code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase : List[Any] = logging.get_logger(__name__) class lowerCAmelCase ( __a ): '''simple docstring''' _A : str = ['''pixel_values'''] def __init__( self : str , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PIL.Image.BICUBIC , __a : bool = True , __a : Dict[str, int] = None , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , **__a : Tuple , ) -> None: """simple docstring""" super().__init__(**__a ) __lowercase : Optional[int] = size if size is not None else {"""height""": 256, """width""": 256} __lowercase : int = get_size_dict(__a ) __lowercase : Optional[Any] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __lowercase : List[Any] = get_size_dict(__a , param_name="""crop_size""" ) __lowercase : str = do_resize __lowercase : List[str] = size __lowercase : Optional[Any] = resample __lowercase : Dict = do_center_crop __lowercase : int = crop_size __lowercase : str = do_rescale __lowercase : List[str] = rescale_factor __lowercase : int = do_normalize __lowercase : Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowercase : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase ( self : List[str] , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PIL.Image.BICUBIC , __a : Optional[Union[str, ChannelDimension]] = None , **__a : int , ) -> np.ndarray: """simple docstring""" __lowercase : Union[str, Any] = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must have keys 'height' and 'width'. Got {size.keys()}" ) return resize( __a , size=(size["""height"""], size["""width"""]) , resample=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Dict , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Any , ) -> np.ndarray: """simple docstring""" __lowercase : Dict = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must have keys 'height' and 'width'. Got {size.keys()}" ) return center_crop(__a , size=(size["""height"""], size["""width"""]) , data_format=__a , **__a ) def lowerCAmelCase ( self : List[str] , __a : np.ndarray , __a : Union[int, float] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[int] , ) -> str: """simple docstring""" return rescale(__a , scale=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : List[Any] , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[Any] , ) -> np.ndarray: """simple docstring""" return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : List[Any] , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : Any=None , __a : bool = None , __a : Dict[str, int] = None , __a : bool = None , __a : float = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[str, TensorType]] = None , __a : ChannelDimension = ChannelDimension.FIRST , **__a : str , ) -> PIL.Image.Image: """simple docstring""" __lowercase : Any = do_resize if do_resize is not None else self.do_resize __lowercase : Optional[Any] = resample if resample is not None else self.resample __lowercase : Any = do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase : int = do_rescale if do_rescale is not None else self.do_rescale __lowercase : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize __lowercase : str = image_mean if image_mean is not None else self.image_mean __lowercase : Dict = image_std if image_std is not None else self.image_std __lowercase : Any = size if size is not None else self.size __lowercase : Optional[int] = get_size_dict(__a ) __lowercase : Dict = crop_size if crop_size is not None else self.crop_size __lowercase : int = get_size_dict(__a , param_name="""crop_size""" ) __lowercase : Tuple = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __lowercase : Tuple = [to_numpy_array(__a ) for image in images] if do_resize: __lowercase : Tuple = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: __lowercase : Optional[int] = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: __lowercase : List[Any] = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: __lowercase : Dict = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] __lowercase : Optional[Any] = [to_channel_dimension_format(__a , __a ) for image in images] __lowercase : Union[str, Any] = {"""pixel_values""": images} return BatchFeature(data=__a , tensor_type=__a )
649
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCamelCase : int = '''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine''' def snake_case_ ( ): __lowercase : List[Any] = _ask_options( """In which compute environment are you running?""" , ["""This machine""", """AWS (Amazon SageMaker)"""] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __lowercase : Union[str, Any] = get_sagemaker_input() else: __lowercase : str = get_cluster_input() return config def snake_case_ ( lowerCAmelCase_ : List[str]=None ): if subparsers is not None: __lowercase : Optional[int] = subparsers.add_parser("""config""" , description=lowerCAmelCase_ ) else: __lowercase : List[str] = argparse.ArgumentParser("""Accelerate config command""" , description=lowerCAmelCase_ ) parser.add_argument( """--config_file""" , default=lowerCAmelCase_ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def snake_case_ ( lowerCAmelCase_ : Tuple ): __lowercase : Union[str, Any] = get_user_input() if args.config_file is not None: __lowercase : List[Any] = args.config_file else: if not os.path.isdir(lowerCAmelCase_ ): os.makedirs(lowerCAmelCase_ ) __lowercase : Any = default_yaml_config_file if config_file.endswith(""".json""" ): config.to_json_file(lowerCAmelCase_ ) else: config.to_yaml_file(lowerCAmelCase_ ) print(F"accelerate configuration saved at {config_file}" ) def snake_case_ ( ): __lowercase : str = config_command_parser() __lowercase : str = parser.parse_args() config_command(lowerCAmelCase_ ) if __name__ == "__main__": main()
649
1
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Dict , __a : Union[str, Any]=13 , __a : Dict=7 , __a : Dict=True , __a : Dict=True , __a : Any=True , __a : List[str]=True , __a : int=99 , __a : Optional[int]=32 , __a : str=2 , __a : int=4 , __a : List[str]=37 , __a : Union[str, Any]="gelu" , __a : Union[str, Any]=0.1 , __a : Union[str, Any]=0.1 , __a : List[Any]=512 , __a : int=16 , __a : Union[str, Any]=2 , __a : Union[str, Any]=0.02 , __a : List[str]=3 , __a : Dict=4 , __a : Optional[Any]=None , ) -> Optional[Any]: """simple docstring""" __lowercase : Any = parent __lowercase : Tuple = 13 __lowercase : Dict = 7 __lowercase : List[Any] = True __lowercase : Tuple = True __lowercase : List[str] = True __lowercase : Any = True __lowercase : Optional[int] = 99 __lowercase : str = 384 __lowercase : Optional[Any] = 2 __lowercase : Dict = 4 __lowercase : str = 37 __lowercase : Optional[int] = """gelu""" __lowercase : int = 0.1 __lowercase : Union[str, Any] = 0.1 __lowercase : Tuple = 512 __lowercase : Tuple = 16 __lowercase : Optional[int] = 2 __lowercase : Optional[Any] = 0.02 __lowercase : Dict = 3 __lowercase : Union[str, Any] = 4 __lowercase : Tuple = 128 __lowercase : Optional[Any] = 2 __lowercase : int = 9 __lowercase : List[Any] = 1 __lowercase : Union[str, Any] = None def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" __lowercase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : Optional[Any] = None if self.use_input_mask: __lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : Dict = None if self.use_token_type_ids: __lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase : Optional[Any] = None __lowercase : str = None __lowercase : Tuple = None if self.use_labels: __lowercase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : str = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : Optional[int] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Dict , __a : List[Any] , __a : List[str] , __a : Union[str, Any] , __a : str , __a : Union[str, Any] , __a : Tuple , __a : Tuple ) -> Dict: """simple docstring""" __lowercase : Dict = TFConvBertModel(config=__a ) __lowercase : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowercase : Any = [input_ids, input_mask] __lowercase : Dict = model(__a ) __lowercase : str = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : Any , __a : Tuple , __a : Union[str, Any] , __a : str , __a : Dict , __a : str ) -> Dict: """simple docstring""" __lowercase : Optional[int] = TFConvBertForMaskedLM(config=__a ) __lowercase : List[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : Any = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[int] , __a : int , __a : Any , __a : Optional[int] , __a : int , __a : int , __a : List[Any] , __a : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase : str = self.num_labels __lowercase : List[Any] = TFConvBertForSequenceClassification(config=__a ) __lowercase : int = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : List[str] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Optional[int] , __a : Any , __a : Optional[Any] , __a : int , __a : Optional[int] , __a : Tuple , __a : int , __a : int ) -> Dict: """simple docstring""" __lowercase : Tuple = self.num_choices __lowercase : Dict = TFConvBertForMultipleChoice(config=__a ) __lowercase : List[str] = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : int = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : str = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : str = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __lowercase : Dict = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : List[str] , __a : str , __a : List[str] , __a : List[str] , __a : List[str] , __a : Any , __a : Tuple , __a : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = self.num_labels __lowercase : Tuple = TFConvBertForTokenClassification(config=__a ) __lowercase : Dict = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : str = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : List[Any] , __a : Optional[int] , __a : List[str] , __a : Optional[Any] , __a : int , __a : Tuple , __a : Any , __a : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Any = TFConvBertForQuestionAnswering(config=__a ) __lowercase : str = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : List[Any] = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : Tuple = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : int = config_and_inputs __lowercase : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Dict = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _A : str = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _A : Union[str, Any] = False _A : List[str] = False _A : Dict = False def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : int = TFConvBertModelTester(self ) __lowercase : Tuple = ConfigTester(self , config_class=__a , hidden_size=37 ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__a ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Union[str, Any] = True __lowercase : List[Any] = True if hasattr(__a , """use_cache""" ): __lowercase : Optional[Any] = True __lowercase : List[str] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) __lowercase : int = getattr(self.model_tester , """key_length""" , __a ) for model_class in self.all_model_classes: __lowercase : Optional[Any] = self._prepare_for_class(__a , __a ) __lowercase : Tuple = model_class(__a ) __lowercase : Tuple = len(model(__a ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a , saved_model=__a ) __lowercase : List[Any] = os.path.join(__a , """saved_model""" , """1""" ) __lowercase : str = tf.keras.models.load_model(__a ) __lowercase : Optional[int] = model(__a ) if self.is_encoder_decoder: __lowercase : Union[str, Any] = outputs["""encoder_hidden_states"""] __lowercase : Union[str, Any] = outputs["""encoder_attentions"""] else: __lowercase : Union[str, Any] = outputs["""hidden_states"""] __lowercase : List[str] = outputs["""attentions"""] self.assertEqual(len(__a ) , __a ) __lowercase : List[Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : str = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) self.assertIsNotNone(__a ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : List[str] = True __lowercase : List[Any] = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length ) __lowercase : Optional[int] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) __lowercase : List[str] = getattr(self.model_tester , """key_length""" , __a ) __lowercase : List[Any] = getattr(self.model_tester , """key_length""" , __a ) def check_decoder_attentions_output(__a : List[str] ): __lowercase : Union[str, Any] = len(__a ) self.assertEqual(out_len % 2 , 0 ) __lowercase : Any = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__a : str ): __lowercase : str = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __lowercase : int = True __lowercase : Any = False __lowercase : List[Any] = model_class(__a ) __lowercase : Tuple = model(self._prepare_for_class(__a , __a ) ) __lowercase : Dict = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: __lowercase : Any = model_class(__a ) __lowercase : List[str] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __lowercase : Dict = True __lowercase : Optional[Any] = model_class(__a ) __lowercase : Optional[int] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine __lowercase : List[str] = True __lowercase : List[Any] = True __lowercase : Any = model_class(__a ) __lowercase : Optional[int] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @require_tf class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) __lowercase : str = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowercase : Tuple = model(__a )[0] __lowercase : Any = [1, 6, 768] self.assertEqual(output.shape , __a ) __lowercase : Optional[Any] = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-4 )
649
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : list[str] | None = None ): __lowercase : Tuple = word_bank or [] # create a table __lowercase : int = len(lowerCAmelCase_ ) + 1 __lowercase : list[list[list[str]]] = [] for _ in range(lowerCAmelCase_ ): table.append([] ) # seed value __lowercase : Dict = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowerCAmelCase_ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowerCAmelCase_ )] == word: __lowercase : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowerCAmelCase_ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowerCAmelCase_ )]: combination.reverse() return table[len(lowerCAmelCase_ )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
649
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = { '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class lowerCAmelCase ( __a ): '''simple docstring''' _A : Dict = '''beit''' def __init__( self : str , __a : int=8192 , __a : Tuple=768 , __a : Optional[Any]=12 , __a : List[Any]=12 , __a : Dict=3072 , __a : int="gelu" , __a : str=0.0 , __a : List[str]=0.0 , __a : List[Any]=0.02 , __a : List[str]=1E-12 , __a : Tuple=224 , __a : List[str]=16 , __a : Optional[Any]=3 , __a : Dict=False , __a : Union[str, Any]=False , __a : str=False , __a : Any=False , __a : Union[str, Any]=0.1 , __a : List[str]=0.1 , __a : Any=True , __a : int=[3, 5, 7, 11] , __a : str=[1, 2, 3, 6] , __a : int=True , __a : Tuple=0.4 , __a : int=256 , __a : int=1 , __a : Optional[Any]=False , __a : Dict=255 , **__a : int , ) -> List[Any]: """simple docstring""" super().__init__(**__a ) __lowercase : Optional[int] = vocab_size __lowercase : List[Any] = hidden_size __lowercase : Union[str, Any] = num_hidden_layers __lowercase : int = num_attention_heads __lowercase : Union[str, Any] = intermediate_size __lowercase : int = hidden_act __lowercase : Optional[int] = hidden_dropout_prob __lowercase : Dict = attention_probs_dropout_prob __lowercase : Union[str, Any] = initializer_range __lowercase : Optional[int] = layer_norm_eps __lowercase : Dict = image_size __lowercase : Any = patch_size __lowercase : List[str] = num_channels __lowercase : Any = use_mask_token __lowercase : Optional[Any] = use_absolute_position_embeddings __lowercase : str = use_relative_position_bias __lowercase : List[Any] = use_shared_relative_position_bias __lowercase : Tuple = layer_scale_init_value __lowercase : int = drop_path_rate __lowercase : Optional[Any] = use_mean_pooling # decode head attributes (semantic segmentation) __lowercase : Optional[Any] = out_indices __lowercase : List[Any] = pool_scales # auxiliary head attributes (semantic segmentation) __lowercase : int = use_auxiliary_head __lowercase : Any = auxiliary_loss_weight __lowercase : Any = auxiliary_channels __lowercase : List[Any] = auxiliary_num_convs __lowercase : str = auxiliary_concat_input __lowercase : Optional[int] = semantic_loss_ignore_index class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = version.parse('''1.11''' ) @property def lowerCAmelCase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase ( self : Tuple ) -> float: """simple docstring""" return 1E-4
649
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(1 ) != 0 ) def snake_case_ ( ): assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
649
1
def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : str = len(lowerCAmelCase_ ) __lowercase : Any = len(lowerCAmelCase_ ) __lowercase : List[Any] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __lowercase : Dict = True for i in range(lowerCAmelCase_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __lowercase : Optional[Any] = True if a[i].islower(): __lowercase : List[Any] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
649
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : int = { '''configuration_funnel''': ['''FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FunnelConfig'''], '''convert_funnel_original_tf_checkpoint_to_pytorch''': [], '''tokenization_funnel''': ['''FunnelTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = ['''FunnelTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = [ '''FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FunnelBaseModel''', '''FunnelForMaskedLM''', '''FunnelForMultipleChoice''', '''FunnelForPreTraining''', '''FunnelForQuestionAnswering''', '''FunnelForSequenceClassification''', '''FunnelForTokenClassification''', '''FunnelModel''', '''FunnelPreTrainedModel''', '''load_tf_weights_in_funnel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ '''TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFFunnelBaseModel''', '''TFFunnelForMaskedLM''', '''TFFunnelForMultipleChoice''', '''TFFunnelForPreTraining''', '''TFFunnelForQuestionAnswering''', '''TFFunnelForSequenceClassification''', '''TFFunnelForTokenClassification''', '''TFFunnelModel''', '''TFFunnelPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
649
1
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights __lowercase : Union[str, Any] = FlaxDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-pipe""" , safety_checker=__a , cache_dir=__a ) __lowercase : Optional[Any] = [t[-1] for t in os.walk(os.path.join(__a , os.listdir(__a )[0] , """snapshots""" ) )] __lowercase : Optional[int] = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(""".bin""" ) for f in files ) @slow @require_flax class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" __lowercase , __lowercase : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-pipe""" , safety_checker=__a ) __lowercase : Tuple = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) __lowercase : Union[str, Any] = jax.random.PRNGKey(0 ) __lowercase : str = 4 __lowercase : str = jax.device_count() __lowercase : int = num_samples * [prompt] __lowercase : str = pipeline.prepare_inputs(__a ) # shard inputs and rng __lowercase : List[Any] = replicate(__a ) __lowercase : Tuple = jax.random.split(__a , __a ) __lowercase : List[str] = shard(__a ) __lowercase : List[Any] = pipeline(__a , __a , __a , __a , jit=__a ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1514745 ) < 1E-3 assert np.abs(np.abs(__a , dtype=np.floataa ).sum() - 49947.875 ) < 5E-1 __lowercase : Dict = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(__a ) == num_samples def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase : Any = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""flax""" , safety_checker=__a ) __lowercase : Any = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) __lowercase : Any = jax.random.PRNGKey(0 ) __lowercase : Union[str, Any] = 50 __lowercase : Optional[Any] = jax.device_count() __lowercase : Tuple = num_samples * [prompt] __lowercase : List[str] = pipeline.prepare_inputs(__a ) # shard inputs and rng __lowercase : Optional[Any] = replicate(__a ) __lowercase : Optional[Any] = jax.random.split(__a , __a ) __lowercase : Union[str, Any] = shard(__a ) __lowercase : Optional[int] = pipeline(__a , __a , __a , __a , jit=__a ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05652401) ) < 1E-3 assert np.abs((np.abs(__a , dtype=np.floataa ).sum() - 2383808.2) ) < 5E-1 def lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" __lowercase , __lowercase : List[str] = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=__a ) __lowercase : Optional[Any] = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) __lowercase : int = jax.random.PRNGKey(0 ) __lowercase : Optional[int] = 50 __lowercase : List[str] = jax.device_count() __lowercase : Tuple = num_samples * [prompt] __lowercase : List[str] = pipeline.prepare_inputs(__a ) # shard inputs and rng __lowercase : List[str] = replicate(__a ) __lowercase : Optional[int] = jax.random.split(__a , __a ) __lowercase : List[str] = shard(__a ) __lowercase : Union[str, Any] = pipeline(__a , __a , __a , __a , jit=__a ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1E-3 assert np.abs((np.abs(__a , dtype=np.floataa ).sum() - 2373516.75) ) < 5E-1 def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" __lowercase , __lowercase : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa ) __lowercase : Optional[Any] = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) __lowercase : Union[str, Any] = jax.random.PRNGKey(0 ) __lowercase : List[Any] = 50 __lowercase : Union[str, Any] = jax.device_count() __lowercase : Union[str, Any] = num_samples * [prompt] __lowercase : Optional[int] = pipeline.prepare_inputs(__a ) # shard inputs and rng __lowercase : Dict = replicate(__a ) __lowercase : str = jax.random.split(__a , __a ) __lowercase : Dict = shard(__a ) __lowercase : Union[str, Any] = pipeline(__a , __a , __a , __a , jit=__a ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1E-3 assert np.abs((np.abs(__a , dtype=np.floataa ).sum() - 2373516.75) ) < 5E-1 def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[Any] = FlaxDDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , set_alpha_to_one=__a , steps_offset=1 , ) __lowercase , __lowercase : Tuple = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , scheduler=__a , safety_checker=__a , ) __lowercase : Optional[Any] = scheduler.create_state() __lowercase : List[Any] = scheduler_state __lowercase : Any = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) __lowercase : Optional[Any] = jax.random.PRNGKey(0 ) __lowercase : Dict = 50 __lowercase : Tuple = jax.device_count() __lowercase : Union[str, Any] = num_samples * [prompt] __lowercase : Any = pipeline.prepare_inputs(__a ) # shard inputs and rng __lowercase : Union[str, Any] = replicate(__a ) __lowercase : Optional[Any] = jax.random.split(__a , __a ) __lowercase : Any = shard(__a ) __lowercase : str = pipeline(__a , __a , __a , __a , jit=__a ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.045043945) ) < 1E-3 assert np.abs((np.abs(__a , dtype=np.floataa ).sum() - 2347693.5) ) < 5E-1 def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : int = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) __lowercase : Optional[Any] = jax.device_count() __lowercase : Optional[int] = num_samples * [prompt] __lowercase : Union[str, Any] = jax.random.split(jax.random.PRNGKey(0 ) , __a ) __lowercase , __lowercase : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=__a , ) __lowercase : List[str] = replicate(__a ) __lowercase : List[str] = pipeline.prepare_inputs(__a ) __lowercase : Optional[int] = shard(__a ) __lowercase : Union[str, Any] = pipeline(__a , __a , __a , jit=__a ).images assert images.shape == (num_samples, 1, 512, 512, 3) __lowercase : Tuple = images[2, 0, 256, 10:17, 1] # With memory efficient attention __lowercase , __lowercase : Tuple = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=__a , use_memory_efficient_attention=__a , ) __lowercase : Dict = replicate(__a ) __lowercase : Dict = pipeline.prepare_inputs(__a ) __lowercase : List[Any] = shard(__a ) __lowercase : Optional[Any] = pipeline(__a , __a , __a , jit=__a ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) __lowercase : str = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
649
import logging import os import threading import time try: import warnings except ImportError: lowerCamelCase : Any = None try: import msvcrt except ImportError: lowerCamelCase : str = None try: import fcntl except ImportError: lowerCamelCase : Optional[Any] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: lowerCamelCase : Union[str, Any] = OSError # Data # ------------------------------------------------ lowerCamelCase : Tuple = [ '''Timeout''', '''BaseFileLock''', '''WindowsFileLock''', '''UnixFileLock''', '''SoftFileLock''', '''FileLock''', ] lowerCamelCase : Tuple = '''3.0.12''' lowerCamelCase : Any = None def snake_case_ ( ): global _logger __lowercase : List[str] = _logger or logging.getLogger(__name__ ) return _logger class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Any , __a : Any ) -> List[Any]: """simple docstring""" __lowercase : List[str] = lock_file return None def __str__( self : str ) -> Any: """simple docstring""" __lowercase : Any = F"The file lock '{self.lock_file}' could not be acquired." return temp class lowerCAmelCase : '''simple docstring''' def __init__( self : List[Any] , __a : Optional[int] ) -> int: """simple docstring""" __lowercase : Optional[Any] = lock return None def __enter__( self : Dict ) -> Dict: """simple docstring""" return self.lock def __exit__( self : Optional[int] , __a : Dict , __a : Any , __a : Tuple ) -> Optional[Any]: """simple docstring""" self.lock.release() return None class lowerCAmelCase : '''simple docstring''' def __init__( self : Tuple , __a : Any , __a : Dict=-1 , __a : Optional[Any]=None ) -> Any: """simple docstring""" __lowercase : Optional[int] = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long __lowercase : Dict = self.hash_filename_if_too_long(__a , __a ) # The path to the lock file. __lowercase : Optional[Any] = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __lowercase : int = None # The default timeout value. __lowercase : Optional[int] = timeout # We use this lock primarily for the lock counter. __lowercase : Optional[Any] = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __lowercase : Union[str, Any] = 0 return None @property def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return self._lock_file @property def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return self._timeout @timeout.setter def lowerCAmelCase ( self : Tuple , __a : Tuple ) -> Dict: """simple docstring""" __lowercase : Tuple = float(__a ) return None def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" raise NotImplementedError() def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" raise NotImplementedError() @property def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" return self._lock_file_fd is not None def lowerCAmelCase ( self : Any , __a : Optional[Any]=None , __a : Union[str, Any]=0.05 ) -> List[str]: """simple docstring""" if timeout is None: __lowercase : Union[str, Any] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __lowercase : int = id(self ) __lowercase : Optional[Any] = self._lock_file __lowercase : List[str] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"Attempting to acquire lock {lock_id} on {lock_filename}" ) self._acquire() if self.is_locked: logger().debug(F"Lock {lock_id} acquired on {lock_filename}" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"Timeout on acquiring lock {lock_id} on {lock_filename}" ) raise Timeout(self._lock_file ) else: logger().debug( F"Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ..." ) time.sleep(__a ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __lowercase : Optional[int] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def lowerCAmelCase ( self : Union[str, Any] , __a : Optional[Any]=False ) -> Optional[Any]: """simple docstring""" with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __lowercase : Optional[Any] = id(self ) __lowercase : str = self._lock_file logger().debug(F"Attempting to release lock {lock_id} on {lock_filename}" ) self._release() __lowercase : List[str] = 0 logger().debug(F"Lock {lock_id} released on {lock_filename}" ) return None def __enter__( self : Any ) -> Optional[Any]: """simple docstring""" self.acquire() return self def __exit__( self : List[str] , __a : str , __a : int , __a : List[Any] ) -> Tuple: """simple docstring""" self.release() return None def __del__( self : Optional[int] ) -> Optional[int]: """simple docstring""" self.release(force=__a ) return None def lowerCAmelCase ( self : Tuple , __a : str , __a : int ) -> str: """simple docstring""" __lowercase : List[Any] = os.path.basename(__a ) if len(__a ) > max_length and max_length > 0: __lowercase : int = os.path.dirname(__a ) __lowercase : List[str] = str(hash(__a ) ) __lowercase : Optional[Any] = filename[: max_length - len(__a ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(__a , __a ) else: return path class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Union[str, Any] , __a : List[Any] , __a : Optional[int]=-1 , __a : Tuple=None ) -> List[Any]: """simple docstring""" from .file_utils import relative_to_absolute_path super().__init__(__a , timeout=__a , max_filename_length=__a ) __lowercase : Tuple = """\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __lowercase : Tuple = os.open(self._lock_file , __a ) except OSError: pass else: try: msvcrt.locking(__a , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__a ) else: __lowercase : Union[str, Any] = fd return None def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = self._lock_file_fd __lowercase : int = None msvcrt.locking(__a , msvcrt.LK_UNLCK , 1 ) os.close(__a ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : List[str] , __a : Optional[Any] , __a : str=-1 , __a : List[str]=None ) -> Any: """simple docstring""" __lowercase : Dict = os.statvfs(os.path.dirname(__a ) ).f_namemax super().__init__(__a , timeout=__a , max_filename_length=__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase : List[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC __lowercase : List[str] = os.open(self._lock_file , __a ) try: fcntl.flock(__a , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__a ) else: __lowercase : str = fd return None def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Any = self._lock_file_fd __lowercase : List[str] = None fcntl.flock(__a , fcntl.LOCK_UN ) os.close(__a ) return None class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __lowercase : Union[str, Any] = os.open(self._lock_file , __a ) except OSError: pass else: __lowercase : Optional[int] = fd return None def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" os.close(self._lock_file_fd ) __lowercase : int = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None lowerCamelCase : Optional[Any] = None if msvcrt: lowerCamelCase : List[Any] = WindowsFileLock elif fcntl: lowerCamelCase : List[Any] = UnixFileLock else: lowerCamelCase : Union[str, Any] = SoftFileLock if warnings is not None: warnings.warn('''only soft file lock is available''')
649
1
import colorsys from PIL import Image # type: ignore def snake_case_ ( lowerCAmelCase_ : float , lowerCAmelCase_ : float , lowerCAmelCase_ : int ): __lowercase : Union[str, Any] = x __lowercase : Union[str, Any] = y for step in range(lowerCAmelCase_ ): # noqa: B007 __lowercase : Union[str, Any] = a * a - b * b + x __lowercase : str = 2 * a * b + y __lowercase : Optional[Any] = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def snake_case_ ( lowerCAmelCase_ : float ): if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def snake_case_ ( lowerCAmelCase_ : float ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(lowerCAmelCase_ , 1 , 1 ) ) def snake_case_ ( lowerCAmelCase_ : int = 800 , lowerCAmelCase_ : int = 600 , lowerCAmelCase_ : float = -0.6 , lowerCAmelCase_ : float = 0 , lowerCAmelCase_ : float = 3.2 , lowerCAmelCase_ : int = 50 , lowerCAmelCase_ : bool = True , ): __lowercase : List[str] = Image.new("""RGB""" , (image_width, image_height) ) __lowercase : Dict = img.load() # loop through the image-coordinates for image_x in range(lowerCAmelCase_ ): for image_y in range(lowerCAmelCase_ ): # determine the figure-coordinates based on the image-coordinates __lowercase : Optional[Any] = figure_width / image_width * image_height __lowercase : Dict = figure_center_x + (image_x / image_width - 0.5) * figure_width __lowercase : List[str] = figure_center_y + (image_y / image_height - 0.5) * figure_height __lowercase : Optional[int] = get_distance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: __lowercase : Optional[int] = get_color_coded_rgb(lowerCAmelCase_ ) else: __lowercase : int = get_black_and_white_rgb(lowerCAmelCase_ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowerCamelCase : int = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
649
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : Tuple = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = '''layoutlmv3''' def __init__( self : Dict , __a : List[str]=50265 , __a : str=768 , __a : List[Any]=12 , __a : List[Any]=12 , __a : List[str]=3072 , __a : Optional[Any]="gelu" , __a : Optional[int]=0.1 , __a : List[Any]=0.1 , __a : Tuple=512 , __a : int=2 , __a : Any=0.02 , __a : Union[str, Any]=1E-5 , __a : List[str]=1 , __a : List[Any]=0 , __a : int=2 , __a : str=1024 , __a : str=128 , __a : List[Any]=128 , __a : Tuple=True , __a : Optional[int]=32 , __a : Any=128 , __a : List[Any]=64 , __a : Tuple=256 , __a : str=True , __a : int=True , __a : Optional[Any]=True , __a : Any=224 , __a : str=3 , __a : List[str]=16 , __a : Union[str, Any]=None , **__a : List[Any] , ) -> List[str]: """simple docstring""" super().__init__( vocab_size=__a , hidden_size=__a , num_hidden_layers=__a , num_attention_heads=__a , intermediate_size=__a , hidden_act=__a , hidden_dropout_prob=__a , attention_probs_dropout_prob=__a , max_position_embeddings=__a , type_vocab_size=__a , initializer_range=__a , layer_norm_eps=__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a , ) __lowercase : int = max_ad_position_embeddings __lowercase : Any = coordinate_size __lowercase : Optional[Any] = shape_size __lowercase : str = has_relative_attention_bias __lowercase : int = rel_pos_bins __lowercase : Union[str, Any] = max_rel_pos __lowercase : str = has_spatial_attention_bias __lowercase : str = rel_ad_pos_bins __lowercase : List[Any] = max_rel_ad_pos __lowercase : Tuple = text_embed __lowercase : int = visual_embed __lowercase : Tuple = input_size __lowercase : Dict = num_channels __lowercase : str = patch_size __lowercase : Optional[int] = classifier_dropout class lowerCAmelCase ( __a ): '''simple docstring''' _A : str = version.parse('''1.12''' ) @property def lowerCAmelCase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def lowerCAmelCase ( self : Union[str, Any] ) -> float: """simple docstring""" return 1E-5 @property def lowerCAmelCase ( self : str ) -> int: """simple docstring""" return 12 def lowerCAmelCase ( self : List[Any] , __a : "ProcessorMixin" , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional["TensorType"] = None , __a : int = 3 , __a : int = 40 , __a : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , """apply_ocr""" , __a ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase : Tuple = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase : Tuple = processor.tokenizer.num_special_tokens_to_add(__a ) __lowercase : Tuple = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__a ) # Generate dummy inputs according to compute batch and sequence __lowercase : Union[str, Any] = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowercase : Tuple = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowercase : Tuple = self._generate_dummy_images(__a , __a , __a , __a ) __lowercase : int = dict( processor( __a , text=__a , boxes=__a , return_tensors=__a , ) ) return inputs
649
1
def snake_case_ ( lowerCAmelCase_ : int ): if n == 1 or not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return 0 elif n == 2: return 1 else: __lowercase : Optional[Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : Optional[int] = 0 __lowercase : Dict = 2 while digits < n: index += 1 __lowercase : str = len(str(fibonacci(lowerCAmelCase_ ) ) ) return index def snake_case_ ( lowerCAmelCase_ : int = 1000 ): return fibonacci_digits_index(lowerCAmelCase_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
649
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowerCamelCase : List[Any] = logging.get_logger(__name__) class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , __a : str = None , __a : uuid.UUID = None , __a : Any=None , __a : List[Any]=None ) -> List[Any]: """simple docstring""" if not conversation_id: __lowercase : Any = uuid.uuida() if past_user_inputs is None: __lowercase : Dict = [] if generated_responses is None: __lowercase : Dict = [] __lowercase : uuid.UUID = conversation_id __lowercase : List[str] = past_user_inputs __lowercase : List[str] = generated_responses __lowercase : Optional[str] = text def __eq__( self : Dict , __a : Dict ) -> Any: """simple docstring""" if not isinstance(__a , __a ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCAmelCase ( self : List[str] , __a : str , __a : bool = False ) -> Dict: """simple docstring""" if self.new_user_input: if overwrite: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten " F"with: \"{text}\"." ) __lowercase : Optional[int] = text else: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" new input " F"ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input" ) else: __lowercase : Dict = text def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __lowercase : Dict = None def lowerCAmelCase ( self : Optional[int] , __a : str ) -> List[Any]: """simple docstring""" self.generated_responses.append(__a ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : int ) -> str: """simple docstring""" __lowercase : Optional[int] = F"Conversation id: {self.uuid} \n" for is_user, text in self.iter_texts(): __lowercase : Optional[Any] = """user""" if is_user else """bot""" output += F"{name} >> {text} \n" return output @add_end_docstrings( __a , r''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''' , ) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Any , *__a : int , **__a : str ) -> Union[str, Any]: """simple docstring""" super().__init__(*__a , **__a ) if self.tokenizer.pad_token_id is None: __lowercase : List[Any] = self.tokenizer.eos_token def lowerCAmelCase ( self : Union[str, Any] , __a : int=None , __a : Tuple=None , __a : Any=None , **__a : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = {} __lowercase : Tuple = {} __lowercase : List[str] = {} if min_length_for_response is not None: __lowercase : Dict = min_length_for_response if minimum_tokens is not None: __lowercase : Union[str, Any] = minimum_tokens if "max_length" in generate_kwargs: __lowercase : Union[str, Any] = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __lowercase : Union[str, Any] = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(__a ) return preprocess_params, forward_params, postprocess_params def __call__( self : Optional[int] , __a : Union[Conversation, List[Conversation]] , __a : Dict=0 , **__a : List[Any] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = super().__call__(__a , num_workers=__a , **__a ) if isinstance(__a , __a ) and len(__a ) == 1: return outputs[0] return outputs def lowerCAmelCase ( self : Union[str, Any] , __a : Conversation , __a : Tuple=32 ) -> Dict[str, Any]: """simple docstring""" if not isinstance(__a , __a ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( F"Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. " """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer , """_build_conversation_input_ids""" ): __lowercase : List[Any] = self.tokenizer._build_conversation_input_ids(__a ) else: # If the tokenizer cannot handle conversations, we default to only the old version __lowercase : Tuple = self._legacy_parse_and_tokenize(__a ) if self.framework == "pt": __lowercase : List[Any] = torch.LongTensor([input_ids] ) elif self.framework == "tf": __lowercase : List[str] = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCAmelCase ( self : Any , __a : Dict , __a : Any=10 , **__a : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = generate_kwargs.get("""max_length""" , self.model.config.max_length ) __lowercase : List[Any] = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(F"Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})" ) __lowercase : Any = max_length - minimum_tokens __lowercase : int = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: __lowercase : Dict = model_inputs["""attention_mask"""][:, -trim:] __lowercase : Union[str, Any] = model_inputs.pop("""conversation""" ) __lowercase : Tuple = max_length __lowercase : int = self.model.generate(**__a , **__a ) if self.model.config.is_encoder_decoder: __lowercase : Optional[int] = 1 else: __lowercase : str = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCAmelCase ( self : int , __a : Tuple , __a : List[Any]=True ) -> List[str]: """simple docstring""" __lowercase : int = model_outputs["""output_ids"""] __lowercase : Union[str, Any] = self.tokenizer.decode( output_ids[0] , skip_special_tokens=__a , clean_up_tokenization_spaces=__a , ) __lowercase : List[str] = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(__a ) return conversation def lowerCAmelCase ( self : int , __a : Conversation ) -> Dict: """simple docstring""" __lowercase : Optional[int] = self.tokenizer.eos_token_id __lowercase : Optional[Any] = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(__a , add_special_tokens=__a ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(__a , add_special_tokens=__a ) ) if len(__a ) > self.tokenizer.model_max_length: __lowercase : List[Any] = input_ids[-self.tokenizer.model_max_length :] return input_ids
649
1
import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( '''The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion''' ) lowerCamelCase : Optional[int] = None lowerCamelCase : str = { '''7B''': 1_10_08, '''13B''': 1_38_24, '''30B''': 1_79_20, '''65B''': 2_20_16, '''70B''': 2_86_72, } lowerCamelCase : List[str] = { '''7B''': 1, '''7Bf''': 1, '''13B''': 2, '''13Bf''': 2, '''30B''': 4, '''65B''': 8, '''70B''': 8, '''70Bf''': 8, } def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : Any=1 , lowerCAmelCase_ : Optional[Any]=256 ): return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def snake_case_ ( lowerCAmelCase_ : Tuple ): with open(lowerCAmelCase_ , """r""" ) as f: return json.load(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] ): with open(lowerCAmelCase_ , """w""" ) as f: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict=True ): os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowercase : List[Any] = os.path.join(lowerCAmelCase_ , """tmp""" ) os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowercase : str = read_json(os.path.join(lowerCAmelCase_ , """params.json""" ) ) __lowercase : Any = NUM_SHARDS[model_size] __lowercase : int = params["""n_layers"""] __lowercase : str = params["""n_heads"""] __lowercase : List[str] = n_heads // num_shards __lowercase : List[str] = params["""dim"""] __lowercase : Union[str, Any] = dim // n_heads __lowercase : Any = 10_000.0 __lowercase : Tuple = 1.0 / (base ** (torch.arange(0 , lowerCAmelCase_ , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: __lowercase : Union[str, Any] = params["""n_kv_heads"""] # for GQA / MQA __lowercase : Union[str, Any] = n_heads_per_shard // num_key_value_heads __lowercase : Optional[Any] = dim // num_key_value_heads else: # compatibility with other checkpoints __lowercase : Optional[Any] = n_heads __lowercase : Dict = n_heads_per_shard __lowercase : List[Any] = dim # permute for sliced rotary def permute(lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str=n_heads , lowerCAmelCase_ : Optional[int]=dim , lowerCAmelCase_ : List[Any]=dim ): return w.view(lowerCAmelCase_ , dima // n_heads // 2 , 2 , lowerCAmelCase_ ).transpose(1 , 2 ).reshape(lowerCAmelCase_ , lowerCAmelCase_ ) print(F"Fetching all parameters from the checkpoint at {input_base_path}." ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) __lowercase : Optional[Any] = torch.load(os.path.join(lowerCAmelCase_ , """consolidated.00.pth""" ) , map_location="""cpu""" ) else: # Sharded __lowercase : List[Any] = [ torch.load(os.path.join(lowerCAmelCase_ , F"consolidated.{i:02d}.pth" ) , map_location="""cpu""" ) for i in range(lowerCAmelCase_ ) ] __lowercase : List[str] = 0 __lowercase : Optional[int] = {"""weight_map""": {}} for layer_i in range(lowerCAmelCase_ ): __lowercase : Dict = F"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin" if model_size == "7B": # Unsharded __lowercase : int = { F"model.layers.{layer_i}.self_attn.q_proj.weight": permute( loaded[F"layers.{layer_i}.attention.wq.weight"] ), F"model.layers.{layer_i}.self_attn.k_proj.weight": permute( loaded[F"layers.{layer_i}.attention.wk.weight"] ), F"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[F"layers.{layer_i}.attention.wv.weight"], F"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[F"layers.{layer_i}.attention.wo.weight"], F"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[F"layers.{layer_i}.feed_forward.w1.weight"], F"model.layers.{layer_i}.mlp.down_proj.weight": loaded[F"layers.{layer_i}.feed_forward.w2.weight"], F"model.layers.{layer_i}.mlp.up_proj.weight": loaded[F"layers.{layer_i}.feed_forward.w3.weight"], F"model.layers.{layer_i}.input_layernorm.weight": loaded[F"layers.{layer_i}.attention_norm.weight"], F"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[F"layers.{layer_i}.ffn_norm.weight"], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. __lowercase : Any = { F"model.layers.{layer_i}.input_layernorm.weight": loaded[0][ F"layers.{layer_i}.attention_norm.weight" ].clone(), F"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][ F"layers.{layer_i}.ffn_norm.weight" ].clone(), } __lowercase : Dict = permute( torch.cat( [ loaded[i][F"layers.{layer_i}.attention.wq.weight"].view(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for i in range(lowerCAmelCase_ ) ] , dim=0 , ).reshape(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowercase : Dict = permute( torch.cat( [ loaded[i][F"layers.{layer_i}.attention.wk.weight"].view( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for i in range(lowerCAmelCase_ ) ] , dim=0 , ).reshape(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) __lowercase : List[Any] = torch.cat( [ loaded[i][F"layers.{layer_i}.attention.wv.weight"].view( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for i in range(lowerCAmelCase_ ) ] , dim=0 , ).reshape(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Any = torch.cat( [loaded[i][F"layers.{layer_i}.attention.wo.weight"] for i in range(lowerCAmelCase_ )] , dim=1 ) __lowercase : Union[str, Any] = torch.cat( [loaded[i][F"layers.{layer_i}.feed_forward.w1.weight"] for i in range(lowerCAmelCase_ )] , dim=0 ) __lowercase : Optional[Any] = torch.cat( [loaded[i][F"layers.{layer_i}.feed_forward.w2.weight"] for i in range(lowerCAmelCase_ )] , dim=1 ) __lowercase : List[Any] = torch.cat( [loaded[i][F"layers.{layer_i}.feed_forward.w3.weight"] for i in range(lowerCAmelCase_ )] , dim=0 ) __lowercase : List[str] = inv_freq for k, v in state_dict.items(): __lowercase : int = filename param_count += v.numel() torch.save(lowerCAmelCase_ , os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowercase : Any = F"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin" if model_size == "7B": # Unsharded __lowercase : List[Any] = { """model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""], """model.norm.weight""": loaded["""norm.weight"""], """lm_head.weight""": loaded["""output.weight"""], } else: __lowercase : List[Any] = { """model.norm.weight""": loaded[0]["""norm.weight"""], """model.embed_tokens.weight""": torch.cat( [loaded[i]["""tok_embeddings.weight"""] for i in range(lowerCAmelCase_ )] , dim=1 ), """lm_head.weight""": torch.cat([loaded[i]["""output.weight"""] for i in range(lowerCAmelCase_ )] , dim=0 ), } for k, v in state_dict.items(): __lowercase : Union[str, Any] = filename param_count += v.numel() torch.save(lowerCAmelCase_ , os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ) # Write configs __lowercase : List[str] = {"""total_size""": param_count * 2} write_json(lowerCAmelCase_ , os.path.join(lowerCAmelCase_ , """pytorch_model.bin.index.json""" ) ) __lowercase : Union[str, Any] = params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1 __lowercase : str = params["""multiple_of"""] if """multiple_of""" in params else 256 __lowercase : Union[str, Any] = LlamaConfig( hidden_size=lowerCAmelCase_ , intermediate_size=compute_intermediate_size(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) , num_attention_heads=params["""n_heads"""] , num_hidden_layers=params["""n_layers"""] , rms_norm_eps=params["""norm_eps"""] , num_key_value_heads=lowerCAmelCase_ , ) config.save_pretrained(lowerCAmelCase_ ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("""Loading the checkpoint in a Llama model.""" ) __lowercase : Union[str, Any] = LlamaForCausalLM.from_pretrained(lowerCAmelCase_ , torch_dtype=torch.floataa , low_cpu_mem_usage=lowerCAmelCase_ ) # Avoid saving this as part of the config. del model.config._name_or_path print("""Saving in the Transformers format.""" ) model.save_pretrained(lowerCAmelCase_ , safe_serialization=lowerCAmelCase_ ) shutil.rmtree(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int ): # Initialize the tokenizer based on the `spm` model __lowercase : Optional[Any] = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(F"Saving a {tokenizer_class.__name__} to {tokenizer_path}." ) __lowercase : Optional[Any] = tokenizer_class(lowerCAmelCase_ ) tokenizer.save_pretrained(lowerCAmelCase_ ) def snake_case_ ( ): __lowercase : List[str] = argparse.ArgumentParser() parser.add_argument( """--input_dir""" , help="""Location of LLaMA weights, which contains tokenizer.model and model folders""" , ) parser.add_argument( """--model_size""" , choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""] , ) parser.add_argument( """--output_dir""" , help="""Location to write HF model and tokenizer""" , ) parser.add_argument("""--safe_serialization""" , type=lowerCAmelCase_ , help="""Whether or not to save using `safetensors`.""" ) __lowercase : List[Any] = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) __lowercase : List[Any] = os.path.join(args.input_dir , """tokenizer.model""" ) write_tokenizer(args.output_dir , lowerCAmelCase_ ) if __name__ == "__main__": main()
649
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__a , """tf_padding""" ) ) self.parent.assertTrue(hasattr(__a , """depth_multiplier""" ) ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Tuple , __a : str=13 , __a : Dict=3 , __a : List[Any]=32 , __a : Any=0.25 , __a : Any=8 , __a : Optional[int]=8 , __a : Optional[int]=6 , __a : Dict=32 , __a : Tuple=True , __a : List[Any]=True , __a : Optional[int]=True , __a : Tuple="relu6" , __a : Optional[Any]=1280 , __a : str=0.1 , __a : str=0.02 , __a : Optional[Any]=True , __a : Tuple=True , __a : Dict=10 , __a : Optional[Any]=None , ) -> Any: """simple docstring""" __lowercase : List[str] = parent __lowercase : Tuple = batch_size __lowercase : Dict = num_channels __lowercase : Optional[int] = image_size __lowercase : int = depth_multiplier __lowercase : str = depth_divisible_by __lowercase : int = min_depth __lowercase : Tuple = expand_ratio __lowercase : Optional[int] = tf_padding __lowercase : Dict = output_stride __lowercase : Dict = first_layer_is_expansion __lowercase : Optional[Any] = finegrained_output __lowercase : str = hidden_act __lowercase : Union[str, Any] = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) __lowercase : Optional[int] = classifier_dropout_prob __lowercase : int = use_labels __lowercase : Optional[int] = is_training __lowercase : Dict = num_labels __lowercase : Tuple = initializer_range __lowercase : Optional[Any] = scope def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : List[Any] = None __lowercase : Optional[Any] = None if self.use_labels: __lowercase : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __lowercase : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowercase : List[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : Tuple , __a : Dict , __a : Tuple , __a : Optional[int] , __a : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[int] = MobileNetVaModel(config=__a ) model.to(__a ) model.eval() __lowercase : Tuple = model(__a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def lowerCAmelCase ( self : List[str] , __a : Optional[int] , __a : List[str] , __a : str , __a : Optional[int] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = self.num_labels __lowercase : Dict = MobileNetVaForImageClassification(__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : int , __a : List[str] , __a : Tuple , __a : Any , __a : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : int = self.num_labels __lowercase : List[Any] = MobileNetVaForSemanticSegmentation(__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __lowercase : str = model(__a , labels=__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase : List[str] = config_and_inputs __lowercase : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Tuple = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) _A : Optional[Any] = ( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) _A : Tuple = False _A : List[str] = False _A : List[str] = False _A : Optional[int] = False def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = MobileNetVaModelTester(self ) __lowercase : int = MobileNetVaConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV2 does not use inputs_embeds""" ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not support input and output embeddings""" ) def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not output attentions""" ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[Any] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : int = [*signature.parameters.keys()] __lowercase : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" def check_hidden_states_output(__a : List[Any] , __a : Tuple , __a : List[str] ): __lowercase : Optional[Any] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : List[Any] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Tuple = outputs.hidden_states __lowercase : str = 16 self.assertEqual(len(__a ) , __a ) __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Any = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase : Union[str, Any] = True check_hidden_states_output(__a , __a , __a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : Optional[int] = MobileNetVaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def snake_case_ ( ): __lowercase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v2_1.0_224""" ) if is_vision_available() else None ) @slow def lowerCAmelCase ( self : str ) -> int: """simple docstring""" __lowercase : Tuple = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v2_1.0_224""" ).to(__a ) __lowercase : str = self.default_image_processor __lowercase : Tuple = prepare_img() __lowercase : Tuple = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : str = model(**__a ) # verify the logits __lowercase : Union[str, Any] = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , __a ) __lowercase : str = torch.tensor([0.2445, -1.1993, 0.1905] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : int = MobileNetVaForSemanticSegmentation.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __lowercase : Dict = model.to(__a ) __lowercase : Tuple = MobileNetVaImageProcessor.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __lowercase : List[str] = prepare_img() __lowercase : Optional[int] = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : Union[str, Any] = model(**__a ) __lowercase : Any = outputs.logits # verify the logits __lowercase : Dict = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , __a ) __lowercase : str = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=__a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __a , atol=1E-4 ) )
649
1
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : str ): return [ord(lowerCAmelCase_ ) - 96 for elem in plain] def snake_case_ ( lowerCAmelCase_ : list[int] ): return "".join(chr(elem + 96 ) for elem in encoded ) def snake_case_ ( ): __lowercase : str = encode(input("""-> """ ).strip().lower() ) print("""Encoded: """ , lowerCAmelCase_ ) print("""Decoded:""" , decode(lowerCAmelCase_ ) ) if __name__ == "__main__": main()
649
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def snake_case_ ( lowerCAmelCase_ : bool = True , *lowerCAmelCase_ : int , **lowerCAmelCase_ : List[str] ): if not is_tqdm_available(): raise ImportError("""Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.""" ) __lowercase : List[str] = False if main_process_only: __lowercase : Optional[int] = PartialState().local_process_index == 0 return _tqdm(*lowerCAmelCase_ , **lowerCAmelCase_ , disable=lowerCAmelCase_ )
649
1
import fire from utils import calculate_rouge, save_json def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : str=None , **lowerCAmelCase_ : str ): __lowercase : Tuple = [x.strip() for x in open(lowerCAmelCase_ ).readlines()] __lowercase : Dict = [x.strip() for x in open(lowerCAmelCase_ ).readlines()][: len(lowerCAmelCase_ )] __lowercase : Tuple = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) if save_path is not None: save_json(lowerCAmelCase_ , lowerCAmelCase_ , indent=lowerCAmelCase_ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
649
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : list[int] ): if not nums: return 0 __lowercase : Tuple = nums[0] __lowercase : Tuple = 0 for num in nums[1:]: __lowercase , __lowercase : List[str] = ( max_excluding + num, max(lowerCAmelCase_ , lowerCAmelCase_ ), ) return max(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
649
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : Any = { '''Salesforce/blip-vqa-base''': '''https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json''', '''Salesforce/blip-vqa-capfit-large''': ( '''https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json''' ), '''Salesforce/blip-image-captioning-base''': ( '''https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json''' ), '''Salesforce/blip-image-captioning-large''': ( '''https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json''' ), '''Salesforce/blip-itm-base-coco''': '''https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json''', '''Salesforce/blip-itm-large-coco''': '''https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json''', '''Salesforce/blip-itm-base-flikr''': '''https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json''', '''Salesforce/blip-itm-large-flikr''': ( '''https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json''' ), } class lowerCAmelCase ( __a ): '''simple docstring''' _A : Union[str, Any] = '''blip_text_model''' def __init__( self : List[str] , __a : Tuple=30524 , __a : str=768 , __a : int=768 , __a : Optional[Any]=3072 , __a : int=768 , __a : Optional[Any]=12 , __a : Optional[Any]=8 , __a : str=512 , __a : Dict="gelu" , __a : List[str]=1E-12 , __a : List[str]=0.0 , __a : Union[str, Any]=0.0 , __a : List[str]=0.02 , __a : Optional[int]=30522 , __a : Optional[Any]=2 , __a : Tuple=0 , __a : str=102 , __a : Union[str, Any]=True , __a : List[str]=True , **__a : List[str] , ) -> Any: """simple docstring""" super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , sep_token_id=__a , **__a , ) __lowercase : int = vocab_size __lowercase : int = hidden_size __lowercase : Dict = encoder_hidden_size __lowercase : Optional[Any] = intermediate_size __lowercase : List[Any] = projection_dim __lowercase : List[str] = hidden_dropout_prob __lowercase : Dict = num_hidden_layers __lowercase : Any = num_attention_heads __lowercase : Optional[Any] = max_position_embeddings __lowercase : Optional[Any] = layer_norm_eps __lowercase : Tuple = hidden_act __lowercase : Dict = initializer_range __lowercase : Optional[int] = attention_probs_dropout_prob __lowercase : Tuple = is_decoder __lowercase : Dict = use_cache @classmethod def lowerCAmelCase ( cls : Any , __a : Union[str, os.PathLike] , **__a : List[str] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(__a ) __lowercase , __lowercase : int = cls.get_config_dict(__a , **__a ) # get the text config dict if we are loading from BlipConfig if config_dict.get("""model_type""" ) == "blip": __lowercase : Any = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__a , **__a ) class lowerCAmelCase ( __a ): '''simple docstring''' _A : Union[str, Any] = '''blip_vision_model''' def __init__( self : List[Any] , __a : Union[str, Any]=768 , __a : Tuple=3072 , __a : int=512 , __a : Any=12 , __a : Dict=12 , __a : Any=384 , __a : List[Any]=16 , __a : Any="gelu" , __a : Union[str, Any]=1E-5 , __a : List[str]=0.0 , __a : Union[str, Any]=1E-10 , **__a : int , ) -> int: """simple docstring""" super().__init__(**__a ) __lowercase : Tuple = hidden_size __lowercase : Any = intermediate_size __lowercase : Tuple = projection_dim __lowercase : Optional[int] = num_hidden_layers __lowercase : Tuple = num_attention_heads __lowercase : Optional[Any] = patch_size __lowercase : int = image_size __lowercase : int = initializer_range __lowercase : int = attention_dropout __lowercase : Dict = layer_norm_eps __lowercase : List[str] = hidden_act @classmethod def lowerCAmelCase ( cls : Union[str, Any] , __a : Union[str, os.PathLike] , **__a : Optional[int] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(__a ) __lowercase , __lowercase : Union[str, Any] = cls.get_config_dict(__a , **__a ) # get the vision config dict if we are loading from BlipConfig if config_dict.get("""model_type""" ) == "blip": __lowercase : Tuple = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__a , **__a ) class lowerCAmelCase ( __a ): '''simple docstring''' _A : Dict = '''blip''' _A : Any = True def __init__( self : Any , __a : Union[str, Any]=None , __a : Optional[int]=None , __a : Optional[int]=512 , __a : Tuple=2.6592 , __a : Tuple=256 , **__a : str , ) -> Tuple: """simple docstring""" super().__init__(**__a ) if text_config is None: __lowercase : Optional[Any] = {} logger.info("""`text_config` is `None`. Initializing the `BlipTextConfig` with default values.""" ) if vision_config is None: __lowercase : str = {} logger.info("""`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.""" ) __lowercase : Optional[Any] = BlipTextConfig(**__a ) __lowercase : Union[str, Any] = BlipVisionConfig(**__a ) __lowercase : Optional[int] = self.vision_config.hidden_size __lowercase : List[str] = projection_dim __lowercase : int = logit_scale_init_value __lowercase : Optional[int] = 1.0 __lowercase : Dict = 0.02 __lowercase : Optional[Any] = image_text_hidden_size @classmethod def lowerCAmelCase ( cls : Any , __a : BlipTextConfig , __a : BlipVisionConfig , **__a : Optional[int] ) -> Union[str, Any]: """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = copy.deepcopy(self.__dict__ ) __lowercase : Tuple = self.text_config.to_dict() __lowercase : str = self.vision_config.to_dict() __lowercase : Any = self.__class__.model_type return output
649
lowerCamelCase : List[str] = '''0.18.2''' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
649
1
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : list[int] ): if not nums: return 0 __lowercase : Tuple = nums[0] __lowercase : Tuple = 0 for num in nums[1:]: __lowercase , __lowercase : List[str] = ( max_excluding + num, max(lowerCAmelCase_ , lowerCAmelCase_ ), ) return max(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
649
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : List[Any] = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : str=False , lowerCAmelCase_ : Any=False ): __lowercase : Any = """backbone.""" if is_semantic else """""" __lowercase : Optional[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"{prefix}blocks.{i}.norm1.weight", F"beit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm1.bias", F"beit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.weight", F"beit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.bias", F"beit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.weight", F"beit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.bias", F"beit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.weight", F"beit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.bias", F"beit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.weight", F"beit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.bias", F"beit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ (F"{prefix}cls_token", """beit.embeddings.cls_token"""), (F"{prefix}patch_embed.proj.weight", """beit.embeddings.patch_embeddings.projection.weight"""), (F"{prefix}patch_embed.proj.bias", """beit.embeddings.patch_embeddings.projection.bias"""), (F"{prefix}pos_embed", """beit.embeddings.position_embeddings"""), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("""mask_token""", """beit.embeddings.mask_token"""), ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) else: # layernorm + classification head rename_keys.extend( [ ("""fc_norm.weight""", """beit.pooler.layernorm.weight"""), ("""fc_norm.bias""", """beit.pooler.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : List[Any]=False ): for i in range(config.num_hidden_layers ): __lowercase : Tuple = """backbone.""" if is_semantic else """""" # queries, keys and values __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.attn.qkv.weight" ) __lowercase : Dict = state_dict.pop(F"{prefix}blocks.{i}.attn.q_bias" ) __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.attn.v_bias" ) __lowercase : List[str] = in_proj_weight[ : config.hidden_size, : ] __lowercase : Union[str, Any] = q_bias __lowercase : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] __lowercase : str = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.gamma_1" ) __lowercase : str = state_dict.pop(F"{prefix}blocks.{i}.gamma_2" ) __lowercase : List[str] = gamma_a __lowercase : Optional[int] = gamma_a def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : int ): __lowercase : Tuple = dct.pop(lowerCAmelCase_ ) __lowercase : Tuple = val def snake_case_ ( ): __lowercase : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase : Any = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]=False ): __lowercase : Dict = False if """rvlcdip""" in checkpoint_url else True __lowercase : Tuple = BeitConfig(use_absolute_position_embeddings=lowerCAmelCase_ , use_mask_token=lowerCAmelCase_ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: __lowercase : Union[str, Any] = 1024 __lowercase : Optional[int] = 4096 __lowercase : List[Any] = 24 __lowercase : Dict = 16 # labels if "rvlcdip" in checkpoint_url: __lowercase : Optional[int] = 16 __lowercase : Any = """huggingface/label-files""" __lowercase : Union[str, Any] = """rvlcdip-id2label.json""" __lowercase : List[str] = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) __lowercase : Optional[int] = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowercase : Union[str, Any] = idalabel __lowercase : Optional[Any] = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys __lowercase : Optional[int] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ , map_location="""cpu""" )["""model"""] __lowercase : Union[str, Any] = create_rename_keys(lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) # load HuggingFace model __lowercase : Dict = BeitForMaskedImageModeling(lowerCAmelCase_ ) if has_lm_head else BeitForImageClassification(lowerCAmelCase_ ) model.eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image __lowercase : List[str] = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=lowerCAmelCase_ ) __lowercase : List[str] = prepare_img() __lowercase : Optional[Any] = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""" ) __lowercase : Optional[int] = encoding["""pixel_values"""] __lowercase : str = model(lowerCAmelCase_ ) __lowercase : Tuple = outputs.logits # verify logits __lowercase : str = [1, 16] if """rvlcdip""" in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(lowerCAmelCase_ ), "Shape of logits not as expected" Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: if has_lm_head: __lowercase : Optional[Any] = """dit-base""" if """base""" in checkpoint_url else """dit-large""" else: __lowercase : Tuple = """dit-base-finetuned-rvlcdip""" if """dit-b""" in checkpoint_url else """dit-large-finetuned-rvlcdip""" image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=lowerCAmelCase_ , ) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=lowerCAmelCase_ , ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) lowerCamelCase : List[str] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
649
1
import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin lowerCamelCase : Optional[Any] = random.Random() def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple=1.0 , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : List[Any]=None ): if rng is None: __lowercase : Tuple = global_rng __lowercase : Tuple = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any , __a : Union[str, Any] , __a : Union[str, Any]=7 , __a : Optional[Any]=400 , __a : Union[str, Any]=2000 , __a : Optional[Any]=1 , __a : Optional[int]=0.0 , __a : List[Any]=16000 , __a : int=True , __a : Optional[Any]=True , ) -> int: """simple docstring""" __lowercase : int = parent __lowercase : List[Any] = batch_size __lowercase : Dict = min_seq_length __lowercase : List[Any] = max_seq_length __lowercase : Union[str, Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __lowercase : List[str] = feature_size __lowercase : List[Any] = padding_value __lowercase : int = sampling_rate __lowercase : Tuple = return_attention_mask __lowercase : Optional[Any] = do_normalize def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCAmelCase ( self : List[str] , __a : Union[str, Any]=False , __a : Optional[int]=False ) -> Tuple: """simple docstring""" def _flatten(__a : Union[str, Any] ): return list(itertools.chain(*__a ) ) if equal_length: __lowercase : Tuple = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size __lowercase : Union[str, Any] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __lowercase : str = [np.asarray(__a ) for x in speech_inputs] return speech_inputs class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : Optional[Any] = WavaVecaFeatureExtractor def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase : Any = WavaVecaFeatureExtractionTester(self ) def lowerCAmelCase ( self : Union[str, Any] , __a : List[Any] ) -> List[Any]: """simple docstring""" self.assertTrue(np.all(np.mean(__a , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(__a , axis=0 ) - 1 ) < 1E-3 ) ) def lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __lowercase : Optional[int] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __lowercase : str = [np.asarray(__a ) for speech_input in speech_inputs] # Test not batched input __lowercase : Union[str, Any] = feat_extract(speech_inputs[0] , return_tensors="""np""" ).input_values __lowercase : List[Any] = feat_extract(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(__a , __a , atol=1E-3 ) ) # Test batched __lowercase : Tuple = feat_extract(__a , return_tensors="""np""" ).input_values __lowercase : Dict = feat_extract(__a , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(__a , __a ): self.assertTrue(np.allclose(__a , __a , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. __lowercase : str = [floats_list((1, x) )[0] for x in (800, 800, 800)] __lowercase : Optional[Any] = np.asarray(__a ) __lowercase : List[Any] = feat_extract(__a , return_tensors="""np""" ).input_values __lowercase : int = feat_extract(__a , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(__a , __a ): self.assertTrue(np.allclose(__a , __a , atol=1E-3 ) ) def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowercase : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __lowercase : int = ["""longest""", """max_length""", """do_not_pad"""] __lowercase : Dict = [None, 1600, None] for max_length, padding in zip(__a , __a ): __lowercase : List[Any] = feat_extract(__a , padding=__a , max_length=__a , return_tensors="""np""" ) __lowercase : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowercase : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowercase : Optional[int] = range(800 , 1400 , 200 ) __lowercase : Optional[Any] = [floats_list((1, x) )[0] for x in lengths] __lowercase : str = ["""longest""", """max_length""", """do_not_pad"""] __lowercase : Union[str, Any] = [None, 1600, None] for max_length, padding in zip(__a , __a ): __lowercase : Optional[int] = feat_extract(__a , max_length=__a , padding=__a ) __lowercase : Any = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" __lowercase : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowercase : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __lowercase : List[str] = feat_extract( __a , truncation=__a , max_length=1000 , padding="""max_length""" , return_tensors="""np""" ) __lowercase : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowercase : List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __lowercase : List[str] = feat_extract( __a , truncation=__a , max_length=1000 , padding="""longest""" , return_tensors="""np""" ) __lowercase : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) __lowercase : Dict = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __lowercase : Optional[int] = feat_extract( __a , truncation=__a , max_length=2000 , padding="""longest""" , return_tensors="""np""" ) __lowercase : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) @require_torch def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" import torch __lowercase : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowercase : Optional[int] = np.random.rand(100 ).astype(np.floataa ) __lowercase : List[str] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __lowercase : Any = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) __lowercase : Optional[Any] = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: __lowercase : Optional[int] = WavaVecaConfig.from_pretrained(__a ) __lowercase : List[str] = WavaVecaFeatureExtractor.from_pretrained(__a ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == """layer""" )
649
from torch import nn class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , __a : int , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" super().__init__() __lowercase : int = class_size __lowercase : int = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) __lowercase : str = nn.Linear(__a , __a ) def lowerCAmelCase ( self : Tuple , __a : int ) -> Tuple: """simple docstring""" __lowercase : str = self.mlp(__a ) return logits
649
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : Tuple = ShapEImgaImgPipeline _A : Optional[int] = ['''image'''] _A : List[Any] = ['''image'''] _A : str = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] _A : int = False @property def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" return 32 @property def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" return 32 @property def lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" return self.time_input_dim * 4 @property def lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" return 8 @property def lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) __lowercase : Any = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) __lowercase : Union[str, Any] = CLIPVisionModel(__a ) return model @property def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" __lowercase : str = CLIPImageProcessor( crop_size=224 , do_center_crop=__a , do_normalize=__a , do_resize=__a , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor @property def lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) __lowercase : List[str] = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } __lowercase : str = PriorTransformer(**__a ) return model @property def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" torch.manual_seed(0 ) __lowercase : Optional[Any] = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } __lowercase : Any = ShapERenderer(**__a ) return model def lowerCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.dummy_prior __lowercase : Optional[int] = self.dummy_image_encoder __lowercase : Any = self.dummy_image_processor __lowercase : Optional[int] = self.dummy_renderer __lowercase : str = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=__a , clip_sample=__a , clip_sample_range=1.0 , ) __lowercase : List[str] = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCAmelCase ( self : Dict , __a : int , __a : str=0 ) -> int: """simple docstring""" __lowercase : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(__a ) ).to(__a ) if str(__a ).startswith("""mps""" ): __lowercase : Dict = torch.manual_seed(__a ) else: __lowercase : Optional[Any] = torch.Generator(device=__a ).manual_seed(__a ) __lowercase : List[Any] = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" __lowercase : str = """cpu""" __lowercase : Any = self.get_dummy_components() __lowercase : int = self.pipeline_class(**__a ) __lowercase : Union[str, Any] = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __lowercase : str = pipe(**self.get_dummy_inputs(__a ) ) __lowercase : List[str] = output.images[0] __lowercase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __lowercase : str = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase ( self : int ) -> str: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" __lowercase : List[Any] = torch_device == """cpu""" __lowercase : Tuple = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__a , relax_max_difference=__a , ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : int = self.get_dummy_components() __lowercase : Any = self.pipeline_class(**__a ) __lowercase : List[str] = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __lowercase : Tuple = 1 __lowercase : Dict = 2 __lowercase : Dict = self.get_dummy_inputs(__a ) for key in inputs.keys(): if key in self.batch_params: __lowercase : Optional[Any] = batch_size * [inputs[key]] __lowercase : Union[str, Any] = pipe(**__a , num_images_per_prompt=__a )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) __lowercase : Optional[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) __lowercase : str = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) __lowercase : str = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __lowercase : Any = torch.Generator(device=__a ).manual_seed(0 ) __lowercase : Dict = pipe( __a , generator=__a , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__a , __a )
