoder.layers.9.conv''', '''decoder.model.10.block.1.conv.conv''': '''decoder.layers.10.block.1.conv''', '''decoder.model.10.block.3.conv.conv''': '''decoder.layers.10.block.3.conv''', '''decoder.model.10.shortcut.conv.conv''': '''decoder.layers.10.shortcut.conv''', '''decoder.model.12.convtr.convtr''': '''decoder.layers.12.conv''', '''decoder.model.13.block.1.conv.conv''': '''decoder.layers.13.block.1.conv''', '''decoder.model.13.block.3.conv.conv''': '''decoder.layers.13.block.3.conv''', '''decoder.model.13.shortcut.conv.conv''': '''decoder.layers.13.shortcut.conv''', '''decoder.model.15.conv.conv''': '''decoder.layers.15.conv''', } lowerCamelCase : List[Any] = { '''decoder.model.0.conv.norm''': '''decoder.layers.0.norm''', '''decoder.model.3.convtr.norm''': '''decoder.layers.3.norm''', '''decoder.model.4.block.1.conv.norm''': '''decoder.layers.4.block.1.norm''', '''decoder.model.4.block.3.conv.norm''': '''decoder.layers.4.block.3.norm''', '''decoder.model.4.shortcut.conv.norm''': '''decoder.layers.4.shortcut.norm''', '''decoder.model.6.convtr.norm''': '''decoder.layers.6.norm''', '''decoder.model.7.block.1.conv.norm''': '''decoder.layers.7.block.1.norm''', '''decoder.model.7.block.3.conv.norm''': '''decoder.layers.7.block.3.norm''', '''decoder.model.7.shortcut.conv.norm''': '''decoder.layers.7.shortcut.norm''', '''decoder.model.9.convtr.norm''': '''decoder.layers.9.norm''', '''decoder.model.10.block.1.conv.norm''': '''decoder.layers.10.block.1.norm''', '''decoder.model.10.block.3.conv.norm''': '''decoder.layers.10.block.3.norm''', '''decoder.model.10.shortcut.conv.norm''': '''decoder.layers.10.shortcut.norm''', '''decoder.model.12.convtr.norm''': '''decoder.layers.12.norm''', '''decoder.model.13.block.1.conv.norm''': '''decoder.layers.13.block.1.norm''', '''decoder.model.13.block.3.conv.norm''': '''decoder.layers.13.block.3.norm''', '''decoder.model.13.shortcut.conv.norm''': '''decoder.layers.13.shortcut.norm''', '''decoder.model.15.conv.norm''': '''decoder.layers.15.norm''', } lowerCamelCase : Optional[Any] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } lowerCamelCase : Dict = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } lowerCamelCase : Any = [] lowerCamelCase : Any = [] def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] ): for attribute in key.split(""".""" ): __lowercase : Dict = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if weight_type is not None: __lowercase : Tuple = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).shape else: __lowercase : Tuple = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": __lowercase : List[str] = value elif weight_type == "weight_g": __lowercase : int = value elif weight_type == "weight_v": __lowercase : Optional[int] = value elif weight_type == "bias": __lowercase : Tuple = value elif weight_type == "running_mean": __lowercase : Union[str, Any] = value elif weight_type == "running_var": __lowercase : str = value elif weight_type == "num_batches_tracked": __lowercase : Any = value elif weight_type == "weight_ih_l0": __lowercase : Union[str, Any] = value elif weight_type == "weight_hh_l0": __lowercase : Union[str, Any] = value elif weight_type == "bias_ih_l0": __lowercase : Union[str, Any] = value elif weight_type == "bias_hh_l0": __lowercase : Union[str, Any] = value elif weight_type == "weight_ih_l1": __lowercase : int = value elif weight_type == "weight_hh_l1": __lowercase : List[Any] = value elif weight_type == "bias_ih_l1": __lowercase : Any = value elif weight_type == "bias_hh_l1": __lowercase : Tuple = value else: __lowercase : Tuple = value logger.info(F"{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}." ) def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict ): for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: __lowercase : Union[str, Any] = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] ): __lowercase : Tuple = [] if model_name == "encodec_24khz" or "encodec_32khz": __lowercase : List[Any] = MAPPING_24K elif model_name == "encodec_48khz": __lowercase : int = MAPPING_48K else: raise ValueError(F"Unsupported model: {model_name}" ) for name, value in orig_dict.items(): if should_ignore(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): logger.info(F"{name} was ignored" ) continue __lowercase : int = False for key, mapped_key in MAPPING.items(): if "*" in key: __lowercase : int = key.split(""".*.""" ) if prefix in name and suffix in name: __lowercase : int = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith("""embed""" ) and name.endswith("""embed_avg""" ): continue __lowercase : Any = True if "*" in mapped_key: __lowercase : Optional[Any] = name.split(SCREAMING_SNAKE_CASE_ )[0].split(""".""" )[-2] __lowercase : Optional[Any] = mapped_key.replace("""*""" , SCREAMING_SNAKE_CASE_ ) if "weight_g" in name: __lowercase : Any = "weight_g" elif "weight_v" in name: __lowercase : Tuple = "weight_v" elif "weight_ih_l0" in name: __lowercase : str = "weight_ih_l0" elif "weight_hh_l0" in name: __lowercase : Any = "weight_hh_l0" elif "bias_ih_l0" in name: __lowercase : Tuple = "bias_ih_l0" elif "bias_hh_l0" in name: __lowercase : int = "bias_hh_l0" elif "weight_ih_l1" in name: __lowercase : List[Any] = "weight_ih_l1" elif "weight_hh_l1" in name: __lowercase : Optional[Any] = "weight_hh_l1" elif "bias_ih_l1" in name: __lowercase : Union[str, Any] = "bias_ih_l1" elif "bias_hh_l1" in name: __lowercase : Optional[Any] = "bias_hh_l1" elif "bias" in name: __lowercase : Any = "bias" elif "weight" in name: __lowercase : Dict = "weight" elif "running_mean" in name: __lowercase : Tuple = "running_mean" elif "running_var" in name: __lowercase : int = "running_var" elif "num_batches_tracked" in name: __lowercase : List[str] = "num_batches_tracked" else: __lowercase : Dict = None set_recursively(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE_ ) logger.warning(F"Unused weights: {unused_weights}" ) @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Optional[Any]=None , ): if config_path is not None: __lowercase : int = EncodecConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) else: __lowercase : Tuple = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": __lowercase : Any = [8, 5, 4, 4] __lowercase : List[Any] = [2.2] __lowercase : Optional[Any] = 64 __lowercase : Optional[Any] = 32000 __lowercase : int = 2048 __lowercase : int = False __lowercase : int = False __lowercase : Union[str, Any] = False elif model_name == "encodec_48khz": __lowercase : Any = [8, 5, 4, 2] __lowercase : Tuple = [3.0, 6.0, 12.0, 24.0] __lowercase : Any = 48000 __lowercase : List[Any] = 2 __lowercase : List[Any] = False __lowercase : Optional[int] = "time_group_norm" __lowercase : Optional[int] = True __lowercase : Any = 1.0 __lowercase : Optional[Any] = 0.01 else: raise ValueError(F"Unknown model name: {model_name}" ) __lowercase : str = EncodecModel(SCREAMING_SNAKE_CASE_ ) __lowercase : List[str] = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE_ ) __lowercase : int = torch.load(SCREAMING_SNAKE_CASE_ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights __lowercase : Optional[int] = original_checkpoint["best_state"] recursively_load_weights(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) if repo_id: print("""Pushing to the hub...""" ) feature_extractor.push_to_hub(SCREAMING_SNAKE_CASE_ ) model.push_to_hub(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '''--model''', default='''encodec_24khz''', type=str, help='''The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) lowerCamelCase : Union[str, Any] = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
702
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowerCAmelCase ( __a , __a ): '''simple docstring''' _A : str = 1 @register_to_config def __init__( self : Optional[int] , __a : Tuple=2000 , __a : List[str]=0.1 , __a : str=20 , __a : Optional[int]=1E-3 ) -> int: """simple docstring""" __lowercase : Tuple = None __lowercase : Union[str, Any] = None __lowercase : int = None def lowerCAmelCase ( self : List[Any] , __a : Any , __a : Union[str, torch.device] = None ) -> str: """simple docstring""" __lowercase : List[str] = torch.linspace(1 , self.config.sampling_eps , __a , device=__a ) def lowerCAmelCase ( self : Tuple , __a : List[Any] , __a : Tuple , __a : int , __a : Optional[int]=None ) -> str: """simple docstring""" if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __lowercase : Dict = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __lowercase : int = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __lowercase : Union[str, Any] = std.flatten() while len(std.shape ) < len(score.shape ): __lowercase : Optional[Any] = std.unsqueeze(-1 ) __lowercase : List[Any] = -score / std # compute __lowercase : Dict = -1.0 / len(self.timesteps ) __lowercase : int = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __lowercase : List[Any] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __lowercase : Union[str, Any] = beta_t.unsqueeze(-1 ) __lowercase : List[str] = -0.5 * beta_t * x __lowercase : int = torch.sqrt(__a ) __lowercase : Union[str, Any] = drift - diffusion**2 * score __lowercase : Optional[Any] = x + drift * dt # add noise __lowercase : List[str] = randn_tensor(x.shape , layout=x.layout , generator=__a , device=x.device , dtype=x.dtype ) __lowercase : str = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Tuple ) -> Optional[int]: """simple docstring""" return self.config.num_train_timesteps
649
0
import requests from bsa import BeautifulSoup def snake_case_ ( lowerCAmelCase_ : Union[str, Any] = "https://www.worldometers.info/coronavirus" ): __lowercase : List[str] = BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE_ ).text , """html.parser""" ) __lowercase : int = soup.findAll("""h1""" ) __lowercase : Optional[int] = soup.findAll("""div""" , {"""class""": """maincounter-number"""} ) keys += soup.findAll("""span""" , {"""class""": """panel-title"""} ) values += soup.findAll("""div""" , {"""class""": """number-table-main"""} ) return {key.text.strip(): value.text.strip() for key, value in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )} if __name__ == "__main__": print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''') for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
703
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : str = LongformerTokenizer _A : int = True _A : Optional[int] = LongformerTokenizerFast _A : int = True def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __lowercase : Union[str, Any] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Any = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __lowercase : Optional[int] = {"""unk_token""": """<unk>"""} __lowercase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__a ) ) def lowerCAmelCase ( self : Optional[int] , **__a : Optional[Any] ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Tuple , **__a : Tuple ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : str , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = """lower newer""" __lowercase : int = """lower newer""" return input_text, output_text def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowercase : Dict = """lower newer""" __lowercase : Optional[Any] = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] __lowercase : str = tokenizer.tokenize(__a ) # , add_prefix_space=True) self.assertListEqual(__a , __a ) __lowercase : int = tokens + [tokenizer.unk_token] __lowercase : str = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=__a ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=__a ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : Any = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" ) __lowercase : Optional[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=__a ) __lowercase : List[str] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__a ) __lowercase : Optional[Any] = tokenizer.encode( """sequence builders""" , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Union[str, Any] = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : List[Any] = tokenizer.build_inputs_with_special_tokens(__a ) __lowercase : Any = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() __lowercase : Tuple = """Encode this sequence.""" __lowercase : Optional[Any] = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments __lowercase : Dict = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__a , __a ) __lowercase : List[str] = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__a , __a ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) __lowercase : str = tokenizer.encode(__a , add_special_tokens=__a ) __lowercase : Dict = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__a , __a ) # Testing spaces after special tokens __lowercase : List[Any] = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(__a , lstrip=__a , rstrip=__a )} ) # mask token has a left space __lowercase : Dict = tokenizer.convert_tokens_to_ids(__a ) __lowercase : List[str] = """Encode <mask> sequence""" __lowercase : List[str] = """Encode <mask>sequence""" __lowercase : Union[str, Any] = tokenizer.encode(__a ) __lowercase : Dict = encoded.index(__a ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__a , __a ) __lowercase : int = tokenizer.encode(__a ) __lowercase : Union[str, Any] = encoded.index(__a ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__a , __a ) def lowerCAmelCase ( self : int ) -> str: """simple docstring""" pass def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) __lowercase : List[Any] = self.tokenizer_class.from_pretrained(__a , **__a ) __lowercase : Optional[Any] = """A, <mask> AllenNLP sentence.""" __lowercase : Union[str, Any] = tokenizer_r.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) __lowercase : Optional[Any] = tokenizer_p.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) __lowercase : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __lowercase : str = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __lowercase : Dict = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __lowercase : Any = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""trim_offsets"""] , __a ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : List[str] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` __lowercase : int = F"{text_of_1_token} {text_of_1_token}" __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Any = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) __lowercase : str = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Tuple = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) __lowercase : Optional[int] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : str = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) __lowercase : str = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : int = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) __lowercase : Any = F" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : str = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ) + 1, 1 + len(__a ) + 1 + len(__a )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Dict = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Tuple = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , )
649
0
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class lowerCAmelCase ( __A ): '''simple docstring''' def __lt__( self : Tuple , __a : Dict ) -> Tuple: """simple docstring""" return self[-1] < other[-1] def __eq__( self : Any , __a : List[Any] ) -> List[Any]: """simple docstring""" return self[-1] == other[-1] def snake_case_ ( lowerCAmelCase_ : list ): __lowercase : list[Stack] = [] # sort into stacks for element in collection: __lowercase : Union[str, Any] = Stack([element] ) __lowercase : Tuple = bisect_left(__lowercase , __lowercase ) if i != len(__lowercase ): stacks[i].append(__lowercase ) else: stacks.append(__lowercase ) # use a heap-based merge to merge stack efficiently __lowercase : Any = merge(*(reversed(__lowercase ) for stack in stacks) ) return collection if __name__ == "__main__": lowerCamelCase : int = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase : Any = [int(item) for item in user_input.split(''',''')] print(patience_sort(unsorted))
704
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Dict , __a : Union[str, Any]=13 , __a : Dict=7 , __a : Dict=True , __a : Dict=True , __a : Any=True , __a : List[str]=True , __a : int=99 , __a : Optional[int]=32 , __a : str=2 , __a : int=4 , __a : List[str]=37 , __a : Union[str, Any]="gelu" , __a : Union[str, Any]=0.1 , __a : Union[str, Any]=0.1 , __a : List[Any]=512 , __a : int=16 , __a : Union[str, Any]=2 , __a : Union[str, Any]=0.02 , __a : List[str]=3 , __a : Dict=4 , __a : Optional[Any]=None , ) -> Optional[Any]: """simple docstring""" __lowercase : Any = parent __lowercase : Tuple = 13 __lowercase : Dict = 7 __lowercase : List[Any] = True __lowercase : Tuple = True __lowercase : List[str] = True __lowercase : Any = True __lowercase : Optional[int] = 99 __lowercase : str = 384 __lowercase : Optional[Any] = 2 __lowercase : Dict = 4 __lowercase : str = 37 __lowercase : Optional[int] = """gelu""" __lowercase : int = 0.1 __lowercase : Union[str, Any] = 0.1 __lowercase : Tuple = 512 __lowercase : Tuple = 16 __lowercase : Optional[int] = 2 __lowercase : Optional[Any] = 0.02 __lowercase : Dict = 3 __lowercase : Union[str, Any] = 4 __lowercase : Tuple = 128 __lowercase : Optional[Any] = 2 __lowercase : int = 9 __lowercase : List[Any] = 1 __lowercase : Union[str, Any] = None def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" __lowercase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : Optional[Any] = None if self.use_input_mask: __lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : Dict = None if self.use_token_type_ids: __lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase : Optional[Any] = None __lowercase : str = None __lowercase : Tuple = None if self.use_labels: __lowercase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : str = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : Optional[int] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Dict , __a : List[Any] , __a : List[str] , __a : Union[str, Any] , __a : str , __a : Union[str, Any] , __a : Tuple , __a : Tuple ) -> Dict: """simple docstring""" __lowercase : Dict = TFConvBertModel(config=__a ) __lowercase : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowercase : Any = [input_ids, input_mask] __lowercase : Dict = model(__a ) __lowercase : str = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : Any , __a : Tuple , __a : Union[str, Any] , __a : str , __a : Dict , __a : str ) -> Dict: """simple docstring""" __lowercase : Optional[int] = TFConvBertForMaskedLM(config=__a ) __lowercase : List[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : Any = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[int] , __a : int , __a : Any , __a : Optional[int] , __a : int , __a : int , __a : List[Any] , __a : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase : str = self.num_labels __lowercase : List[Any] = TFConvBertForSequenceClassification(config=__a ) __lowercase : int = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : List[str] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Optional[int] , __a : Any , __a : Optional[Any] , __a : int , __a : Optional[int] , __a : Tuple , __a : int , __a : int ) -> Dict: """simple docstring""" __lowercase : Tuple = self.num_choices __lowercase : Dict = TFConvBertForMultipleChoice(config=__a ) __lowercase : List[str] = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : int = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : str = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : str = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __lowercase : Dict = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : List[str] , __a : str , __a : List[str] , __a : List[str] , __a : List[str] , __a : Any , __a : Tuple , __a : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = self.num_labels __lowercase : Tuple = TFConvBertForTokenClassification(config=__a ) __lowercase : Dict = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : str = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : List[Any] , __a : Optional[int] , __a : List[str] , __a : Optional[Any] , __a : int , __a : Tuple , __a : Any , __a : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Any = TFConvBertForQuestionAnswering(config=__a ) __lowercase : str = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : List[Any] = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : Tuple = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : int = config_and_inputs __lowercase : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Dict = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _A : str = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _A : Union[str, Any] = False _A : List[str] = False _A : Dict = False def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : int = TFConvBertModelTester(self ) __lowercase : Tuple = ConfigTester(self , config_class=__a , hidden_size=37 ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__a ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Union[str, Any] = True __lowercase : List[Any] = True if hasattr(__a , """use_cache""" ): __lowercase : Optional[Any] = True __lowercase : List[str] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) __lowercase : int = getattr(self.model_tester , """key_length""" , __a ) for model_class in self.all_model_classes: __lowercase : Optional[Any] = self._prepare_for_class(__a , __a ) __lowercase : Tuple = model_class(__a ) __lowercase : Tuple = len(model(__a ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a , saved_model=__a ) __lowercase : List[Any] = os.path.join(__a , """saved_model""" , """1""" ) __lowercase : str = tf.keras.models.load_model(__a ) __lowercase : Optional[int] = model(__a ) if self.is_encoder_decoder: __lowercase : Union[str, Any] = outputs["""encoder_hidden_states"""] __lowercase : Union[str, Any] = outputs["""encoder_attentions"""] else: __lowercase : Union[str, Any] = outputs["""hidden_states"""] __lowercase : List[str] = outputs["""attentions"""] self.assertEqual(len(__a ) , __a ) __lowercase : List[Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : str = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) self.assertIsNotNone(__a ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : List[str] = True __lowercase : List[Any] = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length ) __lowercase : Optional[int] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) __lowercase : List[str] = getattr(self.model_tester , """key_length""" , __a ) __lowercase : List[Any] = getattr(self.model_tester , """key_length""" , __a ) def check_decoder_attentions_output(__a : List[str] ): __lowercase : Union[str, Any] = len(__a ) self.assertEqual(out_len % 2 , 0 ) __lowercase : Any = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__a : str ): __lowercase : str = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __lowercase : int = True __lowercase : Any = False __lowercase : List[Any] = model_class(__a ) __lowercase : Tuple = model(self._prepare_for_class(__a , __a ) ) __lowercase : Dict = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: __lowercase : Any = model_class(__a ) __lowercase : List[str] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __lowercase : Dict = True __lowercase : Optional[Any] = model_class(__a ) __lowercase : Optional[int] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine __lowercase : List[str] = True __lowercase : List[Any] = True __lowercase : Any = model_class(__a ) __lowercase : Optional[int] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @require_tf class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) __lowercase : str = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowercase : Tuple = model(__a )[0] __lowercase : Any = [1, 6, 768] self.assertEqual(output.shape , __a ) __lowercase : Optional[Any] = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-4 )
649
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = tempfile.mkdtemp() # fmt: off __lowercase : List[str] = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on __lowercase : Any = dict(zip(_A , range(len(_A ) ) ) ) __lowercase : str = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] __lowercase : List[Any] = {"""unk_token""": """<unk>"""} __lowercase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_A ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_A ) ) __lowercase : Optional[Any] = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], } __lowercase : Any = os.path.join(self.tmpdirname , _A ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_A , _A ) def lowerCAmelCase ( self : str , **__a : Union[str, Any] ) -> List[str]: """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , **_A ) def lowerCAmelCase ( self : Union[str, Any] , **__a : int ) -> int: """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_A ) def lowerCAmelCase ( self : Optional[Any] , **__a : int ) -> List[str]: """simple docstring""" return CLIPImageProcessor.from_pretrained(self.tmpdirname , **_A ) def lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __lowercase : int = [Image.fromarray(np.moveaxis(_A , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" __lowercase : str = self.get_tokenizer() __lowercase : int = self.get_rust_tokenizer() __lowercase : Any = self.get_image_processor() __lowercase : Tuple = CLIPProcessor(tokenizer=_A , image_processor=_A ) processor_slow.save_pretrained(self.tmpdirname ) __lowercase : Any = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_A ) __lowercase : Union[str, Any] = CLIPProcessor(tokenizer=_A , image_processor=_A ) processor_fast.save_pretrained(self.tmpdirname ) __lowercase : Optional[Any] = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _A ) self.assertIsInstance(processor_fast.tokenizer , _A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _A ) self.assertIsInstance(processor_fast.image_processor , _A ) def lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" __lowercase : int = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowercase : int = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __lowercase : List[str] = self.get_image_processor(do_normalize=_A , padding_value=1.0 ) __lowercase : int = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _A ) def lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" __lowercase : int = self.get_image_processor() __lowercase : Any = self.get_tokenizer() __lowercase : Optional[Any] = CLIPProcessor(tokenizer=_A , image_processor=_A ) __lowercase : Dict = self.prepare_image_inputs() __lowercase : List[str] = image_processor(_A , return_tensors="""np""" ) __lowercase : Tuple = processor(images=_A , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" __lowercase : str = self.get_image_processor() __lowercase : Any = self.get_tokenizer() __lowercase : str = CLIPProcessor(tokenizer=_A , image_processor=_A ) __lowercase : Optional[int] = """lower newer""" __lowercase : List[Any] = processor(text=_A ) __lowercase : Union[str, Any] = tokenizer(_A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" __lowercase : Any = self.get_image_processor() __lowercase : List[str] = self.get_tokenizer() __lowercase : List[str] = CLIPProcessor(tokenizer=_A , image_processor=_A ) __lowercase : Optional[Any] = """lower newer""" __lowercase : Any = self.prepare_image_inputs() __lowercase : Optional[Any] = processor(text=_A , images=_A ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = self.get_image_processor() __lowercase : Dict = self.get_tokenizer() __lowercase : Optional[Any] = CLIPProcessor(tokenizer=_A , image_processor=_A ) __lowercase : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowercase : Optional[int] = processor.batch_decode(_A ) __lowercase : Any = tokenizer.batch_decode(_A ) self.assertListEqual(_A , _A ) def lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" __lowercase : int = self.get_image_processor() __lowercase : Any = self.get_tokenizer() __lowercase : Tuple = CLIPProcessor(tokenizer=_A , image_processor=_A ) __lowercase : int = """lower newer""" __lowercase : Tuple = self.prepare_image_inputs() __lowercase : Union[str, Any] = processor(text=_A , images=_A ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
705
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : int , *__a : Dict , **__a : Optional[Any] ) -> None: """simple docstring""" warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , __a , ) super().__init__(*__a , **__a )
649
0
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets lowerCamelCase : Optional[int] = '''\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } ''' lowerCamelCase : List[str] = '''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' lowerCamelCase : Tuple = ''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLSum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results["rouge1"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results["rouge1"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/google-research/google-research/tree/master/rouge"""] , reference_urls=[ """https://en.wikipedia.org/wiki/ROUGE_(metric)""", """https://github.com/google-research/google-research/tree/master/rouge""", ] , ) def lowerCAmelCase ( self : str , __a : Any , __a : Optional[int] , __a : Optional[int]=None , __a : Tuple=True , __a : Optional[int]=False ) -> Optional[Any]: """simple docstring""" if rouge_types is None: __lowercase : List[str] = ["""rouge1""", """rouge2""", """rougeL""", """rougeLsum"""] __lowercase : Dict = rouge_scorer.RougeScorer(rouge_types=snake_case__ , use_stemmer=snake_case__ ) if use_aggregator: __lowercase : Optional[Any] = scoring.BootstrapAggregator() else: __lowercase : Optional[Any] = [] for ref, pred in zip(snake_case__ , snake_case__ ): __lowercase : str = scorer.score(snake_case__ , snake_case__ ) if use_aggregator: aggregator.add_scores(snake_case__ ) else: scores.append(snake_case__ ) if use_aggregator: __lowercase : List[str] = aggregator.aggregate() else: __lowercase : str = {} for key in scores[0]: __lowercase : Dict = [score[key] for score in scores] return result
706
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Optional[int] = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() __lowercase : List[str] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Dict = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } __lowercase : List[str] = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 16000, """return_attention_mask""": False, """do_normalize""": True, } __lowercase : Tuple = tempfile.mkdtemp() __lowercase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : str = os.path.join(self.tmpdirname , __a ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) # load decoder from hub __lowercase : Optional[int] = """hf-internal-testing/ngram-beam-search-decoder""" def lowerCAmelCase ( self : Optional[Any] , **__a : Dict ) -> Tuple: """simple docstring""" __lowercase : Union[str, Any] = self.add_kwargs_tokens_map.copy() kwargs.update(__a ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : str , **__a : int ) -> Tuple: """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Union[str, Any] , **__a : Union[str, Any] ) -> List[Any]: """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__a ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() __lowercase : Any = self.get_feature_extractor() __lowercase : str = self.get_decoder() __lowercase : Tuple = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) processor.save_pretrained(self.tmpdirname ) __lowercase : Tuple = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __a ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __a ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __a ) def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Any = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __lowercase : str = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : List[str] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(__a , """include""" ): WavaVecaProcessorWithLM( tokenizer=__a , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : List[Any] = self.get_feature_extractor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : int = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Optional[int] = floats_list((3, 1000) ) __lowercase : List[Any] = feature_extractor(__a , return_tensors="""np""" ) __lowercase : List[str] = processor(__a , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : List[Any] = self.get_feature_extractor() __lowercase : int = self.get_tokenizer() __lowercase : Dict = self.get_decoder() __lowercase : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Dict = """This is a test string""" __lowercase : Any = processor(text=__a ) __lowercase : Dict = tokenizer(__a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase ( self : str , __a : Tuple=(2, 10, 16) , __a : int=77 ) -> Optional[Any]: """simple docstring""" np.random.seed(__a ) return np.random.rand(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : List[str] = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : str = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : List[str] = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __lowercase : Optional[Any] = processor.decode(__a ) __lowercase : Any = decoder.decode_beams(__a )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def lowerCAmelCase ( self : List[str] , __a : Dict ) -> List[Any]: """simple docstring""" __lowercase : str = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : Optional[int] = self.get_decoder() __lowercase : Any = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Optional[Any] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __lowercase : Union[str, Any] = processor.batch_decode(__a ) else: with get_context(__a ).Pool() as pool: __lowercase : Optional[Any] = processor.batch_decode(__a , __a ) __lowercase : Union[str, Any] = list(__a ) with get_context("""fork""" ).Pool() as p: __lowercase : Optional[Any] = decoder.decode_beams_batch(__a , __a ) __lowercase , __lowercase , __lowercase : Any = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__a , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(__a , decoded_processor.logit_score ) self.assertListEqual(__a , decoded_processor.lm_score ) def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase : int = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : List[str] = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Dict = self._get_dummy_logits() __lowercase : Tuple = 15 __lowercase : Tuple = -20.0 __lowercase : Dict = -4.0 __lowercase : Dict = processor.batch_decode( __a , beam_width=__a , beam_prune_logp=__a , token_min_logp=__a , ) __lowercase : Tuple = decoded_processor_out.text __lowercase : List[Any] = list(__a ) with get_context("""fork""" ).Pool() as pool: __lowercase : Any = decoder.decode_beams_batch( __a , __a , beam_width=__a , beam_prune_logp=__a , token_min_logp=__a , ) __lowercase : Optional[Any] = [d[0][0] for d in decoded_decoder_out] __lowercase : Optional[int] = [d[0][2] for d in decoded_decoder_out] __lowercase : Optional[int] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__a , __a ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , __a ) self.assertTrue(np.array_equal(__a , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , __a , atol=1E-3 ) ) self.assertTrue(np.array_equal(__a , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , __a , atol=1E-3 ) ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase : str = self.get_feature_extractor() __lowercase : List[Any] = self.get_tokenizer() __lowercase : List[Any] = self.get_decoder() __lowercase : Dict = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : List[Any] = self._get_dummy_logits() __lowercase : Optional[int] = 2.0 __lowercase : Tuple = 5.0 __lowercase : Optional[Any] = -20.0 __lowercase : Tuple = True __lowercase : Union[str, Any] = processor.batch_decode( __a , alpha=__a , beta=__a , unk_score_offset=__a , lm_score_boundary=__a , ) __lowercase : Any = decoded_processor_out.text __lowercase : List[Any] = list(__a ) decoder.reset_params( alpha=__a , beta=__a , unk_score_offset=__a , lm_score_boundary=__a , ) with get_context("""fork""" ).Pool() as pool: __lowercase : Tuple = decoder.decode_beams_batch( __a , __a , ) __lowercase : int = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__a , __a ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , __a ) __lowercase : str = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , __a ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] __lowercase : str = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __lowercase : int = os.listdir(__a ) __lowercase : Optional[Any] = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = snapshot_download("""hf-internal-testing/processor_with_lm""" ) __lowercase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(__a ) __lowercase : Dict = processor.decoder.model_container[processor.decoder._model_key] __lowercase : List[Any] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __lowercase : Dict = os.listdir(__a ) __lowercase : List[Any] = os.listdir(__a ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" __lowercase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Dict = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Any = floats_list((3, 1000) ) __lowercase : List[str] = processor_wavaveca(__a , return_tensors="""np""" ) __lowercase : List[Any] = processor_auto(__a , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) __lowercase : List[str] = self._get_dummy_logits() __lowercase : List[str] = processor_wavaveca.batch_decode(__a ) __lowercase : Optional[int] = processor_auto.batch_decode(__a ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Any = self.get_feature_extractor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : Dict = self.get_decoder() __lowercase : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def lowerCAmelCase ( __a : Union[str, Any] , __a : List[Any] ) -> Dict: """simple docstring""" __lowercase : Any = [d[key] for d in offsets] return retrieved_list def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" __lowercase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Optional[Any] = self._get_dummy_logits()[0] __lowercase : Dict = processor.decode(__a , output_word_offsets=__a ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__a , __a ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : List[str] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Any = self._get_dummy_logits() __lowercase : Dict = processor.batch_decode(__a , output_word_offsets=__a ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__a , __a ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(__a , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" import torch __lowercase : Any = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=__a ) __lowercase : str = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=16000 ) ) __lowercase : Tuple = iter(__a ) __lowercase : Union[str, Any] = next(__a ) __lowercase : int = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) __lowercase : int = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __lowercase : Union[str, Any] = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): __lowercase : List[Any] = model(__a ).logits.cpu().numpy() __lowercase : Tuple = processor.decode(logits[0] , output_word_offsets=__a ) __lowercase : int = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __lowercase : Optional[Any] = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] __lowercase : str = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(__a , """word""" ) ) , __a ) self.assertEqual(""" """.join(self.get_from_offsets(__a , """word""" ) ) , output.text ) # output times __lowercase : Tuple = torch.tensor(self.get_from_offsets(__a , """start_time""" ) ) __lowercase : Dict = torch.tensor(self.get_from_offsets(__a , """end_time""" ) ) # fmt: off __lowercase : List[Any] = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) __lowercase : Optional[int] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(__a , __a , atol=0.01 ) ) self.assertTrue(torch.allclose(__a , __a , atol=0.01 ) )
649
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : int = logging.get_logger(__name__) lowerCamelCase : Any = { '''facebook/levit-128S''': '''https://huggingface.co/facebook/levit-128S/resolve/main/config.json''', # See all LeViT models at https://huggingface.co/models?filter=levit } class lowerCAmelCase ( __lowerCamelCase ): '''simple docstring''' _A : Any = '''levit''' def __init__( self : str , __a : Tuple=224 , __a : List[Any]=3 , __a : Any=3 , __a : str=2 , __a : List[str]=1 , __a : str=16 , __a : List[Any]=[128, 256, 384] , __a : str=[4, 8, 12] , __a : Dict=[4, 4, 4] , __a : List[Any]=[16, 16, 16] , __a : Tuple=0 , __a : Tuple=[2, 2, 2] , __a : Union[str, Any]=[2, 2, 2] , __a : str=0.02 , **__a : Any , ) -> List[str]: """simple docstring""" super().__init__(**a_ ) __lowercase : Optional[Any] = image_size __lowercase : int = num_channels __lowercase : Tuple = kernel_size __lowercase : List[Any] = stride __lowercase : Optional[Any] = padding __lowercase : List[str] = hidden_sizes __lowercase : Tuple = num_attention_heads __lowercase : Dict = depths __lowercase : Optional[Any] = key_dim __lowercase : List[str] = drop_path_rate __lowercase : Optional[Any] = patch_size __lowercase : Union[str, Any] = attention_ratio __lowercase : Optional[int] = mlp_ratio __lowercase : List[Any] = initializer_range __lowercase : Tuple = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class lowerCAmelCase ( __lowerCamelCase ): '''simple docstring''' _A : Any = version.parse('''1.11''' ) @property def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" return 1E-4
707
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(0 ) == 0 ) def snake_case_ ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
649
0
def snake_case_ ( lowerCAmelCase_ : Any ): return "".join(chr(ord(_snake_case ) - 32 ) if """a""" <= char <= """z""" else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
708
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCamelCase : int = '''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine''' def snake_case_ ( ): __lowercase : List[Any] = _ask_options( """In which compute environment are you running?""" , ["""This machine""", """AWS (Amazon SageMaker)"""] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __lowercase : Union[str, Any] = get_sagemaker_input() else: __lowercase : str = get_cluster_input() return config def snake_case_ ( lowerCAmelCase_ : List[str]=None ): if subparsers is not None: __lowercase : Optional[int] = subparsers.add_parser("""config""" , description=lowerCAmelCase_ ) else: __lowercase : List[str] = argparse.ArgumentParser("""Accelerate config command""" , description=lowerCAmelCase_ ) parser.add_argument( """--config_file""" , default=lowerCAmelCase_ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def snake_case_ ( lowerCAmelCase_ : Tuple ): __lowercase : Union[str, Any] = get_user_input() if args.config_file is not None: __lowercase : List[Any] = args.config_file else: if not os.path.isdir(lowerCAmelCase_ ): os.makedirs(lowerCAmelCase_ ) __lowercase : Any = default_yaml_config_file if config_file.endswith(""".json""" ): config.to_json_file(lowerCAmelCase_ ) else: config.to_yaml_file(lowerCAmelCase_ ) print(F"accelerate configuration saved at {config_file}" ) def snake_case_ ( ): __lowercase : str = config_command_parser() __lowercase : str = parser.parse_args() config_command(lowerCAmelCase_ ) if __name__ == "__main__": main()
649
0
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def snake_case_ ( ): raise RuntimeError("""CUDA out of memory.""" ) class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] ) -> List[str]: """simple docstring""" super().__init__() __lowercase : Optional[Any] = nn.Linear(3 , 4 ) __lowercase : Tuple = nn.BatchNormad(4 ) __lowercase : Optional[Any] = nn.Linear(4 , 5 ) def lowerCAmelCase ( self : Union[str, Any] , __a : Optional[int] ) -> List[Any]: """simple docstring""" return self.lineara(self.batchnorm(self.lineara(_SCREAMING_SNAKE_CASE ) ) ) class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" __lowercase : Dict = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__a : Tuple ): nonlocal batch_sizes batch_sizes.append(_SCREAMING_SNAKE_CASE ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(_SCREAMING_SNAKE_CASE , [128, 64, 32, 16, 8] ) def lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" __lowercase : Union[str, Any] = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__a : Union[str, Any] , __a : Optional[int] ): nonlocal batch_sizes batch_sizes.append(_SCREAMING_SNAKE_CASE ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga __lowercase , __lowercase : Optional[int] = mock_training_loop_function("""hello""" ) self.assertListEqual(_SCREAMING_SNAKE_CASE , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, """hello"""] ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__a : str ): pass with self.assertRaises(_SCREAMING_SNAKE_CASE ) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0] ) def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__a : Any ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(_SCREAMING_SNAKE_CASE ) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0] ) def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__a : Optional[int] , __a : str , __a : Tuple ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(_SCREAMING_SNAKE_CASE ) as cm: mock_training_loop_function(128 , """hello""" , """world""" ) self.assertIn("""Batch size was passed into `f`""" , cm.exception.args[0] ) self.assertIn("""`f(arg1='hello', arg2='world')""" , cm.exception.args[0] ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__a : Optional[int] ): raise ValueError("""Oops, we had an error!""" ) with self.assertRaises(_SCREAMING_SNAKE_CASE ) as cm: mock_training_loop_function() self.assertIn("""Oops, we had an error!""" , cm.exception.args[0] ) @require_cuda def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = torch.cuda.memory_allocated() __lowercase : List[str] = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , _SCREAMING_SNAKE_CASE ) __lowercase : Union[str, Any] = release_memory(_SCREAMING_SNAKE_CASE ) self.assertEqual(torch.cuda.memory_allocated() , _SCREAMING_SNAKE_CASE )
709
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : list[str] | None = None ): __lowercase : Tuple = word_bank or [] # create a table __lowercase : int = len(lowerCAmelCase_ ) + 1 __lowercase : list[list[list[str]]] = [] for _ in range(lowerCAmelCase_ ): table.append([] ) # seed value __lowercase : Dict = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowerCAmelCase_ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowerCAmelCase_ )] == word: __lowercase : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowerCAmelCase_ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowerCAmelCase_ )]: combination.reverse() return table[len(lowerCAmelCase_ )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
649
0
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('''1.6'''): lowerCamelCase : int = True from torch.cuda.amp import autocast lowerCamelCase : Optional[Any] = logging.getLogger(__name__) @dataclass class lowerCAmelCase : '''simple docstring''' _A : Optional[Any] = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _A : Union[str, Any] = field( default=_A , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) _A : List[str] = field( default=_A , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) _A : Union[str, Any] = field( default=_A , metadata={'''help''': '''Whether to log verbose messages or not.'''} , ) _A : str = field( default=2.0 , metadata={'''help''': '''Maximum temperature for gumbel softmax.'''} ) _A : Dict = field( default=0.5 , metadata={'''help''': '''Minimum temperature for gumbel softmax.'''} ) _A : str = field( default=0.9_9_9_9_9_5 , metadata={'''help''': '''Decay of gumbel temperature during training.'''} ) def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : Dict ): logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) __lowercase : Optional[Any] = logging.WARNING if model_args.verbose_logging: __lowercase : int = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): __lowercase : Optional[int] = logging.INFO logger.setLevel(A_ ) @dataclass class lowerCAmelCase : '''simple docstring''' _A : Any = field( default=_A , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) _A : Optional[Any] = field( default=_A , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) _A : Optional[Any] = field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) _A : Any = field( default='''validation''' , metadata={ '''help''': ( '''The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) _A : str = field( default='''file''' , metadata={'''help''': '''Column in the dataset that contains speech file path. Defaults to \'file\''''} , ) _A : int = field( default=_A , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) _A : str = field( default=1 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) _A : str = field( default=_A , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) _A : Tuple = field( default=2_0.0 , metadata={'''help''': '''Filter audio files that are longer than `max_duration_in_seconds` seconds'''} ) @dataclass class lowerCAmelCase : '''simple docstring''' _A : Optional[int] = 42 _A : Union[str, Any] = 42 _A : int = '''longest''' _A : Dict = None _A : Any = None def __call__( self : int , __a : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: """simple docstring""" __lowercase : str = self.feature_extractor.pad( UpperCamelCase__ , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) __lowercase : int = self.model._get_feat_extract_output_lengths(batch["""input_values"""].shape[-1] ) __lowercase : List[Any] = batch["""input_values"""].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula __lowercase : int = self.model._get_feat_extract_output_lengths(batch["""attention_mask"""].sum(-1 ) ).to( torch.long ) __lowercase : Optional[Any] = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch["""input_values"""].device ) # these two operations makes sure that all values # before the output lengths indices are attended to __lowercase : Dict = 1 __lowercase : Any = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices __lowercase : int = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=UpperCamelCase__ , min_masks=2 , ) return batch class lowerCAmelCase ( _A ): '''simple docstring''' def __init__( self : int , *__a : List[Any] , __a : Optional[int]=1 , __a : Dict=0 , __a : Union[str, Any]=1.0 , **__a : Optional[int] ) -> List[Any]: """simple docstring""" super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) __lowercase : str = 0 __lowercase : List[Any] = max_gumbel_temp __lowercase : List[Any] = min_gumbel_temp __lowercase : List[Any] = gumbel_temp_decay def lowerCAmelCase ( self : Any , __a : nn.Module , __a : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: """simple docstring""" model.train() __lowercase : Any = self._prepare_inputs(UpperCamelCase__ ) if self.use_amp: with autocast(): __lowercase : Tuple = self.compute_loss(UpperCamelCase__ , UpperCamelCase__ ) else: __lowercase : List[str] = self.compute_loss(UpperCamelCase__ , UpperCamelCase__ ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": __lowercase : List[str] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __lowercase : str = loss.sum() / (inputs["""mask_time_indices"""]).sum() else: raise ValueError(F"{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']" ) if self.args.gradient_accumulation_steps > 1: __lowercase : Union[str, Any] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(UpperCamelCase__ ).backward() elif self.use_apex: with amp.scale_loss(UpperCamelCase__ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(UpperCamelCase__ ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def snake_case_ ( ): __lowercase : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase : Union[str, Any] = parser.parse_args_into_dataclasses() configure_logger(A_ , A_ ) # Downloading and loading a dataset from the hub. __lowercase : Optional[Any] = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" __lowercase : List[Any] = DatasetDict() __lowercase : Optional[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[:{data_args.validation_split_percentage}%]" , cache_dir=model_args.cache_dir , ) __lowercase : int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[{data_args.validation_split_percentage}%:]" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" __lowercase : List[str] = DatasetDict() __lowercase : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="""validation""" , cache_dir=model_args.cache_dir , ) __lowercase : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported __lowercase : List[Any] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=A_ ) def prepare_dataset(lowerCAmelCase_ : Optional[Any] ): # check that all files have the correct sampling rate __lowercase , __lowercase : int = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays __lowercase : Optional[Any] = datasets.map( A_ , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["""train"""].column_names ) # filter audio files that are too long __lowercase : Union[str, Any] = vectorized_datasets.filter( lambda lowerCAmelCase_ : len(data["""speech"""] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(lowerCAmelCase_ : int ): return feature_extractor(batch["""speech"""] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` __lowercase : Dict = vectorized_datasets.map( A_ , batched=A_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["""train"""].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 __lowercase : int = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( """PreTraining is only supported for ``config.do_stable_layer_norm=True`` and""" """ ``config.feat_extract_norm='layer'""" ) __lowercase : List[str] = WavaVecaForPreTraining(A_ ) __lowercase : Any = DataCollatorForWavaVecaPretraining(model=A_ , feature_extractor=A_ ) __lowercase : List[Any] = WavaVecaPreTrainer( model=A_ , data_collator=A_ , args=A_ , train_dataset=vectorized_datasets["""train"""] , eval_dataset=vectorized_datasets["""validation"""] , tokenizer=A_ , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
710
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(1 ) != 0 ) def snake_case_ ( ): assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
649
0
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class lowerCAmelCase ( yaml.SafeLoader ): '''simple docstring''' def lowerCAmelCase ( self : int , __a : int ) -> Dict: """simple docstring""" __lowercase : Optional[Any] = [self.constructed_objects[key_node] for key_node, _ in node.value] __lowercase : List[str] = [tuple(_A ) if isinstance(_A , _A ) else key for key in keys] __lowercase : Tuple = Counter(_A ) __lowercase : Tuple = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F"Got duplicate yaml keys: {duplicate_keys}" ) def lowerCAmelCase ( self : Any , __a : Optional[int] , __a : Tuple=False ) -> str: """simple docstring""" __lowercase : int = super().construct_mapping(_A , deep=_A ) self._check_no_duplicates_on_constructed_node(_A ) return mapping def snake_case_ ( lowerCAmelCase_ : List[Any] ): __lowercase : List[Any] = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: __lowercase : List[str] = full_content[1:].index("""---""" ) + 1 __lowercase : List[str] = '\n'.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(lowerCAmelCase_ ) class lowerCAmelCase ( snake_case__ ): '''simple docstring''' _A : int = {'''train_eval_index'''} # train-eval-index in the YAML metadata @classmethod def lowerCAmelCase ( cls : Dict , __a : str ) -> str: """simple docstring""" with open(_A , encoding="""utf-8""" ) as readme_file: __lowercase : int = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(_A ) else: return cls() def lowerCAmelCase ( self : str , __a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" if path.exists(): with open(_A , encoding="""utf-8""" ) as readme_file: __lowercase : Tuple = readme_file.read() else: __lowercase : Dict = None __lowercase : str = self._to_readme(_A ) with open(_A , """w""" , encoding="""utf-8""" ) as readme_file: readme_file.write(_A ) def lowerCAmelCase ( self : Any , __a : List[str] = None ) -> Union[str, Any]: """simple docstring""" if readme_content is not None: __lowercase : str = _split_yaml_from_readme(_A ) __lowercase : Dict = '---\n' + self.to_yaml_string() + '---\n' + content else: __lowercase : Optional[Any] = '---\n' + self.to_yaml_string() + '---\n' return full_content @classmethod def lowerCAmelCase ( cls : List[Any] , __a : Any ) -> Dict: """simple docstring""" __lowercase : List[Any] = yaml.load(_A , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields __lowercase : List[str] = { (key.replace("""-""" , """_""" ) if key.replace("""-""" , """_""" ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**_A ) def lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" return yaml.safe_dump( { (key.replace("""_""" , """-""" ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=_A , allow_unicode=_A , encoding="""utf-8""" , ).decode("""utf-8""" ) lowerCamelCase : Tuple = { '''image-classification''': [], '''translation''': [], '''image-segmentation''': [], '''fill-mask''': [], '''automatic-speech-recognition''': [], '''token-classification''': [], '''sentence-similarity''': [], '''audio-classification''': [], '''question-answering''': [], '''summarization''': [], '''zero-shot-classification''': [], '''table-to-text''': [], '''feature-extraction''': [], '''other''': [], '''multiple-choice''': [], '''text-classification''': [], '''text-to-image''': [], '''text2text-generation''': [], '''zero-shot-image-classification''': [], '''tabular-classification''': [], '''tabular-regression''': [], '''image-to-image''': [], '''tabular-to-text''': [], '''unconditional-image-generation''': [], '''text-retrieval''': [], '''text-to-speech''': [], '''object-detection''': [], '''audio-to-audio''': [], '''text-generation''': [], '''conversational''': [], '''table-question-answering''': [], '''visual-question-answering''': [], '''image-to-text''': [], '''reinforcement-learning''': [], '''voice-activity-detection''': [], '''time-series-forecasting''': [], '''document-question-answering''': [], } if __name__ == "__main__": from argparse import ArgumentParser lowerCamelCase : int = ArgumentParser(usage='''Validate the yaml metadata block of a README.md file.''') ap.add_argument('''readme_filepath''') lowerCamelCase : Dict = ap.parse_args() lowerCamelCase : Tuple = Path(args.readme_filepath) lowerCamelCase : Tuple = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
711
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : int = { '''configuration_funnel''': ['''FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FunnelConfig'''], '''convert_funnel_original_tf_checkpoint_to_pytorch''': [], '''tokenization_funnel''': ['''FunnelTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = ['''FunnelTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = [ '''FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FunnelBaseModel''', '''FunnelForMaskedLM''', '''FunnelForMultipleChoice''', '''FunnelForPreTraining''', '''FunnelForQuestionAnswering''', '''FunnelForSequenceClassification''', '''FunnelForTokenClassification''', '''FunnelModel''', '''FunnelPreTrainedModel''', '''load_tf_weights_in_funnel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ '''TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFFunnelBaseModel''', '''TFFunnelForMaskedLM''', '''TFFunnelForMultipleChoice''', '''TFFunnelForPreTraining''', '''TFFunnelForQuestionAnswering''', '''TFFunnelForSequenceClassification''', '''TFFunnelForTokenClassification''', '''TFFunnelModel''', '''TFFunnelPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
649
0
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[int] , __a : Dict , __a : List[Any]=13 , __a : Union[str, Any]=2 , __a : int=24 , __a : Union[str, Any]=16 , __a : Union[str, Any]=True , __a : Optional[Any]=True , __a : Dict=32 , __a : Dict=5 , __a : Any=4 , __a : Optional[int]=37 , __a : int="gelu" , __a : Any=0.1 , __a : Tuple=0.1 , __a : Dict=10 , __a : Union[str, Any]=0.02 , __a : Tuple=None , __a : Union[str, Any]=2 , __a : Any=2 , ) -> List[str]: """simple docstring""" __lowercase : Tuple = parent __lowercase : Union[str, Any] = batch_size __lowercase : Optional[int] = patch_size __lowercase : int = max_length __lowercase : Tuple = num_mel_bins __lowercase : Optional[int] = is_training __lowercase : List[str] = use_labels __lowercase : List[Any] = hidden_size __lowercase : Tuple = num_hidden_layers __lowercase : str = num_attention_heads __lowercase : List[Any] = intermediate_size __lowercase : int = hidden_act __lowercase : Optional[int] = hidden_dropout_prob __lowercase : str = attention_probs_dropout_prob __lowercase : int = type_sequence_label_size __lowercase : str = initializer_range __lowercase : Optional[Any] = scope __lowercase : int = frequency_stride __lowercase : Dict = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __lowercase : int = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 __lowercase : Union[str, Any] = (self.max_length - self.patch_size) // self.time_stride + 1 __lowercase : Dict = frequency_out_dimension * time_out_dimension __lowercase : List[Any] = num_patches + 2 def lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) __lowercase : Tuple = None if self.use_labels: __lowercase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : Any = self.get_config() return config, input_values, labels def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def lowerCAmelCase ( self : str , __a : List[Any] , __a : Union[str, Any] , __a : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = ASTModel(config=__a ) model.to(__a ) model.eval() __lowercase : List[Any] = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : str = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : List[Any] = config_and_inputs __lowercase : Dict = {"""input_values""": input_values} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : int = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) _A : Any = ( {'''audio-classification''': ASTForAudioClassification, '''feature-extraction''': ASTModel} if is_torch_available() else {} ) _A : Union[str, Any] = False _A : Dict = False _A : Optional[Any] = False _A : str = False def lowerCAmelCase ( self : List[str] , __a : List[Any] , __a : Dict , __a : List[str] , __a : str , __a : List[Any] ) -> Optional[Any]: """simple docstring""" if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : Tuple = ASTModelTester(self ) __lowercase : Any = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""AST does not use inputs_embeds""" ) def lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" pass def lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" __lowercase , __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : str = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowercase : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase , __lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[Any] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : str = [*signature.parameters.keys()] __lowercase : Any = ["""input_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : List[Any] = ASTModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def snake_case_ ( ): __lowercase : Optional[int] = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" ) __lowercase , __lowercase : int = torchaudio.load(__snake_case ) return audio, sampling_rate @require_torch @require_torchaudio class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" return ( ASTFeatureExtractor.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""" ) if is_torchaudio_available() else None ) @slow def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = self.default_feature_extractor __lowercase : Any = ASTForAudioClassification.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""" ).to(__a ) __lowercase : Dict = self.default_feature_extractor __lowercase , __lowercase : Tuple = prepare_audio() __lowercase : int = audio.squeeze().numpy() __lowercase : Optional[int] = feature_extractor(__a , sampling_rate=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : int = model(**__a ) # verify the logits __lowercase : Union[str, Any] = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , __a ) __lowercase : Union[str, Any] = torch.tensor([-0.8760, -7.0042, -8.6602] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) )
712
import logging import os import threading import time try: import warnings except ImportError: lowerCamelCase : Any = None try: import msvcrt except ImportError: lowerCamelCase : str = None try: import fcntl except ImportError: lowerCamelCase : Optional[Any] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: lowerCamelCase : Union[str, Any] = OSError # Data # ------------------------------------------------ lowerCamelCase : Tuple = [ '''Timeout''', '''BaseFileLock''', '''WindowsFileLock''', '''UnixFileLock''', '''SoftFileLock''', '''FileLock''', ] lowerCamelCase : Tuple = '''3.0.12''' lowerCamelCase : Any = None def snake_case_ ( ): global _logger __lowercase : List[str] = _logger or logging.getLogger(__name__ ) return _logger class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Any , __a : Any ) -> List[Any]: """simple docstring""" __lowercase : List[str] = lock_file return None def __str__( self : str ) -> Any: """simple docstring""" __lowercase : Any = F"The file lock '{self.lock_file}' could not be acquired." return temp class lowerCAmelCase : '''simple docstring''' def __init__( self : List[Any] , __a : Optional[int] ) -> int: """simple docstring""" __lowercase : Optional[Any] = lock return None def __enter__( self : Dict ) -> Dict: """simple docstring""" return self.lock def __exit__( self : Optional[int] , __a : Dict , __a : Any , __a : Tuple ) -> Optional[Any]: """simple docstring""" self.lock.release() return None class lowerCAmelCase : '''simple docstring''' def __init__( self : Tuple , __a : Any , __a : Dict=-1 , __a : Optional[Any]=None ) -> Any: """simple docstring""" __lowercase : Optional[int] = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long __lowercase : Dict = self.hash_filename_if_too_long(__a , __a ) # The path to the lock file. __lowercase : Optional[Any] = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __lowercase : int = None # The default timeout value. __lowercase : Optional[int] = timeout # We use this lock primarily for the lock counter. __lowercase : Optional[Any] = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __lowercase : Union[str, Any] = 0 return None @property def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return self._lock_file @property def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return self._timeout @timeout.setter def lowerCAmelCase ( self : Tuple , __a : Tuple ) -> Dict: """simple docstring""" __lowercase : Tuple = float(__a ) return None def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" raise NotImplementedError() def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" raise NotImplementedError() @property def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" return self._lock_file_fd is not None def lowerCAmelCase ( self : Any , __a : Optional[Any]=None , __a : Union[str, Any]=0.05 ) -> List[str]: """simple docstring""" if timeout is None: __lowercase : Union[str, Any] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __lowercase : int = id(self ) __lowercase : Optional[Any] = self._lock_file __lowercase : List[str] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"Attempting to acquire lock {lock_id} on {lock_filename}" ) self._acquire() if self.is_locked: logger().debug(F"Lock {lock_id} acquired on {lock_filename}" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"Timeout on acquiring lock {lock_id} on {lock_filename}" ) raise Timeout(self._lock_file ) else: logger().debug( F"Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ..." ) time.sleep(__a ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __lowercase : Optional[int] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def lowerCAmelCase ( self : Union[str, Any] , __a : Optional[Any]=False ) -> Optional[Any]: """simple docstring""" with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __lowercase : Optional[Any] = id(self ) __lowercase : str = self._lock_file logger().debug(F"Attempting to release lock {lock_id} on {lock_filename}" ) self._release() __lowercase : List[str] = 0 logger().debug(F"Lock {lock_id} released on {lock_filename}" ) return None def __enter__( self : Any ) -> Optional[Any]: """simple docstring""" self.acquire() return self def __exit__( self : List[str] , __a : str , __a : int , __a : List[Any] ) -> Tuple: """simple docstring""" self.release() return None def __del__( self : Optional[int] ) -> Optional[int]: """simple docstring""" self.release(force=__a ) return None def lowerCAmelCase ( self : Tuple , __a : str , __a : int ) -> str: """simple docstring""" __lowercase : List[Any] = os.path.basename(__a ) if len(__a ) > max_length and max_length > 0: __lowercase : int = os.path.dirname(__a ) __lowercase : List[str] = str(hash(__a ) ) __lowercase : Optional[Any] = filename[: max_length - len(__a ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(__a , __a ) else: return path class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Union[str, Any] , __a : List[Any] , __a : Optional[int]=-1 , __a : Tuple=None ) -> List[Any]: """simple docstring""" from .file_utils import relative_to_absolute_path super().__init__(__a , timeout=__a , max_filename_length=__a ) __lowercase : Tuple = """\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __lowercase : Tuple = os.open(self._lock_file , __a ) except OSError: pass else: try: msvcrt.locking(__a , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__a ) else: __lowercase : Union[str, Any] = fd return None def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = self._lock_file_fd __lowercase : int = None msvcrt.locking(__a , msvcrt.LK_UNLCK , 1 ) os.close(__a ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : List[str] , __a : Optional[Any] , __a : str=-1 , __a : List[str]=None ) -> Any: """simple docstring""" __lowercase : Dict = os.statvfs(os.path.dirname(__a ) ).f_namemax super().__init__(__a , timeout=__a , max_filename_length=__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase : List[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC __lowercase : List[str] = os.open(self._lock_file , __a ) try: fcntl.flock(__a , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__a ) else: __lowercase : str = fd return None def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Any = self._lock_file_fd __lowercase : List[str] = None fcntl.flock(__a , fcntl.LOCK_UN ) os.close(__a ) return None class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __lowercase : Union[str, Any] = os.open(self._lock_file , __a ) except OSError: pass else: __lowercase : Optional[int] = fd return None def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" os.close(self._lock_file_fd ) __lowercase : int = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None lowerCamelCase : Optional[Any] = None if msvcrt: lowerCamelCase : List[Any] = WindowsFileLock elif fcntl: lowerCamelCase : List[Any] = UnixFileLock else: lowerCamelCase : Union[str, Any] = SoftFileLock if warnings is not None: warnings.warn('''only soft file lock is available''')
649
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Optional[int] = tempfile.mkdtemp() # fmt: off __lowercase : Tuple = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on __lowercase : Optional[Any] = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) __lowercase : str = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] __lowercase : Any = {"""unk_token""": """<unk>"""} __lowercase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCamelCase_ ) ) __lowercase : str = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], } __lowercase : Tuple = os.path.join(self.tmpdirname , lowerCamelCase_ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(lowerCamelCase_ , lowerCamelCase_ ) def lowerCAmelCase ( self : Optional[int] , **__a : str ) -> Union[str, Any]: """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def lowerCAmelCase ( self : Any , **__a : Optional[int] ) -> Union[str, Any]: """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def lowerCAmelCase ( self : Union[str, Any] , **__a : Union[str, Any] ) -> List[Any]: """simple docstring""" return CLIPImageProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Any = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __lowercase : Tuple = [Image.fromarray(np.moveaxis(lowerCamelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" __lowercase : Tuple = self.get_tokenizer() __lowercase : Optional[Any] = self.get_rust_tokenizer() __lowercase : str = self.get_image_processor() __lowercase : Optional[int] = CLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) __lowercase : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCamelCase_ ) __lowercase : Optional[Any] = CLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) __lowercase : Tuple = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCamelCase_ ) self.assertIsInstance(processor_fast.tokenizer , lowerCamelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCamelCase_ ) self.assertIsInstance(processor_fast.image_processor , lowerCamelCase_ ) def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowercase : Dict = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __lowercase : Union[str, Any] = self.get_image_processor(do_normalize=lowerCamelCase_ , padding_value=1.0 ) __lowercase : Optional[Any] = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowerCamelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCamelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase_ ) def lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" __lowercase : List[Any] = self.get_image_processor() __lowercase : List[Any] = self.get_tokenizer() __lowercase : Optional[Any] = CLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) __lowercase : Optional[int] = self.prepare_image_inputs() __lowercase : Any = image_processor(lowerCamelCase_ , return_tensors="""np""" ) __lowercase : Union[str, Any] = processor(images=lowerCamelCase_ , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = self.get_image_processor() __lowercase : Any = self.get_tokenizer() __lowercase : int = CLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) __lowercase : Any = """lower newer""" __lowercase : Dict = processor(text=lowerCamelCase_ ) __lowercase : Optional[int] = tokenizer(lowerCamelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.get_image_processor() __lowercase : Tuple = self.get_tokenizer() __lowercase : Tuple = CLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) __lowercase : Union[str, Any] = """lower newer""" __lowercase : Dict = self.prepare_image_inputs() __lowercase : Dict = processor(text=lowerCamelCase_ , images=lowerCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase_ ): processor() def lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" __lowercase : Dict = self.get_image_processor() __lowercase : Tuple = self.get_tokenizer() __lowercase : List[str] = CLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) __lowercase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowercase : Optional[Any] = processor.batch_decode(lowerCamelCase_ ) __lowercase : Union[str, Any] = tokenizer.batch_decode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Tuple = self.get_image_processor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : Optional[int] = CLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) __lowercase : Tuple = """lower newer""" __lowercase : Any = self.prepare_image_inputs() __lowercase : int = processor(text=lowerCamelCase_ , images=lowerCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
713
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : Tuple = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = '''layoutlmv3''' def __init__( self : Dict , __a : List[str]=50265 , __a : str=768 , __a : List[Any]=12 , __a : List[Any]=12 , __a : List[str]=3072 , __a : Optional[Any]="gelu" , __a : Optional[int]=0.1 , __a : List[Any]=0.1 , __a : Tuple=512 , __a : int=2 , __a : Any=0.02 , __a : Union[str, Any]=1E-5 , __a : List[str]=1 , __a : List[Any]=0 , __a : int=2 , __a : str=1024 , __a : str=128 , __a : List[Any]=128 , __a : Tuple=True , __a : Optional[int]=32 , __a : Any=128 , __a : List[Any]=64 , __a : Tuple=256 , __a : str=True , __a : int=True , __a : Optional[Any]=True , __a : Any=224 , __a : str=3 , __a : List[str]=16 , __a : Union[str, Any]=None , **__a : List[Any] , ) -> List[str]: """simple docstring""" super().__init__( vocab_size=__a , hidden_size=__a , num_hidden_layers=__a , num_attention_heads=__a , intermediate_size=__a , hidden_act=__a , hidden_dropout_prob=__a , attention_probs_dropout_prob=__a , max_position_embeddings=__a , type_vocab_size=__a , initializer_range=__a , layer_norm_eps=__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a , ) __lowercase : int = max_ad_position_embeddings __lowercase : Any = coordinate_size __lowercase : Optional[Any] = shape_size __lowercase : str = has_relative_attention_bias __lowercase : int = rel_pos_bins __lowercase : Union[str, Any] = max_rel_pos __lowercase : str = has_spatial_attention_bias __lowercase : str = rel_ad_pos_bins __lowercase : List[Any] = max_rel_ad_pos __lowercase : Tuple = text_embed __lowercase : int = visual_embed __lowercase : Tuple = input_size __lowercase : Dict = num_channels __lowercase : str = patch_size __lowercase : Optional[int] = classifier_dropout class lowerCAmelCase ( __a ): '''simple docstring''' _A : str = version.parse('''1.12''' ) @property def lowerCAmelCase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def lowerCAmelCase ( self : Union[str, Any] ) -> float: """simple docstring""" return 1E-5 @property def lowerCAmelCase ( self : str ) -> int: """simple docstring""" return 12 def lowerCAmelCase ( self : List[Any] , __a : "ProcessorMixin" , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional["TensorType"] = None , __a : int = 3 , __a : int = 40 , __a : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , """apply_ocr""" , __a ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase : Tuple = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase : Tuple = processor.tokenizer.num_special_tokens_to_add(__a ) __lowercase : Tuple = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__a ) # Generate dummy inputs according to compute batch and sequence __lowercase : Union[str, Any] = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowercase : Tuple = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowercase : Tuple = self._generate_dummy_images(__a , __a , __a , __a ) __lowercase : int = dict( processor( __a , text=__a , boxes=__a , return_tensors=__a , ) ) return inputs
649
0
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : list[int] , lowerCAmelCase_ : int ): def count_of_possible_combinations(lowerCAmelCase_ : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(A__ ) def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : list[int] , lowerCAmelCase_ : int ): def count_of_possible_combinations_with_dp_array( lowerCAmelCase_ : int , lowerCAmelCase_ : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] __lowercase : Optional[int] = sum( count_of_possible_combinations_with_dp_array(target - item , A__ ) for item in array ) __lowercase : Dict = answer return answer __lowercase : Optional[Any] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(A__ , A__ ) def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : list[int] , lowerCAmelCase_ : int ): __lowercase : Tuple = [0] * (target + 1) __lowercase : str = 1 for i in range(1 , target + 1 ): for j in range(A__ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Any = 3 lowerCamelCase : Any = 5 lowerCamelCase : str = [1, 2, 5] print(combination_sum_iv(n, array, target))
714
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowerCamelCase : List[Any] = logging.get_logger(__name__) class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , __a : str = None , __a : uuid.UUID = None , __a : Any=None , __a : List[Any]=None ) -> List[Any]: """simple docstring""" if not conversation_id: __lowercase : Any = uuid.uuida() if past_user_inputs is None: __lowercase : Dict = [] if generated_responses is None: __lowercase : Dict = [] __lowercase : uuid.UUID = conversation_id __lowercase : List[str] = past_user_inputs __lowercase : List[str] = generated_responses __lowercase : Optional[str] = text def __eq__( self : Dict , __a : Dict ) -> Any: """simple docstring""" if not isinstance(__a , __a ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCAmelCase ( self : List[str] , __a : str , __a : bool = False ) -> Dict: """simple docstring""" if self.new_user_input: if overwrite: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten " F"with: \"{text}\"." ) __lowercase : Optional[int] = text else: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" new input " F"ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input" ) else: __lowercase : Dict = text def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __lowercase : Dict = None def lowerCAmelCase ( self : Optional[int] , __a : str ) -> List[Any]: """simple docstring""" self.generated_responses.append(__a ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : int ) -> str: """simple docstring""" __lowercase : Optional[int] = F"Conversation id: {self.uuid} \n" for is_user, text in self.iter_texts(): __lowercase : Optional[Any] = """user""" if is_user else """bot""" output += F"{name} >> {text} \n" return output @add_end_docstrings( __a , r''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''' , ) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Any , *__a : int , **__a : str ) -> Union[str, Any]: """simple docstring""" super().__init__(*__a , **__a ) if self.tokenizer.pad_token_id is None: __lowercase : List[Any] = self.tokenizer.eos_token def lowerCAmelCase ( self : Union[str, Any] , __a : int=None , __a : Tuple=None , __a : Any=None , **__a : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = {} __lowercase : Tuple = {} __lowercase : List[str] = {} if min_length_for_response is not None: __lowercase : Dict = min_length_for_response if minimum_tokens is not None: __lowercase : Union[str, Any] = minimum_tokens if "max_length" in generate_kwargs: __lowercase : Union[str, Any] = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __lowercase : Union[str, Any] = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(__a ) return preprocess_params, forward_params, postprocess_params def __call__( self : Optional[int] , __a : Union[Conversation, List[Conversation]] , __a : Dict=0 , **__a : List[Any] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = super().__call__(__a , num_workers=__a , **__a ) if isinstance(__a , __a ) and len(__a ) == 1: return outputs[0] return outputs def lowerCAmelCase ( self : Union[str, Any] , __a : Conversation , __a : Tuple=32 ) -> Dict[str, Any]: """simple docstring""" if not isinstance(__a , __a ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( F"Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. " """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer , """_build_conversation_input_ids""" ): __lowercase : List[Any] = self.tokenizer._build_conversation_input_ids(__a ) else: # If the tokenizer cannot handle conversations, we default to only the old version __lowercase : Tuple = self._legacy_parse_and_tokenize(__a ) if self.framework == "pt": __lowercase : List[Any] = torch.LongTensor([input_ids] ) elif self.framework == "tf": __lowercase : List[str] = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCAmelCase ( self : Any , __a : Dict , __a : Any=10 , **__a : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = generate_kwargs.get("""max_length""" , self.model.config.max_length ) __lowercase : List[Any] = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(F"Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})" ) __lowercase : Any = max_length - minimum_tokens __lowercase : int = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: __lowercase : Dict = model_inputs["""attention_mask"""][:, -trim:] __lowercase : Union[str, Any] = model_inputs.pop("""conversation""" ) __lowercase : Tuple = max_length __lowercase : int = self.model.generate(**__a , **__a ) if self.model.config.is_encoder_decoder: __lowercase : Optional[int] = 1 else: __lowercase : str = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCAmelCase ( self : int , __a : Tuple , __a : List[Any]=True ) -> List[str]: """simple docstring""" __lowercase : int = model_outputs["""output_ids"""] __lowercase : Union[str, Any] = self.tokenizer.decode( output_ids[0] , skip_special_tokens=__a , clean_up_tokenization_spaces=__a , ) __lowercase : List[str] = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(__a ) return conversation def lowerCAmelCase ( self : int , __a : Conversation ) -> Dict: """simple docstring""" __lowercase : Optional[int] = self.tokenizer.eos_token_id __lowercase : Optional[Any] = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(__a , add_special_tokens=__a ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(__a , add_special_tokens=__a ) ) if len(__a ) > self.tokenizer.model_max_length: __lowercase : List[Any] = input_ids[-self.tokenizer.model_max_length :] return input_ids
649
0
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('''>=''', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType lowerCamelCase : Any = get_logger(__name__) def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any]=0 ): os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) with FSDP.state_dict_type( lowerCamelCase__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __lowercase : Any = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __lowercase : str = F"{MODEL_NAME}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}.bin" __lowercase : int = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) if accelerator.process_index == 0: logger.info(F"Saving model to {output_model_file}" ) torch.save(lowerCamelCase__ , lowerCamelCase__ ) logger.info(F"Model saved to {output_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __lowercase : Dict = ( F"{MODEL_NAME}_rank{accelerator.process_index}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin" ) __lowercase : Tuple = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) logger.info(F"Saving model to {output_model_file}" ) torch.save(lowerCamelCase__ , lowerCamelCase__ ) logger.info(F"Model saved to {output_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __lowercase : Optional[Any] = os.path.join(lowerCamelCase__ , F"{MODEL_NAME}_{model_index}" ) os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) logger.info(F"Saving model to {ckpt_dir}" ) __lowercase : Optional[Any] = {"model": state_dict} dist_cp.save_state_dict( state_dict=lowerCamelCase__ , storage_writer=dist_cp.FileSystemWriter(lowerCamelCase__ ) , planner=DefaultSavePlanner() , ) logger.info(F"Model saved to {ckpt_dir}" ) def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any]=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( lowerCamelCase__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(lowerCamelCase__ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( """Set the `sync_module_states` flag to `True` so that model states are synced across processes when """ """initializing FSDP object""" ) return __lowercase : Union[str, Any] = F"{MODEL_NAME}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}.bin" __lowercase : Any = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) logger.info(F"Loading model from {input_model_file}" ) __lowercase : List[str] = torch.load(lowerCamelCase__ ) logger.info(F"Model loaded from {input_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __lowercase : Any = ( F"{MODEL_NAME}_rank{accelerator.process_index}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin" ) __lowercase : List[str] = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) logger.info(F"Loading model from {input_model_file}" ) __lowercase : Union[str, Any] = torch.load(lowerCamelCase__ ) logger.info(F"Model loaded from {input_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __lowercase : Optional[int] = ( os.path.join(lowerCamelCase__ , F"{MODEL_NAME}_{model_index}" ) if F"{MODEL_NAME}" not in input_dir else input_dir ) logger.info(F"Loading model from {ckpt_dir}" ) __lowercase : int = {"model": model.state_dict()} dist_cp.load_state_dict( state_dict=lowerCamelCase__ , storage_reader=dist_cp.FileSystemReader(lowerCamelCase__ ) , planner=DefaultLoadPlanner() , ) __lowercase : Tuple = state_dict["model"] logger.info(F"Model loaded from {ckpt_dir}" ) model.load_state_dict(lowerCamelCase__ ) def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int=0 ): os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) with FSDP.state_dict_type( lowerCamelCase__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __lowercase : Dict = FSDP.optim_state_dict(lowerCamelCase__ , lowerCamelCase__ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: __lowercase : Optional[Any] = ( F"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else F"{OPTIMIZER_NAME}_{optimizer_index}.bin" ) __lowercase : Optional[int] = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) logger.info(F"Saving Optimizer state to {output_optimizer_file}" ) torch.save(lowerCamelCase__ , lowerCamelCase__ ) logger.info(F"Optimizer state saved in {output_optimizer_file}" ) else: __lowercase : str = os.path.join(lowerCamelCase__ , F"{OPTIMIZER_NAME}_{optimizer_index}" ) os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) logger.info(F"Saving Optimizer state to {ckpt_dir}" ) dist_cp.save_state_dict( state_dict={"""optimizer""": optim_state} , storage_writer=dist_cp.FileSystemWriter(lowerCamelCase__ ) , planner=DefaultSavePlanner() , ) logger.info(F"Optimizer state saved in {ckpt_dir}" ) def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( lowerCamelCase__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __lowercase : List[str] = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: __lowercase : Any = ( F"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else F"{OPTIMIZER_NAME}_{optimizer_index}.bin" ) __lowercase : Any = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) logger.info(F"Loading Optimizer state from {input_optimizer_file}" ) __lowercase : int = torch.load(lowerCamelCase__ ) logger.info(F"Optimizer state loaded from {input_optimizer_file}" ) else: __lowercase : List[Any] = ( os.path.join(lowerCamelCase__ , F"{OPTIMIZER_NAME}_{optimizer_index}" ) if F"{OPTIMIZER_NAME}" not in input_dir else input_dir ) logger.info(F"Loading Optimizer from {ckpt_dir}" ) __lowercase : Optional[Any] = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="""optimizer""" , storage_reader=dist_cp.FileSystemReader(lowerCamelCase__ ) , ) __lowercase : Dict = optim_state["optimizer"] logger.info(F"Optimizer loaded from {ckpt_dir}" ) __lowercase : Optional[Any] = FSDP.optim_state_dict_to_load(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) optimizer.load_state_dict(lowerCamelCase__ )
715
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__a , """tf_padding""" ) ) self.parent.assertTrue(hasattr(__a , """depth_multiplier""" ) ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Tuple , __a : str=13 , __a : Dict=3 , __a : List[Any]=32 , __a : Any=0.25 , __a : Any=8 , __a : Optional[int]=8 , __a : Optional[int]=6 , __a : Dict=32 , __a : Tuple=True , __a : List[Any]=True , __a : Optional[int]=True , __a : Tuple="relu6" , __a : Optional[Any]=1280 , __a : str=0.1 , __a : str=0.02 , __a : Optional[Any]=True , __a : Tuple=True , __a : Dict=10 , __a : Optional[Any]=None , ) -> Any: """simple docstring""" __lowercase : List[str] = parent __lowercase : Tuple = batch_size __lowercase : Dict = num_channels __lowercase : Optional[int] = image_size __lowercase : int = depth_multiplier __lowercase : str = depth_divisible_by __lowercase : int = min_depth __lowercase : Tuple = expand_ratio __lowercase : Optional[int] = tf_padding __lowercase : Dict = output_stride __lowercase : Dict = first_layer_is_expansion __lowercase : Optional[Any] = finegrained_output __lowercase : str = hidden_act __lowercase : Union[str, Any] = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) __lowercase : Optional[int] = classifier_dropout_prob __lowercase : int = use_labels __lowercase : Optional[int] = is_training __lowercase : Dict = num_labels __lowercase : Tuple = initializer_range __lowercase : Optional[Any] = scope def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : List[Any] = None __lowercase : Optional[Any] = None if self.use_labels: __lowercase : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __lowercase : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowercase : List[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : Tuple , __a : Dict , __a : Tuple , __a : Optional[int] , __a : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[int] = MobileNetVaModel(config=__a ) model.to(__a ) model.eval() __lowercase : Tuple = model(__a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def lowerCAmelCase ( self : List[str] , __a : Optional[int] , __a : List[str] , __a : str , __a : Optional[int] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = self.num_labels __lowercase : Dict = MobileNetVaForImageClassification(__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : int , __a : List[str] , __a : Tuple , __a : Any , __a : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : int = self.num_labels __lowercase : List[Any] = MobileNetVaForSemanticSegmentation(__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __lowercase : str = model(__a , labels=__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase : List[str] = config_and_inputs __lowercase : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Tuple = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) _A : Optional[Any] = ( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) _A : Tuple = False _A : List[str] = False _A : List[str] = False _A : Optional[int] = False def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = MobileNetVaModelTester(self ) __lowercase : int = MobileNetVaConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV2 does not use inputs_embeds""" ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not support input and output embeddings""" ) def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not output attentions""" ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[Any] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : int = [*signature.parameters.keys()] __lowercase : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" def check_hidden_states_output(__a : List[Any] , __a : Tuple , __a : List[str] ): __lowercase : Optional[Any] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : List[Any] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Tuple = outputs.hidden_states __lowercase : str = 16 self.assertEqual(len(__a ) , __a ) __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Any = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase : Union[str, Any] = True check_hidden_states_output(__a , __a , __a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : Optional[int] = MobileNetVaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def snake_case_ ( ): __lowercase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v2_1.0_224""" ) if is_vision_available() else None ) @slow def lowerCAmelCase ( self : str ) -> int: """simple docstring""" __lowercase : Tuple = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v2_1.0_224""" ).to(__a ) __lowercase : str = self.default_image_processor __lowercase : Tuple = prepare_img() __lowercase : Tuple = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : str = model(**__a ) # verify the logits __lowercase : Union[str, Any] = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , __a ) __lowercase : str = torch.tensor([0.2445, -1.1993, 0.1905] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : int = MobileNetVaForSemanticSegmentation.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __lowercase : Dict = model.to(__a ) __lowercase : Tuple = MobileNetVaImageProcessor.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __lowercase : List[str] = prepare_img() __lowercase : Optional[int] = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : Union[str, Any] = model(**__a ) __lowercase : Any = outputs.logits # verify the logits __lowercase : Dict = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , __a ) __lowercase : str = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=__a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __a , atol=1E-4 ) )
649
0
import sys import turtle def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] ): return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : str , ): my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(a__ , get_mid(a__ , a__ ) , get_mid(a__ , a__ ) , depth - 1 ) triangle(a__ , get_mid(a__ , a__ ) , get_mid(a__ , a__ ) , depth - 1 ) triangle(a__ , get_mid(a__ , a__ ) , get_mid(a__ , a__ ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( '''Correct format for using this script: ''' '''python fractals.py <int:depth_for_fractal>''' ) lowerCamelCase : Any = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('''red''') lowerCamelCase : Union[str, Any] = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
716
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def snake_case_ ( lowerCAmelCase_ : bool = True , *lowerCAmelCase_ : int , **lowerCAmelCase_ : List[str] ): if not is_tqdm_available(): raise ImportError("""Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.""" ) __lowercase : List[str] = False if main_process_only: __lowercase : Optional[int] = PartialState().local_process_index == 0 return _tqdm(*lowerCAmelCase_ , **lowerCAmelCase_ , disable=lowerCAmelCase_ )
649
0
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder lowerCamelCase : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCamelCase : Union[str, Any] = 2_56 class lowerCAmelCase ( __lowerCAmelCase ): '''simple docstring''' _A : List[Any] = ['''melgan'''] def __init__( self : Dict , __a : str , __a : Optional[int] , __a : str , __a : str , __a : int , ) -> None: """simple docstring""" super().__init__() # From MELGAN __lowercase : Dict = math.log(1E-5 ) # Matches MelGAN training. __lowercase : Tuple = 4.0 # Largest value for most examples __lowercase : Optional[int] = 128 self.register_modules( notes_encoder=lowerCAmelCase_ , continuous_encoder=lowerCAmelCase_ , decoder=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , melgan=lowerCAmelCase_ , ) def lowerCAmelCase ( self : Union[str, Any] , __a : int , __a : List[str]=(-1.0, 1.0) , __a : int=False ) -> str: """simple docstring""" __lowercase , __lowercase : Dict = output_range if clip: __lowercase : Tuple = torch.clip(lowerCAmelCase_ , self.min_value , self.max_value ) # Scale to [0, 1]. __lowercase : str = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def lowerCAmelCase ( self : List[Any] , __a : Optional[Any] , __a : Optional[Any]=(-1.0, 1.0) , __a : Optional[Any]=False ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase : Union[str, Any] = input_range __lowercase : Any = torch.clip(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if clip else outputs # Scale to [0, 1]. __lowercase : int = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def lowerCAmelCase ( self : Dict , __a : Tuple , __a : List[str] , __a : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Any = input_tokens > 0 __lowercase , __lowercase : Union[str, Any] = self.notes_encoder( encoder_input_tokens=lowerCAmelCase_ , encoder_inputs_mask=lowerCAmelCase_ ) __lowercase , __lowercase : List[Any] = self.continuous_encoder( encoder_inputs=lowerCAmelCase_ , encoder_inputs_mask=lowerCAmelCase_ ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def lowerCAmelCase ( self : str , __a : Optional[Any] , __a : List[Any] , __a : Tuple ) -> int: """simple docstring""" __lowercase : List[Any] = noise_time if not torch.is_tensor(lowerCAmelCase_ ): __lowercase : Union[str, Any] = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(lowerCAmelCase_ ) and len(timesteps.shape ) == 0: __lowercase : Optional[Any] = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __lowercase : Tuple = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) __lowercase : Any = self.decoder( encodings_and_masks=lowerCAmelCase_ , decoder_input_tokens=lowerCAmelCase_ , decoder_noise_time=lowerCAmelCase_ ) return logits @torch.no_grad() def __call__( self : int , __a : Any , __a : Any = None , __a : List[Any] = 100 , __a : Union[str, Any] = True , __a : str = "numpy" , __a : str = None , __a : Union[str, Any] = 1 , ) -> Union[AudioPipelineOutput, Tuple]: """simple docstring""" if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(lowerCAmelCase_ )}." ) __lowercase : str = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) __lowercase : List[Any] = np.zeros([1, 0, self.n_dims] , np.floataa ) __lowercase : Union[str, Any] = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=lowerCAmelCase_ , device=self.device ) for i, encoder_input_tokens in enumerate(lowerCAmelCase_ ): if i == 0: __lowercase : Union[str, Any] = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. __lowercase : List[str] = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=lowerCAmelCase_ , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. __lowercase : Any = ones __lowercase : Union[str, Any] = self.scale_features( lowerCAmelCase_ , output_range=[-1.0, 1.0] , clip=lowerCAmelCase_ ) __lowercase : Optional[Any] = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=lowerCAmelCase_ , continuous_mask=lowerCAmelCase_ , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop __lowercase : Optional[Any] = randn_tensor( shape=encoder_continuous_inputs.shape , generator=lowerCAmelCase_ , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(lowerCAmelCase_ ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __lowercase : Optional[Any] = self.decode( encodings_and_masks=lowerCAmelCase_ , input_tokens=lowerCAmelCase_ , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 __lowercase : Optional[int] = self.scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample __lowercase : List[str] = self.scale_to_features(lowerCAmelCase_ , input_range=[-1.0, 1.0] ) __lowercase : Tuple = mel[:1] __lowercase : Optional[Any] = mel.cpu().float().numpy() __lowercase : List[str] = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCAmelCase_ , lowerCAmelCase_ ) logger.info("""Generated segment""" , lowerCAmelCase_ ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( """Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'.""" ) elif output_type == "numpy" and self.melgan is None: raise ValueError( """Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'.""" ) if output_type == "numpy": __lowercase : Dict = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: __lowercase : List[str] = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=lowerCAmelCase_ )
717
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : list[int] ): if not nums: return 0 __lowercase : Tuple = nums[0] __lowercase : Tuple = 0 for num in nums[1:]: __lowercase , __lowercase : List[str] = ( max_excluding + num, max(lowerCAmelCase_ , lowerCAmelCase_ ), ) return max(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
649
0
import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json lowerCamelCase : str = 'sshleifer/mar_enro_6_3_student' class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" super().setUp() __lowercase : List[str] = cached_path( """https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz""" , extract_compressed_file=UpperCAmelCase__ , ) __lowercase : Optional[Any] = F"{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k" @slow @require_torch_gpu def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" MarianMTModel.from_pretrained(UpperCAmelCase__ ) @slow @require_torch_gpu def lowerCAmelCase ( self : int ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = { '''$MAX_LEN''': 64, '''$BS''': 64, '''$GAS''': 1, '''$ENRO_DIR''': self.data_dir, '''facebook/mbart-large-cc25''': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '''--learning_rate=3e-5''': '''--learning_rate 3e-4''', '''--num_train_epochs 6''': '''--num_train_epochs 1''', } # Clean up bash script __lowercase : List[Any] = (self.test_file_dir / '''train_mbart_cc25_enro.sh''').open().read().split("""finetune.py""" )[1].strip() __lowercase : Dict = bash_script.replace("""\\\n""" , """""" ).strip().replace("""\"$@\"""" , """""" ) for k, v in env_vars_to_replace.items(): __lowercase : Tuple = bash_script.replace(UpperCAmelCase__ , str(UpperCAmelCase__ ) ) __lowercase : Tuple = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") __lowercase : Union[str, Any] = F"\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n ".split() # XXX: args.gpus > 1 : handle multi_gpu in the future __lowercase : str = ['''finetune.py'''] + bash_script.split() + args with patch.object(UpperCAmelCase__ , """argv""" , UpperCAmelCase__ ): __lowercase : str = argparse.ArgumentParser() __lowercase : List[str] = pl.Trainer.add_argparse_args(UpperCAmelCase__ ) __lowercase : Dict = SummarizationModule.add_model_specific_args(UpperCAmelCase__ , os.getcwd() ) __lowercase : List[str] = parser.parse_args() __lowercase : str = main(UpperCAmelCase__ ) # Check metrics __lowercase : Tuple = load_json(model.metrics_save_path ) __lowercase : Optional[int] = metrics['''val'''][0] __lowercase : List[str] = metrics['''val'''][-1] self.assertEqual(len(metrics["""val"""] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F"val_avg_{model.val_metric}"] , UpperCAmelCase__ ) self.assertGreater(last_step_stats["""val_avg_gen_time"""] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats["""val_avg_gen_time"""] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats["""val_avg_bleu"""] - first_step_stats["""val_avg_bleu"""] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats["""val_avg_bleu"""] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics["""val"""][-1]["""val_avg_bleu"""] - metrics["""test"""][-1]["""test_avg_bleu"""] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict __lowercase : Dict = os.listdir(UpperCAmelCase__ ) __lowercase : Any = [x for x in contents if x.endswith(""".ckpt""" )][0] __lowercase : List[str] = os.path.join(args.output_dir , UpperCAmelCase__ ) __lowercase : str = torch.load(UpperCAmelCase__ , map_location="""cpu""" ) __lowercase : Optional[int] = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: __lowercase : int = {os.path.basename(UpperCAmelCase__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["""test"""] ) == 1 class lowerCAmelCase ( __a ): '''simple docstring''' @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def lowerCAmelCase ( self : str ) -> int: """simple docstring""" __lowercase : Tuple = F"{self.test_file_dir_str}/test_data/wmt_en_ro" __lowercase : Tuple = { '''--fp16_opt_level=O1''': '''''', '''$MAX_LEN''': 128, '''$BS''': 16, '''$GAS''': 1, '''$ENRO_DIR''': data_dir, '''$m''': '''sshleifer/student_marian_en_ro_6_1''', '''val_check_interval=0.25''': '''val_check_interval=1.0''', } # Clean up bash script __lowercase : str = ( (self.test_file_dir / '''distil_marian_no_teacher.sh''').open().read().split("""distillation.py""" )[1].strip() ) __lowercase : Tuple = bash_script.replace("""\\\n""" , """""" ).strip().replace("""\"$@\"""" , """""" ) __lowercase : Dict = bash_script.replace("""--fp16 """ , """ """ ) for k, v in env_vars_to_replace.items(): __lowercase : Optional[int] = bash_script.replace(UpperCAmelCase__ , str(UpperCAmelCase__ ) ) __lowercase : Any = self.get_auto_remove_tmp_dir() __lowercase : Optional[Any] = bash_script.replace("""--fp16""" , """""" ) __lowercase : str = 6 __lowercase : Dict = ( ['''distillation.py'''] + bash_script.split() + [ F"--output_dir={output_dir}", '''--gpus=1''', '''--learning_rate=1e-3''', F"--num_train_epochs={epochs}", '''--warmup_steps=10''', '''--val_check_interval=1.0''', '''--do_predict''', ] ) with patch.object(UpperCAmelCase__ , """argv""" , UpperCAmelCase__ ): __lowercase : int = argparse.ArgumentParser() __lowercase : Optional[int] = pl.Trainer.add_argparse_args(UpperCAmelCase__ ) __lowercase : List[Any] = SummarizationDistiller.add_model_specific_args(UpperCAmelCase__ , os.getcwd() ) __lowercase : int = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu __lowercase : Any = distill_main(UpperCAmelCase__ ) # Check metrics __lowercase : Optional[Any] = load_json(model.metrics_save_path ) __lowercase : Any = metrics['''val'''][0] __lowercase : int = metrics['''val'''][-1] assert len(metrics["""val"""] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F"val_avg_{model.val_metric}"] , UpperCAmelCase__ ) # check lightning ckpt can be loaded and has a reasonable statedict __lowercase : List[str] = os.listdir(UpperCAmelCase__ ) __lowercase : int = [x for x in contents if x.endswith(""".ckpt""" )][0] __lowercase : str = os.path.join(args.output_dir , UpperCAmelCase__ ) __lowercase : Any = torch.load(UpperCAmelCase__ , map_location="""cpu""" ) __lowercase : Any = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: __lowercase : List[Any] = {os.path.basename(UpperCAmelCase__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["""test"""] ) == 1