649
import fire from utils import calculate_rouge, save_json def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : str=None , **lowerCAmelCase_ : str ): __lowercase : Tuple = [x.strip() for x in open(lowerCAmelCase_ ).readlines()] __lowercase : Dict = [x.strip() for x in open(lowerCAmelCase_ ).readlines()][: len(lowerCAmelCase_ )] __lowercase : Tuple = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) if save_path is not None: save_json(lowerCAmelCase_ , lowerCAmelCase_ , indent=lowerCAmelCase_ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
649
1
def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : List[Any] = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def snake_case_ ( lowerCAmelCase_ : int = 5000 ): __lowercase : List[str] = [(i * (3 * i - 1)) // 2 for i in range(1 , lowerCAmelCase_ )] for i, pentagonal_i in enumerate(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ , len(lowerCAmelCase_ ) ): __lowercase : List[str] = pentagonal_nums[j] __lowercase : Optional[int] = pentagonal_i + pentagonal_j __lowercase : Any = pentagonal_j - pentagonal_i if is_pentagonal(lowerCAmelCase_ ) and is_pentagonal(lowerCAmelCase_ ): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
649
from argparse import ArgumentParser from . import BaseTransformersCLICommand def snake_case_ ( lowerCAmelCase_ : Dict ): return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class lowerCAmelCase ( __a ): '''simple docstring''' @staticmethod def lowerCAmelCase ( __a : ArgumentParser ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = parser.add_parser("""download""" ) download_parser.add_argument( """--cache-dir""" , type=__a , default=__a , help="""Path to location to store the models""" ) download_parser.add_argument( """--force""" , action="""store_true""" , help="""Force the model to be download even if already in cache-dir""" ) download_parser.add_argument( """--trust-remote-code""" , action="""store_true""" , help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" , ) download_parser.add_argument("""model""" , type=__a , help="""Name of the model to download""" ) download_parser.set_defaults(func=__a ) def __init__( self : Dict , __a : str , __a : str , __a : bool , __a : bool ) -> Union[str, Any]: """simple docstring""" __lowercase : Dict = model __lowercase : List[Any] = cache __lowercase : Any = force __lowercase : Optional[int] = trust_remote_code def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
649
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : Any = {'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Any = ['''ReformerTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = ['''ReformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = [ '''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ReformerAttention''', '''ReformerForMaskedLM''', '''ReformerForQuestionAnswering''', '''ReformerForSequenceClassification''', '''ReformerLayer''', '''ReformerModel''', '''ReformerModelWithLMHead''', '''ReformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
649
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowerCamelCase : Union[str, Any] = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , __a : List[str] , __a : Optional[int]=16 , __a : Optional[Any]=13 , __a : str=7 , __a : List[str]=14 , __a : Any=10 , __a : str=19 , __a : int=5 , __a : Any=4 , __a : List[Any]=True , __a : Tuple=16 , __a : Dict=2 , __a : Tuple=4 , __a : int=4 , __a : List[Any]="gelu" , __a : Tuple=0.1 , __a : List[str]=0.1 , __a : int=[1, 2, 3, 4, 5] , __a : str=25 , __a : Any=5 , ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = d_model __lowercase : Dict = parent __lowercase : Tuple = batch_size __lowercase : Optional[int] = prediction_length __lowercase : List[str] = context_length __lowercase : Any = cardinality __lowercase : str = num_time_features __lowercase : Optional[int] = lags_sequence __lowercase : Optional[Any] = embedding_dimension __lowercase : List[Any] = is_training __lowercase : List[str] = hidden_size __lowercase : int = num_hidden_layers __lowercase : Any = num_attention_heads __lowercase : List[Any] = intermediate_size __lowercase : int = hidden_act __lowercase : str = hidden_dropout_prob __lowercase : List[Any] = attention_probs_dropout_prob __lowercase : str = context_length __lowercase : int = prediction_length + label_length __lowercase : Union[str, Any] = label_length __lowercase : Optional[int] = moving_average __lowercase : Optional[Any] = autocorrelation_factor def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def lowerCAmelCase ( self : Tuple , __a : str ) -> int: """simple docstring""" __lowercase : Any = config.context_length + max(config.lags_sequence ) __lowercase : Any = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __lowercase : Optional[int] = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __lowercase : List[str] = floats_tensor([self.batch_size, _past_length] ) __lowercase : List[str] = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __lowercase : Dict = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __lowercase : str = floats_tensor([self.batch_size, config.prediction_length] ) __lowercase : List[str] = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.get_config() __lowercase : Any = self.prepare_autoformer_inputs_dict(__a ) return config, inputs_dict def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase , __lowercase : List[str] = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase ( self : Optional[Any] , __a : Tuple , __a : Optional[int] ) -> Any: """simple docstring""" __lowercase : List[str] = AutoformerModel(config=__a ).to(__a ).eval() __lowercase : Optional[int] = model(**__a ) __lowercase : Dict = outputs.encoder_last_hidden_state __lowercase : Tuple = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : List[str] = model.get_encoder() encoder.save_pretrained(__a ) __lowercase : List[str] = AutoformerEncoder.from_pretrained(__a ).to(__a ) __lowercase , __lowercase , __lowercase , __lowercase , __lowercase : Any = model.create_network_inputs(**__a ) __lowercase , __lowercase : Any = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __lowercase : Optional[Any] = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __lowercase : Union[str, Any] = encoder(inputs_embeds=__a )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) __lowercase : str = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __lowercase : Optional[int] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __lowercase : Any = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __lowercase : Dict = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : Optional[Any] = model.get_decoder() decoder.save_pretrained(__a ) __lowercase : Tuple = AutoformerDecoder.from_pretrained(__a ).to(__a ) __lowercase : str = decoder( trend=__a , inputs_embeds=__a , encoder_hidden_states=__a , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[str] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _A : List[Any] = (AutoformerForPrediction,) if is_torch_available() else () _A : Any = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} _A : Dict = False _A : Tuple = False _A : Optional[int] = False _A : Tuple = False _A : str = False _A : Union[str, Any] = False def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" __lowercase : List[str] = AutoformerModelTester(self ) __lowercase : Dict = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowercase : Dict = model_class(__a ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowercase , __lowercase : Tuple = model_class.from_pretrained(__a , output_loading_info=__a ) self.assertEqual(info["""missing_keys"""] , [] ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__a ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def lowerCAmelCase ( self : str ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : Any = inspect.signature(getattr(__a , """forward""" ) ) # The main input is the name of the argument after `self` __lowercase : Optional[int] = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , __a ) def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Dict = model_class(__a ) __lowercase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : Any = [*signature.parameters.keys()] __lowercase : int = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(__a )] , __a ) def lowerCAmelCase ( self : int ) -> int: """simple docstring""" __lowercase , __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : int = True __lowercase : Tuple = getattr(self.model_tester , """seq_length""" , __a ) __lowercase : Union[str, Any] = getattr(self.model_tester , """decoder_seq_length""" , __a ) __lowercase : List[str] = getattr(self.model_tester , """encoder_seq_length""" , __a ) __lowercase : List[Any] = getattr(self.model_tester , """d_model""" , __a ) __lowercase : Optional[int] = getattr(self.model_tester , """num_attention_heads""" , __a ) __lowercase : Any = d_model // num_attention_heads for model_class in self.all_model_classes: __lowercase : Dict = True __lowercase : List[str] = False __lowercase : Optional[int] = True __lowercase : str = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : int = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase : Optional[int] = True __lowercase : List[str] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Union[str, Any] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Dict = outputs.encoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __lowercase : Tuple = len(__a ) __lowercase : str = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__a , __a ) # decoder attentions __lowercase : List[Any] = outputs.decoder_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __lowercase : Optional[int] = outputs.cross_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __lowercase : Tuple = True __lowercase : Union[str, Any] = True __lowercase : Tuple = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Any = model(**self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + 2 , len(__a ) ) __lowercase : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def snake_case_ ( lowerCAmelCase_ : Optional[int]="train-batch.pt" ): __lowercase : Dict = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=lowerCAmelCase_ , repo_type="""dataset""" ) __lowercase : Optional[int] = torch.load(lowerCAmelCase_ , map_location=lowerCAmelCase_ ) return batch @require_torch @slow class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" __lowercase : List[str] = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : List[Any] = prepare_batch() with torch.no_grad(): __lowercase : Tuple = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] __lowercase : List[str] = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , __a ) __lowercase : Optional[int] = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" __lowercase : int = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : List[str] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowercase : Optional[Any] = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state __lowercase : List[str] = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , __a ) __lowercase : Optional[int] = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : Optional[int] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowercase : int = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) __lowercase : int = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , __a ) __lowercase : Optional[Any] = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=__a ) __lowercase : Dict = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __a , rtol=1E-1 ) )
649
1
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup lowerCamelCase : Any = logging.get_logger(__name__) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Any , **__a : List[str] ) -> List[Any]: """simple docstring""" requires_backends(self , ["""bs4"""] ) super().__init__(**__a ) def lowerCAmelCase ( self : List[Any] , __a : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase : str = [] __lowercase : int = [] __lowercase : Optional[int] = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag __lowercase : Optional[Any] = parent.find_all(child.name , recursive=__a ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(__a ) else next(i for i, s in enumerate(__a , 1 ) if s is child ) ) __lowercase : List[str] = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def lowerCAmelCase ( self : int , __a : Dict ) -> List[Any]: """simple docstring""" __lowercase : str = BeautifulSoup(__a , """html.parser""" ) __lowercase : Optional[int] = [] __lowercase : Optional[int] = [] __lowercase : str = [] for element in html_code.descendants: if type(__a ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue __lowercase : str = html.unescape(__a ).strip() if not text_in_this_tag: continue all_doc_strings.append(__a ) __lowercase , __lowercase : str = self.xpath_soup(__a ) stringaxtag_seq.append(__a ) stringaxsubs_seq.append(__a ) if len(__a ) != len(__a ): raise ValueError("""Number of doc strings and xtags does not correspond""" ) if len(__a ) != len(__a ): raise ValueError("""Number of doc strings and xsubs does not correspond""" ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def lowerCAmelCase ( self : List[str] , __a : Tuple , __a : Any ) -> Tuple: """simple docstring""" __lowercase : Optional[int] = """""" for tagname, subs in zip(__a , __a ): xpath += F"/{tagname}" if subs != 0: xpath += F"[{subs}]" return xpath def __call__( self : Optional[Any] , __a : List[str] ) -> BatchFeature: """simple docstring""" __lowercase : List[str] = False # Check that strings has a valid type if isinstance(__a , __a ): __lowercase : List[str] = True elif isinstance(__a , (list, tuple) ): if len(__a ) == 0 or isinstance(html_strings[0] , __a ): __lowercase : Union[str, Any] = True if not valid_strings: raise ValueError( """HTML strings must of type `str`, `List[str]` (batch of examples), """ F"but is of type {type(__a )}." ) __lowercase : Union[str, Any] = bool(isinstance(__a , (list, tuple) ) and (isinstance(html_strings[0] , __a )) ) if not is_batched: __lowercase : int = [html_strings] # Get nodes + xpaths __lowercase : Tuple = [] __lowercase : Any = [] for html_string in html_strings: __lowercase , __lowercase , __lowercase : Dict = self.get_three_from_single(__a ) nodes.append(__a ) __lowercase : List[str] = [] for node, tag_list, sub_list in zip(__a , __a , __a ): __lowercase : List[Any] = self.construct_xpath(__a , __a ) xpath_strings.append(__a ) xpaths.append(__a ) # return as Dict __lowercase : str = {"""nodes""": nodes, """xpaths""": xpaths} __lowercase : Optional[Any] = BatchFeature(data=__a , tensor_type=__a ) return encoded_inputs
649
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowerCAmelCase ( __a , __a ): '''simple docstring''' _A : str = 1 @register_to_config def __init__( self : Optional[int] , __a : Tuple=2000 , __a : List[str]=0.1 , __a : str=20 , __a : Optional[int]=1E-3 ) -> int: """simple docstring""" __lowercase : Tuple = None __lowercase : Union[str, Any] = None __lowercase : int = None def lowerCAmelCase ( self : List[Any] , __a : Any , __a : Union[str, torch.device] = None ) -> str: """simple docstring""" __lowercase : List[str] = torch.linspace(1 , self.config.sampling_eps , __a , device=__a ) def lowerCAmelCase ( self : Tuple , __a : List[Any] , __a : Tuple , __a : int , __a : Optional[int]=None ) -> str: """simple docstring""" if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __lowercase : Dict = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __lowercase : int = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __lowercase : Union[str, Any] = std.flatten() while len(std.shape ) < len(score.shape ): __lowercase : Optional[Any] = std.unsqueeze(-1 ) __lowercase : List[Any] = -score / std # compute __lowercase : Dict = -1.0 / len(self.timesteps ) __lowercase : int = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __lowercase : List[Any] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __lowercase : Union[str, Any] = beta_t.unsqueeze(-1 ) __lowercase : List[str] = -0.5 * beta_t * x __lowercase : int = torch.sqrt(__a ) __lowercase : Union[str, Any] = drift - diffusion**2 * score __lowercase : Optional[Any] = x + drift * dt # add noise __lowercase : List[str] = randn_tensor(x.shape , layout=x.layout , generator=__a , device=x.device , dtype=x.dtype ) __lowercase : str = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Tuple ) -> Optional[int]: """simple docstring""" return self.config.num_train_timesteps
649
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : List[Any] = { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json''', '''allenai/longformer-large-4096''': '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json''', '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json''' ), } class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = '''longformer''' def __init__( self : Union[str, Any] , __a : Union[List[int], int] = 512 , __a : int = 2 , __a : int = 1 , __a : int = 0 , __a : int = 2 , __a : int = 30522 , __a : int = 768 , __a : int = 12 , __a : int = 12 , __a : int = 3072 , __a : str = "gelu" , __a : float = 0.1 , __a : float = 0.1 , __a : int = 512 , __a : int = 2 , __a : float = 0.02 , __a : float = 1E-12 , __a : bool = False , **__a : Union[str, Any] , ) -> Dict: """simple docstring""" super().__init__(pad_token_id=__a , **__a ) __lowercase : Tuple = attention_window __lowercase : str = sep_token_id __lowercase : Tuple = bos_token_id __lowercase : Optional[int] = eos_token_id __lowercase : Any = vocab_size __lowercase : Any = hidden_size __lowercase : Dict = num_hidden_layers __lowercase : List[str] = num_attention_heads __lowercase : Dict = hidden_act __lowercase : Dict = intermediate_size __lowercase : Dict = hidden_dropout_prob __lowercase : Optional[Any] = attention_probs_dropout_prob __lowercase : int = max_position_embeddings __lowercase : List[str] = type_vocab_size __lowercase : List[str] = initializer_range __lowercase : Union[str, Any] = layer_norm_eps __lowercase : List[Any] = onnx_export class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Optional[Any] , __a : "PretrainedConfig" , __a : str = "default" , __a : "List[PatchingSpec]" = None ) -> Tuple: """simple docstring""" super().__init__(__a , __a , __a ) __lowercase : Dict = True @property def lowerCAmelCase ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": __lowercase : List[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __lowercase : Any = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""global_attention_mask""", dynamic_axis), ] ) @property def lowerCAmelCase ( self : str ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" __lowercase : Any = super().outputs if self.task == "default": __lowercase : Any = {0: """batch"""} return outputs @property def lowerCAmelCase ( self : List[Any] ) -> float: """simple docstring""" return 1E-4 @property def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" return max(super().default_onnx_opset , 14 ) def lowerCAmelCase ( self : Dict , __a : "PreTrainedTokenizerBase" , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" __lowercase : Optional[int] = super().generate_dummy_inputs( preprocessor=__a , batch_size=__a , seq_length=__a , is_pair=__a , framework=__a ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly __lowercase : Optional[int] = torch.zeros_like(inputs["""input_ids"""] ) # make every second token global __lowercase : str = 1 return inputs
649
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : str = LongformerTokenizer _A : int = True _A : Optional[int] = LongformerTokenizerFast _A : int = True def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __lowercase : Union[str, Any] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Any = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __lowercase : Optional[int] = {"""unk_token""": """<unk>"""} __lowercase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__a ) ) def lowerCAmelCase ( self : Optional[int] , **__a : Optional[Any] ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Tuple , **__a : Tuple ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : str , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = """lower newer""" __lowercase : int = """lower newer""" return input_text, output_text def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowercase : Dict = """lower newer""" __lowercase : Optional[Any] = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] __lowercase : str = tokenizer.tokenize(__a ) # , add_prefix_space=True) self.assertListEqual(__a , __a ) __lowercase : int = tokens + [tokenizer.unk_token] __lowercase : str = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=__a ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=__a ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : Any = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" ) __lowercase : Optional[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=__a ) __lowercase : List[str] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__a ) __lowercase : Optional[Any] = tokenizer.encode( """sequence builders""" , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Union[str, Any] = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : List[Any] = tokenizer.build_inputs_with_special_tokens(__a ) __lowercase : Any = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() __lowercase : Tuple = """Encode this sequence.""" __lowercase : Optional[Any] = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments __lowercase : Dict = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__a , __a ) __lowercase : List[str] = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__a , __a ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) __lowercase : str = tokenizer.encode(__a , add_special_tokens=__a ) __lowercase : Dict = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__a , __a ) # Testing spaces after special tokens __lowercase : List[Any] = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(__a , lstrip=__a , rstrip=__a )} ) # mask token has a left space __lowercase : Dict = tokenizer.convert_tokens_to_ids(__a ) __lowercase : List[str] = """Encode <mask> sequence""" __lowercase : List[str] = """Encode <mask>sequence""" __lowercase : Union[str, Any] = tokenizer.encode(__a ) __lowercase : Dict = encoded.index(__a ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__a , __a ) __lowercase : int = tokenizer.encode(__a ) __lowercase : Union[str, Any] = encoded.index(__a ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__a , __a ) def lowerCAmelCase ( self : int ) -> str: """simple docstring""" pass def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) __lowercase : List[Any] = self.tokenizer_class.from_pretrained(__a , **__a ) __lowercase : Optional[Any] = """A, <mask> AllenNLP sentence.""" __lowercase : Union[str, Any] = tokenizer_r.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) __lowercase : Optional[Any] = tokenizer_p.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) __lowercase : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __lowercase : str = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __lowercase : Dict = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __lowercase : Any = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""trim_offsets"""] , __a ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : List[str] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` __lowercase : int = F"{text_of_1_token} {text_of_1_token}" __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Any = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) __lowercase : str = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Tuple = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) __lowercase : Optional[int] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : str = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) __lowercase : str = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : int = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) __lowercase : Any = F" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : str = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ) + 1, 1 + len(__a ) + 1 + len(__a )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Dict = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Tuple = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , )
649
1
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def snake_case_ ( lowerCAmelCase_ : str=None ): if subparsers is not None: __lowercase : Optional[Any] = subparsers.add_parser("""env""" ) else: __lowercase : Optional[int] = argparse.ArgumentParser("""Accelerate env command""" ) parser.add_argument( """--config_file""" , default=lowerCAmelCase_ , help="""The config file to use for the default values in the launching script.""" ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def snake_case_ ( lowerCAmelCase_ : Any ): __lowercase : str = torch.__version__ __lowercase : Any = torch.cuda.is_available() __lowercase : Tuple = is_xpu_available() __lowercase : List[str] = is_npu_available() __lowercase : Union[str, Any] = """Not found""" # Get the default from the config file. if args.config_file is not None or os.path.isfile(lowerCAmelCase_ ): __lowercase : Optional[Any] = load_config_from_file(args.config_file ).to_dict() __lowercase : List[Any] = { """`Accelerate` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Numpy version""": np.__version__, """PyTorch version (GPU?)""": F"{pt_version} ({pt_cuda_available})", """PyTorch XPU available""": str(lowerCAmelCase_ ), """PyTorch NPU available""": str(lowerCAmelCase_ ), """System RAM""": F"{psutil.virtual_memory().total / 1024 ** 3:.2f} GB", } if pt_cuda_available: __lowercase : int = torch.cuda.get_device_name() print("""\nCopy-and-paste the text below in your GitHub issue\n""" ) print("""\n""".join([F"- {prop}: {val}" for prop, val in info.items()] ) ) print("""- `Accelerate` default config:""" if args.config_file is None else """- `Accelerate` config passed:""" ) __lowercase : str = ( """\n""".join([F"\t- {prop}: {val}" for prop, val in accelerate_config.items()] ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else F"\t{accelerate_config}" ) print(lowerCAmelCase_ ) __lowercase : Optional[int] = accelerate_config return info def snake_case_ ( ): __lowercase : List[Any] = env_command_parser() __lowercase : Tuple = parser.parse_args() env_command(lowerCAmelCase_ ) return 0 if __name__ == "__main__": raise SystemExit(main())
649
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Dict , __a : Union[str, Any]=13 , __a : Dict=7 , __a : Dict=True , __a : Dict=True , __a : Any=True , __a : List[str]=True , __a : int=99 , __a : Optional[int]=32 , __a : str=2 , __a : int=4 , __a : List[str]=37 , __a : Union[str, Any]="gelu" , __a : Union[str, Any]=0.1 , __a : Union[str, Any]=0.1 , __a : List[Any]=512 , __a : int=16 , __a : Union[str, Any]=2 , __a : Union[str, Any]=0.02 , __a : List[str]=3 , __a : Dict=4 , __a : Optional[Any]=None , ) -> Optional[Any]: """simple docstring""" __lowercase : Any = parent __lowercase : Tuple = 13 __lowercase : Dict = 7 __lowercase : List[Any] = True __lowercase : Tuple = True __lowercase : List[str] = True __lowercase : Any = True __lowercase : Optional[int] = 99 __lowercase : str = 384 __lowercase : Optional[Any] = 2 __lowercase : Dict = 4 __lowercase : str = 37 __lowercase : Optional[int] = """gelu""" __lowercase : int = 0.1 __lowercase : Union[str, Any] = 0.1 __lowercase : Tuple = 512 __lowercase : Tuple = 16 __lowercase : Optional[int] = 2 __lowercase : Optional[Any] = 0.02 __lowercase : Dict = 3 __lowercase : Union[str, Any] = 4 __lowercase : Tuple = 128 __lowercase : Optional[Any] = 2 __lowercase : int = 9 __lowercase : List[Any] = 1 __lowercase : Union[str, Any] = None def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" __lowercase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : Optional[Any] = None if self.use_input_mask: __lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : Dict = None if self.use_token_type_ids: __lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase : Optional[Any] = None __lowercase : str = None __lowercase : Tuple = None if self.use_labels: __lowercase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : str = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : Optional[int] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Dict , __a : List[Any] , __a : List[str] , __a : Union[str, Any] , __a : str , __a : Union[str, Any] , __a : Tuple , __a : Tuple ) -> Dict: """simple docstring""" __lowercase : Dict = TFConvBertModel(config=__a ) __lowercase : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowercase : Any = [input_ids, input_mask] __lowercase : Dict = model(__a ) __lowercase : str = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : Any , __a : Tuple , __a : Union[str, Any] , __a : str , __a : Dict , __a : str ) -> Dict: """simple docstring""" __lowercase : Optional[int] = TFConvBertForMaskedLM(config=__a ) __lowercase : List[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : Any = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[int] , __a : int , __a : Any , __a : Optional[int] , __a : int , __a : int , __a : List[Any] , __a : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase : str = self.num_labels __lowercase : List[Any] = TFConvBertForSequenceClassification(config=__a ) __lowercase : int = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : List[str] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Optional[int] , __a : Any , __a : Optional[Any] , __a : int , __a : Optional[int] , __a : Tuple , __a : int , __a : int ) -> Dict: """simple docstring""" __lowercase : Tuple = self.num_choices __lowercase : Dict = TFConvBertForMultipleChoice(config=__a ) __lowercase : List[str] = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : int = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : str = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : str = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __lowercase : Dict = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : List[str] , __a : str , __a : List[str] , __a : List[str] , __a : List[str] , __a : Any , __a : Tuple , __a : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = self.num_labels __lowercase : Tuple = TFConvBertForTokenClassification(config=__a ) __lowercase : Dict = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : str = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : List[Any] , __a : Optional[int] , __a : List[str] , __a : Optional[Any] , __a : int , __a : Tuple , __a : Any , __a : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Any = TFConvBertForQuestionAnswering(config=__a ) __lowercase : str = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : List[Any] = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : Tuple = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : int = config_and_inputs __lowercase : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Dict = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _A : str = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _A : Union[str, Any] = False _A : List[str] = False _A : Dict = False def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : int = TFConvBertModelTester(self ) __lowercase : Tuple = ConfigTester(self , config_class=__a , hidden_size=37 ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__a ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Union[str, Any] = True __lowercase : List[Any] = True if hasattr(__a , """use_cache""" ): __lowercase : Optional[Any] = True __lowercase : List[str] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) __lowercase : int = getattr(self.model_tester , """key_length""" , __a ) for model_class in self.all_model_classes: __lowercase : Optional[Any] = self._prepare_for_class(__a , __a ) __lowercase : Tuple = model_class(__a ) __lowercase : Tuple = len(model(__a ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a , saved_model=__a ) __lowercase : List[Any] = os.path.join(__a , """saved_model""" , """1""" ) __lowercase : str = tf.keras.models.load_model(__a ) __lowercase : Optional[int] = model(__a ) if self.is_encoder_decoder: __lowercase : Union[str, Any] = outputs["""encoder_hidden_states"""] __lowercase : Union[str, Any] = outputs["""encoder_attentions"""] else: __lowercase : Union[str, Any] = outputs["""hidden_states"""] __lowercase : List[str] = outputs["""attentions"""] self.assertEqual(len(__a ) , __a ) __lowercase : List[Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : str = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) self.assertIsNotNone(__a ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : List[str] = True __lowercase : List[Any] = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length ) __lowercase : Optional[int] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) __lowercase : List[str] = getattr(self.model_tester , """key_length""" , __a ) __lowercase : List[Any] = getattr(self.model_tester , """key_length""" , __a ) def check_decoder_attentions_output(__a : List[str] ): __lowercase : Union[str, Any] = len(__a ) self.assertEqual(out_len % 2 , 0 ) __lowercase : Any = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__a : str ): __lowercase : str = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __lowercase : int = True __lowercase : Any = False __lowercase : List[Any] = model_class(__a ) __lowercase : Tuple = model(self._prepare_for_class(__a , __a ) ) __lowercase : Dict = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: __lowercase : Any = model_class(__a ) __lowercase : List[str] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __lowercase : Dict = True __lowercase : Optional[Any] = model_class(__a ) __lowercase : Optional[int] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine __lowercase : List[str] = True __lowercase : List[Any] = True __lowercase : Any = model_class(__a ) __lowercase : Optional[int] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @require_tf class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) __lowercase : str = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowercase : Tuple = model(__a )[0] __lowercase : Any = [1, 6, 768] self.assertEqual(output.shape , __a ) __lowercase : Optional[Any] = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-4 )
649
1
def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : int ): return [sentence[i : i + ngram_size] for i in range(len(lowerCAmelCase_ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
649
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : int , *__a : Dict , **__a : Optional[Any] ) -> None: """simple docstring""" warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , __a , ) super().__init__(*__a , **__a )
649
1
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : int = { '''b0''': efficientnet.EfficientNetBa, '''b1''': efficientnet.EfficientNetBa, '''b2''': efficientnet.EfficientNetBa, '''b3''': efficientnet.EfficientNetBa, '''b4''': efficientnet.EfficientNetBa, '''b5''': efficientnet.EfficientNetBa, '''b6''': efficientnet.EfficientNetBa, '''b7''': efficientnet.EfficientNetBa, } lowerCamelCase : Dict = { '''b0''': { '''hidden_dim''': 12_80, '''width_coef''': 1.0, '''depth_coef''': 1.0, '''image_size''': 2_24, '''dropout_rate''': 0.2, '''dw_padding''': [], }, '''b1''': { '''hidden_dim''': 12_80, '''width_coef''': 1.0, '''depth_coef''': 1.1, '''image_size''': 2_40, '''dropout_rate''': 0.2, '''dw_padding''': [16], }, '''b2''': { '''hidden_dim''': 14_08, '''width_coef''': 1.1, '''depth_coef''': 1.2, '''image_size''': 2_60, '''dropout_rate''': 0.3, '''dw_padding''': [5, 8, 16], }, '''b3''': { '''hidden_dim''': 15_36, '''width_coef''': 1.2, '''depth_coef''': 1.4, '''image_size''': 3_00, '''dropout_rate''': 0.3, '''dw_padding''': [5, 18], }, '''b4''': { '''hidden_dim''': 17_92, '''width_coef''': 1.4, '''depth_coef''': 1.8, '''image_size''': 3_80, '''dropout_rate''': 0.4, '''dw_padding''': [6], }, '''b5''': { '''hidden_dim''': 20_48, '''width_coef''': 1.6, '''depth_coef''': 2.2, '''image_size''': 4_56, '''dropout_rate''': 0.4, '''dw_padding''': [13, 27], }, '''b6''': { '''hidden_dim''': 23_04, '''width_coef''': 1.8, '''depth_coef''': 2.6, '''image_size''': 5_28, '''dropout_rate''': 0.5, '''dw_padding''': [31], }, '''b7''': { '''hidden_dim''': 25_60, '''width_coef''': 2.0, '''depth_coef''': 3.1, '''image_size''': 6_00, '''dropout_rate''': 0.5, '''dw_padding''': [18], }, } def snake_case_ ( lowerCAmelCase_ : Tuple ): __lowercase : Union[str, Any] = EfficientNetConfig() __lowercase : int = CONFIG_MAP[model_name]["""hidden_dim"""] __lowercase : List[Any] = CONFIG_MAP[model_name]["""width_coef"""] __lowercase : Union[str, Any] = CONFIG_MAP[model_name]["""depth_coef"""] __lowercase : List[Any] = CONFIG_MAP[model_name]["""image_size"""] __lowercase : List[Any] = CONFIG_MAP[model_name]["""dropout_rate"""] __lowercase : Dict = CONFIG_MAP[model_name]["""dw_padding"""] __lowercase : int = """huggingface/label-files""" __lowercase : int = """imagenet-1k-id2label.json""" __lowercase : Dict = 1000 __lowercase : str = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) __lowercase : Tuple = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowercase : Optional[Any] = idalabel __lowercase : str = {v: k for k, v in idalabel.items()} return config def snake_case_ ( ): __lowercase : Optional[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase : List[Any] = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im def snake_case_ ( lowerCAmelCase_ : Optional[int] ): __lowercase : Tuple = CONFIG_MAP[model_name]["""image_size"""] __lowercase : Any = EfficientNetImageProcessor( size={"""height""": size, """width""": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47_853_944, 0.4_732_864, 0.47_434_163] , do_center_crop=lowerCAmelCase_ , ) return preprocessor def snake_case_ ( lowerCAmelCase_ : Optional[Any] ): __lowercase : Any = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] __lowercase : Optional[int] = sorted(set(lowerCAmelCase_ ) ) __lowercase : Optional[int] = len(lowerCAmelCase_ ) __lowercase : Union[str, Any] = {b: str(lowerCAmelCase_ ) for b, i in zip(lowerCAmelCase_ , range(lowerCAmelCase_ ) )} __lowercase : Any = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: __lowercase : List[Any] = block_name_mapping[b] rename_keys.append((F"block{b}_expand_conv/kernel:0", F"encoder.blocks.{hf_b}.expansion.expand_conv.weight") ) rename_keys.append((F"block{b}_expand_bn/gamma:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.weight") ) rename_keys.append((F"block{b}_expand_bn/beta:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.bias") ) rename_keys.append( (F"block{b}_expand_bn/moving_mean:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.running_mean") ) rename_keys.append( (F"block{b}_expand_bn/moving_variance:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.running_var") ) rename_keys.append( (F"block{b}_dwconv/depthwise_kernel:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight") ) rename_keys.append((F"block{b}_bn/gamma:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight") ) rename_keys.append((F"block{b}_bn/beta:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias") ) rename_keys.append( (F"block{b}_bn/moving_mean:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean") ) rename_keys.append( (F"block{b}_bn/moving_variance:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var") ) rename_keys.append((F"block{b}_se_reduce/kernel:0", F"encoder.blocks.{hf_b}.squeeze_excite.reduce.weight") ) rename_keys.append((F"block{b}_se_reduce/bias:0", F"encoder.blocks.{hf_b}.squeeze_excite.reduce.bias") ) rename_keys.append((F"block{b}_se_expand/kernel:0", F"encoder.blocks.{hf_b}.squeeze_excite.expand.weight") ) rename_keys.append((F"block{b}_se_expand/bias:0", F"encoder.blocks.{hf_b}.squeeze_excite.expand.bias") ) rename_keys.append( (F"block{b}_project_conv/kernel:0", F"encoder.blocks.{hf_b}.projection.project_conv.weight") ) rename_keys.append((F"block{b}_project_bn/gamma:0", F"encoder.blocks.{hf_b}.projection.project_bn.weight") ) rename_keys.append((F"block{b}_project_bn/beta:0", F"encoder.blocks.{hf_b}.projection.project_bn.bias") ) rename_keys.append( (F"block{b}_project_bn/moving_mean:0", F"encoder.blocks.{hf_b}.projection.project_bn.running_mean") ) rename_keys.append( (F"block{b}_project_bn/moving_variance:0", F"encoder.blocks.{hf_b}.projection.project_bn.running_var") ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) __lowercase : List[str] = {} for item in rename_keys: if item[0] in original_param_names: __lowercase : List[str] = """efficientnet.""" + item[1] __lowercase : Optional[Any] = """classifier.weight""" __lowercase : Optional[int] = """classifier.bias""" return key_mapping def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict ): for key, value in tf_params.items(): if "normalization" in key: continue __lowercase : str = key_mapping[key] if "_conv" in key and "kernel" in key: __lowercase : List[str] = torch.from_numpy(lowerCAmelCase_ ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: __lowercase : int = torch.from_numpy(lowerCAmelCase_ ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: __lowercase : Tuple = torch.from_numpy(np.transpose(lowerCAmelCase_ ) ) else: __lowercase : List[Any] = torch.from_numpy(lowerCAmelCase_ ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowerCAmelCase_ ) @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict ): __lowercase : int = model_classes[model_name]( include_top=lowerCAmelCase_ , weights="""imagenet""" , input_tensor=lowerCAmelCase_ , input_shape=lowerCAmelCase_ , pooling=lowerCAmelCase_ , classes=1000 , classifier_activation="""softmax""" , ) __lowercase : Tuple = original_model.trainable_variables __lowercase : str = original_model.non_trainable_variables __lowercase : Optional[int] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: __lowercase : Optional[Any] = param.numpy() __lowercase : Optional[Any] = list(tf_params.keys() ) # Load HuggingFace model __lowercase : str = get_efficientnet_config(lowerCAmelCase_ ) __lowercase : List[Any] = EfficientNetForImageClassification(lowerCAmelCase_ ).eval() __lowercase : Union[str, Any] = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) __lowercase : List[str] = rename_keys(lowerCAmelCase_ ) replace_params(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Initialize preprocessor and preprocess input image __lowercase : Optional[Any] = convert_image_processor(lowerCAmelCase_ ) __lowercase : Any = preprocessor(images=prepare_img() , return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): __lowercase : Tuple = hf_model(**lowerCAmelCase_ ) __lowercase : List[Any] = outputs.logits.detach().numpy() # Original model inference __lowercase : Any = False __lowercase : Optional[Any] = CONFIG_MAP[model_name]["""image_size"""] __lowercase : int = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) __lowercase : Tuple = image.img_to_array(lowerCAmelCase_ ) __lowercase : str = np.expand_dims(lowerCAmelCase_ , axis=0 ) __lowercase : Optional[Any] = original_model.predict(lowerCAmelCase_ ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(lowerCAmelCase_ ): os.mkdir(lowerCAmelCase_ ) # Save converted model and image processor hf_model.save_pretrained(lowerCAmelCase_ ) preprocessor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: # Push model and image processor to hub print(F"Pushing converted {model_name} to the hub..." ) __lowercase : List[str] = F"efficientnet-{model_name}" preprocessor.push_to_hub(lowerCAmelCase_ ) hf_model.push_to_hub(lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''b0''', type=str, help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''hf_model''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''') parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') lowerCamelCase : Any = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
649
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Optional[int] = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() __lowercase : List[str] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Dict = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } __lowercase : List[str] = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 16000, """return_attention_mask""": False, """do_normalize""": True, } __lowercase : Tuple = tempfile.mkdtemp() __lowercase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : str = os.path.join(self.tmpdirname , __a ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) # load decoder from hub __lowercase : Optional[int] = """hf-internal-testing/ngram-beam-search-decoder""" def lowerCAmelCase ( self : Optional[Any] , **__a : Dict ) -> Tuple: """simple docstring""" __lowercase : Union[str, Any] = self.add_kwargs_tokens_map.copy() kwargs.update(__a ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : str , **__a : int ) -> Tuple: """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Union[str, Any] , **__a : Union[str, Any] ) -> List[Any]: """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__a ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() __lowercase : Any = self.get_feature_extractor() __lowercase : str = self.get_decoder() __lowercase : Tuple = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) processor.save_pretrained(self.tmpdirname ) __lowercase : Tuple = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __a ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __a ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __a ) def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Any = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __lowercase : str = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : List[str] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(__a , """include""" ): WavaVecaProcessorWithLM( tokenizer=__a , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : List[Any] = self.get_feature_extractor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : int = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Optional[int] = floats_list((3, 1000) ) __lowercase : List[Any] = feature_extractor(__a , return_tensors="""np""" ) __lowercase : List[str] = processor(__a , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : List[Any] = self.get_feature_extractor() __lowercase : int = self.get_tokenizer() __lowercase : Dict = self.get_decoder() __lowercase : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Dict = """This is a test string""" __lowercase : Any = processor(text=__a ) __lowercase : Dict = tokenizer(__a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase ( self : str , __a : Tuple=(2, 10, 16) , __a : int=77 ) -> Optional[Any]: """simple docstring""" np.random.seed(__a ) return np.random.rand(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : List[str] = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : str = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : List[str] = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __lowercase : Optional[Any] = processor.decode(__a ) __lowercase : Any = decoder.decode_beams(__a )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def lowerCAmelCase ( self : List[str] , __a : Dict ) -> List[Any]: """simple docstring""" __lowercase : str = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : Optional[int] = self.get_decoder() __lowercase : Any = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Optional[Any] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __lowercase : Union[str, Any] = processor.batch_decode(__a ) else: with get_context(__a ).Pool() as pool: __lowercase : Optional[Any] = processor.batch_decode(__a , __a ) __lowercase : Union[str, Any] = list(__a ) with get_context("""fork""" ).Pool() as p: __lowercase : Optional[Any] = decoder.decode_beams_batch(__a , __a ) __lowercase , __lowercase , __lowercase : Any = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__a , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(__a , decoded_processor.logit_score ) self.assertListEqual(__a , decoded_processor.lm_score ) def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase : int = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : List[str] = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Dict = self._get_dummy_logits() __lowercase : Tuple = 15 __lowercase : Tuple = -20.0 __lowercase : Dict = -4.0 __lowercase : Dict = processor.batch_decode( __a , beam_width=__a , beam_prune_logp=__a , token_min_logp=__a , ) __lowercase : Tuple = decoded_processor_out.text __lowercase : List[Any] = list(__a ) with get_context("""fork""" ).Pool() as pool: __lowercase : Any = decoder.decode_beams_batch( __a , __a , beam_width=__a , beam_prune_logp=__a , token_min_logp=__a , ) __lowercase : Optional[Any] = [d[0][0] for d in decoded_decoder_out] __lowercase : Optional[int] = [d[0][2] for d in decoded_decoder_out] __lowercase : Optional[int] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__a , __a ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , __a ) self.assertTrue(np.array_equal(__a , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , __a , atol=1E-3 ) ) self.assertTrue(np.array_equal(__a , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , __a , atol=1E-3 ) ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase : str = self.get_feature_extractor() __lowercase : List[Any] = self.get_tokenizer() __lowercase : List[Any] = self.get_decoder() __lowercase : Dict = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : List[Any] = self._get_dummy_logits() __lowercase : Optional[int] = 2.0 __lowercase : Tuple = 5.0 __lowercase : Optional[Any] = -20.0 __lowercase : Tuple = True __lowercase : Union[str, Any] = processor.batch_decode( __a , alpha=__a , beta=__a , unk_score_offset=__a , lm_score_boundary=__a , ) __lowercase : Any = decoded_processor_out.text __lowercase : List[Any] = list(__a ) decoder.reset_params( alpha=__a , beta=__a , unk_score_offset=__a , lm_score_boundary=__a , ) with get_context("""fork""" ).Pool() as pool: __lowercase : Tuple = decoder.decode_beams_batch( __a , __a , ) __lowercase : int = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__a , __a ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , __a ) __lowercase : str = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , __a ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] __lowercase : str = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __lowercase : int = os.listdir(__a ) __lowercase : Optional[Any] = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = snapshot_download("""hf-internal-testing/processor_with_lm""" ) __lowercase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(__a ) __lowercase : Dict = processor.decoder.model_container[processor.decoder._model_key] __lowercase : List[Any] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __lowercase : Dict = os.listdir(__a ) __lowercase : List[Any] = os.listdir(__a ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" __lowercase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Dict = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Any = floats_list((3, 1000) ) __lowercase : List[str] = processor_wavaveca(__a , return_tensors="""np""" ) __lowercase : List[Any] = processor_auto(__a , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) __lowercase : List[str] = self._get_dummy_logits() __lowercase : List[str] = processor_wavaveca.batch_decode(__a ) __lowercase : Optional[int] = processor_auto.batch_decode(__a ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Any = self.get_feature_extractor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : Dict = self.get_decoder() __lowercase : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def lowerCAmelCase ( __a : Union[str, Any] , __a : List[Any] ) -> Dict: """simple docstring""" __lowercase : Any = [d[key] for d in offsets] return retrieved_list def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" __lowercase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Optional[Any] = self._get_dummy_logits()[0] __lowercase : Dict = processor.decode(__a , output_word_offsets=__a ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__a , __a ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : List[str] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Any = self._get_dummy_logits() __lowercase : Dict = processor.batch_decode(__a , output_word_offsets=__a ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__a , __a ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(__a , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" import torch __lowercase : Any = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=__a ) __lowercase : str = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=16000 ) ) __lowercase : Tuple = iter(__a ) __lowercase : Union[str, Any] = next(__a ) __lowercase : int = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) __lowercase : int = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __lowercase : Union[str, Any] = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): __lowercase : List[Any] = model(__a ).logits.cpu().numpy() __lowercase : Tuple = processor.decode(logits[0] , output_word_offsets=__a ) __lowercase : int = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __lowercase : Optional[Any] = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] __lowercase : str = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(__a , """word""" ) ) , __a ) self.assertEqual(""" """.join(self.get_from_offsets(__a , """word""" ) ) , output.text ) # output times __lowercase : Tuple = torch.tensor(self.get_from_offsets(__a , """start_time""" ) ) __lowercase : Dict = torch.tensor(self.get_from_offsets(__a , """end_time""" ) ) # fmt: off __lowercase : List[Any] = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) __lowercase : Optional[int] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(__a , __a , atol=0.01 ) ) self.assertTrue(torch.allclose(__a , __a , atol=0.01 ) )
649
1
def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : List[Any] = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def snake_case_ ( lowerCAmelCase_ : int = 100 ): __lowercase : str = 1 __lowercase : Dict = 2 for i in range(2 , max_n + 1 ): __lowercase : List[Any] = pre_numerator __lowercase : List[Any] = 2 * i // 3 if i % 3 == 0 else 1 __lowercase : Dict = cur_numerator __lowercase : Tuple = e_cont * pre_numerator + temp return sum_digits(lowerCAmelCase_ ) if __name__ == "__main__": print(f'''{solution() = }''')
649
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(0 ) == 0 ) def snake_case_ ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
649
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase : Union[str, Any] = { '''configuration_roc_bert''': ['''ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoCBertConfig'''], '''tokenization_roc_bert''': ['''RoCBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ '''ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoCBertForCausalLM''', '''RoCBertForMaskedLM''', '''RoCBertForMultipleChoice''', '''RoCBertForPreTraining''', '''RoCBertForQuestionAnswering''', '''RoCBertForSequenceClassification''', '''RoCBertForTokenClassification''', '''RoCBertLayer''', '''RoCBertModel''', '''RoCBertPreTrainedModel''', '''load_tf_weights_in_roc_bert''', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys lowerCamelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
649
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCamelCase : int = '''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine''' def snake_case_ ( ): __lowercase : List[Any] = _ask_options( """In which compute environment are you running?""" , ["""This machine""", """AWS (Amazon SageMaker)"""] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __lowercase : Union[str, Any] = get_sagemaker_input() else: __lowercase : str = get_cluster_input() return config def snake_case_ ( lowerCAmelCase_ : List[str]=None ): if subparsers is not None: __lowercase : Optional[int] = subparsers.add_parser("""config""" , description=lowerCAmelCase_ ) else: __lowercase : List[str] = argparse.ArgumentParser("""Accelerate config command""" , description=lowerCAmelCase_ ) parser.add_argument( """--config_file""" , default=lowerCAmelCase_ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def snake_case_ ( lowerCAmelCase_ : Tuple ): __lowercase : Union[str, Any] = get_user_input() if args.config_file is not None: __lowercase : List[Any] = args.config_file else: if not os.path.isdir(lowerCAmelCase_ ): os.makedirs(lowerCAmelCase_ ) __lowercase : Any = default_yaml_config_file if config_file.endswith(""".json""" ): config.to_json_file(lowerCAmelCase_ ) else: config.to_yaml_file(lowerCAmelCase_ ) print(F"accelerate configuration saved at {config_file}" ) def snake_case_ ( ): __lowercase : str = config_command_parser() __lowercase : str = parser.parse_args() config_command(lowerCAmelCase_ ) if __name__ == "__main__": main()
649
1
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" __lowercase , __lowercase : Any = FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowercase : List[str] = """A painting of a squirrel eating a burger""" __lowercase : Any = jax.device_count() __lowercase : List[str] = num_samples * [prompt] __lowercase : Dict = sd_pipe.prepare_inputs(__a ) __lowercase : List[str] = replicate(__a ) __lowercase : Tuple = shard(__a ) __lowercase : Union[str, Any] = jax.random.PRNGKey(0 ) __lowercase : int = jax.random.split(__a , jax.device_count() ) __lowercase : List[Any] = sd_pipe(__a , __a , __a , num_inference_steps=25 , jit=__a )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __lowercase : Dict = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowercase : Any = images[0, 253:256, 253:256, -1] __lowercase : Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase : Optional[int] = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.45508, 0.4512] ) print(F"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" __lowercase : Optional[int] = """stabilityai/stable-diffusion-2""" __lowercase , __lowercase : List[str] = FlaxDPMSolverMultistepScheduler.from_pretrained(__a , subfolder="""scheduler""" ) __lowercase , __lowercase : Any = FlaxStableDiffusionPipeline.from_pretrained( __a , scheduler=__a , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowercase : Optional[int] = scheduler_params __lowercase : Optional[int] = """A painting of a squirrel eating a burger""" __lowercase : Optional[Any] = jax.device_count() __lowercase : str = num_samples * [prompt] __lowercase : Any = sd_pipe.prepare_inputs(__a ) __lowercase : int = replicate(__a ) __lowercase : Tuple = shard(__a ) __lowercase : str = jax.random.PRNGKey(0 ) __lowercase : Optional[int] = jax.random.split(__a , jax.device_count() ) __lowercase : str = sd_pipe(__a , __a , __a , num_inference_steps=25 , jit=__a )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __lowercase : str = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowercase : Optional[Any] = images[0, 253:256, 253:256, -1] __lowercase : Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase : List[str] = jnp.array([0.4336, 0.42969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297] ) print(F"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
649
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : list[str] | None = None ): __lowercase : Tuple = word_bank or [] # create a table __lowercase : int = len(lowerCAmelCase_ ) + 1 __lowercase : list[list[list[str]]] = [] for _ in range(lowerCAmelCase_ ): table.append([] ) # seed value __lowercase : Dict = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowerCAmelCase_ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowerCAmelCase_ )] == word: __lowercase : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowerCAmelCase_ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowerCAmelCase_ )]: combination.reverse() return table[len(lowerCAmelCase_ )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
649
1
def snake_case_ ( lowerCAmelCase_ : int ): return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : Tuple = 0 __lowercase : Union[str, Any] = number while duplicate > 0: __lowercase , __lowercase : Union[str, Any] = divmod(lowerCAmelCase_ , 10 ) fact_sum += factorial(lowerCAmelCase_ ) return fact_sum == number if __name__ == "__main__": print('''Program to check whether a number is a Krisnamurthy Number or not.''') lowerCamelCase : Union[str, Any] = int(input('''Enter number: ''').strip()) print( f'''{number} is {"" if krishnamurthy(number) else "not "}a Krishnamurthy Number.''' )
649
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(1 ) != 0 ) def snake_case_ ( ): assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
649
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Any = { '''Helsinki-NLP/opus-mt-en-de''': '''https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json''', # See all Marian models at https://huggingface.co/models?filter=marian } class lowerCAmelCase ( __a ): '''simple docstring''' _A : Any = '''marian''' _A : Optional[Any] = ['''past_key_values'''] _A : Dict = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : List[Any] , __a : Dict=58101 , __a : Optional[int]=None , __a : int=1024 , __a : Dict=12 , __a : Optional[Any]=4096 , __a : Union[str, Any]=16 , __a : str=12 , __a : Optional[int]=4096 , __a : Optional[Any]=16 , __a : Any=0.0 , __a : Union[str, Any]=0.0 , __a : Dict=True , __a : str=True , __a : str="gelu" , __a : Dict=1024 , __a : Dict=0.1 , __a : Tuple=0.0 , __a : str=0.0 , __a : Any=0.02 , __a : Optional[Any]=58100 , __a : Union[str, Any]=False , __a : Union[str, Any]=58100 , __a : Optional[Any]=0 , __a : int=0 , __a : Dict=True , **__a : List[str] , ) -> Union[str, Any]: """simple docstring""" __lowercase : Any = vocab_size __lowercase : str = decoder_vocab_size or vocab_size __lowercase : Any = max_position_embeddings __lowercase : Optional[Any] = d_model __lowercase : int = encoder_ffn_dim __lowercase : List[str] = encoder_layers __lowercase : Union[str, Any] = encoder_attention_heads __lowercase : Tuple = decoder_ffn_dim __lowercase : Any = decoder_layers __lowercase : Tuple = decoder_attention_heads __lowercase : Optional[Any] = dropout __lowercase : Dict = attention_dropout __lowercase : Optional[Any] = activation_dropout __lowercase : Optional[int] = activation_function __lowercase : Union[str, Any] = init_std __lowercase : Union[str, Any] = encoder_layerdrop __lowercase : Dict = decoder_layerdrop __lowercase : Optional[Any] = use_cache __lowercase : Union[str, Any] = encoder_layers __lowercase : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True __lowercase : List[Any] = share_encoder_decoder_embeddings super().__init__( pad_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , decoder_start_token_id=__a , forced_eos_token_id=__a , **__a , ) class lowerCAmelCase ( __a ): '''simple docstring''' @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def lowerCAmelCase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __lowercase : Any = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: __lowercase : List[str] = {0: """batch"""} __lowercase : Optional[int] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: __lowercase : int = {0: """batch""", 1: """decoder_sequence"""} __lowercase : List[str] = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(__a , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. __lowercase : List[Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: __lowercase , __lowercase : List[str] = self.num_layers for i in range(__a ): __lowercase : Optional[Any] = {0: """batch""", 2: """past_sequence + sequence"""} __lowercase : Tuple = {0: """batch""", 2: """past_sequence + sequence"""} else: __lowercase : Optional[int] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def lowerCAmelCase ( self : Dict ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __lowercase : Dict = super().outputs else: __lowercase : List[Any] = super(__a , self ).outputs if self.use_past: __lowercase , __lowercase : Any = self.num_layers for i in range(__a ): __lowercase : int = {0: """batch""", 2: """past_sequence + sequence"""} __lowercase : List[Any] = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def lowerCAmelCase ( self : Any , __a : PreTrainedTokenizer , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" __lowercase : Dict = self._generate_dummy_inputs_for_encoder_and_decoder( __a , __a , __a , __a , __a ) # Generate decoder inputs __lowercase : Any = seq_length if not self.use_past else 1 __lowercase : Union[str, Any] = self._generate_dummy_inputs_for_encoder_and_decoder( __a , __a , __a , __a , __a ) __lowercase : Optional[Any] = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} __lowercase : List[str] = dict(**__a , **__a ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __lowercase , __lowercase : Optional[int] = common_inputs["""input_ids"""].shape __lowercase : List[Any] = common_inputs["""decoder_input_ids"""].shape[1] __lowercase , __lowercase : List[str] = self.num_attention_heads __lowercase : int = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase : Any = decoder_seq_length + 3 __lowercase : Union[str, Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowercase : Optional[int] = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(__a , __a )] , dim=1 ) __lowercase : Union[str, Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowercase , __lowercase : Any = self.num_layers __lowercase : str = min(__a , __a ) __lowercase : int = max(__a , __a ) - min_num_layers __lowercase : List[str] = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(__a ): common_inputs["past_key_values"].append( ( torch.zeros(__a ), torch.zeros(__a ), torch.zeros(__a ), torch.zeros(__a ), ) ) # TODO: test this. __lowercase : Union[str, Any] = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(__a , __a ): common_inputs["past_key_values"].append((torch.zeros(__a ), torch.zeros(__a )) ) return common_inputs def lowerCAmelCase ( self : Optional[int] , __a : PreTrainedTokenizer , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" __lowercase : Tuple = self._generate_dummy_inputs_for_encoder_and_decoder( __a , __a , __a , __a , __a ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __lowercase , __lowercase : Any = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __lowercase : Optional[Any] = seqlen + 2 __lowercase , __lowercase : Dict = self.num_layers __lowercase , __lowercase : Optional[int] = self.num_attention_heads __lowercase : List[str] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase : str = common_inputs["""attention_mask"""].dtype __lowercase : Union[str, Any] = torch.cat( [common_inputs["""attention_mask"""], torch.ones(__a , __a , dtype=__a )] , dim=1 ) __lowercase : Union[str, Any] = [ (torch.zeros(__a ), torch.zeros(__a )) for _ in range(__a ) ] return common_inputs def lowerCAmelCase ( self : List[str] , __a : PreTrainedTokenizer , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase : str = tokenizer.num_special_tokens_to_add(__a ) __lowercase : Any = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__a ) # Generate dummy inputs according to compute batch and sequence __lowercase : int = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size __lowercase : Union[str, Any] = dict(tokenizer(__a , return_tensors=__a ) ) return common_inputs def lowerCAmelCase ( self : int , __a : PreTrainedTokenizer , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __lowercase : str = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __a , batch_size=__a , seq_length=__a , is_pair=__a , framework=__a ) else: __lowercase : Optional[Any] = self._generate_dummy_inputs_for_causal_lm( __a , batch_size=__a , seq_length=__a , is_pair=__a , framework=__a ) return common_inputs def lowerCAmelCase ( self : Union[str, Any] , __a : Dict , __a : Any , __a : Optional[Any] , __a : str ) -> int: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __lowercase : Tuple = super()._flatten_past_key_values_(__a , __a , __a , __a ) else: __lowercase : List[str] = super(__a , self )._flatten_past_key_values_( __a , __a , __a , __a ) @property def lowerCAmelCase ( self : str ) -> float: """simple docstring""" return 1E-4
649
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : int = { '''configuration_funnel''': ['''FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FunnelConfig'''], '''convert_funnel_original_tf_checkpoint_to_pytorch''': [], '''tokenization_funnel''': ['''FunnelTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = ['''FunnelTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = [ '''FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FunnelBaseModel''', '''FunnelForMaskedLM''', '''FunnelForMultipleChoice''', '''FunnelForPreTraining''', '''FunnelForQuestionAnswering''', '''FunnelForSequenceClassification''', '''FunnelForTokenClassification''', '''FunnelModel''', '''FunnelPreTrainedModel''', '''load_tf_weights_in_funnel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ '''TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFFunnelBaseModel''', '''TFFunnelForMaskedLM''', '''TFFunnelForMultipleChoice''', '''TFFunnelForPreTraining''', '''TFFunnelForQuestionAnswering''', '''TFFunnelForSequenceClassification''', '''TFFunnelForTokenClassification''', '''TFFunnelModel''', '''TFFunnelPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
649
1
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : Any = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any ): if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}." ) if tokenizer_name is None: __lowercase : Tuple = TOKENIZER_CLASSES else: __lowercase : Union[str, Any] = {tokenizer_name: getattr(lowerCAmelCase_ , tokenizer_name + """Fast""" )} logger.info(F"Loading tokenizer classes: {tokenizer_names}" ) for tokenizer_name in tokenizer_names: __lowercase : int = TOKENIZER_CLASSES[tokenizer_name] __lowercase : Any = True if checkpoint_name is None: __lowercase : str = list(tokenizer_class.max_model_input_sizes.keys() ) else: __lowercase : Optional[int] = [checkpoint_name] logger.info(F"For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}" ) for checkpoint in checkpoint_names: logger.info(F"Loading {tokenizer_class.__class__.__name__} {checkpoint}" ) # Load tokenizer __lowercase : List[str] = tokenizer_class.from_pretrained(lowerCAmelCase_ , force_download=lowerCAmelCase_ ) # Save fast tokenizer logger.info(F"Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}" ) # For organization names we create sub-directories if "/" in checkpoint: __lowercase , __lowercase : Any = checkpoint.split("""/""" ) __lowercase : Optional[int] = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) elif add_prefix: __lowercase : Any = checkpoint __lowercase : Optional[int] = dump_path else: __lowercase : List[Any] = None __lowercase : Dict = dump_path logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: __lowercase : Tuple = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] __lowercase : str = file_path.split(lowerCAmelCase_ )[-1][0] if next_char == "/": __lowercase : List[str] = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Dict = None logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" ) __lowercase : str = tokenizer.save_pretrained( lowerCAmelCase_ , legacy_format=lowerCAmelCase_ , filename_prefix=lowerCAmelCase_ ) logger.info(F"=> File names {file_names}" ) for file_name in file_names: if not file_name.endswith("""tokenizer.json""" ): os.remove(lowerCAmelCase_ ) logger.info(F"=> removing {file_name}" ) if __name__ == "__main__": lowerCamelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( f'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will ''' '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) lowerCamelCase : List[str] = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
649
import logging import os import threading import time try: import warnings except ImportError: lowerCamelCase : Any = None try: import msvcrt except ImportError: lowerCamelCase : str = None try: import fcntl except ImportError: lowerCamelCase : Optional[Any] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: lowerCamelCase : Union[str, Any] = OSError # Data # ------------------------------------------------ lowerCamelCase : Tuple = [ '''Timeout''', '''BaseFileLock''', '''WindowsFileLock''', '''UnixFileLock''', '''SoftFileLock''', '''FileLock''', ] lowerCamelCase : Tuple = '''3.0.12''' lowerCamelCase : Any = None def snake_case_ ( ): global _logger __lowercase : List[str] = _logger or logging.getLogger(__name__ ) return _logger class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Any , __a : Any ) -> List[Any]: """simple docstring""" __lowercase : List[str] = lock_file return None def __str__( self : str ) -> Any: """simple docstring""" __lowercase : Any = F"The file lock '{self.lock_file}' could not be acquired." return temp class lowerCAmelCase : '''simple docstring''' def __init__( self : List[Any] , __a : Optional[int] ) -> int: """simple docstring""" __lowercase : Optional[Any] = lock return None def __enter__( self : Dict ) -> Dict: """simple docstring""" return self.lock def __exit__( self : Optional[int] , __a : Dict , __a : Any , __a : Tuple ) -> Optional[Any]: """simple docstring""" self.lock.release() return None class lowerCAmelCase : '''simple docstring''' def __init__( self : Tuple , __a : Any , __a : Dict=-1 , __a : Optional[Any]=None ) -> Any: """simple docstring""" __lowercase : Optional[int] = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long __lowercase : Dict = self.hash_filename_if_too_long(__a , __a ) # The path to the lock file. __lowercase : Optional[Any] = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __lowercase : int = None # The default timeout value. __lowercase : Optional[int] = timeout # We use this lock primarily for the lock counter. __lowercase : Optional[Any] = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __lowercase : Union[str, Any] = 0 return None @property def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return self._lock_file @property def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return self._timeout @timeout.setter def lowerCAmelCase ( self : Tuple , __a : Tuple ) -> Dict: """simple docstring""" __lowercase : Tuple = float(__a ) return None def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" raise NotImplementedError() def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" raise NotImplementedError() @property def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" return self._lock_file_fd is not None def lowerCAmelCase ( self : Any , __a : Optional[Any]=None , __a : Union[str, Any]=0.05 ) -> List[str]: """simple docstring""" if timeout is None: __lowercase : Union[str, Any] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __lowercase : int = id(self ) __lowercase : Optional[Any] = self._lock_file __lowercase : List[str] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"Attempting to acquire lock {lock_id} on {lock_filename}" ) self._acquire() if self.is_locked: logger().debug(F"Lock {lock_id} acquired on {lock_filename}" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"Timeout on acquiring lock {lock_id} on {lock_filename}" ) raise Timeout(self._lock_file ) else: logger().debug( F"Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ..." ) time.sleep(__a ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __lowercase : Optional[int] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def lowerCAmelCase ( self : Union[str, Any] , __a : Optional[Any]=False ) -> Optional[Any]: """simple docstring""" with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __lowercase : Optional[Any] = id(self ) __lowercase : str = self._lock_file logger().debug(F"Attempting to release lock {lock_id} on {lock_filename}" ) self._release() __lowercase : List[str] = 0 logger().debug(F"Lock {lock_id} released on {lock_filename}" ) return None def __enter__( self : Any ) -> Optional[Any]: """simple docstring""" self.acquire() return self def __exit__( self : List[str] , __a : str , __a : int , __a : List[Any] ) -> Tuple: """simple docstring""" self.release() return None def __del__( self : Optional[int] ) -> Optional[int]: """simple docstring""" self.release(force=__a ) return None def lowerCAmelCase ( self : Tuple , __a : str , __a : int ) -> str: """simple docstring""" __lowercase : List[Any] = os.path.basename(__a ) if len(__a ) > max_length and max_length > 0: __lowercase : int = os.path.dirname(__a ) __lowercase : List[str] = str(hash(__a ) ) __lowercase : Optional[Any] = filename[: max_length - len(__a ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(__a , __a ) else: return path class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Union[str, Any] , __a : List[Any] , __a : Optional[int]=-1 , __a : Tuple=None ) -> List[Any]: """simple docstring""" from .file_utils import relative_to_absolute_path super().__init__(__a , timeout=__a , max_filename_length=__a ) __lowercase : Tuple = """\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __lowercase : Tuple = os.open(self._lock_file , __a ) except OSError: pass else: try: msvcrt.locking(__a , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__a ) else: __lowercase : Union[str, Any] = fd return None def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = self._lock_file_fd __lowercase : int = None msvcrt.locking(__a , msvcrt.LK_UNLCK , 1 ) os.close(__a ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : List[str] , __a : Optional[Any] , __a : str=-1 , __a : List[str]=None ) -> Any: """simple docstring""" __lowercase : Dict = os.statvfs(os.path.dirname(__a ) ).f_namemax super().__init__(__a , timeout=__a , max_filename_length=__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase : List[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC __lowercase : List[str] = os.open(self._lock_file , __a ) try: fcntl.flock(__a , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__a ) else: __lowercase : str = fd return None def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Any = self._lock_file_fd __lowercase : List[str] = None fcntl.flock(__a , fcntl.LOCK_UN ) os.close(__a ) return None class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __lowercase : Union[str, Any] = os.open(self._lock_file , __a ) except OSError: pass else: __lowercase : Optional[int] = fd return None def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" os.close(self._lock_file_fd ) __lowercase : int = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None lowerCamelCase : Optional[Any] = None if msvcrt: lowerCamelCase : List[Any] = WindowsFileLock elif fcntl: lowerCamelCase : List[Any] = UnixFileLock else: lowerCamelCase : Union[str, Any] = SoftFileLock if warnings is not None: warnings.warn('''only soft file lock is available''')
649
1
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap lowerCamelCase : Optional[int] = '''Usage of script: script_name <size_of_canvas:int>''' lowerCamelCase : List[str] = [0] * 1_00 + [1] * 10 random.shuffle(choice) def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : Tuple = [[False for i in range(lowerCAmelCase_ )] for j in range(lowerCAmelCase_ )] return canvas def snake_case_ ( lowerCAmelCase_ : list[list[bool]] ): for i, row in enumerate(lowerCAmelCase_ ): for j, _ in enumerate(lowerCAmelCase_ ): __lowercase : Union[str, Any] = bool(random.getrandbits(1 ) ) def snake_case_ ( lowerCAmelCase_ : list[list[bool]] ): __lowercase : Union[str, Any] = np.array(lowerCAmelCase_ ) __lowercase : List[Any] = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(lowerCAmelCase_ ): for c, pt in enumerate(lowerCAmelCase_ ): __lowercase : Optional[Any] = __judge_point( lowerCAmelCase_ , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) __lowercase : Optional[Any] = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. __lowercase : list[list[bool]] = current_canvas.tolist() return return_canvas def snake_case_ ( lowerCAmelCase_ : bool , lowerCAmelCase_ : list[list[bool]] ): __lowercase : Tuple = 0 __lowercase : Tuple = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. __lowercase : int = pt if pt: if alive < 2: __lowercase : List[Any] = False elif alive == 2 or alive == 3: __lowercase : Dict = True elif alive > 3: __lowercase : List[str] = False else: if alive == 3: __lowercase : Any = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) lowerCamelCase : str = int(sys.argv[1]) # main working structure of this module. lowerCamelCase : Tuple = create_canvas(canvas_size) seed(c) lowerCamelCase ,lowerCamelCase : str = plt.subplots() fig.show() lowerCamelCase : List[Any] = ListedColormap(['''w''', '''k''']) try: while True: lowerCamelCase : List[str] = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
649
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : Tuple = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = '''layoutlmv3''' def __init__( self : Dict , __a : List[str]=50265 , __a : str=768 , __a : List[Any]=12 , __a : List[Any]=12 , __a : List[str]=3072 , __a : Optional[Any]="gelu" , __a : Optional[int]=0.1 , __a : List[Any]=0.1 , __a : Tuple=512 , __a : int=2 , __a : Any=0.02 , __a : Union[str, Any]=1E-5 , __a : List[str]=1 , __a : List[Any]=0 , __a : int=2 , __a : str=1024 , __a : str=128 , __a : List[Any]=128 , __a : Tuple=True , __a : Optional[int]=32 , __a : Any=128 , __a : List[Any]=64 , __a : Tuple=256 , __a : str=True , __a : int=True , __a : Optional[Any]=True , __a : Any=224 , __a : str=3 , __a : List[str]=16 , __a : Union[str, Any]=None , **__a : List[Any] , ) -> List[str]: """simple docstring""" super().__init__( vocab_size=__a , hidden_size=__a , num_hidden_layers=__a , num_attention_heads=__a , intermediate_size=__a , hidden_act=__a , hidden_dropout_prob=__a , attention_probs_dropout_prob=__a , max_position_embeddings=__a , type_vocab_size=__a , initializer_range=__a , layer_norm_eps=__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a , ) __lowercase : int = max_ad_position_embeddings __lowercase : Any = coordinate_size __lowercase : Optional[Any] = shape_size __lowercase : str = has_relative_attention_bias __lowercase : int = rel_pos_bins __lowercase : Union[str, Any] = max_rel_pos __lowercase : str = has_spatial_attention_bias __lowercase : str = rel_ad_pos_bins __lowercase : List[Any] = max_rel_ad_pos __lowercase : Tuple = text_embed __lowercase : int = visual_embed __lowercase : Tuple = input_size __lowercase : Dict = num_channels __lowercase : str = patch_size __lowercase : Optional[int] = classifier_dropout class lowerCAmelCase ( __a ): '''simple docstring''' _A : str = version.parse('''1.12''' ) @property def lowerCAmelCase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def lowerCAmelCase ( self : Union[str, Any] ) -> float: """simple docstring""" return 1E-5 @property def lowerCAmelCase ( self : str ) -> int: """simple docstring""" return 12 def lowerCAmelCase ( self : List[Any] , __a : "ProcessorMixin" , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional["TensorType"] = None , __a : int = 3 , __a : int = 40 , __a : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , """apply_ocr""" , __a ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase : Tuple = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase : Tuple = processor.tokenizer.num_special_tokens_to_add(__a ) __lowercase : Tuple = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__a ) # Generate dummy inputs according to compute batch and sequence __lowercase : Union[str, Any] = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowercase : Tuple = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowercase : Tuple = self._generate_dummy_images(__a , __a , __a , __a ) __lowercase : int = dict( processor( __a , text=__a , boxes=__a , return_tensors=__a , ) ) return inputs
649
1
def snake_case_ ( lowerCAmelCase_ : list[int] ): if not numbers: return 0 if not isinstance(lowerCAmelCase_ , (list, tuple) ) or not all( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for number in numbers ): raise ValueError("""numbers must be an iterable of integers""" ) __lowercase : List[str] = numbers[0] for i in range(1 , len(lowerCAmelCase_ ) ): # update the maximum and minimum subarray products __lowercase : int = numbers[i] if number < 0: __lowercase , __lowercase : Dict = min_till_now, max_till_now __lowercase : Tuple = max(lowerCAmelCase_ , max_till_now * number ) __lowercase : List[str] = min(lowerCAmelCase_ , min_till_now * number ) # update the maximum product found till now __lowercase : int = max(lowerCAmelCase_ , lowerCAmelCase_ ) return max_prod
649
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowerCamelCase : List[Any] = logging.get_logger(__name__) class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , __a : str = None , __a : uuid.UUID = None , __a : Any=None , __a : List[Any]=None ) -> List[Any]: """simple docstring""" if not conversation_id: __lowercase : Any = uuid.uuida() if past_user_inputs is None: __lowercase : Dict = [] if generated_responses is None: __lowercase : Dict = [] __lowercase : uuid.UUID = conversation_id __lowercase : List[str] = past_user_inputs __lowercase : List[str] = generated_responses __lowercase : Optional[str] = text def __eq__( self : Dict , __a : Dict ) -> Any: """simple docstring""" if not isinstance(__a , __a ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCAmelCase ( self : List[str] , __a : str , __a : bool = False ) -> Dict: """simple docstring""" if self.new_user_input: if overwrite: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten " F"with: \"{text}\"." ) __lowercase : Optional[int] = text else: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" new input " F"ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input" ) else: __lowercase : Dict = text def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __lowercase : Dict = None def lowerCAmelCase ( self : Optional[int] , __a : str ) -> List[Any]: """simple docstring""" self.generated_responses.append(__a ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : int ) -> str: """simple docstring""" __lowercase : Optional[int] = F"Conversation id: {self.uuid} \n" for is_user, text in self.iter_texts(): __lowercase : Optional[Any] = """user""" if is_user else """bot""" output += F"{name} >> {text} \n" return output @add_end_docstrings( __a , r''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''' , ) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Any , *__a : int , **__a : str ) -> Union[str, Any]: """simple docstring""" super().__init__(*__a , **__a ) if self.tokenizer.pad_token_id is None: __lowercase : List[Any] = self.tokenizer.eos_token def lowerCAmelCase ( self : Union[str, Any] , __a : int=None , __a : Tuple=None , __a : Any=None , **__a : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = {} __lowercase : Tuple = {} __lowercase : List[str] = {} if min_length_for_response is not None: __lowercase : Dict = min_length_for_response if minimum_tokens is not None: __lowercase : Union[str, Any] = minimum_tokens if "max_length" in generate_kwargs: __lowercase : Union[str, Any] = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __lowercase : Union[str, Any] = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(__a ) return preprocess_params, forward_params, postprocess_params def __call__( self : Optional[int] , __a : Union[Conversation, List[Conversation]] , __a : Dict=0 , **__a : List[Any] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = super().__call__(__a , num_workers=__a , **__a ) if isinstance(__a , __a ) and len(__a ) == 1: return outputs[0] return outputs def lowerCAmelCase ( self : Union[str, Any] , __a : Conversation , __a : Tuple=32 ) -> Dict[str, Any]: """simple docstring""" if not isinstance(__a , __a ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( F"Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. " """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer , """_build_conversation_input_ids""" ): __lowercase : List[Any] = self.tokenizer._build_conversation_input_ids(__a ) else: # If the tokenizer cannot handle conversations, we default to only the old version __lowercase : Tuple = self._legacy_parse_and_tokenize(__a ) if self.framework == "pt": __lowercase : List[Any] = torch.LongTensor([input_ids] ) elif self.framework == "tf": __lowercase : List[str] = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCAmelCase ( self : Any , __a : Dict , __a : Any=10 , **__a : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = generate_kwargs.get("""max_length""" , self.model.config.max_length ) __lowercase : List[Any] = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(F"Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})" ) __lowercase : Any = max_length - minimum_tokens __lowercase : int = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: __lowercase : Dict = model_inputs["""attention_mask"""][:, -trim:] __lowercase : Union[str, Any] = model_inputs.pop("""conversation""" ) __lowercase : Tuple = max_length __lowercase : int = self.model.generate(**__a , **__a ) if self.model.config.is_encoder_decoder: __lowercase : Optional[int] = 1 else: __lowercase : str = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCAmelCase ( self : int , __a : Tuple , __a : List[Any]=True ) -> List[str]: """simple docstring""" __lowercase : int = model_outputs["""output_ids"""] __lowercase : Union[str, Any] = self.tokenizer.decode( output_ids[0] , skip_special_tokens=__a , clean_up_tokenization_spaces=__a , ) __lowercase : List[str] = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(__a ) return conversation def lowerCAmelCase ( self : int , __a : Conversation ) -> Dict: """simple docstring""" __lowercase : Optional[int] = self.tokenizer.eos_token_id __lowercase : Optional[Any] = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(__a , add_special_tokens=__a ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(__a , add_special_tokens=__a ) ) if len(__a ) > self.tokenizer.model_max_length: __lowercase : List[Any] = input_ids[-self.tokenizer.model_max_length :] return input_ids
649
1
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] ): __lowercase : List[str] = { """en""": """Machine learning is great, isn't it?""", """ru""": """Машинное обучение - это здорово, не так ли?""", """de""": """Maschinelles Lernen ist großartig, nicht wahr?""", } # BLUE scores as follows: # "pair": [fairseq, transformers] __lowercase : int = { """wmt16-en-de-dist-12-1""": [28.3, 27.52], """wmt16-en-de-dist-6-1""": [27.4, 27.11], """wmt16-en-de-12-1""": [26.9, 25.75], } __lowercase : Optional[Any] = F"{src_lang}-{tgt_lang}" __lowercase : int = F"\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"allenai/{model_name}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n" model_card_dir.mkdir(parents=lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowercase : List[Any] = os.path.join(lowerCAmelCase_ , """README.md""" ) print(F"Generating {path}" ) with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""" ) as f: f.write(lowerCAmelCase_ ) # make sure we are under the root of the project lowerCamelCase : int = Path(__file__).resolve().parent.parent.parent lowerCamelCase : Dict = repo_dir / '''model_cards''' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: lowerCamelCase : List[Any] = model_cards_dir / '''allenai''' / model_name write_model_card(model_card_dir, src_lang='''en''', tgt_lang='''de''', model_name=model_name)
649
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__a , """tf_padding""" ) ) self.parent.assertTrue(hasattr(__a , """depth_multiplier""" ) ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Tuple , __a : str=13 , __a : Dict=3 , __a : List[Any]=32 , __a : Any=0.25 , __a : Any=8 , __a : Optional[int]=8 , __a : Optional[int]=6 , __a : Dict=32 , __a : Tuple=True , __a : List[Any]=True , __a : Optional[int]=True , __a : Tuple="relu6" , __a : Optional[Any]=1280 , __a : str=0.1 , __a : str=0.02 , __a : Optional[Any]=True , __a : Tuple=True , __a : Dict=10 , __a : Optional[Any]=None , ) -> Any: """simple docstring""" __lowercase : List[str] = parent __lowercase : Tuple = batch_size __lowercase : Dict = num_channels __lowercase : Optional[int] = image_size __lowercase : int = depth_multiplier __lowercase : str = depth_divisible_by __lowercase : int = min_depth __lowercase : Tuple = expand_ratio __lowercase : Optional[int] = tf_padding __lowercase : Dict = output_stride __lowercase : Dict = first_layer_is_expansion __lowercase : Optional[Any] = finegrained_output __lowercase : str = hidden_act __lowercase : Union[str, Any] = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) __lowercase : Optional[int] = classifier_dropout_prob __lowercase : int = use_labels __lowercase : Optional[int] = is_training __lowercase : Dict = num_labels __lowercase : Tuple = initializer_range __lowercase : Optional[Any] = scope def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : List[Any] = None __lowercase : Optional[Any] = None if self.use_labels: __lowercase : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __lowercase : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowercase : List[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : Tuple , __a : Dict , __a : Tuple , __a : Optional[int] , __a : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[int] = MobileNetVaModel(config=__a ) model.to(__a ) model.eval() __lowercase : Tuple = model(__a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def lowerCAmelCase ( self : List[str] , __a : Optional[int] , __a : List[str] , __a : str , __a : Optional[int] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = self.num_labels __lowercase : Dict = MobileNetVaForImageClassification(__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : int , __a : List[str] , __a : Tuple , __a : Any , __a : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : int = self.num_labels __lowercase : List[Any] = MobileNetVaForSemanticSegmentation(__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __lowercase : str = model(__a , labels=__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase : List[str] = config_and_inputs __lowercase : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Tuple = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) _A : Optional[Any] = ( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) _A : Tuple = False _A : List[str] = False _A : List[str] = False _A : Optional[int] = False def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = MobileNetVaModelTester(self ) __lowercase : int = MobileNetVaConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV2 does not use inputs_embeds""" ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not support input and output embeddings""" ) def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not output attentions""" ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[Any] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : int = [*signature.parameters.keys()] __lowercase : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" def check_hidden_states_output(__a : List[Any] , __a : Tuple , __a : List[str] ): __lowercase : Optional[Any] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : List[Any] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Tuple = outputs.hidden_states __lowercase : str = 16 self.assertEqual(len(__a ) , __a ) __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Any = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase : Union[str, Any] = True check_hidden_states_output(__a , __a , __a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : Optional[int] = MobileNetVaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def snake_case_ ( ): __lowercase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v2_1.0_224""" ) if is_vision_available() else None ) @slow def lowerCAmelCase ( self : str ) -> int: """simple docstring""" __lowercase : Tuple = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v2_1.0_224""" ).to(__a ) __lowercase : str = self.default_image_processor __lowercase : Tuple = prepare_img() __lowercase : Tuple = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : str = model(**__a ) # verify the logits __lowercase : Union[str, Any] = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , __a ) __lowercase : str = torch.tensor([0.2445, -1.1993, 0.1905] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : int = MobileNetVaForSemanticSegmentation.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __lowercase : Dict = model.to(__a ) __lowercase : Tuple = MobileNetVaImageProcessor.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __lowercase : List[str] = prepare_img() __lowercase : Optional[int] = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : Union[str, Any] = model(**__a ) __lowercase : Any = outputs.logits # verify the logits __lowercase : Dict = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , __a ) __lowercase : str = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=__a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __a , atol=1E-4 ) )
649
1
import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC lowerCamelCase : Optional[Any] = parse(importlib.metadata.version('''torch''')) def snake_case_ ( lowerCAmelCase_ : Union[str, Version] , lowerCAmelCase_ : str , lowerCAmelCase_ : str ): if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F"`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}" ) __lowercase : Optional[Any] = STR_OPERATION_TO_FUNC[operation] if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : Any = parse(importlib.metadata.version(lowerCAmelCase_ ) ) return operation(lowerCAmelCase_ , parse(lowerCAmelCase_ ) ) def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): return compare_versions(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
649
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def snake_case_ ( lowerCAmelCase_ : bool = True , *lowerCAmelCase_ : int , **lowerCAmelCase_ : List[str] ): if not is_tqdm_available(): raise ImportError("""Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.""" ) __lowercase : List[str] = False if main_process_only: __lowercase : Optional[int] = PartialState().local_process_index == 0 return _tqdm(*lowerCAmelCase_ , **lowerCAmelCase_ , disable=lowerCAmelCase_ )
649
1
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() lowerCamelCase : Dict = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model lowerCamelCase : str = { # fairseq: '''wmt19-ru-en''': {'''length_penalty''': 1.1}, '''wmt19-en-ru''': {'''length_penalty''': 1.15}, '''wmt19-en-de''': {'''length_penalty''': 1.0}, '''wmt19-de-en''': {'''length_penalty''': 1.1}, # allenai: '''wmt16-en-de-dist-12-1''': {'''length_penalty''': 0.6}, '''wmt16-en-de-dist-6-1''': {'''length_penalty''': 0.6}, '''wmt16-en-de-12-1''': {'''length_penalty''': 0.8}, '''wmt19-de-en-6-6-base''': {'''length_penalty''': 0.6}, '''wmt19-de-en-6-6-big''': {'''length_penalty''': 0.6}, } # this remaps the different models to their organization names lowerCamelCase : Tuple = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowerCamelCase : str = '''facebook''' for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: lowerCamelCase : Optional[Any] = '''allenai''' def snake_case_ ( lowerCAmelCase_ : int ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} __lowercase : Optional[Any] = dict((re.sub(r"""@@$""" , """""" , lowerCAmelCase_ ), v) if k.endswith("""@@""" ) else (re.sub(r"""$""" , """</w>""" , lowerCAmelCase_ ), v) for k, v in d.items() ) __lowercase : Any = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[F"{k}</w>"] __lowercase : Optional[int] = d[k] # restore return da def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : Any ): # prep assert os.path.exists(lowerCAmelCase_ ) os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) print(F"Writing results to {pytorch_dump_folder_path}" ) # handle various types of models __lowercase : Tuple = basename(lowerCAmelCase_ ) __lowercase : str = dirname(lowerCAmelCase_ ) __lowercase : Any = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel __lowercase : Optional[Any] = cls.hub_models() __lowercase : Any = {"""bpe""": """fastbpe""", """tokenizer""": """moses"""} __lowercase : List[str] = """.""" # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(F"using checkpoint {checkpoint_file}" ) __lowercase : List[Any] = hub_utils.from_pretrained( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , archive_map=lowerCAmelCase_ , **lowerCAmelCase_ ) __lowercase : Union[str, Any] = vars(chkpt["""args"""]["""model"""] ) __lowercase : Optional[int] = args["""source_lang"""] __lowercase : Tuple = args["""target_lang"""] __lowercase : Optional[int] = dirname(lowerCAmelCase_ ) __lowercase : List[str] = basename(lowerCAmelCase_ ) # dicts __lowercase : List[Any] = os.path.join(lowerCAmelCase_ , F"dict.{src_lang}.txt" ) __lowercase : Optional[Any] = os.path.join(lowerCAmelCase_ , F"dict.{tgt_lang}.txt" ) __lowercase : List[str] = Dictionary.load(lowerCAmelCase_ ) __lowercase : Tuple = rewrite_dict_keys(src_dict.indices ) __lowercase : int = len(lowerCAmelCase_ ) __lowercase : List[Any] = os.path.join(lowerCAmelCase_ , """vocab-src.json""" ) print(F"Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records" ) with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ , indent=lowerCAmelCase_ ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab __lowercase : Optional[Any] = True for k in src_vocab.keys(): if not k.islower(): __lowercase : Any = False break __lowercase : str = Dictionary.load(lowerCAmelCase_ ) __lowercase : List[Any] = rewrite_dict_keys(tgt_dict.indices ) __lowercase : Dict = len(lowerCAmelCase_ ) __lowercase : Optional[int] = os.path.join(lowerCAmelCase_ , """vocab-tgt.json""" ) print(F"Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records" ) with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ , indent=lowerCAmelCase_ ) ) # merges_file (bpecodes) __lowercase : List[str] = os.path.join(lowerCAmelCase_ , VOCAB_FILES_NAMES["""merges_file"""] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" __lowercase : Tuple = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) if os.path.exists(lowerCAmelCase_ ): break with open(lowerCAmelCase_ , encoding="""utf-8""" ) as fin: __lowercase : Optional[Any] = fin.read() __lowercase : str = re.sub(r""" \d+$""" , """""" , lowerCAmelCase_ , 0 , re.M ) # remove frequency number print(F"Generating {merges_file}" ) with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""" ) as fout: fout.write(lowerCAmelCase_ ) # model config __lowercase : int = os.path.join(lowerCAmelCase_ , """config.json""" ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", F"need to extend tokenizer to support bpe={args['bpe']}" assert args["tokenizer"] == "moses", F"need to extend tokenizer to support bpe={args['tokenizer']}" __lowercase : Any = { """architectures""": ["""FSMTForConditionalGeneration"""], """model_type""": """fsmt""", """activation_dropout""": args["""activation_dropout"""], """activation_function""": """relu""", """attention_dropout""": args["""attention_dropout"""], """d_model""": args["""decoder_embed_dim"""], """dropout""": args["""dropout"""], """init_std""": 0.02, """max_position_embeddings""": args["""max_source_positions"""], """num_hidden_layers""": args["""encoder_layers"""], """src_vocab_size""": src_vocab_size, """tgt_vocab_size""": tgt_vocab_size, """langs""": [src_lang, tgt_lang], """encoder_attention_heads""": args["""encoder_attention_heads"""], """encoder_ffn_dim""": args["""encoder_ffn_embed_dim"""], """encoder_layerdrop""": args["""encoder_layerdrop"""], """encoder_layers""": args["""encoder_layers"""], """decoder_attention_heads""": args["""decoder_attention_heads"""], """decoder_ffn_dim""": args["""decoder_ffn_embed_dim"""], """decoder_layerdrop""": args["""decoder_layerdrop"""], """decoder_layers""": args["""decoder_layers"""], """bos_token_id""": 0, """pad_token_id""": 1, """eos_token_id""": 2, """is_encoder_decoder""": True, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_all_embeddings"""], } # good hparam defaults to start with __lowercase : Any = 5 __lowercase : List[str] = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: __lowercase : List[Any] = best_score_hparams[model_dir]["""length_penalty"""] else: __lowercase : Optional[Any] = 1.0 print(F"Generating {fsmt_model_config_file}" ) with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ , indent=lowerCAmelCase_ ) ) # tokenizer config __lowercase : Dict = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : List[str] = { """langs""": [src_lang, tgt_lang], """model_max_length""": 1024, """do_lower_case""": do_lower_case, } print(F"Generating {fsmt_tokenizer_config_file}" ) with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ , indent=lowerCAmelCase_ ) ) # model __lowercase : List[Any] = chkpt["""models"""][0] __lowercase : Optional[Any] = model.state_dict() # rename keys to start with 'model.' __lowercase : int = OrderedDict(("""model.""" + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys __lowercase : Union[str, Any] = [ """model.model""", """model.encoder.version""", """model.decoder.version""", """model.encoder_embed_tokens.weight""", """model.decoder_embed_tokens.weight""", """model.encoder.embed_positions._float_tensor""", """model.decoder.embed_positions._float_tensor""", ] for k in ignore_keys: model_state_dict.pop(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Optional[int] = FSMTConfig.from_pretrained(lowerCAmelCase_ ) __lowercase : List[Any] = FSMTForConditionalGeneration(lowerCAmelCase_ ) # check that it loads ok model_new.load_state_dict(lowerCAmelCase_ , strict=lowerCAmelCase_ ) # save __lowercase : int = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) print(F"Generating {pytorch_weights_dump_path}" ) torch.save(lowerCAmelCase_ , lowerCAmelCase_ ) print("""Conversion is done!""" ) print("""\nLast step is to upload the files to s3""" ) print(F"cd {data_root}" ) print(F"transformers-cli upload {model_dir}" ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fsmt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCamelCase : Dict = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
649
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : list[int] ): if not nums: return 0 __lowercase : Tuple = nums[0] __lowercase : Tuple = 0 for num in nums[1:]: __lowercase , __lowercase : List[str] = ( max_excluding + num, max(lowerCAmelCase_ , lowerCAmelCase_ ), ) return max(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
649
1
import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def snake_case_ ( lowerCAmelCase_ : int ): random.seed(lowerCAmelCase_ ) np.random.seed(lowerCAmelCase_ ) torch.manual_seed(lowerCAmelCase_ ) torch.cuda.manual_seed_all(lowerCAmelCase_ ) # ^^ safe to call this function even if cuda is not available class lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , __a : Iterable[torch.nn.Parameter] , __a : float = 0.9999 , __a : float = 0.0 , __a : int = 0 , __a : bool = False , __a : Union[float, int] = 1.0 , __a : Union[float, int] = 2 / 3 , __a : Optional[Any] = None , __a : Dict[str, Any] = None , **__a : Optional[Any] , ) -> int: """simple docstring""" if isinstance(__a , torch.nn.Module ): __lowercase : Tuple = ( """Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage`""" , """1.0.0""" , __a , standard_warn=__a , ) __lowercase : Dict = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility __lowercase : str = True if kwargs.get("""max_value""" , __a ) is not None: __lowercase : Optional[int] = """The `max_value` argument is deprecated. Please use `decay` instead.""" deprecate("""max_value""" , """1.0.0""" , __a , standard_warn=__a ) __lowercase : Any = kwargs["""max_value"""] if kwargs.get("""min_value""" , __a ) is not None: __lowercase : List[str] = """The `min_value` argument is deprecated. Please use `min_decay` instead.""" deprecate("""min_value""" , """1.0.0""" , __a , standard_warn=__a ) __lowercase : Any = kwargs["""min_value"""] __lowercase : Any = list(__a ) __lowercase : Any = [p.clone().detach() for p in parameters] if kwargs.get("""device""" , __a ) is not None: __lowercase : Tuple = """The `device` argument is deprecated. Please use `to` instead.""" deprecate("""device""" , """1.0.0""" , __a , standard_warn=__a ) self.to(device=kwargs["""device"""] ) __lowercase : Optional[Any] = None __lowercase : str = decay __lowercase : Union[str, Any] = min_decay __lowercase : int = update_after_step __lowercase : Any = use_ema_warmup __lowercase : List[str] = inv_gamma __lowercase : Dict = power __lowercase : str = 0 __lowercase : Optional[int] = None # set in `step()` __lowercase : Any = model_cls __lowercase : Optional[Any] = model_config @classmethod def lowerCAmelCase ( cls : List[str] , __a : int , __a : Any ) -> "EMAModel": """simple docstring""" __lowercase , __lowercase : str = model_cls.load_config(__a , return_unused_kwargs=__a ) __lowercase : List[Any] = model_cls.from_pretrained(__a ) __lowercase : Union[str, Any] = cls(model.parameters() , model_cls=__a , model_config=model.config ) ema_model.load_state_dict(__a ) return ema_model def lowerCAmelCase ( self : Optional[int] , __a : str ) -> str: """simple docstring""" if self.model_cls is None: raise ValueError("""`save_pretrained` can only be used if `model_cls` was defined at __init__.""" ) if self.model_config is None: raise ValueError("""`save_pretrained` can only be used if `model_config` was defined at __init__.""" ) __lowercase : List[Any] = self.model_cls.from_config(self.model_config ) __lowercase : Optional[int] = self.state_dict() state_dict.pop("""shadow_params""" , __a ) model.register_to_config(**__a ) self.copy_to(model.parameters() ) model.save_pretrained(__a ) def lowerCAmelCase ( self : Union[str, Any] , __a : int ) -> float: """simple docstring""" __lowercase : Optional[Any] = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: __lowercase : Tuple = 1 - (1 + step / self.inv_gamma) ** -self.power else: __lowercase : Optional[int] = (1 + step) / (10 + step) __lowercase : int = min(__a , self.decay ) # make sure decay is not smaller than min_decay __lowercase : Optional[Any] = max(__a , self.min_decay ) return cur_decay_value @torch.no_grad() def lowerCAmelCase ( self : List[Any] , __a : Iterable[torch.nn.Parameter] ) -> List[Any]: """simple docstring""" if isinstance(__a , torch.nn.Module ): __lowercase : Tuple = ( """Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage.step`""" , """1.0.0""" , __a , standard_warn=__a , ) __lowercase : Union[str, Any] = parameters.parameters() __lowercase : Any = list(__a ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. __lowercase : Union[str, Any] = self.get_decay(self.optimization_step ) __lowercase : List[Any] = decay __lowercase : List[str] = 1 - decay __lowercase : Any = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , __a ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): __lowercase : Optional[int] = deepspeed.zero.GatheredParameters(__a , modifier_rank=__a ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(__a ) def lowerCAmelCase ( self : Union[str, Any] , __a : Iterable[torch.nn.Parameter] ) -> None: """simple docstring""" __lowercase : Tuple = list(__a ) for s_param, param in zip(self.shadow_params , __a ): param.data.copy_(s_param.to(param.device ).data ) def lowerCAmelCase ( self : Any , __a : List[Any]=None , __a : List[str]=None ) -> None: """simple docstring""" __lowercase : List[str] = [ p.to(device=__a , dtype=__a ) if p.is_floating_point() else p.to(device=__a ) for p in self.shadow_params ] def lowerCAmelCase ( self : Tuple ) -> dict: """simple docstring""" return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowerCAmelCase ( self : Union[str, Any] , __a : Iterable[torch.nn.Parameter] ) -> None: """simple docstring""" __lowercase : int = [param.detach().cpu().clone() for param in parameters] def lowerCAmelCase ( self : List[Any] , __a : Iterable[torch.nn.Parameter] ) -> None: """simple docstring""" if self.temp_stored_params is None: raise RuntimeError("""This ExponentialMovingAverage has no `store()`ed weights """ """to `restore()`""" ) for c_param, param in zip(self.temp_stored_params , __a ): param.data.copy_(c_param.data ) # Better memory-wise. __lowercase : Union[str, Any] = None def lowerCAmelCase ( self : List[Any] , __a : dict ) -> None: """simple docstring""" __lowercase : Union[str, Any] = copy.deepcopy(__a ) __lowercase : List[str] = state_dict.get("""decay""" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("""Decay must be between 0 and 1""" ) __lowercase : int = state_dict.get("""min_decay""" , self.min_decay ) if not isinstance(self.min_decay , __a ): raise ValueError("""Invalid min_decay""" ) __lowercase : Tuple = state_dict.get("""optimization_step""" , self.optimization_step ) if not isinstance(self.optimization_step , __a ): raise ValueError("""Invalid optimization_step""" ) __lowercase : int = state_dict.get("""update_after_step""" , self.update_after_step ) if not isinstance(self.update_after_step , __a ): raise ValueError("""Invalid update_after_step""" ) __lowercase : Tuple = state_dict.get("""use_ema_warmup""" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , __a ): raise ValueError("""Invalid use_ema_warmup""" ) __lowercase : Dict = state_dict.get("""inv_gamma""" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("""Invalid inv_gamma""" ) __lowercase : str = state_dict.get("""power""" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("""Invalid power""" ) __lowercase : Dict = state_dict.get("""shadow_params""" , __a ) if shadow_params is not None: __lowercase : int = shadow_params if not isinstance(self.shadow_params , __a ): raise ValueError("""shadow_params must be a list""" ) if not all(isinstance(__a , torch.Tensor ) for p in self.shadow_params ): raise ValueError("""shadow_params must all be Tensors""" )
649
lowerCamelCase : List[str] = '''0.18.2''' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
649
1
def snake_case_ ( lowerCAmelCase_ : int ): if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise TypeError("""Input value must be an 'int' type""" ) __lowercase : List[str] = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
649
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : List[Any] = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : str=False , lowerCAmelCase_ : Any=False ): __lowercase : Any = """backbone.""" if is_semantic else """""" __lowercase : Optional[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"{prefix}blocks.{i}.norm1.weight", F"beit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm1.bias", F"beit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.weight", F"beit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.bias", F"beit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.weight", F"beit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.bias", F"beit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.weight", F"beit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.bias", F"beit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.weight", F"beit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.bias", F"beit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ (F"{prefix}cls_token", """beit.embeddings.cls_token"""), (F"{prefix}patch_embed.proj.weight", """beit.embeddings.patch_embeddings.projection.weight"""), (F"{prefix}patch_embed.proj.bias", """beit.embeddings.patch_embeddings.projection.bias"""), (F"{prefix}pos_embed", """beit.embeddings.position_embeddings"""), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("""mask_token""", """beit.embeddings.mask_token"""), ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) else: # layernorm + classification head rename_keys.extend( [ ("""fc_norm.weight""", """beit.pooler.layernorm.weight"""), ("""fc_norm.bias""", """beit.pooler.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : List[Any]=False ): for i in range(config.num_hidden_layers ): __lowercase : Tuple = """backbone.""" if is_semantic else """""" # queries, keys and values __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.attn.qkv.weight" ) __lowercase : Dict = state_dict.pop(F"{prefix}blocks.{i}.attn.q_bias" ) __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.attn.v_bias" ) __lowercase : List[str] = in_proj_weight[ : config.hidden_size, : ] __lowercase : Union[str, Any] = q_bias __lowercase : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] __lowercase : str = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.gamma_1" ) __lowercase : str = state_dict.pop(F"{prefix}blocks.{i}.gamma_2" ) __lowercase : List[str] = gamma_a __lowercase : Optional[int] = gamma_a def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : int ): __lowercase : Tuple = dct.pop(lowerCAmelCase_ ) __lowercase : Tuple = val def snake_case_ ( ): __lowercase : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase : Any = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]=False ): __lowercase : Dict = False if """rvlcdip""" in checkpoint_url else True __lowercase : Tuple = BeitConfig(use_absolute_position_embeddings=lowerCAmelCase_ , use_mask_token=lowerCAmelCase_ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: __lowercase : Union[str, Any] = 1024 __lowercase : Optional[int] = 4096 __lowercase : List[Any] = 24 __lowercase : Dict = 16 # labels if "rvlcdip" in checkpoint_url: __lowercase : Optional[int] = 16 __lowercase : Any = """huggingface/label-files""" __lowercase : Union[str, Any] = """rvlcdip-id2label.json""" __lowercase : List[str] = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) __lowercase : Optional[int] = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowercase : Union[str, Any] = idalabel __lowercase : Optional[Any] = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys __lowercase : Optional[int] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ , map_location="""cpu""" )["""model"""] __lowercase : Union[str, Any] = create_rename_keys(lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) # load HuggingFace model __lowercase : Dict = BeitForMaskedImageModeling(lowerCAmelCase_ ) if has_lm_head else BeitForImageClassification(lowerCAmelCase_ ) model.eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image __lowercase : List[str] = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=lowerCAmelCase_ ) __lowercase : List[str] = prepare_img() __lowercase : Optional[Any] = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""" ) __lowercase : Optional[int] = encoding["""pixel_values"""] __lowercase : str = model(lowerCAmelCase_ ) __lowercase : Tuple = outputs.logits # verify logits __lowercase : str = [1, 16] if """rvlcdip""" in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(lowerCAmelCase_ ), "Shape of logits not as expected" Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: if has_lm_head: __lowercase : Optional[Any] = """dit-base""" if """base""" in checkpoint_url else """dit-large""" else: __lowercase : Tuple = """dit-base-finetuned-rvlcdip""" if """dit-b""" in checkpoint_url else """dit-large-finetuned-rvlcdip""" image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=lowerCAmelCase_ , ) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=lowerCAmelCase_ , ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) lowerCamelCase : List[str] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
649
1
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
649
from torch import nn class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , __a : int , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" super().__init__() __lowercase : int = class_size __lowercase : int = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) __lowercase : str = nn.Linear(__a , __a ) def lowerCAmelCase ( self : Tuple , __a : int ) -> Tuple: """simple docstring""" __lowercase : str = self.mlp(__a ) return logits
649
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : List[str] = logging.get_logger(__name__) lowerCamelCase : Any = { '''google/pegasus-large''': '''https://huggingface.co/google/pegasus-large/resolve/main/config.json''', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class lowerCAmelCase ( __a ): '''simple docstring''' _A : Optional[Any] = '''pegasus''' _A : int = ['''past_key_values'''] _A : Optional[Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Optional[int] , __a : List[str]=50265 , __a : Optional[int]=1024 , __a : Dict=12 , __a : Dict=4096 , __a : Any=16 , __a : Dict=12 , __a : Optional[int]=4096 , __a : List[str]=16 , __a : Optional[Any]=0.0 , __a : List[str]=0.0 , __a : Union[str, Any]=True , __a : List[Any]=True , __a : Optional[Any]="gelu" , __a : Any=1024 , __a : str=0.1 , __a : int=0.0 , __a : Union[str, Any]=0.0 , __a : Dict=0.02 , __a : Dict=0 , __a : Optional[int]=False , __a : Dict=0 , __a : str=1 , __a : Any=1 , **__a : Union[str, Any] , ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = vocab_size __lowercase : List[Any] = max_position_embeddings __lowercase : Dict = d_model __lowercase : Any = encoder_ffn_dim __lowercase : Union[str, Any] = encoder_layers __lowercase : Any = encoder_attention_heads __lowercase : Optional[Any] = decoder_ffn_dim __lowercase : str = decoder_layers __lowercase : Optional[int] = decoder_attention_heads __lowercase : Any = dropout __lowercase : Any = attention_dropout __lowercase : int = activation_dropout __lowercase : List[Any] = activation_function __lowercase : List[Any] = init_std __lowercase : Any = encoder_layerdrop __lowercase : Optional[Any] = decoder_layerdrop __lowercase : str = use_cache __lowercase : Dict = encoder_layers __lowercase : int = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , decoder_start_token_id=__a , forced_eos_token_id=__a , **__a , ) @property def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" return self.encoder_attention_heads @property def lowerCAmelCase ( self : str ) -> int: """simple docstring""" return self.d_model
649
import fire from utils import calculate_rouge, save_json def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : str=None , **lowerCAmelCase_ : str ): __lowercase : Tuple = [x.strip() for x in open(lowerCAmelCase_ ).readlines()] __lowercase : Dict = [x.strip() for x in open(lowerCAmelCase_ ).readlines()][: len(lowerCAmelCase_ )] __lowercase : Tuple = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) if save_path is not None: save_json(lowerCAmelCase_ , lowerCAmelCase_ , indent=lowerCAmelCase_ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
649
1
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase : int = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowerCamelCase : List[Any] = 25_00_04 lowerCamelCase : int = 25_00_20 @require_sentencepiece @require_tokenizers class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : Optional[int] = MBartaaTokenizer _A : Tuple = MBartaaTokenizerFast _A : Optional[int] = True _A : List[str] = True def lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __lowercase : Union[str, Any] = MBartaaTokenizer(__a , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=__a ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" __lowercase : Union[str, Any] = """<s>""" __lowercase : List[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(__a ) , 1054 ) def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1054 ) def lowerCAmelCase ( self : int ) -> str: """simple docstring""" __lowercase : str = MBartaaTokenizer(__a , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=__a ) __lowercase : List[str] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__a , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __lowercase : Any = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __a , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""] , ) __lowercase : Union[str, Any] = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual( __a , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __lowercase : int = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] , ) @slow def lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" __lowercase : Optional[int] = {"""input_ids""": [[250004, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [250004, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250004, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a , model_name="""facebook/mbart-large-50""" , revision="""d3913889c59cd5c9e456b269c376325eabad57e2""" , ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __lowercase : Tuple = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart50""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : int = self.rust_tokenizer_class.from_pretrained(__a , **__a ) __lowercase : Union[str, Any] = self.tokenizer_class.from_pretrained(__a , **__a ) __lowercase : Tuple = tempfile.mkdtemp() __lowercase : Dict = tokenizer_r.save_pretrained(__a ) __lowercase : Union[str, Any] = tokenizer_p.save_pretrained(__a ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) __lowercase : Tuple = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(__a , __a ) # Checks everything loads correctly in the same way __lowercase : Any = tokenizer_r.from_pretrained(__a ) __lowercase : Any = tokenizer_p.from_pretrained(__a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a , __a ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__a ) # Save tokenizer rust, legacy_format=True __lowercase : Dict = tempfile.mkdtemp() __lowercase : int = tokenizer_r.save_pretrained(__a , legacy_format=__a ) __lowercase : Any = tokenizer_p.save_pretrained(__a ) # Checks it save with the same files self.assertSequenceEqual(__a , __a ) # Checks everything loads correctly in the same way __lowercase : Optional[int] = tokenizer_r.from_pretrained(__a ) __lowercase : Dict = tokenizer_p.from_pretrained(__a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a , __a ) ) shutil.rmtree(__a ) # Save tokenizer rust, legacy_format=False __lowercase : Dict = tempfile.mkdtemp() __lowercase : int = tokenizer_r.save_pretrained(__a , legacy_format=__a ) __lowercase : Optional[int] = tokenizer_p.save_pretrained(__a ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __lowercase : Optional[Any] = tokenizer_r.from_pretrained(__a ) __lowercase : List[Any] = tokenizer_p.from_pretrained(__a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a , __a ) ) shutil.rmtree(__a ) @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' _A : Optional[int] = '''facebook/mbart-large-50-one-to-many-mmt''' _A : str = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] _A : str = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] _A : Any = [EN_CODE, 8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2] @classmethod def lowerCAmelCase ( cls : Any ) -> List[str]: """simple docstring""" __lowercase : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) __lowercase : Tuple = 1 return cls def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 250020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""mr_IN"""] , 250038 ) def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" __lowercase : Dict = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __a ) def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" self.assertIn(__a , self.tokenizer.all_special_ids ) __lowercase : List[Any] = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] __lowercase : Optional[Any] = self.tokenizer.decode(__a , skip_special_tokens=__a ) __lowercase : List[str] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__a ) self.assertEqual(__a , __a ) self.assertNotIn(self.tokenizer.eos_token , __a ) def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" __lowercase : Any = ["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] , __a ) __lowercase : int = 10 __lowercase : Optional[Any] = self.tokenizer(__a , max_length=__a , truncation=__a ).input_ids[0] self.assertEqual(ids[0] , __a ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(__a ) , __a ) def lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [250053, 250001] ) def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase : List[str] = tempfile.mkdtemp() __lowercase : Union[str, Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__a ) __lowercase : List[Any] = MBartaaTokenizer.from_pretrained(__a ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __a ) @require_torch def lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[int] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__a , return_tensors="""pt""" ) __lowercase : Dict = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" __lowercase : str = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__a , truncation=__a , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) __lowercase : int = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(__a , __a ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) __lowercase : Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __a ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" __lowercase : List[Any] = self.tokenizer(self.src_text , padding=__a , truncation=__a , max_length=3 , return_tensors="""pt""" ) __lowercase : str = self.tokenizer( text_target=self.tgt_text , padding=__a , truncation=__a , max_length=10 , return_tensors="""pt""" ) __lowercase : List[str] = targets["""input_ids"""] __lowercase : Optional[Any] = shift_tokens_right(__a , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" __lowercase : Dict = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(__a ) , { # en_XX, A, test, EOS """input_ids""": [[250004, 62, 3034, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 250001, } , )
649
from argparse import ArgumentParser from . import BaseTransformersCLICommand def snake_case_ ( lowerCAmelCase_ : Dict ): return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class lowerCAmelCase ( __a ): '''simple docstring''' @staticmethod def lowerCAmelCase ( __a : ArgumentParser ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = parser.add_parser("""download""" ) download_parser.add_argument( """--cache-dir""" , type=__a , default=__a , help="""Path to location to store the models""" ) download_parser.add_argument( """--force""" , action="""store_true""" , help="""Force the model to be download even if already in cache-dir""" ) download_parser.add_argument( """--trust-remote-code""" , action="""store_true""" , help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" , ) download_parser.add_argument("""model""" , type=__a , help="""Name of the model to download""" ) download_parser.set_defaults(func=__a ) def __init__( self : Dict , __a : str , __a : str , __a : bool , __a : bool ) -> Union[str, Any]: """simple docstring""" __lowercase : Dict = model __lowercase : List[Any] = cache __lowercase : Any = force __lowercase : Optional[int] = trust_remote_code def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
649
1
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : list[str] | None = None , lowerCAmelCase_ : dict[str, float] | None = None , lowerCAmelCase_ : bool = False , ): __lowercase : Any = cipher_alphabet or [chr(lowerCAmelCase_ ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) __lowercase : Union[str, Any] = { """a""": 0.08_497, """b""": 0.01_492, """c""": 0.02_202, """d""": 0.04_253, """e""": 0.11_162, """f""": 0.02_228, """g""": 0.02_015, """h""": 0.06_094, """i""": 0.07_546, """j""": 0.00_153, """k""": 0.01_292, """l""": 0.04_025, """m""": 0.02_406, """n""": 0.06_749, """o""": 0.07_507, """p""": 0.01_929, """q""": 0.00_095, """r""": 0.07_587, """s""": 0.06_327, """t""": 0.09_356, """u""": 0.02_758, """v""": 0.00_978, """w""": 0.02_560, """x""": 0.00_150, """y""": 0.01_994, """z""": 0.00_077, } else: # Custom frequencies dictionary __lowercase : Dict = frequencies_dict if not case_sensitive: __lowercase : Any = ciphertext.lower() # Chi squared statistic values __lowercase : dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(lowerCAmelCase_ ) ): __lowercase : str = """""" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet __lowercase : Union[str, Any] = (alphabet_letters.index(letter.lower() ) - shift) % len( lowerCAmelCase_ ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter __lowercase : Dict = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: __lowercase : Optional[Any] = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message __lowercase : Dict = decrypted_with_shift.lower().count(lowerCAmelCase_ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies __lowercase : Optional[int] = frequencies[letter] * occurrences # Complete the chi squared statistic formula __lowercase : Optional[Any] = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message __lowercase : Any = decrypted_with_shift.count(lowerCAmelCase_ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies __lowercase : int = frequencies[letter] * occurrences # Complete the chi squared statistic formula __lowercase : str = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary __lowercase : Dict = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(lowerCAmelCase_ : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] __lowercase : int = min( lowerCAmelCase_ , key=lowerCAmelCase_ , ) # Get all the data from the most likely cipher (key, decoded message) ( ( __lowercase ) , ( __lowercase ) , ) : Dict = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
649
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowerCamelCase : Union[str, Any] = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , __a : List[str] , __a : Optional[int]=16 , __a : Optional[Any]=13 , __a : str=7 , __a : List[str]=14 , __a : Any=10 , __a : str=19 , __a : int=5 , __a : Any=4 , __a : List[Any]=True , __a : Tuple=16 , __a : Dict=2 , __a : Tuple=4 , __a : int=4 , __a : List[Any]="gelu" , __a : Tuple=0.1 , __a : List[str]=0.1 , __a : int=[1, 2, 3, 4, 5] , __a : str=25 , __a : Any=5 , ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = d_model __lowercase : Dict = parent __lowercase : Tuple = batch_size __lowercase : Optional[int] = prediction_length __lowercase : List[str] = context_length __lowercase : Any = cardinality __lowercase : str = num_time_features __lowercase : Optional[int] = lags_sequence __lowercase : Optional[Any] = embedding_dimension __lowercase : List[Any] = is_training __lowercase : List[str] = hidden_size __lowercase : int = num_hidden_layers __lowercase : Any = num_attention_heads __lowercase : List[Any] = intermediate_size __lowercase : int = hidden_act __lowercase : str = hidden_dropout_prob __lowercase : List[Any] = attention_probs_dropout_prob __lowercase : str = context_length __lowercase : int = prediction_length + label_length __lowercase : Union[str, Any] = label_length __lowercase : Optional[int] = moving_average __lowercase : Optional[Any] = autocorrelation_factor def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def lowerCAmelCase ( self : Tuple , __a : str ) -> int: """simple docstring""" __lowercase : Any = config.context_length + max(config.lags_sequence ) __lowercase : Any = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __lowercase : Optional[int] = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __lowercase : List[str] = floats_tensor([self.batch_size, _past_length] ) __lowercase : List[str] = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __lowercase : Dict = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __lowercase : str = floats_tensor([self.batch_size, config.prediction_length] ) __lowercase : List[str] = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.get_config() __lowercase : Any = self.prepare_autoformer_inputs_dict(__a ) return config, inputs_dict def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase , __lowercase : List[str] = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase ( self : Optional[Any] , __a : Tuple , __a : Optional[int] ) -> Any: """simple docstring""" __lowercase : List[str] = AutoformerModel(config=__a ).to(__a ).eval() __lowercase : Optional[int] = model(**__a ) __lowercase : Dict = outputs.encoder_last_hidden_state __lowercase : Tuple = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : List[str] = model.get_encoder() encoder.save_pretrained(__a ) __lowercase : List[str] = AutoformerEncoder.from_pretrained(__a ).to(__a ) __lowercase , __lowercase , __lowercase , __lowercase , __lowercase : Any = model.create_network_inputs(**__a ) __lowercase , __lowercase : Any = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __lowercase : Optional[Any] = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __lowercase : Union[str, Any] = encoder(inputs_embeds=__a )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) __lowercase : str = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __lowercase : Optional[int] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __lowercase : Any = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __lowercase : Dict = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : Optional[Any] = model.get_decoder() decoder.save_pretrained(__a ) __lowercase : Tuple = AutoformerDecoder.from_pretrained(__a ).to(__a ) __lowercase : str = decoder( trend=__a , inputs_embeds=__a , encoder_hidden_states=__a , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[str] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _A : List[Any] = (AutoformerForPrediction,) if is_torch_available() else () _A : Any = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} _A : Dict = False _A : Tuple = False _A : Optional[int] = False _A : Tuple = False _A : str = False _A : Union[str, Any] = False def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" __lowercase : List[str] = AutoformerModelTester(self ) __lowercase : Dict = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowercase : Dict = model_class(__a ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowercase , __lowercase : Tuple = model_class.from_pretrained(__a , output_loading_info=__a ) self.assertEqual(info["""missing_keys"""] , [] ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__a ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def lowerCAmelCase ( self : str ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : Any = inspect.signature(getattr(__a , """forward""" ) ) # The main input is the name of the argument after `self` __lowercase : Optional[int] = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , __a ) def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Dict = model_class(__a ) __lowercase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : Any = [*signature.parameters.keys()] __lowercase : int = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(__a )] , __a ) def lowerCAmelCase ( self : int ) -> int: """simple docstring""" __lowercase , __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : int = True __lowercase : Tuple = getattr(self.model_tester , """seq_length""" , __a ) __lowercase : Union[str, Any] = getattr(self.model_tester , """decoder_seq_length""" , __a ) __lowercase : List[str] = getattr(self.model_tester , """encoder_seq_length""" , __a ) __lowercase : List[Any] = getattr(self.model_tester , """d_model""" , __a ) __lowercase : Optional[int] = getattr(self.model_tester , """num_attention_heads""" , __a ) __lowercase : Any = d_model // num_attention_heads for model_class in self.all_model_classes: __lowercase : Dict = True __lowercase : List[str] = False __lowercase : Optional[int] = True __lowercase : str = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : int = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase : Optional[int] = True __lowercase : List[str] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Union[str, Any] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Dict = outputs.encoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __lowercase : Tuple = len(__a ) __lowercase : str = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__a , __a ) # decoder attentions __lowercase : List[Any] = outputs.decoder_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __lowercase : Optional[int] = outputs.cross_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __lowercase : Tuple = True __lowercase : Union[str, Any] = True __lowercase : Tuple = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Any = model(**self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + 2 , len(__a ) ) __lowercase : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def snake_case_ ( lowerCAmelCase_ : Optional[int]="train-batch.pt" ): __lowercase : Dict = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=lowerCAmelCase_ , repo_type="""dataset""" ) __lowercase : Optional[int] = torch.load(lowerCAmelCase_ , map_location=lowerCAmelCase_ ) return batch @require_torch @slow class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" __lowercase : List[str] = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : List[Any] = prepare_batch() with torch.no_grad(): __lowercase : Tuple = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] __lowercase : List[str] = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , __a ) __lowercase : Optional[int] = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" __lowercase : int = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : List[str] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowercase : Optional[Any] = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state __lowercase : List[str] = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , __a ) __lowercase : Optional[int] = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : Optional[int] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowercase : int = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) __lowercase : int = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , __a ) __lowercase : Optional[Any] = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=__a ) __lowercase : Dict = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __a , rtol=1E-1 ) )
649
1
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCamelCase : Union[str, Any] = version.parse(importlib_metadata.version('''nltk''')) if NLTK_VERSION >= version.Version('''3.6.4'''): from nltk import word_tokenize lowerCamelCase : List[str] = '''\ @inproceedings{banarjee2005, title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments}, author = {Banerjee, Satanjeev and Lavie, Alon}, booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization}, month = jun, year = {2005}, address = {Ann Arbor, Michigan}, publisher = {Association for Computational Linguistics}, url = {https://www.aclweb.org/anthology/W05-0909}, pages = {65--72}, } ''' lowerCamelCase : Union[str, Any] = '''\ METEOR, an automatic metric for machine translation evaluation that is based on a generalized concept of unigram matching between the machine-produced translation and human-produced reference translations. Unigrams can be matched based on their surface forms, stemmed forms, and meanings; furthermore, METEOR can be easily extended to include more advanced matching strategies. Once all generalized unigram matches between the two strings have been found, METEOR computes a score for this matching using a combination of unigram-precision, unigram-recall, and a measure of fragmentation that is designed to directly capture how well-ordered the matched words in the machine translation are in relation to the reference. METEOR gets an R correlation value of 0.347 with human evaluation on the Arabic data and 0.331 on the Chinese data. This is shown to be an improvement on using simply unigram-precision, unigram-recall and their harmonic F1 combination. ''' lowerCamelCase : Any = ''' Computes METEOR score of translated segments against one or more references. Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. alpha: Parameter for controlling relative weights of precision and recall. default: 0.9 beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3 gamma: Relative weight assigned to fragmentation penalty. default: 0.5 Returns: \'meteor\': meteor score. Examples: >>> meteor = datasets.load_metric(\'meteor\') >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"] >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"] >>> results = meteor.compute(predictions=predictions, references=references) >>> print(round(results["meteor"], 4)) 0.6944 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"""] , reference_urls=[ """https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score""", """https://en.wikipedia.org/wiki/METEOR""", ] , ) def lowerCAmelCase ( self : Dict , __a : List[Any] ) -> int: """simple docstring""" import nltk nltk.download("""wordnet""" ) if NLTK_VERSION >= version.Version("""3.6.5""" ): nltk.download("""punkt""" ) if NLTK_VERSION >= version.Version("""3.6.6""" ): nltk.download("""omw-1.4""" ) def lowerCAmelCase ( self : List[Any] , __a : Dict , __a : Union[str, Any] , __a : Union[str, Any]=0.9 , __a : Union[str, Any]=3 , __a : Any=0.5 ) -> Optional[Any]: """simple docstring""" if NLTK_VERSION >= version.Version("""3.6.5""" ): __lowercase : Tuple = [ meteor_score.single_meteor_score( word_tokenize(__a ) , word_tokenize(__a ) , alpha=__a , beta=__a , gamma=__a ) for ref, pred in zip(__a , __a ) ] else: __lowercase : str = [ meteor_score.single_meteor_score(__a , __a , alpha=__a , beta=__a , gamma=__a ) for ref, pred in zip(__a , __a ) ] return {"meteor": np.mean(__a )}
649
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowerCAmelCase ( __a , __a ): '''simple docstring''' _A : str = 1 @register_to_config def __init__( self : Optional[int] , __a : Tuple=2000 , __a : List[str]=0.1 , __a : str=20 , __a : Optional[int]=1E-3 ) -> int: """simple docstring""" __lowercase : Tuple = None __lowercase : Union[str, Any] = None __lowercase : int = None def lowerCAmelCase ( self : List[Any] , __a : Any , __a : Union[str, torch.device] = None ) -> str: """simple docstring""" __lowercase : List[str] = torch.linspace(1 , self.config.sampling_eps , __a , device=__a ) def lowerCAmelCase ( self : Tuple , __a : List[Any] , __a : Tuple , __a : int , __a : Optional[int]=None ) -> str: """simple docstring""" if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __lowercase : Dict = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __lowercase : int = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __lowercase : Union[str, Any] = std.flatten() while len(std.shape ) < len(score.shape ): __lowercase : Optional[Any] = std.unsqueeze(-1 ) __lowercase : List[Any] = -score / std # compute __lowercase : Dict = -1.0 / len(self.timesteps ) __lowercase : int = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __lowercase : List[Any] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __lowercase : Union[str, Any] = beta_t.unsqueeze(-1 ) __lowercase : List[str] = -0.5 * beta_t * x __lowercase : int = torch.sqrt(__a ) __lowercase : Union[str, Any] = drift - diffusion**2 * score __lowercase : Optional[Any] = x + drift * dt # add noise __lowercase : List[str] = randn_tensor(x.shape , layout=x.layout , generator=__a , device=x.device , dtype=x.dtype ) __lowercase : str = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Tuple ) -> Optional[int]: """simple docstring""" return self.config.num_train_timesteps
649
1
import collections import os import re from pathlib import Path lowerCamelCase : List[str] = '''src/transformers''' # Matches is_xxx_available() lowerCamelCase : List[Any] = re.compile(r'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} lowerCamelCase : Any = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowerCamelCase : Union[str, Any] = re.compile(r'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available lowerCamelCase : Dict = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") lowerCamelCase : Optional[Any] = re.compile(r'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowerCamelCase : Any = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", lowerCamelCase : str = re.compile(r'''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], lowerCamelCase : Optional[Any] = re.compile(r'''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo lowerCamelCase : Optional[int] = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: lowerCamelCase : str = re.compile(r'''^\s*try:''') # Catches a line with else: lowerCamelCase : str = re.compile(r'''^\s*else:''') def snake_case_ ( lowerCAmelCase_ : Union[str, Any] ): if _re_test_backend.search(lowerCAmelCase_ ) is None: return None __lowercase : str = [b[0] for b in _re_backend.findall(lowerCAmelCase_ )] backends.sort() return "_and_".join(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : Tuple ): with open(lowerCAmelCase_ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __lowercase : List[Any] = f.readlines() __lowercase : Optional[Any] = 0 while line_index < len(lowerCAmelCase_ ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(lowerCAmelCase_ ): return None # First grab the objects without a specific backend in _import_structure __lowercase : Dict = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: __lowercase : Tuple = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(lowerCAmelCase_ ): __lowercase : Any = _re_one_line_import_struct.search(lowerCAmelCase_ ).groups()[0] __lowercase : int = re.findall(r"""\[([^\]]+)\]""" , lowerCAmelCase_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue __lowercase : List[str] = _re_import_struct_key_value.search(lowerCAmelCase_ ) if single_line_import_search is not None: __lowercase : int = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(lowerCAmelCase_ ) > 0] objects.extend(lowerCAmelCase_ ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 __lowercase : Tuple = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. __lowercase : Optional[Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowercase : Dict = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowercase : Dict = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): __lowercase : Union[str, Any] = lines[line_index] if _re_import_struct_add_one.search(lowerCAmelCase_ ) is not None: objects.append(_re_import_struct_add_one.search(lowerCAmelCase_ ).groups()[0] ) elif _re_import_struct_add_many.search(lowerCAmelCase_ ) is not None: __lowercase : Optional[Any] = _re_import_struct_add_many.search(lowerCAmelCase_ ).groups()[0].split(""", """ ) __lowercase : Optional[int] = [obj[1:-1] for obj in imports if len(lowerCAmelCase_ ) > 0] objects.extend(lowerCAmelCase_ ) elif _re_between_brackets.search(lowerCAmelCase_ ) is not None: __lowercase : Optional[int] = _re_between_brackets.search(lowerCAmelCase_ ).groups()[0].split(""", """ ) __lowercase : int = [obj[1:-1] for obj in imports if len(lowerCAmelCase_ ) > 0] objects.extend(lowerCAmelCase_ ) elif _re_quote_object.search(lowerCAmelCase_ ) is not None: objects.append(_re_quote_object.search(lowerCAmelCase_ ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 __lowercase : List[str] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend __lowercase : List[str] = [] while ( line_index < len(lowerCAmelCase_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): __lowercase : Any = lines[line_index] __lowercase : Optional[Any] = _re_import.search(lowerCAmelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 __lowercase : Optional[int] = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(lowerCAmelCase_ ): # If the line is an if is_backend_available, we grab all objects associated. __lowercase : int = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowercase : List[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowercase : str = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): __lowercase : List[Any] = lines[line_index] __lowercase : List[Any] = _re_import.search(lowerCAmelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 __lowercase : List[str] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] ): def find_duplicates(lowerCAmelCase_ : Tuple ): return [k for k, v in collections.Counter(lowerCAmelCase_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] __lowercase : List[Any] = [] for key in import_dict_objects.keys(): __lowercase : Optional[Any] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"Duplicate _import_structure definitions for: {duplicate_imports}" ) __lowercase : int = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): __lowercase : str = """base imports""" if key == """none""" else F"{key} backend" errors.append(F"Differences for {name}:" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F" {a} in TYPE_HINT but not in _import_structure." ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F" {a} in _import_structure but not in TYPE_HINT." ) return errors def snake_case_ ( ): __lowercase : List[str] = [] for root, _, files in os.walk(lowerCAmelCase_ ): if "__init__.py" in files: __lowercase : Any = os.path.join(lowerCAmelCase_ , """__init__.py""" ) __lowercase : Optional[int] = parse_init(lowerCAmelCase_ ) if objects is not None: __lowercase : List[str] = analyze_results(*lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 0: __lowercase : Optional[Any] = F"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}" failures.append("""\n""".join(lowerCAmelCase_ ) ) if len(lowerCAmelCase_ ) > 0: raise ValueError("""\n\n""".join(lowerCAmelCase_ ) ) def snake_case_ ( ): __lowercase : Tuple = [] for path, directories, files in os.walk(lowerCAmelCase_ ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(lowerCAmelCase_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(lowerCAmelCase_ ) / folder).glob("""*.py""" ) ) ) == 0: continue __lowercase : Optional[Any] = str((Path(lowerCAmelCase_ ) / folder).relative_to(lowerCAmelCase_ ) ) __lowercase : Optional[Any] = short_path.replace(os.path.sep , """.""" ) submodules.append(lowerCAmelCase_ ) for fname in files: if fname == "__init__.py": continue __lowercase : Optional[int] = str((Path(lowerCAmelCase_ ) / fname).relative_to(lowerCAmelCase_ ) ) __lowercase : List[str] = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(lowerCAmelCase_ ) return submodules lowerCamelCase : Optional[int] = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', '''models.esm.openfold_utils''', ] def snake_case_ ( ): # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import __lowercase : List[str] = direct_transformers_import(lowerCAmelCase_ ) __lowercase : Tuple = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(lowerCAmelCase_ , """__init__.py""" ) , """r""" ) as f: __lowercase : List[str] = f.read() import_structure_keys.update(set(re.findall(r"""import_structure\[\"([^\"]*)\"\]""" , lowerCAmelCase_ ) ) ) __lowercase : List[Any] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(lowerCAmelCase_ ) > 0: __lowercase : List[Any] = """\n""".join(F"- {module}" for module in module_not_registered ) raise ValueError( """The following submodules are not properly registed in the main init of Transformers:\n""" F"{list_of_modules}\n" """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