718
lowerCamelCase : List[str] = '''0.18.2''' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
649
0
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' @register_to_config def __init__( self : Union[str, Any] , __a : Optional[int] , __a : int , __a : int , __a : Optional[int] , __a : Optional[int] , __a : int , __a : Any , __a : Tuple , __a : str , __a : Union[str, Any] = False , ) -> Tuple: """simple docstring""" super().__init__() __lowercase : List[str] = nn.Embedding(snake_case__ , snake_case__ ) __lowercase : str = nn.Embedding(snake_case__ , snake_case__ ) __lowercase : Tuple = False __lowercase : Union[str, Any] = nn.Dropout(p=snake_case__ ) __lowercase : Optional[int] = TaConfig( vocab_size=snake_case__ , d_model=snake_case__ , num_heads=snake_case__ , d_kv=snake_case__ , d_ff=snake_case__ , dropout_rate=snake_case__ , feed_forward_proj=snake_case__ , is_decoder=snake_case__ , is_encoder_decoder=snake_case__ , ) __lowercase : Union[str, Any] = nn.ModuleList() for lyr_num in range(snake_case__ ): __lowercase : Tuple = TaBlock(snake_case__ ) self.encoders.append(snake_case__ ) __lowercase : List[Any] = TaLayerNorm(snake_case__ ) __lowercase : Optional[int] = nn.Dropout(p=snake_case__ ) def lowerCAmelCase ( self : Optional[int] , __a : List[Any] , __a : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Any = self.token_embedder(snake_case__ ) __lowercase : Any = encoder_input_tokens.shape[1] __lowercase : Tuple = torch.arange(snake_case__ , device=encoder_input_tokens.device ) x += self.position_encoding(snake_case__ ) __lowercase : Dict = self.dropout_pre(snake_case__ ) # inverted the attention mask __lowercase : Union[str, Any] = encoder_input_tokens.size() __lowercase : Dict = self.get_extended_attention_mask(snake_case__ , snake_case__ ) for lyr in self.encoders: __lowercase : int = lyr(snake_case__ , snake_case__ )[0] __lowercase : Tuple = self.layer_norm(snake_case__ ) return self.dropout_post(snake_case__ ), encoder_inputs_mask
719
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : List[Any] = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : str=False , lowerCAmelCase_ : Any=False ): __lowercase : Any = """backbone.""" if is_semantic else """""" __lowercase : Optional[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"{prefix}blocks.{i}.norm1.weight", F"beit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm1.bias", F"beit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.weight", F"beit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.bias", F"beit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.weight", F"beit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.bias", F"beit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.weight", F"beit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.bias", F"beit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.weight", F"beit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.bias", F"beit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ (F"{prefix}cls_token", """beit.embeddings.cls_token"""), (F"{prefix}patch_embed.proj.weight", """beit.embeddings.patch_embeddings.projection.weight"""), (F"{prefix}patch_embed.proj.bias", """beit.embeddings.patch_embeddings.projection.bias"""), (F"{prefix}pos_embed", """beit.embeddings.position_embeddings"""), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("""mask_token""", """beit.embeddings.mask_token"""), ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) else: # layernorm + classification head rename_keys.extend( [ ("""fc_norm.weight""", """beit.pooler.layernorm.weight"""), ("""fc_norm.bias""", """beit.pooler.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : List[Any]=False ): for i in range(config.num_hidden_layers ): __lowercase : Tuple = """backbone.""" if is_semantic else """""" # queries, keys and values __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.attn.qkv.weight" ) __lowercase : Dict = state_dict.pop(F"{prefix}blocks.{i}.attn.q_bias" ) __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.attn.v_bias" ) __lowercase : List[str] = in_proj_weight[ : config.hidden_size, : ] __lowercase : Union[str, Any] = q_bias __lowercase : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] __lowercase : str = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.gamma_1" ) __lowercase : str = state_dict.pop(F"{prefix}blocks.{i}.gamma_2" ) __lowercase : List[str] = gamma_a __lowercase : Optional[int] = gamma_a def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : int ): __lowercase : Tuple = dct.pop(lowerCAmelCase_ ) __lowercase : Tuple = val def snake_case_ ( ): __lowercase : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase : Any = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]=False ): __lowercase : Dict = False if """rvlcdip""" in checkpoint_url else True __lowercase : Tuple = BeitConfig(use_absolute_position_embeddings=lowerCAmelCase_ , use_mask_token=lowerCAmelCase_ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: __lowercase : Union[str, Any] = 1024 __lowercase : Optional[int] = 4096 __lowercase : List[Any] = 24 __lowercase : Dict = 16 # labels if "rvlcdip" in checkpoint_url: __lowercase : Optional[int] = 16 __lowercase : Any = """huggingface/label-files""" __lowercase : Union[str, Any] = """rvlcdip-id2label.json""" __lowercase : List[str] = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) __lowercase : Optional[int] = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowercase : Union[str, Any] = idalabel __lowercase : Optional[Any] = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys __lowercase : Optional[int] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ , map_location="""cpu""" )["""model"""] __lowercase : Union[str, Any] = create_rename_keys(lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) # load HuggingFace model __lowercase : Dict = BeitForMaskedImageModeling(lowerCAmelCase_ ) if has_lm_head else BeitForImageClassification(lowerCAmelCase_ ) model.eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image __lowercase : List[str] = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=lowerCAmelCase_ ) __lowercase : List[str] = prepare_img() __lowercase : Optional[Any] = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""" ) __lowercase : Optional[int] = encoding["""pixel_values"""] __lowercase : str = model(lowerCAmelCase_ ) __lowercase : Tuple = outputs.logits # verify logits __lowercase : str = [1, 16] if """rvlcdip""" in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(lowerCAmelCase_ ), "Shape of logits not as expected" Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: if has_lm_head: __lowercase : Optional[Any] = """dit-base""" if """base""" in checkpoint_url else """dit-large""" else: __lowercase : Tuple = """dit-base-finetuned-rvlcdip""" if """dit-b""" in checkpoint_url else """dit-large-finetuned-rvlcdip""" image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=lowerCAmelCase_ , ) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=lowerCAmelCase_ , ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) lowerCamelCase : List[str] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
649
0
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : dict , lowerCAmelCase_ : str ): __lowercase , __lowercase : Union[str, Any] = set(__a ), [start] while stack: __lowercase : Tuple = stack.pop() explored.add(__a ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(__a ) return explored lowerCamelCase : Any = { '''A''': ['''B''', '''C''', '''D'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F'''], '''D''': ['''B''', '''D'''], '''E''': ['''B''', '''F'''], '''F''': ['''C''', '''E''', '''G'''], '''G''': ['''F'''], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, '''A'''))
720
from torch import nn class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , __a : int , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" super().__init__() __lowercase : int = class_size __lowercase : int = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) __lowercase : str = nn.Linear(__a , __a ) def lowerCAmelCase ( self : Tuple , __a : int ) -> Tuple: """simple docstring""" __lowercase : str = self.mlp(__a ) return logits
649
0
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : str , __a : str , __a : Optional[int]=7 , __a : Tuple=3 , __a : Any=18 , __a : Tuple=30 , __a : int=400 , __a : Optional[int]=True , __a : Dict=None , __a : str=True , ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = size if size is not None else {"height": 18, "width": 18} __lowercase : Optional[int] = parent __lowercase : Dict = batch_size __lowercase : Optional[Any] = num_channels __lowercase : List[str] = image_size __lowercase : Optional[int] = min_resolution __lowercase : str = max_resolution __lowercase : Dict = do_resize __lowercase : Optional[int] = size __lowercase : List[str] = do_normalize def lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8866443634033203, 0.6618829369544983, 0.3891746401786804], [-0.6042559146881104, -0.02295008860528469, 0.5423797369003296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCAmelCase ( _snake_case , unittest.TestCase ): '''simple docstring''' _A : List[Any] = ImageGPTImageProcessor if is_vision_available() else None def lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase : List[str] = ImageGPTImageProcessingTester(self ) @property def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : int ) -> str: """simple docstring""" __lowercase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , """clusters""" ) ) self.assertTrue(hasattr(snake_case_ , """do_resize""" ) ) self.assertTrue(hasattr(snake_case_ , """size""" ) ) self.assertTrue(hasattr(snake_case_ , """do_normalize""" ) ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) __lowercase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Dict = self.image_processing_class(**self.image_processor_dict ) __lowercase : Dict = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(snake_case_ , obj[key] ) ) else: self.assertEqual(obj[key] , snake_case_ ) def lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" __lowercase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : List[Any] = os.path.join(snake_case_ , """image_processor.json""" ) image_processor_first.to_json_file(snake_case_ ) __lowercase : str = self.image_processing_class.from_json_file(snake_case_ ).to_dict() __lowercase : Optional[int] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(snake_case_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , snake_case_ ) def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" __lowercase : Tuple = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(snake_case_ ) __lowercase : Any = self.image_processing_class.from_pretrained(snake_case_ ).to_dict() __lowercase : List[str] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(snake_case_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , snake_case_ ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" pass def snake_case_ ( ): __lowercase : Optional[int] = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" ) __lowercase : List[str] = Image.open(dataset[4]["""file"""] ) __lowercase : List[str] = Image.open(dataset[5]["""file"""] ) __lowercase : Union[str, Any] = [imagea, imagea] return images @require_vision @require_torch class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : str ) -> str: """simple docstring""" __lowercase : Optional[Any] = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) __lowercase : Any = prepare_images() # test non-batched __lowercase : int = image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1024) ) __lowercase : Optional[Any] = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , snake_case_ ) # test batched __lowercase : Dict = image_processing(snake_case_ , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1024) ) __lowercase : Any = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , snake_case_ )
721
import fire from utils import calculate_rouge, save_json def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : str=None , **lowerCAmelCase_ : str ): __lowercase : Tuple = [x.strip() for x in open(lowerCAmelCase_ ).readlines()] __lowercase : Dict = [x.strip() for x in open(lowerCAmelCase_ ).readlines()][: len(lowerCAmelCase_ )] __lowercase : Tuple = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) if save_path is not None: save_json(lowerCAmelCase_ , lowerCAmelCase_ , indent=lowerCAmelCase_ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
649
0
import mpmath # for roots of unity import numpy as np class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : List[Any]=None , __a : Optional[Any]=None ) -> Tuple: """simple docstring""" __lowercase : Optional[int] = list(poly_a or [0] )[:] __lowercase : Optional[Any] = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() __lowercase : Any = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() __lowercase : Dict = len(self.polyB ) # Add 0 to make lengths equal a power of 2 __lowercase : int = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform __lowercase : Union[str, Any] = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product __lowercase : Tuple = self.__multiply() def lowerCAmelCase ( self : Union[str, Any] , __a : Tuple ) -> Dict: """simple docstring""" __lowercase : Union[str, Any] = [[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB] # Corner case if len(UpperCAmelCase__ ) <= 1: return dft[0] # __lowercase : Any = self.c_max_length // 2 while next_ncol > 0: __lowercase : Optional[int] = [[] for i in range(UpperCAmelCase__ )] __lowercase : Tuple = self.root**next_ncol # First half of next step __lowercase : str = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase__ ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step __lowercase : int = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase__ ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update __lowercase : Dict = new_dft __lowercase : Tuple = next_ncol // 2 return dft[0] def lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase : Any = self.__dft("""A""" ) __lowercase : Any = self.__dft("""B""" ) __lowercase : Optional[int] = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT __lowercase : Optional[int] = 2 while next_ncol <= self.c_max_length: __lowercase : Optional[int] = [[] for i in range(UpperCAmelCase__ )] __lowercase : List[str] = self.root ** (next_ncol // 2) __lowercase : Optional[int] = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update __lowercase : List[Any] = new_inverse_c next_ncol *= 2 # Unpack __lowercase : Tuple = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Any ) -> Tuple: """simple docstring""" __lowercase : Any = '''A = ''' + ''' + '''.join( F"{coef}*x^{i}" for coef, i in enumerate(self.polyA[: self.len_A] ) ) __lowercase : Tuple = '''B = ''' + ''' + '''.join( F"{coef}*x^{i}" for coef, i in enumerate(self.polyB[: self.len_B] ) ) __lowercase : List[str] = '''A*B = ''' + ''' + '''.join( F"{coef}*x^{i}" for coef, i in enumerate(self.product ) ) return F"{a}\n{b}\n{c}" # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
700
from argparse import ArgumentParser from . import BaseTransformersCLICommand def snake_case_ ( lowerCAmelCase_ : Dict ): return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class lowerCAmelCase ( __a ): '''simple docstring''' @staticmethod def lowerCAmelCase ( __a : ArgumentParser ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = parser.add_parser("""download""" ) download_parser.add_argument( """--cache-dir""" , type=__a , default=__a , help="""Path to location to store the models""" ) download_parser.add_argument( """--force""" , action="""store_true""" , help="""Force the model to be download even if already in cache-dir""" ) download_parser.add_argument( """--trust-remote-code""" , action="""store_true""" , help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" , ) download_parser.add_argument("""model""" , type=__a , help="""Name of the model to download""" ) download_parser.set_defaults(func=__a ) def __init__( self : Dict , __a : str , __a : str , __a : bool , __a : bool ) -> Union[str, Any]: """simple docstring""" __lowercase : Dict = model __lowercase : List[Any] = cache __lowercase : Any = force __lowercase : Optional[int] = trust_remote_code def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
649
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase : Union[str, Any] = { '''configuration_poolformer''': [ '''POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PoolFormerConfig''', '''PoolFormerOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[Any] = ['''PoolFormerFeatureExtractor'''] lowerCamelCase : Optional[int] = ['''PoolFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ '''POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PoolFormerForImageClassification''', '''PoolFormerModel''', '''PoolFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
701
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowerCamelCase : Union[str, Any] = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , __a : List[str] , __a : Optional[int]=16 , __a : Optional[Any]=13 , __a : str=7 , __a : List[str]=14 , __a : Any=10 , __a : str=19 , __a : int=5 , __a : Any=4 , __a : List[Any]=True , __a : Tuple=16 , __a : Dict=2 , __a : Tuple=4 , __a : int=4 , __a : List[Any]="gelu" , __a : Tuple=0.1 , __a : List[str]=0.1 , __a : int=[1, 2, 3, 4, 5] , __a : str=25 , __a : Any=5 , ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = d_model __lowercase : Dict = parent __lowercase : Tuple = batch_size __lowercase : Optional[int] = prediction_length __lowercase : List[str] = context_length __lowercase : Any = cardinality __lowercase : str = num_time_features __lowercase : Optional[int] = lags_sequence __lowercase : Optional[Any] = embedding_dimension __lowercase : List[Any] = is_training __lowercase : List[str] = hidden_size __lowercase : int = num_hidden_layers __lowercase : Any = num_attention_heads __lowercase : List[Any] = intermediate_size __lowercase : int = hidden_act __lowercase : str = hidden_dropout_prob __lowercase : List[Any] = attention_probs_dropout_prob __lowercase : str = context_length __lowercase : int = prediction_length + label_length __lowercase : Union[str, Any] = label_length __lowercase : Optional[int] = moving_average __lowercase : Optional[Any] = autocorrelation_factor def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def lowerCAmelCase ( self : Tuple , __a : str ) -> int: """simple docstring""" __lowercase : Any = config.context_length + max(config.lags_sequence ) __lowercase : Any = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __lowercase : Optional[int] = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __lowercase : List[str] = floats_tensor([self.batch_size, _past_length] ) __lowercase : List[str] = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __lowercase : Dict = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __lowercase : str = floats_tensor([self.batch_size, config.prediction_length] ) __lowercase : List[str] = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.get_config() __lowercase : Any = self.prepare_autoformer_inputs_dict(__a ) return config, inputs_dict def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase , __lowercase : List[str] = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase ( self : Optional[Any] , __a : Tuple , __a : Optional[int] ) -> Any: """simple docstring""" __lowercase : List[str] = AutoformerModel(config=__a ).to(__a ).eval() __lowercase : Optional[int] = model(**__a ) __lowercase : Dict = outputs.encoder_last_hidden_state __lowercase : Tuple = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : List[str] = model.get_encoder() encoder.save_pretrained(__a ) __lowercase : List[str] = AutoformerEncoder.from_pretrained(__a ).to(__a ) __lowercase , __lowercase , __lowercase , __lowercase , __lowercase : Any = model.create_network_inputs(**__a ) __lowercase , __lowercase : Any = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __lowercase : Optional[Any] = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __lowercase : Union[str, Any] = encoder(inputs_embeds=__a )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) __lowercase : str = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __lowercase : Optional[int] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __lowercase : Any = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __lowercase : Dict = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : Optional[Any] = model.get_decoder() decoder.save_pretrained(__a ) __lowercase : Tuple = AutoformerDecoder.from_pretrained(__a ).to(__a ) __lowercase : str = decoder( trend=__a , inputs_embeds=__a , encoder_hidden_states=__a , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[str] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _A : List[Any] = (AutoformerForPrediction,) if is_torch_available() else () _A : Any = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} _A : Dict = False _A : Tuple = False _A : Optional[int] = False _A : Tuple = False _A : str = False _A : Union[str, Any] = False def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" __lowercase : List[str] = AutoformerModelTester(self ) __lowercase : Dict = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowercase : Dict = model_class(__a ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowercase , __lowercase : Tuple = model_class.from_pretrained(__a , output_loading_info=__a ) self.assertEqual(info["""missing_keys"""] , [] ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__a ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def lowerCAmelCase ( self : str ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : Any = inspect.signature(getattr(__a , """forward""" ) ) # The main input is the name of the argument after `self` __lowercase : Optional[int] = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , __a ) def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Dict = model_class(__a ) __lowercase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : Any = [*signature.parameters.keys()] __lowercase : int = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(__a )] , __a ) def lowerCAmelCase ( self : int ) -> int: """simple docstring""" __lowercase , __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : int = True __lowercase : Tuple = getattr(self.model_tester , """seq_length""" , __a ) __lowercase : Union[str, Any] = getattr(self.model_tester , """decoder_seq_length""" , __a ) __lowercase : List[str] = getattr(self.model_tester , """encoder_seq_length""" , __a ) __lowercase : List[Any] = getattr(self.model_tester , """d_model""" , __a ) __lowercase : Optional[int] = getattr(self.model_tester , """num_attention_heads""" , __a ) __lowercase : Any = d_model // num_attention_heads for model_class in self.all_model_classes: __lowercase : Dict = True __lowercase : List[str] = False __lowercase : Optional[int] = True __lowercase : str = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : int = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase : Optional[int] = True __lowercase : List[str] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Union[str, Any] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Dict = outputs.encoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __lowercase : Tuple = len(__a ) __lowercase : str = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__a , __a ) # decoder attentions __lowercase : List[Any] = outputs.decoder_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __lowercase : Optional[int] = outputs.cross_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __lowercase : Tuple = True __lowercase : Union[str, Any] = True __lowercase : Tuple = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Any = model(**self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + 2 , len(__a ) ) __lowercase : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def snake_case_ ( lowerCAmelCase_ : Optional[int]="train-batch.pt" ): __lowercase : Dict = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=lowerCAmelCase_ , repo_type="""dataset""" ) __lowercase : Optional[int] = torch.load(lowerCAmelCase_ , map_location=lowerCAmelCase_ ) return batch @require_torch @slow class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" __lowercase : List[str] = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : List[Any] = prepare_batch() with torch.no_grad(): __lowercase : Tuple = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] __lowercase : List[str] = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , __a ) __lowercase : Optional[int] = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" __lowercase : int = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : List[str] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowercase : Optional[Any] = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state __lowercase : List[str] = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , __a ) __lowercase : Optional[int] = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : Optional[int] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowercase : int = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) __lowercase : int = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , __a ) __lowercase : Optional[Any] = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=__a ) __lowercase : Dict = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __a , rtol=1E-1 ) )
649
0
import os from collections import deque import torch from torch.utils.data import Dataset class lowerCAmelCase ( lowerCamelCase__ ): '''simple docstring''' def __init__( self : Dict , __a : Dict="" , __a : Optional[int]="train" ) -> str: """simple docstring""" assert os.path.isdir(__lowerCamelCase ) __lowercase : Union[str, Any] = [] __lowercase : List[str] = os.listdir(__lowerCamelCase ) for story_filename in story_filenames_list: if "summary" in story_filename: continue __lowercase : int = os.path.join(__lowerCamelCase , __lowerCamelCase ) if not os.path.isfile(__lowerCamelCase ): continue self.documents.append(__lowerCamelCase ) def __len__( self : Tuple ) -> int: """simple docstring""" return len(self.documents ) def __getitem__( self : str , __a : Dict ) -> List[str]: """simple docstring""" __lowercase : Tuple = self.documents[idx] __lowercase : str = document_path.split("""/""" )[-1] with open(__lowerCamelCase , encoding="""utf-8""" ) as source: __lowercase : Dict = source.read() __lowercase : Union[str, Any] = process_story(__lowerCamelCase ) return document_name, story_lines, summary_lines def snake_case_ ( lowerCAmelCase_ : Optional[int] ): __lowercase : Any = list(filter(lambda lowerCAmelCase_ : len(lowerCamelCase_ ) != 0 , [line.strip() for line in raw_story.split("""\n""" )] ) ) # for some unknown reason some lines miss a period, add it __lowercase : Optional[int] = [_add_missing_period(lowerCamelCase_ ) for line in nonempty_lines] # gather article lines __lowercase : Tuple = [] __lowercase : Tuple = deque(lowerCamelCase_ ) while True: try: __lowercase : Dict = lines.popleft() if element.startswith("""@highlight""" ): break story_lines.append(lowerCamelCase_ ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines __lowercase : Any = list(filter(lambda lowerCAmelCase_ : not t.startswith("""@highlight""" ) , lowerCamelCase_ ) ) return story_lines, summary_lines def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : Tuple = ['''.''', '''!''', '''?''', '''...''', '''\'''', '''`''', '''"''', '''\u2019''', '''\u2019''', ''')'''] if line.startswith("""@highlight""" ): return line if line[-1] in END_TOKENS: return line return line + "." def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict ): if len(lowerCamelCase_ ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(lowerCamelCase_ )) ) return sequence def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] ): __lowercase : List[Any] = torch.ones_like(lowerCamelCase_ ) __lowercase : Any = sequence == pad_token_id __lowercase : List[str] = 0 return mask def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple ): __lowercase : Optional[Any] = [tokenizer.encode(lowerCamelCase_ ) for line in story_lines] __lowercase : Union[str, Any] = [token for sentence in story_lines_token_ids for token in sentence] __lowercase : Tuple = [tokenizer.encode(lowerCamelCase_ ) for line in summary_lines] __lowercase : List[Any] = [token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : str ): __lowercase : Tuple = [] for sequence in batch: __lowercase : str = -1 __lowercase : Tuple = [] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(lowerCamelCase_ ) return torch.tensor(lowerCamelCase_ )
702
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowerCAmelCase ( __a , __a ): '''simple docstring''' _A : str = 1 @register_to_config def __init__( self : Optional[int] , __a : Tuple=2000 , __a : List[str]=0.1 , __a : str=20 , __a : Optional[int]=1E-3 ) -> int: """simple docstring""" __lowercase : Tuple = None __lowercase : Union[str, Any] = None __lowercase : int = None def lowerCAmelCase ( self : List[Any] , __a : Any , __a : Union[str, torch.device] = None ) -> str: """simple docstring""" __lowercase : List[str] = torch.linspace(1 , self.config.sampling_eps , __a , device=__a ) def lowerCAmelCase ( self : Tuple , __a : List[Any] , __a : Tuple , __a : int , __a : Optional[int]=None ) -> str: """simple docstring""" if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __lowercase : Dict = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __lowercase : int = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __lowercase : Union[str, Any] = std.flatten() while len(std.shape ) < len(score.shape ): __lowercase : Optional[Any] = std.unsqueeze(-1 ) __lowercase : List[Any] = -score / std # compute __lowercase : Dict = -1.0 / len(self.timesteps ) __lowercase : int = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __lowercase : List[Any] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __lowercase : Union[str, Any] = beta_t.unsqueeze(-1 ) __lowercase : List[str] = -0.5 * beta_t * x __lowercase : int = torch.sqrt(__a ) __lowercase : Union[str, Any] = drift - diffusion**2 * score __lowercase : Optional[Any] = x + drift * dt # add noise __lowercase : List[str] = randn_tensor(x.shape , layout=x.layout , generator=__a , device=x.device , dtype=x.dtype ) __lowercase : str = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Tuple ) -> Optional[int]: """simple docstring""" return self.config.num_train_timesteps
649
0
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('''>=''', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType lowerCamelCase : Any = get_logger(__name__) def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]=0 ): os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) with FSDP.state_dict_type( UpperCamelCase__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __lowercase : Dict = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __lowercase : Union[str, Any] = F"{MODEL_NAME}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}.bin" __lowercase : str = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) if accelerator.process_index == 0: logger.info(F"Saving model to {output_model_file}" ) torch.save(UpperCamelCase__ , UpperCamelCase__ ) logger.info(F"Model saved to {output_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __lowercase : int = ( F"{MODEL_NAME}_rank{accelerator.process_index}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin" ) __lowercase : Any = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) logger.info(F"Saving model to {output_model_file}" ) torch.save(UpperCamelCase__ , UpperCamelCase__ ) logger.info(F"Model saved to {output_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __lowercase : List[str] = os.path.join(UpperCamelCase__ , F"{MODEL_NAME}_{model_index}" ) os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) logger.info(F"Saving model to {ckpt_dir}" ) __lowercase : List[str] = {"""model""": state_dict} dist_cp.save_state_dict( state_dict=UpperCamelCase__ , storage_writer=dist_cp.FileSystemWriter(UpperCamelCase__ ) , planner=DefaultSavePlanner() , ) logger.info(F"Model saved to {ckpt_dir}" ) def snake_case_ ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str]=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( UpperCamelCase__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(UpperCamelCase__ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( """Set the `sync_module_states` flag to `True` so that model states are synced across processes when """ """initializing FSDP object""" ) return __lowercase : List[str] = F"{MODEL_NAME}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}.bin" __lowercase : Tuple = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) logger.info(F"Loading model from {input_model_file}" ) __lowercase : Any = torch.load(UpperCamelCase__ ) logger.info(F"Model loaded from {input_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __lowercase : str = ( F"{MODEL_NAME}_rank{accelerator.process_index}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin" ) __lowercase : int = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) logger.info(F"Loading model from {input_model_file}" ) __lowercase : Union[str, Any] = torch.load(UpperCamelCase__ ) logger.info(F"Model loaded from {input_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __lowercase : Dict = ( os.path.join(UpperCamelCase__ , F"{MODEL_NAME}_{model_index}" ) if F"{MODEL_NAME}" not in input_dir else input_dir ) logger.info(F"Loading model from {ckpt_dir}" ) __lowercase : Tuple = {"""model""": model.state_dict()} dist_cp.load_state_dict( state_dict=UpperCamelCase__ , storage_reader=dist_cp.FileSystemReader(UpperCamelCase__ ) , planner=DefaultLoadPlanner() , ) __lowercase : str = state_dict["""model"""] logger.info(F"Model loaded from {ckpt_dir}" ) model.load_state_dict(UpperCamelCase__ ) def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Any=0 ): os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) with FSDP.state_dict_type( UpperCamelCase__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __lowercase : Optional[int] = FSDP.optim_state_dict(UpperCamelCase__ , UpperCamelCase__ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: __lowercase : Tuple = ( F"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else F"{OPTIMIZER_NAME}_{optimizer_index}.bin" ) __lowercase : List[str] = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) logger.info(F"Saving Optimizer state to {output_optimizer_file}" ) torch.save(UpperCamelCase__ , UpperCamelCase__ ) logger.info(F"Optimizer state saved in {output_optimizer_file}" ) else: __lowercase : Dict = os.path.join(UpperCamelCase__ , F"{OPTIMIZER_NAME}_{optimizer_index}" ) os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) logger.info(F"Saving Optimizer state to {ckpt_dir}" ) dist_cp.save_state_dict( state_dict={"""optimizer""": optim_state} , storage_writer=dist_cp.FileSystemWriter(UpperCamelCase__ ) , planner=DefaultSavePlanner() , ) logger.info(F"Optimizer state saved in {ckpt_dir}" ) def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any]=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( UpperCamelCase__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __lowercase : Dict = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: __lowercase : int = ( F"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else F"{OPTIMIZER_NAME}_{optimizer_index}.bin" ) __lowercase : List[str] = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) logger.info(F"Loading Optimizer state from {input_optimizer_file}" ) __lowercase : Any = torch.load(UpperCamelCase__ ) logger.info(F"Optimizer state loaded from {input_optimizer_file}" ) else: __lowercase : Optional[int] = ( os.path.join(UpperCamelCase__ , F"{OPTIMIZER_NAME}_{optimizer_index}" ) if F"{OPTIMIZER_NAME}" not in input_dir else input_dir ) logger.info(F"Loading Optimizer from {ckpt_dir}" ) __lowercase : Any = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="""optimizer""" , storage_reader=dist_cp.FileSystemReader(UpperCamelCase__ ) , ) __lowercase : int = optim_state["""optimizer"""] logger.info(F"Optimizer loaded from {ckpt_dir}" ) __lowercase : List[Any] = FSDP.optim_state_dict_to_load(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) optimizer.load_state_dict(UpperCamelCase__ )
703
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : str = LongformerTokenizer _A : int = True _A : Optional[int] = LongformerTokenizerFast _A : int = True def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __lowercase : Union[str, Any] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Any = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __lowercase : Optional[int] = {"""unk_token""": """<unk>"""} __lowercase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__a ) ) def lowerCAmelCase ( self : Optional[int] , **__a : Optional[Any] ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Tuple , **__a : Tuple ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : str , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = """lower newer""" __lowercase : int = """lower newer""" return input_text, output_text def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowercase : Dict = """lower newer""" __lowercase : Optional[Any] = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] __lowercase : str = tokenizer.tokenize(__a ) # , add_prefix_space=True) self.assertListEqual(__a , __a ) __lowercase : int = tokens + [tokenizer.unk_token] __lowercase : str = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=__a ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=__a ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : Any = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" ) __lowercase : Optional[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=__a ) __lowercase : List[str] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__a ) __lowercase : Optional[Any] = tokenizer.encode( """sequence builders""" , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Union[str, Any] = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : List[Any] = tokenizer.build_inputs_with_special_tokens(__a ) __lowercase : Any = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() __lowercase : Tuple = """Encode this sequence.""" __lowercase : Optional[Any] = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments __lowercase : Dict = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__a , __a ) __lowercase : List[str] = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__a , __a ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) __lowercase : str = tokenizer.encode(__a , add_special_tokens=__a ) __lowercase : Dict = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__a , __a ) # Testing spaces after special tokens __lowercase : List[Any] = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(__a , lstrip=__a , rstrip=__a )} ) # mask token has a left space __lowercase : Dict = tokenizer.convert_tokens_to_ids(__a ) __lowercase : List[str] = """Encode <mask> sequence""" __lowercase : List[str] = """Encode <mask>sequence""" __lowercase : Union[str, Any] = tokenizer.encode(__a ) __lowercase : Dict = encoded.index(__a ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__a , __a ) __lowercase : int = tokenizer.encode(__a ) __lowercase : Union[str, Any] = encoded.index(__a ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__a , __a ) def lowerCAmelCase ( self : int ) -> str: """simple docstring""" pass def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) __lowercase : List[Any] = self.tokenizer_class.from_pretrained(__a , **__a ) __lowercase : Optional[Any] = """A, <mask> AllenNLP sentence.""" __lowercase : Union[str, Any] = tokenizer_r.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) __lowercase : Optional[Any] = tokenizer_p.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) __lowercase : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __lowercase : str = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __lowercase : Dict = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __lowercase : Any = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""trim_offsets"""] , __a ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : List[str] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` __lowercase : int = F"{text_of_1_token} {text_of_1_token}" __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Any = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) __lowercase : str = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Tuple = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) __lowercase : Optional[int] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : str = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) __lowercase : str = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : int = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) __lowercase : Any = F" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : str = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ) + 1, 1 + len(__a ) + 1 + len(__a )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Dict = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Tuple = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , )
649
0
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int]=False ): try: __lowercase : Optional[Any] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __lowercase : List[str] = default else: # KEY is set, convert it to True or False. try: __lowercase : Dict = strtobool(__SCREAMING_SNAKE_CASE ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"If set, {key} must be yes or no." ) return _value lowerCamelCase : List[Any] = parse_flag_from_env('''RUN_SLOW''', default=False) def snake_case_ ( lowerCAmelCase_ : Tuple ): return unittest.skip("""Test was skipped""" )(__SCREAMING_SNAKE_CASE ) def snake_case_ ( lowerCAmelCase_ : List[str] ): return unittest.skipUnless(_run_slow_tests , """test is slow""" )(__SCREAMING_SNAKE_CASE ) def snake_case_ ( lowerCAmelCase_ : List[Any] ): return unittest.skipUnless(not torch.cuda.is_available() , """test requires only a CPU""" )(__SCREAMING_SNAKE_CASE ) def snake_case_ ( lowerCAmelCase_ : int ): return unittest.skipUnless(torch.cuda.is_available() , """test requires a GPU""" )(__SCREAMING_SNAKE_CASE ) def snake_case_ ( lowerCAmelCase_ : Any ): return unittest.skipUnless(is_xpu_available() , """test requires a XPU""" )(__SCREAMING_SNAKE_CASE ) def snake_case_ ( lowerCAmelCase_ : str ): return unittest.skipUnless(is_mps_available() , """test requires a `mps` backend support in `torch`""" )(__SCREAMING_SNAKE_CASE ) def snake_case_ ( lowerCAmelCase_ : List[Any] ): return unittest.skipUnless( is_transformers_available() and is_datasets_available() , """test requires the Hugging Face suite""" )(__SCREAMING_SNAKE_CASE ) def snake_case_ ( lowerCAmelCase_ : List[str] ): return unittest.skipUnless(is_bnb_available() , """test requires the bitsandbytes library""" )(__SCREAMING_SNAKE_CASE ) def snake_case_ ( lowerCAmelCase_ : Any ): return unittest.skipUnless(is_tpu_available() , """test requires TPU""" )(__SCREAMING_SNAKE_CASE ) def snake_case_ ( lowerCAmelCase_ : Union[str, Any] ): return unittest.skipUnless(torch.cuda.device_count() == 1 , """test requires a GPU""" )(__SCREAMING_SNAKE_CASE ) def snake_case_ ( lowerCAmelCase_ : Union[str, Any] ): return unittest.skipUnless(torch.xpu.device_count() == 1 , """test requires a XPU""" )(__SCREAMING_SNAKE_CASE ) def snake_case_ ( lowerCAmelCase_ : Optional[int] ): return unittest.skipUnless(torch.cuda.device_count() > 1 , """test requires multiple GPUs""" )(__SCREAMING_SNAKE_CASE ) def snake_case_ ( lowerCAmelCase_ : Optional[int] ): return unittest.skipUnless(torch.xpu.device_count() > 1 , """test requires multiple XPUs""" )(__SCREAMING_SNAKE_CASE ) def snake_case_ ( lowerCAmelCase_ : List[Any] ): return unittest.skipUnless(is_safetensors_available() , """test requires safetensors""" )(__SCREAMING_SNAKE_CASE ) def snake_case_ ( lowerCAmelCase_ : Dict ): return unittest.skipUnless(is_deepspeed_available() , """test requires DeepSpeed""" )(__SCREAMING_SNAKE_CASE ) def snake_case_ ( lowerCAmelCase_ : Union[str, Any] ): return unittest.skipUnless(is_torch_version(""">=""" , """1.12.0""" ) , """test requires torch version >= 1.12.0""" )(__SCREAMING_SNAKE_CASE ) def snake_case_ ( lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Union[str, Any]=None ): if test_case is None: return partial(__SCREAMING_SNAKE_CASE , version=__SCREAMING_SNAKE_CASE ) return unittest.skipUnless(is_torch_version(""">=""" , __SCREAMING_SNAKE_CASE ) , F"test requires torch version >= {version}" )(__SCREAMING_SNAKE_CASE ) def snake_case_ ( lowerCAmelCase_ : List[str] ): return unittest.skipUnless(is_tensorboard_available() , """test requires Tensorboard""" )(__SCREAMING_SNAKE_CASE ) def snake_case_ ( lowerCAmelCase_ : int ): return unittest.skipUnless(is_wandb_available() , """test requires wandb""" )(__SCREAMING_SNAKE_CASE ) def snake_case_ ( lowerCAmelCase_ : Any ): return unittest.skipUnless(is_comet_ml_available() , """test requires comet_ml""" )(__SCREAMING_SNAKE_CASE ) lowerCamelCase : List[Any] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def snake_case_ ( lowerCAmelCase_ : str ): return unittest.skipUnless( _atleast_one_tracker_available , """test requires at least one tracker to be available and for `comet_ml` to not be installed""" , )(__SCREAMING_SNAKE_CASE ) class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' _A : Optional[int] = True @classmethod def lowerCAmelCase ( cls : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Optional[Any] = tempfile.mkdtemp() @classmethod def lowerCAmelCase ( cls : Optional[int] ) -> List[Any]: """simple docstring""" if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" if self.clear_on_setup: for path in Path(self.tmpdir ).glob("""**/*""" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(lowercase_ ) class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : int , __a : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase : Dict = mocks if isinstance(lowercase_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def snake_case_ ( lowerCAmelCase_ : Optional[Any] ): __lowercase : Any = AcceleratorState() __lowercase : Optional[int] = tensor[None].clone().to(state.device ) __lowercase : Any = gather(__SCREAMING_SNAKE_CASE ).cpu() __lowercase : List[str] = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , __SCREAMING_SNAKE_CASE ): return False return True class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[int] , __a : str , __a : List[Any] , __a : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase : Optional[Any] = returncode __lowercase : List[Any] = stdout __lowercase : Tuple = stderr async def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] ): while True: __lowercase : List[str] = await stream.readline() if line: callback(__SCREAMING_SNAKE_CASE ) else: break async def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : int=False ): if echo: print("""\nRunning: """ , """ """.join(__SCREAMING_SNAKE_CASE ) ) __lowercase : List[Any] = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__SCREAMING_SNAKE_CASE , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__SCREAMING_SNAKE_CASE , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __lowercase : Any = [] __lowercase : Any = [] def tee(lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any="" ): __lowercase : int = line.decode("""utf-8""" ).rstrip() sink.append(__SCREAMING_SNAKE_CASE ) if not quiet: print(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , file=__SCREAMING_SNAKE_CASE ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda lowerCAmelCase_ : tee(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , sys.stdout , label="""stdout:""" ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda lowerCAmelCase_ : tee(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , sys.stderr , label="""stderr:""" ) ) ), ] , timeout=__SCREAMING_SNAKE_CASE , ) return _RunOutput(await p.wait() , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : str=180 , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : List[str]=True ): __lowercase : Optional[int] = asyncio.get_event_loop() __lowercase : Union[str, Any] = loop.run_until_complete( _stream_subprocess(__SCREAMING_SNAKE_CASE , env=__SCREAMING_SNAKE_CASE , stdin=__SCREAMING_SNAKE_CASE , timeout=__SCREAMING_SNAKE_CASE , quiet=__SCREAMING_SNAKE_CASE , echo=__SCREAMING_SNAKE_CASE ) ) __lowercase : Optional[Any] = " ".join(__SCREAMING_SNAKE_CASE ) if result.returncode > 0: __lowercase : List[Any] = "\n".join(result.stderr ) raise RuntimeError( F"\'{cmd_str}\' failed with returncode {result.returncode}\n\n" F"The combined stderr from workers follows:\n{stderr}" ) return result class lowerCAmelCase ( snake_case__ ): '''simple docstring''' pass def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : int=False ): try: __lowercase : Dict = subprocess.check_output(__SCREAMING_SNAKE_CASE , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(__SCREAMING_SNAKE_CASE , """decode""" ): __lowercase : int = output.decode("""utf-8""" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"Command `{' '.join(__SCREAMING_SNAKE_CASE )}` failed with the following error:\n\n{e.output.decode()}" ) from e
704
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Dict , __a : Union[str, Any]=13 , __a : Dict=7 , __a : Dict=True , __a : Dict=True , __a : Any=True , __a : List[str]=True , __a : int=99 , __a : Optional[int]=32 , __a : str=2 , __a : int=4 , __a : List[str]=37 , __a : Union[str, Any]="gelu" , __a : Union[str, Any]=0.1 , __a : Union[str, Any]=0.1 , __a : List[Any]=512 , __a : int=16 , __a : Union[str, Any]=2 , __a : Union[str, Any]=0.02 , __a : List[str]=3 , __a : Dict=4 , __a : Optional[Any]=None , ) -> Optional[Any]: """simple docstring""" __lowercase : Any = parent __lowercase : Tuple = 13 __lowercase : Dict = 7 __lowercase : List[Any] = True __lowercase : Tuple = True __lowercase : List[str] = True __lowercase : Any = True __lowercase : Optional[int] = 99 __lowercase : str = 384 __lowercase : Optional[Any] = 2 __lowercase : Dict = 4 __lowercase : str = 37 __lowercase : Optional[int] = """gelu""" __lowercase : int = 0.1 __lowercase : Union[str, Any] = 0.1 __lowercase : Tuple = 512 __lowercase : Tuple = 16 __lowercase : Optional[int] = 2 __lowercase : Optional[Any] = 0.02 __lowercase : Dict = 3 __lowercase : Union[str, Any] = 4 __lowercase : Tuple = 128 __lowercase : Optional[Any] = 2 __lowercase : int = 9 __lowercase : List[Any] = 1 __lowercase : Union[str, Any] = None def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" __lowercase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : Optional[Any] = None if self.use_input_mask: __lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : Dict = None if self.use_token_type_ids: __lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase : Optional[Any] = None __lowercase : str = None __lowercase : Tuple = None if self.use_labels: __lowercase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : str = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : Optional[int] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Dict , __a : List[Any] , __a : List[str] , __a : Union[str, Any] , __a : str , __a : Union[str, Any] , __a : Tuple , __a : Tuple ) -> Dict: """simple docstring""" __lowercase : Dict = TFConvBertModel(config=__a ) __lowercase : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowercase : Any = [input_ids, input_mask] __lowercase : Dict = model(__a ) __lowercase : str = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : Any , __a : Tuple , __a : Union[str, Any] , __a : str , __a : Dict , __a : str ) -> Dict: """simple docstring""" __lowercase : Optional[int] = TFConvBertForMaskedLM(config=__a ) __lowercase : List[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : Any = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[int] , __a : int , __a : Any , __a : Optional[int] , __a : int , __a : int , __a : List[Any] , __a : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase : str = self.num_labels __lowercase : List[Any] = TFConvBertForSequenceClassification(config=__a ) __lowercase : int = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : List[str] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Optional[int] , __a : Any , __a : Optional[Any] , __a : int , __a : Optional[int] , __a : Tuple , __a : int , __a : int ) -> Dict: """simple docstring""" __lowercase : Tuple = self.num_choices __lowercase : Dict = TFConvBertForMultipleChoice(config=__a ) __lowercase : List[str] = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : int = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : str = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : str = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __lowercase : Dict = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : List[str] , __a : str , __a : List[str] , __a : List[str] , __a : List[str] , __a : Any , __a : Tuple , __a : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = self.num_labels __lowercase : Tuple = TFConvBertForTokenClassification(config=__a ) __lowercase : Dict = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : str = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : List[Any] , __a : Optional[int] , __a : List[str] , __a : Optional[Any] , __a : int , __a : Tuple , __a : Any , __a : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Any = TFConvBertForQuestionAnswering(config=__a ) __lowercase : str = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : List[Any] = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : Tuple = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : int = config_and_inputs __lowercase : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Dict = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _A : str = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _A : Union[str, Any] = False _A : List[str] = False _A : Dict = False def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : int = TFConvBertModelTester(self ) __lowercase : Tuple = ConfigTester(self , config_class=__a , hidden_size=37 ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__a ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Union[str, Any] = True __lowercase : List[Any] = True if hasattr(__a , """use_cache""" ): __lowercase : Optional[Any] = True __lowercase : List[str] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) __lowercase : int = getattr(self.model_tester , """key_length""" , __a ) for model_class in self.all_model_classes: __lowercase : Optional[Any] = self._prepare_for_class(__a , __a ) __lowercase : Tuple = model_class(__a ) __lowercase : Tuple = len(model(__a ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a , saved_model=__a ) __lowercase : List[Any] = os.path.join(__a , """saved_model""" , """1""" ) __lowercase : str = tf.keras.models.load_model(__a ) __lowercase : Optional[int] = model(__a ) if self.is_encoder_decoder: __lowercase : Union[str, Any] = outputs["""encoder_hidden_states"""] __lowercase : Union[str, Any] = outputs["""encoder_attentions"""] else: __lowercase : Union[str, Any] = outputs["""hidden_states"""] __lowercase : List[str] = outputs["""attentions"""] self.assertEqual(len(__a ) , __a ) __lowercase : List[Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : str = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) self.assertIsNotNone(__a ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : List[str] = True __lowercase : List[Any] = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length ) __lowercase : Optional[int] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) __lowercase : List[str] = getattr(self.model_tester , """key_length""" , __a ) __lowercase : List[Any] = getattr(self.model_tester , """key_length""" , __a ) def check_decoder_attentions_output(__a : List[str] ): __lowercase : Union[str, Any] = len(__a ) self.assertEqual(out_len % 2 , 0 ) __lowercase : Any = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__a : str ): __lowercase : str = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __lowercase : int = True __lowercase : Any = False __lowercase : List[Any] = model_class(__a ) __lowercase : Tuple = model(self._prepare_for_class(__a , __a ) ) __lowercase : Dict = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: __lowercase : Any = model_class(__a ) __lowercase : List[str] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __lowercase : Dict = True __lowercase : Optional[Any] = model_class(__a ) __lowercase : Optional[int] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine __lowercase : List[str] = True __lowercase : List[Any] = True __lowercase : Any = model_class(__a ) __lowercase : Optional[int] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @require_tf class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) __lowercase : str = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowercase : Tuple = model(__a )[0] __lowercase : Any = [1, 6, 768] self.assertEqual(output.shape , __a ) __lowercase : Optional[Any] = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-4 )
649
0
import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , __a : List[str] , __a : List[Any]=100 , __a : Any=13 , __a : Dict=30 , __a : Optional[int]=2 , __a : str=3 , __a : Tuple=True , __a : str=True , __a : Union[str, Any]=32 , __a : int=5 , __a : List[Any]=4 , __a : Optional[Any]=37 , __a : Any="gelu" , __a : List[str]=0.1 , __a : int=0.1 , __a : Tuple=10 , __a : int=0.02 , __a : Tuple=3 , ) -> Optional[int]: """simple docstring""" __lowercase : Optional[Any] = parent __lowercase : Union[str, Any] = vocab_size __lowercase : str = batch_size __lowercase : Optional[Any] = image_size __lowercase : Dict = patch_size __lowercase : Any = num_channels __lowercase : List[Any] = is_training __lowercase : Tuple = use_labels __lowercase : Optional[Any] = hidden_size __lowercase : str = num_hidden_layers __lowercase : Optional[Any] = num_attention_heads __lowercase : Union[str, Any] = intermediate_size __lowercase : int = hidden_act __lowercase : Optional[int] = hidden_dropout_prob __lowercase : Optional[Any] = attention_probs_dropout_prob __lowercase : Optional[Any] = type_sequence_label_size __lowercase : Any = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase : Dict = (image_size // patch_size) ** 2 __lowercase : Any = num_patches + 1 def lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" __lowercase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : Optional[Any] = None if self.use_labels: __lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : str = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , ) return config, pixel_values, labels def lowerCAmelCase ( self : Optional[int] , __a : str , __a : str , __a : List[str] ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = FlaxBeitModel(config=A_ ) __lowercase : str = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : List[str] , __a : Any , __a : Any , __a : str ) -> str: """simple docstring""" __lowercase : str = FlaxBeitForMaskedImageModeling(config=A_ ) __lowercase : List[str] = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def lowerCAmelCase ( self : str , __a : List[Any] , __a : Optional[int] , __a : List[str] ) -> str: """simple docstring""" __lowercase : List[Any] = self.type_sequence_label_size __lowercase : Dict = FlaxBeitForImageClassification(config=A_ ) __lowercase : Union[str, Any] = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase : Optional[int] = 1 __lowercase : List[Any] = FlaxBeitForImageClassification(A_ ) __lowercase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase : Optional[Any] = model(A_ ) def lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" __lowercase : List[Any] = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : List[str] = config_and_inputs __lowercase : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class lowerCAmelCase ( _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' _A : Dict = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def lowerCAmelCase ( self : List[Any] ) -> None: """simple docstring""" __lowercase : Tuple = FlaxBeitModelTester(self ) __lowercase : Any = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Tuple = model_class(A_ ) __lowercase : Dict = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : Tuple = [*signature.parameters.keys()] __lowercase : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A_ ) def lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" __lowercase , __lowercase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowercase : List[str] = self._prepare_for_class(A_ , A_ ) __lowercase : Union[str, Any] = model_class(A_ ) @jax.jit def model_jitted(__a : Union[str, Any] , **__a : Union[str, Any] ): return model(pixel_values=A_ , **A_ ) with self.subTest("""JIT Enabled""" ): __lowercase : Any = model_jitted(**A_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __lowercase : Optional[Any] = model_jitted(**A_ ).to_tuple() self.assertEqual(len(A_ ) , len(A_ ) ) for jitted_output, output in zip(A_ , A_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def lowerCAmelCase ( self : str ) -> int: """simple docstring""" __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @slow def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" for model_class_name in self.all_model_classes: __lowercase : Optional[Any] = model_class_name.from_pretrained("""microsoft/beit-base-patch16-224""" ) __lowercase : str = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(A_ ) def snake_case_ ( ): __lowercase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @require_flax class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase ( self : str ) -> str: """simple docstring""" return BeitImageProcessor.from_pretrained("""microsoft/beit-base-patch16-224""" ) if is_vision_available() else None @slow def lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase : List[str] = FlaxBeitForMaskedImageModeling.from_pretrained("""microsoft/beit-base-patch16-224-pt22k""" ) __lowercase : List[Any] = self.default_image_processor __lowercase : List[Any] = prepare_img() __lowercase : List[str] = image_processor(images=A_ , return_tensors="""np""" ).pixel_values # prepare bool_masked_pos __lowercase : List[str] = np.ones((1, 196) , dtype=A_ ) # forward pass __lowercase : Tuple = model(pixel_values=A_ , bool_masked_pos=A_ ) __lowercase : int = outputs.logits # verify the logits __lowercase : Tuple = (1, 196, 8192) self.assertEqual(logits.shape , A_ ) __lowercase : Tuple = np.array( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , A_ , atol=1E-2 ) ) @slow def lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase : Dict = FlaxBeitForImageClassification.from_pretrained("""microsoft/beit-base-patch16-224""" ) __lowercase : Optional[Any] = self.default_image_processor __lowercase : Union[str, Any] = prepare_img() __lowercase : Optional[Any] = image_processor(images=A_ , return_tensors="""np""" ) # forward pass __lowercase : Dict = model(**A_ ) __lowercase : List[str] = outputs.logits # verify the logits __lowercase : Dict = (1, 1000) self.assertEqual(logits.shape , A_ ) __lowercase : int = np.array([-1.2385, -1.0987, -1.0108] ) self.assertTrue(np.allclose(logits[0, :3] , A_ , atol=1E-4 ) ) __lowercase : Dict = 281 self.assertEqual(logits.argmax(-1 ).item() , A_ ) @slow def lowerCAmelCase ( self : int ) -> str: """simple docstring""" __lowercase : Tuple = FlaxBeitForImageClassification.from_pretrained("""microsoft/beit-large-patch16-224-pt22k-ft22k""" ) __lowercase : Any = self.default_image_processor __lowercase : Any = prepare_img() __lowercase : int = image_processor(images=A_ , return_tensors="""np""" ) # forward pass __lowercase : Any = model(**A_ ) __lowercase : List[Any] = outputs.logits # verify the logits __lowercase : Optional[Any] = (1, 21841) self.assertEqual(logits.shape , A_ ) __lowercase : int = np.array([1.6881, -0.2787, 0.5901] ) self.assertTrue(np.allclose(logits[0, :3] , A_ , atol=1E-4 ) ) __lowercase : Dict = 2396 self.assertEqual(logits.argmax(-1 ).item() , A_ )
705
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : int , *__a : Dict , **__a : Optional[Any] ) -> None: """simple docstring""" warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , __a , ) super().__init__(*__a , **__a )
649
0
import collections import importlib.util import os import re from pathlib import Path lowerCamelCase : Optional[int] = 'src/transformers' # Matches is_xxx_available() lowerCamelCase : Dict = re.compile(r'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} lowerCamelCase : Optional[Any] = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowerCamelCase : int = re.compile(r'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available lowerCamelCase : Tuple = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") lowerCamelCase : Optional[int] = re.compile(r'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowerCamelCase : Any = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", lowerCamelCase : Union[str, Any] = re.compile('''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], lowerCamelCase : Union[str, Any] = re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo lowerCamelCase : Any = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: lowerCamelCase : Any = re.compile(r'''^\s*try:''') # Catches a line with else: lowerCamelCase : List[str] = re.compile(r'''^\s*else:''') def snake_case_ ( lowerCAmelCase_ : List[Any] ): if _re_test_backend.search(_lowerCamelCase ) is None: return None __lowercase : str = [b[0] for b in _re_backend.findall(_lowerCamelCase )] backends.sort() return "_and_".join(_lowerCamelCase ) def snake_case_ ( lowerCAmelCase_ : int ): with open(_lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __lowercase : List[Any] = f.readlines() __lowercase : Any = 0 while line_index < len(_lowerCamelCase ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_lowerCamelCase ): return None # First grab the objects without a specific backend in _import_structure __lowercase : Tuple = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: __lowercase : List[Any] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_lowerCamelCase ): __lowercase : List[Any] = _re_one_line_import_struct.search(_lowerCamelCase ).groups()[0] __lowercase : int = re.findall("""\[([^\]]+)\]""" , _lowerCamelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue __lowercase : Any = _re_import_struct_key_value.search(_lowerCamelCase ) if single_line_import_search is not None: __lowercase : List[Any] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(_lowerCamelCase ) > 0] objects.extend(_lowerCamelCase ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 __lowercase : int = {"none": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. __lowercase : Optional[Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowercase : Any = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowercase : List[str] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): __lowercase : Any = lines[line_index] if _re_import_struct_add_one.search(_lowerCamelCase ) is not None: objects.append(_re_import_struct_add_one.search(_lowerCamelCase ).groups()[0] ) elif _re_import_struct_add_many.search(_lowerCamelCase ) is not None: __lowercase : Tuple = _re_import_struct_add_many.search(_lowerCamelCase ).groups()[0].split(""", """ ) __lowercase : Tuple = [obj[1:-1] for obj in imports if len(_lowerCamelCase ) > 0] objects.extend(_lowerCamelCase ) elif _re_between_brackets.search(_lowerCamelCase ) is not None: __lowercase : int = _re_between_brackets.search(_lowerCamelCase ).groups()[0].split(""", """ ) __lowercase : List[Any] = [obj[1:-1] for obj in imports if len(_lowerCamelCase ) > 0] objects.extend(_lowerCamelCase ) elif _re_quote_object.search(_lowerCamelCase ) is not None: objects.append(_re_quote_object.search(_lowerCamelCase ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 __lowercase : List[str] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend __lowercase : str = [] while ( line_index < len(_lowerCamelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): __lowercase : Union[str, Any] = lines[line_index] __lowercase : List[str] = _re_import.search(_lowerCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 __lowercase : List[Any] = {"none": objects} # Let's continue with backend-specific objects while line_index < len(_lowerCamelCase ): # If the line is an if is_backend_available, we grab all objects associated. __lowercase : List[str] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowercase : Union[str, Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowercase : Tuple = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): __lowercase : Optional[Any] = lines[line_index] __lowercase : Dict = _re_import.search(_lowerCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 __lowercase : Any = objects else: line_index += 1 return import_dict_objects, type_hint_objects def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] ): def find_duplicates(lowerCAmelCase_ : Optional[Any] ): return [k for k, v in collections.Counter(_lowerCamelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] __lowercase : Union[str, Any] = [] for key in import_dict_objects.keys(): __lowercase : int = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"Duplicate _import_structure definitions for: {duplicate_imports}" ) __lowercase : int = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): __lowercase : Optional[int] = "base imports" if key == "none" else F"{key} backend" errors.append(F"Differences for {name}:" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F" {a} in TYPE_HINT but not in _import_structure." ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F" {a} in _import_structure but not in TYPE_HINT." ) return errors def snake_case_ ( ): __lowercase : int = [] for root, _, files in os.walk(_lowerCamelCase ): if "__init__.py" in files: __lowercase : Optional[int] = os.path.join(_lowerCamelCase , """__init__.py""" ) __lowercase : Optional[int] = parse_init(_lowerCamelCase ) if objects is not None: __lowercase : Tuple = analyze_results(*_lowerCamelCase ) if len(_lowerCamelCase ) > 0: __lowercase : Dict = F"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}" failures.append("""\n""".join(_lowerCamelCase ) ) if len(_lowerCamelCase ) > 0: raise ValueError("""\n\n""".join(_lowerCamelCase ) ) def snake_case_ ( ): __lowercase : Optional[int] = [] for path, directories, files in os.walk(_lowerCamelCase ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(_lowerCamelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_lowerCamelCase ) / folder).glob("""*.py""" ) ) ) == 0: continue __lowercase : Optional[int] = str((Path(_lowerCamelCase ) / folder).relative_to(_lowerCamelCase ) ) __lowercase : str = short_path.replace(os.path.sep , """.""" ) submodules.append(_lowerCamelCase ) for fname in files: if fname == "__init__.py": continue __lowercase : Optional[int] = str((Path(_lowerCamelCase ) / fname).relative_to(_lowerCamelCase ) ) __lowercase : str = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(_lowerCamelCase ) return submodules lowerCamelCase : Any = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', ] def snake_case_ ( ): __lowercase : List[Any] = importlib.util.spec_from_file_location( """transformers""" , os.path.join(_lowerCamelCase , """__init__.py""" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) __lowercase : Optional[int] = spec.loader.load_module() __lowercase : Tuple = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(_lowerCamelCase ) > 0: __lowercase : str = "\n".join(F"- {module}" for module in module_not_registered ) raise ValueError( """The following submodules are not properly registered in the main init of Transformers:\n""" F"{list_of_modules}\n" """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
706
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Optional[int] = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() __lowercase : List[str] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Dict = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } __lowercase : List[str] = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 16000, """return_attention_mask""": False, """do_normalize""": True, } __lowercase : Tuple = tempfile.mkdtemp() __lowercase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : str = os.path.join(self.tmpdirname , __a ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) # load decoder from hub __lowercase : Optional[int] = """hf-internal-testing/ngram-beam-search-decoder""" def lowerCAmelCase ( self : Optional[Any] , **__a : Dict ) -> Tuple: """simple docstring""" __lowercase : Union[str, Any] = self.add_kwargs_tokens_map.copy() kwargs.update(__a ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : str , **__a : int ) -> Tuple: """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Union[str, Any] , **__a : Union[str, Any] ) -> List[Any]: """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__a ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() __lowercase : Any = self.get_feature_extractor() __lowercase : str = self.get_decoder() __lowercase : Tuple = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) processor.save_pretrained(self.tmpdirname ) __lowercase : Tuple = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __a ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __a ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __a ) def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Any = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __lowercase : str = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : List[str] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(__a , """include""" ): WavaVecaProcessorWithLM( tokenizer=__a , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : List[Any] = self.get_feature_extractor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : int = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Optional[int] = floats_list((3, 1000) ) __lowercase : List[Any] = feature_extractor(__a , return_tensors="""np""" ) __lowercase : List[str] = processor(__a , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : List[Any] = self.get_feature_extractor() __lowercase : int = self.get_tokenizer() __lowercase : Dict = self.get_decoder() __lowercase : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Dict = """This is a test string""" __lowercase : Any = processor(text=__a ) __lowercase : Dict = tokenizer(__a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase ( self : str , __a : Tuple=(2, 10, 16) , __a : int=77 ) -> Optional[Any]: """simple docstring""" np.random.seed(__a ) return np.random.rand(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : List[str] = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : str = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : List[str] = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __lowercase : Optional[Any] = processor.decode(__a ) __lowercase : Any = decoder.decode_beams(__a )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def lowerCAmelCase ( self : List[str] , __a : Dict ) -> List[Any]: """simple docstring""" __lowercase : str = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : Optional[int] = self.get_decoder() __lowercase : Any = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Optional[Any] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __lowercase : Union[str, Any] = processor.batch_decode(__a ) else: with get_context(__a ).Pool() as pool: __lowercase : Optional[Any] = processor.batch_decode(__a , __a ) __lowercase : Union[str, Any] = list(__a ) with get_context("""fork""" ).Pool() as p: __lowercase : Optional[Any] = decoder.decode_beams_batch(__a , __a ) __lowercase , __lowercase , __lowercase : Any = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__a , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(__a , decoded_processor.logit_score ) self.assertListEqual(__a , decoded_processor.lm_score ) def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase : int = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : List[str] = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Dict = self._get_dummy_logits() __lowercase : Tuple = 15 __lowercase : Tuple = -20.0 __lowercase : Dict = -4.0 __lowercase : Dict = processor.batch_decode( __a , beam_width=__a , beam_prune_logp=__a , token_min_logp=__a , ) __lowercase : Tuple = decoded_processor_out.text __lowercase : List[Any] = list(__a ) with get_context("""fork""" ).Pool() as pool: __lowercase : Any = decoder.decode_beams_batch( __a , __a , beam_width=__a , beam_prune_logp=__a , token_min_logp=__a , ) __lowercase : Optional[Any] = [d[0][0] for d in decoded_decoder_out] __lowercase : Optional[int] = [d[0][2] for d in decoded_decoder_out] __lowercase : Optional[int] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__a , __a ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , __a ) self.assertTrue(np.array_equal(__a , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , __a , atol=1E-3 ) ) self.assertTrue(np.array_equal(__a , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , __a , atol=1E-3 ) ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase : str = self.get_feature_extractor() __lowercase : List[Any] = self.get_tokenizer() __lowercase : List[Any] = self.get_decoder() __lowercase : Dict = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : List[Any] = self._get_dummy_logits() __lowercase : Optional[int] = 2.0 __lowercase : Tuple = 5.0 __lowercase : Optional[Any] = -20.0 __lowercase : Tuple = True __lowercase : Union[str, Any] = processor.batch_decode( __a , alpha=__a , beta=__a , unk_score_offset=__a , lm_score_boundary=__a , ) __lowercase : Any = decoded_processor_out.text __lowercase : List[Any] = list(__a ) decoder.reset_params( alpha=__a , beta=__a , unk_score_offset=__a , lm_score_boundary=__a , ) with get_context("""fork""" ).Pool() as pool: __lowercase : Tuple = decoder.decode_beams_batch( __a , __a , ) __lowercase : int = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__a , __a ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , __a ) __lowercase : str = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , __a ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] __lowercase : str = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __lowercase : int = os.listdir(__a ) __lowercase : Optional[Any] = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = snapshot_download("""hf-internal-testing/processor_with_lm""" ) __lowercase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(__a ) __lowercase : Dict = processor.decoder.model_container[processor.decoder._model_key] __lowercase : List[Any] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __lowercase : Dict = os.listdir(__a ) __lowercase : List[Any] = os.listdir(__a ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" __lowercase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Dict = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Any = floats_list((3, 1000) ) __lowercase : List[str] = processor_wavaveca(__a , return_tensors="""np""" ) __lowercase : List[Any] = processor_auto(__a , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) __lowercase : List[str] = self._get_dummy_logits() __lowercase : List[str] = processor_wavaveca.batch_decode(__a ) __lowercase : Optional[int] = processor_auto.batch_decode(__a ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Any = self.get_feature_extractor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : Dict = self.get_decoder() __lowercase : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def lowerCAmelCase ( __a : Union[str, Any] , __a : List[Any] ) -> Dict: """simple docstring""" __lowercase : Any = [d[key] for d in offsets] return retrieved_list def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" __lowercase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Optional[Any] = self._get_dummy_logits()[0] __lowercase : Dict = processor.decode(__a , output_word_offsets=__a ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__a , __a ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : List[str] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Any = self._get_dummy_logits() __lowercase : Dict = processor.batch_decode(__a , output_word_offsets=__a ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__a , __a ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(__a , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" import torch __lowercase : Any = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=__a ) __lowercase : str = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=16000 ) ) __lowercase : Tuple = iter(__a ) __lowercase : Union[str, Any] = next(__a ) __lowercase : int = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) __lowercase : int = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __lowercase : Union[str, Any] = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): __lowercase : List[Any] = model(__a ).logits.cpu().numpy() __lowercase : Tuple = processor.decode(logits[0] , output_word_offsets=__a ) __lowercase : int = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __lowercase : Optional[Any] = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] __lowercase : str = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(__a , """word""" ) ) , __a ) self.assertEqual(""" """.join(self.get_from_offsets(__a , """word""" ) ) , output.text ) # output times __lowercase : Tuple = torch.tensor(self.get_from_offsets(__a , """start_time""" ) ) __lowercase : Dict = torch.tensor(self.get_from_offsets(__a , """end_time""" ) ) # fmt: off __lowercase : List[Any] = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) __lowercase : Optional[int] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(__a , __a , atol=0.01 ) ) self.assertTrue(torch.allclose(__a , __a , atol=0.01 ) )
649
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase : Union[str, Any] = { "configuration_efficientformer": [ "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientFormerConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[Any] = ["EfficientFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientFormerForImageClassification", "EfficientFormerForImageClassificationWithTeacher", "EfficientFormerModel", "EfficientFormerPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFEfficientFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
707
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(0 ) == 0 ) def snake_case_ ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
649
0
from typing import List from .keymap import KEYMAP, get_character def snake_case_ ( lowerCAmelCase_ : str ): def decorator(lowerCAmelCase_ : Dict ): __lowercase : Optional[Any] = getattr(lowerCAmelCase_ , """handle_key""" , [] ) handle += [key] setattr(lowerCAmelCase_ , """handle_key""" , lowerCAmelCase_ ) return func return decorator def snake_case_ ( *lowerCAmelCase_ : List[str] ): def decorator(lowerCAmelCase_ : int ): __lowercase : str = getattr(lowerCAmelCase_ , """handle_key""" , [] ) handle += keys setattr(lowerCAmelCase_ , """handle_key""" , lowerCAmelCase_ ) return func return decorator class lowerCAmelCase ( A_ ): '''simple docstring''' def __new__( cls : Any , __a : List[str] , __a : List[Any] , __a : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : int = super().__new__(cls , __a , __a , __a ) if not hasattr(__a , """key_handler""" ): setattr(__a , """key_handler""" , {} ) setattr(__a , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): __lowercase : int = getattr(__a , """handle_key""" , [] ) for key in handled_keys: __lowercase : Dict = value return new_cls @staticmethod def lowerCAmelCase ( cls : List[Any] ) -> List[Any]: """simple docstring""" __lowercase : int = get_character() if char != KEYMAP["undefined"]: __lowercase : List[str] = ord(__a ) __lowercase : Dict = cls.key_handler.get(__a ) if handler: __lowercase : Union[str, Any] = char return handler(cls ) else: return None def snake_case_ ( cls : List[str] ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
708
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCamelCase : int = '''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine''' def snake_case_ ( ): __lowercase : List[Any] = _ask_options( """In which compute environment are you running?""" , ["""This machine""", """AWS (Amazon SageMaker)"""] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __lowercase : Union[str, Any] = get_sagemaker_input() else: __lowercase : str = get_cluster_input() return config def snake_case_ ( lowerCAmelCase_ : List[str]=None ): if subparsers is not None: __lowercase : Optional[int] = subparsers.add_parser("""config""" , description=lowerCAmelCase_ ) else: __lowercase : List[str] = argparse.ArgumentParser("""Accelerate config command""" , description=lowerCAmelCase_ ) parser.add_argument( """--config_file""" , default=lowerCAmelCase_ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def snake_case_ ( lowerCAmelCase_ : Tuple ): __lowercase : Union[str, Any] = get_user_input() if args.config_file is not None: __lowercase : List[Any] = args.config_file else: if not os.path.isdir(lowerCAmelCase_ ): os.makedirs(lowerCAmelCase_ ) __lowercase : Any = default_yaml_config_file if config_file.endswith(""".json""" ): config.to_json_file(lowerCAmelCase_ ) else: config.to_yaml_file(lowerCAmelCase_ ) print(F"accelerate configuration saved at {config_file}" ) def snake_case_ ( ): __lowercase : str = config_command_parser() __lowercase : str = parser.parse_args() config_command(lowerCAmelCase_ ) if __name__ == "__main__": main()
649
0
def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Dict = len(lowerCAmelCase__ ) __lowercase : List[Any] = len(lowerCAmelCase__ ) __lowercase : str = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __lowercase : Optional[Any] = True for i in range(lowerCAmelCase__ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __lowercase : Union[str, Any] = True if a[i].islower(): __lowercase : str = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
709
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : list[str] | None = None ): __lowercase : Tuple = word_bank or [] # create a table __lowercase : int = len(lowerCAmelCase_ ) + 1 __lowercase : list[list[list[str]]] = [] for _ in range(lowerCAmelCase_ ): table.append([] ) # seed value __lowercase : Dict = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowerCAmelCase_ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowerCAmelCase_ )] == word: __lowercase : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowerCAmelCase_ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowerCAmelCase_ )]: combination.reverse() return table[len(lowerCAmelCase_ )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
649
0
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowerCamelCase : List[str] = '''platform''' import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Dict=None , ): if attention_mask is None: __lowercase : Union[str, Any] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: __lowercase : str = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: __lowercase : int = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __lowercase : Optional[int] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __lowercase : Any = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class lowerCAmelCase : '''simple docstring''' def __init__( self : Any , __a : int , __a : List[Any]=13 , __a : int=7 , __a : Dict=True , __a : List[str]=False , __a : Tuple=99 , __a : str=16 , __a : Optional[Any]=2 , __a : int=4 , __a : Dict=4 , __a : Optional[Any]="gelu" , __a : List[str]=0.1 , __a : Optional[Any]=0.1 , __a : Tuple=32 , __a : List[Any]=2 , __a : Tuple=1 , __a : Optional[int]=0 , __a : Dict=0.02 , ) -> Optional[Any]: """simple docstring""" __lowercase : List[Any] = parent __lowercase : int = batch_size __lowercase : Dict = seq_length __lowercase : Dict = is_training __lowercase : List[Any] = use_labels __lowercase : str = vocab_size __lowercase : Optional[int] = hidden_size __lowercase : Optional[Any] = num_hidden_layers __lowercase : Tuple = num_attention_heads __lowercase : str = intermediate_size __lowercase : Union[str, Any] = hidden_act __lowercase : Any = hidden_dropout_prob __lowercase : List[Any] = attention_probs_dropout_prob __lowercase : List[Any] = max_position_embeddings __lowercase : Dict = eos_token_id __lowercase : Any = pad_token_id __lowercase : Dict = bos_token_id __lowercase : Optional[Any] = initializer_range def lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" __lowercase : Optional[int] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) __lowercase : Dict = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) __lowercase : int = shift_tokens_right(lowerCamelCase_ , 1 , 2 ) __lowercase : List[Any] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowerCamelCase_ , ) __lowercase : Optional[int] = prepare_blenderbot_inputs_dict(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return config, inputs_dict def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Tuple = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase ( self : Optional[int] , __a : str , __a : Optional[Any] , __a : int ) -> List[str]: """simple docstring""" __lowercase : Dict = 20 __lowercase : Dict = model_class_name(lowerCamelCase_ ) __lowercase : Dict = model.encode(inputs_dict["""input_ids"""] ) __lowercase , __lowercase : int = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) __lowercase : Union[str, Any] = model.init_cache(decoder_input_ids.shape[0] , lowerCamelCase_ , lowerCamelCase_ ) __lowercase : int = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) __lowercase : Any = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __lowercase : List[Any] = model.decode( decoder_input_ids[:, :-1] , lowerCamelCase_ , decoder_attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , decoder_position_ids=lowerCamelCase_ , ) __lowercase : Dict = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) __lowercase : Optional[Any] = model.decode( decoder_input_ids[:, -1:] , lowerCamelCase_ , decoder_attention_mask=lowerCamelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCamelCase_ , ) __lowercase : Optional[int] = model.decode(lowerCamelCase_ , lowerCamelCase_ ) __lowercase : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"Max diff is {diff}" ) def lowerCAmelCase ( self : List[Any] , __a : List[Any] , __a : Tuple , __a : int ) -> List[str]: """simple docstring""" __lowercase : int = 20 __lowercase : Any = model_class_name(lowerCamelCase_ ) __lowercase : Optional[int] = model.encode(inputs_dict["""input_ids"""] ) __lowercase , __lowercase : Union[str, Any] = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) __lowercase : Tuple = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __lowercase : Any = model.init_cache(decoder_input_ids.shape[0] , lowerCamelCase_ , lowerCamelCase_ ) __lowercase : Optional[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __lowercase : Union[str, Any] = model.decode( decoder_input_ids[:, :-1] , lowerCamelCase_ , decoder_attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , decoder_position_ids=lowerCamelCase_ , ) __lowercase : Tuple = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) __lowercase : List[Any] = model.decode( decoder_input_ids[:, -1:] , lowerCamelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCamelCase_ , decoder_position_ids=lowerCamelCase_ , ) __lowercase : int = model.decode(lowerCamelCase_ , lowerCamelCase_ , decoder_attention_mask=lowerCamelCase_ ) __lowercase : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"Max diff is {diff}" ) @require_flax class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' _A : int = 99 def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) __lowercase : List[Any] = input_ids.shape[0] __lowercase : Any = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" __lowercase , __lowercase , __lowercase : int = self._get_config_and_data() __lowercase : Dict = FlaxBlenderbotSmallForConditionalGeneration(lowerCamelCase_ ) __lowercase : str = lm_model(input_ids=lowerCamelCase_ ) __lowercase : Tuple = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape , lowerCamelCase_ ) def lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase : Dict = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) __lowercase : List[str] = FlaxBlenderbotSmallForConditionalGeneration(lowerCamelCase_ ) __lowercase : int = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) __lowercase : Optional[int] = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) __lowercase : Optional[Any] = lm_model(input_ids=lowerCamelCase_ , decoder_input_ids=lowerCamelCase_ ) __lowercase : List[str] = (*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape , lowerCamelCase_ ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase : Optional[int] = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) __lowercase : Optional[int] = shift_tokens_right(lowerCamelCase_ , 1 , 2 ) __lowercase : Optional[Any] = np.equal(lowerCamelCase_ , 1 ).astype(np.floataa ).sum() __lowercase : Union[str, Any] = np.equal(lowerCamelCase_ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(lowerCamelCase_ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class lowerCAmelCase ( a__ , unittest.TestCase , a__ ): '''simple docstring''' _A : Optional[int] = True _A : Tuple = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) _A : List[Any] = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" __lowercase : Any = FlaxBlenderbotSmallModelTester(self ) def lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" __lowercase , __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" __lowercase , __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" __lowercase , __lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowercase : List[str] = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) __lowercase : Dict = model_class(lowerCamelCase_ ) @jax.jit def encode_jitted(__a : Tuple , __a : int=None , **__a : List[Any] ): return model.encode(input_ids=lowerCamelCase_ , attention_mask=lowerCamelCase_ ) with self.subTest("""JIT Enabled""" ): __lowercase : Any = encode_jitted(**lowerCamelCase_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __lowercase : int = encode_jitted(**lowerCamelCase_ ).to_tuple() self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) ) for jitted_output, output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowercase : List[Any] = model_class(lowerCamelCase_ ) __lowercase : Union[str, Any] = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) __lowercase : Tuple = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(__a : Tuple , __a : int , __a : Any ): return model.decode( decoder_input_ids=lowerCamelCase_ , decoder_attention_mask=lowerCamelCase_ , encoder_outputs=lowerCamelCase_ , ) with self.subTest("""JIT Enabled""" ): __lowercase : Any = decode_jitted(**lowerCamelCase_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __lowercase : Tuple = decode_jitted(**lowerCamelCase_ ).to_tuple() self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) ) for jitted_output, output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" for model_class_name in self.all_model_classes: __lowercase : Dict = model_class_name.from_pretrained("""facebook/blenderbot_small-90M""" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids __lowercase : Optional[int] = np.ones((1, 1) ) * model.config.eos_token_id __lowercase : Optional[Any] = model(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ )
710
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(1 ) != 0 ) def snake_case_ ( ): assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
649
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase : Union[str, Any] = { '''configuration_swinv2''': ['''SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Swinv2Config'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = [ '''SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Swinv2ForImageClassification''', '''Swinv2ForMaskedImageModeling''', '''Swinv2Model''', '''Swinv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys lowerCamelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
711
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : int = { '''configuration_funnel''': ['''FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FunnelConfig'''], '''convert_funnel_original_tf_checkpoint_to_pytorch''': [], '''tokenization_funnel''': ['''FunnelTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = ['''FunnelTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = [ '''FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FunnelBaseModel''', '''FunnelForMaskedLM''', '''FunnelForMultipleChoice''', '''FunnelForPreTraining''', '''FunnelForQuestionAnswering''', '''FunnelForSequenceClassification''', '''FunnelForTokenClassification''', '''FunnelModel''', '''FunnelPreTrainedModel''', '''load_tf_weights_in_funnel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ '''TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFFunnelBaseModel''', '''TFFunnelForMaskedLM''', '''TFFunnelForMultipleChoice''', '''TFFunnelForPreTraining''', '''TFFunnelForQuestionAnswering''', '''TFFunnelForSequenceClassification''', '''TFFunnelForTokenClassification''', '''TFFunnelModel''', '''TFFunnelPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
649
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[int] , __a : Tuple , ) -> int: """simple docstring""" __lowercase : List[Any] = parent __lowercase : Union[str, Any] = 13 __lowercase : Optional[Any] = 7 __lowercase : Any = True __lowercase : Tuple = True __lowercase : List[str] = True __lowercase : Optional[int] = True __lowercase : Optional[Any] = True __lowercase : Any = False __lowercase : List[str] = False __lowercase : Tuple = False __lowercase : Any = 2 __lowercase : Any = 99 __lowercase : Optional[int] = 0 __lowercase : int = 32 __lowercase : Any = 2 __lowercase : Optional[int] = 4 __lowercase : List[str] = 0.1 __lowercase : Union[str, Any] = 0.1 __lowercase : Optional[Any] = 512 __lowercase : str = 16 __lowercase : List[Any] = 2 __lowercase : List[str] = 0.02 __lowercase : Tuple = 3 __lowercase : Optional[Any] = 4 __lowercase : Tuple = """last""" __lowercase : str = True __lowercase : List[str] = None __lowercase : Optional[Any] = 0 def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : int = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) __lowercase : List[Any] = None if self.use_input_lengths: __lowercase : Tuple = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __lowercase : Optional[int] = None if self.use_token_type_ids: __lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __lowercase : Tuple = None __lowercase : List[Any] = None __lowercase : Any = None if self.use_labels: __lowercase : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : Dict = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) __lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : List[Any] = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowerCAmelCase ( self : List[str] , __a : Optional[int] , __a : Optional[Any] , __a : Any , __a : Union[str, Any] , __a : Union[str, Any] , __a : Optional[int] , __a : Dict , __a : str , __a : Union[str, Any] , ) -> str: """simple docstring""" __lowercase : List[str] = TFFlaubertModel(config=lowerCAmelCase_ ) __lowercase : str = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} __lowercase : Dict = model(lowerCAmelCase_ ) __lowercase : Dict = [input_ids, input_mask] __lowercase : List[Any] = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Optional[int] , __a : List[Any] , __a : Tuple , __a : List[str] , __a : List[Any] , __a : List[str] , __a : str , __a : Optional[Any] , __a : Dict , __a : str , ) -> Optional[Any]: """simple docstring""" __lowercase : List[Any] = TFFlaubertWithLMHeadModel(lowerCAmelCase_ ) __lowercase : str = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} __lowercase : List[str] = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[Any] , __a : Optional[int] , __a : List[str] , __a : List[Any] , __a : Union[str, Any] , __a : Optional[Any] , __a : Optional[int] , __a : Union[str, Any] , __a : Optional[int] , __a : Any , ) -> List[Any]: """simple docstring""" __lowercase : Optional[int] = TFFlaubertForQuestionAnsweringSimple(lowerCAmelCase_ ) __lowercase : List[str] = {"""input_ids""": input_ids, """lengths""": input_lengths} __lowercase : Any = model(lowerCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : str , __a : List[str] , __a : Optional[Any] , __a : str , __a : List[Any] , __a : Union[str, Any] , __a : Dict , __a : int , __a : Any , __a : str , ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = TFFlaubertForSequenceClassification(lowerCAmelCase_ ) __lowercase : Any = {"""input_ids""": input_ids, """lengths""": input_lengths} __lowercase : List[Any] = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase ( self : Any , __a : int , __a : str , __a : List[str] , __a : Optional[Any] , __a : Optional[Any] , __a : int , __a : Union[str, Any] , __a : int , __a : Tuple , ) -> List[str]: """simple docstring""" __lowercase : List[Any] = self.num_labels __lowercase : str = TFFlaubertForTokenClassification(config=lowerCAmelCase_ ) __lowercase : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowercase : Optional[Any] = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Optional[int] , __a : str , __a : Optional[Any] , __a : int , __a : Any , __a : Union[str, Any] , __a : int , __a : int , __a : int , __a : int , ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = self.num_choices __lowercase : str = TFFlaubertForMultipleChoice(config=lowerCAmelCase_ ) __lowercase : Union[str, Any] = tf.tile(tf.expand_dims(lowerCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) __lowercase : List[Any] = tf.tile(tf.expand_dims(lowerCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) __lowercase : str = tf.tile(tf.expand_dims(lowerCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) __lowercase : Tuple = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __lowercase : Dict = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : List[Any] = config_and_inputs __lowercase : Tuple = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """langs""": token_type_ids, """lengths""": input_lengths, } return config, inputs_dict @require_tf class lowerCAmelCase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): '''simple docstring''' _A : Union[str, Any] = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) _A : List[str] = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _A : Union[str, Any] = ( { '''feature-extraction''': TFFlaubertModel, '''fill-mask''': TFFlaubertWithLMHeadModel, '''question-answering''': TFFlaubertForQuestionAnsweringSimple, '''text-classification''': TFFlaubertForSequenceClassification, '''token-classification''': TFFlaubertForTokenClassification, '''zero-shot''': TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) _A : Union[str, Any] = False _A : Union[str, Any] = False def lowerCAmelCase ( self : Optional[int] , __a : List[str] , __a : Union[str, Any] , __a : str , __a : Any , __a : Any ) -> Union[str, Any]: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = TFFlaubertModelTester(self ) __lowercase : int = ConfigTester(self , config_class=lowerCAmelCase_ , emb_dim=37 ) def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" __lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowerCAmelCase_ ) def lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowerCAmelCase_ ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowerCAmelCase_ ) def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowerCAmelCase_ ) def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*lowerCAmelCase_ ) def lowerCAmelCase ( self : int ) -> str: """simple docstring""" __lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*lowerCAmelCase_ ) @slow def lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : Any = TFFlaubertModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Any = TFFlaubertModel.from_pretrained("""jplu/tf-flaubert-small-cased""" ) __lowercase : Any = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" __lowercase : int = model(lowerCAmelCase_ )[0] __lowercase : Tuple = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , lowerCAmelCase_ ) # compare the actual values for a slice. __lowercase : int = tf.convert_to_tensor( [ [ [-1.8768773, -1.566555, 0.27072418], [-1.6920038, -0.5873505, 1.9329599], [-2.9563985, -1.6993835, 1.7972052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
712