649
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : str = LongformerTokenizer _A : int = True _A : Optional[int] = LongformerTokenizerFast _A : int = True def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __lowercase : Union[str, Any] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Any = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __lowercase : Optional[int] = {"""unk_token""": """<unk>"""} __lowercase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__a ) ) def lowerCAmelCase ( self : Optional[int] , **__a : Optional[Any] ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Tuple , **__a : Tuple ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : str , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = """lower newer""" __lowercase : int = """lower newer""" return input_text, output_text def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowercase : Dict = """lower newer""" __lowercase : Optional[Any] = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] __lowercase : str = tokenizer.tokenize(__a ) # , add_prefix_space=True) self.assertListEqual(__a , __a ) __lowercase : int = tokens + [tokenizer.unk_token] __lowercase : str = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=__a ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=__a ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : Any = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" ) __lowercase : Optional[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=__a ) __lowercase : List[str] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__a ) __lowercase : Optional[Any] = tokenizer.encode( """sequence builders""" , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Union[str, Any] = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : List[Any] = tokenizer.build_inputs_with_special_tokens(__a ) __lowercase : Any = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() __lowercase : Tuple = """Encode this sequence.""" __lowercase : Optional[Any] = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments __lowercase : Dict = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__a , __a ) __lowercase : List[str] = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__a , __a ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) __lowercase : str = tokenizer.encode(__a , add_special_tokens=__a ) __lowercase : Dict = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__a , __a ) # Testing spaces after special tokens __lowercase : List[Any] = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(__a , lstrip=__a , rstrip=__a )} ) # mask token has a left space __lowercase : Dict = tokenizer.convert_tokens_to_ids(__a ) __lowercase : List[str] = """Encode <mask> sequence""" __lowercase : List[str] = """Encode <mask>sequence""" __lowercase : Union[str, Any] = tokenizer.encode(__a ) __lowercase : Dict = encoded.index(__a ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__a , __a ) __lowercase : int = tokenizer.encode(__a ) __lowercase : Union[str, Any] = encoded.index(__a ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__a , __a ) def lowerCAmelCase ( self : int ) -> str: """simple docstring""" pass def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) __lowercase : List[Any] = self.tokenizer_class.from_pretrained(__a , **__a ) __lowercase : Optional[Any] = """A, <mask> AllenNLP sentence.""" __lowercase : Union[str, Any] = tokenizer_r.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) __lowercase : Optional[Any] = tokenizer_p.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) __lowercase : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __lowercase : str = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __lowercase : Dict = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __lowercase : Any = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""trim_offsets"""] , __a ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : List[str] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` __lowercase : int = F"{text_of_1_token} {text_of_1_token}" __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Any = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) __lowercase : str = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Tuple = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) __lowercase : Optional[int] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : str = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) __lowercase : str = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : int = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) __lowercase : Any = F" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : str = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ) + 1, 1 + len(__a ) + 1 + len(__a )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Dict = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Tuple = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , )
649
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = '''dpt''' def __init__( self : List[Any] , __a : Any=768 , __a : List[Any]=12 , __a : Union[str, Any]=12 , __a : Tuple=3072 , __a : Dict="gelu" , __a : Tuple=0.0 , __a : Dict=0.0 , __a : str=0.02 , __a : Dict=1E-12 , __a : str=384 , __a : Union[str, Any]=16 , __a : int=3 , __a : str=False , __a : List[Any]=True , __a : str=[2, 5, 8, 11] , __a : Union[str, Any]="project" , __a : Dict=[4, 2, 1, 0.5] , __a : Optional[Any]=[96, 192, 384, 768] , __a : Union[str, Any]=256 , __a : Optional[Any]=-1 , __a : List[str]=False , __a : Optional[int]=True , __a : Optional[Any]=0.4 , __a : List[Any]=255 , __a : Dict=0.1 , __a : Dict=[1, 1024, 24, 24] , __a : str=[0, 1] , __a : str=None , **__a : Dict , ) -> str: """simple docstring""" super().__init__(**__a ) __lowercase : Tuple = hidden_size __lowercase : Any = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("""Initializing the config with a `BiT` backbone.""" ) __lowercase : List[Any] = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, } __lowercase : Dict = BitConfig(**__a ) elif isinstance(__a , __a ): logger.info("""Initializing the config with a `BiT` backbone.""" ) __lowercase : str = BitConfig(**__a ) elif isinstance(__a , __a ): __lowercase : Optional[int] = backbone_config else: raise ValueError( F"backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}." ) __lowercase : Optional[int] = backbone_featmap_shape __lowercase : Optional[int] = neck_ignore_stages if readout_type != "project": raise ValueError("""Readout type must be 'project' when using `DPT-hybrid` mode.""" ) else: __lowercase : Optional[Any] = None __lowercase : List[Any] = None __lowercase : Dict = [] __lowercase : Dict = num_hidden_layers __lowercase : Dict = num_attention_heads __lowercase : List[Any] = intermediate_size __lowercase : Tuple = hidden_act __lowercase : Optional[Any] = hidden_dropout_prob __lowercase : List[Any] = attention_probs_dropout_prob __lowercase : Optional[Any] = initializer_range __lowercase : int = layer_norm_eps __lowercase : Tuple = image_size __lowercase : Dict = patch_size __lowercase : Tuple = num_channels __lowercase : Dict = qkv_bias __lowercase : Any = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("""Readout_type must be one of ['ignore', 'add', 'project']""" ) __lowercase : Dict = readout_type __lowercase : str = reassemble_factors __lowercase : str = neck_hidden_sizes __lowercase : Union[str, Any] = fusion_hidden_size __lowercase : Tuple = head_in_index __lowercase : Dict = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) __lowercase : Union[str, Any] = use_auxiliary_head __lowercase : Union[str, Any] = auxiliary_loss_weight __lowercase : Dict = semantic_loss_ignore_index __lowercase : List[Any] = semantic_classifier_dropout def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" __lowercase : Optional[int] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __lowercase : List[str] = self.backbone_config.to_dict() __lowercase : str = self.__class__.model_type return output
649
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Dict , __a : Union[str, Any]=13 , __a : Dict=7 , __a : Dict=True , __a : Dict=True , __a : Any=True , __a : List[str]=True , __a : int=99 , __a : Optional[int]=32 , __a : str=2 , __a : int=4 , __a : List[str]=37 , __a : Union[str, Any]="gelu" , __a : Union[str, Any]=0.1 , __a : Union[str, Any]=0.1 , __a : List[Any]=512 , __a : int=16 , __a : Union[str, Any]=2 , __a : Union[str, Any]=0.02 , __a : List[str]=3 , __a : Dict=4 , __a : Optional[Any]=None , ) -> Optional[Any]: """simple docstring""" __lowercase : Any = parent __lowercase : Tuple = 13 __lowercase : Dict = 7 __lowercase : List[Any] = True __lowercase : Tuple = True __lowercase : List[str] = True __lowercase : Any = True __lowercase : Optional[int] = 99 __lowercase : str = 384 __lowercase : Optional[Any] = 2 __lowercase : Dict = 4 __lowercase : str = 37 __lowercase : Optional[int] = """gelu""" __lowercase : int = 0.1 __lowercase : Union[str, Any] = 0.1 __lowercase : Tuple = 512 __lowercase : Tuple = 16 __lowercase : Optional[int] = 2 __lowercase : Optional[Any] = 0.02 __lowercase : Dict = 3 __lowercase : Union[str, Any] = 4 __lowercase : Tuple = 128 __lowercase : Optional[Any] = 2 __lowercase : int = 9 __lowercase : List[Any] = 1 __lowercase : Union[str, Any] = None def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" __lowercase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : Optional[Any] = None if self.use_input_mask: __lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : Dict = None if self.use_token_type_ids: __lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase : Optional[Any] = None __lowercase : str = None __lowercase : Tuple = None if self.use_labels: __lowercase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : str = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : Optional[int] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Dict , __a : List[Any] , __a : List[str] , __a : Union[str, Any] , __a : str , __a : Union[str, Any] , __a : Tuple , __a : Tuple ) -> Dict: """simple docstring""" __lowercase : Dict = TFConvBertModel(config=__a ) __lowercase : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowercase : Any = [input_ids, input_mask] __lowercase : Dict = model(__a ) __lowercase : str = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : Any , __a : Tuple , __a : Union[str, Any] , __a : str , __a : Dict , __a : str ) -> Dict: """simple docstring""" __lowercase : Optional[int] = TFConvBertForMaskedLM(config=__a ) __lowercase : List[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : Any = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[int] , __a : int , __a : Any , __a : Optional[int] , __a : int , __a : int , __a : List[Any] , __a : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase : str = self.num_labels __lowercase : List[Any] = TFConvBertForSequenceClassification(config=__a ) __lowercase : int = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : List[str] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Optional[int] , __a : Any , __a : Optional[Any] , __a : int , __a : Optional[int] , __a : Tuple , __a : int , __a : int ) -> Dict: """simple docstring""" __lowercase : Tuple = self.num_choices __lowercase : Dict = TFConvBertForMultipleChoice(config=__a ) __lowercase : List[str] = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : int = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : str = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : str = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __lowercase : Dict = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : List[str] , __a : str , __a : List[str] , __a : List[str] , __a : List[str] , __a : Any , __a : Tuple , __a : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = self.num_labels __lowercase : Tuple = TFConvBertForTokenClassification(config=__a ) __lowercase : Dict = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : str = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : List[Any] , __a : Optional[int] , __a : List[str] , __a : Optional[Any] , __a : int , __a : Tuple , __a : Any , __a : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Any = TFConvBertForQuestionAnswering(config=__a ) __lowercase : str = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : List[Any] = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : Tuple = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : int = config_and_inputs __lowercase : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Dict = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _A : str = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _A : Union[str, Any] = False _A : List[str] = False _A : Dict = False def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : int = TFConvBertModelTester(self ) __lowercase : Tuple = ConfigTester(self , config_class=__a , hidden_size=37 ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__a ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Union[str, Any] = True __lowercase : List[Any] = True if hasattr(__a , """use_cache""" ): __lowercase : Optional[Any] = True __lowercase : List[str] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) __lowercase : int = getattr(self.model_tester , """key_length""" , __a ) for model_class in self.all_model_classes: __lowercase : Optional[Any] = self._prepare_for_class(__a , __a ) __lowercase : Tuple = model_class(__a ) __lowercase : Tuple = len(model(__a ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a , saved_model=__a ) __lowercase : List[Any] = os.path.join(__a , """saved_model""" , """1""" ) __lowercase : str = tf.keras.models.load_model(__a ) __lowercase : Optional[int] = model(__a ) if self.is_encoder_decoder: __lowercase : Union[str, Any] = outputs["""encoder_hidden_states"""] __lowercase : Union[str, Any] = outputs["""encoder_attentions"""] else: __lowercase : Union[str, Any] = outputs["""hidden_states"""] __lowercase : List[str] = outputs["""attentions"""] self.assertEqual(len(__a ) , __a ) __lowercase : List[Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : str = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) self.assertIsNotNone(__a ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : List[str] = True __lowercase : List[Any] = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length ) __lowercase : Optional[int] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) __lowercase : List[str] = getattr(self.model_tester , """key_length""" , __a ) __lowercase : List[Any] = getattr(self.model_tester , """key_length""" , __a ) def check_decoder_attentions_output(__a : List[str] ): __lowercase : Union[str, Any] = len(__a ) self.assertEqual(out_len % 2 , 0 ) __lowercase : Any = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__a : str ): __lowercase : str = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __lowercase : int = True __lowercase : Any = False __lowercase : List[Any] = model_class(__a ) __lowercase : Tuple = model(self._prepare_for_class(__a , __a ) ) __lowercase : Dict = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: __lowercase : Any = model_class(__a ) __lowercase : List[str] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __lowercase : Dict = True __lowercase : Optional[Any] = model_class(__a ) __lowercase : Optional[int] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine __lowercase : List[str] = True __lowercase : List[Any] = True __lowercase : Any = model_class(__a ) __lowercase : Optional[int] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @require_tf class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) __lowercase : str = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowercase : Tuple = model(__a )[0] __lowercase : Any = [1, 6, 768] self.assertEqual(output.shape , __a ) __lowercase : Optional[Any] = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-4 )
649
1
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType lowerCamelCase : Optional[List[str]] = None lowerCamelCase : List[str] = '''<''' if sys.byteorder == '''little''' else '''>''' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image lowerCamelCase : List[str] = [ np.dtype('''|b1'''), np.dtype('''|u1'''), np.dtype('''<u2'''), np.dtype('''>u2'''), np.dtype('''<i2'''), np.dtype('''>i2'''), np.dtype('''<u4'''), np.dtype('''>u4'''), np.dtype('''<i4'''), np.dtype('''>i4'''), np.dtype('''<f4'''), np.dtype('''>f4'''), np.dtype('''<f8'''), np.dtype('''>f8'''), ] @dataclass class lowerCAmelCase : '''simple docstring''' _A : bool = True _A : Optional[str] = None # Automatically constructed _A : ClassVar[str] = "PIL.Image.Image" _A : ClassVar[Any] = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) _A : str = field(default='''Image''' , init=__a , repr=__a ) def __call__( self : Tuple ) -> Tuple: """simple docstring""" return self.pa_type def lowerCAmelCase ( self : Optional[Any] , __a : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ) -> dict: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if isinstance(__a , __a ): __lowercase : str = np.array(__a ) if isinstance(__a , __a ): return {"path": value, "bytes": None} elif isinstance(__a , __a ): return {"path": None, "bytes": value} elif isinstance(__a , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(__a ) elif isinstance(__a , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(__a ) elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( F"An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}." ) def lowerCAmelCase ( self : List[str] , __a : dict , __a : Union[str, Any]=None ) -> "PIL.Image.Image": """simple docstring""" if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support decoding images, please install 'Pillow'.""" ) if token_per_repo_id is None: __lowercase : Union[str, Any] = {} __lowercase , __lowercase : List[Any] = value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(F"An image should have one of 'path' or 'bytes' but both are None in {value}." ) else: if is_local_path(__a ): __lowercase : str = PIL.Image.open(__a ) else: __lowercase : Dict = path.split("""::""" )[-1] try: __lowercase : List[str] = string_to_dict(__a , config.HUB_DATASETS_URL )["""repo_id"""] __lowercase : int = token_per_repo_id.get(__a ) except ValueError: __lowercase : List[Any] = None with xopen(__a , """rb""" , use_auth_token=__a ) as f: __lowercase : Dict = BytesIO(f.read() ) __lowercase : int = PIL.Image.open(bytes_ ) else: __lowercase : Optional[Any] = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def lowerCAmelCase ( self : Union[str, Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return ( self if self.decode else { "bytes": Value("""binary""" ), "path": Value("""string""" ), } ) def lowerCAmelCase ( self : List[str] , __a : Union[pa.StringArray, pa.StructArray, pa.ListArray] ) -> pa.StructArray: """simple docstring""" if pa.types.is_string(storage.type ): __lowercase : Optional[int] = pa.array([None] * len(__a ) , type=pa.binary() ) __lowercase : Optional[Any] = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): __lowercase : Dict = pa.array([None] * len(__a ) , type=pa.string() ) __lowercase : Optional[int] = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: __lowercase : List[Any] = storage.field("""bytes""" ) else: __lowercase : Optional[int] = pa.array([None] * len(__a ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: __lowercase : Any = storage.field("""path""" ) else: __lowercase : Optional[Any] = pa.array([None] * len(__a ) , type=pa.string() ) __lowercase : Optional[int] = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): __lowercase : Dict = pa.array( [encode_np_array(np.array(__a ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) __lowercase : Dict = pa.array([None] * len(__a ) , type=pa.string() ) __lowercase : Optional[Any] = pa.StructArray.from_arrays( [bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(__a , self.pa_type ) def lowerCAmelCase ( self : Union[str, Any] , __a : pa.StructArray ) -> pa.StructArray: """simple docstring""" @no_op_if_value_is_null def path_to_bytes(__a : Any ): with xopen(__a , """rb""" ) as f: __lowercase : List[Any] = f.read() return bytes_ __lowercase : Dict = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) __lowercase : Dict = pa.array( [os.path.basename(__a ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) __lowercase : Optional[int] = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(__a , self.pa_type ) def snake_case_ ( ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() __lowercase : List[str] = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def snake_case_ ( lowerCAmelCase_ : "PIL.Image.Image" ): __lowercase : List[Any] = BytesIO() if image.format in list_image_compression_formats(): __lowercase : Any = image.format else: __lowercase : Any = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(lowerCAmelCase_ , format=lowerCAmelCase_ ) return buffer.getvalue() def snake_case_ ( lowerCAmelCase_ : "PIL.Image.Image" ): if hasattr(lowerCAmelCase_ , """filename""" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(lowerCAmelCase_ )} def snake_case_ ( lowerCAmelCase_ : np.ndarray ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) __lowercase : List[str] = array.dtype __lowercase : Optional[Any] = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER __lowercase : int = dtype.kind __lowercase : str = dtype.itemsize __lowercase : List[Any] = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: __lowercase : Union[str, Any] = np.dtype("""|u1""" ) if dtype_kind not in ["u", "i"]: raise TypeError( F"Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays." ) if dtype is not dest_dtype: warnings.warn(F"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: __lowercase : int = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: __lowercase : Dict = dtype_byteorder + dtype_kind + str(lowerCAmelCase_ ) __lowercase : Optional[int] = np.dtype(lowerCAmelCase_ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F"Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}" ) __lowercase : Any = PIL.Image.fromarray(array.astype(lowerCAmelCase_ ) ) return {"path": None, "bytes": image_to_bytes(lowerCAmelCase_ )} def snake_case_ ( lowerCAmelCase_ : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if objs: __lowercase , __lowercase : List[str] = first_non_null_value(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(lowerCAmelCase_ , np.ndarray ): __lowercase : int = no_op_if_value_is_null(lowerCAmelCase_ ) return [obj_to_image_dict_func(lowerCAmelCase_ ) for obj in objs] elif isinstance(lowerCAmelCase_ , PIL.Image.Image ): __lowercase : str = no_op_if_value_is_null(lowerCAmelCase_ ) return [obj_to_image_dict_func(lowerCAmelCase_ ) for obj in objs] else: return objs else: return objs
649
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : int , *__a : Dict , **__a : Optional[Any] ) -> None: """simple docstring""" warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , __a , ) super().__init__(*__a , **__a )
649
1
from importlib import import_module from .logging import get_logger lowerCamelCase : int = get_logger(__name__) class lowerCAmelCase : '''simple docstring''' def __init__( self : int , __a : Any , __a : Optional[int]=None ) -> List[str]: """simple docstring""" __lowercase : str = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("""__""" ): setattr(self , __a , getattr(__a , __a ) ) __lowercase : str = module._original_module if isinstance(__a , _PatchedModuleObj ) else module class lowerCAmelCase : '''simple docstring''' _A : Tuple = [] def __init__( self : List[Any] , __a : Optional[int] , __a : str , __a : Any , __a : Dict=None ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = obj __lowercase : Tuple = target __lowercase : Tuple = new __lowercase : List[str] = target.split(""".""" )[0] __lowercase : Tuple = {} __lowercase : Union[str, Any] = attrs or [] def __enter__( self : Any ) -> Tuple: """simple docstring""" *__lowercase , __lowercase : str = self.target.split(""".""" ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(__a ) ): try: __lowercase : Optional[Any] = import_module(""".""".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): __lowercase : Optional[int] = getattr(self.obj , __a ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(__a , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): __lowercase : int = obj_attr # patch at top level setattr(self.obj , __a , _PatchedModuleObj(__a , attrs=self.attrs ) ) __lowercase : List[Any] = getattr(self.obj , __a ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(__a , __a , _PatchedModuleObj(getattr(__a , __a , __a ) , attrs=self.attrs ) ) __lowercase : Tuple = getattr(__a , __a ) # finally set the target attribute setattr(__a , __a , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: __lowercase : Optional[Any] = getattr(import_module(""".""".join(__a ) ) , __a ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , __a ) is attr_value: __lowercase : Tuple = getattr(self.obj , __a ) setattr(self.obj , __a , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" __lowercase : int = globals()["""__builtins__"""][target_attr] setattr(self.obj , __a , self.new ) else: raise RuntimeError(F"Tried to patch attribute {target_attr} instead of a submodule." ) def __exit__( self : List[str] , *__a : Optional[int] ) -> str: """simple docstring""" for attr in list(self.original ): setattr(self.obj , __a , self.original.pop(__a ) ) def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" self.__enter__() self._active_patches.append(self ) def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
649
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Optional[int] = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() __lowercase : List[str] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Dict = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } __lowercase : List[str] = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 16000, """return_attention_mask""": False, """do_normalize""": True, } __lowercase : Tuple = tempfile.mkdtemp() __lowercase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : str = os.path.join(self.tmpdirname , __a ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) # load decoder from hub __lowercase : Optional[int] = """hf-internal-testing/ngram-beam-search-decoder""" def lowerCAmelCase ( self : Optional[Any] , **__a : Dict ) -> Tuple: """simple docstring""" __lowercase : Union[str, Any] = self.add_kwargs_tokens_map.copy() kwargs.update(__a ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : str , **__a : int ) -> Tuple: """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Union[str, Any] , **__a : Union[str, Any] ) -> List[Any]: """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__a ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() __lowercase : Any = self.get_feature_extractor() __lowercase : str = self.get_decoder() __lowercase : Tuple = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) processor.save_pretrained(self.tmpdirname ) __lowercase : Tuple = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __a ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __a ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __a ) def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Any = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __lowercase : str = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : List[str] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(__a , """include""" ): WavaVecaProcessorWithLM( tokenizer=__a , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : List[Any] = self.get_feature_extractor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : int = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Optional[int] = floats_list((3, 1000) ) __lowercase : List[Any] = feature_extractor(__a , return_tensors="""np""" ) __lowercase : List[str] = processor(__a , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : List[Any] = self.get_feature_extractor() __lowercase : int = self.get_tokenizer() __lowercase : Dict = self.get_decoder() __lowercase : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Dict = """This is a test string""" __lowercase : Any = processor(text=__a ) __lowercase : Dict = tokenizer(__a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase ( self : str , __a : Tuple=(2, 10, 16) , __a : int=77 ) -> Optional[Any]: """simple docstring""" np.random.seed(__a ) return np.random.rand(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : List[str] = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : str = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : List[str] = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __lowercase : Optional[Any] = processor.decode(__a ) __lowercase : Any = decoder.decode_beams(__a )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def lowerCAmelCase ( self : List[str] , __a : Dict ) -> List[Any]: """simple docstring""" __lowercase : str = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : Optional[int] = self.get_decoder() __lowercase : Any = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Optional[Any] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __lowercase : Union[str, Any] = processor.batch_decode(__a ) else: with get_context(__a ).Pool() as pool: __lowercase : Optional[Any] = processor.batch_decode(__a , __a ) __lowercase : Union[str, Any] = list(__a ) with get_context("""fork""" ).Pool() as p: __lowercase : Optional[Any] = decoder.decode_beams_batch(__a , __a ) __lowercase , __lowercase , __lowercase : Any = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__a , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(__a , decoded_processor.logit_score ) self.assertListEqual(__a , decoded_processor.lm_score ) def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase : int = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : List[str] = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Dict = self._get_dummy_logits() __lowercase : Tuple = 15 __lowercase : Tuple = -20.0 __lowercase : Dict = -4.0 __lowercase : Dict = processor.batch_decode( __a , beam_width=__a , beam_prune_logp=__a , token_min_logp=__a , ) __lowercase : Tuple = decoded_processor_out.text __lowercase : List[Any] = list(__a ) with get_context("""fork""" ).Pool() as pool: __lowercase : Any = decoder.decode_beams_batch( __a , __a , beam_width=__a , beam_prune_logp=__a , token_min_logp=__a , ) __lowercase : Optional[Any] = [d[0][0] for d in decoded_decoder_out] __lowercase : Optional[int] = [d[0][2] for d in decoded_decoder_out] __lowercase : Optional[int] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__a , __a ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , __a ) self.assertTrue(np.array_equal(__a , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , __a , atol=1E-3 ) ) self.assertTrue(np.array_equal(__a , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , __a , atol=1E-3 ) ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase : str = self.get_feature_extractor() __lowercase : List[Any] = self.get_tokenizer() __lowercase : List[Any] = self.get_decoder() __lowercase : Dict = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : List[Any] = self._get_dummy_logits() __lowercase : Optional[int] = 2.0 __lowercase : Tuple = 5.0 __lowercase : Optional[Any] = -20.0 __lowercase : Tuple = True __lowercase : Union[str, Any] = processor.batch_decode( __a , alpha=__a , beta=__a , unk_score_offset=__a , lm_score_boundary=__a , ) __lowercase : Any = decoded_processor_out.text __lowercase : List[Any] = list(__a ) decoder.reset_params( alpha=__a , beta=__a , unk_score_offset=__a , lm_score_boundary=__a , ) with get_context("""fork""" ).Pool() as pool: __lowercase : Tuple = decoder.decode_beams_batch( __a , __a , ) __lowercase : int = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__a , __a ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , __a ) __lowercase : str = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , __a ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] __lowercase : str = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __lowercase : int = os.listdir(__a ) __lowercase : Optional[Any] = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = snapshot_download("""hf-internal-testing/processor_with_lm""" ) __lowercase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(__a ) __lowercase : Dict = processor.decoder.model_container[processor.decoder._model_key] __lowercase : List[Any] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __lowercase : Dict = os.listdir(__a ) __lowercase : List[Any] = os.listdir(__a ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" __lowercase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Dict = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Any = floats_list((3, 1000) ) __lowercase : List[str] = processor_wavaveca(__a , return_tensors="""np""" ) __lowercase : List[Any] = processor_auto(__a , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) __lowercase : List[str] = self._get_dummy_logits() __lowercase : List[str] = processor_wavaveca.batch_decode(__a ) __lowercase : Optional[int] = processor_auto.batch_decode(__a ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Any = self.get_feature_extractor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : Dict = self.get_decoder() __lowercase : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def lowerCAmelCase ( __a : Union[str, Any] , __a : List[Any] ) -> Dict: """simple docstring""" __lowercase : Any = [d[key] for d in offsets] return retrieved_list def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" __lowercase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Optional[Any] = self._get_dummy_logits()[0] __lowercase : Dict = processor.decode(__a , output_word_offsets=__a ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__a , __a ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : List[str] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Any = self._get_dummy_logits() __lowercase : Dict = processor.batch_decode(__a , output_word_offsets=__a ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__a , __a ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(__a , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" import torch __lowercase : Any = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=__a ) __lowercase : str = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=16000 ) ) __lowercase : Tuple = iter(__a ) __lowercase : Union[str, Any] = next(__a ) __lowercase : int = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) __lowercase : int = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __lowercase : Union[str, Any] = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): __lowercase : List[Any] = model(__a ).logits.cpu().numpy() __lowercase : Tuple = processor.decode(logits[0] , output_word_offsets=__a ) __lowercase : int = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __lowercase : Optional[Any] = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] __lowercase : str = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(__a , """word""" ) ) , __a ) self.assertEqual(""" """.join(self.get_from_offsets(__a , """word""" ) ) , output.text ) # output times __lowercase : Tuple = torch.tensor(self.get_from_offsets(__a , """start_time""" ) ) __lowercase : Dict = torch.tensor(self.get_from_offsets(__a , """end_time""" ) ) # fmt: off __lowercase : List[Any] = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) __lowercase : Optional[int] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(__a , __a , atol=0.01 ) ) self.assertTrue(torch.allclose(__a , __a , atol=0.01 ) )
649
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , __a : Any , __a : Any=7 , __a : Dict=3 , __a : Optional[Any]=30 , __a : int=400 , __a : Tuple=True , __a : Optional[int]=None , __a : str=0.9 , __a : Optional[Any]=None , __a : Tuple=True , __a : Union[str, Any]=[0.5, 0.5, 0.5] , __a : List[str]=[0.5, 0.5, 0.5] , ) -> Optional[int]: """simple docstring""" __lowercase : Optional[int] = size if size is not None else {"""shortest_edge""": 30} __lowercase : int = crop_size if crop_size is not None else {"""height""": 30, """width""": 30} __lowercase : str = parent __lowercase : Dict = batch_size __lowercase : Tuple = num_channels __lowercase : Optional[Any] = min_resolution __lowercase : Tuple = max_resolution __lowercase : List[Any] = do_resize_and_center_crop __lowercase : Dict = size __lowercase : Optional[Any] = crop_pct __lowercase : Dict = crop_size __lowercase : Optional[Any] = do_normalize __lowercase : List[str] = image_mean __lowercase : Optional[int] = image_std def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : Optional[int] = PoolFormerImageProcessor if is_vision_available() else None def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" __lowercase : Optional[Any] = PoolFormerImageProcessingTester(self ) @property def lowerCAmelCase ( self : int ) -> List[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" __lowercase : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__a , """do_resize_and_center_crop""" ) ) self.assertTrue(hasattr(__a , """size""" ) ) self.assertTrue(hasattr(__a , """crop_pct""" ) ) self.assertTrue(hasattr(__a , """do_normalize""" ) ) self.assertTrue(hasattr(__a , """image_mean""" ) ) self.assertTrue(hasattr(__a , """image_std""" ) ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 30} ) self.assertEqual(image_processor.crop_size , {"""height""": 30, """width""": 30} ) __lowercase : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a ) for image in image_inputs: self.assertIsInstance(__a , Image.Image ) # Test not batched input __lowercase : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowercase : List[str] = image_processing(__a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" __lowercase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , numpify=__a ) for image in image_inputs: self.assertIsInstance(__a , np.ndarray ) # Test not batched input __lowercase : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowercase : Union[str, Any] = image_processing(__a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" __lowercase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a ) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor ) # Test not batched input __lowercase : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowercase : List[str] = image_processing(__a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
649
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(0 ) == 0 ) def snake_case_ ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
649
1
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] ): # Initialise PyTorch model __lowercase : Any = FunnelConfig.from_json_file(lowerCAmelCase_ ) print(F"Building PyTorch model from configuration: {config}" ) __lowercase : Optional[int] = FunnelBaseModel(lowerCAmelCase_ ) if base_model else FunnelModel(lowerCAmelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--base_model''', action='''store_true''', help='''Whether you want just the base model (no decoder) or not.''' ) lowerCamelCase : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
649
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCamelCase : int = '''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine''' def snake_case_ ( ): __lowercase : List[Any] = _ask_options( """In which compute environment are you running?""" , ["""This machine""", """AWS (Amazon SageMaker)"""] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __lowercase : Union[str, Any] = get_sagemaker_input() else: __lowercase : str = get_cluster_input() return config def snake_case_ ( lowerCAmelCase_ : List[str]=None ): if subparsers is not None: __lowercase : Optional[int] = subparsers.add_parser("""config""" , description=lowerCAmelCase_ ) else: __lowercase : List[str] = argparse.ArgumentParser("""Accelerate config command""" , description=lowerCAmelCase_ ) parser.add_argument( """--config_file""" , default=lowerCAmelCase_ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def snake_case_ ( lowerCAmelCase_ : Tuple ): __lowercase : Union[str, Any] = get_user_input() if args.config_file is not None: __lowercase : List[Any] = args.config_file else: if not os.path.isdir(lowerCAmelCase_ ): os.makedirs(lowerCAmelCase_ ) __lowercase : Any = default_yaml_config_file if config_file.endswith(""".json""" ): config.to_json_file(lowerCAmelCase_ ) else: config.to_yaml_file(lowerCAmelCase_ ) print(F"accelerate configuration saved at {config_file}" ) def snake_case_ ( ): __lowercase : str = config_command_parser() __lowercase : str = parser.parse_args() config_command(lowerCAmelCase_ ) if __name__ == "__main__": main()
649
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase : List[Any] = logging.get_logger(__name__) lowerCamelCase : Dict = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } lowerCamelCase : Union[str, Any] = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str ): for attribute in key.split(""".""" ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models __lowercase : Optional[Any] = """lm_head""" __lowercase : Optional[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if weight_type is not None: __lowercase : Tuple = getattr(lowerCAmelCase_ , lowerCAmelCase_ ).shape else: __lowercase : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": __lowercase : Tuple = value elif weight_type == "weight_g": __lowercase : Union[str, Any] = value elif weight_type == "weight_v": __lowercase : Dict = value elif weight_type == "bias": __lowercase : str = value else: __lowercase : Optional[int] = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any ): __lowercase : Optional[int] = [] __lowercase : Dict = fairseq_model.state_dict() __lowercase : Tuple = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): __lowercase : Dict = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , hf_model.config.feat_extract_norm == """group""" , ) __lowercase : List[str] = True else: for key, mapped_key in MAPPING.items(): __lowercase : Optional[Any] = """unispeech.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __lowercase : Optional[int] = True if "*" in mapped_key: __lowercase : List[str] = name.split(lowerCAmelCase_ )[0].split(""".""" )[-2] __lowercase : List[str] = mapped_key.replace("""*""" , lowerCAmelCase_ ) if "weight_g" in name: __lowercase : List[Any] = """weight_g""" elif "weight_v" in name: __lowercase : Any = """weight_v""" elif "bias" in name: __lowercase : List[str] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowercase : Dict = """weight""" else: __lowercase : Tuple = None set_recursively(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) continue if not is_used: unused_weights.append(lowerCAmelCase_ ) logger.warning(F"Unused weights: {unused_weights}" ) def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple ): __lowercase : Optional[Any] = full_name.split("""conv_layers.""" )[-1] __lowercase : Tuple = name.split(""".""" ) __lowercase : List[str] = int(items[0] ) __lowercase : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __lowercase : int = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __lowercase : List[Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) __lowercase : Dict = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) __lowercase : str = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(lowerCAmelCase_ ) @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Tuple=True ): if config_path is not None: __lowercase : str = UniSpeechConfig.from_pretrained(lowerCAmelCase_ ) else: __lowercase : Dict = UniSpeechConfig() if is_finetuned: if dict_path: __lowercase : List[Any] = Dictionary.load_from_json(lowerCAmelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __lowercase : Any = target_dict.pad_index __lowercase : Optional[int] = target_dict.bos_index __lowercase : Union[str, Any] = target_dict.eos_index __lowercase : Tuple = len(target_dict.symbols ) __lowercase : Tuple = os.path.join(lowerCAmelCase_ , """vocab.json""" ) if not os.path.isdir(lowerCAmelCase_ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowerCAmelCase_ ) ) return os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowercase : Dict = target_dict.indices # fairseq has the <pad> and <s> switched __lowercase : List[Any] = 42 __lowercase : Union[str, Any] = 43 with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Optional[int] = WavaVecaPhonemeCTCTokenizer( lowerCAmelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowerCAmelCase_ , ) __lowercase : str = True if config.feat_extract_norm == """layer""" else False __lowercase : List[str] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) __lowercase : Tuple = WavaVecaProcessor(feature_extractor=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ ) processor.save_pretrained(lowerCAmelCase_ ) __lowercase : str = UniSpeechForCTC(lowerCAmelCase_ ) else: __lowercase : Union[str, Any] = UniSpeechForPreTraining(lowerCAmelCase_ ) if is_finetuned: __lowercase , __lowercase , __lowercase : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path} ) else: __lowercase , __lowercase , __lowercase : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) __lowercase : Optional[int] = model[0].eval() recursively_load_weights(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) hf_unispeech.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) lowerCamelCase : str = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
649
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : list[str] | None = None ): __lowercase : Tuple = word_bank or [] # create a table __lowercase : int = len(lowerCAmelCase_ ) + 1 __lowercase : list[list[list[str]]] = [] for _ in range(lowerCAmelCase_ ): table.append([] ) # seed value __lowercase : Dict = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowerCAmelCase_ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowerCAmelCase_ )] == word: __lowercase : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowerCAmelCase_ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowerCAmelCase_ )]: combination.reverse() return table[len(lowerCAmelCase_ )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
649
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : List[Any] = { '''microsoft/table-transformer-detection''': ( '''https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json''' ), } class lowerCAmelCase ( __a ): '''simple docstring''' _A : Optional[Any] = '''table-transformer''' _A : Optional[Any] = ['''past_key_values'''] _A : Union[str, Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : Any , __a : Optional[Any]=True , __a : Any=None , __a : Tuple=3 , __a : Dict=100 , __a : str=6 , __a : List[str]=2048 , __a : Optional[int]=8 , __a : Union[str, Any]=6 , __a : str=2048 , __a : Dict=8 , __a : Dict=0.0 , __a : Dict=0.0 , __a : str=True , __a : Dict="relu" , __a : int=256 , __a : Any=0.1 , __a : List[str]=0.0 , __a : Union[str, Any]=0.0 , __a : Optional[Any]=0.02 , __a : Tuple=1.0 , __a : Union[str, Any]=False , __a : Union[str, Any]="sine" , __a : Any="resnet50" , __a : Optional[Any]=True , __a : List[Any]=False , __a : Any=1 , __a : Optional[Any]=5 , __a : Any=2 , __a : Optional[Any]=1 , __a : Union[str, Any]=1 , __a : Dict=5 , __a : List[Any]=2 , __a : Dict=0.1 , **__a : Optional[int] , ) -> Any: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) __lowercase : int = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(__a , __a ): __lowercase : Dict = backbone_config.get("""model_type""" ) __lowercase : List[Any] = CONFIG_MAPPING[backbone_model_type] __lowercase : Tuple = config_class.from_dict(__a ) # set timm attributes to None __lowercase , __lowercase , __lowercase : Optional[Any] = None, None, None __lowercase : Optional[int] = use_timm_backbone __lowercase : str = backbone_config __lowercase : Optional[Any] = num_channels __lowercase : Dict = num_queries __lowercase : Tuple = d_model __lowercase : Dict = encoder_ffn_dim __lowercase : Dict = encoder_layers __lowercase : Optional[int] = encoder_attention_heads __lowercase : Optional[Any] = decoder_ffn_dim __lowercase : List[str] = decoder_layers __lowercase : Optional[Any] = decoder_attention_heads __lowercase : List[Any] = dropout __lowercase : str = attention_dropout __lowercase : Any = activation_dropout __lowercase : List[Any] = activation_function __lowercase : int = init_std __lowercase : Union[str, Any] = init_xavier_std __lowercase : int = encoder_layerdrop __lowercase : List[Any] = decoder_layerdrop __lowercase : Any = encoder_layers __lowercase : List[Any] = auxiliary_loss __lowercase : Tuple = position_embedding_type __lowercase : Any = backbone __lowercase : Union[str, Any] = use_pretrained_backbone __lowercase : Optional[int] = dilation # Hungarian matcher __lowercase : Dict = class_cost __lowercase : Optional[Any] = bbox_cost __lowercase : Union[str, Any] = giou_cost # Loss coefficients __lowercase : Any = mask_loss_coefficient __lowercase : int = dice_loss_coefficient __lowercase : Any = bbox_loss_coefficient __lowercase : int = giou_loss_coefficient __lowercase : List[Any] = eos_coefficient super().__init__(is_encoder_decoder=__a , **__a ) @property def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" return self.encoder_attention_heads @property def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" return self.d_model class lowerCAmelCase ( __a ): '''simple docstring''' _A : Union[str, Any] = version.parse('''1.11''' ) @property def lowerCAmelCase ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def lowerCAmelCase ( self : int ) -> float: """simple docstring""" return 1E-5 @property def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" return 12
649
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(1 ) != 0 ) def snake_case_ ( ): assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
649
1
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file lowerCamelCase : str = '''Run commands across TPU VMs for initial setup before running `accelerate launch`.''' def snake_case_ ( lowerCAmelCase_ : Optional[Any]=None ): if subparsers is not None: __lowercase : Any = subparsers.add_parser("""tpu-config""" , description=_description ) else: __lowercase : Dict = argparse.ArgumentParser("""Accelerate tpu-config command""" , description=_description ) # Core arguments __lowercase : List[Any] = parser.add_argument_group( """Config Arguments""" , """Arguments that can be configured through `accelerate config`.""" ) config_args.add_argument( """--config_file""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , help="""Path to the config file to use for accelerate.""" , ) config_args.add_argument( """--tpu_name""" , default=lowerCAmelCase_ , help="""The name of the TPU to use. If not specified, will use the TPU specified in the config file.""" , ) config_args.add_argument( """--tpu_zone""" , default=lowerCAmelCase_ , help="""The zone of the TPU to use. If not specified, will use the zone specified in the config file.""" , ) __lowercase : int = parser.add_argument_group("""TPU Arguments""" , """Arguments for options ran inside the TPU.""" ) pod_args.add_argument( """--use_alpha""" , action="""store_true""" , help="""Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.""" , ) pod_args.add_argument( """--command_file""" , default=lowerCAmelCase_ , help="""The path to the file containing the commands to run on the pod on startup.""" , ) pod_args.add_argument( """--command""" , action="""append""" , nargs="""+""" , help="""A command to run on the pod. Can be passed multiple times.""" , ) pod_args.add_argument( """--install_accelerate""" , action="""store_true""" , help="""Whether to install accelerate on the pod. Defaults to False.""" , ) pod_args.add_argument( """--accelerate_version""" , default="""latest""" , help="""The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub.""" , ) pod_args.add_argument( """--debug""" , action="""store_true""" , help="""If set, will print the command that would be run instead of running it.""" ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def snake_case_ ( lowerCAmelCase_ : Any ): __lowercase : int = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(lowerCAmelCase_ ): __lowercase : Any = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: __lowercase : int = defaults.command_file if not args.command and defaults.commands is not None: __lowercase : Dict = defaults.commands if not args.tpu_name: __lowercase : Optional[int] = defaults.tpu_name if not args.tpu_zone: __lowercase : Union[str, Any] = defaults.tpu_zone if args.accelerate_version == "dev": __lowercase : List[Any] = """git+https://github.com/huggingface/accelerate.git""" elif args.accelerate_version == "latest": __lowercase : Dict = """accelerate -U""" elif isinstance(parse(args.accelerate_version ) , lowerCAmelCase_ ): __lowercase : List[Any] = F"accelerate=={args.accelerate_version}" if not args.command_file and not args.command: raise ValueError("""You must specify either a command file or a command to run on the pod.""" ) if args.command_file: with open(args.command_file , """r""" ) as f: __lowercase : List[Any] = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , lowerCAmelCase_ ): __lowercase : Dict = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate __lowercase : Optional[Any] = ["""cd /usr/share"""] if args.install_accelerate: new_cmd += [F"pip install {args.accelerate_version}"] new_cmd += args.command __lowercase : Tuple = """; """.join(lowerCAmelCase_ ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess __lowercase : Tuple = ["""gcloud"""] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F"Running {' '.join(lowerCAmelCase_ )}" ) return subprocess.run(lowerCAmelCase_ ) print("""Successfully setup pod.""" ) def snake_case_ ( ): __lowercase : Tuple = tpu_command_parser() __lowercase : Tuple = parser.parse_args() tpu_command_launcher(lowerCAmelCase_ )
649
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : int = { '''configuration_funnel''': ['''FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FunnelConfig'''], '''convert_funnel_original_tf_checkpoint_to_pytorch''': [], '''tokenization_funnel''': ['''FunnelTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = ['''FunnelTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = [ '''FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FunnelBaseModel''', '''FunnelForMaskedLM''', '''FunnelForMultipleChoice''', '''FunnelForPreTraining''', '''FunnelForQuestionAnswering''', '''FunnelForSequenceClassification''', '''FunnelForTokenClassification''', '''FunnelModel''', '''FunnelPreTrainedModel''', '''load_tf_weights_in_funnel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ '''TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFFunnelBaseModel''', '''TFFunnelForMaskedLM''', '''TFFunnelForMultipleChoice''', '''TFFunnelForPreTraining''', '''TFFunnelForQuestionAnswering''', '''TFFunnelForSequenceClassification''', '''TFFunnelForTokenClassification''', '''TFFunnelModel''', '''TFFunnelPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
649
1
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : Dict = RobertaTokenizer _A : Dict = RobertaTokenizerFast _A : Optional[Any] = True _A : List[str] = {'''cls_token''': '''<s>'''} def lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __lowercase : List[str] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Tuple = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __lowercase : List[str] = {"""unk_token""": """<unk>"""} __lowercase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__a ) ) def lowerCAmelCase ( self : Dict , **__a : Optional[int] ) -> int: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : str , **__a : Tuple ) -> Any: """simple docstring""" kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Union[str, Any] , __a : Any ) -> Tuple: """simple docstring""" __lowercase : Union[str, Any] = """lower newer""" __lowercase : Optional[Any] = """lower newer""" return input_text, output_text def lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" __lowercase : Optional[int] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowercase : Dict = """lower newer""" __lowercase : Dict = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] __lowercase : List[Any] = tokenizer.tokenize(__a ) # , add_prefix_space=True) self.assertListEqual(__a , __a ) __lowercase : int = tokens + [tokenizer.unk_token] __lowercase : List[Any] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : Dict = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=__a ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=__a ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" __lowercase : Union[str, Any] = self.tokenizer_class.from_pretrained("""roberta-base""" ) __lowercase : int = tokenizer.encode("""sequence builders""" , add_special_tokens=__a ) __lowercase : Dict = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__a ) __lowercase : Optional[int] = tokenizer.encode( """sequence builders""" , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Dict = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__a ) __lowercase : Dict = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase ( self : int ) -> str: """simple docstring""" __lowercase : Dict = self.get_tokenizer() __lowercase : str = """Encode this sequence.""" __lowercase : Optional[int] = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments __lowercase : Union[str, Any] = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : str = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__a , __a ) __lowercase : List[Any] = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__a , __a ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) __lowercase : Tuple = tokenizer.encode(__a , add_special_tokens=__a ) __lowercase : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__a , __a ) # Testing spaces after special tokens __lowercase : List[str] = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(__a , lstrip=__a , rstrip=__a )} ) # mask token has a left space __lowercase : Dict = tokenizer.convert_tokens_to_ids(__a ) __lowercase : List[Any] = """Encode <mask> sequence""" __lowercase : Tuple = """Encode <mask>sequence""" __lowercase : Optional[int] = tokenizer.encode(__a ) __lowercase : Union[str, Any] = encoded.index(__a ) __lowercase : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__a , __a ) __lowercase : List[str] = tokenizer.encode(__a ) __lowercase : str = encoded.index(__a ) __lowercase : Any = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__a , __a ) def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" pass def lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : Dict = self.rust_tokenizer_class.from_pretrained(__a , **__a ) __lowercase : List[Any] = self.tokenizer_class.from_pretrained(__a , **__a ) __lowercase : str = """A, <mask> AllenNLP sentence.""" __lowercase : List[str] = tokenizer_r.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) __lowercase : Optional[int] = tokenizer_p.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) __lowercase : Optional[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __lowercase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __lowercase : Dict = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : List[str] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __lowercase : Any = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""trim_offsets"""] , __a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : int = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` __lowercase : List[Any] = F"{text_of_1_token} {text_of_1_token}" __lowercase : Any = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Optional[int] = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Union[str, Any] = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) __lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : int = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) __lowercase : Dict = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Any = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) __lowercase : Dict = F" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __lowercase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Optional[int] = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ) + 1, 1 + len(__a ) + 1 + len(__a )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Optional[int] = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , ) __lowercase : Any = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Union[str, Any] = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , )
649
import logging import os import threading import time try: import warnings except ImportError: lowerCamelCase : Any = None try: import msvcrt except ImportError: lowerCamelCase : str = None try: import fcntl except ImportError: lowerCamelCase : Optional[Any] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: lowerCamelCase : Union[str, Any] = OSError # Data # ------------------------------------------------ lowerCamelCase : Tuple = [ '''Timeout''', '''BaseFileLock''', '''WindowsFileLock''', '''UnixFileLock''', '''SoftFileLock''', '''FileLock''', ] lowerCamelCase : Tuple = '''3.0.12''' lowerCamelCase : Any = None def snake_case_ ( ): global _logger __lowercase : List[str] = _logger or logging.getLogger(__name__ ) return _logger class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Any , __a : Any ) -> List[Any]: """simple docstring""" __lowercase : List[str] = lock_file return None def __str__( self : str ) -> Any: """simple docstring""" __lowercase : Any = F"The file lock '{self.lock_file}' could not be acquired." return temp class lowerCAmelCase : '''simple docstring''' def __init__( self : List[Any] , __a : Optional[int] ) -> int: """simple docstring""" __lowercase : Optional[Any] = lock return None def __enter__( self : Dict ) -> Dict: """simple docstring""" return self.lock def __exit__( self : Optional[int] , __a : Dict , __a : Any , __a : Tuple ) -> Optional[Any]: """simple docstring""" self.lock.release() return None class lowerCAmelCase : '''simple docstring''' def __init__( self : Tuple , __a : Any , __a : Dict=-1 , __a : Optional[Any]=None ) -> Any: """simple docstring""" __lowercase : Optional[int] = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long __lowercase : Dict = self.hash_filename_if_too_long(__a , __a ) # The path to the lock file. __lowercase : Optional[Any] = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __lowercase : int = None # The default timeout value. __lowercase : Optional[int] = timeout # We use this lock primarily for the lock counter. __lowercase : Optional[Any] = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __lowercase : Union[str, Any] = 0 return None @property def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return self._lock_file @property def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return self._timeout @timeout.setter def lowerCAmelCase ( self : Tuple , __a : Tuple ) -> Dict: """simple docstring""" __lowercase : Tuple = float(__a ) return None def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" raise NotImplementedError() def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" raise NotImplementedError() @property def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" return self._lock_file_fd is not None def lowerCAmelCase ( self : Any , __a : Optional[Any]=None , __a : Union[str, Any]=0.05 ) -> List[str]: """simple docstring""" if timeout is None: __lowercase : Union[str, Any] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __lowercase : int = id(self ) __lowercase : Optional[Any] = self._lock_file __lowercase : List[str] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"Attempting to acquire lock {lock_id} on {lock_filename}" ) self._acquire() if self.is_locked: logger().debug(F"Lock {lock_id} acquired on {lock_filename}" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"Timeout on acquiring lock {lock_id} on {lock_filename}" ) raise Timeout(self._lock_file ) else: logger().debug( F"Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ..." ) time.sleep(__a ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __lowercase : Optional[int] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def lowerCAmelCase ( self : Union[str, Any] , __a : Optional[Any]=False ) -> Optional[Any]: """simple docstring""" with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __lowercase : Optional[Any] = id(self ) __lowercase : str = self._lock_file logger().debug(F"Attempting to release lock {lock_id} on {lock_filename}" ) self._release() __lowercase : List[str] = 0 logger().debug(F"Lock {lock_id} released on {lock_filename}" ) return None def __enter__( self : Any ) -> Optional[Any]: """simple docstring""" self.acquire() return self def __exit__( self : List[str] , __a : str , __a : int , __a : List[Any] ) -> Tuple: """simple docstring""" self.release() return None def __del__( self : Optional[int] ) -> Optional[int]: """simple docstring""" self.release(force=__a ) return None def lowerCAmelCase ( self : Tuple , __a : str , __a : int ) -> str: """simple docstring""" __lowercase : List[Any] = os.path.basename(__a ) if len(__a ) > max_length and max_length > 0: __lowercase : int = os.path.dirname(__a ) __lowercase : List[str] = str(hash(__a ) ) __lowercase : Optional[Any] = filename[: max_length - len(__a ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(__a , __a ) else: return path class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Union[str, Any] , __a : List[Any] , __a : Optional[int]=-1 , __a : Tuple=None ) -> List[Any]: """simple docstring""" from .file_utils import relative_to_absolute_path super().__init__(__a , timeout=__a , max_filename_length=__a ) __lowercase : Tuple = """\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __lowercase : Tuple = os.open(self._lock_file , __a ) except OSError: pass else: try: msvcrt.locking(__a , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__a ) else: __lowercase : Union[str, Any] = fd return None def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = self._lock_file_fd __lowercase : int = None msvcrt.locking(__a , msvcrt.LK_UNLCK , 1 ) os.close(__a ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : List[str] , __a : Optional[Any] , __a : str=-1 , __a : List[str]=None ) -> Any: """simple docstring""" __lowercase : Dict = os.statvfs(os.path.dirname(__a ) ).f_namemax super().__init__(__a , timeout=__a , max_filename_length=__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase : List[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC __lowercase : List[str] = os.open(self._lock_file , __a ) try: fcntl.flock(__a , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__a ) else: __lowercase : str = fd return None def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Any = self._lock_file_fd __lowercase : List[str] = None fcntl.flock(__a , fcntl.LOCK_UN ) os.close(__a ) return None class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __lowercase : Union[str, Any] = os.open(self._lock_file , __a ) except OSError: pass else: __lowercase : Optional[int] = fd return None def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" os.close(self._lock_file_fd ) __lowercase : int = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None lowerCamelCase : Optional[Any] = None if msvcrt: lowerCamelCase : List[Any] = WindowsFileLock elif fcntl: lowerCamelCase : List[Any] = UnixFileLock else: lowerCamelCase : Union[str, Any] = SoftFileLock if warnings is not None: warnings.warn('''only soft file lock is available''')
649
1
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowerCamelCase : List[Any] = logging.get_logger(__name__) class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , __a : str = None , __a : uuid.UUID = None , __a : Any=None , __a : List[Any]=None ) -> List[Any]: """simple docstring""" if not conversation_id: __lowercase : Any = uuid.uuida() if past_user_inputs is None: __lowercase : Dict = [] if generated_responses is None: __lowercase : Dict = [] __lowercase : uuid.UUID = conversation_id __lowercase : List[str] = past_user_inputs __lowercase : List[str] = generated_responses __lowercase : Optional[str] = text def __eq__( self : Dict , __a : Dict ) -> Any: """simple docstring""" if not isinstance(__a , __a ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCAmelCase ( self : List[str] , __a : str , __a : bool = False ) -> Dict: """simple docstring""" if self.new_user_input: if overwrite: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten " F"with: \"{text}\"." ) __lowercase : Optional[int] = text else: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" new input " F"ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input" ) else: __lowercase : Dict = text def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __lowercase : Dict = None def lowerCAmelCase ( self : Optional[int] , __a : str ) -> List[Any]: """simple docstring""" self.generated_responses.append(__a ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : int ) -> str: """simple docstring""" __lowercase : Optional[int] = F"Conversation id: {self.uuid} \n" for is_user, text in self.iter_texts(): __lowercase : Optional[Any] = """user""" if is_user else """bot""" output += F"{name} >> {text} \n" return output @add_end_docstrings( __a , r''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''' , ) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Any , *__a : int , **__a : str ) -> Union[str, Any]: """simple docstring""" super().__init__(*__a , **__a ) if self.tokenizer.pad_token_id is None: __lowercase : List[Any] = self.tokenizer.eos_token def lowerCAmelCase ( self : Union[str, Any] , __a : int=None , __a : Tuple=None , __a : Any=None , **__a : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = {} __lowercase : Tuple = {} __lowercase : List[str] = {} if min_length_for_response is not None: __lowercase : Dict = min_length_for_response if minimum_tokens is not None: __lowercase : Union[str, Any] = minimum_tokens if "max_length" in generate_kwargs: __lowercase : Union[str, Any] = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __lowercase : Union[str, Any] = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(__a ) return preprocess_params, forward_params, postprocess_params def __call__( self : Optional[int] , __a : Union[Conversation, List[Conversation]] , __a : Dict=0 , **__a : List[Any] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = super().__call__(__a , num_workers=__a , **__a ) if isinstance(__a , __a ) and len(__a ) == 1: return outputs[0] return outputs def lowerCAmelCase ( self : Union[str, Any] , __a : Conversation , __a : Tuple=32 ) -> Dict[str, Any]: """simple docstring""" if not isinstance(__a , __a ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( F"Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. " """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer , """_build_conversation_input_ids""" ): __lowercase : List[Any] = self.tokenizer._build_conversation_input_ids(__a ) else: # If the tokenizer cannot handle conversations, we default to only the old version __lowercase : Tuple = self._legacy_parse_and_tokenize(__a ) if self.framework == "pt": __lowercase : List[Any] = torch.LongTensor([input_ids] ) elif self.framework == "tf": __lowercase : List[str] = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCAmelCase ( self : Any , __a : Dict , __a : Any=10 , **__a : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = generate_kwargs.get("""max_length""" , self.model.config.max_length ) __lowercase : List[Any] = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(F"Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})" ) __lowercase : Any = max_length - minimum_tokens __lowercase : int = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: __lowercase : Dict = model_inputs["""attention_mask"""][:, -trim:] __lowercase : Union[str, Any] = model_inputs.pop("""conversation""" ) __lowercase : Tuple = max_length __lowercase : int = self.model.generate(**__a , **__a ) if self.model.config.is_encoder_decoder: __lowercase : Optional[int] = 1 else: __lowercase : str = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCAmelCase ( self : int , __a : Tuple , __a : List[Any]=True ) -> List[str]: """simple docstring""" __lowercase : int = model_outputs["""output_ids"""] __lowercase : Union[str, Any] = self.tokenizer.decode( output_ids[0] , skip_special_tokens=__a , clean_up_tokenization_spaces=__a , ) __lowercase : List[str] = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(__a ) return conversation def lowerCAmelCase ( self : int , __a : Conversation ) -> Dict: """simple docstring""" __lowercase : Optional[int] = self.tokenizer.eos_token_id __lowercase : Optional[Any] = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(__a , add_special_tokens=__a ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(__a , add_special_tokens=__a ) ) if len(__a ) > self.tokenizer.model_max_length: __lowercase : List[Any] = input_ids[-self.tokenizer.model_max_length :] return input_ids
649
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : Tuple = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = '''layoutlmv3''' def __init__( self : Dict , __a : List[str]=50265 , __a : str=768 , __a : List[Any]=12 , __a : List[Any]=12 , __a : List[str]=3072 , __a : Optional[Any]="gelu" , __a : Optional[int]=0.1 , __a : List[Any]=0.1 , __a : Tuple=512 , __a : int=2 , __a : Any=0.02 , __a : Union[str, Any]=1E-5 , __a : List[str]=1 , __a : List[Any]=0 , __a : int=2 , __a : str=1024 , __a : str=128 , __a : List[Any]=128 , __a : Tuple=True , __a : Optional[int]=32 , __a : Any=128 , __a : List[Any]=64 , __a : Tuple=256 , __a : str=True , __a : int=True , __a : Optional[Any]=True , __a : Any=224 , __a : str=3 , __a : List[str]=16 , __a : Union[str, Any]=None , **__a : List[Any] , ) -> List[str]: """simple docstring""" super().__init__( vocab_size=__a , hidden_size=__a , num_hidden_layers=__a , num_attention_heads=__a , intermediate_size=__a , hidden_act=__a , hidden_dropout_prob=__a , attention_probs_dropout_prob=__a , max_position_embeddings=__a , type_vocab_size=__a , initializer_range=__a , layer_norm_eps=__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a , ) __lowercase : int = max_ad_position_embeddings __lowercase : Any = coordinate_size __lowercase : Optional[Any] = shape_size __lowercase : str = has_relative_attention_bias __lowercase : int = rel_pos_bins __lowercase : Union[str, Any] = max_rel_pos __lowercase : str = has_spatial_attention_bias __lowercase : str = rel_ad_pos_bins __lowercase : List[Any] = max_rel_ad_pos __lowercase : Tuple = text_embed __lowercase : int = visual_embed __lowercase : Tuple = input_size __lowercase : Dict = num_channels __lowercase : str = patch_size __lowercase : Optional[int] = classifier_dropout class lowerCAmelCase ( __a ): '''simple docstring''' _A : str = version.parse('''1.12''' ) @property def lowerCAmelCase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def lowerCAmelCase ( self : Union[str, Any] ) -> float: """simple docstring""" return 1E-5 @property def lowerCAmelCase ( self : str ) -> int: """simple docstring""" return 12 def lowerCAmelCase ( self : List[Any] , __a : "ProcessorMixin" , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional["TensorType"] = None , __a : int = 3 , __a : int = 40 , __a : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , """apply_ocr""" , __a ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase : Tuple = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase : Tuple = processor.tokenizer.num_special_tokens_to_add(__a ) __lowercase : Tuple = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__a ) # Generate dummy inputs according to compute batch and sequence __lowercase : Union[str, Any] = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowercase : Tuple = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowercase : Tuple = self._generate_dummy_images(__a , __a , __a , __a ) __lowercase : int = dict( processor( __a , text=__a , boxes=__a , return_tensors=__a , ) ) return inputs
649
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase : Optional[int] = { '''configuration_altclip''': [ '''ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AltCLIPConfig''', '''AltCLIPTextConfig''', '''AltCLIPVisionConfig''', ], '''processing_altclip''': ['''AltCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Any = [ '''ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AltCLIPPreTrainedModel''', '''AltCLIPModel''', '''AltCLIPTextModel''', '''AltCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys lowerCamelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
649