import logging import os import threading import time try: import warnings except ImportError: lowerCamelCase : Any = None try: import msvcrt except ImportError: lowerCamelCase : str = None try: import fcntl except ImportError: lowerCamelCase : Optional[Any] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: lowerCamelCase : Union[str, Any] = OSError # Data # ------------------------------------------------ lowerCamelCase : Tuple = [ '''Timeout''', '''BaseFileLock''', '''WindowsFileLock''', '''UnixFileLock''', '''SoftFileLock''', '''FileLock''', ] lowerCamelCase : Tuple = '''3.0.12''' lowerCamelCase : Any = None def snake_case_ ( ): global _logger __lowercase : List[str] = _logger or logging.getLogger(__name__ ) return _logger class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Any , __a : Any ) -> List[Any]: """simple docstring""" __lowercase : List[str] = lock_file return None def __str__( self : str ) -> Any: """simple docstring""" __lowercase : Any = F"The file lock '{self.lock_file}' could not be acquired." return temp class lowerCAmelCase : '''simple docstring''' def __init__( self : List[Any] , __a : Optional[int] ) -> int: """simple docstring""" __lowercase : Optional[Any] = lock return None def __enter__( self : Dict ) -> Dict: """simple docstring""" return self.lock def __exit__( self : Optional[int] , __a : Dict , __a : Any , __a : Tuple ) -> Optional[Any]: """simple docstring""" self.lock.release() return None class lowerCAmelCase : '''simple docstring''' def __init__( self : Tuple , __a : Any , __a : Dict=-1 , __a : Optional[Any]=None ) -> Any: """simple docstring""" __lowercase : Optional[int] = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long __lowercase : Dict = self.hash_filename_if_too_long(__a , __a ) # The path to the lock file. __lowercase : Optional[Any] = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __lowercase : int = None # The default timeout value. __lowercase : Optional[int] = timeout # We use this lock primarily for the lock counter. __lowercase : Optional[Any] = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __lowercase : Union[str, Any] = 0 return None @property def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return self._lock_file @property def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return self._timeout @timeout.setter def lowerCAmelCase ( self : Tuple , __a : Tuple ) -> Dict: """simple docstring""" __lowercase : Tuple = float(__a ) return None def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" raise NotImplementedError() def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" raise NotImplementedError() @property def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" return self._lock_file_fd is not None def lowerCAmelCase ( self : Any , __a : Optional[Any]=None , __a : Union[str, Any]=0.05 ) -> List[str]: """simple docstring""" if timeout is None: __lowercase : Union[str, Any] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __lowercase : int = id(self ) __lowercase : Optional[Any] = self._lock_file __lowercase : List[str] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"Attempting to acquire lock {lock_id} on {lock_filename}" ) self._acquire() if self.is_locked: logger().debug(F"Lock {lock_id} acquired on {lock_filename}" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"Timeout on acquiring lock {lock_id} on {lock_filename}" ) raise Timeout(self._lock_file ) else: logger().debug( F"Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ..." ) time.sleep(__a ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __lowercase : Optional[int] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def lowerCAmelCase ( self : Union[str, Any] , __a : Optional[Any]=False ) -> Optional[Any]: """simple docstring""" with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __lowercase : Optional[Any] = id(self ) __lowercase : str = self._lock_file logger().debug(F"Attempting to release lock {lock_id} on {lock_filename}" ) self._release() __lowercase : List[str] = 0 logger().debug(F"Lock {lock_id} released on {lock_filename}" ) return None def __enter__( self : Any ) -> Optional[Any]: """simple docstring""" self.acquire() return self def __exit__( self : List[str] , __a : str , __a : int , __a : List[Any] ) -> Tuple: """simple docstring""" self.release() return None def __del__( self : Optional[int] ) -> Optional[int]: """simple docstring""" self.release(force=__a ) return None def lowerCAmelCase ( self : Tuple , __a : str , __a : int ) -> str: """simple docstring""" __lowercase : List[Any] = os.path.basename(__a ) if len(__a ) > max_length and max_length > 0: __lowercase : int = os.path.dirname(__a ) __lowercase : List[str] = str(hash(__a ) ) __lowercase : Optional[Any] = filename[: max_length - len(__a ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(__a , __a ) else: return path class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Union[str, Any] , __a : List[Any] , __a : Optional[int]=-1 , __a : Tuple=None ) -> List[Any]: """simple docstring""" from .file_utils import relative_to_absolute_path super().__init__(__a , timeout=__a , max_filename_length=__a ) __lowercase : Tuple = """\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __lowercase : Tuple = os.open(self._lock_file , __a ) except OSError: pass else: try: msvcrt.locking(__a , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__a ) else: __lowercase : Union[str, Any] = fd return None def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = self._lock_file_fd __lowercase : int = None msvcrt.locking(__a , msvcrt.LK_UNLCK , 1 ) os.close(__a ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : List[str] , __a : Optional[Any] , __a : str=-1 , __a : List[str]=None ) -> Any: """simple docstring""" __lowercase : Dict = os.statvfs(os.path.dirname(__a ) ).f_namemax super().__init__(__a , timeout=__a , max_filename_length=__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase : List[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC __lowercase : List[str] = os.open(self._lock_file , __a ) try: fcntl.flock(__a , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__a ) else: __lowercase : str = fd return None def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Any = self._lock_file_fd __lowercase : List[str] = None fcntl.flock(__a , fcntl.LOCK_UN ) os.close(__a ) return None class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __lowercase : Union[str, Any] = os.open(self._lock_file , __a ) except OSError: pass else: __lowercase : Optional[int] = fd return None def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" os.close(self._lock_file_fd ) __lowercase : int = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None lowerCamelCase : Optional[Any] = None if msvcrt: lowerCamelCase : List[Any] = WindowsFileLock elif fcntl: lowerCamelCase : List[Any] = UnixFileLock else: lowerCamelCase : Union[str, Any] = SoftFileLock if warnings is not None: warnings.warn('''only soft file lock is available''')
649
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : Any = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] __lowercase : int = True if '''large''' in model_name or '''huge''' in model_name else False __lowercase : Dict = True if '''large''' in model_name or '''huge''' in model_name else False __lowercase : List[str] = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __lowercase : int = [3, 3, 3, 3] __lowercase : str = [5, 5, 5, 5] elif "fl4" in model_name: __lowercase : List[str] = [4, 4, 4, 4] __lowercase : Union[str, Any] = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __lowercase : Any = [3, 3, 3, 3] if "lrf" in model_name: __lowercase : Optional[Any] = [3, 3, 3, 3] else: __lowercase : Any = [2, 2, 2, 2] if "tiny" in model_name: __lowercase : Dict = 96 elif "small" in model_name: __lowercase : Any = 96 elif "base" in model_name: __lowercase : Union[str, Any] = 128 elif "large" in model_name: __lowercase : List[Any] = 192 elif "xlarge" in model_name: __lowercase : List[Any] = 256 elif "huge" in model_name: __lowercase : Optional[Any] = 352 # set label information __lowercase : Dict = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: __lowercase : Optional[Any] = '''imagenet-22k-id2label.json''' else: __lowercase : Union[str, Any] = '''imagenet-1k-id2label.json''' __lowercase : Tuple = json.load(open(hf_hub_download(a_ , a_ , repo_type="""dataset""" ) , """r""" ) ) __lowercase : Dict = {int(a_ ): v for k, v in idalabel.items()} __lowercase : Optional[Any] = {v: k for k, v in idalabel.items()} __lowercase : Any = FocalNetConfig( embed_dim=a_ , depths=a_ , focal_levels=a_ , focal_windows=a_ , use_conv_embed=a_ , idalabel=a_ , labelaid=a_ , use_post_layernorm=a_ , use_layerscale=a_ , ) return config def snake_case_ ( lowerCAmelCase_ : List[Any] ): if "patch_embed.proj" in name: __lowercase : Dict = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __lowercase : Dict = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: __lowercase : Any = '''encoder.''' + name if "encoder.layers" in name: __lowercase : Any = name.replace("""encoder.layers""" , """encoder.stages""" ) if "downsample.proj" in name: __lowercase : Optional[int] = name.replace("""downsample.proj""" , """downsample.projection""" ) if "blocks" in name: __lowercase : int = name.replace("""blocks""" , """layers""" ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __lowercase : int = name.replace("""modulation.f""" , """modulation.projection_in""" ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __lowercase : Union[str, Any] = name.replace("""modulation.h""" , """modulation.projection_context""" ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __lowercase : Tuple = name.replace("""modulation.proj""" , """modulation.projection_out""" ) if name == "norm.weight": __lowercase : Tuple = '''layernorm.weight''' if name == "norm.bias": __lowercase : List[Any] = '''layernorm.bias''' if "head" in name: __lowercase : List[Any] = name.replace("""head""" , """classifier""" ) else: __lowercase : Tuple = '''focalnet.''' + name return name def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]=False ): # fmt: off __lowercase : Optional[Any] = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on __lowercase : Optional[int] = model_name_to_url[model_name] print("""Checkpoint URL: """ , a_ ) __lowercase : List[Any] = torch.hub.load_state_dict_from_url(a_ , map_location="""cpu""" )['''model'''] # rename keys for key in state_dict.copy().keys(): __lowercase : Union[str, Any] = state_dict.pop(a_ ) __lowercase : Union[str, Any] = val __lowercase : Optional[int] = get_focalnet_config(a_ ) __lowercase : Union[str, Any] = FocalNetForImageClassification(a_ ) model.eval() # load state dict model.load_state_dict(a_ ) # verify conversion __lowercase : Dict = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowercase : Tuple = BitImageProcessor( do_resize=a_ , size={"""shortest_edge""": 256} , resample=PILImageResampling.BILINEAR , do_center_crop=a_ , crop_size=224 , do_normalize=a_ , image_mean=a_ , image_std=a_ , ) __lowercase : Dict = Image.open(requests.get(a_ , stream=a_ ).raw ) __lowercase : Union[str, Any] = processor(images=a_ , return_tensors="""pt""" ) __lowercase : Dict = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) __lowercase : List[str] = image_transforms(a_ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , a_ , atol=1e-4 ) __lowercase : Optional[Any] = model(**a_ ) __lowercase : int = outputs.logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) print("""First values of logits:""" , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __lowercase : Optional[Any] = torch.tensor([0.2_166, -0.4_368, 0.2_191] ) elif model_name == "focalnet-tiny-lrf": __lowercase : Dict = torch.tensor([1.1_669, 0.0_125, -0.1_695] ) elif model_name == "focalnet-small": __lowercase : Any = torch.tensor([0.4_917, -0.0_430, 0.1_341] ) elif model_name == "focalnet-small-lrf": __lowercase : List[str] = torch.tensor([-0.2_588, -0.5_342, -0.2_331] ) elif model_name == "focalnet-base": __lowercase : Any = torch.tensor([-0.1_655, -0.4_090, -0.1_730] ) elif model_name == "focalnet-base-lrf": __lowercase : Dict = torch.tensor([0.5_306, -0.0_483, -0.3_928] ) assert torch.allclose(outputs.logits[0, :3] , a_ , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F"Saving model and processor of {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(a_ ) processor.save_pretrained(a_ ) if push_to_hub: print(F"Pushing model and processor of {model_name} to the hub..." ) model.push_to_hub(F"{model_name}" ) processor.push_to_hub(F"{model_name}" ) if __name__ == "__main__": lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''focalnet-tiny''', type=str, help='''Name of the FocalNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub.''', ) lowerCamelCase : List[Any] = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
713
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : Tuple = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = '''layoutlmv3''' def __init__( self : Dict , __a : List[str]=50265 , __a : str=768 , __a : List[Any]=12 , __a : List[Any]=12 , __a : List[str]=3072 , __a : Optional[Any]="gelu" , __a : Optional[int]=0.1 , __a : List[Any]=0.1 , __a : Tuple=512 , __a : int=2 , __a : Any=0.02 , __a : Union[str, Any]=1E-5 , __a : List[str]=1 , __a : List[Any]=0 , __a : int=2 , __a : str=1024 , __a : str=128 , __a : List[Any]=128 , __a : Tuple=True , __a : Optional[int]=32 , __a : Any=128 , __a : List[Any]=64 , __a : Tuple=256 , __a : str=True , __a : int=True , __a : Optional[Any]=True , __a : Any=224 , __a : str=3 , __a : List[str]=16 , __a : Union[str, Any]=None , **__a : List[Any] , ) -> List[str]: """simple docstring""" super().__init__( vocab_size=__a , hidden_size=__a , num_hidden_layers=__a , num_attention_heads=__a , intermediate_size=__a , hidden_act=__a , hidden_dropout_prob=__a , attention_probs_dropout_prob=__a , max_position_embeddings=__a , type_vocab_size=__a , initializer_range=__a , layer_norm_eps=__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a , ) __lowercase : int = max_ad_position_embeddings __lowercase : Any = coordinate_size __lowercase : Optional[Any] = shape_size __lowercase : str = has_relative_attention_bias __lowercase : int = rel_pos_bins __lowercase : Union[str, Any] = max_rel_pos __lowercase : str = has_spatial_attention_bias __lowercase : str = rel_ad_pos_bins __lowercase : List[Any] = max_rel_ad_pos __lowercase : Tuple = text_embed __lowercase : int = visual_embed __lowercase : Tuple = input_size __lowercase : Dict = num_channels __lowercase : str = patch_size __lowercase : Optional[int] = classifier_dropout class lowerCAmelCase ( __a ): '''simple docstring''' _A : str = version.parse('''1.12''' ) @property def lowerCAmelCase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def lowerCAmelCase ( self : Union[str, Any] ) -> float: """simple docstring""" return 1E-5 @property def lowerCAmelCase ( self : str ) -> int: """simple docstring""" return 12 def lowerCAmelCase ( self : List[Any] , __a : "ProcessorMixin" , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional["TensorType"] = None , __a : int = 3 , __a : int = 40 , __a : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , """apply_ocr""" , __a ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase : Tuple = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase : Tuple = processor.tokenizer.num_special_tokens_to_add(__a ) __lowercase : Tuple = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__a ) # Generate dummy inputs according to compute batch and sequence __lowercase : Union[str, Any] = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowercase : Tuple = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowercase : Tuple = self._generate_dummy_images(__a , __a , __a , __a ) __lowercase : int = dict( processor( __a , text=__a , boxes=__a , return_tensors=__a , ) ) return inputs
649
0
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class lowerCAmelCase ( _a ): '''simple docstring''' _A : List[Any] = 42 class lowerCAmelCase ( _a , _a ): '''simple docstring''' _A : int = True @register_to_config def __init__( self : Tuple , __a : Tuple = 3 , __a : Tuple = 3 , __a : Optional[int] = ("DownEncoderBlock2D",) , __a : List[str] = ("UpDecoderBlock2D",) , __a : Any = (64,) , __a : Tuple = 1 , __a : List[str] = "silu" , __a : Union[str, Any] = 4 , __a : Union[str, Any] = 32 , __a : Union[str, Any] = 32 , __a : Union[str, Any] = 0.18215 , ) -> Tuple: """simple docstring""" super().__init__() # pass init params to Encoder __lowercase : str = Encoder( in_channels=_A , out_channels=_A , down_block_types=_A , block_out_channels=_A , layers_per_block=_A , act_fn=_A , norm_num_groups=_A , double_z=_A , ) # pass init params to Decoder __lowercase : str = Decoder( in_channels=_A , out_channels=_A , up_block_types=_A , block_out_channels=_A , layers_per_block=_A , norm_num_groups=_A , act_fn=_A , ) __lowercase : List[str] = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) __lowercase : Any = nn.Convad(_A , _A , 1 ) __lowercase : str = False __lowercase : Any = False # only relevant if vae tiling is enabled __lowercase : Optional[Any] = self.config.sample_size __lowercase : Tuple = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) __lowercase : Optional[int] = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) __lowercase : Optional[int] = 0.25 def lowerCAmelCase ( self : Optional[int] , __a : int , __a : Dict=False ) -> Dict: """simple docstring""" if isinstance(_A , (Encoder, Decoder) ): __lowercase : List[str] = value def lowerCAmelCase ( self : Optional[int] , __a : Optional[int] = True ) -> str: """simple docstring""" __lowercase : List[Any] = use_tiling def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" self.enable_tiling(_A ) def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : str = True def lowerCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" __lowercase : Optional[Any] = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = {} def fn_recursive_add_processors(__a : List[str] , __a : Tuple , __a : List[str] ): if hasattr(_A , """set_processor""" ): __lowercase : Dict = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"{name}.{sub_name}" , _A , _A ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_A , _A , _A ) return processors def lowerCAmelCase ( self : str , __a : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : Optional[Any] = len(self.attn_processors.keys() ) if isinstance(_A , _A ) and len(_A ) != count: raise ValueError( F"A dict of processors was passed, but the number of processors {len(_A )} does not match the" F" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(__a : Optional[int] , __a : Union[str, Any] , __a : List[str] ): if hasattr(_A , """set_processor""" ): if not isinstance(_A , _A ): module.set_processor(_A ) else: module.set_processor(processor.pop(F"{name}.processor" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"{name}.{sub_name}" , _A , _A ) for name, module in self.named_children(): fn_recursive_attn_processor(_A , _A , _A ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def lowerCAmelCase ( self : List[Any] , __a : int , __a : Union[str, Any] = True ) -> Any: """simple docstring""" if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(_A , return_dict=_A ) if self.use_slicing and x.shape[0] > 1: __lowercase : Optional[Any] = [self.encoder(_A ) for x_slice in x.split(1 )] __lowercase : List[str] = torch.cat(_A ) else: __lowercase : Optional[Any] = self.encoder(_A ) __lowercase : Dict = self.quant_conv(_A ) __lowercase : str = DiagonalGaussianDistribution(_A ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_A ) def lowerCAmelCase ( self : Optional[int] , __a : Optional[Any] , __a : Optional[Any] = True ) -> int: """simple docstring""" if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(_A , return_dict=_A ) __lowercase : Optional[Any] = self.post_quant_conv(_A ) __lowercase : str = self.decoder(_A ) if not return_dict: return (dec,) return DecoderOutput(sample=_A ) @apply_forward_hook def lowerCAmelCase ( self : Optional[Any] , __a : str , __a : Any = True ) -> Union[str, Any]: """simple docstring""" if self.use_slicing and z.shape[0] > 1: __lowercase : Any = [self._decode(_A ).sample for z_slice in z.split(1 )] __lowercase : Optional[int] = torch.cat(_A ) else: __lowercase : Union[str, Any] = self._decode(_A ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=_A ) def lowerCAmelCase ( self : List[Any] , __a : int , __a : Optional[int] , __a : Any ) -> List[Any]: """simple docstring""" __lowercase : List[str] = min(a.shape[2] , b.shape[2] , _A ) for y in range(_A ): __lowercase : Union[str, Any] = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def lowerCAmelCase ( self : Dict , __a : Tuple , __a : Any , __a : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Dict = min(a.shape[3] , b.shape[3] , _A ) for x in range(_A ): __lowercase : int = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def lowerCAmelCase ( self : Tuple , __a : Tuple , __a : Optional[Any] = True ) -> Optional[int]: """simple docstring""" __lowercase : List[Any] = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) __lowercase : Optional[Any] = int(self.tile_latent_min_size * self.tile_overlap_factor ) __lowercase : List[Any] = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. __lowercase : Any = [] for i in range(0 , x.shape[2] , _A ): __lowercase : int = [] for j in range(0 , x.shape[3] , _A ): __lowercase : Tuple = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] __lowercase : List[str] = self.encoder(_A ) __lowercase : Tuple = self.quant_conv(_A ) row.append(_A ) rows.append(_A ) __lowercase : Tuple = [] for i, row in enumerate(_A ): __lowercase : Union[str, Any] = [] for j, tile in enumerate(_A ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __lowercase : Optional[int] = self.blend_v(rows[i - 1][j] , _A , _A ) if j > 0: __lowercase : List[Any] = self.blend_h(row[j - 1] , _A , _A ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_A , dim=3 ) ) __lowercase : List[str] = torch.cat(_A , dim=2 ) __lowercase : List[Any] = DiagonalGaussianDistribution(_A ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_A ) def lowerCAmelCase ( self : Tuple , __a : List[Any] , __a : List[Any] = True ) -> str: """simple docstring""" __lowercase : Union[str, Any] = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) __lowercase : List[str] = int(self.tile_sample_min_size * self.tile_overlap_factor ) __lowercase : str = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. __lowercase : int = [] for i in range(0 , z.shape[2] , _A ): __lowercase : Union[str, Any] = [] for j in range(0 , z.shape[3] , _A ): __lowercase : Tuple = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] __lowercase : str = self.post_quant_conv(_A ) __lowercase : Union[str, Any] = self.decoder(_A ) row.append(_A ) rows.append(_A ) __lowercase : Dict = [] for i, row in enumerate(_A ): __lowercase : Optional[int] = [] for j, tile in enumerate(_A ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __lowercase : List[str] = self.blend_v(rows[i - 1][j] , _A , _A ) if j > 0: __lowercase : Tuple = self.blend_h(row[j - 1] , _A , _A ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_A , dim=3 ) ) __lowercase : Optional[int] = torch.cat(_A , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=_A ) def lowerCAmelCase ( self : Optional[Any] , __a : Tuple , __a : Optional[int] = False , __a : List[Any] = True , __a : List[str] = None , ) -> Any: """simple docstring""" __lowercase : int = sample __lowercase : Any = self.encode(_A ).latent_dist if sample_posterior: __lowercase : List[str] = posterior.sample(generator=_A ) else: __lowercase : int = posterior.mode() __lowercase : Dict = self.decode(_A ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_A )
714
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowerCamelCase : List[Any] = logging.get_logger(__name__) class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , __a : str = None , __a : uuid.UUID = None , __a : Any=None , __a : List[Any]=None ) -> List[Any]: """simple docstring""" if not conversation_id: __lowercase : Any = uuid.uuida() if past_user_inputs is None: __lowercase : Dict = [] if generated_responses is None: __lowercase : Dict = [] __lowercase : uuid.UUID = conversation_id __lowercase : List[str] = past_user_inputs __lowercase : List[str] = generated_responses __lowercase : Optional[str] = text def __eq__( self : Dict , __a : Dict ) -> Any: """simple docstring""" if not isinstance(__a , __a ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCAmelCase ( self : List[str] , __a : str , __a : bool = False ) -> Dict: """simple docstring""" if self.new_user_input: if overwrite: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten " F"with: \"{text}\"." ) __lowercase : Optional[int] = text else: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" new input " F"ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input" ) else: __lowercase : Dict = text def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __lowercase : Dict = None def lowerCAmelCase ( self : Optional[int] , __a : str ) -> List[Any]: """simple docstring""" self.generated_responses.append(__a ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : int ) -> str: """simple docstring""" __lowercase : Optional[int] = F"Conversation id: {self.uuid} \n" for is_user, text in self.iter_texts(): __lowercase : Optional[Any] = """user""" if is_user else """bot""" output += F"{name} >> {text} \n" return output @add_end_docstrings( __a , r''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''' , ) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Any , *__a : int , **__a : str ) -> Union[str, Any]: """simple docstring""" super().__init__(*__a , **__a ) if self.tokenizer.pad_token_id is None: __lowercase : List[Any] = self.tokenizer.eos_token def lowerCAmelCase ( self : Union[str, Any] , __a : int=None , __a : Tuple=None , __a : Any=None , **__a : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = {} __lowercase : Tuple = {} __lowercase : List[str] = {} if min_length_for_response is not None: __lowercase : Dict = min_length_for_response if minimum_tokens is not None: __lowercase : Union[str, Any] = minimum_tokens if "max_length" in generate_kwargs: __lowercase : Union[str, Any] = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __lowercase : Union[str, Any] = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(__a ) return preprocess_params, forward_params, postprocess_params def __call__( self : Optional[int] , __a : Union[Conversation, List[Conversation]] , __a : Dict=0 , **__a : List[Any] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = super().__call__(__a , num_workers=__a , **__a ) if isinstance(__a , __a ) and len(__a ) == 1: return outputs[0] return outputs def lowerCAmelCase ( self : Union[str, Any] , __a : Conversation , __a : Tuple=32 ) -> Dict[str, Any]: """simple docstring""" if not isinstance(__a , __a ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( F"Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. " """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer , """_build_conversation_input_ids""" ): __lowercase : List[Any] = self.tokenizer._build_conversation_input_ids(__a ) else: # If the tokenizer cannot handle conversations, we default to only the old version __lowercase : Tuple = self._legacy_parse_and_tokenize(__a ) if self.framework == "pt": __lowercase : List[Any] = torch.LongTensor([input_ids] ) elif self.framework == "tf": __lowercase : List[str] = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCAmelCase ( self : Any , __a : Dict , __a : Any=10 , **__a : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = generate_kwargs.get("""max_length""" , self.model.config.max_length ) __lowercase : List[Any] = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(F"Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})" ) __lowercase : Any = max_length - minimum_tokens __lowercase : int = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: __lowercase : Dict = model_inputs["""attention_mask"""][:, -trim:] __lowercase : Union[str, Any] = model_inputs.pop("""conversation""" ) __lowercase : Tuple = max_length __lowercase : int = self.model.generate(**__a , **__a ) if self.model.config.is_encoder_decoder: __lowercase : Optional[int] = 1 else: __lowercase : str = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCAmelCase ( self : int , __a : Tuple , __a : List[Any]=True ) -> List[str]: """simple docstring""" __lowercase : int = model_outputs["""output_ids"""] __lowercase : Union[str, Any] = self.tokenizer.decode( output_ids[0] , skip_special_tokens=__a , clean_up_tokenization_spaces=__a , ) __lowercase : List[str] = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(__a ) return conversation def lowerCAmelCase ( self : int , __a : Conversation ) -> Dict: """simple docstring""" __lowercase : Optional[int] = self.tokenizer.eos_token_id __lowercase : Optional[Any] = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(__a , add_special_tokens=__a ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(__a , add_special_tokens=__a ) ) if len(__a ) > self.tokenizer.model_max_length: __lowercase : List[Any] = input_ids[-self.tokenizer.model_max_length :] return input_ids
649
0
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCamelCase : Union[str, Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.14.0''', '''To fix: pip install -r examples/pytorch/audio-classification/requirements.txt''') def snake_case_ ( lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : float , lowerCAmelCase_ : int = 16000 ): __lowercase : List[Any] = int(round(sample_rate * max_length ) ) if len(UpperCAmelCase__ ) <= sample_length: return wav __lowercase : List[Any] = randint(0 , len(UpperCAmelCase__ ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class lowerCAmelCase : '''simple docstring''' _A : int = field(default=__a , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) _A : int = field( default=__a , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) _A : Any = field( default=__a , metadata={'''help''': '''A file containing the training audio paths and labels.'''} ) _A : List[Any] = field( default=__a , metadata={'''help''': '''A file containing the validation audio paths and labels.'''} ) _A : Dict = field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) _A : List[str] = field( default='''validation''' , metadata={ '''help''': ( '''The name of the training data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) _A : Optional[int] = field( default='''audio''' , metadata={'''help''': '''The name of the dataset column containing the audio data. Defaults to \'audio\''''} , ) _A : Union[str, Any] = field( default='''label''' , metadata={'''help''': '''The name of the dataset column containing the labels. Defaults to \'label\''''} ) _A : int = field( default=__a , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) _A : str = field( default=__a , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) _A : List[Any] = field( default=20 , metadata={'''help''': '''Audio clips will be randomly cut to this length during training if the value is set.'''} , ) @dataclass class lowerCAmelCase : '''simple docstring''' _A : str = field( default='''facebook/wav2vec2-base''' , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} , ) _A : List[Any] = field( default=__a , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _A : int = field( default=__a , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from the Hub'''} ) _A : Tuple = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) _A : Dict = field( default=__a , metadata={'''help''': '''Name or path of preprocessor config.'''} ) _A : List[str] = field( default=__a , metadata={'''help''': '''Whether to freeze the feature encoder layers of the model.'''} ) _A : Optional[int] = field( default=__a , metadata={'''help''': '''Whether to generate an attention mask in the feature extractor.'''} ) _A : int = field( default=__a , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) _A : Union[str, Any] = field( default=__a , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) _A : Tuple = field( default=__a , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( """The argument `--freeze_feature_extractor` is deprecated and """ """will be removed in a future version. Use `--freeze_feature_encoder`""" """instead. Setting `freeze_feature_encoder==True`.""" , __UpperCamelCase , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( """The argument `--freeze_feature_extractor` is deprecated and """ """should not be used in combination with `--freeze_feature_encoder`.""" """Only make use of `--freeze_feature_encoder`.""" ) def snake_case_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowercase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowercase , __lowercase , __lowercase : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowercase , __lowercase , __lowercase : List[str] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_audio_classification""" , UpperCAmelCase__ , UpperCAmelCase__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __lowercase : Optional[int] = training_args.get_process_log_level() logger.setLevel(UpperCAmelCase__ ) transformers.utils.logging.set_verbosity(UpperCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} " + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. __lowercase : Union[str, Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowercase : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " """Use --overwrite_output_dir to train from scratch.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset and prepare it for the audio classification task. __lowercase : Optional[Any] = DatasetDict() __lowercase : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) __lowercase : Dict = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F"--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. " """Make sure to set `--audio_column_name` to the correct audio column - one of """ F"{', '.join(raw_datasets['train'].column_names )}." ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F"--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. " """Make sure to set `--label_column_name` to the correct text column - one of """ F"{', '.join(raw_datasets['train'].column_names )}." ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy __lowercase : Optional[int] = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. __lowercase : Optional[Any] = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) __lowercase : int = feature_extractor.model_input_names[0] def train_transforms(lowerCAmelCase_ : Dict ): __lowercase : List[str] = [] for audio in batch[data_args.audio_column_name]: __lowercase : Union[str, Any] = random_subsample( audio["""array"""] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(UpperCAmelCase__ ) __lowercase : List[Any] = feature_extractor(UpperCAmelCase__ , sampling_rate=feature_extractor.sampling_rate ) __lowercase : int = {model_input_name: inputs.get(UpperCAmelCase__ )} __lowercase : Tuple = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(lowerCAmelCase_ : Optional[Any] ): __lowercase : Optional[Any] = [audio["""array"""] for audio in batch[data_args.audio_column_name]] __lowercase : int = feature_extractor(UpperCAmelCase__ , sampling_rate=feature_extractor.sampling_rate ) __lowercase : Optional[int] = {model_input_name: inputs.get(UpperCAmelCase__ )} __lowercase : Tuple = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. __lowercase : int = raw_datasets["""train"""].features[data_args.label_column_name].names __lowercase , __lowercase : int = {}, {} for i, label in enumerate(UpperCAmelCase__ ): __lowercase : Optional[Any] = str(UpperCAmelCase__ ) __lowercase : Optional[int] = label # Load the accuracy metric from the datasets package __lowercase : str = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase_ : Optional[Any] ): __lowercase : List[str] = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=UpperCAmelCase__ , references=eval_pred.label_ids ) __lowercase : Union[str, Any] = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(UpperCAmelCase__ ) , labelaid=UpperCAmelCase__ , idalabel=UpperCAmelCase__ , finetuning_task="""audio-classification""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __lowercase : Union[str, Any] = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: __lowercase : str = ( raw_datasets["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(UpperCAmelCase__ , output_all_columns=UpperCAmelCase__ ) if training_args.do_eval: if data_args.max_eval_samples is not None: __lowercase : Dict = ( raw_datasets["""eval"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(UpperCAmelCase__ , output_all_columns=UpperCAmelCase__ ) # Initialize our trainer __lowercase : List[Any] = Trainer( model=UpperCAmelCase__ , args=UpperCAmelCase__ , train_dataset=raw_datasets["""train"""] if training_args.do_train else None , eval_dataset=raw_datasets["""eval"""] if training_args.do_eval else None , compute_metrics=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , ) # Training if training_args.do_train: __lowercase : Optional[int] = None if training_args.resume_from_checkpoint is not None: __lowercase : Optional[int] = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowercase : Union[str, Any] = last_checkpoint __lowercase : Tuple = trainer.train(resume_from_checkpoint=UpperCAmelCase__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __lowercase : str = trainer.evaluate() trainer.log_metrics("""eval""" , UpperCAmelCase__ ) trainer.save_metrics("""eval""" , UpperCAmelCase__ ) # Write model card and (optionally) push to hub __lowercase : Any = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """audio-classification""", """dataset""": data_args.dataset_name, """tags""": ["""audio-classification"""], } if training_args.push_to_hub: trainer.push_to_hub(**UpperCAmelCase__ ) else: trainer.create_model_card(**UpperCAmelCase__ ) if __name__ == "__main__": main()
715
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__a , """tf_padding""" ) ) self.parent.assertTrue(hasattr(__a , """depth_multiplier""" ) ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Tuple , __a : str=13 , __a : Dict=3 , __a : List[Any]=32 , __a : Any=0.25 , __a : Any=8 , __a : Optional[int]=8 , __a : Optional[int]=6 , __a : Dict=32 , __a : Tuple=True , __a : List[Any]=True , __a : Optional[int]=True , __a : Tuple="relu6" , __a : Optional[Any]=1280 , __a : str=0.1 , __a : str=0.02 , __a : Optional[Any]=True , __a : Tuple=True , __a : Dict=10 , __a : Optional[Any]=None , ) -> Any: """simple docstring""" __lowercase : List[str] = parent __lowercase : Tuple = batch_size __lowercase : Dict = num_channels __lowercase : Optional[int] = image_size __lowercase : int = depth_multiplier __lowercase : str = depth_divisible_by __lowercase : int = min_depth __lowercase : Tuple = expand_ratio __lowercase : Optional[int] = tf_padding __lowercase : Dict = output_stride __lowercase : Dict = first_layer_is_expansion __lowercase : Optional[Any] = finegrained_output __lowercase : str = hidden_act __lowercase : Union[str, Any] = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) __lowercase : Optional[int] = classifier_dropout_prob __lowercase : int = use_labels __lowercase : Optional[int] = is_training __lowercase : Dict = num_labels __lowercase : Tuple = initializer_range __lowercase : Optional[Any] = scope def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : List[Any] = None __lowercase : Optional[Any] = None if self.use_labels: __lowercase : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __lowercase : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowercase : List[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : Tuple , __a : Dict , __a : Tuple , __a : Optional[int] , __a : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[int] = MobileNetVaModel(config=__a ) model.to(__a ) model.eval() __lowercase : Tuple = model(__a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def lowerCAmelCase ( self : List[str] , __a : Optional[int] , __a : List[str] , __a : str , __a : Optional[int] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = self.num_labels __lowercase : Dict = MobileNetVaForImageClassification(__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : int , __a : List[str] , __a : Tuple , __a : Any , __a : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : int = self.num_labels __lowercase : List[Any] = MobileNetVaForSemanticSegmentation(__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __lowercase : str = model(__a , labels=__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase : List[str] = config_and_inputs __lowercase : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Tuple = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) _A : Optional[Any] = ( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) _A : Tuple = False _A : List[str] = False _A : List[str] = False _A : Optional[int] = False def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = MobileNetVaModelTester(self ) __lowercase : int = MobileNetVaConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV2 does not use inputs_embeds""" ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not support input and output embeddings""" ) def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not output attentions""" ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[Any] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : int = [*signature.parameters.keys()] __lowercase : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" def check_hidden_states_output(__a : List[Any] , __a : Tuple , __a : List[str] ): __lowercase : Optional[Any] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : List[Any] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Tuple = outputs.hidden_states __lowercase : str = 16 self.assertEqual(len(__a ) , __a ) __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Any = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase : Union[str, Any] = True check_hidden_states_output(__a , __a , __a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : Optional[int] = MobileNetVaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def snake_case_ ( ): __lowercase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v2_1.0_224""" ) if is_vision_available() else None ) @slow def lowerCAmelCase ( self : str ) -> int: """simple docstring""" __lowercase : Tuple = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v2_1.0_224""" ).to(__a ) __lowercase : str = self.default_image_processor __lowercase : Tuple = prepare_img() __lowercase : Tuple = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : str = model(**__a ) # verify the logits __lowercase : Union[str, Any] = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , __a ) __lowercase : str = torch.tensor([0.2445, -1.1993, 0.1905] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : int = MobileNetVaForSemanticSegmentation.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __lowercase : Dict = model.to(__a ) __lowercase : Tuple = MobileNetVaImageProcessor.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __lowercase : List[str] = prepare_img() __lowercase : Optional[int] = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : Union[str, Any] = model(**__a ) __lowercase : Any = outputs.logits # verify the logits __lowercase : Dict = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , __a ) __lowercase : str = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=__a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __a , atol=1E-4 ) )
649
0
def snake_case_ ( lowerCAmelCase_ : int ): if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError("""Input must be an integer""" ) if input_num <= 0: raise ValueError("""Input must be positive""" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
716
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def snake_case_ ( lowerCAmelCase_ : bool = True , *lowerCAmelCase_ : int , **lowerCAmelCase_ : List[str] ): if not is_tqdm_available(): raise ImportError("""Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.""" ) __lowercase : List[str] = False if main_process_only: __lowercase : Optional[int] = PartialState().local_process_index == 0 return _tqdm(*lowerCAmelCase_ , **lowerCAmelCase_ , disable=lowerCAmelCase_ )
649
0
def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] ): def update_area_of_max_square(lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 __lowercase : Dict = update_area_of_max_square(lowerCAmelCase_ , col + 1 ) __lowercase : Union[str, Any] = update_area_of_max_square(row + 1 , col + 1 ) __lowercase : Any = update_area_of_max_square(row + 1 , lowerCAmelCase_ ) if mat[row][col]: __lowercase : List[str] = 1 + min([right, diagonal, down] ) __lowercase : int = max(largest_square_area[0] , lowerCAmelCase_ ) return sub_problem_sol else: return 0 __lowercase : List[str] = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str ): def update_area_of_max_square_using_dp_array( lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] __lowercase : Optional[int] = update_area_of_max_square_using_dp_array(lowerCAmelCase_ , col + 1 , lowerCAmelCase_ ) __lowercase : int = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , lowerCAmelCase_ ) __lowercase : str = update_area_of_max_square_using_dp_array(row + 1 , lowerCAmelCase_ , lowerCAmelCase_ ) if mat[row][col]: __lowercase : Tuple = 1 + min([right, diagonal, down] ) __lowercase : Optional[int] = max(largest_square_area[0] , lowerCAmelCase_ ) __lowercase : List[Any] = sub_problem_sol return sub_problem_sol else: return 0 __lowercase : Optional[Any] = [0] __lowercase : int = [[-1] * cols for _ in range(lowerCAmelCase_ )] update_area_of_max_square_using_dp_array(0 , 0 , lowerCAmelCase_ ) return largest_square_area[0] def snake_case_ ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Any ): __lowercase : Any = [[0] * (cols + 1) for _ in range(rows + 1 )] __lowercase : Dict = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __lowercase : int = dp_array[row][col + 1] __lowercase : int = dp_array[row + 1][col + 1] __lowercase : List[str] = dp_array[row + 1][col] if mat[row][col] == 1: __lowercase : int = 1 + min(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Dict = max(dp_array[row][col] , lowerCAmelCase_ ) else: __lowercase : str = 0 return largest_square_area def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str ): __lowercase : Optional[int] = [0] * (cols + 1) __lowercase : List[Any] = [0] * (cols + 1) __lowercase : str = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __lowercase : Union[str, Any] = current_row[col + 1] __lowercase : Any = next_row[col + 1] __lowercase : Any = next_row[col] if mat[row][col] == 1: __lowercase : Tuple = 1 + min(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : int = max(current_row[col] , lowerCAmelCase_ ) else: __lowercase : Any = 0 __lowercase : Optional[int] = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
717
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : list[int] ): if not nums: return 0 __lowercase : Tuple = nums[0] __lowercase : Tuple = 0 for num in nums[1:]: __lowercase , __lowercase : List[str] = ( max_excluding + num, max(lowerCAmelCase_ , lowerCAmelCase_ ), ) return max(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
649
0
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar lowerCamelCase : Optional[int] = TypeVar('''T''') class lowerCAmelCase ( Generic[T] ): '''simple docstring''' def __init__( self : int , __a : list[T] , __a : Callable[[T, T], T] ) -> None: """simple docstring""" __lowercase : Any | T = None __lowercase : int = len(lowerCamelCase__ ) __lowercase : list[T] = [any_type for _ in range(self.N )] + arr __lowercase : Tuple = fnc self.build() def lowerCAmelCase ( self : int ) -> None: """simple docstring""" for p in range(self.N - 1 , 0 , -1 ): __lowercase : Dict = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def lowerCAmelCase ( self : Any , __a : int , __a : T ) -> None: """simple docstring""" p += self.N __lowercase : Optional[int] = v while p > 1: __lowercase : Tuple = p // 2 __lowercase : Optional[Any] = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def lowerCAmelCase ( self : Dict , __a : int , __a : int ) -> T | None: # noqa: E741 """simple docstring""" __lowercase : Optional[Any] = l + self.N, r + self.N __lowercase : T | None = None while l <= r: if l % 2 == 1: __lowercase : List[Any] = self.st[l] if res is None else self.fn(lowerCamelCase__ , self.st[l] ) if r % 2 == 0: __lowercase : Tuple = self.st[r] if res is None else self.fn(lowerCamelCase__ , self.st[r] ) __lowercase : List[str] = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce lowerCamelCase : Optional[int] = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] lowerCamelCase : Tuple = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } lowerCamelCase : Union[str, Any] = SegmentTree(test_array, min) lowerCamelCase : Optional[Any] = SegmentTree(test_array, max) lowerCamelCase : str = SegmentTree(test_array, lambda a, b: a + b) def snake_case_ ( ): for i in range(len(lowerCAmelCase_ ) ): for j in range(lowerCAmelCase_ , len(lowerCAmelCase_ ) ): __lowercase : Dict = reduce(lowerCAmelCase_ , test_array[i : j + 1] ) __lowercase : List[str] = reduce(lowerCAmelCase_ , test_array[i : j + 1] ) __lowercase : int = reduce(lambda lowerCAmelCase_ , lowerCAmelCase_ : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(lowerCAmelCase_ , lowerCAmelCase_ ) assert max_range == max_segment_tree.query(lowerCAmelCase_ , lowerCAmelCase_ ) assert sum_range == sum_segment_tree.query(lowerCAmelCase_ , lowerCAmelCase_ ) test_all_segments() for index, value in test_updates.items(): lowerCamelCase : List[str] = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
718
lowerCamelCase : List[str] = '''0.18.2''' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
649
0
from __future__ import annotations from random import choice def snake_case_ ( lowerCAmelCase_ : Dict ): return choice(snake_case_ ) def snake_case_ ( lowerCAmelCase_ : list[int] , lowerCAmelCase_ : int ): __lowercase : Any = random_pivot(snake_case_ ) # partition based on pivot # linear time __lowercase : Optional[Any] = [e for e in lst if e < pivot] __lowercase : List[str] = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(snake_case_ ) == k - 1: return pivot # pivot is in elements bigger than k elif len(snake_case_ ) < k - 1: return kth_number(snake_case_ , k - len(snake_case_ ) - 1 ) # pivot is in elements smaller than k else: return kth_number(snake_case_ , snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod()
719
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : List[Any] = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : str=False , lowerCAmelCase_ : Any=False ): __lowercase : Any = """backbone.""" if is_semantic else """""" __lowercase : Optional[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"{prefix}blocks.{i}.norm1.weight", F"beit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm1.bias", F"beit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.weight", F"beit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.bias", F"beit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.weight", F"beit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.bias", F"beit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.weight", F"beit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.bias", F"beit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.weight", F"beit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.bias", F"beit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ (F"{prefix}cls_token", """beit.embeddings.cls_token"""), (F"{prefix}patch_embed.proj.weight", """beit.embeddings.patch_embeddings.projection.weight"""), (F"{prefix}patch_embed.proj.bias", """beit.embeddings.patch_embeddings.projection.bias"""), (F"{prefix}pos_embed", """beit.embeddings.position_embeddings"""), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("""mask_token""", """beit.embeddings.mask_token"""), ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) else: # layernorm + classification head rename_keys.extend( [ ("""fc_norm.weight""", """beit.pooler.layernorm.weight"""), ("""fc_norm.bias""", """beit.pooler.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : List[Any]=False ): for i in range(config.num_hidden_layers ): __lowercase : Tuple = """backbone.""" if is_semantic else """""" # queries, keys and values __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.attn.qkv.weight" ) __lowercase : Dict = state_dict.pop(F"{prefix}blocks.{i}.attn.q_bias" ) __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.attn.v_bias" ) __lowercase : List[str] = in_proj_weight[ : config.hidden_size, : ] __lowercase : Union[str, Any] = q_bias __lowercase : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] __lowercase : str = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.gamma_1" ) __lowercase : str = state_dict.pop(F"{prefix}blocks.{i}.gamma_2" ) __lowercase : List[str] = gamma_a __lowercase : Optional[int] = gamma_a def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : int ): __lowercase : Tuple = dct.pop(lowerCAmelCase_ ) __lowercase : Tuple = val def snake_case_ ( ): __lowercase : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase : Any = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]=False ): __lowercase : Dict = False if """rvlcdip""" in checkpoint_url else True __lowercase : Tuple = BeitConfig(use_absolute_position_embeddings=lowerCAmelCase_ , use_mask_token=lowerCAmelCase_ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: __lowercase : Union[str, Any] = 1024 __lowercase : Optional[int] = 4096 __lowercase : List[Any] = 24 __lowercase : Dict = 16 # labels if "rvlcdip" in checkpoint_url: __lowercase : Optional[int] = 16 __lowercase : Any = """huggingface/label-files""" __lowercase : Union[str, Any] = """rvlcdip-id2label.json""" __lowercase : List[str] = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) __lowercase : Optional[int] = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowercase : Union[str, Any] = idalabel __lowercase : Optional[Any] = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys __lowercase : Optional[int] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ , map_location="""cpu""" )["""model"""] __lowercase : Union[str, Any] = create_rename_keys(lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) # load HuggingFace model __lowercase : Dict = BeitForMaskedImageModeling(lowerCAmelCase_ ) if has_lm_head else BeitForImageClassification(lowerCAmelCase_ ) model.eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image __lowercase : List[str] = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=lowerCAmelCase_ ) __lowercase : List[str] = prepare_img() __lowercase : Optional[Any] = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""" ) __lowercase : Optional[int] = encoding["""pixel_values"""] __lowercase : str = model(lowerCAmelCase_ ) __lowercase : Tuple = outputs.logits # verify logits __lowercase : str = [1, 16] if """rvlcdip""" in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(lowerCAmelCase_ ), "Shape of logits not as expected" Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: if has_lm_head: __lowercase : Optional[Any] = """dit-base""" if """base""" in checkpoint_url else """dit-large""" else: __lowercase : Tuple = """dit-base-finetuned-rvlcdip""" if """dit-b""" in checkpoint_url else """dit-large-finetuned-rvlcdip""" image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=lowerCAmelCase_ , ) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=lowerCAmelCase_ , ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) lowerCamelCase : List[str] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