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowerCamelCase : List[Any] = logging.get_logger(__name__) class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , __a : str = None , __a : uuid.UUID = None , __a : Any=None , __a : List[Any]=None ) -> List[Any]: """simple docstring""" if not conversation_id: __lowercase : Any = uuid.uuida() if past_user_inputs is None: __lowercase : Dict = [] if generated_responses is None: __lowercase : Dict = [] __lowercase : uuid.UUID = conversation_id __lowercase : List[str] = past_user_inputs __lowercase : List[str] = generated_responses __lowercase : Optional[str] = text def __eq__( self : Dict , __a : Dict ) -> Any: """simple docstring""" if not isinstance(__a , __a ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCAmelCase ( self : List[str] , __a : str , __a : bool = False ) -> Dict: """simple docstring""" if self.new_user_input: if overwrite: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten " F"with: \"{text}\"." ) __lowercase : Optional[int] = text else: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" new input " F"ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input" ) else: __lowercase : Dict = text def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __lowercase : Dict = None def lowerCAmelCase ( self : Optional[int] , __a : str ) -> List[Any]: """simple docstring""" self.generated_responses.append(__a ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : int ) -> str: """simple docstring""" __lowercase : Optional[int] = F"Conversation id: {self.uuid} \n" for is_user, text in self.iter_texts(): __lowercase : Optional[Any] = """user""" if is_user else """bot""" output += F"{name} >> {text} \n" return output @add_end_docstrings( __a , r''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''' , ) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Any , *__a : int , **__a : str ) -> Union[str, Any]: """simple docstring""" super().__init__(*__a , **__a ) if self.tokenizer.pad_token_id is None: __lowercase : List[Any] = self.tokenizer.eos_token def lowerCAmelCase ( self : Union[str, Any] , __a : int=None , __a : Tuple=None , __a : Any=None , **__a : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = {} __lowercase : Tuple = {} __lowercase : List[str] = {} if min_length_for_response is not None: __lowercase : Dict = min_length_for_response if minimum_tokens is not None: __lowercase : Union[str, Any] = minimum_tokens if "max_length" in generate_kwargs: __lowercase : Union[str, Any] = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __lowercase : Union[str, Any] = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(__a ) return preprocess_params, forward_params, postprocess_params def __call__( self : Optional[int] , __a : Union[Conversation, List[Conversation]] , __a : Dict=0 , **__a : List[Any] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = super().__call__(__a , num_workers=__a , **__a ) if isinstance(__a , __a ) and len(__a ) == 1: return outputs[0] return outputs def lowerCAmelCase ( self : Union[str, Any] , __a : Conversation , __a : Tuple=32 ) -> Dict[str, Any]: """simple docstring""" if not isinstance(__a , __a ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( F"Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. " """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer , """_build_conversation_input_ids""" ): __lowercase : List[Any] = self.tokenizer._build_conversation_input_ids(__a ) else: # If the tokenizer cannot handle conversations, we default to only the old version __lowercase : Tuple = self._legacy_parse_and_tokenize(__a ) if self.framework == "pt": __lowercase : List[Any] = torch.LongTensor([input_ids] ) elif self.framework == "tf": __lowercase : List[str] = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCAmelCase ( self : Any , __a : Dict , __a : Any=10 , **__a : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = generate_kwargs.get("""max_length""" , self.model.config.max_length ) __lowercase : List[Any] = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(F"Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})" ) __lowercase : Any = max_length - minimum_tokens __lowercase : int = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: __lowercase : Dict = model_inputs["""attention_mask"""][:, -trim:] __lowercase : Union[str, Any] = model_inputs.pop("""conversation""" ) __lowercase : Tuple = max_length __lowercase : int = self.model.generate(**__a , **__a ) if self.model.config.is_encoder_decoder: __lowercase : Optional[int] = 1 else: __lowercase : str = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCAmelCase ( self : int , __a : Tuple , __a : List[Any]=True ) -> List[str]: """simple docstring""" __lowercase : int = model_outputs["""output_ids"""] __lowercase : Union[str, Any] = self.tokenizer.decode( output_ids[0] , skip_special_tokens=__a , clean_up_tokenization_spaces=__a , ) __lowercase : List[str] = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(__a ) return conversation def lowerCAmelCase ( self : int , __a : Conversation ) -> Dict: """simple docstring""" __lowercase : Optional[int] = self.tokenizer.eos_token_id __lowercase : Optional[Any] = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(__a , add_special_tokens=__a ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(__a , add_special_tokens=__a ) ) if len(__a ) > self.tokenizer.model_max_length: __lowercase : List[Any] = input_ids[-self.tokenizer.model_max_length :] return input_ids
649
1
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase : '''simple docstring''' def __init__( self : List[Any] , __a : Dict , __a : Optional[Any]=13 , __a : Optional[Any]=32 , __a : Union[str, Any]=3 , __a : int=4 , __a : Union[str, Any]=[10, 20, 30, 40] , __a : Optional[Any]=[2, 2, 3, 2] , __a : int=True , __a : str=True , __a : Dict=37 , __a : int="gelu" , __a : Union[str, Any]=10 , __a : Dict=0.02 , __a : Optional[int]=["stage2", "stage3", "stage4"] , __a : Optional[int]=[2, 3, 4] , __a : str=None , ) -> str: """simple docstring""" __lowercase : Optional[Any] = parent __lowercase : Union[str, Any] = batch_size __lowercase : int = image_size __lowercase : Any = num_channels __lowercase : str = num_stages __lowercase : str = hidden_sizes __lowercase : Dict = depths __lowercase : int = is_training __lowercase : Dict = use_labels __lowercase : Optional[int] = intermediate_size __lowercase : List[Any] = hidden_act __lowercase : int = num_labels __lowercase : int = initializer_range __lowercase : str = out_features __lowercase : Dict = out_indices __lowercase : List[str] = scope def lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : Tuple = None if self.use_labels: __lowercase : str = ids_tensor([self.batch_size] , self.num_labels ) __lowercase : str = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__a , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowerCAmelCase ( self : Union[str, Any] , __a : Optional[int] , __a : Dict , __a : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = ConvNextVaModel(config=__a ) model.to(__a ) model.eval() __lowercase : Any = model(__a ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCAmelCase ( self : Optional[Any] , __a : Optional[Any] , __a : Optional[int] , __a : Dict ) -> List[str]: """simple docstring""" __lowercase : str = ConvNextVaForImageClassification(__a ) model.to(__a ) model.eval() __lowercase : List[str] = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Optional[Any] , __a : str , __a : Optional[Any] , __a : Dict ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = ConvNextVaBackbone(config=__a ) model.to(__a ) model.eval() __lowercase : List[Any] = model(__a ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __lowercase : Union[str, Any] = None __lowercase : Dict = ConvNextVaBackbone(config=__a ) model.to(__a ) model.eval() __lowercase : Optional[int] = model(__a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : Tuple = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase : str = config_and_inputs __lowercase : int = {"""pixel_values""": pixel_values} return config, inputs_dict def lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase : str = config_and_inputs __lowercase : List[str] = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Dict = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) _A : str = ( {'''feature-extraction''': ConvNextVaModel, '''image-classification''': ConvNextVaForImageClassification} if is_torch_available() else {} ) _A : Optional[int] = False _A : Tuple = False _A : Dict = False _A : Optional[int] = False _A : int = False def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" __lowercase : Optional[Any] = ConvNextVaModelTester(self ) __lowercase : Optional[int] = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def lowerCAmelCase ( self : str ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: __lowercase , __lowercase : str = self.model_tester.prepare_config_and_inputs_with_labels() __lowercase : str = True if model_class.__name__ in [ *get_values(__a ), *get_values(__a ), ]: continue __lowercase : str = model_class(__a ) model.to(__a ) model.train() __lowercase : str = self._prepare_for_class(__a , __a , return_labels=__a ) __lowercase : Tuple = model(**__a ).loss loss.backward() def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: __lowercase , __lowercase : List[str] = self.model_tester.prepare_config_and_inputs_with_labels() __lowercase : int = False __lowercase : Optional[Any] = True if ( model_class.__name__ in [*get_values(__a ), *get_values(__a )] or not model_class.supports_gradient_checkpointing ): continue __lowercase : Any = model_class(__a ) model.to(__a ) model.gradient_checkpointing_enable() model.train() __lowercase : Dict = self._prepare_for_class(__a , __a , return_labels=__a ) __lowercase : int = model(**__a ).loss loss.backward() def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase , __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[Any] = model_class(__a ) __lowercase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : Optional[int] = [*signature.parameters.keys()] __lowercase : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" def check_hidden_states_output(__a : Dict , __a : List[str] , __a : Tuple ): __lowercase : Optional[Any] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : List[Any] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowercase : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(__a ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowercase , __lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Tuple = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase : List[Any] = True check_hidden_states_output(__a , __a , __a ) def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def lowerCAmelCase ( self : int ) -> List[Any]: """simple docstring""" for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : Dict = ConvNextVaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def snake_case_ ( ): __lowercase : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def lowerCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" __lowercase : List[Any] = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(__a ) __lowercase : Union[str, Any] = self.default_image_processor __lowercase : List[Any] = prepare_img() __lowercase : Union[str, Any] = preprocessor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : int = model(**__a ) # verify the logits __lowercase : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __a ) __lowercase : Dict = torch.tensor([0.9996, 0.1966, -0.4386] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) )
649
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__a , """tf_padding""" ) ) self.parent.assertTrue(hasattr(__a , """depth_multiplier""" ) ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Tuple , __a : str=13 , __a : Dict=3 , __a : List[Any]=32 , __a : Any=0.25 , __a : Any=8 , __a : Optional[int]=8 , __a : Optional[int]=6 , __a : Dict=32 , __a : Tuple=True , __a : List[Any]=True , __a : Optional[int]=True , __a : Tuple="relu6" , __a : Optional[Any]=1280 , __a : str=0.1 , __a : str=0.02 , __a : Optional[Any]=True , __a : Tuple=True , __a : Dict=10 , __a : Optional[Any]=None , ) -> Any: """simple docstring""" __lowercase : List[str] = parent __lowercase : Tuple = batch_size __lowercase : Dict = num_channels __lowercase : Optional[int] = image_size __lowercase : int = depth_multiplier __lowercase : str = depth_divisible_by __lowercase : int = min_depth __lowercase : Tuple = expand_ratio __lowercase : Optional[int] = tf_padding __lowercase : Dict = output_stride __lowercase : Dict = first_layer_is_expansion __lowercase : Optional[Any] = finegrained_output __lowercase : str = hidden_act __lowercase : Union[str, Any] = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) __lowercase : Optional[int] = classifier_dropout_prob __lowercase : int = use_labels __lowercase : Optional[int] = is_training __lowercase : Dict = num_labels __lowercase : Tuple = initializer_range __lowercase : Optional[Any] = scope def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : List[Any] = None __lowercase : Optional[Any] = None if self.use_labels: __lowercase : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __lowercase : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowercase : List[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : Tuple , __a : Dict , __a : Tuple , __a : Optional[int] , __a : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[int] = MobileNetVaModel(config=__a ) model.to(__a ) model.eval() __lowercase : Tuple = model(__a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def lowerCAmelCase ( self : List[str] , __a : Optional[int] , __a : List[str] , __a : str , __a : Optional[int] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = self.num_labels __lowercase : Dict = MobileNetVaForImageClassification(__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : int , __a : List[str] , __a : Tuple , __a : Any , __a : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : int = self.num_labels __lowercase : List[Any] = MobileNetVaForSemanticSegmentation(__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __lowercase : str = model(__a , labels=__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase : List[str] = config_and_inputs __lowercase : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Tuple = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) _A : Optional[Any] = ( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) _A : Tuple = False _A : List[str] = False _A : List[str] = False _A : Optional[int] = False def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = MobileNetVaModelTester(self ) __lowercase : int = MobileNetVaConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV2 does not use inputs_embeds""" ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not support input and output embeddings""" ) def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not output attentions""" ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[Any] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : int = [*signature.parameters.keys()] __lowercase : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" def check_hidden_states_output(__a : List[Any] , __a : Tuple , __a : List[str] ): __lowercase : Optional[Any] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : List[Any] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Tuple = outputs.hidden_states __lowercase : str = 16 self.assertEqual(len(__a ) , __a ) __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Any = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase : Union[str, Any] = True check_hidden_states_output(__a , __a , __a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : Optional[int] = MobileNetVaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def snake_case_ ( ): __lowercase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v2_1.0_224""" ) if is_vision_available() else None ) @slow def lowerCAmelCase ( self : str ) -> int: """simple docstring""" __lowercase : Tuple = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v2_1.0_224""" ).to(__a ) __lowercase : str = self.default_image_processor __lowercase : Tuple = prepare_img() __lowercase : Tuple = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : str = model(**__a ) # verify the logits __lowercase : Union[str, Any] = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , __a ) __lowercase : str = torch.tensor([0.2445, -1.1993, 0.1905] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : int = MobileNetVaForSemanticSegmentation.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __lowercase : Dict = model.to(__a ) __lowercase : Tuple = MobileNetVaImageProcessor.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __lowercase : List[str] = prepare_img() __lowercase : Optional[int] = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : Union[str, Any] = model(**__a ) __lowercase : Any = outputs.logits # verify the logits __lowercase : Dict = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , __a ) __lowercase : str = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=__a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __a , atol=1E-4 ) )
649
1
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : list ): _enforce_args(lowerCAmelCase_ , lowerCAmelCase_ ) if n == 0: return 0 __lowercase : List[str] = float("""-inf""" ) for i in range(1 , n + 1 ): __lowercase : Optional[int] = max( lowerCAmelCase_ , prices[i - 1] + naive_cut_rod_recursive(n - i , lowerCAmelCase_ ) ) return max_revue def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : list ): _enforce_args(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : str = [float("""-inf""" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : list , lowerCAmelCase_ : list ): if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: __lowercase : Any = float("""-inf""" ) for i in range(1 , n + 1 ): __lowercase : str = max( lowerCAmelCase_ , prices[i - 1] + _top_down_cut_rod_recursive(n - i , lowerCAmelCase_ , lowerCAmelCase_ ) , ) __lowercase : Any = max_revenue return max_rev[n] def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : list ): _enforce_args(lowerCAmelCase_ , lowerCAmelCase_ ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. __lowercase : Union[str, Any] = [float("""-inf""" ) for _ in range(n + 1 )] __lowercase : Optional[Any] = 0 for i in range(1 , n + 1 ): __lowercase : List[str] = max_rev[i] for j in range(1 , i + 1 ): __lowercase : Tuple = max(lowerCAmelCase_ , prices[j - 1] + max_rev[i - j] ) __lowercase : Optional[Any] = max_revenue_i return max_rev[n] def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : list ): if n < 0: __lowercase : Dict = F"n must be greater than or equal to 0. Got n = {n}" raise ValueError(lowerCAmelCase_ ) if n > len(lowerCAmelCase_ ): __lowercase : Optional[int] = ( """Each integral piece of rod must have a corresponding price. """ F"Got n = {n} but length of prices = {len(lowerCAmelCase_ )}" ) raise ValueError(lowerCAmelCase_ ) def snake_case_ ( ): __lowercase : Dict = [6, 10, 12, 15, 20, 23] __lowercase : Union[str, Any] = len(lowerCAmelCase_ ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. __lowercase : str = 36 __lowercase : str = top_down_cut_rod(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : int = bottom_up_cut_rod(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Dict = naive_cut_rod_recursive(lowerCAmelCase_ , lowerCAmelCase_ ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
649
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def snake_case_ ( lowerCAmelCase_ : bool = True , *lowerCAmelCase_ : int , **lowerCAmelCase_ : List[str] ): if not is_tqdm_available(): raise ImportError("""Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.""" ) __lowercase : List[str] = False if main_process_only: __lowercase : Optional[int] = PartialState().local_process_index == 0 return _tqdm(*lowerCAmelCase_ , **lowerCAmelCase_ , disable=lowerCAmelCase_ )
649
1
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home lowerCamelCase : Optional[int] = HUGGINGFACE_HUB_CACHE lowerCamelCase : Tuple = '''config.json''' lowerCamelCase : List[Any] = '''diffusion_pytorch_model.bin''' lowerCamelCase : Union[str, Any] = '''diffusion_flax_model.msgpack''' lowerCamelCase : Union[str, Any] = '''model.onnx''' lowerCamelCase : List[Any] = '''diffusion_pytorch_model.safetensors''' lowerCamelCase : Union[str, Any] = '''weights.pb''' lowerCamelCase : Dict = '''https://huggingface.co''' lowerCamelCase : Dict = default_cache_path lowerCamelCase : Tuple = '''diffusers_modules''' lowerCamelCase : Any = os.getenv('''HF_MODULES_CACHE''', os.path.join(hf_cache_home, '''modules''')) lowerCamelCase : str = ['''fp16''', '''non-ema'''] lowerCamelCase : Optional[int] = '''.self_attn'''
649
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : list[int] ): if not nums: return 0 __lowercase : Tuple = nums[0] __lowercase : Tuple = 0 for num in nums[1:]: __lowercase , __lowercase : List[str] = ( max_excluding + num, max(lowerCAmelCase_ , lowerCAmelCase_ ), ) return max(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
649
1
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch lowerCamelCase : Any = logging.get_logger(__name__) class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = ['''pixel_values'''] def __init__( self : Tuple , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : Dict[str, int] = None , __a : bool = True , **__a : Optional[int] , ) -> None: """simple docstring""" super().__init__(**__a ) __lowercase : List[str] = size if size is not None else {"""shortest_edge""": 224} __lowercase : Dict = get_size_dict(__a , default_to_square=__a ) __lowercase : Any = crop_size if crop_size is not None else {"""height""": 256, """width""": 256} __lowercase : str = get_size_dict(__a , param_name="""crop_size""" ) __lowercase : Optional[Any] = do_resize __lowercase : int = size __lowercase : int = resample __lowercase : Union[str, Any] = do_rescale __lowercase : List[Any] = rescale_factor __lowercase : List[str] = do_center_crop __lowercase : Optional[int] = crop_size __lowercase : List[Any] = do_flip_channel_order def lowerCAmelCase ( self : Union[str, Any] , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PIL.Image.BILINEAR , __a : Optional[Union[str, ChannelDimension]] = None , **__a : int , ) -> np.ndarray: """simple docstring""" __lowercase : Optional[Any] = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" not in size: raise ValueError(F"The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}" ) __lowercase : List[Any] = get_resize_output_image_size(__a , size=size["""shortest_edge"""] , default_to_square=__a ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Optional[Any] , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Dict , ) -> np.ndarray: """simple docstring""" __lowercase : Optional[int] = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}" ) return center_crop(__a , size=(size["""height"""], size["""width"""]) , data_format=__a , **__a ) def lowerCAmelCase ( self : Optional[Any] , __a : np.ndarray , __a : Union[int, float] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Any , ) -> Union[str, Any]: """simple docstring""" return rescale(__a , scale=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Optional[Any] , __a : np.ndarray , __a : Optional[Union[str, ChannelDimension]] = None ) -> np.ndarray: """simple docstring""" return flip_channel_order(__a , data_format=__a ) def lowerCAmelCase ( self : Any , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : float = None , __a : bool = None , __a : Dict[str, int] = None , __a : bool = None , __a : Optional[Union[str, TensorType]] = None , __a : ChannelDimension = ChannelDimension.FIRST , **__a : str , ) -> PIL.Image.Image: """simple docstring""" __lowercase : Optional[int] = do_resize if do_resize is not None else self.do_resize __lowercase : str = resample if resample is not None else self.resample __lowercase : int = do_rescale if do_rescale is not None else self.do_rescale __lowercase : int = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase : Optional[int] = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) __lowercase : Optional[Any] = size if size is not None else self.size __lowercase : List[Any] = get_size_dict(__a , default_to_square=__a ) __lowercase : List[str] = crop_size if crop_size is not None else self.crop_size __lowercase : List[str] = get_size_dict(__a , param_name="""crop_size""" ) __lowercase : Union[str, Any] = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) # All transformations expect numpy arrays. __lowercase : Any = [to_numpy_array(__a ) for image in images] if do_resize: __lowercase : Any = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: __lowercase : Optional[Any] = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: __lowercase : str = [self.rescale(image=__a , scale=__a ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: __lowercase : Any = [self.flip_channel_order(image=__a ) for image in images] __lowercase : List[str] = [to_channel_dimension_format(__a , __a ) for image in images] __lowercase : Tuple = {"""pixel_values""": images} return BatchFeature(data=__a , tensor_type=__a ) def lowerCAmelCase ( self : Any , __a : str , __a : List[Tuple] = None ) -> Dict: """simple docstring""" __lowercase : str = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__a ) != len(__a ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(__a ): __lowercase : List[Any] = target_sizes.numpy() __lowercase : Dict = [] for idx in range(len(__a ) ): __lowercase : Optional[int] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=__a ) __lowercase : Union[str, Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__a ) else: __lowercase : Dict = logits.argmax(dim=1 ) __lowercase : Any = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
649
lowerCamelCase : List[str] = '''0.18.2''' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
649
1
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(0 ) == 0 ) def snake_case_ ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
649
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : List[Any] = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : str=False , lowerCAmelCase_ : Any=False ): __lowercase : Any = """backbone.""" if is_semantic else """""" __lowercase : Optional[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"{prefix}blocks.{i}.norm1.weight", F"beit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm1.bias", F"beit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.weight", F"beit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.bias", F"beit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.weight", F"beit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.bias", F"beit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.weight", F"beit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.bias", F"beit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.weight", F"beit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.bias", F"beit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ (F"{prefix}cls_token", """beit.embeddings.cls_token"""), (F"{prefix}patch_embed.proj.weight", """beit.embeddings.patch_embeddings.projection.weight"""), (F"{prefix}patch_embed.proj.bias", """beit.embeddings.patch_embeddings.projection.bias"""), (F"{prefix}pos_embed", """beit.embeddings.position_embeddings"""), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("""mask_token""", """beit.embeddings.mask_token"""), ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) else: # layernorm + classification head rename_keys.extend( [ ("""fc_norm.weight""", """beit.pooler.layernorm.weight"""), ("""fc_norm.bias""", """beit.pooler.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : List[Any]=False ): for i in range(config.num_hidden_layers ): __lowercase : Tuple = """backbone.""" if is_semantic else """""" # queries, keys and values __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.attn.qkv.weight" ) __lowercase : Dict = state_dict.pop(F"{prefix}blocks.{i}.attn.q_bias" ) __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.attn.v_bias" ) __lowercase : List[str] = in_proj_weight[ : config.hidden_size, : ] __lowercase : Union[str, Any] = q_bias __lowercase : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] __lowercase : str = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.gamma_1" ) __lowercase : str = state_dict.pop(F"{prefix}blocks.{i}.gamma_2" ) __lowercase : List[str] = gamma_a __lowercase : Optional[int] = gamma_a def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : int ): __lowercase : Tuple = dct.pop(lowerCAmelCase_ ) __lowercase : Tuple = val def snake_case_ ( ): __lowercase : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase : Any = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]=False ): __lowercase : Dict = False if """rvlcdip""" in checkpoint_url else True __lowercase : Tuple = BeitConfig(use_absolute_position_embeddings=lowerCAmelCase_ , use_mask_token=lowerCAmelCase_ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: __lowercase : Union[str, Any] = 1024 __lowercase : Optional[int] = 4096 __lowercase : List[Any] = 24 __lowercase : Dict = 16 # labels if "rvlcdip" in checkpoint_url: __lowercase : Optional[int] = 16 __lowercase : Any = """huggingface/label-files""" __lowercase : Union[str, Any] = """rvlcdip-id2label.json""" __lowercase : List[str] = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) __lowercase : Optional[int] = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowercase : Union[str, Any] = idalabel __lowercase : Optional[Any] = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys __lowercase : Optional[int] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ , map_location="""cpu""" )["""model"""] __lowercase : Union[str, Any] = create_rename_keys(lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) # load HuggingFace model __lowercase : Dict = BeitForMaskedImageModeling(lowerCAmelCase_ ) if has_lm_head else BeitForImageClassification(lowerCAmelCase_ ) model.eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image __lowercase : List[str] = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=lowerCAmelCase_ ) __lowercase : List[str] = prepare_img() __lowercase : Optional[Any] = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""" ) __lowercase : Optional[int] = encoding["""pixel_values"""] __lowercase : str = model(lowerCAmelCase_ ) __lowercase : Tuple = outputs.logits # verify logits __lowercase : str = [1, 16] if """rvlcdip""" in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(lowerCAmelCase_ ), "Shape of logits not as expected" Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: if has_lm_head: __lowercase : Optional[Any] = """dit-base""" if """base""" in checkpoint_url else """dit-large""" else: __lowercase : Tuple = """dit-base-finetuned-rvlcdip""" if """dit-b""" in checkpoint_url else """dit-large-finetuned-rvlcdip""" image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=lowerCAmelCase_ , ) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=lowerCAmelCase_ , ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) lowerCamelCase : List[str] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
649
1
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class lowerCAmelCase : '''simple docstring''' def __init__( self : int , __a : Dict , __a : Union[str, Any]=13 , __a : str=32 , __a : int=2 , __a : List[str]=3 , __a : Optional[int]=16 , __a : List[Any]=[1, 2, 1] , __a : Optional[Any]=[2, 2, 4] , __a : Any=2 , __a : Dict=2.0 , __a : Any=True , __a : Optional[int]=0.0 , __a : Union[str, Any]=0.0 , __a : Union[str, Any]=0.1 , __a : Optional[Any]="gelu" , __a : int=False , __a : str=True , __a : Union[str, Any]=0.02 , __a : Tuple=1E-5 , __a : str=True , __a : Optional[Any]=None , __a : Optional[Any]=True , __a : Optional[int]=10 , __a : Optional[int]=8 , __a : List[Any]=["stage1", "stage2", "stage3"] , __a : List[str]=[1, 2, 3] , ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = parent __lowercase : List[str] = batch_size __lowercase : Tuple = image_size __lowercase : Any = patch_size __lowercase : Dict = num_channels __lowercase : int = embed_dim __lowercase : Dict = depths __lowercase : Optional[Any] = num_heads __lowercase : Union[str, Any] = window_size __lowercase : Dict = mlp_ratio __lowercase : List[Any] = qkv_bias __lowercase : str = hidden_dropout_prob __lowercase : Tuple = attention_probs_dropout_prob __lowercase : Tuple = drop_path_rate __lowercase : Dict = hidden_act __lowercase : Union[str, Any] = use_absolute_embeddings __lowercase : Any = patch_norm __lowercase : Optional[int] = layer_norm_eps __lowercase : Dict = initializer_range __lowercase : Any = is_training __lowercase : List[str] = scope __lowercase : int = use_labels __lowercase : List[Any] = type_sequence_label_size __lowercase : List[Any] = encoder_stride __lowercase : Any = out_features __lowercase : List[str] = out_indices def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : Any = None if self.use_labels: __lowercase : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : Dict = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowerCAmelCase ( self : int , __a : str , __a : Tuple , __a : str ) -> Dict: """simple docstring""" __lowercase : Optional[Any] = MaskFormerSwinModel(config=__a ) model.to(__a ) model.eval() __lowercase : Tuple = model(__a ) __lowercase : List[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __lowercase : Optional[int] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowerCAmelCase ( self : List[Any] , __a : Any , __a : Optional[int] , __a : str ) -> Tuple: """simple docstring""" __lowercase : Tuple = MaskFormerSwinBackbone(config=__a ) model.to(__a ) model.eval() __lowercase : List[Any] = model(__a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(__a ): __lowercase : Optional[int] = ["""stem"""] __lowercase : int = MaskFormerSwinBackbone(config=__a ) def lowerCAmelCase ( self : str ) -> int: """simple docstring""" __lowercase : Tuple = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase : int = config_and_inputs __lowercase : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Tuple = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) _A : int = {'''feature-extraction''': MaskFormerSwinModel} if is_torch_available() else {} _A : int = False _A : int = False _A : int = False _A : Tuple = False _A : Optional[int] = False def lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" __lowercase : List[str] = MaskFormerSwinModelTester(self ) __lowercase : Union[str, Any] = ConfigTester(self , config_class=__a , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( """`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with""" """ `nn.DataParallel`""" ) ) def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" pass def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" return def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : int ) -> List[Any]: """simple docstring""" __lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__a ) @unittest.skip("""Swin does not use inputs_embeds""" ) def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" pass @unittest.skip("""Swin does not support feedforward chunking""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" pass def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase , __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Optional[Any] = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowercase : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" __lowercase , __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Optional[int] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : Any = [*signature.parameters.keys()] __lowercase : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) @unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" ) def lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" pass @unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" ) def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" pass def lowerCAmelCase ( self : Tuple , __a : Any , __a : Any , __a : List[Any] , __a : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : List[str] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : List[Any] = outputs.hidden_states __lowercase : Tuple = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__a ) , __a ) # Swin has a different seq_length __lowercase : Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowercase : Optional[int] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" __lowercase , __lowercase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __lowercase : Optional[int] = True self.check_hidden_states_output(__a , __a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase : List[Any] = True self.check_hidden_states_output(__a , __a , __a , __a ) def lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Tuple = 3 __lowercase : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __lowercase : Tuple = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowercase : Tuple = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __lowercase : Dict = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __lowercase : Dict = True self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase : Optional[int] = True self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) ) @unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" pass def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" __lowercase , __lowercase : Any = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(__a : Optional[Any] ): __lowercase : Union[str, Any] = 0 return t def check_equivalence(__a : Optional[Any] , __a : Tuple , __a : Union[str, Any] , __a : List[Any]={} ): with torch.no_grad(): __lowercase : List[str] = model(**__a , return_dict=__a , **__a ) __lowercase : Dict = model(**__a , return_dict=__a , **__a ).to_tuple() def recursive_check(__a : Optional[int] , __a : int ): if isinstance(__a , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__a , __a ): recursive_check(__a , __a ) elif isinstance(__a , __a ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(__a , __a ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(__a ) , set_nan_tensor_to_zero(__a ) , atol=1E-5 ) , msg=( """Tuple and dict output are not equal. Difference:""" F" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:" F" {torch.isnan(__a ).any()} and `inf`: {torch.isinf(__a )}. Dict has" F" `nan`: {torch.isnan(__a ).any()} and `inf`: {torch.isinf(__a )}." ) , ) recursive_check(__a , __a ) for model_class in self.all_model_classes: __lowercase : Optional[int] = model_class(__a ) model.to(__a ) model.eval() __lowercase : int = self._prepare_for_class(__a , __a ) __lowercase : Optional[Any] = self._prepare_for_class(__a , __a ) check_equivalence(__a , __a , __a ) __lowercase : List[Any] = self._prepare_for_class(__a , __a , return_labels=__a ) __lowercase : List[str] = self._prepare_for_class(__a , __a , return_labels=__a ) check_equivalence(__a , __a , __a ) __lowercase : Optional[int] = self._prepare_for_class(__a , __a ) __lowercase : List[Any] = self._prepare_for_class(__a , __a ) check_equivalence(__a , __a , __a , {"""output_hidden_states""": True} ) __lowercase : List[Any] = self._prepare_for_class(__a , __a , return_labels=__a ) __lowercase : Tuple = self._prepare_for_class(__a , __a , return_labels=__a ) check_equivalence(__a , __a , __a , {"""output_hidden_states""": True} ) @require_torch class lowerCAmelCase ( unittest.TestCase , __a ): '''simple docstring''' _A : List[str] = (MaskFormerSwinBackbone,) if is_torch_available() else () _A : List[Any] = MaskFormerSwinConfig def lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" __lowercase : Optional[Any] = MaskFormerSwinModelTester(self ) def lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : str = inputs_dict["""pixel_values"""].shape[0] for backbone_class in self.all_model_classes: __lowercase : Tuple = backbone_class(__a ) backbone.to(__a ) backbone.eval() __lowercase : Union[str, Any] = backbone(**__a ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , __a ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True __lowercase : Optional[Any] = backbone(**__a , output_hidden_states=__a ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) __lowercase , __lowercase , __lowercase : str = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: __lowercase : int = backbone(**__a , output_attentions=__a ) self.assertIsNotNone(outputs.attentions )
649
from torch import nn class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , __a : int , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" super().__init__() __lowercase : int = class_size __lowercase : int = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) __lowercase : str = nn.Linear(__a , __a ) def lowerCAmelCase ( self : Tuple , __a : int ) -> Tuple: """simple docstring""" __lowercase : str = self.mlp(__a ) return logits
649
1
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets lowerCamelCase : Union[str, Any] = '''\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } ''' lowerCamelCase : Optional[Any] = '''\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve ''' lowerCamelCase : List[str] = ''' Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: "c" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric(\'mauve\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/krishnap25/mauve""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/krishnap25/mauve"""] , reference_urls=[ """https://arxiv.org/abs/2102.01454""", """https://github.com/krishnap25/mauve""", ] , ) def lowerCAmelCase ( self : str , __a : Any , __a : int , __a : Optional[int]=None , __a : Optional[Any]=None , __a : int=None , __a : List[Any]=None , __a : Tuple="auto" , __a : Union[str, Any]=-1 , __a : Union[str, Any]=0.9 , __a : List[str]=5 , __a : Tuple=500 , __a : Optional[int]="gpt2-large" , __a : Any=-1 , __a : int=1024 , __a : List[str]=25 , __a : int=5 , __a : List[str]=True , __a : str=25 , ) -> Tuple: """simple docstring""" __lowercase : Union[str, Any] = compute_mauve( p_text=__a , q_text=__a , p_features=__a , q_features=__a , p_tokens=__a , q_tokens=__a , num_buckets=__a , pca_max_data=__a , kmeans_explained_var=__a , kmeans_num_redo=__a , kmeans_max_iter=__a , featurize_model_name=__a , device_id=__a , max_text_length=__a , divergence_curve_discretization_size=__a , mauve_scaling_factor=__a , verbose=__a , seed=__a , ) return out
649
import fire from utils import calculate_rouge, save_json def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : str=None , **lowerCAmelCase_ : str ): __lowercase : Tuple = [x.strip() for x in open(lowerCAmelCase_ ).readlines()] __lowercase : Dict = [x.strip() for x in open(lowerCAmelCase_ ).readlines()][: len(lowerCAmelCase_ )] __lowercase : Tuple = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) if save_path is not None: save_json(lowerCAmelCase_ , lowerCAmelCase_ , indent=lowerCAmelCase_ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
649
1
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowerCamelCase : int = 2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowerCamelCase : Optional[int] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowerCamelCase : int = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : List[Any] = len([g for position, g in enumerate(lowerCAmelCase_ ) if g == main_target[position]] ) return (item, float(lowerCAmelCase_ )) def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Tuple = random.randint(0 , len(lowerCAmelCase_ ) - 1 ) __lowercase : Any = parent_a[:random_slice] + parent_a[random_slice:] __lowercase : int = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : list[str] ): __lowercase : Union[str, Any] = list(lowerCAmelCase_ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: __lowercase : Tuple = random.choice(lowerCAmelCase_ ) return "".join(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : tuple[str, float] , lowerCAmelCase_ : list[tuple[str, float]] , lowerCAmelCase_ : list[str] , ): __lowercase : List[Any] = [] # Generate more children proportionally to the fitness score. __lowercase : Optional[Any] = int(parent_a[1] * 100 ) + 1 __lowercase : Optional[int] = 10 if child_n >= 10 else child_n for _ in range(lowerCAmelCase_ ): __lowercase : Union[str, Any] = population_score[random.randint(0 , lowerCAmelCase_ )][0] __lowercase , __lowercase : str = crossover(parent_a[0] , lowerCAmelCase_ ) # Append new string to the population list. pop.append(mutate(lowerCAmelCase_ , lowerCAmelCase_ ) ) pop.append(mutate(lowerCAmelCase_ , lowerCAmelCase_ ) ) return pop def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : list[str] , lowerCAmelCase_ : bool = True ): # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: __lowercase : str = F"{N_POPULATION} must be bigger than {N_SELECTED}" raise ValueError(lowerCAmelCase_ ) # Verify that the target contains no genes besides the ones inside genes variable. __lowercase : Union[str, Any] = sorted({c for c in target if c not in genes} ) if not_in_genes_list: __lowercase : List[Any] = F"{not_in_genes_list} is not in genes list, evolution cannot converge" raise ValueError(lowerCAmelCase_ ) # Generate random starting population. __lowercase : Optional[int] = [] for _ in range(lowerCAmelCase_ ): population.append("""""".join([random.choice(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) )] ) ) # Just some logs to know what the algorithms is doing. __lowercase , __lowercase : List[Any] = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowerCAmelCase_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. __lowercase : Union[str, Any] = [evaluate(lowerCAmelCase_ , lowerCAmelCase_ ) for item in population] # Check if there is a matching evolution. __lowercase : Optional[Any] = sorted(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : x[1] , reverse=lowerCAmelCase_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F"\nGeneration: {generation}" F"\nTotal Population:{total_population}" F"\nBest score: {population_score[0][1]}" F"\nBest string: {population_score[0][0]}" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. __lowercase : List[str] = population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowerCAmelCase_ ) # Normalize population score to be between 0 and 1. __lowercase : Any = [ (item, score / len(lowerCAmelCase_ )) for item, score in population_score ] # This is selection for i in range(lowerCAmelCase_ ): population.extend(select(population_score[int(lowerCAmelCase_ )] , lowerCAmelCase_ , lowerCAmelCase_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowerCAmelCase_ ) > N_POPULATION: break if __name__ == "__main__": lowerCamelCase : Any = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) lowerCamelCase : Union[str, Any] = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) lowerCamelCase ,lowerCamelCase ,lowerCamelCase : List[str] = basic(target_str, genes_list) print( f'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
649
from argparse import ArgumentParser from . import BaseTransformersCLICommand def snake_case_ ( lowerCAmelCase_ : Dict ): return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class lowerCAmelCase ( __a ): '''simple docstring''' @staticmethod def lowerCAmelCase ( __a : ArgumentParser ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = parser.add_parser("""download""" ) download_parser.add_argument( """--cache-dir""" , type=__a , default=__a , help="""Path to location to store the models""" ) download_parser.add_argument( """--force""" , action="""store_true""" , help="""Force the model to be download even if already in cache-dir""" ) download_parser.add_argument( """--trust-remote-code""" , action="""store_true""" , help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" , ) download_parser.add_argument("""model""" , type=__a , help="""Name of the model to download""" ) download_parser.set_defaults(func=__a ) def __init__( self : Dict , __a : str , __a : str , __a : bool , __a : bool ) -> Union[str, Any]: """simple docstring""" __lowercase : Dict = model __lowercase : List[Any] = cache __lowercase : Any = force __lowercase : Optional[int] = trust_remote_code def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
649
1
import logging import os import threading import time try: import warnings except ImportError: lowerCamelCase : Any = None try: import msvcrt except ImportError: lowerCamelCase : str = None try: import fcntl except ImportError: lowerCamelCase : Optional[Any] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: lowerCamelCase : Union[str, Any] = OSError # Data # ------------------------------------------------ lowerCamelCase : Tuple = [ '''Timeout''', '''BaseFileLock''', '''WindowsFileLock''', '''UnixFileLock''', '''SoftFileLock''', '''FileLock''', ] lowerCamelCase : Tuple = '''3.0.12''' lowerCamelCase : Any = None def snake_case_ ( ): global _logger __lowercase : List[str] = _logger or logging.getLogger(__name__ ) return _logger class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Any , __a : Any ) -> List[Any]: """simple docstring""" __lowercase : List[str] = lock_file return None def __str__( self : str ) -> Any: """simple docstring""" __lowercase : Any = F"The file lock '{self.lock_file}' could not be acquired." return temp class lowerCAmelCase : '''simple docstring''' def __init__( self : List[Any] , __a : Optional[int] ) -> int: """simple docstring""" __lowercase : Optional[Any] = lock return None def __enter__( self : Dict ) -> Dict: """simple docstring""" return self.lock def __exit__( self : Optional[int] , __a : Dict , __a : Any , __a : Tuple ) -> Optional[Any]: """simple docstring""" self.lock.release() return None class lowerCAmelCase : '''simple docstring''' def __init__( self : Tuple , __a : Any , __a : Dict=-1 , __a : Optional[Any]=None ) -> Any: """simple docstring""" __lowercase : Optional[int] = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long __lowercase : Dict = self.hash_filename_if_too_long(__a , __a ) # The path to the lock file. __lowercase : Optional[Any] = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __lowercase : int = None # The default timeout value. __lowercase : Optional[int] = timeout # We use this lock primarily for the lock counter. __lowercase : Optional[Any] = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __lowercase : Union[str, Any] = 0 return None @property def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return self._lock_file @property def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return self._timeout @timeout.setter def lowerCAmelCase ( self : Tuple , __a : Tuple ) -> Dict: """simple docstring""" __lowercase : Tuple = float(__a ) return None def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" raise NotImplementedError() def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" raise NotImplementedError() @property def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" return self._lock_file_fd is not None def lowerCAmelCase ( self : Any , __a : Optional[Any]=None , __a : Union[str, Any]=0.05 ) -> List[str]: """simple docstring""" if timeout is None: __lowercase : Union[str, Any] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __lowercase : int = id(self ) __lowercase : Optional[Any] = self._lock_file __lowercase : List[str] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"Attempting to acquire lock {lock_id} on {lock_filename}" ) self._acquire() if self.is_locked: logger().debug(F"Lock {lock_id} acquired on {lock_filename}" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"Timeout on acquiring lock {lock_id} on {lock_filename}" ) raise Timeout(self._lock_file ) else: logger().debug( F"Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ..." ) time.sleep(__a ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __lowercase : Optional[int] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def lowerCAmelCase ( self : Union[str, Any] , __a : Optional[Any]=False ) -> Optional[Any]: """simple docstring""" with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __lowercase : Optional[Any] = id(self ) __lowercase : str = self._lock_file logger().debug(F"Attempting to release lock {lock_id} on {lock_filename}" ) self._release() __lowercase : List[str] = 0 logger().debug(F"Lock {lock_id} released on {lock_filename}" ) return None def __enter__( self : Any ) -> Optional[Any]: """simple docstring""" self.acquire() return self def __exit__( self : List[str] , __a : str , __a : int , __a : List[Any] ) -> Tuple: """simple docstring""" self.release() return None def __del__( self : Optional[int] ) -> Optional[int]: """simple docstring""" self.release(force=__a ) return None def lowerCAmelCase ( self : Tuple , __a : str , __a : int ) -> str: """simple docstring""" __lowercase : List[Any] = os.path.basename(__a ) if len(__a ) > max_length and max_length > 0: __lowercase : int = os.path.dirname(__a ) __lowercase : List[str] = str(hash(__a ) ) __lowercase : Optional[Any] = filename[: max_length - len(__a ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(__a , __a ) else: return path class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Union[str, Any] , __a : List[Any] , __a : Optional[int]=-1 , __a : Tuple=None ) -> List[Any]: """simple docstring""" from .file_utils import relative_to_absolute_path super().__init__(__a , timeout=__a , max_filename_length=__a ) __lowercase : Tuple = """\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __lowercase : Tuple = os.open(self._lock_file , __a ) except OSError: pass else: try: msvcrt.locking(__a , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__a ) else: __lowercase : Union[str, Any] = fd return None def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = self._lock_file_fd __lowercase : int = None msvcrt.locking(__a , msvcrt.LK_UNLCK , 1 ) os.close(__a ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : List[str] , __a : Optional[Any] , __a : str=-1 , __a : List[str]=None ) -> Any: """simple docstring""" __lowercase : Dict = os.statvfs(os.path.dirname(__a ) ).f_namemax super().__init__(__a , timeout=__a , max_filename_length=__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase : List[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC __lowercase : List[str] = os.open(self._lock_file , __a ) try: fcntl.flock(__a , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__a ) else: __lowercase : str = fd return None def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Any = self._lock_file_fd __lowercase : List[str] = None fcntl.flock(__a , fcntl.LOCK_UN ) os.close(__a ) return None class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __lowercase : Union[str, Any] = os.open(self._lock_file , __a ) except OSError: pass else: __lowercase : Optional[int] = fd return None def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" os.close(self._lock_file_fd ) __lowercase : int = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None lowerCamelCase : Optional[Any] = None if msvcrt: lowerCamelCase : List[Any] = WindowsFileLock elif fcntl: lowerCamelCase : List[Any] = UnixFileLock else: lowerCamelCase : Union[str, Any] = SoftFileLock if warnings is not None: warnings.warn('''only soft file lock is available''')
649
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowerCamelCase : Union[str, Any] = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , __a : List[str] , __a : Optional[int]=16 , __a : Optional[Any]=13 , __a : str=7 , __a : List[str]=14 , __a : Any=10 , __a : str=19 , __a : int=5 , __a : Any=4 , __a : List[Any]=True , __a : Tuple=16 , __a : Dict=2 , __a : Tuple=4 , __a : int=4 , __a : List[Any]="gelu" , __a : Tuple=0.1 , __a : List[str]=0.1 , __a : int=[1, 2, 3, 4, 5] , __a : str=25 , __a : Any=5 , ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = d_model __lowercase : Dict = parent __lowercase : Tuple = batch_size __lowercase : Optional[int] = prediction_length __lowercase : List[str] = context_length __lowercase : Any = cardinality __lowercase : str = num_time_features __lowercase : Optional[int] = lags_sequence __lowercase : Optional[Any] = embedding_dimension __lowercase : List[Any] = is_training __lowercase : List[str] = hidden_size __lowercase : int = num_hidden_layers __lowercase : Any = num_attention_heads __lowercase : List[Any] = intermediate_size __lowercase : int = hidden_act __lowercase : str = hidden_dropout_prob __lowercase : List[Any] = attention_probs_dropout_prob __lowercase : str = context_length __lowercase : int = prediction_length + label_length __lowercase : Union[str, Any] = label_length __lowercase : Optional[int] = moving_average __lowercase : Optional[Any] = autocorrelation_factor def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def lowerCAmelCase ( self : Tuple , __a : str ) -> int: """simple docstring""" __lowercase : Any = config.context_length + max(config.lags_sequence ) __lowercase : Any = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __lowercase : Optional[int] = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __lowercase : List[str] = floats_tensor([self.batch_size, _past_length] ) __lowercase : List[str] = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __lowercase : Dict = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __lowercase : str = floats_tensor([self.batch_size, config.prediction_length] ) __lowercase : List[str] = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.get_config() __lowercase : Any = self.prepare_autoformer_inputs_dict(__a ) return config, inputs_dict def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase , __lowercase : List[str] = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase ( self : Optional[Any] , __a : Tuple , __a : Optional[int] ) -> Any: """simple docstring""" __lowercase : List[str] = AutoformerModel(config=__a ).to(__a ).eval() __lowercase : Optional[int] = model(**__a ) __lowercase : Dict = outputs.encoder_last_hidden_state __lowercase : Tuple = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : List[str] = model.get_encoder() encoder.save_pretrained(__a ) __lowercase : List[str] = AutoformerEncoder.from_pretrained(__a ).to(__a ) __lowercase , __lowercase , __lowercase , __lowercase , __lowercase : Any = model.create_network_inputs(**__a ) __lowercase , __lowercase : Any = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __lowercase : Optional[Any] = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __lowercase : Union[str, Any] = encoder(inputs_embeds=__a )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) __lowercase : str = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __lowercase : Optional[int] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __lowercase : Any = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __lowercase : Dict = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : Optional[Any] = model.get_decoder() decoder.save_pretrained(__a ) __lowercase : Tuple = AutoformerDecoder.from_pretrained(__a ).to(__a ) __lowercase : str = decoder( trend=__a , inputs_embeds=__a , encoder_hidden_states=__a , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[str] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _A : List[Any] = (AutoformerForPrediction,) if is_torch_available() else () _A : Any = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} _A : Dict = False _A : Tuple = False _A : Optional[int] = False _A : Tuple = False _A : str = False _A : Union[str, Any] = False def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" __lowercase : List[str] = AutoformerModelTester(self ) __lowercase : Dict = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowercase : Dict = model_class(__a ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowercase , __lowercase : Tuple = model_class.from_pretrained(__a , output_loading_info=__a ) self.assertEqual(info["""missing_keys"""] , [] ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__a ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def lowerCAmelCase ( self : str ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : Any = inspect.signature(getattr(__a , """forward""" ) ) # The main input is the name of the argument after `self` __lowercase : Optional[int] = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , __a ) def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Dict = model_class(__a ) __lowercase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : Any = [*signature.parameters.keys()] __lowercase : int = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(__a )] , __a ) def lowerCAmelCase ( self : int ) -> int: """simple docstring""" __lowercase , __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : int = True __lowercase : Tuple = getattr(self.model_tester , """seq_length""" , __a ) __lowercase : Union[str, Any] = getattr(self.model_tester , """decoder_seq_length""" , __a ) __lowercase : List[str] = getattr(self.model_tester , """encoder_seq_length""" , __a ) __lowercase : List[Any] = getattr(self.model_tester , """d_model""" , __a ) __lowercase : Optional[int] = getattr(self.model_tester , """num_attention_heads""" , __a ) __lowercase : Any = d_model // num_attention_heads for model_class in self.all_model_classes: __lowercase : Dict = True __lowercase : List[str] = False __lowercase : Optional[int] = True __lowercase : str = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : int = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase : Optional[int] = True __lowercase : List[str] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Union[str, Any] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Dict = outputs.encoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __lowercase : Tuple = len(__a ) __lowercase : str = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__a , __a ) # decoder attentions __lowercase : List[Any] = outputs.decoder_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __lowercase : Optional[int] = outputs.cross_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __lowercase : Tuple = True __lowercase : Union[str, Any] = True __lowercase : Tuple = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Any = model(**self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + 2 , len(__a ) ) __lowercase : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def snake_case_ ( lowerCAmelCase_ : Optional[int]="train-batch.pt" ): __lowercase : Dict = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=lowerCAmelCase_ , repo_type="""dataset""" ) __lowercase : Optional[int] = torch.load(lowerCAmelCase_ , map_location=lowerCAmelCase_ ) return batch @require_torch @slow class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" __lowercase : List[str] = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : List[Any] = prepare_batch() with torch.no_grad(): __lowercase : Tuple = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] __lowercase : List[str] = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , __a ) __lowercase : Optional[int] = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" __lowercase : int = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : List[str] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowercase : Optional[Any] = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state __lowercase : List[str] = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , __a ) __lowercase : Optional[int] = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : Optional[int] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowercase : int = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) __lowercase : int = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , __a ) __lowercase : Optional[Any] = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=__a ) __lowercase : Dict = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __a , rtol=1E-1 ) )
649
1
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class lowerCAmelCase ( __a ): '''simple docstring''' _A : torch.FloatTensor class lowerCAmelCase ( __a , __a ): '''simple docstring''' @register_to_config def __init__( self : Optional[int] , __a : int = 32 , __a : int = 64 , __a : int = 20 , __a : int = 768 , __a : List[Any]=77 , __a : Tuple=4 , __a : float = 0.0 , __a : str = "silu" , __a : Optional[str] = None , __a : Optional[str] = None , __a : Optional[str] = "linear" , __a : Optional[str] = "prd" , __a : Optional[int] = None , __a : Optional[int] = None , __a : Optional[int] = None , ) -> int: """simple docstring""" super().__init__() __lowercase : int = num_attention_heads __lowercase : Optional[int] = attention_head_dim __lowercase : Any = num_attention_heads * attention_head_dim __lowercase : Union[str, Any] = additional_embeddings __lowercase : Dict = time_embed_dim or inner_dim __lowercase : Optional[Any] = embedding_proj_dim or embedding_dim __lowercase : int = clip_embed_dim or embedding_dim __lowercase : int = Timesteps(__a , __a , 0 ) __lowercase : Union[str, Any] = TimestepEmbedding(__a , __a , out_dim=__a , act_fn=__a ) __lowercase : Optional[int] = nn.Linear(__a , __a ) if embedding_proj_norm_type is None: __lowercase : List[str] = None elif embedding_proj_norm_type == "layer": __lowercase : Any = nn.LayerNorm(__a ) else: raise ValueError(F"unsupported embedding_proj_norm_type: {embedding_proj_norm_type}" ) __lowercase : Union[str, Any] = nn.Linear(__a , __a ) if encoder_hid_proj_type is None: __lowercase : Tuple = None elif encoder_hid_proj_type == "linear": __lowercase : Dict = nn.Linear(__a , __a ) else: raise ValueError(F"unsupported encoder_hid_proj_type: {encoder_hid_proj_type}" ) __lowercase : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , __a ) ) if added_emb_type == "prd": __lowercase : List[Any] = nn.Parameter(torch.zeros(1 , 1 , __a ) ) elif added_emb_type is None: __lowercase : Dict = None else: raise ValueError( F"`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`." ) __lowercase : Optional[Any] = nn.ModuleList( [ BasicTransformerBlock( __a , __a , __a , dropout=__a , activation_fn="""gelu""" , attention_bias=__a , ) for d in range(__a ) ] ) if norm_in_type == "layer": __lowercase : Union[str, Any] = nn.LayerNorm(__a ) elif norm_in_type is None: __lowercase : Dict = None else: raise ValueError(F"Unsupported norm_in_type: {norm_in_type}." ) __lowercase : Any = nn.LayerNorm(__a ) __lowercase : Any = nn.Linear(__a , __a ) __lowercase : Any = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) __lowercase : Union[str, Any] = causal_attention_mask[None, ...] self.register_buffer("""causal_attention_mask""" , __a , persistent=__a ) __lowercase : Tuple = nn.Parameter(torch.zeros(1 , __a ) ) __lowercase : str = nn.Parameter(torch.zeros(1 , __a ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowerCAmelCase ( self : Union[str, Any] ) -> Dict[str, AttentionProcessor]: """simple docstring""" __lowercase : Dict = {} def fn_recursive_add_processors(__a : str , __a : torch.nn.Module , __a : Dict[str, AttentionProcessor] ): if hasattr(__a , """set_processor""" ): __lowercase : Tuple = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"{name}.{sub_name}" , __a , __a ) return processors for name, module in self.named_children(): fn_recursive_add_processors(__a , __a , __a ) return processors def lowerCAmelCase ( self : Optional[int] , __a : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = len(self.attn_processors.keys() ) if isinstance(__a , __a ) and len(__a ) != count: raise ValueError( F"A dict of processors was passed, but the number of processors {len(__a )} does not match the" F" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(__a : str , __a : torch.nn.Module , __a : Dict ): if hasattr(__a , """set_processor""" ): if not isinstance(__a , __a ): module.set_processor(__a ) else: module.set_processor(processor.pop(F"{name}.processor" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"{name}.{sub_name}" , __a , __a ) for name, module in self.named_children(): fn_recursive_attn_processor(__a , __a , __a ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" self.set_attn_processor(AttnProcessor() ) def lowerCAmelCase ( self : int , __a : str , __a : Union[torch.Tensor, float, int] , __a : torch.FloatTensor , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.BoolTensor] = None , __a : bool = True , ) -> Tuple: """simple docstring""" __lowercase : str = hidden_states.shape[0] __lowercase : int = timestep if not torch.is_tensor(__a ): __lowercase : Tuple = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(__a ) and len(timesteps.shape ) == 0: __lowercase : Optional[Any] = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __lowercase : Any = timesteps * torch.ones(__a , dtype=timesteps.dtype , device=timesteps.device ) __lowercase : Any = self.time_proj(__a ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __lowercase : int = timesteps_projected.to(dtype=self.dtype ) __lowercase : List[Any] = self.time_embedding(__a ) if self.embedding_proj_norm is not None: __lowercase : Optional[Any] = self.embedding_proj_norm(__a ) __lowercase : Tuple = self.embedding_proj(__a ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __lowercase : Dict = self.encoder_hidden_states_proj(__a ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" ) __lowercase : List[Any] = self.proj_in(__a ) __lowercase : List[str] = self.positional_embedding.to(hidden_states.dtype ) __lowercase : int = [] __lowercase : Dict = 0 if encoder_hidden_states is not None: additional_embeds.append(__a ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: __lowercase : Optional[int] = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: __lowercase : Optional[Any] = hidden_states[:, None, :] __lowercase : Union[str, Any] = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __lowercase : List[str] = self.prd_embedding.to(hidden_states.dtype ).expand(__a , -1 , -1 ) additional_embeds.append(__a ) __lowercase : str = torch.cat( __a , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __lowercase : List[Any] = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __lowercase : str = F.pad( __a , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) __lowercase : str = hidden_states + positional_embeddings if attention_mask is not None: __lowercase : List[str] = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 __lowercase : Union[str, Any] = F.pad(__a , (0, self.additional_embeddings) , value=0.0 ) __lowercase : List[Any] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) __lowercase : Tuple = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: __lowercase : Optional[Any] = self.norm_in(__a ) for block in self.transformer_blocks: __lowercase : Optional[Any] = block(__a , attention_mask=__a ) __lowercase : Union[str, Any] = self.norm_out(__a ) if self.prd_embedding is not None: __lowercase : Optional[Any] = hidden_states[:, -1] else: __lowercase : int = hidden_states[:, additional_embeddings_len:] __lowercase : Optional[int] = self.proj_to_clip_embeddings(__a ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=__a ) def lowerCAmelCase ( self : List[str] , __a : Dict ) -> List[Any]: """simple docstring""" __lowercase : Any = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
649
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowerCAmelCase ( __a , __a ): '''simple docstring''' _A : str = 1 @register_to_config def __init__( self : Optional[int] , __a : Tuple=2000 , __a : List[str]=0.1 , __a : str=20 , __a : Optional[int]=1E-3 ) -> int: """simple docstring""" __lowercase : Tuple = None __lowercase : Union[str, Any] = None __lowercase : int = None def lowerCAmelCase ( self : List[Any] , __a : Any , __a : Union[str, torch.device] = None ) -> str: """simple docstring""" __lowercase : List[str] = torch.linspace(1 , self.config.sampling_eps , __a , device=__a ) def lowerCAmelCase ( self : Tuple , __a : List[Any] , __a : Tuple , __a : int , __a : Optional[int]=None ) -> str: """simple docstring""" if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __lowercase : Dict = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __lowercase : int = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __lowercase : Union[str, Any] = std.flatten() while len(std.shape ) < len(score.shape ): __lowercase : Optional[Any] = std.unsqueeze(-1 ) __lowercase : List[Any] = -score / std # compute __lowercase : Dict = -1.0 / len(self.timesteps ) __lowercase : int = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __lowercase : List[Any] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __lowercase : Union[str, Any] = beta_t.unsqueeze(-1 ) __lowercase : List[str] = -0.5 * beta_t * x __lowercase : int = torch.sqrt(__a ) __lowercase : Union[str, Any] = drift - diffusion**2 * score __lowercase : Optional[Any] = x + drift * dt # add noise __lowercase : List[str] = randn_tensor(x.shape , layout=x.layout , generator=__a , device=x.device , dtype=x.dtype ) __lowercase : str = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Tuple ) -> Optional[int]: """simple docstring""" return self.config.num_train_timesteps
649
1
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device lowerCamelCase : List[str] = False class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : int ) -> str: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __lowercase : int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) __lowercase : List[Any] = torch.manual_seed(0 ) __lowercase : List[str] = pipe.dual_guided( prompt="""first prompt""" , image=__a , text_to_image_strength=0.75 , generator=__a , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__a ) __lowercase : Any = VersatileDiffusionPipeline.from_pretrained(__a , torch_dtype=torch.floataa ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __lowercase : Tuple = generator.manual_seed(0 ) __lowercase : Optional[int] = pipe.dual_guided( prompt="""first prompt""" , image=__a , text_to_image_strength=0.75 , generator=__a , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" __lowercase : Tuple = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __lowercase : int = """cyberpunk 2077""" __lowercase : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) __lowercase : Tuple = torch.manual_seed(0 ) __lowercase : Dict = pipe.dual_guided( prompt=__a , image=__a , text_to_image_strength=0.75 , generator=__a , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images __lowercase : Optional[Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __lowercase : str = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 __lowercase : Tuple = """A painting of a squirrel eating a burger """ __lowercase : Optional[int] = torch.manual_seed(0 ) __lowercase : str = pipe.text_to_image( prompt=__a , generator=__a , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images __lowercase : Optional[int] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __lowercase : List[str] = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 __lowercase : Tuple = pipe.image_variation(__a , generator=__a , output_type="""numpy""" ).images __lowercase : List[str] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __lowercase : Optional[int] = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
649
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : str = LongformerTokenizer _A : int = True _A : Optional[int] = LongformerTokenizerFast _A : int = True def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __lowercase : Union[str, Any] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Any = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __lowercase : Optional[int] = {"""unk_token""": """<unk>"""} __lowercase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__a ) ) def lowerCAmelCase ( self : Optional[int] , **__a : Optional[Any] ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Tuple , **__a : Tuple ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : str , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = """lower newer""" __lowercase : int = """lower newer""" return input_text, output_text def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowercase : Dict = """lower newer""" __lowercase : Optional[Any] = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] __lowercase : str = tokenizer.tokenize(__a ) # , add_prefix_space=True) self.assertListEqual(__a , __a ) __lowercase : int = tokens + [tokenizer.unk_token] __lowercase : str = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=__a ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=__a ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : Any = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" ) __lowercase : Optional[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=__a ) __lowercase : List[str] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__a ) __lowercase : Optional[Any] = tokenizer.encode( """sequence builders""" , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Union[str, Any] = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : List[Any] = tokenizer.build_inputs_with_special_tokens(__a ) __lowercase : Any = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() __lowercase : Tuple = """Encode this sequence.""" __lowercase : Optional[Any] = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments __lowercase : Dict = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__a , __a ) __lowercase : List[str] = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__a , __a ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) __lowercase : str = tokenizer.encode(__a , add_special_tokens=__a ) __lowercase : Dict = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__a , __a ) # Testing spaces after special tokens __lowercase : List[Any] = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(__a , lstrip=__a , rstrip=__a )} ) # mask token has a left space __lowercase : Dict = tokenizer.convert_tokens_to_ids(__a ) __lowercase : List[str] = """Encode <mask> sequence""" __lowercase : List[str] = """Encode <mask>sequence""" __lowercase : Union[str, Any] = tokenizer.encode(__a ) __lowercase : Dict = encoded.index(__a ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__a , __a ) __lowercase : int = tokenizer.encode(__a ) __lowercase : Union[str, Any] = encoded.index(__a ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__a , __a ) def lowerCAmelCase ( self : int ) -> str: """simple docstring""" pass def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) __lowercase : List[Any] = self.tokenizer_class.from_pretrained(__a , **__a ) __lowercase : Optional[Any] = """A, <mask> AllenNLP sentence.""" __lowercase : Union[str, Any] = tokenizer_r.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) __lowercase : Optional[Any] = tokenizer_p.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) __lowercase : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __lowercase : str = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __lowercase : Dict = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __lowercase : Any = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""trim_offsets"""] , __a ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : List[str] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` __lowercase : int = F"{text_of_1_token} {text_of_1_token}" __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Any = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) __lowercase : str = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Tuple = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) __lowercase : Optional[int] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : str = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) __lowercase : str = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : int = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) __lowercase : Any = F" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : str = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ) + 1, 1 + len(__a ) + 1 + len(__a )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Dict = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Tuple = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , )
649
1
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : float , lowerCAmelCase_ : float ): return round(float(moles / volume ) * nfactor ) def snake_case_ ( lowerCAmelCase_ : float , lowerCAmelCase_ : float , lowerCAmelCase_ : float ): return round(float((moles * 0.0_821 * temperature) / (volume) ) ) def snake_case_ ( lowerCAmelCase_ : float , lowerCAmelCase_ : float , lowerCAmelCase_ : float ): return round(float((moles * 0.0_821 * temperature) / (pressure) ) ) def snake_case_ ( lowerCAmelCase_ : float , lowerCAmelCase_ : float , lowerCAmelCase_ : float ): return round(float((pressure * volume) / (0.0_821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
649
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Dict , __a : Union[str, Any]=13 , __a : Dict=7 , __a : Dict=True , __a : Dict=True , __a : Any=True , __a : List[str]=True , __a : int=99 , __a : Optional[int]=32 , __a : str=2 , __a : int=4 , __a : List[str]=37 , __a : Union[str, Any]="gelu" , __a : Union[str, Any]=0.1 , __a : Union[str, Any]=0.1 , __a : List[Any]=512 , __a : int=16 , __a : Union[str, Any]=2 , __a : Union[str, Any]=0.02 , __a : List[str]=3 , __a : Dict=4 , __a : Optional[Any]=None , ) -> Optional[Any]: """simple docstring""" __lowercase : Any = parent __lowercase : Tuple = 13 __lowercase : Dict = 7 __lowercase : List[Any] = True __lowercase : Tuple = True __lowercase : List[str] = True __lowercase : Any = True __lowercase : Optional[int] = 99 __lowercase : str = 384 __lowercase : Optional[Any] = 2 __lowercase : Dict = 4 __lowercase : str = 37 __lowercase : Optional[int] = """gelu""" __lowercase : int = 0.1 __lowercase : Union[str, Any] = 0.1 __lowercase : Tuple = 512 __lowercase : Tuple = 16 __lowercase : Optional[int] = 2 __lowercase : Optional[Any] = 0.02 __lowercase : Dict = 3 __lowercase : Union[str, Any] = 4 __lowercase : Tuple = 128 __lowercase : Optional[Any] = 2 __lowercase : int = 9 __lowercase : List[Any] = 1 __lowercase : Union[str, Any] = None def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" __lowercase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : Optional[Any] = None if self.use_input_mask: __lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : Dict = None if self.use_token_type_ids: __lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase : Optional[Any] = None __lowercase : str = None __lowercase : Tuple = None if self.use_labels: __lowercase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : str = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : Optional[int] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Dict , __a : List[Any] , __a : List[str] , __a : Union[str, Any] , __a : str , __a : Union[str, Any] , __a : Tuple , __a : Tuple ) -> Dict: """simple docstring""" __lowercase : Dict = TFConvBertModel(config=__a ) __lowercase : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowercase : Any = [input_ids, input_mask] __lowercase : Dict = model(__a ) __lowercase : str = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : Any , __a : Tuple , __a : Union[str, Any] , __a : str , __a : Dict , __a : str ) -> Dict: """simple docstring""" __lowercase : Optional[int] = TFConvBertForMaskedLM(config=__a ) __lowercase : List[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : Any = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[int] , __a : int , __a : Any , __a : Optional[int] , __a : int , __a : int , __a : List[Any] , __a : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase : str = self.num_labels __lowercase : List[Any] = TFConvBertForSequenceClassification(config=__a ) __lowercase : int = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : List[str] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Optional[int] , __a : Any , __a : Optional[Any] , __a : int , __a : Optional[int] , __a : Tuple , __a : int , __a : int ) -> Dict: """simple docstring""" __lowercase : Tuple = self.num_choices __lowercase : Dict = TFConvBertForMultipleChoice(config=__a ) __lowercase : List[str] = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : int = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : str = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : str = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __lowercase : Dict = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : List[str] , __a : str , __a : List[str] , __a : List[str] , __a : List[str] , __a : Any , __a : Tuple , __a : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = self.num_labels __lowercase : Tuple = TFConvBertForTokenClassification(config=__a ) __lowercase : Dict = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : str = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : List[Any] , __a : Optional[int] , __a : List[str] , __a : Optional[Any] , __a : int , __a : Tuple , __a : Any , __a : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Any = TFConvBertForQuestionAnswering(config=__a ) __lowercase : str = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : List[Any] = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : Tuple = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : int = config_and_inputs __lowercase : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Dict = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _A : str = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _A : Union[str, Any] = False _A : List[str] = False _A : Dict = False def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : int = TFConvBertModelTester(self ) __lowercase : Tuple = ConfigTester(self , config_class=__a , hidden_size=37 ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__a ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Union[str, Any] = True __lowercase : List[Any] = True if hasattr(__a , """use_cache""" ): __lowercase : Optional[Any] = True __lowercase : List[str] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) __lowercase : int = getattr(self.model_tester , """key_length""" , __a ) for model_class in self.all_model_classes: __lowercase : Optional[Any] = self._prepare_for_class(__a , __a ) __lowercase : Tuple = model_class(__a ) __lowercase : Tuple = len(model(__a ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a , saved_model=__a ) __lowercase : List[Any] = os.path.join(__a , """saved_model""" , """1""" ) __lowercase : str = tf.keras.models.load_model(__a ) __lowercase : Optional[int] = model(__a ) if self.is_encoder_decoder: __lowercase : Union[str, Any] = outputs["""encoder_hidden_states"""] __lowercase : Union[str, Any] = outputs["""encoder_attentions"""] else: __lowercase : Union[str, Any] = outputs["""hidden_states"""] __lowercase : List[str] = outputs["""attentions"""] self.assertEqual(len(__a ) , __a ) __lowercase : List[Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : str = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) self.assertIsNotNone(__a ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : List[str] = True __lowercase : List[Any] = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length ) __lowercase : Optional[int] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) __lowercase : List[str] = getattr(self.model_tester , """key_length""" , __a ) __lowercase : List[Any] = getattr(self.model_tester , """key_length""" , __a ) def check_decoder_attentions_output(__a : List[str] ): __lowercase : Union[str, Any] = len(__a ) self.assertEqual(out_len % 2 , 0 ) __lowercase : Any = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__a : str ): __lowercase : str = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __lowercase : int = True __lowercase : Any = False __lowercase : List[Any] = model_class(__a ) __lowercase : Tuple = model(self._prepare_for_class(__a , __a ) ) __lowercase : Dict = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: __lowercase : Any = model_class(__a ) __lowercase : List[str] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __lowercase : Dict = True __lowercase : Optional[Any] = model_class(__a ) __lowercase : Optional[int] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine __lowercase : List[str] = True __lowercase : List[Any] = True __lowercase : Any = model_class(__a ) __lowercase : Optional[int] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @require_tf class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) __lowercase : str = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowercase : Tuple = model(__a )[0] __lowercase : Any = [1, 6, 768] self.assertEqual(output.shape , __a ) __lowercase : Optional[Any] = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-4 )
649
1
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ): # Initialise PyTorch model __lowercase : Union[str, Any] = BertConfig.from_json_file(lowerCAmelCase_ ) print(F"Building PyTorch model from configuration: {config}" ) __lowercase : int = BertForPreTraining(lowerCAmelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_bert(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCamelCase : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
649
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : int , *__a : Dict , **__a : Optional[Any] ) -> None: """simple docstring""" warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , __a , ) super().__init__(*__a , **__a )
649
1
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def snake_case_ ( lowerCAmelCase_ : List[Any] ): if not is_accelerate_available(): return method __lowercase : Optional[int] = version.parse(accelerate.__version__ ).base_version if version.parse(lowerCAmelCase_ ) < version.parse("""0.17.0""" ): return method def wrapper(self : Tuple , *lowerCAmelCase_ : Any , **lowerCAmelCase_ : Optional[int] ): if hasattr(self , """_hf_hook""" ) and hasattr(self._hf_hook , """pre_forward""" ): self._hf_hook.pre_forward(self ) return method(self , *lowerCAmelCase_ , **lowerCAmelCase_ ) return wrapper
649
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Optional[int] = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() __lowercase : List[str] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Dict = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } __lowercase : List[str] = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 16000, """return_attention_mask""": False, """do_normalize""": True, } __lowercase : Tuple = tempfile.mkdtemp() __lowercase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : str = os.path.join(self.tmpdirname , __a ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) # load decoder from hub __lowercase : Optional[int] = """hf-internal-testing/ngram-beam-search-decoder""" def lowerCAmelCase ( self : Optional[Any] , **__a : Dict ) -> Tuple: """simple docstring""" __lowercase : Union[str, Any] = self.add_kwargs_tokens_map.copy() kwargs.update(__a ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : str , **__a : int ) -> Tuple: """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Union[str, Any] , **__a : Union[str, Any] ) -> List[Any]: """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__a ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() __lowercase : Any = self.get_feature_extractor() __lowercase : str = self.get_decoder() __lowercase : Tuple = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) processor.save_pretrained(self.tmpdirname ) __lowercase : Tuple = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __a ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __a ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __a ) def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Any = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __lowercase : str = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : List[str] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(__a , """include""" ): WavaVecaProcessorWithLM( tokenizer=__a , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : List[Any] = self.get_feature_extractor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : int = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Optional[int] = floats_list((3, 1000) ) __lowercase : List[Any] = feature_extractor(__a , return_tensors="""np""" ) __lowercase : List[str] = processor(__a , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : List[Any] = self.get_feature_extractor() __lowercase : int = self.get_tokenizer() __lowercase : Dict = self.get_decoder() __lowercase : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Dict = """This is a test string""" __lowercase : Any = processor(text=__a ) __lowercase : Dict = tokenizer(__a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase ( self : str , __a : Tuple=(2, 10, 16) , __a : int=77 ) -> Optional[Any]: """simple docstring""" np.random.seed(__a ) return np.random.rand(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : List[str] = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : str = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : List[str] = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __lowercase : Optional[Any] = processor.decode(__a ) __lowercase : Any = decoder.decode_beams(__a )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def lowerCAmelCase ( self : List[str] , __a : Dict ) -> List[Any]: """simple docstring""" __lowercase : str = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : Optional[int] = self.get_decoder() __lowercase : Any = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Optional[Any] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __lowercase : Union[str, Any] = processor.batch_decode(__a ) else: with get_context(__a ).Pool() as pool: __lowercase : Optional[Any] = processor.batch_decode(__a , __a ) __lowercase : Union[str, Any] = list(__a ) with get_context("""fork""" ).Pool() as p: __lowercase : Optional[Any] = decoder.decode_beams_batch(__a , __a ) __lowercase , __lowercase , __lowercase : Any = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__a , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(__a , decoded_processor.logit_score ) self.assertListEqual(__a , decoded_processor.lm_score ) def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase : int = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : List[str] = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Dict = self._get_dummy_logits() __lowercase : Tuple = 15 __lowercase : Tuple = -20.0 __lowercase : Dict = -4.0 __lowercase : Dict = processor.batch_decode( __a , beam_width=__a , beam_prune_logp=__a , token_min_logp=__a , ) __lowercase : Tuple = decoded_processor_out.text __lowercase : List[Any] = list(__a ) with get_context("""fork""" ).Pool() as pool: __lowercase : Any = decoder.decode_beams_batch( __a , __a , beam_width=__a , beam_prune_logp=__a , token_min_logp=__a , ) __lowercase : Optional[Any] = [d[0][0] for d in decoded_decoder_out] __lowercase : Optional[int] = [d[0][2] for d in decoded_decoder_out] __lowercase : Optional[int] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__a , __a ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , __a ) self.assertTrue(np.array_equal(__a , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , __a , atol=1E-3 ) ) self.assertTrue(np.array_equal(__a , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , __a , atol=1E-3 ) ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase : str = self.get_feature_extractor() __lowercase : List[Any] = self.get_tokenizer() __lowercase : List[Any] = self.get_decoder() __lowercase : Dict = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : List[Any] = self._get_dummy_logits() __lowercase : Optional[int] = 2.0 __lowercase : Tuple = 5.0 __lowercase : Optional[Any] = -20.0 __lowercase : Tuple = True __lowercase : Union[str, Any] = processor.batch_decode( __a , alpha=__a , beta=__a , unk_score_offset=__a , lm_score_boundary=__a , ) __lowercase : Any = decoded_processor_out.text __lowercase : List[Any] = list(__a ) decoder.reset_params( alpha=__a , beta=__a , unk_score_offset=__a , lm_score_boundary=__a , ) with get_context("""fork""" ).Pool() as pool: __lowercase : Tuple = decoder.decode_beams_batch( __a , __a , ) __lowercase : int = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__a , __a ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , __a ) __lowercase : str = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , __a ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] __lowercase : str = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __lowercase : int = os.listdir(__a ) __lowercase : Optional[Any] = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = snapshot_download("""hf-internal-testing/processor_with_lm""" ) __lowercase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(__a ) __lowercase : Dict = processor.decoder.model_container[processor.decoder._model_key] __lowercase : List[Any] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __lowercase : Dict = os.listdir(__a ) __lowercase : List[Any] = os.listdir(__a ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" __lowercase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Dict = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Any = floats_list((3, 1000) ) __lowercase : List[str] = processor_wavaveca(__a , return_tensors="""np""" ) __lowercase : List[Any] = processor_auto(__a , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) __lowercase : List[str] = self._get_dummy_logits() __lowercase : List[str] = processor_wavaveca.batch_decode(__a ) __lowercase : Optional[int] = processor_auto.batch_decode(__a ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Any = self.get_feature_extractor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : Dict = self.get_decoder() __lowercase : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def lowerCAmelCase ( __a : Union[str, Any] , __a : List[Any] ) -> Dict: """simple docstring""" __lowercase : Any = [d[key] for d in offsets] return retrieved_list def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" __lowercase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Optional[Any] = self._get_dummy_logits()[0] __lowercase : Dict = processor.decode(__a , output_word_offsets=__a ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__a , __a ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : List[str] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Any = self._get_dummy_logits() __lowercase : Dict = processor.batch_decode(__a , output_word_offsets=__a ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__a , __a ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(__a , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" import torch __lowercase : Any = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=__a ) __lowercase : str = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=16000 ) ) __lowercase : Tuple = iter(__a ) __lowercase : Union[str, Any] = next(__a ) __lowercase : int = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) __lowercase : int = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __lowercase : Union[str, Any] = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): __lowercase : List[Any] = model(__a ).logits.cpu().numpy() __lowercase : Tuple = processor.decode(logits[0] , output_word_offsets=__a ) __lowercase : int = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __lowercase : Optional[Any] = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] __lowercase : str = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(__a , """word""" ) ) , __a ) self.assertEqual(""" """.join(self.get_from_offsets(__a , """word""" ) ) , output.text ) # output times __lowercase : Tuple = torch.tensor(self.get_from_offsets(__a , """start_time""" ) ) __lowercase : Dict = torch.tensor(self.get_from_offsets(__a , """end_time""" ) ) # fmt: off __lowercase : List[Any] = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) __lowercase : Optional[int] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(__a , __a , atol=0.01 ) ) self.assertTrue(torch.allclose(__a , __a , atol=0.01 ) )
649
1
import numpy as np def snake_case_ ( lowerCAmelCase_ : np.ndarray ): return 1 / (1 + np.exp(-vector )) def snake_case_ ( lowerCAmelCase_ : np.ndarray ): return vector * sigmoid(lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
649
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(0 ) == 0 ) def snake_case_ ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
649
1
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , __a : Union[str, Any] , __a : int=13 , __a : str=7 , __a : Dict=False , __a : List[Any]=True , __a : Dict=False , __a : str=True , __a : int=33 , __a : List[str]=32 , __a : int=5 , __a : Dict=4 , __a : str=37 , __a : Optional[Any]="gelu" , __a : Any=0.1 , __a : List[str]=0.1 , __a : List[str]=512 , __a : Dict=16 , __a : Optional[Any]=2 , __a : str=0.02 , __a : Union[str, Any]=3 , __a : Optional[Any]=4 , __a : List[Any]=None , ) -> Optional[Any]: """simple docstring""" __lowercase : List[Any] = parent __lowercase : int = batch_size __lowercase : Tuple = seq_length __lowercase : Dict = is_training __lowercase : Union[str, Any] = use_input_mask __lowercase : str = use_token_type_ids __lowercase : Optional[Any] = use_labels __lowercase : Union[str, Any] = vocab_size __lowercase : Any = hidden_size __lowercase : List[str] = num_hidden_layers __lowercase : List[Any] = num_attention_heads __lowercase : int = intermediate_size __lowercase : str = hidden_act __lowercase : str = hidden_dropout_prob __lowercase : Dict = attention_probs_dropout_prob __lowercase : str = max_position_embeddings __lowercase : List[str] = type_vocab_size __lowercase : Optional[int] = type_sequence_label_size __lowercase : str = initializer_range __lowercase : Optional[Any] = num_labels __lowercase : List[Any] = num_choices __lowercase : Dict = scope def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : Dict = None if self.use_input_mask: __lowercase : str = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : List[Any] = None __lowercase : Dict = None __lowercase : Union[str, Any] = None if self.use_labels: __lowercase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : str = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : str = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : Tuple , __a : Any , __a : Tuple , __a : Optional[Any] , __a : Union[str, Any] , __a : Any , __a : List[Any] ) -> str: """simple docstring""" __lowercase : Dict = EsmModel(config=__a ) model.to(__a ) model.eval() __lowercase : Optional[int] = model(__a , attention_mask=__a ) __lowercase : str = model(__a ) __lowercase : str = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : Tuple , __a : Tuple , __a : Dict , __a : Union[str, Any] , __a : str , __a : Union[str, Any] , __a : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Tuple = EsmForMaskedLM(config=__a ) model.to(__a ) model.eval() __lowercase : int = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : str , __a : Optional[int] , __a : int , __a : str , __a : Tuple , __a : str , __a : Tuple ) -> str: """simple docstring""" __lowercase : Any = self.num_labels __lowercase : Union[str, Any] = EsmForTokenClassification(config=__a ) model.to(__a ) model.eval() __lowercase : str = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" __lowercase : str = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : Any = config_and_inputs __lowercase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : int = False _A : int = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) _A : str = () _A : Optional[int] = ( { '''feature-extraction''': EsmModel, '''fill-mask''': EsmForMaskedLM, '''text-classification''': EsmForSequenceClassification, '''token-classification''': EsmForTokenClassification, '''zero-shot''': EsmForSequenceClassification, } if is_torch_available() else {} ) _A : List[str] = True def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase : Any = EsmModelTester(self ) __lowercase : str = ConfigTester(self , config_class=__a , hidden_size=37 ) def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase : Optional[Any] = type self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : int = EsmModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] __lowercase : Optional[Any] = EsmEmbeddings(config=__a ) __lowercase : Optional[int] = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) __lowercase : List[str] = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) __lowercase : List[str] = create_position_ids_from_input_ids(__a , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__a , __a ) ) ) def lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase : Tuple = self.model_tester.prepare_config_and_inputs()[0] __lowercase : List[Any] = EsmEmbeddings(config=__a ) __lowercase : int = torch.empty(2 , 4 , 30 ) __lowercase : Optional[int] = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] __lowercase : str = torch.as_tensor([expected_single_positions, expected_single_positions] ) __lowercase : Tuple = embeddings.create_position_ids_from_inputs_embeds(__a ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__a , __a ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" pass @require_torch class lowerCAmelCase ( __a ): '''simple docstring''' @slow def lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" with torch.no_grad(): __lowercase : List[str] = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() __lowercase : str = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase : List[Any] = model(__a )[0] __lowercase : str = 33 __lowercase : List[Any] = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , __a ) __lowercase : List[str] = torch.tensor( [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" with torch.no_grad(): __lowercase : Any = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() __lowercase : Optional[int] = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) __lowercase : str = model(__a )[0] # compare the actual values for a slice. __lowercase : Optional[int] = torch.tensor( [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1E-4 ) )
649
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCamelCase : int = '''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine''' def snake_case_ ( ): __lowercase : List[Any] = _ask_options( """In which compute environment are you running?""" , ["""This machine""", """AWS (Amazon SageMaker)"""] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __lowercase : Union[str, Any] = get_sagemaker_input() else: __lowercase : str = get_cluster_input() return config def snake_case_ ( lowerCAmelCase_ : List[str]=None ): if subparsers is not None: __lowercase : Optional[int] = subparsers.add_parser("""config""" , description=lowerCAmelCase_ ) else: __lowercase : List[str] = argparse.ArgumentParser("""Accelerate config command""" , description=lowerCAmelCase_ ) parser.add_argument( """--config_file""" , default=lowerCAmelCase_ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def snake_case_ ( lowerCAmelCase_ : Tuple ): __lowercase : Union[str, Any] = get_user_input() if args.config_file is not None: __lowercase : List[Any] = args.config_file else: if not os.path.isdir(lowerCAmelCase_ ): os.makedirs(lowerCAmelCase_ ) __lowercase : Any = default_yaml_config_file if config_file.endswith(""".json""" ): config.to_json_file(lowerCAmelCase_ ) else: config.to_yaml_file(lowerCAmelCase_ ) print(F"accelerate configuration saved at {config_file}" ) def snake_case_ ( ): __lowercase : str = config_command_parser() __lowercase : str = parser.parse_args() config_command(lowerCAmelCase_ ) if __name__ == "__main__": main()
649
1
import argparse import os import re lowerCamelCase : Optional[int] = '''src/transformers''' # Pattern that looks at the indentation in a line. lowerCamelCase : Dict = re.compile(r'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowerCamelCase : Any = re.compile(r'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCamelCase : Tuple = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowerCamelCase : Optional[int] = re.compile(r'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCamelCase : Any = re.compile(r'''\[([^\]]+)\]''') def snake_case_ ( lowerCAmelCase_ : Dict ): __lowercase : Union[str, Any] = _re_indent.search(lowerCAmelCase_ ) return "" if search is None else search.groups()[0] def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : Dict="" , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : str=None ): __lowercase : Any = 0 __lowercase : Optional[Any] = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(lowerCAmelCase_ ): index += 1 __lowercase : Union[str, Any] = ["""\n""".join(lines[:index] )] else: __lowercase : Any = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __lowercase : List[Any] = [lines[index]] index += 1 while index < len(lowerCAmelCase_ ) and (end_prompt is None or not lines[index].startswith(lowerCAmelCase_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowerCAmelCase_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(lowerCAmelCase_ ) ) if index < len(lowerCAmelCase_ ) - 1: __lowercase : List[Any] = [lines[index + 1]] index += 1 else: __lowercase : Tuple = [] else: blocks.append("""\n""".join(lowerCAmelCase_ ) ) __lowercase : Optional[Any] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowerCAmelCase_ ) > 0: blocks.append("""\n""".join(lowerCAmelCase_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowerCAmelCase_ ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def snake_case_ ( lowerCAmelCase_ : Dict ): def _inner(lowerCAmelCase_ : Any ): return key(lowerCAmelCase_ ).lower().replace("""_""" , """""" ) return _inner def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int]=None ): # If no key is provided, we use a noop. def noop(lowerCAmelCase_ : Any ): return x if key is None: __lowercase : Dict = noop # Constants are all uppercase, they go first. __lowercase : Union[str, Any] = [obj for obj in objects if key(lowerCAmelCase_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __lowercase : Optional[int] = [obj for obj in objects if key(lowerCAmelCase_ )[0].isupper() and not key(lowerCAmelCase_ ).isupper()] # Functions begin with a lowercase, they go last. __lowercase : List[str] = [obj for obj in objects if not key(lowerCAmelCase_ )[0].isupper()] __lowercase : str = ignore_underscore(lowerCAmelCase_ ) return sorted(lowerCAmelCase_ , key=lowerCAmelCase_ ) + sorted(lowerCAmelCase_ , key=lowerCAmelCase_ ) + sorted(lowerCAmelCase_ , key=lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : List[str] ): # This inner function sort imports between [ ]. def _replace(lowerCAmelCase_ : Optional[Any] ): __lowercase : Dict = match.groups()[0] if "," not in imports: return F"[{imports}]" __lowercase : Any = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase : List[str] = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(lowerCAmelCase_ )] ) + "]" __lowercase : Tuple = import_statement.split("""\n""" ) if len(lowerCAmelCase_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __lowercase : Optional[Any] = 2 if lines[1].strip() == """[""" else 1 __lowercase : Tuple = [(i, _re_strip_line.search(lowerCAmelCase_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __lowercase : Any = sort_objects(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : x[1] ) __lowercase : int = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowerCAmelCase_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __lowercase : Tuple = _re_bracket_content.sub(_replace , lines[1] ) else: __lowercase : Any = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase : Any = keys[:-1] __lowercase : Optional[Any] = get_indent(lines[1] ) + """, """.join([F"\"{k}\"" for k in sort_objects(lowerCAmelCase_ )] ) return "\n".join(lowerCAmelCase_ ) else: # Finally we have to deal with imports fitting on one line __lowercase : str = _re_bracket_content.sub(_replace , lowerCAmelCase_ ) return import_statement def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple=True ): with open(lowerCAmelCase_ , encoding="""utf-8""" ) as f: __lowercase : List[Any] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __lowercase : Any = split_code_in_indented_blocks( lowerCAmelCase_ , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(lowerCAmelCase_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __lowercase : Any = main_blocks[block_idx] __lowercase : str = block.split("""\n""" ) # Get to the start of the imports. __lowercase : Any = 0 while line_idx < len(lowerCAmelCase_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __lowercase : Optional[int] = len(lowerCAmelCase_ ) else: line_idx += 1 if line_idx >= len(lowerCAmelCase_ ): continue # Ignore beginning and last line: they don't contain anything. __lowercase : List[Any] = """\n""".join(block_lines[line_idx:-1] ) __lowercase : Tuple = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __lowercase : Union[str, Any] = split_code_in_indented_blocks(lowerCAmelCase_ , indent_level=lowerCAmelCase_ ) # We have two categories of import key: list or _import_structure[key].append/extend __lowercase : str = _re_direct_key if """_import_structure = {""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __lowercase : Dict = [(pattern.search(lowerCAmelCase_ ).groups()[0] if pattern.search(lowerCAmelCase_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __lowercase : List[str] = [(i, key) for i, key in enumerate(lowerCAmelCase_ ) if key is not None] __lowercase : int = [x[0] for x in sorted(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __lowercase : Any = 0 __lowercase : List[str] = [] for i in range(len(lowerCAmelCase_ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: __lowercase : Dict = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(lowerCAmelCase_ ) count += 1 # And we put our main block back together with its first and last line. __lowercase : Optional[Any] = """\n""".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(lowerCAmelCase_ ): if check_only: return True else: print(F"Overwriting {file}." ) with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""" ) as f: f.write("""\n""".join(lowerCAmelCase_ ) ) def snake_case_ ( lowerCAmelCase_ : Optional[int]=True ): __lowercase : int = [] for root, _, files in os.walk(lowerCAmelCase_ ): if "__init__.py" in files: __lowercase : Optional[int] = sort_imports(os.path.join(lowerCAmelCase_ , """__init__.py""" ) , check_only=lowerCAmelCase_ ) if result: __lowercase : Dict = [os.path.join(lowerCAmelCase_ , """__init__.py""" )] if len(lowerCAmelCase_ ) > 0: raise ValueError(F"Would overwrite {len(lowerCAmelCase_ )} files, run `make style`." ) if __name__ == "__main__": lowerCamelCase : str = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowerCamelCase : List[str] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
649
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : list[str] | None = None ): __lowercase : Tuple = word_bank or [] # create a table __lowercase : int = len(lowerCAmelCase_ ) + 1 __lowercase : list[list[list[str]]] = [] for _ in range(lowerCAmelCase_ ): table.append([] ) # seed value __lowercase : Dict = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowerCAmelCase_ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowerCAmelCase_ )] == word: __lowercase : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowerCAmelCase_ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowerCAmelCase_ )]: combination.reverse() return table[len(lowerCAmelCase_ )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
649
1
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( """split_dict""" , [ SplitDict(), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1337 , num_examples=42 , dataset_name="""my_dataset""" )} ), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1337 , num_examples=42 )} ), SplitDict({"""train""": SplitInfo()} ), ] , ) def snake_case_ ( lowerCAmelCase_ : SplitDict ): __lowercase : List[Any] = split_dict._to_yaml_list() assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) __lowercase : List[Any] = SplitDict._from_yaml_list(lowerCAmelCase_ ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump __lowercase : Optional[Any] = None # the split name of split_dict takes over the name of the split info object __lowercase : List[Any] = split_name assert split_dict == reloaded @pytest.mark.parametrize( """split_info""" , [SplitInfo(), SplitInfo(dataset_name=lowerCAmelCase_ ), SplitInfo(dataset_name="""my_dataset""" )] ) def snake_case_ ( lowerCAmelCase_ : List[Any] ): # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files __lowercase : Any = asdict(SplitDict({"""train""": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
649
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(1 ) != 0 ) def snake_case_ ( ): assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
649
1
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('''1.6'''): lowerCamelCase : Optional[int] = True from torch.cuda.amp import autocast lowerCamelCase : Optional[int] = logging.getLogger(__name__) def snake_case_ ( lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : List[Any]=None ): return field(default_factory=lambda: default , metadata=lowerCAmelCase_ ) @dataclass class lowerCAmelCase : '''simple docstring''' _A : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _A : Optional[str] = field( default=__a , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) _A : Optional[bool] = field( default=__a , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) _A : Optional[float] = field( default=0.1 , metadata={'''help''': '''The dropout ratio for the attention probabilities.'''} ) _A : Optional[float] = field( default=0.1 , metadata={'''help''': '''The dropout ratio for activations inside the fully connected layer.'''} ) _A : Optional[float] = field( default=0.1 , metadata={ '''help''': '''The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.''' } , ) _A : Optional[float] = field( default=0.1 , metadata={'''help''': '''The dropout probabilitiy for all 1D convolutional layers in feature extractor.'''} , ) _A : Optional[float] = field( default=0.0_5 , metadata={ '''help''': ( '''Propability of each feature vector along the time axis to be chosen as the start of the vector''' '''span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature''' '''vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.''' ) } , ) _A : Optional[float] = field(default=0.0 , metadata={'''help''': '''The LayerDrop probability.'''} ) @dataclass class lowerCAmelCase : '''simple docstring''' _A : Optional[str] = field( default=__a , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) _A : Optional[str] = field( default='''train+validation''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) _A : bool = field( default=__a , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) _A : Optional[int] = field( default=__a , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) _A : Optional[int] = field( default=__a , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) _A : Optional[int] = field( default=__a , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of validation examples to this ''' '''value if set.''' ) } , ) _A : List[str] = list_field( default=[''',''', '''?''', '''.''', '''!''', '''-''', ''';''', ''':''', '''""''', '''%''', '''\'''', '''"''', '''�'''] , metadata={'''help''': '''A list of characters to remove from the transcripts.'''} , ) @dataclass class lowerCAmelCase : '''simple docstring''' _A : WavaVecaProcessor _A : Union[bool, str] = True _A : Optional[int] = None _A : Optional[int] = None _A : Optional[int] = None _A : Optional[int] = None def __call__( self : Optional[Any] , __a : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: """simple docstring""" __lowercase : Dict = [{"""input_values""": feature["""input_values"""]} for feature in features] __lowercase : int = [{"""input_ids""": feature["""labels"""]} for feature in features] __lowercase : Dict = self.processor.pad( __a , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) __lowercase : Dict = self.processor.pad( labels=__a , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors="""pt""" , ) # replace padding with -100 to ignore loss correctly __lowercase : Optional[int] = labels_batch["""input_ids"""].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) __lowercase : Optional[Any] = labels return batch class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : Optional[int] , __a : nn.Module , __a : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: """simple docstring""" model.train() __lowercase : str = self._prepare_inputs(__a ) if self.use_amp: with autocast(): __lowercase : Any = self.compute_loss(__a , __a ) else: __lowercase : int = self.compute_loss(__a , __a ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": __lowercase : str = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __lowercase : Optional[int] = loss.sum() / (inputs["""labels"""] >= 0).sum() else: raise ValueError(F"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']" ) if self.args.gradient_accumulation_steps > 1: __lowercase : List[str] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__a ).backward() elif self.use_apex: with amp.scale_loss(__a , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__a ) else: loss.backward() return loss.detach() def snake_case_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowercase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowercase , __lowercase , __lowercase : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowercase , __lowercase , __lowercase : List[str] = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowercase : Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowercase : Tuple = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , lowerCAmelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: __lowercase : Union[str, Any] = datasets.load_dataset( """common_voice""" , data_args.dataset_config_name , split=data_args.train_split_name ) __lowercase : List[str] = datasets.load_dataset("""common_voice""" , data_args.dataset_config_name , split="""test""" ) # Create and save tokenizer __lowercase : str = F"[{''.join(data_args.chars_to_ignore )}]" def remove_special_characters(lowerCAmelCase_ : Any ): __lowercase : Any = re.sub(lowerCAmelCase_ , """""" , batch["""sentence"""] ).lower() + """ """ return batch __lowercase : int = train_dataset.map(lowerCAmelCase_ , remove_columns=["""sentence"""] ) __lowercase : Tuple = eval_dataset.map(lowerCAmelCase_ , remove_columns=["""sentence"""] ) def extract_all_chars(lowerCAmelCase_ : Optional[Any] ): __lowercase : Union[str, Any] = """ """.join(batch["""text"""] ) __lowercase : str = list(set(lowerCAmelCase_ ) ) return {"vocab": [vocab], "all_text": [all_text]} __lowercase : Optional[int] = train_dataset.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , batch_size=-1 , keep_in_memory=lowerCAmelCase_ , remove_columns=train_dataset.column_names , ) __lowercase : Optional[Any] = train_dataset.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , batch_size=-1 , keep_in_memory=lowerCAmelCase_ , remove_columns=eval_dataset.column_names , ) __lowercase : List[Any] = list(set(vocab_train["""vocab"""][0] ) | set(vocab_test["""vocab"""][0] ) ) __lowercase : Optional[int] = {v: k for k, v in enumerate(lowerCAmelCase_ )} __lowercase : Any = vocab_dict[""" """] del vocab_dict[" "] __lowercase : List[Any] = len(lowerCAmelCase_ ) __lowercase : Optional[Any] = len(lowerCAmelCase_ ) with open("""vocab.json""" , """w""" ) as vocab_file: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowercase : Union[str, Any] = WavaVecaCTCTokenizer( """vocab.json""" , unk_token="""[UNK]""" , pad_token="""[PAD]""" , word_delimiter_token="""|""" , ) __lowercase : str = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0.0 , do_normalize=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ ) __lowercase : str = WavaVecaProcessor(feature_extractor=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ ) __lowercase : List[Any] = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction="""mean""" , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: __lowercase : Union[str, Any] = min(len(lowerCAmelCase_ ) , data_args.max_train_samples ) __lowercase : Optional[int] = train_dataset.select(range(lowerCAmelCase_ ) ) if data_args.max_val_samples is not None: __lowercase : int = eval_dataset.select(range(data_args.max_val_samples ) ) __lowercase : List[str] = torchaudio.transforms.Resample(48000 , 16000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(lowerCAmelCase_ : List[Any] ): __lowercase , __lowercase : Optional[int] = torchaudio.load(batch["""path"""] ) __lowercase : Tuple = resampler(lowerCAmelCase_ ).squeeze().numpy() __lowercase : Any = 16000 __lowercase : Union[str, Any] = batch["""text"""] return batch __lowercase : List[Any] = train_dataset.map( lowerCAmelCase_ , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) __lowercase : Dict = eval_dataset.map( lowerCAmelCase_ , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(lowerCAmelCase_ : str ): # check that all files have the correct sampling rate assert ( len(set(batch["""sampling_rate"""] ) ) == 1 ), F"Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}." __lowercase : str = processor( audio=batch["""speech"""] , text=batch["""target_text"""] , sampling_rate=batch["""sampling_rate"""][0] ) batch.update(lowerCAmelCase_ ) return batch __lowercase : Any = train_dataset.map( lowerCAmelCase_ , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=lowerCAmelCase_ , num_proc=data_args.preprocessing_num_workers , ) __lowercase : Optional[int] = eval_dataset.map( lowerCAmelCase_ , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=lowerCAmelCase_ , num_proc=data_args.preprocessing_num_workers , ) # Metric __lowercase : Optional[Any] = datasets.load_metric("""wer""" ) def compute_metrics(lowerCAmelCase_ : str ): __lowercase : str = pred.predictions __lowercase : int = np.argmax(lowerCAmelCase_ , axis=-1 ) __lowercase : Optional[Any] = processor.tokenizer.pad_token_id __lowercase : Optional[int] = processor.batch_decode(lowerCAmelCase_ ) # we do not want to group tokens when computing the metrics __lowercase : Any = processor.batch_decode(pred.label_ids , group_tokens=lowerCAmelCase_ ) __lowercase : Union[str, Any] = wer_metric.compute(predictions=lowerCAmelCase_ , references=lowerCAmelCase_ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator __lowercase : Optional[int] = DataCollatorCTCWithPadding(processor=lowerCAmelCase_ , padding=lowerCAmelCase_ ) # Initialize our Trainer __lowercase : Optional[Any] = CTCTrainer( model=lowerCAmelCase_ , data_collator=lowerCAmelCase_ , args=lowerCAmelCase_ , compute_metrics=lowerCAmelCase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: __lowercase : Optional[int] = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): __lowercase : int = model_args.model_name_or_path else: __lowercase : Union[str, Any] = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) __lowercase : Union[str, Any] = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() __lowercase : List[Any] = train_result.metrics __lowercase : List[str] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase_ ) ) __lowercase : Union[str, Any] = min(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) trainer.log_metrics("""train""" , lowerCAmelCase_ ) trainer.save_metrics("""train""" , lowerCAmelCase_ ) trainer.save_state() # Evaluation __lowercase : int = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowercase : int = trainer.evaluate() __lowercase : Any = data_args.max_val_samples if data_args.max_val_samples is not None else len(lowerCAmelCase_ ) __lowercase : Tuple = min(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) trainer.log_metrics("""eval""" , lowerCAmelCase_ ) trainer.save_metrics("""eval""" , lowerCAmelCase_ ) return results if __name__ == "__main__": main()
649
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : int = { '''configuration_funnel''': ['''FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FunnelConfig'''], '''convert_funnel_original_tf_checkpoint_to_pytorch''': [], '''tokenization_funnel''': ['''FunnelTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = ['''FunnelTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = [ '''FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FunnelBaseModel''', '''FunnelForMaskedLM''', '''FunnelForMultipleChoice''', '''FunnelForPreTraining''', '''FunnelForQuestionAnswering''', '''FunnelForSequenceClassification''', '''FunnelForTokenClassification''', '''FunnelModel''', '''FunnelPreTrainedModel''', '''load_tf_weights_in_funnel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ '''TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFFunnelBaseModel''', '''TFFunnelForMaskedLM''', '''TFFunnelForMultipleChoice''', '''TFFunnelForPreTraining''', '''TFFunnelForQuestionAnswering''', '''TFFunnelForSequenceClassification''', '''TFFunnelForTokenClassification''', '''TFFunnelModel''', '''TFFunnelPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
649
1
print((lambda quine: quine % quine)('''print((lambda quine: quine %% quine)(%r))'''))
649
import logging import os import threading import time try: import warnings except ImportError: lowerCamelCase : Any = None try: import msvcrt except ImportError: lowerCamelCase : str = None try: import fcntl except ImportError: lowerCamelCase : Optional[Any] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: lowerCamelCase : Union[str, Any] = OSError # Data # ------------------------------------------------ lowerCamelCase : Tuple = [ '''Timeout''', '''BaseFileLock''', '''WindowsFileLock''', '''UnixFileLock''', '''SoftFileLock''', '''FileLock''', ] lowerCamelCase : Tuple = '''3.0.12''' lowerCamelCase : Any = None def snake_case_ ( ): global _logger __lowercase : List[str] = _logger or logging.getLogger(__name__ ) return _logger class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Any , __a : Any ) -> List[Any]: """simple docstring""" __lowercase : List[str] = lock_file return None def __str__( self : str ) -> Any: """simple docstring""" __lowercase : Any = F"The file lock '{self.lock_file}' could not be acquired." return temp class lowerCAmelCase : '''simple docstring''' def __init__( self : List[Any] , __a : Optional[int] ) -> int: """simple docstring""" __lowercase : Optional[Any] = lock return None def __enter__( self : Dict ) -> Dict: """simple docstring""" return self.lock def __exit__( self : Optional[int] , __a : Dict , __a : Any , __a : Tuple ) -> Optional[Any]: """simple docstring""" self.lock.release() return None class lowerCAmelCase : '''simple docstring''' def __init__( self : Tuple , __a : Any , __a : Dict=-1 , __a : Optional[Any]=None ) -> Any: """simple docstring""" __lowercase : Optional[int] = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long __lowercase : Dict = self.hash_filename_if_too_long(__a , __a ) # The path to the lock file. __lowercase : Optional[Any] = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __lowercase : int = None # The default timeout value. __lowercase : Optional[int] = timeout # We use this lock primarily for the lock counter. __lowercase : Optional[Any] = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __lowercase : Union[str, Any] = 0 return None @property def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return self._lock_file @property def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return self._timeout @timeout.setter def lowerCAmelCase ( self : Tuple , __a : Tuple ) -> Dict: """simple docstring""" __lowercase : Tuple = float(__a ) return None def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" raise NotImplementedError() def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" raise NotImplementedError() @property def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" return self._lock_file_fd is not None def lowerCAmelCase ( self : Any , __a : Optional[Any]=None , __a : Union[str, Any]=0.05 ) -> List[str]: """simple docstring""" if timeout is None: __lowercase : Union[str, Any] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __lowercase : int = id(self ) __lowercase : Optional[Any] = self._lock_file __lowercase : List[str] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"Attempting to acquire lock {lock_id} on {lock_filename}" ) self._acquire() if self.is_locked: logger().debug(F"Lock {lock_id} acquired on {lock_filename}" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"Timeout on acquiring lock {lock_id} on {lock_filename}" ) raise Timeout(self._lock_file ) else: logger().debug( F"Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ..." ) time.sleep(__a ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __lowercase : Optional[int] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def lowerCAmelCase ( self : Union[str, Any] , __a : Optional[Any]=False ) -> Optional[Any]: """simple docstring""" with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __lowercase : Optional[Any] = id(self ) __lowercase : str = self._lock_file logger().debug(F"Attempting to release lock {lock_id} on {lock_filename}" ) self._release() __lowercase : List[str] = 0 logger().debug(F"Lock {lock_id} released on {lock_filename}" ) return None def __enter__( self : Any ) -> Optional[Any]: """simple docstring""" self.acquire() return self def __exit__( self : List[str] , __a : str , __a : int , __a : List[Any] ) -> Tuple: """simple docstring""" self.release() return None def __del__( self : Optional[int] ) -> Optional[int]: """simple docstring""" self.release(force=__a ) return None def lowerCAmelCase ( self : Tuple , __a : str , __a : int ) -> str: """simple docstring""" __lowercase : List[Any] = os.path.basename(__a ) if len(__a ) > max_length and max_length > 0: __lowercase : int = os.path.dirname(__a ) __lowercase : List[str] = str(hash(__a ) ) __lowercase : Optional[Any] = filename[: max_length - len(__a ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(__a , __a ) else: return path class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Union[str, Any] , __a : List[Any] , __a : Optional[int]=-1 , __a : Tuple=None ) -> List[Any]: """simple docstring""" from .file_utils import relative_to_absolute_path super().__init__(__a , timeout=__a , max_filename_length=__a ) __lowercase : Tuple = """\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __lowercase : Tuple = os.open(self._lock_file , __a ) except OSError: pass else: try: msvcrt.locking(__a , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__a ) else: __lowercase : Union[str, Any] = fd return None def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = self._lock_file_fd __lowercase : int = None msvcrt.locking(__a , msvcrt.LK_UNLCK , 1 ) os.close(__a ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : List[str] , __a : Optional[Any] , __a : str=-1 , __a : List[str]=None ) -> Any: """simple docstring""" __lowercase : Dict = os.statvfs(os.path.dirname(__a ) ).f_namemax super().__init__(__a , timeout=__a , max_filename_length=__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase : List[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC __lowercase : List[str] = os.open(self._lock_file , __a ) try: fcntl.flock(__a , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__a ) else: __lowercase : str = fd return None def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Any = self._lock_file_fd __lowercase : List[str] = None fcntl.flock(__a , fcntl.LOCK_UN ) os.close(__a ) return None class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __lowercase : Union[str, Any] = os.open(self._lock_file , __a ) except OSError: pass else: __lowercase : Optional[int] = fd return None def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" os.close(self._lock_file_fd ) __lowercase : int = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None lowerCamelCase : Optional[Any] = None if msvcrt: lowerCamelCase : List[Any] = WindowsFileLock elif fcntl: lowerCamelCase : List[Any] = UnixFileLock else: lowerCamelCase : Union[str, Any] = SoftFileLock if warnings is not None: warnings.warn('''only soft file lock is available''')
649
1
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCamelCase : Optional[int] = 16 lowerCamelCase : Union[str, Any] = 32 def snake_case_ ( lowerCAmelCase_ : Any ): return int(x / 2**20 ) class lowerCAmelCase : '''simple docstring''' def __enter__( self : Any ) -> Tuple: """simple docstring""" gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero __lowercase : Tuple = torch.cuda.memory_allocated() return self def __exit__( self : List[str] , *__a : Any ) -> Union[str, Any]: """simple docstring""" gc.collect() torch.cuda.empty_cache() __lowercase : List[str] = torch.cuda.memory_allocated() __lowercase : str = torch.cuda.max_memory_allocated() __lowercase : Any = bamb(self.end - self.begin ) __lowercase : Dict = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def snake_case_ ( lowerCAmelCase_ : Accelerator , lowerCAmelCase_ : int = 16 , lowerCAmelCase_ : str = "bert-base-cased" , lowerCAmelCase_ : int = 320 , lowerCAmelCase_ : int = 160 , ): __lowercase : int = AutoTokenizer.from_pretrained(lowerCAmelCase_ ) __lowercase : Any = load_dataset( """glue""" , """mrpc""" , split={"""train""": F"train[:{n_train}]", """validation""": F"validation[:{n_val}]"} ) def tokenize_function(lowerCAmelCase_ : str ): # max_length=None => use the model max length (it's actually the default) __lowercase : Tuple = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowercase : int = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=lowerCAmelCase_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowercase : Optional[int] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCAmelCase_ : Tuple ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase_ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowerCAmelCase_ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. __lowercase : List[str] = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) __lowercase : Dict = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] ): # Initialize accelerator __lowercase : Union[str, Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowercase : Any = config["""lr"""] __lowercase : Union[str, Any] = int(config["""num_epochs"""] ) __lowercase : Optional[Any] = int(config["""seed"""] ) __lowercase : str = int(config["""batch_size"""] ) __lowercase : Optional[Any] = args.model_name_or_path set_seed(lowerCAmelCase_ ) __lowercase , __lowercase : Any = get_dataloaders(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowercase : List[Any] = AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase_ , return_dict=lowerCAmelCase_ ) # Instantiate optimizer __lowercase : int = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __lowercase : Tuple = optimizer_cls(params=model.parameters() , lr=lowerCAmelCase_ ) if accelerator.state.deepspeed_plugin is not None: __lowercase : Tuple = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: __lowercase : Union[str, Any] = 1 __lowercase : Optional[Any] = (len(lowerCAmelCase_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __lowercase : Union[str, Any] = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ , num_warmup_steps=0 , num_training_steps=lowerCAmelCase_ , ) else: __lowercase : Dict = DummyScheduler(lowerCAmelCase_ , total_num_steps=lowerCAmelCase_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowercase , __lowercase , __lowercase , __lowercase , __lowercase : Optional[Any] = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # We need to keep track of how many total steps we have iterated over __lowercase : str = 0 # We also need to keep track of the stating epoch so files are named properly __lowercase : Tuple = 0 # Now we train the model __lowercase : List[Any] = {} for epoch in range(lowerCAmelCase_ , lowerCAmelCase_ ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(lowerCAmelCase_ ): __lowercase : str = model(**lowerCAmelCase_ ) __lowercase : Optional[int] = outputs.loss __lowercase : Tuple = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("""Memory before entering the train : {}""".format(bamb(tracemalloc.begin ) ) ) accelerator.print("""Memory consumed at the end of the train (end-begin): {}""".format(tracemalloc.used ) ) accelerator.print("""Peak Memory consumed during the train (max-begin): {}""".format(tracemalloc.peaked ) ) accelerator.print( """Total Peak Memory consumed during the train (max): {}""".format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) __lowercase : int = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[F"epoch-{epoch}"] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """peak_memory_utilization.json""" ) , """w""" ) as f: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case_ ( ): __lowercase : Dict = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=lowerCAmelCase_ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=lowerCAmelCase_ , ) parser.add_argument( """--output_dir""" , type=lowerCAmelCase_ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--peak_memory_upper_bound""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , help="""The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.""" , ) parser.add_argument( """--n_train""" , type=lowerCAmelCase_ , default=320 , help="""Number of training examples to use.""" , ) parser.add_argument( """--n_val""" , type=lowerCAmelCase_ , default=160 , help="""Number of validation examples to use.""" , ) parser.add_argument( """--num_epochs""" , type=lowerCAmelCase_ , default=1 , help="""Number of train epochs.""" , ) __lowercase : List[Any] = parser.parse_args() __lowercase : List[str] = {"""lr""": 2e-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
649
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : Tuple = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = '''layoutlmv3''' def __init__( self : Dict , __a : List[str]=50265 , __a : str=768 , __a : List[Any]=12 , __a : List[Any]=12 , __a : List[str]=3072 , __a : Optional[Any]="gelu" , __a : Optional[int]=0.1 , __a : List[Any]=0.1 , __a : Tuple=512 , __a : int=2 , __a : Any=0.02 , __a : Union[str, Any]=1E-5 , __a : List[str]=1 , __a : List[Any]=0 , __a : int=2 , __a : str=1024 , __a : str=128 , __a : List[Any]=128 , __a : Tuple=True , __a : Optional[int]=32 , __a : Any=128 , __a : List[Any]=64 , __a : Tuple=256 , __a : str=True , __a : int=True , __a : Optional[Any]=True , __a : Any=224 , __a : str=3 , __a : List[str]=16 , __a : Union[str, Any]=None , **__a : List[Any] , ) -> List[str]: """simple docstring""" super().__init__( vocab_size=__a , hidden_size=__a , num_hidden_layers=__a , num_attention_heads=__a , intermediate_size=__a , hidden_act=__a , hidden_dropout_prob=__a , attention_probs_dropout_prob=__a , max_position_embeddings=__a , type_vocab_size=__a , initializer_range=__a , layer_norm_eps=__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a , ) __lowercase : int = max_ad_position_embeddings __lowercase : Any = coordinate_size __lowercase : Optional[Any] = shape_size __lowercase : str = has_relative_attention_bias __lowercase : int = rel_pos_bins __lowercase : Union[str, Any] = max_rel_pos __lowercase : str = has_spatial_attention_bias __lowercase : str = rel_ad_pos_bins __lowercase : List[Any] = max_rel_ad_pos __lowercase : Tuple = text_embed __lowercase : int = visual_embed __lowercase : Tuple = input_size __lowercase : Dict = num_channels __lowercase : str = patch_size __lowercase : Optional[int] = classifier_dropout class lowerCAmelCase ( __a ): '''simple docstring''' _A : str = version.parse('''1.12''' ) @property def lowerCAmelCase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def lowerCAmelCase ( self : Union[str, Any] ) -> float: """simple docstring""" return 1E-5 @property def lowerCAmelCase ( self : str ) -> int: """simple docstring""" return 12 def lowerCAmelCase ( self : List[Any] , __a : "ProcessorMixin" , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional["TensorType"] = None , __a : int = 3 , __a : int = 40 , __a : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , """apply_ocr""" , __a ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase : Tuple = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase : Tuple = processor.tokenizer.num_special_tokens_to_add(__a ) __lowercase : Tuple = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__a ) # Generate dummy inputs according to compute batch and sequence __lowercase : Union[str, Any] = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowercase : Tuple = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowercase : Tuple = self._generate_dummy_images(__a , __a , __a , __a ) __lowercase : int = dict( processor( __a , text=__a , boxes=__a , return_tensors=__a , ) ) return inputs
649
1
from __future__ import annotations lowerCamelCase : Optional[int] = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def snake_case_ ( lowerCAmelCase_ : list[list[int]] , lowerCAmelCase_ : list[int] , lowerCAmelCase_ : list[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : list[list[int]] , ): __lowercase : str = [ [0 for col in range(len(grid[0] ) )] for row in range(len(lowerCAmelCase_ ) ) ] # the reference grid __lowercase : str = 1 __lowercase : Optional[Any] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(lowerCAmelCase_ ) ) ] # the action grid __lowercase : Optional[Any] = init[0] __lowercase : Dict = init[1] __lowercase : str = 0 __lowercase : Union[str, Any] = g + heuristic[x][y] # cost from starting cell to destination cell __lowercase : Any = [[f, g, x, y]] __lowercase : Union[str, Any] = False # flag that is set when search is complete __lowercase : Optional[int] = False # flag set if we can't find expand while not found and not resign: if len(lowerCAmelCase_ ) == 0: raise ValueError("""Algorithm is unable to find solution""" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __lowercase : Tuple = cell.pop() __lowercase : Optional[int] = next_cell[2] __lowercase : Tuple = next_cell[3] __lowercase : List[Any] = next_cell[1] if x == goal[0] and y == goal[1]: __lowercase : Optional[Any] = True else: for i in range(len(lowerCAmelCase_ ) ): # to try out different valid actions __lowercase : Dict = x + DIRECTIONS[i][0] __lowercase : Any = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(lowerCAmelCase_ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __lowercase : str = g + cost __lowercase : Tuple = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __lowercase : List[Any] = 1 __lowercase : List[str] = i __lowercase : int = [] __lowercase : str = goal[0] __lowercase : Dict = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __lowercase : List[str] = x - DIRECTIONS[action[x][y]][0] __lowercase : int = y - DIRECTIONS[action[x][y]][1] __lowercase : int = xa __lowercase : int = ya invpath.append([x, y] ) __lowercase : List[Any] = [] for i in range(len(lowerCAmelCase_ ) ): path.append(invpath[len(lowerCAmelCase_ ) - 1 - i] ) return path, action if __name__ == "__main__": lowerCamelCase : Any = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] lowerCamelCase : Any = [0, 0] # all coordinates are given in format [y,x] lowerCamelCase : str = [len(grid) - 1, len(grid[0]) - 1] lowerCamelCase : List[Any] = 1 # the cost map which pushes the path closer to the goal lowerCamelCase : str = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): lowerCamelCase : Tuple = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map lowerCamelCase : str = 99 lowerCamelCase ,lowerCamelCase : Optional[Any] = search(grid, init, goal, cost, heuristic) print('''ACTION MAP''') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
649
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowerCamelCase : List[Any] = logging.get_logger(__name__) class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , __a : str = None , __a : uuid.UUID = None , __a : Any=None , __a : List[Any]=None ) -> List[Any]: """simple docstring""" if not conversation_id: __lowercase : Any = uuid.uuida() if past_user_inputs is None: __lowercase : Dict = [] if generated_responses is None: __lowercase : Dict = [] __lowercase : uuid.UUID = conversation_id __lowercase : List[str] = past_user_inputs __lowercase : List[str] = generated_responses __lowercase : Optional[str] = text def __eq__( self : Dict , __a : Dict ) -> Any: """simple docstring""" if not isinstance(__a , __a ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCAmelCase ( self : List[str] , __a : str , __a : bool = False ) -> Dict: """simple docstring""" if self.new_user_input: if overwrite: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten " F"with: \"{text}\"." ) __lowercase : Optional[int] = text else: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" new input " F"ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input" ) else: __lowercase : Dict = text def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __lowercase : Dict = None def lowerCAmelCase ( self : Optional[int] , __a : str ) -> List[Any]: """simple docstring""" self.generated_responses.append(__a ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : int ) -> str: """simple docstring""" __lowercase : Optional[int] = F"Conversation id: {self.uuid} \n" for is_user, text in self.iter_texts(): __lowercase : Optional[Any] = """user""" if is_user else """bot""" output += F"{name} >> {text} \n" return output @add_end_docstrings( __a , r''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''' , ) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Any , *__a : int , **__a : str ) -> Union[str, Any]: """simple docstring""" super().__init__(*__a , **__a ) if self.tokenizer.pad_token_id is None: __lowercase : List[Any] = self.tokenizer.eos_token def lowerCAmelCase ( self : Union[str, Any] , __a : int=None , __a : Tuple=None , __a : Any=None , **__a : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = {} __lowercase : Tuple = {} __lowercase : List[str] = {} if min_length_for_response is not None: __lowercase : Dict = min_length_for_response if minimum_tokens is not None: __lowercase : Union[str, Any] = minimum_tokens if "max_length" in generate_kwargs: __lowercase : Union[str, Any] = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __lowercase : Union[str, Any] = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(__a ) return preprocess_params, forward_params, postprocess_params def __call__( self : Optional[int] , __a : Union[Conversation, List[Conversation]] , __a : Dict=0 , **__a : List[Any] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = super().__call__(__a , num_workers=__a , **__a ) if isinstance(__a , __a ) and len(__a ) == 1: return outputs[0] return outputs def lowerCAmelCase ( self : Union[str, Any] , __a : Conversation , __a : Tuple=32 ) -> Dict[str, Any]: """simple docstring""" if not isinstance(__a , __a ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( F"Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. " """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer , """_build_conversation_input_ids""" ): __lowercase : List[Any] = self.tokenizer._build_conversation_input_ids(__a ) else: # If the tokenizer cannot handle conversations, we default to only the old version __lowercase : Tuple = self._legacy_parse_and_tokenize(__a ) if self.framework == "pt": __lowercase : List[Any] = torch.LongTensor([input_ids] ) elif self.framework == "tf": __lowercase : List[str] = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCAmelCase ( self : Any , __a : Dict , __a : Any=10 , **__a : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = generate_kwargs.get("""max_length""" , self.model.config.max_length ) __lowercase : List[Any] = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(F"Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})" ) __lowercase : Any = max_length - minimum_tokens __lowercase : int = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: __lowercase : Dict = model_inputs["""attention_mask"""][:, -trim:] __lowercase : Union[str, Any] = model_inputs.pop("""conversation""" ) __lowercase : Tuple = max_length __lowercase : int = self.model.generate(**__a , **__a ) if self.model.config.is_encoder_decoder: __lowercase : Optional[int] = 1 else: __lowercase : str = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCAmelCase ( self : int , __a : Tuple , __a : List[Any]=True ) -> List[str]: """simple docstring""" __lowercase : int = model_outputs["""output_ids"""] __lowercase : Union[str, Any] = self.tokenizer.decode( output_ids[0] , skip_special_tokens=__a , clean_up_tokenization_spaces=__a , ) __lowercase : List[str] = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(__a ) return conversation def lowerCAmelCase ( self : int , __a : Conversation ) -> Dict: """simple docstring""" __lowercase : Optional[int] = self.tokenizer.eos_token_id __lowercase : Optional[Any] = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(__a , add_special_tokens=__a ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(__a , add_special_tokens=__a ) ) if len(__a ) > self.tokenizer.model_max_length: __lowercase : List[Any] = input_ids[-self.tokenizer.model_max_length :] return input_ids
649
1
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Tuple , __a : int , __a : int ) -> int: """simple docstring""" __lowercase : Optional[int] = jnp.ones((batch_size, length) ) / length return scores def lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" __lowercase : str = None __lowercase : List[str] = 20 __lowercase : List[Any] = self._get_uniform_logits(batch_size=2 , length=__a ) # tweak scores to not be uniform anymore __lowercase : Dict = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch __lowercase : Dict = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax __lowercase : Union[str, Any] = jax.nn.softmax(__a , axis=-1 ) __lowercase : Union[str, Any] = FlaxTemperatureLogitsWarper(temperature=0.5 ) __lowercase : Union[str, Any] = FlaxTemperatureLogitsWarper(temperature=1.3 ) __lowercase : Optional[Any] = jax.nn.softmax(temp_dist_warper_sharper(__a , scores.copy() , cur_len=__a ) , axis=-1 ) __lowercase : int = jax.nn.softmax(temp_dist_warper_smoother(__a , scores.copy() , cur_len=__a ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase : Union[str, Any] = None __lowercase : Optional[Any] = 10 __lowercase : Optional[Any] = 2 # create ramp distribution __lowercase : Optional[Any] = np.broadcast_to(np.arange(__a )[None, :] , (batch_size, vocab_size) ).copy() __lowercase : Union[str, Any] = ramp_logits[1:, : vocab_size // 2] + vocab_size __lowercase : List[Any] = FlaxTopKLogitsWarper(3 ) __lowercase : Union[str, Any] = top_k_warp(__a , __a , cur_len=__a ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case __lowercase : List[Any] = 5 __lowercase : Dict = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) __lowercase : Optional[Any] = np.broadcast_to(np.arange(__a )[None, :] , (batch_size, length) ).copy() __lowercase : str = top_k_warp_safety_check(__a , __a , cur_len=__a ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = None __lowercase : int = 10 __lowercase : Tuple = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) __lowercase : Union[str, Any] = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) __lowercase : Optional[Any] = FlaxTopPLogitsWarper(0.8 ) __lowercase : List[Any] = np.exp(top_p_warp(__a , __a , cur_len=__a ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 __lowercase : List[Any] = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(__a , __a , atol=1E-3 ) ) # check edge cases with negative and extreme logits __lowercase : List[str] = np.broadcast_to(np.arange(__a )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme __lowercase : Tuple = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept __lowercase : List[str] = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) __lowercase : Dict = top_p_warp(__a , __a , cur_len=__a ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = 20 __lowercase : Optional[int] = 4 __lowercase : Union[str, Any] = 0 __lowercase : Dict = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__a ) # check that min length is applied at length 5 __lowercase : Optional[int] = ids_tensor((batch_size, 20) , vocab_size=20 ) __lowercase : List[Any] = 5 __lowercase : List[Any] = self._get_uniform_logits(__a , __a ) __lowercase : Optional[int] = min_dist_processor(__a , __a , cur_len=__a ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("""inf""" )] ) # check that min length is not applied anymore at length 15 __lowercase : List[Any] = self._get_uniform_logits(__a , __a ) __lowercase : Any = 15 __lowercase : int = min_dist_processor(__a , __a , cur_len=__a ) self.assertFalse(jnp.isinf(__a ).any() ) def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : str = 20 __lowercase : Optional[Any] = 4 __lowercase : Optional[Any] = 0 __lowercase : int = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__a ) # check that all scores are -inf except the bos_token_id score __lowercase : Dict = ids_tensor((batch_size, 1) , vocab_size=20 ) __lowercase : int = 1 __lowercase : Any = self._get_uniform_logits(__a , __a ) __lowercase : List[str] = logits_processor(__a , __a , cur_len=__a ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 __lowercase : Any = 3 __lowercase : List[Any] = self._get_uniform_logits(__a , __a ) __lowercase : Any = logits_processor(__a , __a , cur_len=__a ) self.assertFalse(jnp.isinf(__a ).any() ) def lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" __lowercase : Dict = 20 __lowercase : Tuple = 4 __lowercase : str = 0 __lowercase : Optional[Any] = 5 __lowercase : Tuple = FlaxForcedEOSTokenLogitsProcessor(max_length=__a , eos_token_id=__a ) # check that all scores are -inf except the eos_token_id when max_length is reached __lowercase : List[Any] = ids_tensor((batch_size, 4) , vocab_size=20 ) __lowercase : Union[str, Any] = 4 __lowercase : int = self._get_uniform_logits(__a , __a ) __lowercase : int = logits_processor(__a , __a , cur_len=__a ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached __lowercase : List[str] = 3 __lowercase : List[Any] = self._get_uniform_logits(__a , __a ) __lowercase : List[str] = logits_processor(__a , __a , cur_len=__a ) self.assertFalse(jnp.isinf(__a ).any() ) def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" __lowercase : List[Any] = 4 __lowercase : Any = 10 __lowercase : Optional[int] = 15 __lowercase : int = 2 __lowercase : Optional[int] = 1 __lowercase : Optional[Any] = 15 # dummy input_ids and scores __lowercase : Dict = ids_tensor((batch_size, sequence_length) , __a ) __lowercase : int = input_ids.copy() __lowercase : int = self._get_uniform_logits(__a , __a ) __lowercase : Tuple = scores.copy() # instantiate all dist processors __lowercase : int = FlaxTemperatureLogitsWarper(temperature=0.5 ) __lowercase : List[Any] = FlaxTopKLogitsWarper(3 ) __lowercase : List[str] = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors __lowercase : Optional[Any] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__a ) __lowercase : Tuple = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__a ) __lowercase : Dict = FlaxForcedEOSTokenLogitsProcessor(max_length=__a , eos_token_id=__a ) __lowercase : List[Any] = 10 # no processor list __lowercase : Any = temp_dist_warp(__a , __a , cur_len=__a ) __lowercase : Dict = top_k_warp(__a , __a , cur_len=__a ) __lowercase : List[str] = top_p_warp(__a , __a , cur_len=__a ) __lowercase : int = min_dist_proc(__a , __a , cur_len=__a ) __lowercase : Any = bos_dist_proc(__a , __a , cur_len=__a ) __lowercase : Any = eos_dist_proc(__a , __a , cur_len=__a ) # with processor list __lowercase : Dict = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) __lowercase : str = processor(__a , __a , cur_len=__a ) # scores should be equal self.assertTrue(jnp.allclose(__a , __a , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = 4 __lowercase : str = 10 __lowercase : Tuple = 15 __lowercase : str = 2 __lowercase : List[str] = 1 __lowercase : List[str] = 15 # dummy input_ids and scores __lowercase : str = ids_tensor((batch_size, sequence_length) , __a ) __lowercase : str = input_ids.copy() __lowercase : int = self._get_uniform_logits(__a , __a ) __lowercase : List[Any] = scores.copy() # instantiate all dist processors __lowercase : int = FlaxTemperatureLogitsWarper(temperature=0.5 ) __lowercase : str = FlaxTopKLogitsWarper(3 ) __lowercase : List[str] = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors __lowercase : Any = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__a ) __lowercase : Tuple = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__a ) __lowercase : Dict = FlaxForcedEOSTokenLogitsProcessor(max_length=__a , eos_token_id=__a ) __lowercase : int = 10 # no processor list def run_no_processor_list(__a : Optional[Any] , __a : List[str] , __a : Union[str, Any] ): __lowercase : str = temp_dist_warp(__a , __a , cur_len=__a ) __lowercase : List[Any] = top_k_warp(__a , __a , cur_len=__a ) __lowercase : Dict = top_p_warp(__a , __a , cur_len=__a ) __lowercase : int = min_dist_proc(__a , __a , cur_len=__a ) __lowercase : str = bos_dist_proc(__a , __a , cur_len=__a ) __lowercase : Union[str, Any] = eos_dist_proc(__a , __a , cur_len=__a ) return scores # with processor list def run_processor_list(__a : Optional[Any] , __a : int , __a : Dict ): __lowercase : Optional[Any] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) __lowercase : Optional[Any] = processor(__a , __a , cur_len=__a ) return scores __lowercase : int = jax.jit(__a ) __lowercase : Optional[int] = jax.jit(__a ) __lowercase : str = jitted_run_no_processor_list(__a , __a , __a ) __lowercase : List[str] = jitted_run_processor_list(__a , __a , __a ) # scores should be equal self.assertTrue(jnp.allclose(__a , __a , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
649
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__a , """tf_padding""" ) ) self.parent.assertTrue(hasattr(__a , """depth_multiplier""" ) ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Tuple , __a : str=13 , __a : Dict=3 , __a : List[Any]=32 , __a : Any=0.25 , __a : Any=8 , __a : Optional[int]=8 , __a : Optional[int]=6 , __a : Dict=32 , __a : Tuple=True , __a : List[Any]=True , __a : Optional[int]=True , __a : Tuple="relu6" , __a : Optional[Any]=1280 , __a : str=0.1 , __a : str=0.02 , __a : Optional[Any]=True , __a : Tuple=True , __a : Dict=10 , __a : Optional[Any]=None , ) -> Any: """simple docstring""" __lowercase : List[str] = parent __lowercase : Tuple = batch_size __lowercase : Dict = num_channels __lowercase : Optional[int] = image_size __lowercase : int = depth_multiplier __lowercase : str = depth_divisible_by __lowercase : int = min_depth __lowercase : Tuple = expand_ratio __lowercase : Optional[int] = tf_padding __lowercase : Dict = output_stride __lowercase : Dict = first_layer_is_expansion __lowercase : Optional[Any] = finegrained_output __lowercase : str = hidden_act __lowercase : Union[str, Any] = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) __lowercase : Optional[int] = classifier_dropout_prob __lowercase : int = use_labels __lowercase : Optional[int] = is_training __lowercase : Dict = num_labels __lowercase : Tuple = initializer_range __lowercase : Optional[Any] = scope def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : List[Any] = None __lowercase : Optional[Any] = None if self.use_labels: __lowercase : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __lowercase : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowercase : List[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : Tuple , __a : Dict , __a : Tuple , __a : Optional[int] , __a : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[int] = MobileNetVaModel(config=__a ) model.to(__a ) model.eval() __lowercase : Tuple = model(__a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def lowerCAmelCase ( self : List[str] , __a : Optional[int] , __a : List[str] , __a : str , __a : Optional[int] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = self.num_labels __lowercase : Dict = MobileNetVaForImageClassification(__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : int , __a : List[str] , __a : Tuple , __a : Any , __a : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : int = self.num_labels __lowercase : List[Any] = MobileNetVaForSemanticSegmentation(__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __lowercase : str = model(__a , labels=__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase : List[str] = config_and_inputs __lowercase : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Tuple = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) _A : Optional[Any] = ( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) _A : Tuple = False _A : List[str] = False _A : List[str] = False _A : Optional[int] = False def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = MobileNetVaModelTester(self ) __lowercase : int = MobileNetVaConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV2 does not use inputs_embeds""" ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not support input and output embeddings""" ) def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not output attentions""" ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[Any] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : int = [*signature.parameters.keys()] __lowercase : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" def check_hidden_states_output(__a : List[Any] , __a : Tuple , __a : List[str] ): __lowercase : Optional[Any] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : List[Any] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Tuple = outputs.hidden_states __lowercase : str = 16 self.assertEqual(len(__a ) , __a ) __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Any = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase : Union[str, Any] = True check_hidden_states_output(__a , __a , __a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : Optional[int] = MobileNetVaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def snake_case_ ( ): __lowercase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v2_1.0_224""" ) if is_vision_available() else None ) @slow def lowerCAmelCase ( self : str ) -> int: """simple docstring""" __lowercase : Tuple = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v2_1.0_224""" ).to(__a ) __lowercase : str = self.default_image_processor __lowercase : Tuple = prepare_img() __lowercase : Tuple = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : str = model(**__a ) # verify the logits __lowercase : Union[str, Any] = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , __a ) __lowercase : str = torch.tensor([0.2445, -1.1993, 0.1905] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : int = MobileNetVaForSemanticSegmentation.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __lowercase : Dict = model.to(__a ) __lowercase : Tuple = MobileNetVaImageProcessor.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __lowercase : List[str] = prepare_img() __lowercase : Optional[int] = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : Union[str, Any] = model(**__a ) __lowercase : Any = outputs.logits # verify the logits __lowercase : Dict = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , __a ) __lowercase : str = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=__a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __a , atol=1E-4 ) )
649
1
def snake_case_ ( lowerCAmelCase_ : list , lowerCAmelCase_ : list , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int ): if index == number_of_items: return 0 __lowercase : Optional[Any] = 0 __lowercase : int = 0 __lowercase : Any = knapsack(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , index + 1 ) if weights[index] <= max_weight: __lowercase : str = values[index] + knapsack( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , max_weight - weights[index] , index + 1 ) return max(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
649
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def snake_case_ ( lowerCAmelCase_ : bool = True , *lowerCAmelCase_ : int , **lowerCAmelCase_ : List[str] ): if not is_tqdm_available(): raise ImportError("""Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.""" ) __lowercase : List[str] = False if main_process_only: __lowercase : Optional[int] = PartialState().local_process_index == 0 return _tqdm(*lowerCAmelCase_ , **lowerCAmelCase_ , disable=lowerCAmelCase_ )
649
1
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : int , *__a : Dict , **__a : Optional[Any] ) -> None: """simple docstring""" warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , __a , ) super().__init__(*__a , **__a )
649
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : list[int] ): if not nums: return 0 __lowercase : Tuple = nums[0] __lowercase : Tuple = 0 for num in nums[1:]: __lowercase , __lowercase : List[str] = ( max_excluding + num, max(lowerCAmelCase_ , lowerCAmelCase_ ), ) return max(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
649
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase : Any = { '''configuration_efficientnet''': [ '''EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientNetConfig''', '''EfficientNetOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = ['''EfficientNetImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ '''EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientNetForImageClassification''', '''EfficientNetModel''', '''EfficientNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCamelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
649
lowerCamelCase : List[str] = '''0.18.2''' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
649
1
import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# lowerCamelCase : Tuple = [ # (stable-diffusion, HF Diffusers) ('''time_embed.0.weight''', '''time_embedding.linear_1.weight'''), ('''time_embed.0.bias''', '''time_embedding.linear_1.bias'''), ('''time_embed.2.weight''', '''time_embedding.linear_2.weight'''), ('''time_embed.2.bias''', '''time_embedding.linear_2.bias'''), ('''input_blocks.0.0.weight''', '''conv_in.weight'''), ('''input_blocks.0.0.bias''', '''conv_in.bias'''), ('''out.0.weight''', '''conv_norm_out.weight'''), ('''out.0.bias''', '''conv_norm_out.bias'''), ('''out.2.weight''', '''conv_out.weight'''), ('''out.2.bias''', '''conv_out.bias'''), ] lowerCamelCase : Optional[Any] = [ # (stable-diffusion, HF Diffusers) ('''in_layers.0''', '''norm1'''), ('''in_layers.2''', '''conv1'''), ('''out_layers.0''', '''norm2'''), ('''out_layers.3''', '''conv2'''), ('''emb_layers.1''', '''time_emb_proj'''), ('''skip_connection''', '''conv_shortcut'''), ] lowerCamelCase : Tuple = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks lowerCamelCase : str = f'''down_blocks.{i}.resnets.{j}.''' lowerCamelCase : Optional[Any] = f'''input_blocks.{3*i + j + 1}.0.''' unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 lowerCamelCase : Optional[Any] = f'''down_blocks.{i}.attentions.{j}.''' lowerCamelCase : str = f'''input_blocks.{3*i + j + 1}.1.''' unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks lowerCamelCase : Union[str, Any] = f'''up_blocks.{i}.resnets.{j}.''' lowerCamelCase : Optional[Any] = f'''output_blocks.{3*i + j}.0.''' unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 lowerCamelCase : List[Any] = f'''up_blocks.{i}.attentions.{j}.''' lowerCamelCase : Optional[int] = f'''output_blocks.{3*i + j}.1.''' unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 lowerCamelCase : List[str] = f'''down_blocks.{i}.downsamplers.0.conv.''' lowerCamelCase : List[str] = f'''input_blocks.{3*(i+1)}.0.op.''' unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 lowerCamelCase : Optional[int] = f'''up_blocks.{i}.upsamplers.0.''' lowerCamelCase : Optional[int] = f'''output_blocks.{3*i + 2}.{1 if i == 0 else 2}.''' unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) lowerCamelCase : Optional[Any] = '''mid_block.attentions.0.''' lowerCamelCase : Tuple = '''middle_block.1.''' unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): lowerCamelCase : Optional[Any] = f'''mid_block.resnets.{j}.''' lowerCamelCase : int = f'''middle_block.{2*j}.''' unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def snake_case_ ( lowerCAmelCase_ : Optional[int] ): # buyer beware: this is a *brittle* function, # and correct output requires that all of these pieces interact in # the exact order in which I have arranged them. __lowercase : List[str] = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: __lowercase : Union[str, Any] = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: __lowercase : List[str] = v.replace(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : str = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: __lowercase : int = v.replace(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : List[Any] = v __lowercase : List[str] = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# lowerCamelCase : List[str] = [ # (stable-diffusion, HF Diffusers) ('''nin_shortcut''', '''conv_shortcut'''), ('''norm_out''', '''conv_norm_out'''), ('''mid.attn_1.''', '''mid_block.attentions.0.'''), ] for i in range(4): # down_blocks have two resnets for j in range(2): lowerCamelCase : str = f'''encoder.down_blocks.{i}.resnets.{j}.''' lowerCamelCase : Dict = f'''encoder.down.{i}.block.{j}.''' vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: lowerCamelCase : List[str] = f'''down_blocks.{i}.downsamplers.0.''' lowerCamelCase : Tuple = f'''down.{i}.downsample.''' vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) lowerCamelCase : Union[str, Any] = f'''up_blocks.{i}.upsamplers.0.''' lowerCamelCase : List[str] = f'''up.{3-i}.upsample.''' vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): lowerCamelCase : Dict = f'''decoder.up_blocks.{i}.resnets.{j}.''' lowerCamelCase : Any = f'''decoder.up.{3-i}.block.{j}.''' vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): lowerCamelCase : Optional[Any] = f'''mid_block.resnets.{i}.''' lowerCamelCase : Dict = f'''mid.block_{i+1}.''' vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) lowerCamelCase : str = [ # (stable-diffusion, HF Diffusers) ('''norm.''', '''group_norm.'''), ('''q.''', '''query.'''), ('''k.''', '''key.'''), ('''v.''', '''value.'''), ('''proj_out.''', '''proj_attn.'''), ] def snake_case_ ( lowerCAmelCase_ : Tuple ): # convert HF linear weights to SD conv2d weights return w.reshape(*w.shape , 1 , 1 ) def snake_case_ ( lowerCAmelCase_ : Union[str, Any] ): __lowercase : str = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: __lowercase : Optional[int] = v.replace(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Optional[int] = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: __lowercase : Any = v.replace(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Optional[Any] = v __lowercase : Any = {v: vae_state_dict[k] for k, v in mapping.items()} __lowercase : str = ["""q""", """k""", """v""", """proj_out"""] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if F"mid.attn_1.{weight_name}.weight" in k: print(F"Reshaping {k} for SD format" ) __lowercase : Dict = reshape_weight_for_sd(lowerCAmelCase_ ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# lowerCamelCase : Tuple = [ # (stable-diffusion, HF Diffusers) ('''resblocks.''', '''text_model.encoder.layers.'''), ('''ln_1''', '''layer_norm1'''), ('''ln_2''', '''layer_norm2'''), ('''.c_fc.''', '''.fc1.'''), ('''.c_proj.''', '''.fc2.'''), ('''.attn''', '''.self_attn'''), ('''ln_final.''', '''transformer.text_model.final_layer_norm.'''), ('''token_embedding.weight''', '''transformer.text_model.embeddings.token_embedding.weight'''), ('''positional_embedding''', '''transformer.text_model.embeddings.position_embedding.weight'''), ] lowerCamelCase : Union[str, Any] = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} lowerCamelCase : Any = re.compile('''|'''.join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp lowerCamelCase : Dict = {'''q''': 0, '''k''': 1, '''v''': 2} def snake_case_ ( lowerCAmelCase_ : str ): __lowercase : List[Any] = {} __lowercase : Tuple = {} __lowercase : Dict = {} for k, v in text_enc_dict.items(): if ( k.endswith(""".self_attn.q_proj.weight""" ) or k.endswith(""".self_attn.k_proj.weight""" ) or k.endswith(""".self_attn.v_proj.weight""" ) ): __lowercase : List[str] = k[: -len(""".q_proj.weight""" )] __lowercase : Any = k[-len("""q_proj.weight""" )] if k_pre not in capture_qkv_weight: __lowercase : Any = [None, None, None] __lowercase : List[Any] = v continue if ( k.endswith(""".self_attn.q_proj.bias""" ) or k.endswith(""".self_attn.k_proj.bias""" ) or k.endswith(""".self_attn.v_proj.bias""" ) ): __lowercase : Optional[Any] = k[: -len(""".q_proj.bias""" )] __lowercase : Optional[Any] = k[-len("""q_proj.bias""" )] if k_pre not in capture_qkv_bias: __lowercase : Any = [None, None, None] __lowercase : List[str] = v continue __lowercase : List[Any] = textenc_pattern.sub(lambda lowerCAmelCase_ : protected[re.escape(m.group(0 ) )] , lowerCAmelCase_ ) __lowercase : Union[str, Any] = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception("""CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing""" ) __lowercase : Any = textenc_pattern.sub(lambda lowerCAmelCase_ : protected[re.escape(m.group(0 ) )] , lowerCAmelCase_ ) __lowercase : List[Any] = torch.cat(lowerCAmelCase_ ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception("""CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing""" ) __lowercase : Union[str, Any] = textenc_pattern.sub(lambda lowerCAmelCase_ : protected[re.escape(m.group(0 ) )] , lowerCAmelCase_ ) __lowercase : str = torch.cat(lowerCAmelCase_ ) return new_state_dict def snake_case_ ( lowerCAmelCase_ : Union[str, Any] ): return text_enc_dict if __name__ == "__main__": lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''') parser.add_argument( '''--use_safetensors''', action='''store_true''', help='''Save weights use safetensors, default is ckpt.''' ) lowerCamelCase : List[Any] = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors lowerCamelCase : Dict = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.safetensors''') lowerCamelCase : Tuple = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.safetensors''') lowerCamelCase : List[str] = osp.join(args.model_path, '''text_encoder''', '''model.safetensors''') # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): lowerCamelCase : Any = load_file(unet_path, device='''cpu''') else: lowerCamelCase : Optional[Any] = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.bin''') lowerCamelCase : List[Any] = torch.load(unet_path, map_location='''cpu''') if osp.exists(vae_path): lowerCamelCase : List[str] = load_file(vae_path, device='''cpu''') else: lowerCamelCase : Tuple = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.bin''') lowerCamelCase : str = torch.load(vae_path, map_location='''cpu''') if osp.exists(text_enc_path): lowerCamelCase : Optional[Any] = load_file(text_enc_path, device='''cpu''') else: lowerCamelCase : Any = osp.join(args.model_path, '''text_encoder''', '''pytorch_model.bin''') lowerCamelCase : Dict = torch.load(text_enc_path, map_location='''cpu''') # Convert the UNet model lowerCamelCase : Dict = convert_unet_state_dict(unet_state_dict) lowerCamelCase : Optional[int] = {'''model.diffusion_model.''' + k: v for k, v in unet_state_dict.items()} # Convert the VAE model lowerCamelCase : Optional[int] = convert_vae_state_dict(vae_state_dict) lowerCamelCase : Optional[Any] = {'''first_stage_model.''' + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper lowerCamelCase : Union[str, Any] = '''text_model.encoder.layers.22.layer_norm2.bias''' in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm lowerCamelCase : int = {'''transformer.''' + k: v for k, v in text_enc_dict.items()} lowerCamelCase : Tuple = convert_text_enc_state_dict_vaa(text_enc_dict) lowerCamelCase : str = {'''cond_stage_model.model.''' + k: v for k, v in text_enc_dict.items()} else: lowerCamelCase : Union[str, Any] = convert_text_enc_state_dict(text_enc_dict) lowerCamelCase : Optional[int] = {'''cond_stage_model.transformer.''' + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint lowerCamelCase : List[Any] = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: lowerCamelCase : Union[str, Any] = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: lowerCamelCase : List[str] = {'''state_dict''': state_dict} torch.save(state_dict, args.checkpoint_path)
649
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : List[Any] = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : str=False , lowerCAmelCase_ : Any=False ): __lowercase : Any = """backbone.""" if is_semantic else """""" __lowercase : Optional[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"{prefix}blocks.{i}.norm1.weight", F"beit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm1.bias", F"beit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.weight", F"beit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.bias", F"beit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.weight", F"beit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.bias", F"beit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.weight", F"beit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.bias", F"beit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.weight", F"beit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.bias", F"beit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ (F"{prefix}cls_token", """beit.embeddings.cls_token"""), (F"{prefix}patch_embed.proj.weight", """beit.embeddings.patch_embeddings.projection.weight"""), (F"{prefix}patch_embed.proj.bias", """beit.embeddings.patch_embeddings.projection.bias"""), (F"{prefix}pos_embed", """beit.embeddings.position_embeddings"""), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("""mask_token""", """beit.embeddings.mask_token"""), ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) else: # layernorm + classification head rename_keys.extend( [ ("""fc_norm.weight""", """beit.pooler.layernorm.weight"""), ("""fc_norm.bias""", """beit.pooler.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : List[Any]=False ): for i in range(config.num_hidden_layers ): __lowercase : Tuple = """backbone.""" if is_semantic else """""" # queries, keys and values __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.attn.qkv.weight" ) __lowercase : Dict = state_dict.pop(F"{prefix}blocks.{i}.attn.q_bias" ) __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.attn.v_bias" ) __lowercase : List[str] = in_proj_weight[ : config.hidden_size, : ] __lowercase : Union[str, Any] = q_bias __lowercase : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] __lowercase : str = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.gamma_1" ) __lowercase : str = state_dict.pop(F"{prefix}blocks.{i}.gamma_2" ) __lowercase : List[str] = gamma_a __lowercase : Optional[int] = gamma_a def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : int ): __lowercase : Tuple = dct.pop(lowerCAmelCase_ ) __lowercase : Tuple = val def snake_case_ ( ): __lowercase : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase : Any = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]=False ): __lowercase : Dict = False if """rvlcdip""" in checkpoint_url else True __lowercase : Tuple = BeitConfig(use_absolute_position_embeddings=lowerCAmelCase_ , use_mask_token=lowerCAmelCase_ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: __lowercase : Union[str, Any] = 1024 __lowercase : Optional[int] = 4096 __lowercase : List[Any] = 24 __lowercase : Dict = 16 # labels if "rvlcdip" in checkpoint_url: __lowercase : Optional[int] = 16 __lowercase : Any = """huggingface/label-files""" __lowercase : Union[str, Any] = """rvlcdip-id2label.json""" __lowercase : List[str] = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) __lowercase : Optional[int] = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowercase : Union[str, Any] = idalabel __lowercase : Optional[Any] = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys __lowercase : Optional[int] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ , map_location="""cpu""" )["""model"""] __lowercase : Union[str, Any] = create_rename_keys(lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) # load HuggingFace model __lowercase : Dict = BeitForMaskedImageModeling(lowerCAmelCase_ ) if has_lm_head else BeitForImageClassification(lowerCAmelCase_ ) model.eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image __lowercase : List[str] = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=lowerCAmelCase_ ) __lowercase : List[str] = prepare_img() __lowercase : Optional[Any] = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""" ) __lowercase : Optional[int] = encoding["""pixel_values"""] __lowercase : str = model(lowerCAmelCase_ ) __lowercase : Tuple = outputs.logits # verify logits __lowercase : str = [1, 16] if """rvlcdip""" in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(lowerCAmelCase_ ), "Shape of logits not as expected" Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: if has_lm_head: __lowercase : Optional[Any] = """dit-base""" if """base""" in checkpoint_url else """dit-large""" else: __lowercase : Tuple = """dit-base-finetuned-rvlcdip""" if """dit-b""" in checkpoint_url else """dit-large-finetuned-rvlcdip""" image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=lowerCAmelCase_ , ) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=lowerCAmelCase_ , ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) lowerCamelCase : List[str] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
649
1
from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract lowerCamelCase : Tuple = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str ): return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def snake_case_ ( lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Optional[str] , lowerCAmelCase_ : Optional[str] = None ): __lowercase : Any = tesseract_config if tesseract_config is not None else """""" # apply OCR __lowercase : Optional[Any] = to_pil_image(lowerCAmelCase_ ) __lowercase , __lowercase : Optional[Any] = pil_image.size __lowercase : Union[str, Any] = pytesseract.image_to_data(lowerCAmelCase_ , lang=lowerCAmelCase_ , output_type="""dict""" , config=lowerCAmelCase_ ) __lowercase , __lowercase , __lowercase , __lowercase , __lowercase : Any = data["""text"""], data["""left"""], data["""top"""], data["""width"""], data["""height"""] # filter empty words and corresponding coordinates __lowercase : int = [idx for idx, word in enumerate(lowerCAmelCase_ ) if not word.strip()] __lowercase : Dict = [word for idx, word in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] __lowercase : List[Any] = [coord for idx, coord in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] __lowercase : Optional[Any] = [coord for idx, coord in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] __lowercase : Dict = [coord for idx, coord in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] __lowercase : Any = [coord for idx, coord in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __lowercase : int = [] for x, y, w, h in zip(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : Tuple = [x, y, x + w, y + h] actual_boxes.append(lowerCAmelCase_ ) # finally, normalize the bounding boxes __lowercase : int = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class lowerCAmelCase ( __a ): '''simple docstring''' _A : Any = ['''pixel_values'''] def __init__( self : Optional[int] , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : bool = True , __a : Optional[str] = None , __a : Optional[str] = "" , **__a : str , ) -> None: """simple docstring""" super().__init__(**__a ) __lowercase : Union[str, Any] = size if size is not None else {"""height""": 224, """width""": 224} __lowercase : Any = get_size_dict(__a ) __lowercase : List[Any] = do_resize __lowercase : Optional[int] = size __lowercase : Optional[int] = resample __lowercase : Union[str, Any] = apply_ocr __lowercase : Tuple = ocr_lang __lowercase : Optional[Any] = tesseract_config def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Union[str, Any] , ) -> np.ndarray: """simple docstring""" __lowercase : Any = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}" ) __lowercase : Optional[Any] = (size["""height"""], size["""width"""]) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Dict , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : Optional[str] = None , __a : Optional[str] = None , __a : Optional[Union[str, TensorType]] = None , __a : ChannelDimension = ChannelDimension.FIRST , **__a : Any , ) -> PIL.Image.Image: """simple docstring""" __lowercase : Optional[Any] = do_resize if do_resize is not None else self.do_resize __lowercase : Union[str, Any] = size if size is not None else self.size __lowercase : Tuple = get_size_dict(__a ) __lowercase : Tuple = resample if resample is not None else self.resample __lowercase : Union[str, Any] = apply_ocr if apply_ocr is not None else self.apply_ocr __lowercase : Optional[int] = ocr_lang if ocr_lang is not None else self.ocr_lang __lowercase : str = tesseract_config if tesseract_config is not None else self.tesseract_config __lowercase : Optional[Any] = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) # All transformations expect numpy arrays. __lowercase : Dict = [to_numpy_array(__a ) for image in images] if apply_ocr: requires_backends(self , """pytesseract""" ) __lowercase : Union[str, Any] = [] __lowercase : Optional[int] = [] for image in images: __lowercase , __lowercase : Optional[int] = apply_tesseract(__a , __a , __a ) words_batch.append(__a ) boxes_batch.append(__a ) if do_resize: __lowercase : List[Any] = [self.resize(image=__a , size=__a , resample=__a ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) __lowercase : Any = [flip_channel_order(__a ) for image in images] __lowercase : Any = [to_channel_dimension_format(__a , __a ) for image in images] __lowercase : Any = BatchFeature(data={"""pixel_values""": images} , tensor_type=__a ) if apply_ocr: __lowercase : Tuple = words_batch __lowercase : int = boxes_batch return data
649
from torch import nn class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , __a : int , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" super().__init__() __lowercase : int = class_size __lowercase : int = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) __lowercase : str = nn.Linear(__a , __a ) def lowerCAmelCase ( self : Tuple , __a : int ) -> Tuple: """simple docstring""" __lowercase : str = self.mlp(__a ) return logits
649
1
from manim import * class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" __lowercase : Optional[Any] = Rectangle(height=0.5 , width=0.5 ) __lowercase : Union[str, Any] = Rectangle(height=0.25 , width=0.25 ) __lowercase : List[str] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) __lowercase : List[Any] = [mem.copy() for i in range(6 )] __lowercase : Optional[Any] = [mem.copy() for i in range(6 )] __lowercase : str = VGroup(*__a ).arrange(__a , buff=0 ) __lowercase : Tuple = VGroup(*__a ).arrange(__a , buff=0 ) __lowercase : Union[str, Any] = VGroup(__a , __a ).arrange(__a , buff=0 ) __lowercase : List[Any] = Text("""CPU""" , font_size=24 ) __lowercase : Optional[int] = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__a ) __lowercase : str = [mem.copy() for i in range(4 )] __lowercase : Optional[int] = VGroup(*__a ).arrange(__a , buff=0 ) __lowercase : List[str] = Text("""GPU""" , font_size=24 ) __lowercase : Any = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) gpu.move_to([-1, -1, 0] ) self.add(__a ) __lowercase : Tuple = [mem.copy() for i in range(6 )] __lowercase : Dict = VGroup(*__a ).arrange(__a , buff=0 ) __lowercase : List[str] = Text("""Model""" , font_size=24 ) __lowercase : Any = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) model.move_to([3, -1.0, 0] ) self.add(__a ) __lowercase : List[str] = [] __lowercase : Dict = [] __lowercase : Tuple = [] for i, rect in enumerate(__a ): rect.set_stroke(__a ) __lowercase : Any = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__a , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__a ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=__a , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=__a , buff=0.0 ) self.add(__a ) model_cpu_arr.append(__a ) self.add(*__a , *__a , *__a ) __lowercase : List[Any] = [mem.copy() for i in range(6 )] __lowercase : Optional[Any] = VGroup(*__a ).arrange(__a , buff=0 ) __lowercase : str = Text("""Loaded Checkpoint""" , font_size=24 ) __lowercase : Dict = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) checkpoint.move_to([3, 0.5, 0] ) self.add(__a ) __lowercase : List[Any] = [] __lowercase : str = [] for i, rect in enumerate(__a ): __lowercase : List[Any] = fill.copy().set_fill(__a , opacity=0.7 ) target.move_to(__a ) ckpt_arr.append(__a ) __lowercase : str = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(__a ) self.add(*__a , *__a ) __lowercase : Tuple = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __lowercase : int = MarkupText( F"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__a , __a ) __lowercase : Union[str, Any] = MarkupText( F"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(__a , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(__a ) __lowercase : Tuple = MarkupText( F"Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device." , font_size=24 , ) step_a.move_to([2, 2, 0] ) __lowercase : Any = [meta_mem.copy() for i in range(6 )] __lowercase : List[str] = [meta_mem.copy() for i in range(6 )] __lowercase : List[Any] = VGroup(*__a ).arrange(__a , buff=0 ) __lowercase : List[Any] = VGroup(*__a ).arrange(__a , buff=0 ) __lowercase : List[Any] = VGroup(__a , __a ).arrange(__a , buff=0 ) __lowercase : Dict = Text("""Disk""" , font_size=24 ) __lowercase : Union[str, Any] = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(__a , run_time=3 ) , Write(__a , run_time=1 ) , Create(__a , run_time=1 ) ) __lowercase : Optional[int] = [] for i, rect in enumerate(__a ): __lowercase : str = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(__a , run_time=1.5 ) ) self.play(*__a ) self.play(FadeOut(__a ) ) __lowercase : Dict = MarkupText(F"Then, the checkpoint is removed from memory\nthrough garbage collection." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(__a , run_time=3 ) ) self.play( FadeOut(__a , __a , *__a , *__a ) , ) self.wait()
649
import fire from utils import calculate_rouge, save_json def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : str=None , **lowerCAmelCase_ : str ): __lowercase : Tuple = [x.strip() for x in open(lowerCAmelCase_ ).readlines()] __lowercase : Dict = [x.strip() for x in open(lowerCAmelCase_ ).readlines()][: len(lowerCAmelCase_ )] __lowercase : Tuple = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) if save_path is not None: save_json(lowerCAmelCase_ , lowerCAmelCase_ , indent=lowerCAmelCase_ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
649
1
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def snake_case_ ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] ): __lowercase : Optional[int] = [] for part_id in partition_order: __lowercase : List[Any] = df.where(F"SPARK_PARTITION_ID() = {part_id}" ).collect() for row_idx, row in enumerate(lowerCAmelCase_ ): expected_row_ids_and_row_dicts.append((F"{part_id}_{row_idx}", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def snake_case_ ( ): __lowercase : Optional[int] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() __lowercase : str = spark.range(100 ).repartition(1 ) __lowercase : str = Spark(lowerCAmelCase_ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def snake_case_ ( ): __lowercase : List[Any] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() __lowercase : List[str] = spark.range(10 ).repartition(2 ) __lowercase : List[Any] = [1, 0] __lowercase : Optional[int] = _generate_iterable_examples(lowerCAmelCase_ , lowerCAmelCase_ ) # Reverse the partitions. __lowercase : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCAmelCase_ , lowerCAmelCase_ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): __lowercase , __lowercase : List[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def snake_case_ ( ): __lowercase : List[Any] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() __lowercase : Optional[Any] = spark.range(10 ).repartition(1 ) __lowercase : Dict = SparkExamplesIterable(lowerCAmelCase_ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(lowerCAmelCase_ ): assert row_id == F"0_{i}" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def snake_case_ ( ): __lowercase : Optional[Any] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() __lowercase : Optional[Any] = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("""numpy.random.Generator""" ) as generator_mock: __lowercase : List[Any] = lambda lowerCAmelCase_ : x.reverse() __lowercase : Dict = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCAmelCase_ , [2, 1, 0] ) __lowercase : str = SparkExamplesIterable(lowerCAmelCase_ ).shuffle_data_sources(lowerCAmelCase_ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(lowerCAmelCase_ ): __lowercase , __lowercase : List[str] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def snake_case_ ( ): __lowercase : Dict = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() __lowercase : Dict = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 __lowercase : int = SparkExamplesIterable(lowerCAmelCase_ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 __lowercase : Optional[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCAmelCase_ , [0, 2] ) for i, (row_id, row_dict) in enumerate(lowerCAmelCase_ ): __lowercase , __lowercase : Optional[int] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 __lowercase : List[str] = SparkExamplesIterable(lowerCAmelCase_ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 __lowercase : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCAmelCase_ , [1, 3] ) for i, (row_id, row_dict) in enumerate(lowerCAmelCase_ ): __lowercase , __lowercase : Dict = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def snake_case_ ( ): __lowercase : Tuple = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() __lowercase : Dict = spark.range(100 ).repartition(1 ) __lowercase : Tuple = Spark(lowerCAmelCase_ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
649
from argparse import ArgumentParser from . import BaseTransformersCLICommand def snake_case_ ( lowerCAmelCase_ : Dict ): return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class lowerCAmelCase ( __a ): '''simple docstring''' @staticmethod def lowerCAmelCase ( __a : ArgumentParser ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = parser.add_parser("""download""" ) download_parser.add_argument( """--cache-dir""" , type=__a , default=__a , help="""Path to location to store the models""" ) download_parser.add_argument( """--force""" , action="""store_true""" , help="""Force the model to be download even if already in cache-dir""" ) download_parser.add_argument( """--trust-remote-code""" , action="""store_true""" , help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" , ) download_parser.add_argument("""model""" , type=__a , help="""Name of the model to download""" ) download_parser.set_defaults(func=__a ) def __init__( self : Dict , __a : str , __a : str , __a : bool , __a : bool ) -> Union[str, Any]: """simple docstring""" __lowercase : Dict = model __lowercase : List[Any] = cache __lowercase : Any = force __lowercase : Optional[int] = trust_remote_code def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
649
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : int = logging.get_logger(__name__) lowerCamelCase : int = { '''microsoft/wavlm-base''': '''https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json''', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class lowerCAmelCase ( __a ): '''simple docstring''' _A : Union[str, Any] = '''wavlm''' def __init__( self : str , __a : List[Any]=32 , __a : int=768 , __a : Optional[int]=12 , __a : Dict=12 , __a : Any=3072 , __a : List[Any]="gelu" , __a : Optional[int]=0.1 , __a : List[Any]=0.1 , __a : Optional[Any]=0.1 , __a : str=0.0 , __a : List[str]=0.1 , __a : List[str]=0.1 , __a : int=0.02 , __a : Optional[int]=1E-5 , __a : Optional[Any]="group" , __a : Dict="gelu" , __a : Any=(512, 512, 512, 512, 512, 512, 512) , __a : Dict=(5, 2, 2, 2, 2, 2, 2) , __a : Tuple=(10, 3, 3, 3, 3, 2, 2) , __a : Dict=False , __a : str=128 , __a : Optional[int]=16 , __a : List[Any]=320 , __a : Any=800 , __a : int=False , __a : List[str]=True , __a : Union[str, Any]=0.05 , __a : Optional[Any]=10 , __a : str=2 , __a : Dict=0.0 , __a : Optional[int]=10 , __a : List[str]=320 , __a : Dict=2 , __a : List[Any]=0.1 , __a : Optional[Any]=100 , __a : str=256 , __a : List[str]=256 , __a : str=0.1 , __a : Dict="mean" , __a : Optional[Any]=False , __a : Union[str, Any]=False , __a : Tuple=256 , __a : Optional[Any]=(512, 512, 512, 512, 1500) , __a : int=(5, 3, 3, 1, 1) , __a : List[str]=(1, 2, 3, 1, 1) , __a : int=512 , __a : str=80 , __a : Tuple=0 , __a : List[str]=1 , __a : Union[str, Any]=2 , __a : Tuple=False , __a : List[Any]=3 , __a : List[str]=2 , __a : Dict=3 , __a : int=None , **__a : List[Any] , ) -> Tuple: """simple docstring""" super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a ) __lowercase : List[str] = hidden_size __lowercase : Optional[int] = feat_extract_norm __lowercase : Union[str, Any] = feat_extract_activation __lowercase : Optional[Any] = list(__a ) __lowercase : Union[str, Any] = list(__a ) __lowercase : Union[str, Any] = list(__a ) __lowercase : List[str] = conv_bias __lowercase : List[str] = num_buckets __lowercase : int = max_bucket_distance __lowercase : Union[str, Any] = num_conv_pos_embeddings __lowercase : str = num_conv_pos_embedding_groups __lowercase : List[str] = len(self.conv_dim ) __lowercase : str = num_hidden_layers __lowercase : List[Any] = intermediate_size __lowercase : Union[str, Any] = hidden_act __lowercase : str = num_attention_heads __lowercase : Union[str, Any] = hidden_dropout __lowercase : Optional[Any] = attention_dropout __lowercase : Tuple = activation_dropout __lowercase : str = feat_proj_dropout __lowercase : Dict = final_dropout __lowercase : Optional[Any] = layerdrop __lowercase : Any = layer_norm_eps __lowercase : Any = initializer_range __lowercase : Optional[Any] = num_ctc_classes __lowercase : int = vocab_size __lowercase : int = do_stable_layer_norm __lowercase : int = use_weighted_layer_sum __lowercase : Optional[int] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowercase : List[Any] = apply_spec_augment __lowercase : List[str] = mask_time_prob __lowercase : str = mask_time_length __lowercase : Optional[Any] = mask_time_min_masks __lowercase : Optional[int] = mask_feature_prob __lowercase : Any = mask_feature_length # parameters for pretraining with codevector quantized representations __lowercase : Any = num_codevectors_per_group __lowercase : Dict = num_codevector_groups __lowercase : Optional[int] = contrastive_logits_temperature __lowercase : Optional[int] = num_negatives __lowercase : str = codevector_dim __lowercase : Dict = proj_codevector_dim __lowercase : Tuple = diversity_loss_weight # ctc loss __lowercase : int = ctc_loss_reduction __lowercase : Any = ctc_zero_infinity # adapter __lowercase : int = add_adapter __lowercase : Union[str, Any] = adapter_kernel_size __lowercase : Optional[int] = adapter_stride __lowercase : Tuple = num_adapter_layers __lowercase : List[Any] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __lowercase : List[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __lowercase : Dict = list(__a ) __lowercase : str = list(__a ) __lowercase : List[Any] = list(__a ) __lowercase : Union[str, Any] = xvector_output_dim @property def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
649
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowerCamelCase : Union[str, Any] = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , __a : List[str] , __a : Optional[int]=16 , __a : Optional[Any]=13 , __a : str=7 , __a : List[str]=14 , __a : Any=10 , __a : str=19 , __a : int=5 , __a : Any=4 , __a : List[Any]=True , __a : Tuple=16 , __a : Dict=2 , __a : Tuple=4 , __a : int=4 , __a : List[Any]="gelu" , __a : Tuple=0.1 , __a : List[str]=0.1 , __a : int=[1, 2, 3, 4, 5] , __a : str=25 , __a : Any=5 , ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = d_model __lowercase : Dict = parent __lowercase : Tuple = batch_size __lowercase : Optional[int] = prediction_length __lowercase : List[str] = context_length __lowercase : Any = cardinality __lowercase : str = num_time_features __lowercase : Optional[int] = lags_sequence __lowercase : Optional[Any] = embedding_dimension __lowercase : List[Any] = is_training __lowercase : List[str] = hidden_size __lowercase : int = num_hidden_layers __lowercase : Any = num_attention_heads __lowercase : List[Any] = intermediate_size __lowercase : int = hidden_act __lowercase : str = hidden_dropout_prob __lowercase : List[Any] = attention_probs_dropout_prob __lowercase : str = context_length __lowercase : int = prediction_length + label_length __lowercase : Union[str, Any] = label_length __lowercase : Optional[int] = moving_average __lowercase : Optional[Any] = autocorrelation_factor def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def lowerCAmelCase ( self : Tuple , __a : str ) -> int: """simple docstring""" __lowercase : Any = config.context_length + max(config.lags_sequence ) __lowercase : Any = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __lowercase : Optional[int] = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __lowercase : List[str] = floats_tensor([self.batch_size, _past_length] ) __lowercase : List[str] = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __lowercase : Dict = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __lowercase : str = floats_tensor([self.batch_size, config.prediction_length] ) __lowercase : List[str] = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.get_config() __lowercase : Any = self.prepare_autoformer_inputs_dict(__a ) return config, inputs_dict def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase , __lowercase : List[str] = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase ( self : Optional[Any] , __a : Tuple , __a : Optional[int] ) -> Any: """simple docstring""" __lowercase : List[str] = AutoformerModel(config=__a ).to(__a ).eval() __lowercase : Optional[int] = model(**__a ) __lowercase : Dict = outputs.encoder_last_hidden_state __lowercase : Tuple = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : List[str] = model.get_encoder() encoder.save_pretrained(__a ) __lowercase : List[str] = AutoformerEncoder.from_pretrained(__a ).to(__a ) __lowercase , __lowercase , __lowercase , __lowercase , __lowercase : Any = model.create_network_inputs(**__a ) __lowercase , __lowercase : Any = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __lowercase : Optional[Any] = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __lowercase : Union[str, Any] = encoder(inputs_embeds=__a )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) __lowercase : str = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __lowercase : Optional[int] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __lowercase : Any = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __lowercase : Dict = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : Optional[Any] = model.get_decoder() decoder.save_pretrained(__a ) __lowercase : Tuple = AutoformerDecoder.from_pretrained(__a ).to(__a ) __lowercase : str = decoder( trend=__a , inputs_embeds=__a , encoder_hidden_states=__a , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[str] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _A : List[Any] = (AutoformerForPrediction,) if is_torch_available() else () _A : Any = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} _A : Dict = False _A : Tuple = False _A : Optional[int] = False _A : Tuple = False _A : str = False _A : Union[str, Any] = False def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" __lowercase : List[str] = AutoformerModelTester(self ) __lowercase : Dict = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowercase : Dict = model_class(__a ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowercase , __lowercase : Tuple = model_class.from_pretrained(__a , output_loading_info=__a ) self.assertEqual(info["""missing_keys"""] , [] ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__a ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def lowerCAmelCase ( self : str ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : Any = inspect.signature(getattr(__a , """forward""" ) ) # The main input is the name of the argument after `self` __lowercase : Optional[int] = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , __a ) def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Dict = model_class(__a ) __lowercase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : Any = [*signature.parameters.keys()] __lowercase : int = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(__a )] , __a ) def lowerCAmelCase ( self : int ) -> int: """simple docstring""" __lowercase , __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : int = True __lowercase : Tuple = getattr(self.model_tester , """seq_length""" , __a ) __lowercase : Union[str, Any] = getattr(self.model_tester , """decoder_seq_length""" , __a ) __lowercase : List[str] = getattr(self.model_tester , """encoder_seq_length""" , __a ) __lowercase : List[Any] = getattr(self.model_tester , """d_model""" , __a ) __lowercase : Optional[int] = getattr(self.model_tester , """num_attention_heads""" , __a ) __lowercase : Any = d_model // num_attention_heads for model_class in self.all_model_classes: __lowercase : Dict = True __lowercase : List[str] = False __lowercase : Optional[int] = True __lowercase : str = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : int = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase : Optional[int] = True __lowercase : List[str] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Union[str, Any] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Dict = outputs.encoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __lowercase : Tuple = len(__a ) __lowercase : str = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__a , __a ) # decoder attentions __lowercase : List[Any] = outputs.decoder_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __lowercase : Optional[int] = outputs.cross_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __lowercase : Tuple = True __lowercase : Union[str, Any] = True __lowercase : Tuple = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Any = model(**self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + 2 , len(__a ) ) __lowercase : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def snake_case_ ( lowerCAmelCase_ : Optional[int]="train-batch.pt" ): __lowercase : Dict = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=lowerCAmelCase_ , repo_type="""dataset""" ) __lowercase : Optional[int] = torch.load(lowerCAmelCase_ , map_location=lowerCAmelCase_ ) return batch @require_torch @slow class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" __lowercase : List[str] = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : List[Any] = prepare_batch() with torch.no_grad(): __lowercase : Tuple = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] __lowercase : List[str] = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , __a ) __lowercase : Optional[int] = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" __lowercase : int = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : List[str] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowercase : Optional[Any] = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state __lowercase : List[str] = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , __a ) __lowercase : Optional[int] = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : Optional[int] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowercase : int = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) __lowercase : int = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , __a ) __lowercase : Optional[Any] = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=__a ) __lowercase : Dict = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __a , rtol=1E-1 ) )
649
1
def snake_case_ ( lowerCAmelCase_ : list ): if len(lowerCAmelCase_ ) < 2: return collection def circle_sort_util(lowerCAmelCase_ : list , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> bool: __lowercase : Optional[int] = False if low == high: return swapped __lowercase : Optional[Any] = low __lowercase : Any = high while left < right: if collection[left] > collection[right]: __lowercase , __lowercase : List[Any] = ( collection[right], collection[left], ) __lowercase : Any = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: __lowercase , __lowercase : Any = ( collection[right + 1], collection[left], ) __lowercase : int = True __lowercase : int = low + int((high - low) / 2 ) __lowercase : Union[str, Any] = circle_sort_util(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : List[Any] = circle_sort_util(lowerCAmelCase_ , mid + 1 , lowerCAmelCase_ ) return swapped or left_swap or right_swap __lowercase : str = True while is_not_sorted is True: __lowercase : List[Any] = circle_sort_util(lowerCAmelCase_ , 0 , len(lowerCAmelCase_ ) - 1 ) return collection if __name__ == "__main__": lowerCamelCase : Tuple = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase : Tuple = [int(item) for item in user_input.split(''',''')] print(circle_sort(unsorted))
649
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowerCAmelCase ( __a , __a ): '''simple docstring''' _A : str = 1 @register_to_config def __init__( self : Optional[int] , __a : Tuple=2000 , __a : List[str]=0.1 , __a : str=20 , __a : Optional[int]=1E-3 ) -> int: """simple docstring""" __lowercase : Tuple = None __lowercase : Union[str, Any] = None __lowercase : int = None def lowerCAmelCase ( self : List[Any] , __a : Any , __a : Union[str, torch.device] = None ) -> str: """simple docstring""" __lowercase : List[str] = torch.linspace(1 , self.config.sampling_eps , __a , device=__a ) def lowerCAmelCase ( self : Tuple , __a : List[Any] , __a : Tuple , __a : int , __a : Optional[int]=None ) -> str: """simple docstring""" if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __lowercase : Dict = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __lowercase : int = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __lowercase : Union[str, Any] = std.flatten() while len(std.shape ) < len(score.shape ): __lowercase : Optional[Any] = std.unsqueeze(-1 ) __lowercase : List[Any] = -score / std # compute __lowercase : Dict = -1.0 / len(self.timesteps ) __lowercase : int = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __lowercase : List[Any] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __lowercase : Union[str, Any] = beta_t.unsqueeze(-1 ) __lowercase : List[str] = -0.5 * beta_t * x __lowercase : int = torch.sqrt(__a ) __lowercase : Union[str, Any] = drift - diffusion**2 * score __lowercase : Optional[Any] = x + drift * dt # add noise __lowercase : List[str] = randn_tensor(x.shape , layout=x.layout , generator=__a , device=x.device , dtype=x.dtype ) __lowercase : str = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Tuple ) -> Optional[int]: """simple docstring""" return self.config.num_train_timesteps
649
1
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 lowerCamelCase : Tuple = { # 1536-bit 5: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 2048-bit 14: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AACAA68FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 3072-bit 15: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 4096-bit 16: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199''' + '''FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 6144-bit 17: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08''' + '''8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B''' + '''302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9''' + '''A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6''' + '''49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8''' + '''FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C''' + '''180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718''' + '''3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D''' + '''04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D''' + '''B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226''' + '''1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC''' + '''E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26''' + '''99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB''' + '''04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2''' + '''233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127''' + '''D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406''' + '''AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918''' + '''DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151''' + '''2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03''' + '''F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F''' + '''BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B''' + '''B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632''' + '''387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E''' + '''6DCC4024FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 8192-bit 18: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD''' + '''F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831''' + '''179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B''' + '''DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF''' + '''5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6''' + '''D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3''' + '''23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328''' + '''06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C''' + '''DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE''' + '''12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4''' + '''38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300''' + '''741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568''' + '''3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9''' + '''22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B''' + '''4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A''' + '''062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36''' + '''4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1''' + '''B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92''' + '''4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47''' + '''9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71''' + '''60C980DD98EDD3DFFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, } class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , __a : int = 14 ) -> None: """simple docstring""" if group not in primes: raise ValueError("""Unsupported Group""" ) __lowercase : Tuple = primes[group]["""prime"""] __lowercase : str = primes[group]["""generator"""] __lowercase : Union[str, Any] = int(hexlify(urandom(32 ) ) , base=16 ) def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" return hex(self.__private_key )[2:] def lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" __lowercase : Dict = pow(self.generator , self.__private_key , self.prime ) return hex(__a )[2:] def lowerCAmelCase ( self : Optional[int] , __a : int ) -> bool: """simple docstring""" return ( 2 <= key <= self.prime - 2 and pow(__a , (self.prime - 1) // 2 , self.prime ) == 1 ) def lowerCAmelCase ( self : List[str] , __a : str ) -> str: """simple docstring""" __lowercase : Dict = int(__a , base=16 ) if not self.is_valid_public_key(__a ): raise ValueError("""Invalid public key""" ) __lowercase : Dict = pow(__a , self.__private_key , self.prime ) return shaaaa(str(__a ).encode() ).hexdigest() @staticmethod def lowerCAmelCase ( __a : int , __a : int ) -> bool: """simple docstring""" return ( 2 <= remote_public_key_str <= prime - 2 and pow(__a , (prime - 1) // 2 , __a ) == 1 ) @staticmethod def lowerCAmelCase ( __a : str , __a : str , __a : int = 14 ) -> str: """simple docstring""" __lowercase : str = int(__a , base=16 ) __lowercase : Any = int(__a , base=16 ) __lowercase : str = primes[group]["""prime"""] if not DiffieHellman.is_valid_public_key_static(__a , __a ): raise ValueError("""Invalid public key""" ) __lowercase : str = pow(__a , __a , __a ) return shaaaa(str(__a ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
649
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : str = LongformerTokenizer _A : int = True _A : Optional[int] = LongformerTokenizerFast _A : int = True def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __lowercase : Union[str, Any] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Any = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __lowercase : Optional[int] = {"""unk_token""": """<unk>"""} __lowercase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__a ) ) def lowerCAmelCase ( self : Optional[int] , **__a : Optional[Any] ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Tuple , **__a : Tuple ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : str , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = """lower newer""" __lowercase : int = """lower newer""" return input_text, output_text def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowercase : Dict = """lower newer""" __lowercase : Optional[Any] = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] __lowercase : str = tokenizer.tokenize(__a ) # , add_prefix_space=True) self.assertListEqual(__a , __a ) __lowercase : int = tokens + [tokenizer.unk_token] __lowercase : str = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=__a ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=__a ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : Any = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" ) __lowercase : Optional[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=__a ) __lowercase : List[str] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__a ) __lowercase : Optional[Any] = tokenizer.encode( """sequence builders""" , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Union[str, Any] = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : List[Any] = tokenizer.build_inputs_with_special_tokens(__a ) __lowercase : Any = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() __lowercase : Tuple = """Encode this sequence.""" __lowercase : Optional[Any] = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments __lowercase : Dict = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__a , __a ) __lowercase : List[str] = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__a , __a ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) __lowercase : str = tokenizer.encode(__a , add_special_tokens=__a ) __lowercase : Dict = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__a , __a ) # Testing spaces after special tokens __lowercase : List[Any] = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(__a , lstrip=__a , rstrip=__a )} ) # mask token has a left space __lowercase : Dict = tokenizer.convert_tokens_to_ids(__a ) __lowercase : List[str] = """Encode <mask> sequence""" __lowercase : List[str] = """Encode <mask>sequence""" __lowercase : Union[str, Any] = tokenizer.encode(__a ) __lowercase : Dict = encoded.index(__a ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__a , __a ) __lowercase : int = tokenizer.encode(__a ) __lowercase : Union[str, Any] = encoded.index(__a ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__a , __a ) def lowerCAmelCase ( self : int ) -> str: """simple docstring""" pass def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) __lowercase : List[Any] = self.tokenizer_class.from_pretrained(__a , **__a ) __lowercase : Optional[Any] = """A, <mask> AllenNLP sentence.""" __lowercase : Union[str, Any] = tokenizer_r.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) __lowercase : Optional[Any] = tokenizer_p.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) __lowercase : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __lowercase : str = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __lowercase : Dict = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __lowercase : Any = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""trim_offsets"""] , __a ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : List[str] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` __lowercase : int = F"{text_of_1_token} {text_of_1_token}" __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Any = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) __lowercase : str = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Tuple = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) __lowercase : Optional[int] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : str = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) __lowercase : str = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : int = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) __lowercase : Any = F" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : str = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ) + 1, 1 + len(__a ) + 1 + len(__a )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Dict = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Tuple = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , )
649
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCamelCase : Optional[Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-classification/requirements.txt''') lowerCamelCase : Tuple = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) lowerCamelCase : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def snake_case_ ( lowerCAmelCase_ : str ): with open(lowerCAmelCase_ , """rb""" ) as f: __lowercase : Tuple = Image.open(lowerCAmelCase_ ) return im.convert("""RGB""" ) @dataclass class lowerCAmelCase : '''simple docstring''' _A : Optional[str] = field( default=__a , metadata={ '''help''': '''Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).''' } , ) _A : Optional[str] = field( default=__a , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) _A : Optional[str] = field(default=__a , metadata={'''help''': '''A folder containing the training data.'''} ) _A : Optional[str] = field(default=__a , metadata={'''help''': '''A folder containing the validation data.'''} ) _A : Optional[float] = field( default=0.1_5 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) _A : Optional[int] = field( default=__a , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) _A : Optional[int] = field( default=__a , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( """You must specify either a dataset name from the hub or a train and/or validation directory.""" ) @dataclass class lowerCAmelCase : '''simple docstring''' _A : str = field( default='''google/vit-base-patch16-224-in21k''' , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} , ) _A : Optional[str] = field( default=__a , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(__a )} , ) _A : Optional[str] = field( default=__a , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _A : Optional[str] = field( default=__a , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} ) _A : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) _A : str = field(default=__a , metadata={'''help''': '''Name or path of preprocessor config.'''} ) _A : bool = field( default=__a , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) _A : bool = field( default=__a , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def snake_case_ ( lowerCAmelCase_ : Optional[Any] ): __lowercase : Tuple = torch.stack([example["""pixel_values"""] for example in examples] ) __lowercase : Dict = torch.tensor([example["""labels"""] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def snake_case_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowercase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowercase , __lowercase , __lowercase : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowercase , __lowercase , __lowercase : Optional[int] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_image_classification""" , lowerCAmelCase_ , lowerCAmelCase_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __lowercase : Any = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase_ ) transformers.utils.logging.set_verbosity(lowerCAmelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. __lowercase : int = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowercase : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: __lowercase : Tuple = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="""image-classification""" , use_auth_token=True if model_args.use_auth_token else None , ) else: __lowercase : Tuple = {} if data_args.train_dir is not None: __lowercase : Tuple = os.path.join(data_args.train_dir , """**""" ) if data_args.validation_dir is not None: __lowercase : Tuple = os.path.join(data_args.validation_dir , """**""" ) __lowercase : Dict = load_dataset( """imagefolder""" , data_files=lowerCAmelCase_ , cache_dir=model_args.cache_dir , task="""image-classification""" , ) # If we don't have a validation split, split off a percentage of train as validation. __lowercase : Union[str, Any] = None if """validation""" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowerCAmelCase_ ) and data_args.train_val_split > 0.0: __lowercase : Optional[int] = dataset["""train"""].train_test_split(data_args.train_val_split ) __lowercase : List[Any] = split["""train"""] __lowercase : List[Any] = split["""test"""] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. __lowercase : Union[str, Any] = dataset["""train"""].features["""labels"""].names __lowercase , __lowercase : List[str] = {}, {} for i, label in enumerate(lowerCAmelCase_ ): __lowercase : Union[str, Any] = str(lowerCAmelCase_ ) __lowercase : Any = label # Load the accuracy metric from the datasets package __lowercase : str = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase_ : str ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) __lowercase : Tuple = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowerCAmelCase_ ) , labelaid=lowerCAmelCase_ , idalabel=lowerCAmelCase_ , finetuning_task="""image-classification""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __lowercase : Any = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) __lowercase : Dict = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: __lowercase : str = image_processor.size["""shortest_edge"""] else: __lowercase : List[str] = (image_processor.size["""height"""], image_processor.size["""width"""]) __lowercase : int = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) __lowercase : Dict = Compose( [ RandomResizedCrop(lowerCAmelCase_ ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) __lowercase : List[Any] = Compose( [ Resize(lowerCAmelCase_ ), CenterCrop(lowerCAmelCase_ ), ToTensor(), normalize, ] ) def train_transforms(lowerCAmelCase_ : Tuple ): __lowercase : int = [ _train_transforms(pil_img.convert("""RGB""" ) ) for pil_img in example_batch["""image"""] ] return example_batch def val_transforms(lowerCAmelCase_ : int ): __lowercase : Dict = [_val_transforms(pil_img.convert("""RGB""" ) ) for pil_img in example_batch["""image"""]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: __lowercase : List[str] = ( dataset["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(lowerCAmelCase_ ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: __lowercase : Optional[Any] = ( dataset["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(lowerCAmelCase_ ) # Initalize our trainer __lowercase : List[Any] = Trainer( model=lowerCAmelCase_ , args=lowerCAmelCase_ , train_dataset=dataset["""train"""] if training_args.do_train else None , eval_dataset=dataset["""validation"""] if training_args.do_eval else None , compute_metrics=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , data_collator=lowerCAmelCase_ , ) # Training if training_args.do_train: __lowercase : int = None if training_args.resume_from_checkpoint is not None: __lowercase : str = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowercase : List[Any] = last_checkpoint __lowercase : Any = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __lowercase : Union[str, Any] = trainer.evaluate() trainer.log_metrics("""eval""" , lowerCAmelCase_ ) trainer.save_metrics("""eval""" , lowerCAmelCase_ ) # Write model card and (optionally) push to hub __lowercase : Optional[int] = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """image-classification""", """dataset""": data_args.dataset_name, """tags""": ["""image-classification""", """vision"""], } if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase_ ) else: trainer.create_model_card(**lowerCAmelCase_ ) if __name__ == "__main__": main()
649