649
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase : Dict = logging.get_logger(__name__) class lowerCAmelCase ( lowercase_ ): '''simple docstring''' _A : Dict = ['''pixel_values'''] def __init__( self : Dict , __a : str = True , __a : str = None , __a : List[Any] = PIL.Image.BICUBIC , __a : str = True , __a : List[Any] = None , __a : Tuple = 1 / 255 , __a : int = True , __a : Dict = True , __a : str = None , __a : Dict = None , **__a : Union[str, Any] , ) -> Optional[int]: """simple docstring""" super().__init__(**__a ) __lowercase : Union[str, Any] = size if size is not None else {"""height""": 256, """width""": 256} __lowercase : Tuple = get_size_dict(__a ) __lowercase : Optional[int] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __lowercase : List[str] = get_size_dict(__a , param_name="""crop_size""" ) __lowercase : Optional[int] = do_resize __lowercase : List[Any] = size __lowercase : Dict = resample __lowercase : Any = do_center_crop __lowercase : Any = crop_size __lowercase : Tuple = do_rescale __lowercase : str = rescale_factor __lowercase : Tuple = do_normalize __lowercase : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowercase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase ( self : str , __a : int , __a : Optional[Any] , __a : List[Any] = PIL.Image.BICUBIC , __a : Optional[int] = None , **__a : List[Any] , ) -> Any: """simple docstring""" __lowercase : str = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}" ) return resize( __a , size=(size["""height"""], size["""width"""]) , resample=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Union[str, Any] , __a : Dict , __a : int , __a : Optional[Any] = None , **__a : int , ) -> str: """simple docstring""" __lowercase : Union[str, Any] = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}" ) return center_crop(__a , size=(size["""height"""], size["""width"""]) , data_format=__a , **__a ) def lowerCAmelCase ( self : Union[str, Any] , __a : Optional[int] , __a : Optional[int] , __a : Tuple = None , **__a : List[str] , ) -> Union[str, Any]: """simple docstring""" return rescale(__a , scale=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : int , __a : Dict , __a : Optional[int] , __a : List[Any] , __a : Tuple = None , **__a : Tuple , ) -> Union[str, Any]: """simple docstring""" return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : int , __a : Optional[int] , __a : Optional[int] = None , __a : Any = None , __a : int=None , __a : int = None , __a : Optional[int] = None , __a : Union[str, Any] = None , __a : Dict = None , __a : List[Any] = None , __a : List[Any] = None , __a : Optional[Any] = None , __a : Union[str, Any] = None , __a : Any = ChannelDimension.FIRST , **__a : Dict , ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = do_resize if do_resize is not None else self.do_resize __lowercase : str = resample if resample is not None else self.resample __lowercase : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase : List[Any] = do_rescale if do_rescale is not None else self.do_rescale __lowercase : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase : Dict = do_normalize if do_normalize is not None else self.do_normalize __lowercase : List[str] = image_mean if image_mean is not None else self.image_mean __lowercase : str = image_std if image_std is not None else self.image_std __lowercase : Dict = size if size is not None else self.size __lowercase : str = get_size_dict(__a ) __lowercase : Optional[int] = crop_size if crop_size is not None else self.crop_size __lowercase : Any = get_size_dict(__a , param_name="""crop_size""" ) __lowercase : Dict = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __lowercase : Optional[int] = [to_numpy_array(__a ) for image in images] if do_resize: __lowercase : int = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: __lowercase : List[str] = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: __lowercase : Tuple = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: __lowercase : Dict = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] __lowercase : Tuple = [to_channel_dimension_format(__a , __a ) for image in images] __lowercase : Union[str, Any] = {"""pixel_values""": images} return BatchFeature(data=__a , tensor_type=__a )
720
from torch import nn class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , __a : int , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" super().__init__() __lowercase : int = class_size __lowercase : int = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) __lowercase : str = nn.Linear(__a , __a ) def lowerCAmelCase ( self : Tuple , __a : int ) -> Tuple: """simple docstring""" __lowercase : str = self.mlp(__a ) return logits
649
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" __lowercase : Optional[int] = tempfile.mkdtemp() __lowercase : int = BlipImageProcessor() __lowercase : Union[str, Any] = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) __lowercase : Optional[int] = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) __lowercase : Any = InstructBlipProcessor(__a , __a , __a ) processor.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : List[str] , **__a : str ) -> Dict: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__a ).tokenizer def lowerCAmelCase ( self : int , **__a : Optional[Any] ) -> Any: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__a ).image_processor def lowerCAmelCase ( self : Any , **__a : Union[str, Any] ) -> Any: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__a ).qformer_tokenizer def lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" __lowercase : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __lowercase : Union[str, Any] = [Image.fromarray(np.moveaxis(__a , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) __lowercase : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __lowercase : List[str] = self.get_image_processor(do_normalize=__a , padding_value=1.0 ) __lowercase : str = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __a ) self.assertIsInstance(processor.qformer_tokenizer , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase : Optional[int] = self.get_image_processor() __lowercase : Tuple = self.get_tokenizer() __lowercase : int = self.get_qformer_tokenizer() __lowercase : Tuple = InstructBlipProcessor( tokenizer=__a , image_processor=__a , qformer_tokenizer=__a ) __lowercase : Any = self.prepare_image_inputs() __lowercase : Any = image_processor(__a , return_tensors="""np""" ) __lowercase : Any = processor(images=__a , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" __lowercase : List[str] = self.get_image_processor() __lowercase : Tuple = self.get_tokenizer() __lowercase : List[str] = self.get_qformer_tokenizer() __lowercase : Tuple = InstructBlipProcessor( tokenizer=__a , image_processor=__a , qformer_tokenizer=__a ) __lowercase : Dict = """lower newer""" __lowercase : Union[str, Any] = processor(text=__a ) __lowercase : str = tokenizer(__a , return_token_type_ids=__a ) __lowercase : List[str] = qformer_tokenizer(__a , return_token_type_ids=__a ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["""qformer_""" + key] ) def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Dict = self.get_image_processor() __lowercase : Dict = self.get_tokenizer() __lowercase : Optional[Any] = self.get_qformer_tokenizer() __lowercase : List[str] = InstructBlipProcessor( tokenizer=__a , image_processor=__a , qformer_tokenizer=__a ) __lowercase : Tuple = """lower newer""" __lowercase : Optional[Any] = self.prepare_image_inputs() __lowercase : List[str] = processor(text=__a , images=__a ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , ) # test if it raises when no input is passed with pytest.raises(__a ): processor() def lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" __lowercase : Tuple = self.get_image_processor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : Union[str, Any] = self.get_qformer_tokenizer() __lowercase : List[Any] = InstructBlipProcessor( tokenizer=__a , image_processor=__a , qformer_tokenizer=__a ) __lowercase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowercase : Optional[int] = processor.batch_decode(__a ) __lowercase : Any = tokenizer.batch_decode(__a ) self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase : int = self.get_image_processor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : Any = self.get_qformer_tokenizer() __lowercase : int = InstructBlipProcessor( tokenizer=__a , image_processor=__a , qformer_tokenizer=__a ) __lowercase : List[Any] = """lower newer""" __lowercase : Optional[int] = self.prepare_image_inputs() __lowercase : Dict = processor(text=__a , images=__a ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
721
import fire from utils import calculate_rouge, save_json def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : str=None , **lowerCAmelCase_ : str ): __lowercase : Tuple = [x.strip() for x in open(lowerCAmelCase_ ).readlines()] __lowercase : Dict = [x.strip() for x in open(lowerCAmelCase_ ).readlines()][: len(lowerCAmelCase_ )] __lowercase : Tuple = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) if save_path is not None: save_json(lowerCAmelCase_ , lowerCAmelCase_ , indent=lowerCAmelCase_ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
649
0
import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase : List[str] = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : Union[str, Any] = ReformerTokenizer _A : int = ReformerTokenizerFast _A : Any = True _A : Tuple = False _A : Union[str, Any] = True def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" super().setUp() __lowercase : str = ReformerTokenizer(__a , keep_accents=__a ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" __lowercase : Optional[Any] = """<s>""" __lowercase : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a ) def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(__a ) , 1000 ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" if not self.test_rust_tokenizer: return __lowercase : Any = self.get_tokenizer() __lowercase : Union[str, Any] = self.get_rust_tokenizer() __lowercase : Dict = """I was born in 92000, and this is falsé.""" __lowercase : Any = tokenizer.tokenize(__a ) __lowercase : Any = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) __lowercase : str = tokenizer.encode(__a , add_special_tokens=__a ) __lowercase : Optional[int] = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) __lowercase : str = self.get_rust_tokenizer() __lowercase : Optional[int] = tokenizer.encode(__a ) __lowercase : Optional[int] = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : List[str] , __a : Union[str, Any]=15 ) -> int: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : Dict = self.rust_tokenizer_class.from_pretrained(__a , **__a ) # Simple input __lowercase : Optional[Any] = """This is a simple input""" __lowercase : Optional[int] = ["""This is a simple input 1""", """This is a simple input 2"""] __lowercase : List[Any] = ("""This is a simple input""", """This is a pair""") __lowercase : Any = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding="""max_length""" ) # Simple input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding="""max_length""" ) # Simple input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding="""max_length""" , ) # Pair input self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding="""max_length""" ) # Pair input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding="""max_length""" ) # Pair input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding="""max_length""" , ) def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" pass def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = ReformerTokenizer(__a , keep_accents=__a ) __lowercase : Optional[Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__a , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [285, 46, 10, 170, 382] , ) __lowercase : Optional[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __lowercase : Any = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual( __a , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) __lowercase : Optional[Any] = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" return ReformerTokenizer.from_pretrained("""google/reformer-crime-and-punishment""" ) @slow def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" __lowercase : str = """Hello World!""" __lowercase : Optional[int] = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(__a , self.big_tokenizer.encode(__a ) ) @slow def lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) __lowercase : int = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(__a , self.big_tokenizer.encode(__a ) ) @require_torch @slow def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" import torch from transformers import ReformerConfig, ReformerModel # Build sequence __lowercase : Optional[Any] = list(self.big_tokenizer.get_vocab().keys() )[:10] __lowercase : int = """ """.join(__a ) __lowercase : int = self.big_tokenizer.encode_plus(__a , return_tensors="""pt""" ) __lowercase : List[Any] = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="""pt""" ) __lowercase : List[str] = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) __lowercase : str = encoded_sequence["""input_ids"""].shape __lowercase : Optional[Any] = ReformerModel(__a ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__a ) model(**__a ) @slow def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : int = {"""input_ids""": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 __lowercase : List[str] = [ """This is a very simple sentence.""", """The quick brown fox jumps over the lazy dog.""", ] self.tokenizer_integration_test_util( expected_encoding=__a , model_name="""google/reformer-crime-and-punishment""" , revision="""0e6c3decb8211d49bf881013425dc8b0448b3f5a""" , padding=__a , sequences=__a , )
700
from argparse import ArgumentParser from . import BaseTransformersCLICommand def snake_case_ ( lowerCAmelCase_ : Dict ): return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class lowerCAmelCase ( __a ): '''simple docstring''' @staticmethod def lowerCAmelCase ( __a : ArgumentParser ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = parser.add_parser("""download""" ) download_parser.add_argument( """--cache-dir""" , type=__a , default=__a , help="""Path to location to store the models""" ) download_parser.add_argument( """--force""" , action="""store_true""" , help="""Force the model to be download even if already in cache-dir""" ) download_parser.add_argument( """--trust-remote-code""" , action="""store_true""" , help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" , ) download_parser.add_argument("""model""" , type=__a , help="""Name of the model to download""" ) download_parser.set_defaults(func=__a ) def __init__( self : Dict , __a : str , __a : str , __a : bool , __a : bool ) -> Union[str, Any]: """simple docstring""" __lowercase : Dict = model __lowercase : List[Any] = cache __lowercase : Any = force __lowercase : Optional[int] = trust_remote_code def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
649
0
def snake_case_ ( lowerCAmelCase_ : list ): if len(lowerCAmelCase_ ) < 2: return collection def circle_sort_util(lowerCAmelCase_ : list , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> bool: __lowercase : Optional[int] = False if low == high: return swapped __lowercase : Optional[Any] = low __lowercase : Any = high while left < right: if collection[left] > collection[right]: __lowercase : List[Any] = ( collection[right], collection[left], ) __lowercase : Any = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: __lowercase : Any = ( collection[right + 1], collection[left], ) __lowercase : int = True __lowercase : int = low + int((high - low) / 2 ) __lowercase : Union[str, Any] = circle_sort_util(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : List[Any] = circle_sort_util(lowerCAmelCase_ , mid + 1 , lowerCAmelCase_ ) return swapped or left_swap or right_swap __lowercase : str = True while is_not_sorted is True: __lowercase : List[Any] = circle_sort_util(lowerCAmelCase_ , 0 , len(lowerCAmelCase_ ) - 1 ) return collection if __name__ == "__main__": lowerCamelCase : Tuple = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase : Tuple = [int(item) for item in user_input.split(''',''')] print(circle_sort(unsorted))
701
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowerCamelCase : Union[str, Any] = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , __a : List[str] , __a : Optional[int]=16 , __a : Optional[Any]=13 , __a : str=7 , __a : List[str]=14 , __a : Any=10 , __a : str=19 , __a : int=5 , __a : Any=4 , __a : List[Any]=True , __a : Tuple=16 , __a : Dict=2 , __a : Tuple=4 , __a : int=4 , __a : List[Any]="gelu" , __a : Tuple=0.1 , __a : List[str]=0.1 , __a : int=[1, 2, 3, 4, 5] , __a : str=25 , __a : Any=5 , ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = d_model __lowercase : Dict = parent __lowercase : Tuple = batch_size __lowercase : Optional[int] = prediction_length __lowercase : List[str] = context_length __lowercase : Any = cardinality __lowercase : str = num_time_features __lowercase : Optional[int] = lags_sequence __lowercase : Optional[Any] = embedding_dimension __lowercase : List[Any] = is_training __lowercase : List[str] = hidden_size __lowercase : int = num_hidden_layers __lowercase : Any = num_attention_heads __lowercase : List[Any] = intermediate_size __lowercase : int = hidden_act __lowercase : str = hidden_dropout_prob __lowercase : List[Any] = attention_probs_dropout_prob __lowercase : str = context_length __lowercase : int = prediction_length + label_length __lowercase : Union[str, Any] = label_length __lowercase : Optional[int] = moving_average __lowercase : Optional[Any] = autocorrelation_factor def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def lowerCAmelCase ( self : Tuple , __a : str ) -> int: """simple docstring""" __lowercase : Any = config.context_length + max(config.lags_sequence ) __lowercase : Any = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __lowercase : Optional[int] = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __lowercase : List[str] = floats_tensor([self.batch_size, _past_length] ) __lowercase : List[str] = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __lowercase : Dict = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __lowercase : str = floats_tensor([self.batch_size, config.prediction_length] ) __lowercase : List[str] = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.get_config() __lowercase : Any = self.prepare_autoformer_inputs_dict(__a ) return config, inputs_dict def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase , __lowercase : List[str] = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase ( self : Optional[Any] , __a : Tuple , __a : Optional[int] ) -> Any: """simple docstring""" __lowercase : List[str] = AutoformerModel(config=__a ).to(__a ).eval() __lowercase : Optional[int] = model(**__a ) __lowercase : Dict = outputs.encoder_last_hidden_state __lowercase : Tuple = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : List[str] = model.get_encoder() encoder.save_pretrained(__a ) __lowercase : List[str] = AutoformerEncoder.from_pretrained(__a ).to(__a ) __lowercase , __lowercase , __lowercase , __lowercase , __lowercase : Any = model.create_network_inputs(**__a ) __lowercase , __lowercase : Any = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __lowercase : Optional[Any] = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __lowercase : Union[str, Any] = encoder(inputs_embeds=__a )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) __lowercase : str = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __lowercase : Optional[int] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __lowercase : Any = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __lowercase : Dict = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : Optional[Any] = model.get_decoder() decoder.save_pretrained(__a ) __lowercase : Tuple = AutoformerDecoder.from_pretrained(__a ).to(__a ) __lowercase : str = decoder( trend=__a , inputs_embeds=__a , encoder_hidden_states=__a , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[str] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _A : List[Any] = (AutoformerForPrediction,) if is_torch_available() else () _A : Any = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} _A : Dict = False _A : Tuple = False _A : Optional[int] = False _A : Tuple = False _A : str = False _A : Union[str, Any] = False def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" __lowercase : List[str] = AutoformerModelTester(self ) __lowercase : Dict = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowercase : Dict = model_class(__a ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowercase , __lowercase : Tuple = model_class.from_pretrained(__a , output_loading_info=__a ) self.assertEqual(info["""missing_keys"""] , [] ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__a ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def lowerCAmelCase ( self : str ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : Any = inspect.signature(getattr(__a , """forward""" ) ) # The main input is the name of the argument after `self` __lowercase : Optional[int] = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , __a ) def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Dict = model_class(__a ) __lowercase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : Any = [*signature.parameters.keys()] __lowercase : int = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(__a )] , __a ) def lowerCAmelCase ( self : int ) -> int: """simple docstring""" __lowercase , __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : int = True __lowercase : Tuple = getattr(self.model_tester , """seq_length""" , __a ) __lowercase : Union[str, Any] = getattr(self.model_tester , """decoder_seq_length""" , __a ) __lowercase : List[str] = getattr(self.model_tester , """encoder_seq_length""" , __a ) __lowercase : List[Any] = getattr(self.model_tester , """d_model""" , __a ) __lowercase : Optional[int] = getattr(self.model_tester , """num_attention_heads""" , __a ) __lowercase : Any = d_model // num_attention_heads for model_class in self.all_model_classes: __lowercase : Dict = True __lowercase : List[str] = False __lowercase : Optional[int] = True __lowercase : str = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : int = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase : Optional[int] = True __lowercase : List[str] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Union[str, Any] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Dict = outputs.encoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __lowercase : Tuple = len(__a ) __lowercase : str = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__a , __a ) # decoder attentions __lowercase : List[Any] = outputs.decoder_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __lowercase : Optional[int] = outputs.cross_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __lowercase : Tuple = True __lowercase : Union[str, Any] = True __lowercase : Tuple = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Any = model(**self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + 2 , len(__a ) ) __lowercase : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def snake_case_ ( lowerCAmelCase_ : Optional[int]="train-batch.pt" ): __lowercase : Dict = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=lowerCAmelCase_ , repo_type="""dataset""" ) __lowercase : Optional[int] = torch.load(lowerCAmelCase_ , map_location=lowerCAmelCase_ ) return batch @require_torch @slow class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" __lowercase : List[str] = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : List[Any] = prepare_batch() with torch.no_grad(): __lowercase : Tuple = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] __lowercase : List[str] = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , __a ) __lowercase : Optional[int] = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" __lowercase : int = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : List[str] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowercase : Optional[Any] = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state __lowercase : List[str] = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , __a ) __lowercase : Optional[int] = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : Optional[int] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowercase : int = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) __lowercase : int = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , __a ) __lowercase : Optional[Any] = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=__a ) __lowercase : Dict = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __a , rtol=1E-1 ) )
649
0
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup lowerCamelCase : Any = logging.get_logger(__name__) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Any , **__a : List[str] ) -> List[Any]: """simple docstring""" requires_backends(self , ["""bs4"""] ) super().__init__(**__a ) def lowerCAmelCase ( self : List[Any] , __a : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase : str = [] __lowercase : int = [] __lowercase : Optional[int] = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag __lowercase : Optional[Any] = parent.find_all(child.name , recursive=__a ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(__a ) else next(i for i, s in enumerate(__a , 1 ) if s is child ) ) __lowercase : List[str] = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def lowerCAmelCase ( self : int , __a : Dict ) -> List[Any]: """simple docstring""" __lowercase : str = BeautifulSoup(__a , """html.parser""" ) __lowercase : Optional[int] = [] __lowercase : Optional[int] = [] __lowercase : str = [] for element in html_code.descendants: if type(__a ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue __lowercase : str = html.unescape(__a ).strip() if not text_in_this_tag: continue all_doc_strings.append(__a ) __lowercase : str = self.xpath_soup(__a ) stringaxtag_seq.append(__a ) stringaxsubs_seq.append(__a ) if len(__a ) != len(__a ): raise ValueError("""Number of doc strings and xtags does not correspond""" ) if len(__a ) != len(__a ): raise ValueError("""Number of doc strings and xsubs does not correspond""" ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def lowerCAmelCase ( self : List[str] , __a : Tuple , __a : Any ) -> Tuple: """simple docstring""" __lowercase : Optional[int] = """""" for tagname, subs in zip(__a , __a ): xpath += F"/{tagname}" if subs != 0: xpath += F"[{subs}]" return xpath def __call__( self : Optional[Any] , __a : List[str] ) -> BatchFeature: """simple docstring""" __lowercase : List[str] = False # Check that strings has a valid type if isinstance(__a , __a ): __lowercase : List[str] = True elif isinstance(__a , (list, tuple) ): if len(__a ) == 0 or isinstance(html_strings[0] , __a ): __lowercase : Union[str, Any] = True if not valid_strings: raise ValueError( """HTML strings must of type `str`, `List[str]` (batch of examples), """ F"but is of type {type(__a )}." ) __lowercase : Union[str, Any] = bool(isinstance(__a , (list, tuple) ) and (isinstance(html_strings[0] , __a )) ) if not is_batched: __lowercase : int = [html_strings] # Get nodes + xpaths __lowercase : Tuple = [] __lowercase : Any = [] for html_string in html_strings: __lowercase : Dict = self.get_three_from_single(__a ) nodes.append(__a ) __lowercase : List[str] = [] for node, tag_list, sub_list in zip(__a , __a , __a ): __lowercase : List[Any] = self.construct_xpath(__a , __a ) xpath_strings.append(__a ) xpaths.append(__a ) # return as Dict __lowercase : str = {"""nodes""": nodes, """xpaths""": xpaths} __lowercase : Optional[Any] = BatchFeature(data=__a , tensor_type=__a ) return encoded_inputs
702
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowerCAmelCase ( __a , __a ): '''simple docstring''' _A : str = 1 @register_to_config def __init__( self : Optional[int] , __a : Tuple=2000 , __a : List[str]=0.1 , __a : str=20 , __a : Optional[int]=1E-3 ) -> int: """simple docstring""" __lowercase : Tuple = None __lowercase : Union[str, Any] = None __lowercase : int = None def lowerCAmelCase ( self : List[Any] , __a : Any , __a : Union[str, torch.device] = None ) -> str: """simple docstring""" __lowercase : List[str] = torch.linspace(1 , self.config.sampling_eps , __a , device=__a ) def lowerCAmelCase ( self : Tuple , __a : List[Any] , __a : Tuple , __a : int , __a : Optional[int]=None ) -> str: """simple docstring""" if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __lowercase : Dict = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __lowercase : int = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __lowercase : Union[str, Any] = std.flatten() while len(std.shape ) < len(score.shape ): __lowercase : Optional[Any] = std.unsqueeze(-1 ) __lowercase : List[Any] = -score / std # compute __lowercase : Dict = -1.0 / len(self.timesteps ) __lowercase : int = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __lowercase : List[Any] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __lowercase : Union[str, Any] = beta_t.unsqueeze(-1 ) __lowercase : List[str] = -0.5 * beta_t * x __lowercase : int = torch.sqrt(__a ) __lowercase : Union[str, Any] = drift - diffusion**2 * score __lowercase : Optional[Any] = x + drift * dt # add noise __lowercase : List[str] = randn_tensor(x.shape , layout=x.layout , generator=__a , device=x.device , dtype=x.dtype ) __lowercase : str = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Tuple ) -> Optional[int]: """simple docstring""" return self.config.num_train_timesteps
649
0
lowerCamelCase : List[str] = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] ): # Return True if there is node that has not iterated. __lowercase : List[Any] = [False] * len(lowerCAmelCase_ ) __lowercase : List[Any] = [s] __lowercase : Dict = True while queue: __lowercase : List[str] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowerCAmelCase_ ) __lowercase : Dict = True __lowercase : List[str] = u return visited[t] def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] ): __lowercase : Optional[Any] = [-1] * (len(lowerCAmelCase_ )) __lowercase : str = 0 __lowercase : Tuple = [] __lowercase : List[Any] = [i[:] for i in graph] # Record original cut, copy. while bfs(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : List[Any] = float("""Inf""" ) __lowercase : Dict = sink while s != source: # Find the minimum value in select path __lowercase : List[Any] = min(lowerCAmelCase_ , graph[parent[s]][s] ) __lowercase : str = parent[s] max_flow += path_flow __lowercase : List[str] = sink while v != source: __lowercase : str = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __lowercase : Union[str, Any] = parent[v] for i in range(len(lowerCAmelCase_ ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
703
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : str = LongformerTokenizer _A : int = True _A : Optional[int] = LongformerTokenizerFast _A : int = True def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __lowercase : Union[str, Any] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Any = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __lowercase : Optional[int] = {"""unk_token""": """<unk>"""} __lowercase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__a ) ) def lowerCAmelCase ( self : Optional[int] , **__a : Optional[Any] ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Tuple , **__a : Tuple ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : str , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = """lower newer""" __lowercase : int = """lower newer""" return input_text, output_text def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowercase : Dict = """lower newer""" __lowercase : Optional[Any] = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] __lowercase : str = tokenizer.tokenize(__a ) # , add_prefix_space=True) self.assertListEqual(__a , __a ) __lowercase : int = tokens + [tokenizer.unk_token] __lowercase : str = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=__a ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=__a ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : Any = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" ) __lowercase : Optional[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=__a ) __lowercase : List[str] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__a ) __lowercase : Optional[Any] = tokenizer.encode( """sequence builders""" , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Union[str, Any] = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : List[Any] = tokenizer.build_inputs_with_special_tokens(__a ) __lowercase : Any = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() __lowercase : Tuple = """Encode this sequence.""" __lowercase : Optional[Any] = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments __lowercase : Dict = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__a , __a ) __lowercase : List[str] = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__a , __a ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) __lowercase : str = tokenizer.encode(__a , add_special_tokens=__a ) __lowercase : Dict = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__a , __a ) # Testing spaces after special tokens __lowercase : List[Any] = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(__a , lstrip=__a , rstrip=__a )} ) # mask token has a left space __lowercase : Dict = tokenizer.convert_tokens_to_ids(__a ) __lowercase : List[str] = """Encode <mask> sequence""" __lowercase : List[str] = """Encode <mask>sequence""" __lowercase : Union[str, Any] = tokenizer.encode(__a ) __lowercase : Dict = encoded.index(__a ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__a , __a ) __lowercase : int = tokenizer.encode(__a ) __lowercase : Union[str, Any] = encoded.index(__a ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__a , __a ) def lowerCAmelCase ( self : int ) -> str: """simple docstring""" pass def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) __lowercase : List[Any] = self.tokenizer_class.from_pretrained(__a , **__a ) __lowercase : Optional[Any] = """A, <mask> AllenNLP sentence.""" __lowercase : Union[str, Any] = tokenizer_r.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) __lowercase : Optional[Any] = tokenizer_p.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) __lowercase : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __lowercase : str = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __lowercase : Dict = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __lowercase : Any = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""trim_offsets"""] , __a ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : List[str] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` __lowercase : int = F"{text_of_1_token} {text_of_1_token}" __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Any = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) __lowercase : str = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Tuple = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) __lowercase : Optional[int] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : str = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) __lowercase : str = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : int = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) __lowercase : Any = F" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : str = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ) + 1, 1 + len(__a ) + 1 + len(__a )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Dict = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Tuple = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , )
649
0
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase : Any = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__a , """width_multiplier""" ) ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Any , __a : List[Any] , __a : Tuple=13 , __a : List[str]=64 , __a : List[str]=2 , __a : str=3 , __a : Union[str, Any]="swish" , __a : List[str]=3 , __a : str=32 , __a : List[str]=0.1 , __a : List[str]=0.02 , __a : Any=True , __a : Optional[Any]=True , __a : List[Any]=10 , __a : Any=None , __a : Optional[Any]=0.25 , __a : Optional[int]=0.0 , __a : Dict=0.0 , ) -> List[str]: """simple docstring""" __lowercase : int = parent __lowercase : Union[str, Any] = batch_size __lowercase : str = image_size __lowercase : Optional[Any] = patch_size __lowercase : Any = num_channels __lowercase : int = make_divisible(512 * width_multiplier , divisor=8 ) __lowercase : Union[str, Any] = hidden_act __lowercase : Optional[Any] = conv_kernel_size __lowercase : Optional[int] = output_stride __lowercase : List[Any] = classifier_dropout_prob __lowercase : Tuple = use_labels __lowercase : List[Any] = is_training __lowercase : Dict = num_labels __lowercase : Optional[int] = initializer_range __lowercase : int = scope __lowercase : Optional[int] = width_multiplier __lowercase : Any = ffn_dropout __lowercase : Optional[int] = attn_dropout def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" __lowercase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : List[Any] = None __lowercase : Any = None if self.use_labels: __lowercase : List[str] = ids_tensor([self.batch_size] , self.num_labels ) __lowercase : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowercase : Optional[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def lowerCAmelCase ( self : Optional[int] , __a : Tuple , __a : Tuple , __a : Any , __a : Dict ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = MobileViTVaModel(config=__a ) model.to(__a ) model.eval() __lowercase : Tuple = model(__a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase ( self : Optional[Any] , __a : Optional[Any] , __a : str , __a : Optional[Any] , __a : int ) -> str: """simple docstring""" __lowercase : Any = self.num_labels __lowercase : Dict = MobileViTVaForImageClassification(__a ) model.to(__a ) model.eval() __lowercase : Union[str, Any] = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Optional[Any] , __a : Dict , __a : Optional[Any] , __a : Optional[Any] , __a : Tuple ) -> Any: """simple docstring""" __lowercase : Dict = self.num_labels __lowercase : Union[str, Any] = MobileViTVaForSemanticSegmentation(__a ) model.to(__a ) model.eval() __lowercase : Optional[int] = model(__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __lowercase : List[str] = model(__a , labels=__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() __lowercase : Dict = config_and_inputs __lowercase : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[str] = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) _A : Optional[Any] = ( { '''feature-extraction''': MobileViTVaModel, '''image-classification''': MobileViTVaForImageClassification, '''image-segmentation''': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) _A : Tuple = False _A : str = False _A : List[str] = False _A : Any = False def lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase : int = MobileViTVaModelTester(self ) __lowercase : List[str] = MobileViTVaConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViTV2 does not use inputs_embeds""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""MobileViTV2 does not support input and output embeddings""" ) def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""MobileViTV2 does not output attentions""" ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason="""Got `CUDA error: misaligned address` for tests after this one being run.""" ) def lowerCAmelCase ( self : int ) -> str: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" pass def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[Any] = model_class(__a ) __lowercase : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : Optional[Any] = [*signature.parameters.keys()] __lowercase : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" def check_hidden_states_output(__a : Tuple , __a : Any , __a : List[str] ): __lowercase : List[str] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : List[Any] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Optional[int] = outputs.hidden_states __lowercase : Optional[int] = 5 self.assertEqual(len(__a ) , __a ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __lowercase : List[str] = 2 for i in range(len(__a ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[Any] = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase : List[Any] = True check_hidden_states_output(__a , __a , __a ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) def lowerCAmelCase ( self : int ) -> str: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a ) @slow def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : Union[str, Any] = MobileViTVaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def snake_case_ ( ): __lowercase : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" return ( MobileViTImageProcessor.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ) if is_vision_available() else None ) @slow def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = MobileViTVaForImageClassification.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ).to( __a ) __lowercase : Optional[int] = self.default_image_processor __lowercase : List[Any] = prepare_img() __lowercase : Dict = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : List[Any] = model(**__a ) # verify the logits __lowercase : int = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __a ) __lowercase : Union[str, Any] = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" __lowercase : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __lowercase : Tuple = model.to(__a ) __lowercase : List[str] = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __lowercase : Union[str, Any] = prepare_img() __lowercase : Union[str, Any] = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : Union[str, Any] = model(**__a ) __lowercase : Union[str, Any] = outputs.logits # verify the logits __lowercase : str = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __a ) __lowercase : List[str] = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=__a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Any = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __lowercase : Dict = model.to(__a ) __lowercase : str = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __lowercase : Tuple = prepare_img() __lowercase : List[str] = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : List[str] = model(**__a ) __lowercase : Optional[Any] = outputs.logits.detach().cpu() __lowercase : Any = image_processor.post_process_semantic_segmentation(outputs=__a , target_sizes=[(50, 60)] ) __lowercase : Optional[Any] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __a ) __lowercase : Dict = image_processor.post_process_semantic_segmentation(outputs=__a ) __lowercase : int = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __a )
704
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Dict , __a : Union[str, Any]=13 , __a : Dict=7 , __a : Dict=True , __a : Dict=True , __a : Any=True , __a : List[str]=True , __a : int=99 , __a : Optional[int]=32 , __a : str=2 , __a : int=4 , __a : List[str]=37 , __a : Union[str, Any]="gelu" , __a : Union[str, Any]=0.1 , __a : Union[str, Any]=0.1 , __a : List[Any]=512 , __a : int=16 , __a : Union[str, Any]=2 , __a : Union[str, Any]=0.02 , __a : List[str]=3 , __a : Dict=4 , __a : Optional[Any]=None , ) -> Optional[Any]: """simple docstring""" __lowercase : Any = parent __lowercase : Tuple = 13 __lowercase : Dict = 7 __lowercase : List[Any] = True __lowercase : Tuple = True __lowercase : List[str] = True __lowercase : Any = True __lowercase : Optional[int] = 99 __lowercase : str = 384 __lowercase : Optional[Any] = 2 __lowercase : Dict = 4 __lowercase : str = 37 __lowercase : Optional[int] = """gelu""" __lowercase : int = 0.1 __lowercase : Union[str, Any] = 0.1 __lowercase : Tuple = 512 __lowercase : Tuple = 16 __lowercase : Optional[int] = 2 __lowercase : Optional[Any] = 0.02 __lowercase : Dict = 3 __lowercase : Union[str, Any] = 4 __lowercase : Tuple = 128 __lowercase : Optional[Any] = 2 __lowercase : int = 9 __lowercase : List[Any] = 1 __lowercase : Union[str, Any] = None def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" __lowercase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : Optional[Any] = None if self.use_input_mask: __lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : Dict = None if self.use_token_type_ids: __lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase : Optional[Any] = None __lowercase : str = None __lowercase : Tuple = None if self.use_labels: __lowercase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : str = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : Optional[int] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Dict , __a : List[Any] , __a : List[str] , __a : Union[str, Any] , __a : str , __a : Union[str, Any] , __a : Tuple , __a : Tuple ) -> Dict: """simple docstring""" __lowercase : Dict = TFConvBertModel(config=__a ) __lowercase : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowercase : Any = [input_ids, input_mask] __lowercase : Dict = model(__a ) __lowercase : str = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : Any , __a : Tuple , __a : Union[str, Any] , __a : str , __a : Dict , __a : str ) -> Dict: """simple docstring""" __lowercase : Optional[int] = TFConvBertForMaskedLM(config=__a ) __lowercase : List[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : Any = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[int] , __a : int , __a : Any , __a : Optional[int] , __a : int , __a : int , __a : List[Any] , __a : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase : str = self.num_labels __lowercase : List[Any] = TFConvBertForSequenceClassification(config=__a ) __lowercase : int = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : List[str] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Optional[int] , __a : Any , __a : Optional[Any] , __a : int , __a : Optional[int] , __a : Tuple , __a : int , __a : int ) -> Dict: """simple docstring""" __lowercase : Tuple = self.num_choices __lowercase : Dict = TFConvBertForMultipleChoice(config=__a ) __lowercase : List[str] = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : int = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : str = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : str = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __lowercase : Dict = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : List[str] , __a : str , __a : List[str] , __a : List[str] , __a : List[str] , __a : Any , __a : Tuple , __a : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = self.num_labels __lowercase : Tuple = TFConvBertForTokenClassification(config=__a ) __lowercase : Dict = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : str = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : List[Any] , __a : Optional[int] , __a : List[str] , __a : Optional[Any] , __a : int , __a : Tuple , __a : Any , __a : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Any = TFConvBertForQuestionAnswering(config=__a ) __lowercase : str = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : List[Any] = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : Tuple = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : int = config_and_inputs __lowercase : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Dict = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _A : str = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _A : Union[str, Any] = False _A : List[str] = False _A : Dict = False def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : int = TFConvBertModelTester(self ) __lowercase : Tuple = ConfigTester(self , config_class=__a , hidden_size=37 ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__a ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Union[str, Any] = True __lowercase : List[Any] = True if hasattr(__a , """use_cache""" ): __lowercase : Optional[Any] = True __lowercase : List[str] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) __lowercase : int = getattr(self.model_tester , """key_length""" , __a ) for model_class in self.all_model_classes: __lowercase : Optional[Any] = self._prepare_for_class(__a , __a ) __lowercase : Tuple = model_class(__a ) __lowercase : Tuple = len(model(__a ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a , saved_model=__a ) __lowercase : List[Any] = os.path.join(__a , """saved_model""" , """1""" ) __lowercase : str = tf.keras.models.load_model(__a ) __lowercase : Optional[int] = model(__a ) if self.is_encoder_decoder: __lowercase : Union[str, Any] = outputs["""encoder_hidden_states"""] __lowercase : Union[str, Any] = outputs["""encoder_attentions"""] else: __lowercase : Union[str, Any] = outputs["""hidden_states"""] __lowercase : List[str] = outputs["""attentions"""] self.assertEqual(len(__a ) , __a ) __lowercase : List[Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : str = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) self.assertIsNotNone(__a ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : List[str] = True __lowercase : List[Any] = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length ) __lowercase : Optional[int] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) __lowercase : List[str] = getattr(self.model_tester , """key_length""" , __a ) __lowercase : List[Any] = getattr(self.model_tester , """key_length""" , __a ) def check_decoder_attentions_output(__a : List[str] ): __lowercase : Union[str, Any] = len(__a ) self.assertEqual(out_len % 2 , 0 ) __lowercase : Any = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__a : str ): __lowercase : str = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __lowercase : int = True __lowercase : Any = False __lowercase : List[Any] = model_class(__a ) __lowercase : Tuple = model(self._prepare_for_class(__a , __a ) ) __lowercase : Dict = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: __lowercase : Any = model_class(__a ) __lowercase : List[str] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __lowercase : Dict = True __lowercase : Optional[Any] = model_class(__a ) __lowercase : Optional[int] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine __lowercase : List[str] = True __lowercase : List[Any] = True __lowercase : Any = model_class(__a ) __lowercase : Optional[int] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @require_tf class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) __lowercase : str = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowercase : Tuple = model(__a )[0] __lowercase : Any = [1, 6, 768] self.assertEqual(output.shape , __a ) __lowercase : Optional[Any] = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-4 )
649
0
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging lowerCamelCase : List[Any] = ( '''https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py''' ) lowerCamelCase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name def snake_case_ ( ): __lowercase : List[Any] = """https://pypi.org/pypi/diffusers/json""" __lowercase : Tuple = json.loads(request.urlopen(lowerCAmelCase_ ).read() )["""releases"""].keys() return sorted(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : version.Version(lowerCAmelCase_ ) ) def snake_case_ ( ): # This function has already been executed if HF_MODULES_CACHE already is in the Python path. if HF_MODULES_CACHE in sys.path: return sys.path.append(lowerCAmelCase_ ) os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowercase : Any = Path(lowerCAmelCase_ ) / """__init__.py""" if not init_path.exists(): init_path.touch() def snake_case_ ( lowerCAmelCase_ : Union[str, os.PathLike] ): init_hf_modules() __lowercase : List[str] = Path(lowerCAmelCase_ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowercase : Union[str, Any] = dynamic_module_path / """__init__.py""" if not init_path.exists(): init_path.touch() def snake_case_ ( lowerCAmelCase_ : Union[str, Any] ): with open(lowerCAmelCase_ , """r""" , encoding="""utf-8""" ) as f: __lowercase : List[Any] = f.read() # Imports of the form `import .xxx` __lowercase : Tuple = re.findall("""^\s*import\s+\.(\S+)\s*$""" , lowerCAmelCase_ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("""^\s*from\s+\.(\S+)\s+import""" , lowerCAmelCase_ , flags=re.MULTILINE ) # Unique-ify return list(set(lowerCAmelCase_ ) ) def snake_case_ ( lowerCAmelCase_ : List[Any] ): __lowercase : List[str] = False __lowercase : Union[str, Any] = [module_file] __lowercase : int = [] # Let's recurse through all relative imports while not no_change: __lowercase : Any = [] for f in files_to_check: new_imports.extend(get_relative_imports(lowerCAmelCase_ ) ) __lowercase : List[Any] = Path(lowerCAmelCase_ ).parent __lowercase : Tuple = [str(module_path / m ) for m in new_imports] __lowercase : Union[str, Any] = [f for f in new_import_files if f not in all_relative_imports] __lowercase : str = [F"{f}.py" for f in new_import_files] __lowercase : Union[str, Any] = len(lowerCAmelCase_ ) == 0 all_relative_imports.extend(lowerCAmelCase_ ) return all_relative_imports def snake_case_ ( lowerCAmelCase_ : List[Any] ): with open(lowerCAmelCase_ , """r""" , encoding="""utf-8""" ) as f: __lowercase : List[Any] = f.read() # Imports of the form `import xxx` __lowercase : Dict = re.findall("""^\s*import\s+(\S+)\s*$""" , lowerCAmelCase_ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("""^\s*from\s+(\S+)\s+import""" , lowerCAmelCase_ , flags=re.MULTILINE ) # Only keep the top-level module __lowercase : Union[str, Any] = [imp.split(""".""" )[0] for imp in imports if not imp.startswith(""".""" )] # Unique-ify and test we got them all __lowercase : Optional[int] = list(set(lowerCAmelCase_ ) ) __lowercase : Tuple = [] for imp in imports: try: importlib.import_module(lowerCAmelCase_ ) except ImportError: missing_packages.append(lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 0: raise ImportError( """This modeling file requires the following packages that were not found in your environment: """ F"{', '.join(lowerCAmelCase_ )}. Run `pip install {' '.join(lowerCAmelCase_ )}`" ) return get_relative_imports(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] ): __lowercase : str = module_path.replace(os.path.sep , """.""" ) __lowercase : Optional[Any] = importlib.import_module(lowerCAmelCase_ ) if class_name is None: return find_pipeline_class(lowerCAmelCase_ ) return getattr(lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : Tuple ): from ..pipelines import DiffusionPipeline __lowercase : Optional[int] = dict(inspect.getmembers(lowerCAmelCase_ , inspect.isclass ) ) __lowercase : str = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , lowerCAmelCase_ ) and cls.__module__.split(""".""" )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F"Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:" F" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in" F" {loaded_module}." ) __lowercase : Tuple = cls return pipeline_class def snake_case_ ( lowerCAmelCase_ : Union[str, os.PathLike] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Union[str, os.PathLike]] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional[Dict[str, str]] = None , lowerCAmelCase_ : Optional[Union[bool, str]] = None , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : bool = False , ): __lowercase : Dict = str(lowerCAmelCase_ ) __lowercase : Any = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) if os.path.isfile(lowerCAmelCase_ ): __lowercase : Dict = module_file_or_url __lowercase : Union[str, Any] = """local""" elif pretrained_model_name_or_path.count("""/""" ) == 0: __lowercase : List[str] = get_diffusers_versions() # cut ".dev0" __lowercase : List[str] = """v""" + """.""".join(__version__.split(""".""" )[:3] ) # retrieve github version that matches if revision is None: __lowercase : Optional[int] = latest_version if latest_version[1:] in available_versions else """main""" logger.info(F"Defaulting to latest_version: {revision}." ) elif revision in available_versions: __lowercase : List[Any] = F"v{revision}" elif revision == "main": __lowercase : Tuple = revision else: raise ValueError( F"`custom_revision`: {revision} does not exist. Please make sure to choose one of" F" {', '.join(available_versions + ['main'] )}." ) # community pipeline on GitHub __lowercase : Optional[Any] = COMMUNITY_PIPELINES_URL.format(revision=lowerCAmelCase_ , pipeline=lowerCAmelCase_ ) try: __lowercase : Optional[int] = cached_download( lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , force_download=lowerCAmelCase_ , proxies=lowerCAmelCase_ , resume_download=lowerCAmelCase_ , local_files_only=lowerCAmelCase_ , use_auth_token=lowerCAmelCase_ , ) __lowercase : Any = """git""" __lowercase : Tuple = pretrained_model_name_or_path + """.py""" except EnvironmentError: logger.error(F"Could not locate the {module_file} inside {pretrained_model_name_or_path}." ) raise else: try: # Load from URL or cache if already cached __lowercase : Optional[int] = hf_hub_download( lowerCAmelCase_ , lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , force_download=lowerCAmelCase_ , proxies=lowerCAmelCase_ , resume_download=lowerCAmelCase_ , local_files_only=lowerCAmelCase_ , use_auth_token=lowerCAmelCase_ , ) __lowercase : List[str] = os.path.join("""local""" , """--""".join(pretrained_model_name_or_path.split("""/""" ) ) ) except EnvironmentError: logger.error(F"Could not locate the {module_file} inside {pretrained_model_name_or_path}." ) raise # Check we have all the requirements in our environment __lowercase : str = check_imports(lowerCAmelCase_ ) # Now we move the module inside our cached dynamic modules. __lowercase : Tuple = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(lowerCAmelCase_ ) __lowercase : List[Any] = Path(lowerCAmelCase_ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(lowerCAmelCase_ , submodule_path / module_file ) for module_needed in modules_needed: __lowercase : Any = F"{module_needed}.py" shutil.copy(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : int = use_auth_token elif use_auth_token is True: __lowercase : Optional[int] = HfFolder.get_token() else: __lowercase : Union[str, Any] = None __lowercase : Optional[Any] = model_info(lowerCAmelCase_ , revision=lowerCAmelCase_ , token=lowerCAmelCase_ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. __lowercase : Union[str, Any] = submodule_path / commit_hash __lowercase : int = full_submodule + os.path.sep + commit_hash create_dynamic_module(lowerCAmelCase_ ) if not (submodule_path / module_file).exists(): shutil.copy(lowerCAmelCase_ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( lowerCAmelCase_ , F"{module_needed}.py" , cache_dir=lowerCAmelCase_ , force_download=lowerCAmelCase_ , resume_download=lowerCAmelCase_ , proxies=lowerCAmelCase_ , use_auth_token=lowerCAmelCase_ , revision=lowerCAmelCase_ , local_files_only=lowerCAmelCase_ , ) return os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : Union[str, os.PathLike] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : Optional[Union[str, os.PathLike]] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional[Dict[str, str]] = None , lowerCAmelCase_ : Optional[Union[bool, str]] = None , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : bool = False , **lowerCAmelCase_ : str , ): __lowercase : Tuple = get_cached_module_file( lowerCAmelCase_ , lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , force_download=lowerCAmelCase_ , resume_download=lowerCAmelCase_ , proxies=lowerCAmelCase_ , use_auth_token=lowerCAmelCase_ , revision=lowerCAmelCase_ , local_files_only=lowerCAmelCase_ , ) return get_class_in_module(lowerCAmelCase_ , final_module.replace(""".py""" , """""" ) )
705
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : int , *__a : Dict , **__a : Optional[Any] ) -> None: """simple docstring""" warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , __a , ) super().__init__(*__a , **__a )
649
0
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Dict , __a : Union[str, Any]=13 , __a : Dict=7 , __a : Dict=True , __a : Dict=True , __a : Any=True , __a : List[str]=True , __a : int=99 , __a : Optional[int]=32 , __a : str=2 , __a : int=4 , __a : List[str]=37 , __a : Union[str, Any]="gelu" , __a : Union[str, Any]=0.1 , __a : Union[str, Any]=0.1 , __a : List[Any]=512 , __a : int=16 , __a : Union[str, Any]=2 , __a : Union[str, Any]=0.02 , __a : List[str]=3 , __a : Dict=4 , __a : Optional[Any]=None , ) -> Optional[Any]: """simple docstring""" __lowercase : Any = parent __lowercase : Tuple = 13 __lowercase : Dict = 7 __lowercase : List[Any] = True __lowercase : Tuple = True __lowercase : List[str] = True __lowercase : Any = True __lowercase : Optional[int] = 99 __lowercase : str = 384 __lowercase : Optional[Any] = 2 __lowercase : Dict = 4 __lowercase : str = 37 __lowercase : Optional[int] = """gelu""" __lowercase : int = 0.1 __lowercase : Union[str, Any] = 0.1 __lowercase : Tuple = 512 __lowercase : Tuple = 16 __lowercase : Optional[int] = 2 __lowercase : Optional[Any] = 0.02 __lowercase : Dict = 3 __lowercase : Union[str, Any] = 4 __lowercase : Tuple = 128 __lowercase : Optional[Any] = 2 __lowercase : int = 9 __lowercase : List[Any] = 1 __lowercase : Union[str, Any] = None def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" __lowercase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : Optional[Any] = None if self.use_input_mask: __lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : Dict = None if self.use_token_type_ids: __lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase : Optional[Any] = None __lowercase : str = None __lowercase : Tuple = None if self.use_labels: __lowercase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : str = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : Optional[int] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Dict , __a : List[Any] , __a : List[str] , __a : Union[str, Any] , __a : str , __a : Union[str, Any] , __a : Tuple , __a : Tuple ) -> Dict: """simple docstring""" __lowercase : Dict = TFConvBertModel(config=__a ) __lowercase : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowercase : Any = [input_ids, input_mask] __lowercase : Dict = model(__a ) __lowercase : str = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : Any , __a : Tuple , __a : Union[str, Any] , __a : str , __a : Dict , __a : str ) -> Dict: """simple docstring""" __lowercase : Optional[int] = TFConvBertForMaskedLM(config=__a ) __lowercase : List[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : Any = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[int] , __a : int , __a : Any , __a : Optional[int] , __a : int , __a : int , __a : List[Any] , __a : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase : str = self.num_labels __lowercase : List[Any] = TFConvBertForSequenceClassification(config=__a ) __lowercase : int = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : List[str] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Optional[int] , __a : Any , __a : Optional[Any] , __a : int , __a : Optional[int] , __a : Tuple , __a : int , __a : int ) -> Dict: """simple docstring""" __lowercase : Tuple = self.num_choices __lowercase : Dict = TFConvBertForMultipleChoice(config=__a ) __lowercase : List[str] = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : int = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : str = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : str = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __lowercase : Dict = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : List[str] , __a : str , __a : List[str] , __a : List[str] , __a : List[str] , __a : Any , __a : Tuple , __a : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = self.num_labels __lowercase : Tuple = TFConvBertForTokenClassification(config=__a ) __lowercase : Dict = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : str = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : List[Any] , __a : Optional[int] , __a : List[str] , __a : Optional[Any] , __a : int , __a : Tuple , __a : Any , __a : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Any = TFConvBertForQuestionAnswering(config=__a ) __lowercase : str = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : List[Any] = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : Tuple = self.prepare_config_and_inputs() ( __lowercase ) : int = config_and_inputs __lowercase : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Dict = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _A : str = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _A : Union[str, Any] = False _A : List[str] = False _A : Dict = False def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : int = TFConvBertModelTester(self ) __lowercase : Tuple = ConfigTester(self , config_class=__a , hidden_size=37 ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__a ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Union[str, Any] = True __lowercase : List[Any] = True if hasattr(__a , """use_cache""" ): __lowercase : Optional[Any] = True __lowercase : List[str] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) __lowercase : int = getattr(self.model_tester , """key_length""" , __a ) for model_class in self.all_model_classes: __lowercase : Optional[Any] = self._prepare_for_class(__a , __a ) __lowercase : Tuple = model_class(__a ) __lowercase : Tuple = len(model(__a ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a , saved_model=__a ) __lowercase : List[Any] = os.path.join(__a , """saved_model""" , """1""" ) __lowercase : str = tf.keras.models.load_model(__a ) __lowercase : Optional[int] = model(__a ) if self.is_encoder_decoder: __lowercase : Union[str, Any] = outputs["""encoder_hidden_states"""] __lowercase : Union[str, Any] = outputs["""encoder_attentions"""] else: __lowercase : Union[str, Any] = outputs["""hidden_states"""] __lowercase : List[str] = outputs["""attentions"""] self.assertEqual(len(__a ) , __a ) __lowercase : List[Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : str = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) self.assertIsNotNone(__a ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : List[str] = True __lowercase : List[Any] = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length ) __lowercase : Optional[int] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) __lowercase : List[str] = getattr(self.model_tester , """key_length""" , __a ) __lowercase : List[Any] = getattr(self.model_tester , """key_length""" , __a ) def check_decoder_attentions_output(__a : List[str] ): __lowercase : Union[str, Any] = len(__a ) self.assertEqual(out_len % 2 , 0 ) __lowercase : Any = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__a : str ): __lowercase : str = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __lowercase : int = True __lowercase : Any = False __lowercase : List[Any] = model_class(__a ) __lowercase : Tuple = model(self._prepare_for_class(__a , __a ) ) __lowercase : Dict = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: __lowercase : Any = model_class(__a ) __lowercase : List[str] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __lowercase : Dict = True __lowercase : Optional[Any] = model_class(__a ) __lowercase : Optional[int] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine __lowercase : List[str] = True __lowercase : List[Any] = True __lowercase : Any = model_class(__a ) __lowercase : Optional[int] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @require_tf class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) __lowercase : str = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowercase : Tuple = model(__a )[0] __lowercase : Any = [1, 6, 768] self.assertEqual(output.shape , __a ) __lowercase : Optional[Any] = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-4 )
706
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Optional[int] = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() __lowercase : List[str] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Dict = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } __lowercase : List[str] = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 16000, """return_attention_mask""": False, """do_normalize""": True, } __lowercase : Tuple = tempfile.mkdtemp() __lowercase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : str = os.path.join(self.tmpdirname , __a ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) # load decoder from hub __lowercase : Optional[int] = """hf-internal-testing/ngram-beam-search-decoder""" def lowerCAmelCase ( self : Optional[Any] , **__a : Dict ) -> Tuple: """simple docstring""" __lowercase : Union[str, Any] = self.add_kwargs_tokens_map.copy() kwargs.update(__a ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : str , **__a : int ) -> Tuple: """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Union[str, Any] , **__a : Union[str, Any] ) -> List[Any]: """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__a ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() __lowercase : Any = self.get_feature_extractor() __lowercase : str = self.get_decoder() __lowercase : Tuple = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) processor.save_pretrained(self.tmpdirname ) __lowercase : Tuple = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __a ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __a ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __a ) def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Any = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __lowercase : str = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : List[str] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(__a , """include""" ): WavaVecaProcessorWithLM( tokenizer=__a , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : List[Any] = self.get_feature_extractor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : int = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Optional[int] = floats_list((3, 1000) ) __lowercase : List[Any] = feature_extractor(__a , return_tensors="""np""" ) __lowercase : List[str] = processor(__a , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : List[Any] = self.get_feature_extractor() __lowercase : int = self.get_tokenizer() __lowercase : Dict = self.get_decoder() __lowercase : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Dict = """This is a test string""" __lowercase : Any = processor(text=__a ) __lowercase : Dict = tokenizer(__a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase ( self : str , __a : Tuple=(2, 10, 16) , __a : int=77 ) -> Optional[Any]: """simple docstring""" np.random.seed(__a ) return np.random.rand(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : List[str] = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : str = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : List[str] = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __lowercase : Optional[Any] = processor.decode(__a ) __lowercase : Any = decoder.decode_beams(__a )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def lowerCAmelCase ( self : List[str] , __a : Dict ) -> List[Any]: """simple docstring""" __lowercase : str = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : Optional[int] = self.get_decoder() __lowercase : Any = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Optional[Any] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __lowercase : Union[str, Any] = processor.batch_decode(__a ) else: with get_context(__a ).Pool() as pool: __lowercase : Optional[Any] = processor.batch_decode(__a , __a ) __lowercase : Union[str, Any] = list(__a ) with get_context("""fork""" ).Pool() as p: __lowercase : Optional[Any] = decoder.decode_beams_batch(__a , __a ) __lowercase , __lowercase , __lowercase : Any = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__a , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(__a , decoded_processor.logit_score ) self.assertListEqual(__a , decoded_processor.lm_score ) def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase : int = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : List[str] = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Dict = self._get_dummy_logits() __lowercase : Tuple = 15 __lowercase : Tuple = -20.0 __lowercase : Dict = -4.0 __lowercase : Dict = processor.batch_decode( __a , beam_width=__a , beam_prune_logp=__a , token_min_logp=__a , ) __lowercase : Tuple = decoded_processor_out.text __lowercase : List[Any] = list(__a ) with get_context("""fork""" ).Pool() as pool: __lowercase : Any = decoder.decode_beams_batch( __a , __a , beam_width=__a , beam_prune_logp=__a , token_min_logp=__a , ) __lowercase : Optional[Any] = [d[0][0] for d in decoded_decoder_out] __lowercase : Optional[int] = [d[0][2] for d in decoded_decoder_out] __lowercase : Optional[int] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__a , __a ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , __a ) self.assertTrue(np.array_equal(__a , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , __a , atol=1E-3 ) ) self.assertTrue(np.array_equal(__a , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , __a , atol=1E-3 ) ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase : str = self.get_feature_extractor() __lowercase : List[Any] = self.get_tokenizer() __lowercase : List[Any] = self.get_decoder() __lowercase : Dict = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : List[Any] = self._get_dummy_logits() __lowercase : Optional[int] = 2.0 __lowercase : Tuple = 5.0 __lowercase : Optional[Any] = -20.0 __lowercase : Tuple = True __lowercase : Union[str, Any] = processor.batch_decode( __a , alpha=__a , beta=__a , unk_score_offset=__a , lm_score_boundary=__a , ) __lowercase : Any = decoded_processor_out.text __lowercase : List[Any] = list(__a ) decoder.reset_params( alpha=__a , beta=__a , unk_score_offset=__a , lm_score_boundary=__a , ) with get_context("""fork""" ).Pool() as pool: __lowercase : Tuple = decoder.decode_beams_batch( __a , __a , ) __lowercase : int = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__a , __a ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , __a ) __lowercase : str = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , __a ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] __lowercase : str = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __lowercase : int = os.listdir(__a ) __lowercase : Optional[Any] = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = snapshot_download("""hf-internal-testing/processor_with_lm""" ) __lowercase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(__a ) __lowercase : Dict = processor.decoder.model_container[processor.decoder._model_key] __lowercase : List[Any] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __lowercase : Dict = os.listdir(__a ) __lowercase : List[Any] = os.listdir(__a ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" __lowercase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Dict = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Any = floats_list((3, 1000) ) __lowercase : List[str] = processor_wavaveca(__a , return_tensors="""np""" ) __lowercase : List[Any] = processor_auto(__a , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) __lowercase : List[str] = self._get_dummy_logits() __lowercase : List[str] = processor_wavaveca.batch_decode(__a ) __lowercase : Optional[int] = processor_auto.batch_decode(__a ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Any = self.get_feature_extractor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : Dict = self.get_decoder() __lowercase : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def lowerCAmelCase ( __a : Union[str, Any] , __a : List[Any] ) -> Dict: """simple docstring""" __lowercase : Any = [d[key] for d in offsets] return retrieved_list def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" __lowercase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Optional[Any] = self._get_dummy_logits()[0] __lowercase : Dict = processor.decode(__a , output_word_offsets=__a ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__a , __a ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : List[str] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Any = self._get_dummy_logits() __lowercase : Dict = processor.batch_decode(__a , output_word_offsets=__a ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__a , __a ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(__a , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" import torch __lowercase : Any = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=__a ) __lowercase : str = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=16000 ) ) __lowercase : Tuple = iter(__a ) __lowercase : Union[str, Any] = next(__a ) __lowercase : int = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) __lowercase : int = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __lowercase : Union[str, Any] = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): __lowercase : List[Any] = model(__a ).logits.cpu().numpy() __lowercase : Tuple = processor.decode(logits[0] , output_word_offsets=__a ) __lowercase : int = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __lowercase : Optional[Any] = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] __lowercase : str = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(__a , """word""" ) ) , __a ) self.assertEqual(""" """.join(self.get_from_offsets(__a , """word""" ) ) , output.text ) # output times __lowercase : Tuple = torch.tensor(self.get_from_offsets(__a , """start_time""" ) ) __lowercase : Dict = torch.tensor(self.get_from_offsets(__a , """end_time""" ) ) # fmt: off __lowercase : List[Any] = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) __lowercase : Optional[int] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(__a , __a , atol=0.01 ) ) self.assertTrue(torch.allclose(__a , __a , atol=0.01 ) )
649
0
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCamelCase : Any = 16 lowerCamelCase : Optional[Any] = 32 def snake_case_ ( lowerCAmelCase_ : Accelerator , lowerCAmelCase_ : int = 16 ): __lowercase : str = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __lowercase : str = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowerCAmelCase_ : str ): # max_length=None => use the model max length (it's actually the default) __lowercase : Any = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowercase : Optional[int] = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowercase : str = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCAmelCase_ : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowercase : str = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowercase : str = 16 elif accelerator.mixed_precision != "no": __lowercase : Union[str, Any] = 8 else: __lowercase : Any = None return tokenizer.pad( lowerCAmelCase_ , padding="""longest""" , max_length=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_tensors="""pt""" , ) # Instantiate dataloaders. __lowercase : Union[str, Any] = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ , drop_last=lowerCAmelCase_ ) __lowercase : int = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ , drop_last=(accelerator.mixed_precision == """fp8""") , ) return train_dataloader, eval_dataloader def snake_case_ ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any ): # Initialize accelerator __lowercase : Optional[int] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowercase : Any = config["""lr"""] __lowercase : Union[str, Any] = int(config["""num_epochs"""] ) __lowercase : Optional[int] = int(config["""seed"""] ) __lowercase : Optional[Any] = int(config["""batch_size"""] ) __lowercase : Optional[int] = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation __lowercase : Any = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __lowercase : List[str] = batch_size // MAX_GPU_BATCH_SIZE __lowercase : Optional[Any] = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase_ ) __lowercase : List[str] = get_dataloaders(lowerCAmelCase_ , lowerCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowercase : Tuple = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowercase : Any = model.to(accelerator.device ) # Instantiate optimizer __lowercase : int = AdamW(params=model.parameters() , lr=lowerCAmelCase_ ) # Instantiate scheduler __lowercase : List[Any] = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowercase : List[str] = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __lowercase : Optional[int] = model(**lowerCAmelCase_ ) __lowercase : Any = outputs.loss __lowercase : Optional[Any] = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowercase : List[str] = model(**lowerCAmelCase_ ) __lowercase : int = outputs.logits.argmax(dim=-1 ) __lowercase : Tuple = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowerCAmelCase_ , references=lowerCAmelCase_ , ) __lowercase : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , lowerCAmelCase_ ) def snake_case_ ( ): __lowercase : Union[str, Any] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) __lowercase : List[Any] = parser.parse_args() __lowercase : List[str] = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
707
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(0 ) == 0 ) def snake_case_ ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
649
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Tuple = {'''vocab_file''': '''spiece.model'''} lowerCamelCase : str = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', } } lowerCamelCase : Any = { '''albert-base-v1''': 5_12, '''albert-large-v1''': 5_12, '''albert-xlarge-v1''': 5_12, '''albert-xxlarge-v1''': 5_12, '''albert-base-v2''': 5_12, '''albert-large-v2''': 5_12, '''albert-xlarge-v2''': 5_12, '''albert-xxlarge-v2''': 5_12, } lowerCamelCase : Optional[Any] = '''▁''' class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[Any] = VOCAB_FILES_NAMES _A : int = PRETRAINED_VOCAB_FILES_MAP _A : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Union[str, Any] , __a : str , __a : List[Any]=True , __a : List[Any]=True , __a : List[str]=False , __a : Any="[CLS]" , __a : Tuple="[SEP]" , __a : Tuple="<unk>" , __a : str="[SEP]" , __a : Tuple="<pad>" , __a : Tuple="[CLS]" , __a : Dict="[MASK]" , __a : Optional[Dict[str, Any]] = None , **__a : List[str] , ) -> None: """simple docstring""" __lowercase : Dict = ( AddedToken(__a , lstrip=__a , rstrip=__a , normalized=__a ) if isinstance(__a , __a ) else mask_token ) __lowercase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__a , remove_space=__a , keep_accents=__a , bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , ) __lowercase : List[Any] = do_lower_case __lowercase : str = remove_space __lowercase : Optional[Any] = keep_accents __lowercase : Any = vocab_file __lowercase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__a ) @property def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" return len(self.sp_model ) def lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = {self.convert_ids_to_tokens(__a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ) -> Dict: """simple docstring""" __lowercase : Any = self.__dict__.copy() __lowercase : Dict = None return state def __setstate__( self : Dict , __a : str ) -> Optional[int]: """simple docstring""" __lowercase : int = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __lowercase : List[str] = {} __lowercase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase ( self : int , __a : Optional[int] ) -> int: """simple docstring""" if self.remove_space: __lowercase : Union[str, Any] = """ """.join(inputs.strip().split() ) else: __lowercase : Any = inputs __lowercase : Optional[int] = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: __lowercase : Optional[int] = unicodedata.normalize("""NFKD""" , __a ) __lowercase : Optional[Any] = """""".join([c for c in outputs if not unicodedata.combining(__a )] ) if self.do_lower_case: __lowercase : str = outputs.lower() return outputs def lowerCAmelCase ( self : Tuple , __a : str ) -> List[str]: """simple docstring""" __lowercase : Union[str, Any] = self.preprocess_text(__a ) __lowercase : Optional[Any] = self.sp_model.encode(__a , out_type=__a ) __lowercase : Optional[Any] = [] for piece in pieces: if len(__a ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): __lowercase : int = self.sp_model.EncodeAsPieces(piece[:-1].replace(__a , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __lowercase : Optional[int] = cur_pieces[1:] else: __lowercase : str = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__a ) else: new_pieces.append(__a ) return new_pieces def lowerCAmelCase ( self : Tuple , __a : Dict ) -> Optional[Any]: """simple docstring""" return self.sp_model.PieceToId(__a ) def lowerCAmelCase ( self : Union[str, Any] , __a : Union[str, Any] ) -> List[str]: """simple docstring""" return self.sp_model.IdToPiece(__a ) def lowerCAmelCase ( self : Union[str, Any] , __a : List[Any] ) -> List[str]: """simple docstring""" __lowercase : Any = [] __lowercase : Dict = """""" __lowercase : str = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__a ) + token __lowercase : Optional[Any] = True __lowercase : List[str] = [] else: current_sub_tokens.append(__a ) __lowercase : Optional[Any] = False out_string += self.sp_model.decode(__a ) return out_string.strip() def lowerCAmelCase ( self : str , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __lowercase : Optional[int] = [self.sep_token_id] __lowercase : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase ( self : int , __a : List[int] , __a : Optional[List[int]] = None , __a : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) if token_ids_a is not None: return [1] + ([0] * len(__a )) + [1] + ([0] * len(__a )) + [1] return [1] + ([0] * len(__a )) + [1] def lowerCAmelCase ( self : Optional[int] , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __lowercase : List[str] = [self.sep_token_id] __lowercase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase ( self : Any , __a : str , __a : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__a ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __lowercase : Optional[Any] = os.path.join( __a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __a ) elif not os.path.isfile(self.vocab_file ): with open(__a , """wb""" ) as fi: __lowercase : Tuple = self.sp_model.serialized_model_proto() fi.write(__a ) return (out_vocab_file,)
708
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCamelCase : int = '''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine''' def snake_case_ ( ): __lowercase : List[Any] = _ask_options( """In which compute environment are you running?""" , ["""This machine""", """AWS (Amazon SageMaker)"""] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __lowercase : Union[str, Any] = get_sagemaker_input() else: __lowercase : str = get_cluster_input() return config def snake_case_ ( lowerCAmelCase_ : List[str]=None ): if subparsers is not None: __lowercase : Optional[int] = subparsers.add_parser("""config""" , description=lowerCAmelCase_ ) else: __lowercase : List[str] = argparse.ArgumentParser("""Accelerate config command""" , description=lowerCAmelCase_ ) parser.add_argument( """--config_file""" , default=lowerCAmelCase_ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def snake_case_ ( lowerCAmelCase_ : Tuple ): __lowercase : Union[str, Any] = get_user_input() if args.config_file is not None: __lowercase : List[Any] = args.config_file else: if not os.path.isdir(lowerCAmelCase_ ): os.makedirs(lowerCAmelCase_ ) __lowercase : Any = default_yaml_config_file if config_file.endswith(""".json""" ): config.to_json_file(lowerCAmelCase_ ) else: config.to_yaml_file(lowerCAmelCase_ ) print(F"accelerate configuration saved at {config_file}" ) def snake_case_ ( ): __lowercase : str = config_command_parser() __lowercase : str = parser.parse_args() config_command(lowerCAmelCase_ ) if __name__ == "__main__": main()
649
0
from datetime import datetime import requests def snake_case_ ( lowerCAmelCase_ : str ): __lowercase : Any = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url=""" __lowercase : Dict = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""] return requests.get(lowerCAmelCase_ ).content if __name__ == "__main__": lowerCamelCase : List[Any] = input('''Enter Video/IGTV url: ''').strip() lowerCamelCase : Any = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, '''wb''') as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
709
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : list[str] | None = None ): __lowercase : Tuple = word_bank or [] # create a table __lowercase : int = len(lowerCAmelCase_ ) + 1 __lowercase : list[list[list[str]]] = [] for _ in range(lowerCAmelCase_ ): table.append([] ) # seed value __lowercase : Dict = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowerCAmelCase_ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowerCAmelCase_ )] == word: __lowercase : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowerCAmelCase_ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowerCAmelCase_ )]: combination.reverse() return table[len(lowerCAmelCase_ )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
649
0
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : Union[str, Any] = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def lowerCAmelCase ( self : int , __a : List[Any]=0 ) -> str: """simple docstring""" __lowercase : str = floats_tensor((1, 3, 128, 128) , rng=random.Random(__a ) ) __lowercase : int = np.random.RandomState(__a ) __lowercase : str = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """strength""": 0.75, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : Dict = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=__a ) __lowercase : List[str] = self.get_dummy_inputs() __lowercase : Optional[Any] = pipe(**__a ).images __lowercase : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) __lowercase : Optional[Any] = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase : Optional[Any] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__a ) pipe.set_progress_bar_config(disable=__a ) __lowercase : Optional[int] = self.get_dummy_inputs() __lowercase : Union[str, Any] = pipe(**__a ).images __lowercase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase : str = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Dict = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase : List[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__a ) # warmup pass to apply optimizations __lowercase : Optional[int] = pipe(**self.get_dummy_inputs() ) __lowercase : Dict = self.get_dummy_inputs() __lowercase : Any = pipe(**__a ).images __lowercase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase : Union[str, Any] = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase : Any = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__a ) __lowercase : Dict = self.get_dummy_inputs() __lowercase : str = pipe(**__a ).images __lowercase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase : List[Any] = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" __lowercase : Tuple = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase : int = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__a ) __lowercase : Optional[int] = self.get_dummy_inputs() __lowercase : Optional[int] = pipe(**__a ).images __lowercase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase : Optional[Any] = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__a ) __lowercase : str = self.get_dummy_inputs() __lowercase : Optional[Any] = pipe(**__a ).images __lowercase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase : List[Any] = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" __lowercase : List[Any] = ort.SessionOptions() __lowercase : Tuple = False return options def lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" __lowercase : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) __lowercase : Tuple = init_image.resize((768, 512) ) # using the PNDM scheduler by default __lowercase : List[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=__a , feature_extractor=__a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__a ) __lowercase : str = """A fantasy landscape, trending on artstation""" __lowercase : Tuple = np.random.RandomState(0 ) __lowercase : Any = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=__a , output_type="""np""" , ) __lowercase : int = output.images __lowercase : Tuple = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __lowercase : int = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" __lowercase : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) __lowercase : Optional[Any] = init_image.resize((768, 512) ) __lowercase : Dict = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __lowercase : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=__a , safety_checker=__a , feature_extractor=__a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__a ) __lowercase : Any = """A fantasy landscape, trending on artstation""" __lowercase : Dict = np.random.RandomState(0 ) __lowercase : Optional[int] = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=__a , output_type="""np""" , ) __lowercase : str = output.images __lowercase : Tuple = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __lowercase : str = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
710
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(1 ) != 0 ) def snake_case_ ( ): assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
649
0
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : int = { '''b0''': efficientnet.EfficientNetBa, '''b1''': efficientnet.EfficientNetBa, '''b2''': efficientnet.EfficientNetBa, '''b3''': efficientnet.EfficientNetBa, '''b4''': efficientnet.EfficientNetBa, '''b5''': efficientnet.EfficientNetBa, '''b6''': efficientnet.EfficientNetBa, '''b7''': efficientnet.EfficientNetBa, } lowerCamelCase : Dict = { '''b0''': { '''hidden_dim''': 12_80, '''width_coef''': 1.0, '''depth_coef''': 1.0, '''image_size''': 2_24, '''dropout_rate''': 0.2, '''dw_padding''': [], }, '''b1''': { '''hidden_dim''': 12_80, '''width_coef''': 1.0, '''depth_coef''': 1.1, '''image_size''': 2_40, '''dropout_rate''': 0.2, '''dw_padding''': [16], }, '''b2''': { '''hidden_dim''': 14_08, '''width_coef''': 1.1, '''depth_coef''': 1.2, '''image_size''': 2_60, '''dropout_rate''': 0.3, '''dw_padding''': [5, 8, 16], }, '''b3''': { '''hidden_dim''': 15_36, '''width_coef''': 1.2, '''depth_coef''': 1.4, '''image_size''': 3_00, '''dropout_rate''': 0.3, '''dw_padding''': [5, 18], }, '''b4''': { '''hidden_dim''': 17_92, '''width_coef''': 1.4, '''depth_coef''': 1.8, '''image_size''': 3_80, '''dropout_rate''': 0.4, '''dw_padding''': [6], }, '''b5''': { '''hidden_dim''': 20_48, '''width_coef''': 1.6, '''depth_coef''': 2.2, '''image_size''': 4_56, '''dropout_rate''': 0.4, '''dw_padding''': [13, 27], }, '''b6''': { '''hidden_dim''': 23_04, '''width_coef''': 1.8, '''depth_coef''': 2.6, '''image_size''': 5_28, '''dropout_rate''': 0.5, '''dw_padding''': [31], }, '''b7''': { '''hidden_dim''': 25_60, '''width_coef''': 2.0, '''depth_coef''': 3.1, '''image_size''': 6_00, '''dropout_rate''': 0.5, '''dw_padding''': [18], }, } def snake_case_ ( lowerCAmelCase_ : Tuple ): __lowercase : Union[str, Any] = EfficientNetConfig() __lowercase : int = CONFIG_MAP[model_name]["""hidden_dim"""] __lowercase : List[Any] = CONFIG_MAP[model_name]["""width_coef"""] __lowercase : Union[str, Any] = CONFIG_MAP[model_name]["""depth_coef"""] __lowercase : List[Any] = CONFIG_MAP[model_name]["""image_size"""] __lowercase : List[Any] = CONFIG_MAP[model_name]["""dropout_rate"""] __lowercase : Dict = CONFIG_MAP[model_name]["""dw_padding"""] __lowercase : int = """huggingface/label-files""" __lowercase : int = """imagenet-1k-id2label.json""" __lowercase : Dict = 1000 __lowercase : str = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) __lowercase : Tuple = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowercase : Optional[Any] = idalabel __lowercase : str = {v: k for k, v in idalabel.items()} return config def snake_case_ ( ): __lowercase : Optional[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase : List[Any] = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im def snake_case_ ( lowerCAmelCase_ : Optional[int] ): __lowercase : Tuple = CONFIG_MAP[model_name]["""image_size"""] __lowercase : Any = EfficientNetImageProcessor( size={"""height""": size, """width""": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47_853_944, 0.4_732_864, 0.47_434_163] , do_center_crop=lowerCAmelCase_ , ) return preprocessor def snake_case_ ( lowerCAmelCase_ : Optional[Any] ): __lowercase : Any = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] __lowercase : Optional[int] = sorted(set(lowerCAmelCase_ ) ) __lowercase : Optional[int] = len(lowerCAmelCase_ ) __lowercase : Union[str, Any] = {b: str(lowerCAmelCase_ ) for b, i in zip(lowerCAmelCase_ , range(lowerCAmelCase_ ) )} __lowercase : Any = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: __lowercase : List[Any] = block_name_mapping[b] rename_keys.append((F"block{b}_expand_conv/kernel:0", F"encoder.blocks.{hf_b}.expansion.expand_conv.weight") ) rename_keys.append((F"block{b}_expand_bn/gamma:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.weight") ) rename_keys.append((F"block{b}_expand_bn/beta:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.bias") ) rename_keys.append( (F"block{b}_expand_bn/moving_mean:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.running_mean") ) rename_keys.append( (F"block{b}_expand_bn/moving_variance:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.running_var") ) rename_keys.append( (F"block{b}_dwconv/depthwise_kernel:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight") ) rename_keys.append((F"block{b}_bn/gamma:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight") ) rename_keys.append((F"block{b}_bn/beta:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias") ) rename_keys.append( (F"block{b}_bn/moving_mean:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean") ) rename_keys.append( (F"block{b}_bn/moving_variance:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var") ) rename_keys.append((F"block{b}_se_reduce/kernel:0", F"encoder.blocks.{hf_b}.squeeze_excite.reduce.weight") ) rename_keys.append((F"block{b}_se_reduce/bias:0", F"encoder.blocks.{hf_b}.squeeze_excite.reduce.bias") ) rename_keys.append((F"block{b}_se_expand/kernel:0", F"encoder.blocks.{hf_b}.squeeze_excite.expand.weight") ) rename_keys.append((F"block{b}_se_expand/bias:0", F"encoder.blocks.{hf_b}.squeeze_excite.expand.bias") ) rename_keys.append( (F"block{b}_project_conv/kernel:0", F"encoder.blocks.{hf_b}.projection.project_conv.weight") ) rename_keys.append((F"block{b}_project_bn/gamma:0", F"encoder.blocks.{hf_b}.projection.project_bn.weight") ) rename_keys.append((F"block{b}_project_bn/beta:0", F"encoder.blocks.{hf_b}.projection.project_bn.bias") ) rename_keys.append( (F"block{b}_project_bn/moving_mean:0", F"encoder.blocks.{hf_b}.projection.project_bn.running_mean") ) rename_keys.append( (F"block{b}_project_bn/moving_variance:0", F"encoder.blocks.{hf_b}.projection.project_bn.running_var") ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) __lowercase : List[str] = {} for item in rename_keys: if item[0] in original_param_names: __lowercase : List[str] = """efficientnet.""" + item[1] __lowercase : Optional[Any] = """classifier.weight""" __lowercase : Optional[int] = """classifier.bias""" return key_mapping def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict ): for key, value in tf_params.items(): if "normalization" in key: continue __lowercase : str = key_mapping[key] if "_conv" in key and "kernel" in key: __lowercase : List[str] = torch.from_numpy(lowerCAmelCase_ ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: __lowercase : int = torch.from_numpy(lowerCAmelCase_ ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: __lowercase : Tuple = torch.from_numpy(np.transpose(lowerCAmelCase_ ) ) else: __lowercase : List[Any] = torch.from_numpy(lowerCAmelCase_ ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowerCAmelCase_ ) @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict ): __lowercase : int = model_classes[model_name]( include_top=lowerCAmelCase_ , weights="""imagenet""" , input_tensor=lowerCAmelCase_ , input_shape=lowerCAmelCase_ , pooling=lowerCAmelCase_ , classes=1000 , classifier_activation="""softmax""" , ) __lowercase : Tuple = original_model.trainable_variables __lowercase : str = original_model.non_trainable_variables __lowercase : Optional[int] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: __lowercase : Optional[Any] = param.numpy() __lowercase : Optional[Any] = list(tf_params.keys() ) # Load HuggingFace model __lowercase : str = get_efficientnet_config(lowerCAmelCase_ ) __lowercase : List[Any] = EfficientNetForImageClassification(lowerCAmelCase_ ).eval() __lowercase : Union[str, Any] = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) __lowercase : List[str] = rename_keys(lowerCAmelCase_ ) replace_params(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Initialize preprocessor and preprocess input image __lowercase : Optional[Any] = convert_image_processor(lowerCAmelCase_ ) __lowercase : Any = preprocessor(images=prepare_img() , return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): __lowercase : Tuple = hf_model(**lowerCAmelCase_ ) __lowercase : List[Any] = outputs.logits.detach().numpy() # Original model inference __lowercase : Any = False __lowercase : Optional[Any] = CONFIG_MAP[model_name]["""image_size"""] __lowercase : int = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) __lowercase : Tuple = image.img_to_array(lowerCAmelCase_ ) __lowercase : str = np.expand_dims(lowerCAmelCase_ , axis=0 ) __lowercase : Optional[Any] = original_model.predict(lowerCAmelCase_ ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(lowerCAmelCase_ ): os.mkdir(lowerCAmelCase_ ) # Save converted model and image processor hf_model.save_pretrained(lowerCAmelCase_ ) preprocessor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: # Push model and image processor to hub print(F"Pushing converted {model_name} to the hub..." ) __lowercase : List[str] = F"efficientnet-{model_name}" preprocessor.push_to_hub(lowerCAmelCase_ ) hf_model.push_to_hub(lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''b0''', type=str, help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''hf_model''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''') parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') lowerCamelCase : Any = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
711
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : int = { '''configuration_funnel''': ['''FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FunnelConfig'''], '''convert_funnel_original_tf_checkpoint_to_pytorch''': [], '''tokenization_funnel''': ['''FunnelTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = ['''FunnelTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = [ '''FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FunnelBaseModel''', '''FunnelForMaskedLM''', '''FunnelForMultipleChoice''', '''FunnelForPreTraining''', '''FunnelForQuestionAnswering''', '''FunnelForSequenceClassification''', '''FunnelForTokenClassification''', '''FunnelModel''', '''FunnelPreTrainedModel''', '''load_tf_weights_in_funnel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ '''TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFFunnelBaseModel''', '''TFFunnelForMaskedLM''', '''TFFunnelForMultipleChoice''', '''TFFunnelForPreTraining''', '''TFFunnelForQuestionAnswering''', '''TFFunnelForSequenceClassification''', '''TFFunnelForTokenClassification''', '''TFFunnelModel''', '''TFFunnelPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
649
0
def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): if index == number_of_items: return 0 __lowercase : Optional[Any] = 0 __lowercase : int = 0 __lowercase : Any = knapsack(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , index + 1 ) if weights[index] <= max_weight: __lowercase : str = values[index] + knapsack( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , max_weight - weights[index] , index + 1 ) return max(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
712
import logging import os import threading import time try: import warnings except ImportError: lowerCamelCase : Any = None try: import msvcrt except ImportError: lowerCamelCase : str = None try: import fcntl except ImportError: lowerCamelCase : Optional[Any] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: lowerCamelCase : Union[str, Any] = OSError # Data # ------------------------------------------------ lowerCamelCase : Tuple = [ '''Timeout''', '''BaseFileLock''', '''WindowsFileLock''', '''UnixFileLock''', '''SoftFileLock''', '''FileLock''', ] lowerCamelCase : Tuple = '''3.0.12''' lowerCamelCase : Any = None def snake_case_ ( ): global _logger __lowercase : List[str] = _logger or logging.getLogger(__name__ ) return _logger class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Any , __a : Any ) -> List[Any]: """simple docstring""" __lowercase : List[str] = lock_file return None def __str__( self : str ) -> Any: """simple docstring""" __lowercase : Any = F"The file lock '{self.lock_file}' could not be acquired." return temp class lowerCAmelCase : '''simple docstring''' def __init__( self : List[Any] , __a : Optional[int] ) -> int: """simple docstring""" __lowercase : Optional[Any] = lock return None def __enter__( self : Dict ) -> Dict: """simple docstring""" return self.lock def __exit__( self : Optional[int] , __a : Dict , __a : Any , __a : Tuple ) -> Optional[Any]: """simple docstring""" self.lock.release() return None class lowerCAmelCase : '''simple docstring''' def __init__( self : Tuple , __a : Any , __a : Dict=-1 , __a : Optional[Any]=None ) -> Any: """simple docstring""" __lowercase : Optional[int] = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long __lowercase : Dict = self.hash_filename_if_too_long(__a , __a ) # The path to the lock file. __lowercase : Optional[Any] = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __lowercase : int = None # The default timeout value. __lowercase : Optional[int] = timeout # We use this lock primarily for the lock counter. __lowercase : Optional[Any] = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __lowercase : Union[str, Any] = 0 return None @property def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return self._lock_file @property def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return self._timeout @timeout.setter def lowerCAmelCase ( self : Tuple , __a : Tuple ) -> Dict: """simple docstring""" __lowercase : Tuple = float(__a ) return None def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" raise NotImplementedError() def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" raise NotImplementedError() @property def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" return self._lock_file_fd is not None def lowerCAmelCase ( self : Any , __a : Optional[Any]=None , __a : Union[str, Any]=0.05 ) -> List[str]: """simple docstring""" if timeout is None: __lowercase : Union[str, Any] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __lowercase : int = id(self ) __lowercase : Optional[Any] = self._lock_file __lowercase : List[str] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"Attempting to acquire lock {lock_id} on {lock_filename}" ) self._acquire() if self.is_locked: logger().debug(F"Lock {lock_id} acquired on {lock_filename}" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"Timeout on acquiring lock {lock_id} on {lock_filename}" ) raise Timeout(self._lock_file ) else: logger().debug( F"Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ..." ) time.sleep(__a ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __lowercase : Optional[int] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def lowerCAmelCase ( self : Union[str, Any] , __a : Optional[Any]=False ) -> Optional[Any]: """simple docstring""" with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __lowercase : Optional[Any] = id(self ) __lowercase : str = self._lock_file logger().debug(F"Attempting to release lock {lock_id} on {lock_filename}" ) self._release() __lowercase : List[str] = 0 logger().debug(F"Lock {lock_id} released on {lock_filename}" ) return None def __enter__( self : Any ) -> Optional[Any]: """simple docstring""" self.acquire() return self def __exit__( self : List[str] , __a : str , __a : int , __a : List[Any] ) -> Tuple: """simple docstring""" self.release() return None def __del__( self : Optional[int] ) -> Optional[int]: """simple docstring""" self.release(force=__a ) return None def lowerCAmelCase ( self : Tuple , __a : str , __a : int ) -> str: """simple docstring""" __lowercase : List[Any] = os.path.basename(__a ) if len(__a ) > max_length and max_length > 0: __lowercase : int = os.path.dirname(__a ) __lowercase : List[str] = str(hash(__a ) ) __lowercase : Optional[Any] = filename[: max_length - len(__a ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(__a , __a ) else: return path class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Union[str, Any] , __a : List[Any] , __a : Optional[int]=-1 , __a : Tuple=None ) -> List[Any]: """simple docstring""" from .file_utils import relative_to_absolute_path super().__init__(__a , timeout=__a , max_filename_length=__a ) __lowercase : Tuple = """\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __lowercase : Tuple = os.open(self._lock_file , __a ) except OSError: pass else: try: msvcrt.locking(__a , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__a ) else: __lowercase : Union[str, Any] = fd return None def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = self._lock_file_fd __lowercase : int = None msvcrt.locking(__a , msvcrt.LK_UNLCK , 1 ) os.close(__a ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : List[str] , __a : Optional[Any] , __a : str=-1 , __a : List[str]=None ) -> Any: """simple docstring""" __lowercase : Dict = os.statvfs(os.path.dirname(__a ) ).f_namemax super().__init__(__a , timeout=__a , max_filename_length=__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase : List[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC __lowercase : List[str] = os.open(self._lock_file , __a ) try: fcntl.flock(__a , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__a ) else: __lowercase : str = fd return None def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Any = self._lock_file_fd __lowercase : List[str] = None fcntl.flock(__a , fcntl.LOCK_UN ) os.close(__a ) return None class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __lowercase : Union[str, Any] = os.open(self._lock_file , __a ) except OSError: pass else: __lowercase : Optional[int] = fd return None def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" os.close(self._lock_file_fd ) __lowercase : int = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None lowerCamelCase : Optional[Any] = None if msvcrt: lowerCamelCase : List[Any] = WindowsFileLock elif fcntl: lowerCamelCase : List[Any] = UnixFileLock else: lowerCamelCase : Union[str, Any] = SoftFileLock if warnings is not None: warnings.warn('''only soft file lock is available''')
649
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = '''dpt''' def __init__( self : List[Any] , __a : Any=768 , __a : List[Any]=12 , __a : Union[str, Any]=12 , __a : Tuple=3072 , __a : Dict="gelu" , __a : Tuple=0.0 , __a : Dict=0.0 , __a : str=0.02 , __a : Dict=1E-12 , __a : str=384 , __a : Union[str, Any]=16 , __a : int=3 , __a : str=False , __a : List[Any]=True , __a : str=[2, 5, 8, 11] , __a : Union[str, Any]="project" , __a : Dict=[4, 2, 1, 0.5] , __a : Optional[Any]=[96, 192, 384, 768] , __a : Union[str, Any]=256 , __a : Optional[Any]=-1 , __a : List[str]=False , __a : Optional[int]=True , __a : Optional[Any]=0.4 , __a : List[Any]=255 , __a : Dict=0.1 , __a : Dict=[1, 1024, 24, 24] , __a : str=[0, 1] , __a : str=None , **__a : Dict , ) -> str: """simple docstring""" super().__init__(**__a ) __lowercase : Tuple = hidden_size __lowercase : Any = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("""Initializing the config with a `BiT` backbone.""" ) __lowercase : List[Any] = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, } __lowercase : Dict = BitConfig(**__a ) elif isinstance(__a , __a ): logger.info("""Initializing the config with a `BiT` backbone.""" ) __lowercase : str = BitConfig(**__a ) elif isinstance(__a , __a ): __lowercase : Optional[int] = backbone_config else: raise ValueError( F"backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}." ) __lowercase : Optional[int] = backbone_featmap_shape __lowercase : Optional[int] = neck_ignore_stages if readout_type != "project": raise ValueError("""Readout type must be 'project' when using `DPT-hybrid` mode.""" ) else: __lowercase : Optional[Any] = None __lowercase : List[Any] = None __lowercase : Dict = [] __lowercase : Dict = num_hidden_layers __lowercase : Dict = num_attention_heads __lowercase : List[Any] = intermediate_size __lowercase : Tuple = hidden_act __lowercase : Optional[Any] = hidden_dropout_prob __lowercase : List[Any] = attention_probs_dropout_prob __lowercase : Optional[Any] = initializer_range __lowercase : int = layer_norm_eps __lowercase : Tuple = image_size __lowercase : Dict = patch_size __lowercase : Tuple = num_channels __lowercase : Dict = qkv_bias __lowercase : Any = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("""Readout_type must be one of ['ignore', 'add', 'project']""" ) __lowercase : Dict = readout_type __lowercase : str = reassemble_factors __lowercase : str = neck_hidden_sizes __lowercase : Union[str, Any] = fusion_hidden_size __lowercase : Tuple = head_in_index __lowercase : Dict = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) __lowercase : Union[str, Any] = use_auxiliary_head __lowercase : Union[str, Any] = auxiliary_loss_weight __lowercase : Dict = semantic_loss_ignore_index __lowercase : List[Any] = semantic_classifier_dropout def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" __lowercase : Optional[int] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __lowercase : List[str] = self.backbone_config.to_dict() __lowercase : str = self.__class__.model_type return output
713
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : Tuple = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = '''layoutlmv3''' def __init__( self : Dict , __a : List[str]=50265 , __a : str=768 , __a : List[Any]=12 , __a : List[Any]=12 , __a : List[str]=3072 , __a : Optional[Any]="gelu" , __a : Optional[int]=0.1 , __a : List[Any]=0.1 , __a : Tuple=512 , __a : int=2 , __a : Any=0.02 , __a : Union[str, Any]=1E-5 , __a : List[str]=1 , __a : List[Any]=0 , __a : int=2 , __a : str=1024 , __a : str=128 , __a : List[Any]=128 , __a : Tuple=True , __a : Optional[int]=32 , __a : Any=128 , __a : List[Any]=64 , __a : Tuple=256 , __a : str=True , __a : int=True , __a : Optional[Any]=True , __a : Any=224 , __a : str=3 , __a : List[str]=16 , __a : Union[str, Any]=None , **__a : List[Any] , ) -> List[str]: """simple docstring""" super().__init__( vocab_size=__a , hidden_size=__a , num_hidden_layers=__a , num_attention_heads=__a , intermediate_size=__a , hidden_act=__a , hidden_dropout_prob=__a , attention_probs_dropout_prob=__a , max_position_embeddings=__a , type_vocab_size=__a , initializer_range=__a , layer_norm_eps=__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a , ) __lowercase : int = max_ad_position_embeddings __lowercase : Any = coordinate_size __lowercase : Optional[Any] = shape_size __lowercase : str = has_relative_attention_bias __lowercase : int = rel_pos_bins __lowercase : Union[str, Any] = max_rel_pos __lowercase : str = has_spatial_attention_bias __lowercase : str = rel_ad_pos_bins __lowercase : List[Any] = max_rel_ad_pos __lowercase : Tuple = text_embed __lowercase : int = visual_embed __lowercase : Tuple = input_size __lowercase : Dict = num_channels __lowercase : str = patch_size __lowercase : Optional[int] = classifier_dropout class lowerCAmelCase ( __a ): '''simple docstring''' _A : str = version.parse('''1.12''' ) @property def lowerCAmelCase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def lowerCAmelCase ( self : Union[str, Any] ) -> float: """simple docstring""" return 1E-5 @property def lowerCAmelCase ( self : str ) -> int: """simple docstring""" return 12 def lowerCAmelCase ( self : List[Any] , __a : "ProcessorMixin" , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional["TensorType"] = None , __a : int = 3 , __a : int = 40 , __a : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , """apply_ocr""" , __a ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase : Tuple = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase : Tuple = processor.tokenizer.num_special_tokens_to_add(__a ) __lowercase : Tuple = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__a ) # Generate dummy inputs according to compute batch and sequence __lowercase : Union[str, Any] = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowercase : Tuple = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowercase : Tuple = self._generate_dummy_images(__a , __a , __a , __a ) __lowercase : int = dict( processor( __a , text=__a , boxes=__a , return_tensors=__a , ) ) return inputs
649
0
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Tuple , __a : str , __a : str=13 , __a : Optional[int]=7 , __a : Optional[int]=True , __a : int=True , __a : Any=True , __a : List[Any]=True , __a : Any=True , __a : Union[str, Any]=False , __a : Dict=False , __a : List[Any]=False , __a : List[str]=2 , __a : Union[str, Any]=99 , __a : int=0 , __a : List[Any]=32 , __a : Dict=5 , __a : Optional[int]=4 , __a : List[Any]=0.1 , __a : Optional[Any]=0.1 , __a : List[Any]=512 , __a : Tuple=12 , __a : str=2 , __a : List[Any]=0.02 , __a : int=3 , __a : int=4 , __a : Optional[int]="last" , __a : str=None , __a : Optional[Any]=None , ) -> Optional[Any]: """simple docstring""" __lowercase : List[str] = parent __lowercase : List[str] = batch_size __lowercase : Union[str, Any] = seq_length __lowercase : Any = is_training __lowercase : Any = use_input_lengths __lowercase : str = use_token_type_ids __lowercase : Union[str, Any] = use_labels __lowercase : Optional[int] = gelu_activation __lowercase : Optional[Any] = sinusoidal_embeddings __lowercase : List[str] = causal __lowercase : List[Any] = asm __lowercase : List[str] = n_langs __lowercase : Dict = vocab_size __lowercase : Optional[int] = n_special __lowercase : List[Any] = hidden_size __lowercase : Union[str, Any] = num_hidden_layers __lowercase : List[Any] = num_attention_heads __lowercase : Any = hidden_dropout_prob __lowercase : List[str] = attention_probs_dropout_prob __lowercase : Any = max_position_embeddings __lowercase : Dict = type_vocab_size __lowercase : Tuple = type_sequence_label_size __lowercase : int = initializer_range __lowercase : Union[str, Any] = num_labels __lowercase : List[str] = num_choices __lowercase : int = summary_type __lowercase : Any = use_proj __lowercase : int = scope def lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" __lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : int = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : Optional[int] = None if self.use_input_lengths: __lowercase : Union[str, Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __lowercase : Tuple = None if self.use_token_type_ids: __lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __lowercase : int = None __lowercase : List[str] = None __lowercase : str = None if self.use_labels: __lowercase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : List[Any] = ids_tensor([self.batch_size] , 2 ).float() __lowercase : Dict = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : List[str] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def lowerCAmelCase ( self : Optional[Any] , __a : Any , __a : Optional[int] , __a : List[Any] , __a : List[str] , __a : Optional[Any] , __a : int , __a : Tuple , __a : Optional[int] , __a : Optional[Any] , ) -> Tuple: """simple docstring""" __lowercase : Any = FlaubertModel(config=__a ) model.to(__a ) model.eval() __lowercase : Any = model(__a , lengths=__a , langs=__a ) __lowercase : Dict = model(__a , langs=__a ) __lowercase : str = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Union[str, Any] , __a : str , __a : List[Any] , __a : Tuple , __a : Any , __a : Tuple , __a : str , __a : Tuple , __a : int , __a : Tuple , ) -> List[Any]: """simple docstring""" __lowercase : List[str] = FlaubertWithLMHeadModel(__a ) model.to(__a ) model.eval() __lowercase : Tuple = model(__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[Any] , __a : int , __a : Optional[int] , __a : Optional[int] , __a : List[Any] , __a : int , __a : int , __a : Optional[Any] , __a : Optional[int] , __a : Dict , ) -> List[Any]: """simple docstring""" __lowercase : List[str] = FlaubertForQuestionAnsweringSimple(__a ) model.to(__a ) model.eval() __lowercase : Tuple = model(__a ) __lowercase : int = model(__a , start_positions=__a , end_positions=__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Any , __a : Dict , __a : Dict , __a : Any , __a : Tuple , __a : List[str] , __a : Any , __a : List[Any] , __a : Optional[Any] , __a : Dict , ) -> str: """simple docstring""" __lowercase : int = FlaubertForQuestionAnswering(__a ) model.to(__a ) model.eval() __lowercase : List[str] = model(__a ) __lowercase : str = model( __a , start_positions=__a , end_positions=__a , cls_index=__a , is_impossible=__a , p_mask=__a , ) __lowercase : List[str] = model( __a , start_positions=__a , end_positions=__a , cls_index=__a , is_impossible=__a , ) (__lowercase ) : Optional[int] = result_with_labels.to_tuple() __lowercase : List[Any] = model(__a , start_positions=__a , end_positions=__a ) (__lowercase ) : int = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowerCAmelCase ( self : int , __a : Dict , __a : int , __a : List[str] , __a : str , __a : List[Any] , __a : Union[str, Any] , __a : Any , __a : Optional[int] , __a : Dict , ) -> List[str]: """simple docstring""" __lowercase : Any = FlaubertForSequenceClassification(__a ) model.to(__a ) model.eval() __lowercase : List[Any] = model(__a ) __lowercase : int = model(__a , labels=__a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase ( self : Dict , __a : Optional[Any] , __a : Optional[Any] , __a : Dict , __a : Tuple , __a : List[Any] , __a : Any , __a : str , __a : int , __a : Any , ) -> str: """simple docstring""" __lowercase : List[str] = self.num_labels __lowercase : str = FlaubertForTokenClassification(__a ) model.to(__a ) model.eval() __lowercase : Any = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Tuple , __a : List[str] , __a : Dict , __a : Tuple , __a : Optional[Any] , __a : Dict , __a : Any , __a : List[str] , __a : Optional[Any] , __a : int , ) -> Any: """simple docstring""" __lowercase : Optional[int] = self.num_choices __lowercase : Optional[int] = FlaubertForMultipleChoice(config=__a ) model.to(__a ) model.eval() __lowercase : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase : List[str] = model( __a , attention_mask=__a , token_type_ids=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : List[Any] = self.prepare_config_and_inputs() ( __lowercase ) : Optional[int] = config_and_inputs __lowercase : Dict = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Optional[int] = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) _A : List[str] = ( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : str , __a : Optional[int] , __a : Optional[int] , __a : Union[str, Any] ) -> Tuple: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowerCAmelCase ( self : Optional[Any] , __a : str , __a : List[Any] , __a : List[str]=False ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = super()._prepare_for_class(__a , __a , return_labels=__a ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": __lowercase : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a ) __lowercase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a ) return inputs_dict def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" __lowercase : Tuple = FlaubertModelTester(self ) __lowercase : str = ConfigTester(self , config_class=__a , emb_dim=37 ) def lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__a ) def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" __lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__a ) def lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*__a ) def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__a ) def lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__a ) def lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*__a ) def lowerCAmelCase ( self : int ) -> str: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*__a ) @slow def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : Any = FlaubertModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @slow @require_torch_gpu def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return __lowercase : Tuple = True __lowercase : List[Any] = model_class(config=__a ) __lowercase : List[Any] = self._prepare_for_class(__a , __a ) __lowercase : Tuple = torch.jit.trace( __a , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__a , os.path.join(__a , """traced_model.pt""" ) ) __lowercase : Dict = torch.jit.load(os.path.join(__a , """traced_model.pt""" ) , map_location=__a ) loaded(inputs_dict["""input_ids"""].to(__a ) , inputs_dict["""attention_mask"""].to(__a ) ) @require_torch class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase : List[str] = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) __lowercase : Optional[Any] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): __lowercase : Dict = model(__a )[0] __lowercase : Tuple = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __a ) __lowercase : Optional[int] = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1E-4 ) )
714
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowerCamelCase : List[Any] = logging.get_logger(__name__) class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , __a : str = None , __a : uuid.UUID = None , __a : Any=None , __a : List[Any]=None ) -> List[Any]: """simple docstring""" if not conversation_id: __lowercase : Any = uuid.uuida() if past_user_inputs is None: __lowercase : Dict = [] if generated_responses is None: __lowercase : Dict = [] __lowercase : uuid.UUID = conversation_id __lowercase : List[str] = past_user_inputs __lowercase : List[str] = generated_responses __lowercase : Optional[str] = text def __eq__( self : Dict , __a : Dict ) -> Any: """simple docstring""" if not isinstance(__a , __a ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCAmelCase ( self : List[str] , __a : str , __a : bool = False ) -> Dict: """simple docstring""" if self.new_user_input: if overwrite: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten " F"with: \"{text}\"." ) __lowercase : Optional[int] = text else: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" new input " F"ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input" ) else: __lowercase : Dict = text def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __lowercase : Dict = None def lowerCAmelCase ( self : Optional[int] , __a : str ) -> List[Any]: """simple docstring""" self.generated_responses.append(__a ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : int ) -> str: """simple docstring""" __lowercase : Optional[int] = F"Conversation id: {self.uuid} \n" for is_user, text in self.iter_texts(): __lowercase : Optional[Any] = """user""" if is_user else """bot""" output += F"{name} >> {text} \n" return output @add_end_docstrings( __a , r''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''' , ) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Any , *__a : int , **__a : str ) -> Union[str, Any]: """simple docstring""" super().__init__(*__a , **__a ) if self.tokenizer.pad_token_id is None: __lowercase : List[Any] = self.tokenizer.eos_token def lowerCAmelCase ( self : Union[str, Any] , __a : int=None , __a : Tuple=None , __a : Any=None , **__a : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = {} __lowercase : Tuple = {} __lowercase : List[str] = {} if min_length_for_response is not None: __lowercase : Dict = min_length_for_response if minimum_tokens is not None: __lowercase : Union[str, Any] = minimum_tokens if "max_length" in generate_kwargs: __lowercase : Union[str, Any] = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __lowercase : Union[str, Any] = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(__a ) return preprocess_params, forward_params, postprocess_params def __call__( self : Optional[int] , __a : Union[Conversation, List[Conversation]] , __a : Dict=0 , **__a : List[Any] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = super().__call__(__a , num_workers=__a , **__a ) if isinstance(__a , __a ) and len(__a ) == 1: return outputs[0] return outputs def lowerCAmelCase ( self : Union[str, Any] , __a : Conversation , __a : Tuple=32 ) -> Dict[str, Any]: """simple docstring""" if not isinstance(__a , __a ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( F"Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. " """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer , """_build_conversation_input_ids""" ): __lowercase : List[Any] = self.tokenizer._build_conversation_input_ids(__a ) else: # If the tokenizer cannot handle conversations, we default to only the old version __lowercase : Tuple = self._legacy_parse_and_tokenize(__a ) if self.framework == "pt": __lowercase : List[Any] = torch.LongTensor([input_ids] ) elif self.framework == "tf": __lowercase : List[str] = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCAmelCase ( self : Any , __a : Dict , __a : Any=10 , **__a : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = generate_kwargs.get("""max_length""" , self.model.config.max_length ) __lowercase : List[Any] = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(F"Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})" ) __lowercase : Any = max_length - minimum_tokens __lowercase : int = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: __lowercase : Dict = model_inputs["""attention_mask"""][:, -trim:] __lowercase : Union[str, Any] = model_inputs.pop("""conversation""" ) __lowercase : Tuple = max_length __lowercase : int = self.model.generate(**__a , **__a ) if self.model.config.is_encoder_decoder: __lowercase : Optional[int] = 1 else: __lowercase : str = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCAmelCase ( self : int , __a : Tuple , __a : List[Any]=True ) -> List[str]: """simple docstring""" __lowercase : int = model_outputs["""output_ids"""] __lowercase : Union[str, Any] = self.tokenizer.decode( output_ids[0] , skip_special_tokens=__a , clean_up_tokenization_spaces=__a , ) __lowercase : List[str] = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(__a ) return conversation def lowerCAmelCase ( self : int , __a : Conversation ) -> Dict: """simple docstring""" __lowercase : Optional[int] = self.tokenizer.eos_token_id __lowercase : Optional[Any] = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(__a , add_special_tokens=__a ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(__a , add_special_tokens=__a ) ) if len(__a ) > self.tokenizer.model_max_length: __lowercase : List[Any] = input_ids[-self.tokenizer.model_max_length :] return input_ids
649
0
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[Any] , __a : List[Any] , __a : Optional[int]=13 , __a : Tuple=7 , __a : Any=True , __a : Dict=True , __a : str=True , __a : Union[str, Any]=True , __a : Dict=99 , __a : List[str]=32 , __a : int=5 , __a : Union[str, Any]=4 , __a : Tuple=37 , __a : List[str]="gelu" , __a : List[Any]=0.1 , __a : Optional[int]=0.1 , __a : Optional[Any]=512 , __a : Tuple=16 , __a : List[Any]=2 , __a : Optional[int]=0.02 , __a : Dict=4 , ) -> int: """simple docstring""" __lowercase : List[Any] = parent __lowercase : Optional[int] = batch_size __lowercase : Union[str, Any] = seq_length __lowercase : str = is_training __lowercase : List[str] = use_attention_mask __lowercase : Any = use_token_type_ids __lowercase : Optional[int] = use_labels __lowercase : Union[str, Any] = vocab_size __lowercase : str = hidden_size __lowercase : List[Any] = num_hidden_layers __lowercase : Optional[int] = num_attention_heads __lowercase : List[str] = intermediate_size __lowercase : Any = hidden_act __lowercase : Any = hidden_dropout_prob __lowercase : Tuple = attention_probs_dropout_prob __lowercase : Union[str, Any] = max_position_embeddings __lowercase : List[str] = type_vocab_size __lowercase : List[str] = type_sequence_label_size __lowercase : Optional[int] = initializer_range __lowercase : Optional[int] = num_choices def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" __lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : List[str] = None if self.use_attention_mask: __lowercase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : Dict = None if self.use_token_type_ids: __lowercase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase : Optional[int] = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase : int = self.prepare_config_and_inputs() __lowercase : Tuple = config_and_inputs __lowercase : Any = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : Optional[int] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" __lowercase : Tuple = FlaxAlbertModelTester(self ) @slow def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" for model_class_name in self.all_model_classes: __lowercase : str = model_class_name.from_pretrained("""albert-base-v2""" ) __lowercase : Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(__a ) @require_flax class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" __lowercase : Dict = FlaxAlbertModel.from_pretrained("""albert-base-v2""" ) __lowercase : Any = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) __lowercase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __lowercase : int = model(__a , attention_mask=__a )[0] __lowercase : Dict = (1, 11, 768) self.assertEqual(output.shape , __a ) __lowercase : List[str] = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __a , atol=1E-4 ) )
715
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__a , """tf_padding""" ) ) self.parent.assertTrue(hasattr(__a , """depth_multiplier""" ) ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Tuple , __a : str=13 , __a : Dict=3 , __a : List[Any]=32 , __a : Any=0.25 , __a : Any=8 , __a : Optional[int]=8 , __a : Optional[int]=6 , __a : Dict=32 , __a : Tuple=True , __a : List[Any]=True , __a : Optional[int]=True , __a : Tuple="relu6" , __a : Optional[Any]=1280 , __a : str=0.1 , __a : str=0.02 , __a : Optional[Any]=True , __a : Tuple=True , __a : Dict=10 , __a : Optional[Any]=None , ) -> Any: """simple docstring""" __lowercase : List[str] = parent __lowercase : Tuple = batch_size __lowercase : Dict = num_channels __lowercase : Optional[int] = image_size __lowercase : int = depth_multiplier __lowercase : str = depth_divisible_by __lowercase : int = min_depth __lowercase : Tuple = expand_ratio __lowercase : Optional[int] = tf_padding __lowercase : Dict = output_stride __lowercase : Dict = first_layer_is_expansion __lowercase : Optional[Any] = finegrained_output __lowercase : str = hidden_act __lowercase : Union[str, Any] = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) __lowercase : Optional[int] = classifier_dropout_prob __lowercase : int = use_labels __lowercase : Optional[int] = is_training __lowercase : Dict = num_labels __lowercase : Tuple = initializer_range __lowercase : Optional[Any] = scope def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : List[Any] = None __lowercase : Optional[Any] = None if self.use_labels: __lowercase : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __lowercase : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowercase : List[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : Tuple , __a : Dict , __a : Tuple , __a : Optional[int] , __a : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[int] = MobileNetVaModel(config=__a ) model.to(__a ) model.eval() __lowercase : Tuple = model(__a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def lowerCAmelCase ( self : List[str] , __a : Optional[int] , __a : List[str] , __a : str , __a : Optional[int] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = self.num_labels __lowercase : Dict = MobileNetVaForImageClassification(__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : int , __a : List[str] , __a : Tuple , __a : Any , __a : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : int = self.num_labels __lowercase : List[Any] = MobileNetVaForSemanticSegmentation(__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __lowercase : str = model(__a , labels=__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase : List[str] = config_and_inputs __lowercase : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Tuple = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) _A : Optional[Any] = ( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) _A : Tuple = False _A : List[str] = False _A : List[str] = False _A : Optional[int] = False def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = MobileNetVaModelTester(self ) __lowercase : int = MobileNetVaConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV2 does not use inputs_embeds""" ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not support input and output embeddings""" ) def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not output attentions""" ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[Any] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : int = [*signature.parameters.keys()] __lowercase : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" def check_hidden_states_output(__a : List[Any] , __a : Tuple , __a : List[str] ): __lowercase : Optional[Any] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : List[Any] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Tuple = outputs.hidden_states __lowercase : str = 16 self.assertEqual(len(__a ) , __a ) __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Any = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase : Union[str, Any] = True check_hidden_states_output(__a , __a , __a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : Optional[int] = MobileNetVaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def snake_case_ ( ): __lowercase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v2_1.0_224""" ) if is_vision_available() else None ) @slow def lowerCAmelCase ( self : str ) -> int: """simple docstring""" __lowercase : Tuple = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v2_1.0_224""" ).to(__a ) __lowercase : str = self.default_image_processor __lowercase : Tuple = prepare_img() __lowercase : Tuple = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : str = model(**__a ) # verify the logits __lowercase : Union[str, Any] = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , __a ) __lowercase : str = torch.tensor([0.2445, -1.1993, 0.1905] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : int = MobileNetVaForSemanticSegmentation.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __lowercase : Dict = model.to(__a ) __lowercase : Tuple = MobileNetVaImageProcessor.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __lowercase : List[str] = prepare_img() __lowercase : Optional[int] = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : Union[str, Any] = model(**__a ) __lowercase : Any = outputs.logits # verify the logits __lowercase : Dict = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , __a ) __lowercase : str = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=__a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __a , atol=1E-4 ) )
649
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : str = { '''configuration_convbert''': ['''CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvBertConfig''', '''ConvBertOnnxConfig'''], '''tokenization_convbert''': ['''ConvBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[Any] = ['''ConvBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ '''CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvBertForMaskedLM''', '''ConvBertForMultipleChoice''', '''ConvBertForQuestionAnswering''', '''ConvBertForSequenceClassification''', '''ConvBertForTokenClassification''', '''ConvBertLayer''', '''ConvBertModel''', '''ConvBertPreTrainedModel''', '''load_tf_weights_in_convbert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[Any] = [ '''TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFConvBertForMaskedLM''', '''TFConvBertForMultipleChoice''', '''TFConvBertForQuestionAnswering''', '''TFConvBertForSequenceClassification''', '''TFConvBertForTokenClassification''', '''TFConvBertLayer''', '''TFConvBertModel''', '''TFConvBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys lowerCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
716
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def snake_case_ ( lowerCAmelCase_ : bool = True , *lowerCAmelCase_ : int , **lowerCAmelCase_ : List[str] ): if not is_tqdm_available(): raise ImportError("""Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.""" ) __lowercase : List[str] = False if main_process_only: __lowercase : Optional[int] = PartialState().local_process_index == 0 return _tqdm(*lowerCAmelCase_ , **lowerCAmelCase_ , disable=lowerCAmelCase_ )
649
0
import numpy as np def snake_case_ ( lowerCAmelCase_ : np.ndarray ): return 1 / (1 + np.exp(-vector )) def snake_case_ ( lowerCAmelCase_ : np.ndarray ): return vector * sigmoid(lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
717
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : list[int] ): if not nums: return 0 __lowercase : Tuple = nums[0] __lowercase : Tuple = 0 for num in nums[1:]: __lowercase , __lowercase : List[str] = ( max_excluding + num, max(lowerCAmelCase_ , lowerCAmelCase_ ), ) return max(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
649
0
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def snake_case_ ( lowerCAmelCase_ : List[Any] ): if not is_accelerate_available(): return method __lowercase : Optional[int] = version.parse(accelerate.__version__ ).base_version if version.parse(lowerCAmelCase_ ) < version.parse("""0.17.0""" ): return method def wrapper(self : Tuple , *lowerCAmelCase_ : Any , **lowerCAmelCase_ : Optional[int] ): if hasattr(self , """_hf_hook""" ) and hasattr(self._hf_hook , """pre_forward""" ): self._hf_hook.pre_forward(self ) return method(self , *lowerCAmelCase_ , **lowerCAmelCase_ ) return wrapper
718
lowerCamelCase : List[str] = '''0.18.2''' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
649
0
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Any , __a : Optional[Any] , __a : List[str]=13 , __a : Dict=7 , __a : Optional[Any]=True , __a : Tuple=True , __a : Optional[Any]=True , __a : Dict=True , __a : Optional[int]=99 , __a : Tuple=64 , __a : Any=5 , __a : Dict=4 , __a : Union[str, Any]=37 , __a : List[str]="gelu" , __a : int=0.1 , __a : Any=0.1 , __a : int=512 , __a : Union[str, Any]=16 , __a : Optional[Any]=2 , __a : Optional[int]=0.02 , __a : Dict=3 , __a : List[str]=4 , __a : Any=None , ) -> int: """simple docstring""" __lowercase : str = parent __lowercase : Tuple = batch_size __lowercase : Union[str, Any] = seq_length __lowercase : Optional[Any] = is_training __lowercase : List[Any] = use_input_mask __lowercase : Union[str, Any] = use_token_type_ids __lowercase : List[str] = use_labels __lowercase : Optional[Any] = vocab_size __lowercase : Optional[int] = hidden_size __lowercase : List[str] = num_hidden_layers __lowercase : Optional[Any] = num_attention_heads __lowercase : Dict = intermediate_size __lowercase : List[Any] = hidden_act __lowercase : Dict = hidden_dropout_prob __lowercase : Optional[Any] = attention_probs_dropout_prob __lowercase : List[str] = max_position_embeddings __lowercase : int = type_vocab_size __lowercase : Dict = type_sequence_label_size __lowercase : int = initializer_range __lowercase : Dict = num_labels __lowercase : Dict = num_choices __lowercase : Optional[int] = scope __lowercase : Optional[Any] = vocab_size - 1 def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : Union[str, Any] = None if self.use_input_mask: __lowercase : Any = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : List[Any] = None if self.use_labels: __lowercase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : List[Any] = self.get_config() return config, input_ids, input_mask, token_labels def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.prepare_config_and_inputs() __lowercase : Tuple = True return config, input_ids, input_mask, token_labels def lowerCAmelCase ( self : Optional[int] , __a : int , __a : List[Any] , __a : Dict ) -> int: """simple docstring""" __lowercase : Tuple = GPTNeoXModel(config=__a ) model.to(__a ) model.eval() __lowercase : Optional[Any] = model(__a , attention_mask=__a ) __lowercase : Any = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : int , __a : Any , __a : Optional[int] , __a : str ) -> int: """simple docstring""" __lowercase : List[str] = True __lowercase : List[str] = GPTNeoXModel(__a ) model.to(__a ) model.eval() __lowercase : Union[str, Any] = model(__a , attention_mask=__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Optional[int] , __a : str , __a : Tuple , __a : Any , __a : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Any = GPTNeoXForCausalLM(config=__a ) model.to(__a ) model.eval() __lowercase : List[Any] = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Any , __a : Optional[Any] , __a : List[str] , __a : str , __a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = self.num_labels __lowercase : List[str] = GPTNeoXForQuestionAnswering(__a ) model.to(__a ) model.eval() __lowercase : List[str] = model(__a , attention_mask=__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : List[str] , __a : Any , __a : List[Any] , __a : Union[str, Any] , __a : Dict ) -> Dict: """simple docstring""" __lowercase : Optional[Any] = self.num_labels __lowercase : Optional[Any] = GPTNeoXForSequenceClassification(__a ) model.to(__a ) model.eval() __lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : Dict = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : List[str] , __a : Union[str, Any] , __a : Any , __a : List[str] , __a : Any ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.num_labels __lowercase : Optional[int] = GPTNeoXForTokenClassification(__a ) model.to(__a ) model.eval() __lowercase : Union[str, Any] = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Tuple , __a : str , __a : Optional[int] , __a : Any ) -> Any: """simple docstring""" __lowercase : Any = True __lowercase : Tuple = GPTNeoXForCausalLM(config=__a ) model.to(__a ) model.eval() # first forward pass __lowercase : int = model(__a , attention_mask=__a , use_cache=__a ) __lowercase : int = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __lowercase : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowercase : Any = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __lowercase : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowercase : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) __lowercase : Union[str, Any] = model(__a , attention_mask=__a , output_hidden_states=__a ) __lowercase : Optional[int] = output_from_no_past["""hidden_states"""][0] __lowercase : List[str] = model( __a , attention_mask=__a , past_key_values=__a , output_hidden_states=__a , )["""hidden_states"""][0] # select random slice __lowercase : Union[str, Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowercase : Tuple = output_from_no_past[:, -3:, random_slice_idx].detach() __lowercase : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__a , __a , atol=1E-3 ) ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase : Dict = self.prepare_config_and_inputs() __lowercase : Optional[Any] = config_and_inputs __lowercase : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , __a , unittest.TestCase ): '''simple docstring''' _A : Dict = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) _A : Union[str, Any] = (GPTNeoXForCausalLM,) if is_torch_available() else () _A : List[Any] = ( { '''feature-extraction''': GPTNeoXModel, '''question-answering''': GPTNeoXForQuestionAnswering, '''text-classification''': GPTNeoXForSequenceClassification, '''text-generation''': GPTNeoXForCausalLM, '''token-classification''': GPTNeoXForTokenClassification, '''zero-shot''': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) _A : Tuple = False _A : Any = False _A : Optional[Any] = False _A : List[str] = False def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : Optional[Any] = GPTNeoXModelTester(self ) __lowercase : int = ConfigTester(self , config_class=__a , hidden_size=64 , num_attention_heads=8 ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__a , __a , __a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(__a , __a , __a ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() __lowercase : Dict = None self.model_tester.create_and_check_model_as_decoder(__a , __a , __a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(__a , __a , __a ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*__a ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @unittest.skip(reason="""Feed forward chunking is not implemented""" ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def lowerCAmelCase ( self : int , __a : int ) -> Any: """simple docstring""" __lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Tuple = ids_tensor([1, 10] , config.vocab_size ) __lowercase : Dict = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __lowercase : List[Any] = GPTNeoXModel(__a ) original_model.to(__a ) original_model.eval() __lowercase : Union[str, Any] = original_model(__a ).last_hidden_state __lowercase : Tuple = original_model(__a ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __lowercase : Optional[int] = {"""type""": scaling_type, """factor""": 10.0} __lowercase : str = GPTNeoXModel(__a ) scaled_model.to(__a ) scaled_model.eval() __lowercase : List[Any] = scaled_model(__a ).last_hidden_state __lowercase : List[str] = scaled_model(__a ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__a , __a , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__a , __a , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__a , __a , atol=1E-5 ) ) @require_torch class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" __lowercase : int = AutoTokenizer.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) for checkpointing in [True, False]: __lowercase : List[Any] = GPTNeoXForCausalLM.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(__a ) __lowercase : Union[str, Any] = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(__a ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 __lowercase : Any = """My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure""" __lowercase : Tuple = model.generate(**__a , do_sample=__a , max_new_tokens=20 ) __lowercase : List[Any] = tokenizer.batch_decode(__a )[0] self.assertEqual(__a , __a )
719
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : List[Any] = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : str=False , lowerCAmelCase_ : Any=False ): __lowercase : Any = """backbone.""" if is_semantic else """""" __lowercase : Optional[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"{prefix}blocks.{i}.norm1.weight", F"beit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm1.bias", F"beit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.weight", F"beit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.bias", F"beit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.weight", F"beit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.bias", F"beit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.weight", F"beit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.bias", F"beit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.weight", F"beit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.bias", F"beit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ (F"{prefix}cls_token", """beit.embeddings.cls_token"""), (F"{prefix}patch_embed.proj.weight", """beit.embeddings.patch_embeddings.projection.weight"""), (F"{prefix}patch_embed.proj.bias", """beit.embeddings.patch_embeddings.projection.bias"""), (F"{prefix}pos_embed", """beit.embeddings.position_embeddings"""), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("""mask_token""", """beit.embeddings.mask_token"""), ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) else: # layernorm + classification head rename_keys.extend( [ ("""fc_norm.weight""", """beit.pooler.layernorm.weight"""), ("""fc_norm.bias""", """beit.pooler.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : List[Any]=False ): for i in range(config.num_hidden_layers ): __lowercase : Tuple = """backbone.""" if is_semantic else """""" # queries, keys and values __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.attn.qkv.weight" ) __lowercase : Dict = state_dict.pop(F"{prefix}blocks.{i}.attn.q_bias" ) __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.attn.v_bias" ) __lowercase : List[str] = in_proj_weight[ : config.hidden_size, : ] __lowercase : Union[str, Any] = q_bias __lowercase : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] __lowercase : str = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.gamma_1" ) __lowercase : str = state_dict.pop(F"{prefix}blocks.{i}.gamma_2" ) __lowercase : List[str] = gamma_a __lowercase : Optional[int] = gamma_a def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : int ): __lowercase : Tuple = dct.pop(lowerCAmelCase_ ) __lowercase : Tuple = val def snake_case_ ( ): __lowercase : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase : Any = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]=False ): __lowercase : Dict = False if """rvlcdip""" in checkpoint_url else True __lowercase : Tuple = BeitConfig(use_absolute_position_embeddings=lowerCAmelCase_ , use_mask_token=lowerCAmelCase_ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: __lowercase : Union[str, Any] = 1024 __lowercase : Optional[int] = 4096 __lowercase : List[Any] = 24 __lowercase : Dict = 16 # labels if "rvlcdip" in checkpoint_url: __lowercase : Optional[int] = 16 __lowercase : Any = """huggingface/label-files""" __lowercase : Union[str, Any] = """rvlcdip-id2label.json""" __lowercase : List[str] = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) __lowercase : Optional[int] = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowercase : Union[str, Any] = idalabel __lowercase : Optional[Any] = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys __lowercase : Optional[int] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ , map_location="""cpu""" )["""model"""] __lowercase : Union[str, Any] = create_rename_keys(lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) # load HuggingFace model __lowercase : Dict = BeitForMaskedImageModeling(lowerCAmelCase_ ) if has_lm_head else BeitForImageClassification(lowerCAmelCase_ ) model.eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image __lowercase : List[str] = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=lowerCAmelCase_ ) __lowercase : List[str] = prepare_img() __lowercase : Optional[Any] = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""" ) __lowercase : Optional[int] = encoding["""pixel_values"""] __lowercase : str = model(lowerCAmelCase_ ) __lowercase : Tuple = outputs.logits # verify logits __lowercase : str = [1, 16] if """rvlcdip""" in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(lowerCAmelCase_ ), "Shape of logits not as expected" Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: if has_lm_head: __lowercase : Optional[Any] = """dit-base""" if """base""" in checkpoint_url else """dit-large""" else: __lowercase : Tuple = """dit-base-finetuned-rvlcdip""" if """dit-b""" in checkpoint_url else """dit-large-finetuned-rvlcdip""" image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=lowerCAmelCase_ , ) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=lowerCAmelCase_ , ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) lowerCamelCase : List[str] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
649
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : Tuple = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = '''layoutlmv3''' def __init__( self : Dict , __a : List[str]=50265 , __a : str=768 , __a : List[Any]=12 , __a : List[Any]=12 , __a : List[str]=3072 , __a : Optional[Any]="gelu" , __a : Optional[int]=0.1 , __a : List[Any]=0.1 , __a : Tuple=512 , __a : int=2 , __a : Any=0.02 , __a : Union[str, Any]=1E-5 , __a : List[str]=1 , __a : List[Any]=0 , __a : int=2 , __a : str=1024 , __a : str=128 , __a : List[Any]=128 , __a : Tuple=True , __a : Optional[int]=32 , __a : Any=128 , __a : List[Any]=64 , __a : Tuple=256 , __a : str=True , __a : int=True , __a : Optional[Any]=True , __a : Any=224 , __a : str=3 , __a : List[str]=16 , __a : Union[str, Any]=None , **__a : List[Any] , ) -> List[str]: """simple docstring""" super().__init__( vocab_size=__a , hidden_size=__a , num_hidden_layers=__a , num_attention_heads=__a , intermediate_size=__a , hidden_act=__a , hidden_dropout_prob=__a , attention_probs_dropout_prob=__a , max_position_embeddings=__a , type_vocab_size=__a , initializer_range=__a , layer_norm_eps=__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a , ) __lowercase : int = max_ad_position_embeddings __lowercase : Any = coordinate_size __lowercase : Optional[Any] = shape_size __lowercase : str = has_relative_attention_bias __lowercase : int = rel_pos_bins __lowercase : Union[str, Any] = max_rel_pos __lowercase : str = has_spatial_attention_bias __lowercase : str = rel_ad_pos_bins __lowercase : List[Any] = max_rel_ad_pos __lowercase : Tuple = text_embed __lowercase : int = visual_embed __lowercase : Tuple = input_size __lowercase : Dict = num_channels __lowercase : str = patch_size __lowercase : Optional[int] = classifier_dropout class lowerCAmelCase ( __a ): '''simple docstring''' _A : str = version.parse('''1.12''' ) @property def lowerCAmelCase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def lowerCAmelCase ( self : Union[str, Any] ) -> float: """simple docstring""" return 1E-5 @property def lowerCAmelCase ( self : str ) -> int: """simple docstring""" return 12 def lowerCAmelCase ( self : List[Any] , __a : "ProcessorMixin" , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional["TensorType"] = None , __a : int = 3 , __a : int = 40 , __a : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , """apply_ocr""" , __a ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase : Tuple = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase : Tuple = processor.tokenizer.num_special_tokens_to_add(__a ) __lowercase : Tuple = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__a ) # Generate dummy inputs according to compute batch and sequence __lowercase : Union[str, Any] = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowercase : Tuple = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowercase : Tuple = self._generate_dummy_images(__a , __a , __a , __a ) __lowercase : int = dict( processor( __a , text=__a , boxes=__a , return_tensors=__a , ) ) return inputs
720
from torch import nn class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , __a : int , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" super().__init__() __lowercase : int = class_size __lowercase : int = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) __lowercase : str = nn.Linear(__a , __a ) def lowerCAmelCase ( self : Tuple , __a : int ) -> Tuple: """simple docstring""" __lowercase : str = self.mlp(__a ) return logits
649
0
def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : int ): return [sentence[i : i + ngram_size] for i in range(len(lowerCAmelCase_ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
721
import fire from utils import calculate_rouge, save_json def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : str=None , **lowerCAmelCase_ : str ): __lowercase : Tuple = [x.strip() for x in open(lowerCAmelCase_ ).readlines()] __lowercase : Dict = [x.strip() for x in open(lowerCAmelCase_ ).readlines()][: len(lowerCAmelCase_ )] __lowercase : Tuple = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) if save_path is not None: save_json(lowerCAmelCase_ , lowerCAmelCase_ , indent=lowerCAmelCase_ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
649
0