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Dict , __a : Union[str, Any]=13 , __a : Dict=7 , __a : Dict=True , __a : Dict=True , __a : Any=True , __a : List[str]=True , __a : int=99 , __a : Optional[int]=32 , __a : str=2 , __a : int=4 , __a : List[str]=37 , __a : Union[str, Any]="gelu" , __a : Union[str, Any]=0.1 , __a : Union[str, Any]=0.1 , __a : List[Any]=512 , __a : int=16 , __a : Union[str, Any]=2 , __a : Union[str, Any]=0.02 , __a : List[str]=3 , __a : Dict=4 , __a : Optional[Any]=None , ) -> Optional[Any]: """simple docstring""" __lowercase : Any = parent __lowercase : Tuple = 13 __lowercase : Dict = 7 __lowercase : List[Any] = True __lowercase : Tuple = True __lowercase : List[str] = True __lowercase : Any = True __lowercase : Optional[int] = 99 __lowercase : str = 384 __lowercase : Optional[Any] = 2 __lowercase : Dict = 4 __lowercase : str = 37 __lowercase : Optional[int] = """gelu""" __lowercase : int = 0.1 __lowercase : Union[str, Any] = 0.1 __lowercase : Tuple = 512 __lowercase : Tuple = 16 __lowercase : Optional[int] = 2 __lowercase : Optional[Any] = 0.02 __lowercase : Dict = 3 __lowercase : Union[str, Any] = 4 __lowercase : Tuple = 128 __lowercase : Optional[Any] = 2 __lowercase : int = 9 __lowercase : List[Any] = 1 __lowercase : Union[str, Any] = None def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" __lowercase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : Optional[Any] = None if self.use_input_mask: __lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : Dict = None if self.use_token_type_ids: __lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase : Optional[Any] = None __lowercase : str = None __lowercase : Tuple = None if self.use_labels: __lowercase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : str = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : Optional[int] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Dict , __a : List[Any] , __a : List[str] , __a : Union[str, Any] , __a : str , __a : Union[str, Any] , __a : Tuple , __a : Tuple ) -> Dict: """simple docstring""" __lowercase : Dict = TFConvBertModel(config=__a ) __lowercase : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowercase : Any = [input_ids, input_mask] __lowercase : Dict = model(__a ) __lowercase : str = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : Any , __a : Tuple , __a : Union[str, Any] , __a : str , __a : Dict , __a : str ) -> Dict: """simple docstring""" __lowercase : Optional[int] = TFConvBertForMaskedLM(config=__a ) __lowercase : List[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : Any = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[int] , __a : int , __a : Any , __a : Optional[int] , __a : int , __a : int , __a : List[Any] , __a : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase : str = self.num_labels __lowercase : List[Any] = TFConvBertForSequenceClassification(config=__a ) __lowercase : int = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : List[str] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Optional[int] , __a : Any , __a : Optional[Any] , __a : int , __a : Optional[int] , __a : Tuple , __a : int , __a : int ) -> Dict: """simple docstring""" __lowercase : Tuple = self.num_choices __lowercase : Dict = TFConvBertForMultipleChoice(config=__a ) __lowercase : List[str] = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : int = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : str = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : str = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __lowercase : Dict = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : List[str] , __a : str , __a : List[str] , __a : List[str] , __a : List[str] , __a : Any , __a : Tuple , __a : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = self.num_labels __lowercase : Tuple = TFConvBertForTokenClassification(config=__a ) __lowercase : Dict = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : str = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : List[Any] , __a : Optional[int] , __a : List[str] , __a : Optional[Any] , __a : int , __a : Tuple , __a : Any , __a : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Any = TFConvBertForQuestionAnswering(config=__a ) __lowercase : str = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : List[Any] = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : Tuple = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : int = config_and_inputs __lowercase : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Dict = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _A : str = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _A : Union[str, Any] = False _A : List[str] = False _A : Dict = False def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : int = TFConvBertModelTester(self ) __lowercase : Tuple = ConfigTester(self , config_class=__a , hidden_size=37 ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__a ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Union[str, Any] = True __lowercase : List[Any] = True if hasattr(__a , """use_cache""" ): __lowercase : Optional[Any] = True __lowercase : List[str] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) __lowercase : int = getattr(self.model_tester , """key_length""" , __a ) for model_class in self.all_model_classes: __lowercase : Optional[Any] = self._prepare_for_class(__a , __a ) __lowercase : Tuple = model_class(__a ) __lowercase : Tuple = len(model(__a ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a , saved_model=__a ) __lowercase : List[Any] = os.path.join(__a , """saved_model""" , """1""" ) __lowercase : str = tf.keras.models.load_model(__a ) __lowercase : Optional[int] = model(__a ) if self.is_encoder_decoder: __lowercase : Union[str, Any] = outputs["""encoder_hidden_states"""] __lowercase : Union[str, Any] = outputs["""encoder_attentions"""] else: __lowercase : Union[str, Any] = outputs["""hidden_states"""] __lowercase : List[str] = outputs["""attentions"""] self.assertEqual(len(__a ) , __a ) __lowercase : List[Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : str = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) self.assertIsNotNone(__a ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : List[str] = True __lowercase : List[Any] = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length ) __lowercase : Optional[int] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) __lowercase : List[str] = getattr(self.model_tester , """key_length""" , __a ) __lowercase : List[Any] = getattr(self.model_tester , """key_length""" , __a ) def check_decoder_attentions_output(__a : List[str] ): __lowercase : Union[str, Any] = len(__a ) self.assertEqual(out_len % 2 , 0 ) __lowercase : Any = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__a : str ): __lowercase : str = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __lowercase : int = True __lowercase : Any = False __lowercase : List[Any] = model_class(__a ) __lowercase : Tuple = model(self._prepare_for_class(__a , __a ) ) __lowercase : Dict = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: __lowercase : Any = model_class(__a ) __lowercase : List[str] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __lowercase : Dict = True __lowercase : Optional[Any] = model_class(__a ) __lowercase : Optional[int] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine __lowercase : List[str] = True __lowercase : List[Any] = True __lowercase : Any = model_class(__a ) __lowercase : Optional[int] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @require_tf class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) __lowercase : str = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowercase : Tuple = model(__a )[0] __lowercase : Any = [1, 6, 768] self.assertEqual(output.shape , __a ) __lowercase : Optional[Any] = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-4 )
649
1
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('''To use the rich extension, install rich with `pip install rich`''')
649
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : int , *__a : Dict , **__a : Optional[Any] ) -> None: """simple docstring""" warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , __a , ) super().__init__(*__a , **__a )
649
1
def snake_case_ ( lowerCAmelCase_ : list ): if any(not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or x < 0 for x in sequence ): raise TypeError("""Sequence must be list of non-negative integers""" ) for _ in range(len(lowerCAmelCase_ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(lowerCAmelCase_ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
649
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Optional[int] = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() __lowercase : List[str] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Dict = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } __lowercase : List[str] = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 16000, """return_attention_mask""": False, """do_normalize""": True, } __lowercase : Tuple = tempfile.mkdtemp() __lowercase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : str = os.path.join(self.tmpdirname , __a ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) # load decoder from hub __lowercase : Optional[int] = """hf-internal-testing/ngram-beam-search-decoder""" def lowerCAmelCase ( self : Optional[Any] , **__a : Dict ) -> Tuple: """simple docstring""" __lowercase : Union[str, Any] = self.add_kwargs_tokens_map.copy() kwargs.update(__a ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : str , **__a : int ) -> Tuple: """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Union[str, Any] , **__a : Union[str, Any] ) -> List[Any]: """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__a ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() __lowercase : Any = self.get_feature_extractor() __lowercase : str = self.get_decoder() __lowercase : Tuple = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) processor.save_pretrained(self.tmpdirname ) __lowercase : Tuple = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __a ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __a ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __a ) def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Any = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __lowercase : str = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : List[str] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(__a , """include""" ): WavaVecaProcessorWithLM( tokenizer=__a , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : List[Any] = self.get_feature_extractor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : int = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Optional[int] = floats_list((3, 1000) ) __lowercase : List[Any] = feature_extractor(__a , return_tensors="""np""" ) __lowercase : List[str] = processor(__a , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : List[Any] = self.get_feature_extractor() __lowercase : int = self.get_tokenizer() __lowercase : Dict = self.get_decoder() __lowercase : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Dict = """This is a test string""" __lowercase : Any = processor(text=__a ) __lowercase : Dict = tokenizer(__a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase ( self : str , __a : Tuple=(2, 10, 16) , __a : int=77 ) -> Optional[Any]: """simple docstring""" np.random.seed(__a ) return np.random.rand(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : List[str] = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : str = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : List[str] = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __lowercase : Optional[Any] = processor.decode(__a ) __lowercase : Any = decoder.decode_beams(__a )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def lowerCAmelCase ( self : List[str] , __a : Dict ) -> List[Any]: """simple docstring""" __lowercase : str = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : Optional[int] = self.get_decoder() __lowercase : Any = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Optional[Any] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __lowercase : Union[str, Any] = processor.batch_decode(__a ) else: with get_context(__a ).Pool() as pool: __lowercase : Optional[Any] = processor.batch_decode(__a , __a ) __lowercase : Union[str, Any] = list(__a ) with get_context("""fork""" ).Pool() as p: __lowercase : Optional[Any] = decoder.decode_beams_batch(__a , __a ) __lowercase , __lowercase , __lowercase : Any = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__a , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(__a , decoded_processor.logit_score ) self.assertListEqual(__a , decoded_processor.lm_score ) def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase : int = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : List[str] = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Dict = self._get_dummy_logits() __lowercase : Tuple = 15 __lowercase : Tuple = -20.0 __lowercase : Dict = -4.0 __lowercase : Dict = processor.batch_decode( __a , beam_width=__a , beam_prune_logp=__a , token_min_logp=__a , ) __lowercase : Tuple = decoded_processor_out.text __lowercase : List[Any] = list(__a ) with get_context("""fork""" ).Pool() as pool: __lowercase : Any = decoder.decode_beams_batch( __a , __a , beam_width=__a , beam_prune_logp=__a , token_min_logp=__a , ) __lowercase : Optional[Any] = [d[0][0] for d in decoded_decoder_out] __lowercase : Optional[int] = [d[0][2] for d in decoded_decoder_out] __lowercase : Optional[int] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__a , __a ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , __a ) self.assertTrue(np.array_equal(__a , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , __a , atol=1E-3 ) ) self.assertTrue(np.array_equal(__a , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , __a , atol=1E-3 ) ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase : str = self.get_feature_extractor() __lowercase : List[Any] = self.get_tokenizer() __lowercase : List[Any] = self.get_decoder() __lowercase : Dict = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : List[Any] = self._get_dummy_logits() __lowercase : Optional[int] = 2.0 __lowercase : Tuple = 5.0 __lowercase : Optional[Any] = -20.0 __lowercase : Tuple = True __lowercase : Union[str, Any] = processor.batch_decode( __a , alpha=__a , beta=__a , unk_score_offset=__a , lm_score_boundary=__a , ) __lowercase : Any = decoded_processor_out.text __lowercase : List[Any] = list(__a ) decoder.reset_params( alpha=__a , beta=__a , unk_score_offset=__a , lm_score_boundary=__a , ) with get_context("""fork""" ).Pool() as pool: __lowercase : Tuple = decoder.decode_beams_batch( __a , __a , ) __lowercase : int = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__a , __a ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , __a ) __lowercase : str = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , __a ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] __lowercase : str = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __lowercase : int = os.listdir(__a ) __lowercase : Optional[Any] = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = snapshot_download("""hf-internal-testing/processor_with_lm""" ) __lowercase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(__a ) __lowercase : Dict = processor.decoder.model_container[processor.decoder._model_key] __lowercase : List[Any] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __lowercase : Dict = os.listdir(__a ) __lowercase : List[Any] = os.listdir(__a ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" __lowercase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Dict = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Any = floats_list((3, 1000) ) __lowercase : List[str] = processor_wavaveca(__a , return_tensors="""np""" ) __lowercase : List[Any] = processor_auto(__a , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) __lowercase : List[str] = self._get_dummy_logits() __lowercase : List[str] = processor_wavaveca.batch_decode(__a ) __lowercase : Optional[int] = processor_auto.batch_decode(__a ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Any = self.get_feature_extractor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : Dict = self.get_decoder() __lowercase : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def lowerCAmelCase ( __a : Union[str, Any] , __a : List[Any] ) -> Dict: """simple docstring""" __lowercase : Any = [d[key] for d in offsets] return retrieved_list def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" __lowercase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Optional[Any] = self._get_dummy_logits()[0] __lowercase : Dict = processor.decode(__a , output_word_offsets=__a ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__a , __a ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : List[str] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Any = self._get_dummy_logits() __lowercase : Dict = processor.batch_decode(__a , output_word_offsets=__a ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__a , __a ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(__a , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" import torch __lowercase : Any = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=__a ) __lowercase : str = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=16000 ) ) __lowercase : Tuple = iter(__a ) __lowercase : Union[str, Any] = next(__a ) __lowercase : int = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) __lowercase : int = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __lowercase : Union[str, Any] = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): __lowercase : List[Any] = model(__a ).logits.cpu().numpy() __lowercase : Tuple = processor.decode(logits[0] , output_word_offsets=__a ) __lowercase : int = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __lowercase : Optional[Any] = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] __lowercase : str = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(__a , """word""" ) ) , __a ) self.assertEqual(""" """.join(self.get_from_offsets(__a , """word""" ) ) , output.text ) # output times __lowercase : Tuple = torch.tensor(self.get_from_offsets(__a , """start_time""" ) ) __lowercase : Dict = torch.tensor(self.get_from_offsets(__a , """end_time""" ) ) # fmt: off __lowercase : List[Any] = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) __lowercase : Optional[int] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(__a , __a , atol=0.01 ) ) self.assertTrue(torch.allclose(__a , __a , atol=0.01 ) )
649
1
import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) set_seed(7_70) lowerCamelCase : Optional[int] = { '''c_attn''': '''att_proj''', '''c_proj''': '''out_proj''', '''c_fc''': '''in_proj''', '''transformer.''': '''''', '''h.''': '''layers.''', '''ln_1''': '''layernorm_1''', '''ln_2''': '''layernorm_2''', '''ln_f''': '''layernorm_final''', '''wpe''': '''position_embeds_layer''', '''wte''': '''input_embeds_layer''', } lowerCamelCase : Optional[Any] = { '''text_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text.pt''', }, '''coarse_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse.pt''', }, '''fine_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine.pt''', }, '''text''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text_2.pt''', }, '''coarse''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse_2.pt''', }, '''fine''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine_2.pt''', }, } lowerCamelCase : Any = os.path.dirname(os.path.abspath(__file__)) lowerCamelCase : List[str] = os.path.join(os.path.expanduser('''~'''), '''.cache''') lowerCamelCase : str = os.path.join(os.getenv('''XDG_CACHE_HOME''', default_cache_dir), '''suno''', '''bark_v0''') def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : str=False ): __lowercase : Optional[int] = model_type if use_small: key += "_small" return os.path.join(lowerCAmelCase_ , REMOTE_MODEL_PATHS[key]["""file_name"""] ) def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] ): os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) hf_hub_download(repo_id=lowerCAmelCase_ , filename=lowerCAmelCase_ , local_dir=lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : Any="text" ): if model_type == "text": __lowercase : Any = BarkSemanticModel __lowercase : Union[str, Any] = BarkSemanticConfig __lowercase : Any = BarkSemanticGenerationConfig elif model_type == "coarse": __lowercase : Dict = BarkCoarseModel __lowercase : List[Any] = BarkCoarseConfig __lowercase : Union[str, Any] = BarkCoarseGenerationConfig elif model_type == "fine": __lowercase : List[str] = BarkFineModel __lowercase : Tuple = BarkFineConfig __lowercase : Dict = BarkFineGenerationConfig else: raise NotImplementedError() __lowercase : int = F"{model_type}_small" if use_small else model_type __lowercase : Union[str, Any] = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(lowerCAmelCase_ ): logger.info(F"{model_type} model not found, downloading into `{CACHE_DIR}`." ) _download(model_info["""repo_id"""] , model_info["""file_name"""] ) __lowercase : str = torch.load(lowerCAmelCase_ , map_location=lowerCAmelCase_ ) # this is a hack __lowercase : Union[str, Any] = checkpoint["""model_args"""] if "input_vocab_size" not in model_args: __lowercase : List[str] = model_args["""vocab_size"""] __lowercase : Tuple = model_args["""vocab_size"""] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments __lowercase : List[Any] = model_args.pop("""n_head""" ) __lowercase : str = model_args.pop("""n_embd""" ) __lowercase : int = model_args.pop("""n_layer""" ) __lowercase : List[Any] = ConfigClass(**checkpoint["""model_args"""] ) __lowercase : Optional[int] = ModelClass(config=lowerCAmelCase_ ) __lowercase : List[str] = GenerationConfigClass() __lowercase : Tuple = model_generation_config __lowercase : str = checkpoint["""model"""] # fixup checkpoint __lowercase : List[str] = """_orig_mod.""" for k, v in list(state_dict.items() ): if k.startswith(lowerCAmelCase_ ): # replace part of the key with corresponding layer name in HF implementation __lowercase : Union[str, Any] = k[len(lowerCAmelCase_ ) :] for old_layer_name in new_layer_name_dict: __lowercase : Optional[int] = new_k.replace(lowerCAmelCase_ , new_layer_name_dict[old_layer_name] ) __lowercase : List[str] = state_dict.pop(lowerCAmelCase_ ) __lowercase : Any = set(state_dict.keys() ) - set(model.state_dict().keys() ) __lowercase : Union[str, Any] = {k for k in extra_keys if not k.endswith(""".attn.bias""" )} __lowercase : Dict = set(model.state_dict().keys() ) - set(state_dict.keys() ) __lowercase : Tuple = {k for k in missing_keys if not k.endswith(""".attn.bias""" )} if len(lowerCAmelCase_ ) != 0: raise ValueError(F"extra keys found: {extra_keys}" ) if len(lowerCAmelCase_ ) != 0: raise ValueError(F"missing keys: {missing_keys}" ) model.load_state_dict(lowerCAmelCase_ , strict=lowerCAmelCase_ ) __lowercase : int = model.num_parameters(exclude_embeddings=lowerCAmelCase_ ) __lowercase : Optional[Any] = checkpoint["""best_val_loss"""].item() logger.info(F"model loaded: {round(n_params/1e6 , 1 )}M params, {round(lowerCAmelCase_ , 3 )} loss" ) model.eval() model.to(lowerCAmelCase_ ) del checkpoint, state_dict return model def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : int=False , lowerCAmelCase_ : int="text" ): if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() __lowercase : Any = """cpu""" # do conversion on cpu __lowercase : str = _get_ckpt_path(lowerCAmelCase_ , use_small=lowerCAmelCase_ ) __lowercase : Optional[Any] = _load_model(lowerCAmelCase_ , lowerCAmelCase_ , model_type=lowerCAmelCase_ , use_small=lowerCAmelCase_ ) # load bark initial model __lowercase : Optional[int] = _bark_load_model(lowerCAmelCase_ , """cpu""" , model_type=lowerCAmelCase_ , use_small=lowerCAmelCase_ ) if model_type == "text": __lowercase : Any = bark_model["""model"""] if model.num_parameters(exclude_embeddings=lowerCAmelCase_ ) != bark_model.get_num_params(): raise ValueError("""initial and new models don't have the same number of parameters""" ) # check if same output as the bark model __lowercase : Dict = 5 __lowercase : Any = 10 if model_type in ["text", "coarse"]: __lowercase : int = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) __lowercase : int = bark_model(lowerCAmelCase_ )[0] __lowercase : Optional[int] = model(lowerCAmelCase_ ) # take last logits __lowercase : Dict = output_new_model_total.logits[:, [-1], :] else: __lowercase : Dict = 3 __lowercase : Any = 8 __lowercase : Tuple = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) __lowercase : Any = model(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Dict = bark_model(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : List[Any] = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("""initial and new outputs don't have the same shape""" ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError("""initial and new outputs are not equal""" ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , ): __lowercase : str = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Optional[int] = BarkSemanticConfig.from_pretrained(os.path.join(lowerCAmelCase_ , """config.json""" ) ) __lowercase : Dict = BarkCoarseConfig.from_pretrained(os.path.join(lowerCAmelCase_ , """config.json""" ) ) __lowercase : Union[str, Any] = BarkFineConfig.from_pretrained(os.path.join(lowerCAmelCase_ , """config.json""" ) ) __lowercase : Dict = EncodecConfig.from_pretrained("""facebook/encodec_24khz""" ) __lowercase : str = BarkSemanticModel.from_pretrained(lowerCAmelCase_ ) __lowercase : Tuple = BarkCoarseModel.from_pretrained(lowerCAmelCase_ ) __lowercase : Any = BarkFineModel.from_pretrained(lowerCAmelCase_ ) __lowercase : List[str] = EncodecModel.from_pretrained("""facebook/encodec_24khz""" ) __lowercase : List[Any] = BarkConfig.from_sub_model_configs( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Any = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) __lowercase : List[str] = BarkModel(lowerCAmelCase_ ) __lowercase : int = semantic __lowercase : List[Any] = coarseAcoustic __lowercase : Union[str, Any] = fineAcoustic __lowercase : Any = codec __lowercase : str = bark_generation_config Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) bark.save_pretrained(lowerCAmelCase_ , repo_id=lowerCAmelCase_ , push_to_hub=lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument('''model_type''', type=str, help='''text, coarse or fine.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--is_small''', action='''store_true''', help='''convert the small version instead of the large.''') lowerCamelCase : Dict = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
649
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(0 ) == 0 ) def snake_case_ ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
649
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : int = { '''configuration_funnel''': ['''FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FunnelConfig'''], '''convert_funnel_original_tf_checkpoint_to_pytorch''': [], '''tokenization_funnel''': ['''FunnelTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = ['''FunnelTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = [ '''FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FunnelBaseModel''', '''FunnelForMaskedLM''', '''FunnelForMultipleChoice''', '''FunnelForPreTraining''', '''FunnelForQuestionAnswering''', '''FunnelForSequenceClassification''', '''FunnelForTokenClassification''', '''FunnelModel''', '''FunnelPreTrainedModel''', '''load_tf_weights_in_funnel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ '''TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFFunnelBaseModel''', '''TFFunnelForMaskedLM''', '''TFFunnelForMultipleChoice''', '''TFFunnelForPreTraining''', '''TFFunnelForQuestionAnswering''', '''TFFunnelForSequenceClassification''', '''TFFunnelForTokenClassification''', '''TFFunnelModel''', '''TFFunnelPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
649
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCamelCase : int = '''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine''' def snake_case_ ( ): __lowercase : List[Any] = _ask_options( """In which compute environment are you running?""" , ["""This machine""", """AWS (Amazon SageMaker)"""] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __lowercase : Union[str, Any] = get_sagemaker_input() else: __lowercase : str = get_cluster_input() return config def snake_case_ ( lowerCAmelCase_ : List[str]=None ): if subparsers is not None: __lowercase : Optional[int] = subparsers.add_parser("""config""" , description=lowerCAmelCase_ ) else: __lowercase : List[str] = argparse.ArgumentParser("""Accelerate config command""" , description=lowerCAmelCase_ ) parser.add_argument( """--config_file""" , default=lowerCAmelCase_ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def snake_case_ ( lowerCAmelCase_ : Tuple ): __lowercase : Union[str, Any] = get_user_input() if args.config_file is not None: __lowercase : List[Any] = args.config_file else: if not os.path.isdir(lowerCAmelCase_ ): os.makedirs(lowerCAmelCase_ ) __lowercase : Any = default_yaml_config_file if config_file.endswith(""".json""" ): config.to_json_file(lowerCAmelCase_ ) else: config.to_yaml_file(lowerCAmelCase_ ) print(F"accelerate configuration saved at {config_file}" ) def snake_case_ ( ): __lowercase : str = config_command_parser() __lowercase : str = parser.parse_args() config_command(lowerCAmelCase_ ) if __name__ == "__main__": main()
649
1
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class lowerCAmelCase ( __a , __a ): '''simple docstring''' @register_to_config def __init__( self : str , __a : int = 768 , ) -> str: """simple docstring""" super().__init__() __lowercase : Optional[Any] = nn.Parameter(torch.zeros(1 , __a ) ) __lowercase : List[str] = nn.Parameter(torch.ones(1 , __a ) ) def lowerCAmelCase ( self : Any , __a : Optional[Union[str, torch.device]] = None , __a : Optional[torch.dtype] = None , ) -> Optional[Any]: """simple docstring""" __lowercase : Any = nn.Parameter(self.mean.to(__a ).to(__a ) ) __lowercase : str = nn.Parameter(self.std.to(__a ).to(__a ) ) return self def lowerCAmelCase ( self : Optional[Any] , __a : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = (embeds - self.mean) * 1.0 / self.std return embeds def lowerCAmelCase ( self : List[str] , __a : int ) -> Tuple: """simple docstring""" __lowercase : List[Any] = (embeds * self.std) + self.mean return embeds
649
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : list[str] | None = None ): __lowercase : Tuple = word_bank or [] # create a table __lowercase : int = len(lowerCAmelCase_ ) + 1 __lowercase : list[list[list[str]]] = [] for _ in range(lowerCAmelCase_ ): table.append([] ) # seed value __lowercase : Dict = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowerCAmelCase_ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowerCAmelCase_ )] == word: __lowercase : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowerCAmelCase_ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowerCAmelCase_ )]: combination.reverse() return table[len(lowerCAmelCase_ )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
649
1
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline lowerCamelCase : int = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Optional[int] , __a : Any , __a : List[str] ) -> Optional[int]: """simple docstring""" super().__init__() self.register_modules(unet=__a , scheduler=__a ) @torch.no_grad() def __call__( self : str , __a : int = 1 , __a : int = 100 , __a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __a : Optional[float] = None , __a : bool = True , ) -> Union[AudioPipelineOutput, Tuple]: """simple docstring""" if audio_length_in_s is None: __lowercase : List[str] = self.unet.config.sample_size / self.unet.config.sample_rate __lowercase : List[str] = audio_length_in_s * self.unet.config.sample_rate __lowercase : str = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F"{audio_length_in_s} is too small. Make sure it's bigger or equal to" F" {3 * down_scale_factor / self.unet.config.sample_rate}." ) __lowercase : int = int(__a ) if sample_size % down_scale_factor != 0: __lowercase : Optional[Any] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F"{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled" F" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising" """ process.""" ) __lowercase : str = int(__a ) __lowercase : List[Any] = next(iter(self.unet.parameters() ) ).dtype __lowercase : Dict = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(__a , __a ) and len(__a ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(__a )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) __lowercase : Dict = randn_tensor(__a , generator=__a , device=self.device , dtype=__a ) # set step values self.scheduler.set_timesteps(__a , device=audio.device ) __lowercase : Tuple = self.scheduler.timesteps.to(__a ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __lowercase : Optional[Any] = self.unet(__a , __a ).sample # 2. compute previous image: x_t -> t_t-1 __lowercase : int = self.scheduler.step(__a , __a , __a ).prev_sample __lowercase : Dict = audio.clamp(-1 , 1 ).float().cpu().numpy() __lowercase : List[str] = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=__a )
649
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(1 ) != 0 ) def snake_case_ ( ): assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
649
1
lowerCamelCase : Optional[Any] = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/''' def snake_case_ ( lowerCAmelCase_ : bytes ): # Make sure the supplied data is a bytes-like object if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : str = F"a bytes-like object is required, not '{data.__class__.__name__}'" raise TypeError(lowerCAmelCase_ ) __lowercase : List[Any] = """""".join(bin(lowerCAmelCase_ )[2:].zfill(8 ) for byte in data ) __lowercase : Dict = len(lowerCAmelCase_ ) % 6 != 0 if padding_needed: # The padding that will be added later __lowercase : str = b"""=""" * ((6 - len(lowerCAmelCase_ ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(lowerCAmelCase_ ) % 6) else: __lowercase : Optional[int] = b"""""" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(lowerCAmelCase_ ) , 6 ) ).encode() + padding ) def snake_case_ ( lowerCAmelCase_ : str ): # Make sure encoded_data is either a string or a bytes-like object if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : str = ( """argument should be a bytes-like object or ASCII string, """ F"not '{encoded_data.__class__.__name__}'" ) raise TypeError(lowerCAmelCase_ ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): try: __lowercase : int = encoded_data.decode("""utf-8""" ) except UnicodeDecodeError: raise ValueError("""base64 encoded data should only contain ASCII characters""" ) __lowercase : List[str] = encoded_data.count("""=""" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(lowerCAmelCase_ ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one __lowercase : Optional[int] = encoded_data[:-padding] __lowercase : int = """""".join( bin(B64_CHARSET.index(lowerCAmelCase_ ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: __lowercase : str = """""".join( bin(B64_CHARSET.index(lowerCAmelCase_ ) )[2:].zfill(6 ) for char in encoded_data ) __lowercase : Optional[Any] = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(lowerCAmelCase_ ) , 8 ) ] return bytes(lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
649
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : int = { '''configuration_funnel''': ['''FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FunnelConfig'''], '''convert_funnel_original_tf_checkpoint_to_pytorch''': [], '''tokenization_funnel''': ['''FunnelTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = ['''FunnelTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = [ '''FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FunnelBaseModel''', '''FunnelForMaskedLM''', '''FunnelForMultipleChoice''', '''FunnelForPreTraining''', '''FunnelForQuestionAnswering''', '''FunnelForSequenceClassification''', '''FunnelForTokenClassification''', '''FunnelModel''', '''FunnelPreTrainedModel''', '''load_tf_weights_in_funnel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ '''TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFFunnelBaseModel''', '''TFFunnelForMaskedLM''', '''TFFunnelForMultipleChoice''', '''TFFunnelForPreTraining''', '''TFFunnelForQuestionAnswering''', '''TFFunnelForSequenceClassification''', '''TFFunnelForTokenClassification''', '''TFFunnelModel''', '''TFFunnelPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
649
1
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" __lowercase : int = """ylacombe/bark-small""" __lowercase : int = tempfile.mkdtemp() __lowercase : List[Any] = """en_speaker_1""" __lowercase : Union[str, Any] = """This is a test string""" __lowercase : List[str] = """speaker_embeddings_path.json""" __lowercase : Any = """speaker_embeddings""" def lowerCAmelCase ( self : Union[str, Any] , **__a : Tuple ) -> List[str]: """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : List[str] = self.get_tokenizer() __lowercase : List[Any] = BarkProcessor(tokenizer=__a ) processor.save_pretrained(self.tmpdirname ) __lowercase : Tuple = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowerCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" __lowercase : Any = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __lowercase : Optional[int] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __lowercase : List[Any] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase : Any = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __lowercase : Union[str, Any] = 35 __lowercase : Union[str, Any] = 2 __lowercase : str = 8 __lowercase : int = { """semantic_prompt""": np.ones(__a ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset __lowercase : int = processor(text=self.input_string , voice_preset=__a ) __lowercase : List[Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__a , np.array([] ) ).tolist() ) # test loading voice preset from npz file __lowercase : Union[str, Any] = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(__a , **__a ) __lowercase : str = processor(text=self.input_string , voice_preset=__a ) __lowercase : str = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__a , np.array([] ) ).tolist() ) # test loading voice preset from the hub __lowercase : Optional[int] = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : int = BarkProcessor(tokenizer=__a ) __lowercase : List[Any] = processor(text=self.input_string ) __lowercase : Optional[Any] = tokenizer( self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=__a , return_attention_mask=__a , return_token_type_ids=__a , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
649
import logging import os import threading import time try: import warnings except ImportError: lowerCamelCase : Any = None try: import msvcrt except ImportError: lowerCamelCase : str = None try: import fcntl except ImportError: lowerCamelCase : Optional[Any] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: lowerCamelCase : Union[str, Any] = OSError # Data # ------------------------------------------------ lowerCamelCase : Tuple = [ '''Timeout''', '''BaseFileLock''', '''WindowsFileLock''', '''UnixFileLock''', '''SoftFileLock''', '''FileLock''', ] lowerCamelCase : Tuple = '''3.0.12''' lowerCamelCase : Any = None def snake_case_ ( ): global _logger __lowercase : List[str] = _logger or logging.getLogger(__name__ ) return _logger class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Any , __a : Any ) -> List[Any]: """simple docstring""" __lowercase : List[str] = lock_file return None def __str__( self : str ) -> Any: """simple docstring""" __lowercase : Any = F"The file lock '{self.lock_file}' could not be acquired." return temp class lowerCAmelCase : '''simple docstring''' def __init__( self : List[Any] , __a : Optional[int] ) -> int: """simple docstring""" __lowercase : Optional[Any] = lock return None def __enter__( self : Dict ) -> Dict: """simple docstring""" return self.lock def __exit__( self : Optional[int] , __a : Dict , __a : Any , __a : Tuple ) -> Optional[Any]: """simple docstring""" self.lock.release() return None class lowerCAmelCase : '''simple docstring''' def __init__( self : Tuple , __a : Any , __a : Dict=-1 , __a : Optional[Any]=None ) -> Any: """simple docstring""" __lowercase : Optional[int] = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long __lowercase : Dict = self.hash_filename_if_too_long(__a , __a ) # The path to the lock file. __lowercase : Optional[Any] = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __lowercase : int = None # The default timeout value. __lowercase : Optional[int] = timeout # We use this lock primarily for the lock counter. __lowercase : Optional[Any] = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __lowercase : Union[str, Any] = 0 return None @property def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return self._lock_file @property def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return self._timeout @timeout.setter def lowerCAmelCase ( self : Tuple , __a : Tuple ) -> Dict: """simple docstring""" __lowercase : Tuple = float(__a ) return None def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" raise NotImplementedError() def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" raise NotImplementedError() @property def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" return self._lock_file_fd is not None def lowerCAmelCase ( self : Any , __a : Optional[Any]=None , __a : Union[str, Any]=0.05 ) -> List[str]: """simple docstring""" if timeout is None: __lowercase : Union[str, Any] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __lowercase : int = id(self ) __lowercase : Optional[Any] = self._lock_file __lowercase : List[str] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"Attempting to acquire lock {lock_id} on {lock_filename}" ) self._acquire() if self.is_locked: logger().debug(F"Lock {lock_id} acquired on {lock_filename}" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"Timeout on acquiring lock {lock_id} on {lock_filename}" ) raise Timeout(self._lock_file ) else: logger().debug( F"Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ..." ) time.sleep(__a ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __lowercase : Optional[int] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def lowerCAmelCase ( self : Union[str, Any] , __a : Optional[Any]=False ) -> Optional[Any]: """simple docstring""" with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __lowercase : Optional[Any] = id(self ) __lowercase : str = self._lock_file logger().debug(F"Attempting to release lock {lock_id} on {lock_filename}" ) self._release() __lowercase : List[str] = 0 logger().debug(F"Lock {lock_id} released on {lock_filename}" ) return None def __enter__( self : Any ) -> Optional[Any]: """simple docstring""" self.acquire() return self def __exit__( self : List[str] , __a : str , __a : int , __a : List[Any] ) -> Tuple: """simple docstring""" self.release() return None def __del__( self : Optional[int] ) -> Optional[int]: """simple docstring""" self.release(force=__a ) return None def lowerCAmelCase ( self : Tuple , __a : str , __a : int ) -> str: """simple docstring""" __lowercase : List[Any] = os.path.basename(__a ) if len(__a ) > max_length and max_length > 0: __lowercase : int = os.path.dirname(__a ) __lowercase : List[str] = str(hash(__a ) ) __lowercase : Optional[Any] = filename[: max_length - len(__a ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(__a , __a ) else: return path class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Union[str, Any] , __a : List[Any] , __a : Optional[int]=-1 , __a : Tuple=None ) -> List[Any]: """simple docstring""" from .file_utils import relative_to_absolute_path super().__init__(__a , timeout=__a , max_filename_length=__a ) __lowercase : Tuple = """\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __lowercase : Tuple = os.open(self._lock_file , __a ) except OSError: pass else: try: msvcrt.locking(__a , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__a ) else: __lowercase : Union[str, Any] = fd return None def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = self._lock_file_fd __lowercase : int = None msvcrt.locking(__a , msvcrt.LK_UNLCK , 1 ) os.close(__a ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : List[str] , __a : Optional[Any] , __a : str=-1 , __a : List[str]=None ) -> Any: """simple docstring""" __lowercase : Dict = os.statvfs(os.path.dirname(__a ) ).f_namemax super().__init__(__a , timeout=__a , max_filename_length=__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase : List[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC __lowercase : List[str] = os.open(self._lock_file , __a ) try: fcntl.flock(__a , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__a ) else: __lowercase : str = fd return None def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Any = self._lock_file_fd __lowercase : List[str] = None fcntl.flock(__a , fcntl.LOCK_UN ) os.close(__a ) return None class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __lowercase : Union[str, Any] = os.open(self._lock_file , __a ) except OSError: pass else: __lowercase : Optional[int] = fd return None def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" os.close(self._lock_file_fd ) __lowercase : int = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None lowerCamelCase : Optional[Any] = None if msvcrt: lowerCamelCase : List[Any] = WindowsFileLock elif fcntl: lowerCamelCase : List[Any] = UnixFileLock else: lowerCamelCase : Union[str, Any] = SoftFileLock if warnings is not None: warnings.warn('''only soft file lock is available''')
649
1
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class lowerCAmelCase ( __a ): '''simple docstring''' def __lt__( self : Any , __a : Tuple ) -> Dict: """simple docstring""" return self[-1] < other[-1] def __eq__( self : int , __a : List[Any] ) -> Any: """simple docstring""" return self[-1] == other[-1] def snake_case_ ( lowerCAmelCase_ : list ): __lowercase : list[Stack] = [] # sort into stacks for element in collection: __lowercase : str = Stack([element] ) __lowercase : int = bisect_left(lowerCAmelCase_ , lowerCAmelCase_ ) if i != len(lowerCAmelCase_ ): stacks[i].append(lowerCAmelCase_ ) else: stacks.append(lowerCAmelCase_ ) # use a heap-based merge to merge stack efficiently __lowercase : str = merge(*(reversed(lowerCAmelCase_ ) for stack in stacks) ) return collection if __name__ == "__main__": lowerCamelCase : str = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase : Tuple = [int(item) for item in user_input.split(''',''')] print(patience_sort(unsorted))
649
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : Tuple = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = '''layoutlmv3''' def __init__( self : Dict , __a : List[str]=50265 , __a : str=768 , __a : List[Any]=12 , __a : List[Any]=12 , __a : List[str]=3072 , __a : Optional[Any]="gelu" , __a : Optional[int]=0.1 , __a : List[Any]=0.1 , __a : Tuple=512 , __a : int=2 , __a : Any=0.02 , __a : Union[str, Any]=1E-5 , __a : List[str]=1 , __a : List[Any]=0 , __a : int=2 , __a : str=1024 , __a : str=128 , __a : List[Any]=128 , __a : Tuple=True , __a : Optional[int]=32 , __a : Any=128 , __a : List[Any]=64 , __a : Tuple=256 , __a : str=True , __a : int=True , __a : Optional[Any]=True , __a : Any=224 , __a : str=3 , __a : List[str]=16 , __a : Union[str, Any]=None , **__a : List[Any] , ) -> List[str]: """simple docstring""" super().__init__( vocab_size=__a , hidden_size=__a , num_hidden_layers=__a , num_attention_heads=__a , intermediate_size=__a , hidden_act=__a , hidden_dropout_prob=__a , attention_probs_dropout_prob=__a , max_position_embeddings=__a , type_vocab_size=__a , initializer_range=__a , layer_norm_eps=__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a , ) __lowercase : int = max_ad_position_embeddings __lowercase : Any = coordinate_size __lowercase : Optional[Any] = shape_size __lowercase : str = has_relative_attention_bias __lowercase : int = rel_pos_bins __lowercase : Union[str, Any] = max_rel_pos __lowercase : str = has_spatial_attention_bias __lowercase : str = rel_ad_pos_bins __lowercase : List[Any] = max_rel_ad_pos __lowercase : Tuple = text_embed __lowercase : int = visual_embed __lowercase : Tuple = input_size __lowercase : Dict = num_channels __lowercase : str = patch_size __lowercase : Optional[int] = classifier_dropout class lowerCAmelCase ( __a ): '''simple docstring''' _A : str = version.parse('''1.12''' ) @property def lowerCAmelCase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def lowerCAmelCase ( self : Union[str, Any] ) -> float: """simple docstring""" return 1E-5 @property def lowerCAmelCase ( self : str ) -> int: """simple docstring""" return 12 def lowerCAmelCase ( self : List[Any] , __a : "ProcessorMixin" , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional["TensorType"] = None , __a : int = 3 , __a : int = 40 , __a : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , """apply_ocr""" , __a ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase : Tuple = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase : Tuple = processor.tokenizer.num_special_tokens_to_add(__a ) __lowercase : Tuple = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__a ) # Generate dummy inputs according to compute batch and sequence __lowercase : Union[str, Any] = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowercase : Tuple = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowercase : Tuple = self._generate_dummy_images(__a , __a , __a , __a ) __lowercase : int = dict( processor( __a , text=__a , boxes=__a , return_tensors=__a , ) ) return inputs
649
1
def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError("""String lengths must match!""" ) __lowercase : Tuple = 0 for chara, chara in zip(lowerCAmelCase_ , lowerCAmelCase_ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
649
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowerCamelCase : List[Any] = logging.get_logger(__name__) class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , __a : str = None , __a : uuid.UUID = None , __a : Any=None , __a : List[Any]=None ) -> List[Any]: """simple docstring""" if not conversation_id: __lowercase : Any = uuid.uuida() if past_user_inputs is None: __lowercase : Dict = [] if generated_responses is None: __lowercase : Dict = [] __lowercase : uuid.UUID = conversation_id __lowercase : List[str] = past_user_inputs __lowercase : List[str] = generated_responses __lowercase : Optional[str] = text def __eq__( self : Dict , __a : Dict ) -> Any: """simple docstring""" if not isinstance(__a , __a ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCAmelCase ( self : List[str] , __a : str , __a : bool = False ) -> Dict: """simple docstring""" if self.new_user_input: if overwrite: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten " F"with: \"{text}\"." ) __lowercase : Optional[int] = text else: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" new input " F"ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input" ) else: __lowercase : Dict = text def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __lowercase : Dict = None def lowerCAmelCase ( self : Optional[int] , __a : str ) -> List[Any]: """simple docstring""" self.generated_responses.append(__a ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : int ) -> str: """simple docstring""" __lowercase : Optional[int] = F"Conversation id: {self.uuid} \n" for is_user, text in self.iter_texts(): __lowercase : Optional[Any] = """user""" if is_user else """bot""" output += F"{name} >> {text} \n" return output @add_end_docstrings( __a , r''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''' , ) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Any , *__a : int , **__a : str ) -> Union[str, Any]: """simple docstring""" super().__init__(*__a , **__a ) if self.tokenizer.pad_token_id is None: __lowercase : List[Any] = self.tokenizer.eos_token def lowerCAmelCase ( self : Union[str, Any] , __a : int=None , __a : Tuple=None , __a : Any=None , **__a : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = {} __lowercase : Tuple = {} __lowercase : List[str] = {} if min_length_for_response is not None: __lowercase : Dict = min_length_for_response if minimum_tokens is not None: __lowercase : Union[str, Any] = minimum_tokens if "max_length" in generate_kwargs: __lowercase : Union[str, Any] = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __lowercase : Union[str, Any] = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(__a ) return preprocess_params, forward_params, postprocess_params def __call__( self : Optional[int] , __a : Union[Conversation, List[Conversation]] , __a : Dict=0 , **__a : List[Any] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = super().__call__(__a , num_workers=__a , **__a ) if isinstance(__a , __a ) and len(__a ) == 1: return outputs[0] return outputs def lowerCAmelCase ( self : Union[str, Any] , __a : Conversation , __a : Tuple=32 ) -> Dict[str, Any]: """simple docstring""" if not isinstance(__a , __a ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( F"Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. " """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer , """_build_conversation_input_ids""" ): __lowercase : List[Any] = self.tokenizer._build_conversation_input_ids(__a ) else: # If the tokenizer cannot handle conversations, we default to only the old version __lowercase : Tuple = self._legacy_parse_and_tokenize(__a ) if self.framework == "pt": __lowercase : List[Any] = torch.LongTensor([input_ids] ) elif self.framework == "tf": __lowercase : List[str] = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCAmelCase ( self : Any , __a : Dict , __a : Any=10 , **__a : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = generate_kwargs.get("""max_length""" , self.model.config.max_length ) __lowercase : List[Any] = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(F"Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})" ) __lowercase : Any = max_length - minimum_tokens __lowercase : int = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: __lowercase : Dict = model_inputs["""attention_mask"""][:, -trim:] __lowercase : Union[str, Any] = model_inputs.pop("""conversation""" ) __lowercase : Tuple = max_length __lowercase : int = self.model.generate(**__a , **__a ) if self.model.config.is_encoder_decoder: __lowercase : Optional[int] = 1 else: __lowercase : str = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCAmelCase ( self : int , __a : Tuple , __a : List[Any]=True ) -> List[str]: """simple docstring""" __lowercase : int = model_outputs["""output_ids"""] __lowercase : Union[str, Any] = self.tokenizer.decode( output_ids[0] , skip_special_tokens=__a , clean_up_tokenization_spaces=__a , ) __lowercase : List[str] = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(__a ) return conversation def lowerCAmelCase ( self : int , __a : Conversation ) -> Dict: """simple docstring""" __lowercase : Optional[int] = self.tokenizer.eos_token_id __lowercase : Optional[Any] = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(__a , add_special_tokens=__a ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(__a , add_special_tokens=__a ) ) if len(__a ) > self.tokenizer.model_max_length: __lowercase : List[Any] = input_ids[-self.tokenizer.model_max_length :] return input_ids
649
1
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowerCamelCase : Union[str, Any] = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , __a : List[str] , __a : Optional[int]=16 , __a : Optional[Any]=13 , __a : str=7 , __a : List[str]=14 , __a : Any=10 , __a : str=19 , __a : int=5 , __a : Any=4 , __a : List[Any]=True , __a : Tuple=16 , __a : Dict=2 , __a : Tuple=4 , __a : int=4 , __a : List[Any]="gelu" , __a : Tuple=0.1 , __a : List[str]=0.1 , __a : int=[1, 2, 3, 4, 5] , __a : str=25 , __a : Any=5 , ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = d_model __lowercase : Dict = parent __lowercase : Tuple = batch_size __lowercase : Optional[int] = prediction_length __lowercase : List[str] = context_length __lowercase : Any = cardinality __lowercase : str = num_time_features __lowercase : Optional[int] = lags_sequence __lowercase : Optional[Any] = embedding_dimension __lowercase : List[Any] = is_training __lowercase : List[str] = hidden_size __lowercase : int = num_hidden_layers __lowercase : Any = num_attention_heads __lowercase : List[Any] = intermediate_size __lowercase : int = hidden_act __lowercase : str = hidden_dropout_prob __lowercase : List[Any] = attention_probs_dropout_prob __lowercase : str = context_length __lowercase : int = prediction_length + label_length __lowercase : Union[str, Any] = label_length __lowercase : Optional[int] = moving_average __lowercase : Optional[Any] = autocorrelation_factor def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def lowerCAmelCase ( self : Tuple , __a : str ) -> int: """simple docstring""" __lowercase : Any = config.context_length + max(config.lags_sequence ) __lowercase : Any = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __lowercase : Optional[int] = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __lowercase : List[str] = floats_tensor([self.batch_size, _past_length] ) __lowercase : List[str] = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __lowercase : Dict = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __lowercase : str = floats_tensor([self.batch_size, config.prediction_length] ) __lowercase : List[str] = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.get_config() __lowercase : Any = self.prepare_autoformer_inputs_dict(__a ) return config, inputs_dict def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase , __lowercase : List[str] = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase ( self : Optional[Any] , __a : Tuple , __a : Optional[int] ) -> Any: """simple docstring""" __lowercase : List[str] = AutoformerModel(config=__a ).to(__a ).eval() __lowercase : Optional[int] = model(**__a ) __lowercase : Dict = outputs.encoder_last_hidden_state __lowercase : Tuple = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : List[str] = model.get_encoder() encoder.save_pretrained(__a ) __lowercase : List[str] = AutoformerEncoder.from_pretrained(__a ).to(__a ) __lowercase , __lowercase , __lowercase , __lowercase , __lowercase : Any = model.create_network_inputs(**__a ) __lowercase , __lowercase : Any = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __lowercase : Optional[Any] = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __lowercase : Union[str, Any] = encoder(inputs_embeds=__a )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) __lowercase : str = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __lowercase : Optional[int] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __lowercase : Any = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __lowercase : Dict = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : Optional[Any] = model.get_decoder() decoder.save_pretrained(__a ) __lowercase : Tuple = AutoformerDecoder.from_pretrained(__a ).to(__a ) __lowercase : str = decoder( trend=__a , inputs_embeds=__a , encoder_hidden_states=__a , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[str] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _A : List[Any] = (AutoformerForPrediction,) if is_torch_available() else () _A : Any = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} _A : Dict = False _A : Tuple = False _A : Optional[int] = False _A : Tuple = False _A : str = False _A : Union[str, Any] = False def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" __lowercase : List[str] = AutoformerModelTester(self ) __lowercase : Dict = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowercase : Dict = model_class(__a ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowercase , __lowercase : Tuple = model_class.from_pretrained(__a , output_loading_info=__a ) self.assertEqual(info["""missing_keys"""] , [] ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__a ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def lowerCAmelCase ( self : str ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : Any = inspect.signature(getattr(__a , """forward""" ) ) # The main input is the name of the argument after `self` __lowercase : Optional[int] = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , __a ) def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Dict = model_class(__a ) __lowercase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : Any = [*signature.parameters.keys()] __lowercase : int = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(__a )] , __a ) def lowerCAmelCase ( self : int ) -> int: """simple docstring""" __lowercase , __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : int = True __lowercase : Tuple = getattr(self.model_tester , """seq_length""" , __a ) __lowercase : Union[str, Any] = getattr(self.model_tester , """decoder_seq_length""" , __a ) __lowercase : List[str] = getattr(self.model_tester , """encoder_seq_length""" , __a ) __lowercase : List[Any] = getattr(self.model_tester , """d_model""" , __a ) __lowercase : Optional[int] = getattr(self.model_tester , """num_attention_heads""" , __a ) __lowercase : Any = d_model // num_attention_heads for model_class in self.all_model_classes: __lowercase : Dict = True __lowercase : List[str] = False __lowercase : Optional[int] = True __lowercase : str = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : int = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase : Optional[int] = True __lowercase : List[str] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Union[str, Any] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Dict = outputs.encoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __lowercase : Tuple = len(__a ) __lowercase : str = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__a , __a ) # decoder attentions __lowercase : List[Any] = outputs.decoder_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __lowercase : Optional[int] = outputs.cross_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __lowercase : Tuple = True __lowercase : Union[str, Any] = True __lowercase : Tuple = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Any = model(**self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + 2 , len(__a ) ) __lowercase : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def snake_case_ ( lowerCAmelCase_ : Optional[int]="train-batch.pt" ): __lowercase : Dict = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=lowerCAmelCase_ , repo_type="""dataset""" ) __lowercase : Optional[int] = torch.load(lowerCAmelCase_ , map_location=lowerCAmelCase_ ) return batch @require_torch @slow class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" __lowercase : List[str] = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : List[Any] = prepare_batch() with torch.no_grad(): __lowercase : Tuple = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] __lowercase : List[str] = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , __a ) __lowercase : Optional[int] = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" __lowercase : int = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : List[str] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowercase : Optional[Any] = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state __lowercase : List[str] = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , __a ) __lowercase : Optional[int] = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : Optional[int] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowercase : int = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) __lowercase : int = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , __a ) __lowercase : Optional[Any] = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=__a ) __lowercase : Dict = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __a , rtol=1E-1 ) )
649
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__a , """tf_padding""" ) ) self.parent.assertTrue(hasattr(__a , """depth_multiplier""" ) ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Tuple , __a : str=13 , __a : Dict=3 , __a : List[Any]=32 , __a : Any=0.25 , __a : Any=8 , __a : Optional[int]=8 , __a : Optional[int]=6 , __a : Dict=32 , __a : Tuple=True , __a : List[Any]=True , __a : Optional[int]=True , __a : Tuple="relu6" , __a : Optional[Any]=1280 , __a : str=0.1 , __a : str=0.02 , __a : Optional[Any]=True , __a : Tuple=True , __a : Dict=10 , __a : Optional[Any]=None , ) -> Any: """simple docstring""" __lowercase : List[str] = parent __lowercase : Tuple = batch_size __lowercase : Dict = num_channels __lowercase : Optional[int] = image_size __lowercase : int = depth_multiplier __lowercase : str = depth_divisible_by __lowercase : int = min_depth __lowercase : Tuple = expand_ratio __lowercase : Optional[int] = tf_padding __lowercase : Dict = output_stride __lowercase : Dict = first_layer_is_expansion __lowercase : Optional[Any] = finegrained_output __lowercase : str = hidden_act __lowercase : Union[str, Any] = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) __lowercase : Optional[int] = classifier_dropout_prob __lowercase : int = use_labels __lowercase : Optional[int] = is_training __lowercase : Dict = num_labels __lowercase : Tuple = initializer_range __lowercase : Optional[Any] = scope def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : List[Any] = None __lowercase : Optional[Any] = None if self.use_labels: __lowercase : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __lowercase : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowercase : List[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : Tuple , __a : Dict , __a : Tuple , __a : Optional[int] , __a : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[int] = MobileNetVaModel(config=__a ) model.to(__a ) model.eval() __lowercase : Tuple = model(__a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def lowerCAmelCase ( self : List[str] , __a : Optional[int] , __a : List[str] , __a : str , __a : Optional[int] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = self.num_labels __lowercase : Dict = MobileNetVaForImageClassification(__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : int , __a : List[str] , __a : Tuple , __a : Any , __a : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : int = self.num_labels __lowercase : List[Any] = MobileNetVaForSemanticSegmentation(__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __lowercase : str = model(__a , labels=__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase : List[str] = config_and_inputs __lowercase : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Tuple = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) _A : Optional[Any] = ( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) _A : Tuple = False _A : List[str] = False _A : List[str] = False _A : Optional[int] = False def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = MobileNetVaModelTester(self ) __lowercase : int = MobileNetVaConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV2 does not use inputs_embeds""" ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not support input and output embeddings""" ) def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not output attentions""" ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[Any] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : int = [*signature.parameters.keys()] __lowercase : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" def check_hidden_states_output(__a : List[Any] , __a : Tuple , __a : List[str] ): __lowercase : Optional[Any] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : List[Any] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Tuple = outputs.hidden_states __lowercase : str = 16 self.assertEqual(len(__a ) , __a ) __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Any = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase : Union[str, Any] = True check_hidden_states_output(__a , __a , __a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : Optional[int] = MobileNetVaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def snake_case_ ( ): __lowercase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v2_1.0_224""" ) if is_vision_available() else None ) @slow def lowerCAmelCase ( self : str ) -> int: """simple docstring""" __lowercase : Tuple = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v2_1.0_224""" ).to(__a ) __lowercase : str = self.default_image_processor __lowercase : Tuple = prepare_img() __lowercase : Tuple = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : str = model(**__a ) # verify the logits __lowercase : Union[str, Any] = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , __a ) __lowercase : str = torch.tensor([0.2445, -1.1993, 0.1905] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : int = MobileNetVaForSemanticSegmentation.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __lowercase : Dict = model.to(__a ) __lowercase : Tuple = MobileNetVaImageProcessor.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __lowercase : List[str] = prepare_img() __lowercase : Optional[int] = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : Union[str, Any] = model(**__a ) __lowercase : Any = outputs.logits # verify the logits __lowercase : Dict = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , __a ) __lowercase : str = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=__a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __a , atol=1E-4 ) )
649
1
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , __a : List[str] , __a : Dict=2 , __a : Union[str, Any]=True , __a : List[Any]=False , __a : int=10 , __a : List[Any]=3 , __a : Optional[int]=32 * 8 , __a : str=32 * 8 , __a : Optional[int]=4 , __a : str=64 , ) -> str: """simple docstring""" __lowercase : List[Any] = parent __lowercase : List[str] = batch_size __lowercase : Union[str, Any] = is_training __lowercase : Union[str, Any] = use_auxiliary_loss __lowercase : int = num_queries __lowercase : Dict = num_channels __lowercase : List[Any] = min_size __lowercase : Optional[int] = max_size __lowercase : Optional[Any] = num_labels __lowercase : List[str] = hidden_dim __lowercase : Optional[int] = hidden_dim def lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase : int = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __a ) __lowercase : List[str] = torch.ones([self.batch_size, self.min_size, self.max_size] , device=__a ) __lowercase : Dict = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__a ) > 0.5 ).float() __lowercase : Dict = (torch.rand((self.batch_size, self.num_labels) , device=__a ) > 0.5).long() __lowercase : int = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = MaskaFormerConfig( hidden_size=self.hidden_dim , ) __lowercase : List[Any] = self.num_queries __lowercase : Union[str, Any] = self.num_labels __lowercase : Dict = [1, 1, 1, 1] __lowercase : Optional[int] = self.num_channels __lowercase : List[str] = 64 __lowercase : List[str] = 128 __lowercase : List[str] = self.hidden_dim __lowercase : Optional[Any] = self.hidden_dim __lowercase : List[str] = self.hidden_dim return config def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" __lowercase , __lowercase , __lowercase , __lowercase , __lowercase : Optional[int] = self.prepare_config_and_inputs() __lowercase : Any = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def lowerCAmelCase ( self : str , __a : Union[str, Any] , __a : Union[str, Any] ) -> str: """simple docstring""" __lowercase : List[Any] = output.encoder_hidden_states __lowercase : int = output.pixel_decoder_hidden_states __lowercase : Dict = output.transformer_decoder_hidden_states self.parent.assertTrue(len(__a ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__a ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__a ) , config.decoder_layers ) def lowerCAmelCase ( self : Optional[Any] , __a : Any , __a : List[str] , __a : List[str] , __a : List[Any]=False ) -> str: """simple docstring""" with torch.no_grad(): __lowercase : Union[str, Any] = MaskaFormerModel(config=__a ) model.to(__a ) model.eval() __lowercase : Optional[Any] = model(pixel_values=__a , pixel_mask=__a ) __lowercase : Optional[int] = model(__a , output_hidden_states=__a ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__a , __a ) def lowerCAmelCase ( self : Optional[int] , __a : List[str] , __a : List[str] , __a : Dict , __a : Tuple , __a : str ) -> Tuple: """simple docstring""" __lowercase : Tuple = MaskaFormerForUniversalSegmentation(config=__a ) model.to(__a ) model.eval() def comm_check_on_output(__a : Dict ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __lowercase : Tuple = model(pixel_values=__a , pixel_mask=__a ) __lowercase : str = model(__a ) comm_check_on_output(__a ) __lowercase : int = model( pixel_values=__a , pixel_mask=__a , mask_labels=__a , class_labels=__a ) comm_check_on_output(__a ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Tuple = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () _A : Union[str, Any] = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} _A : Optional[int] = False _A : Dict = False _A : List[str] = False _A : Dict = False def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = MaskaFormerModelTester(self ) __lowercase : List[Any] = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__a , **__a , output_hidden_states=__a ) def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*__a ) @unittest.skip(reason="""Mask2Former does not use inputs_embeds""" ) def lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" ) def lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason="""Mask2Former is not a generative model""" ) def lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" pass @unittest.skip(reason="""Mask2Former does not use token embeddings""" ) def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip( reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" __lowercase , __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[Any] = model_class(__a ) __lowercase : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : str = [*signature.parameters.keys()] __lowercase : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __lowercase : Any = MaskaFormerModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase : str = (self.model_tester.min_size,) * 2 __lowercase : Tuple = { """pixel_values""": torch.randn((2, 3, *size) , device=__a ), """mask_labels""": torch.randn((2, 10, *size) , device=__a ), """class_labels""": torch.zeros(2 , 10 , device=__a ).long(), } __lowercase : List[Any] = self.model_tester.get_config() __lowercase : str = MaskaFormerForUniversalSegmentation(__a ).to(__a ) __lowercase : Any = model(**__a ) self.assertTrue(outputs.loss is not None ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__a , **__a , output_hidden_states=__a ) def lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Union[str, Any] = model_class(__a ).to(__a ) __lowercase : Any = model(**__a , output_attentions=__a ) self.assertTrue(outputs.attentions is not None ) def lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" if not self.model_tester.is_training: return __lowercase : Optional[Any] = self.all_model_classes[1] __lowercase , __lowercase , __lowercase , __lowercase , __lowercase : Any = self.model_tester.prepare_config_and_inputs() __lowercase : Optional[int] = model_class(__a ) model.to(__a ) model.train() __lowercase : Any = model(__a , mask_labels=__a , class_labels=__a ).loss loss.backward() def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" __lowercase : Optional[int] = self.all_model_classes[1] __lowercase , __lowercase , __lowercase , __lowercase , __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() __lowercase : List[str] = True __lowercase : int = True __lowercase : Optional[int] = model_class(__a ).to(__a ) model.train() __lowercase : Dict = model(__a , mask_labels=__a , class_labels=__a ) __lowercase : Union[str, Any] = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __lowercase : int = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __lowercase : Any = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __lowercase : Optional[int] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__a ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowerCamelCase : Optional[int] = 1E-4 def snake_case_ ( ): __lowercase : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" __lowercase : str = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(__a ) __lowercase : Tuple = self.default_image_processor __lowercase : int = prepare_img() __lowercase : Dict = image_processor(__a , return_tensors="""pt""" ).to(__a ) __lowercase : int = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__a , (1, 3, 384, 384) ) with torch.no_grad(): __lowercase : Union[str, Any] = model(**__a ) __lowercase : str = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(__a ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , __a , atol=__a ) ) __lowercase : List[Any] = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(__a ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __a , atol=__a ) ) __lowercase : Optional[Any] = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(__a ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase : List[Any] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__a ).eval() __lowercase : Optional[Any] = self.default_image_processor __lowercase : Union[str, Any] = prepare_img() __lowercase : Any = image_processor(__a , return_tensors="""pt""" ).to(__a ) __lowercase : str = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__a , (1, 3, 384, 384) ) with torch.no_grad(): __lowercase : Optional[Any] = model(**__a ) # masks_queries_logits __lowercase : Dict = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __lowercase : Dict = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] __lowercase : int = torch.tensor(__a ).to(__a ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __a , atol=__a ) ) # class_queries_logits __lowercase : Dict = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __lowercase : List[str] = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(__a ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : str = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__a ).eval() __lowercase : Optional[int] = self.default_image_processor __lowercase : Union[str, Any] = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="""pt""" , ) __lowercase : Optional[Any] = inputs["""pixel_values"""].to(__a ) __lowercase : Optional[int] = [el.to(__a ) for el in inputs["""mask_labels"""]] __lowercase : str = [el.to(__a ) for el in inputs["""class_labels"""]] with torch.no_grad(): __lowercase : Optional[Any] = model(**__a ) self.assertTrue(outputs.loss is not None )
649
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def snake_case_ ( lowerCAmelCase_ : bool = True , *lowerCAmelCase_ : int , **lowerCAmelCase_ : List[str] ): if not is_tqdm_available(): raise ImportError("""Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.""" ) __lowercase : List[str] = False if main_process_only: __lowercase : Optional[int] = PartialState().local_process_index == 0 return _tqdm(*lowerCAmelCase_ , **lowerCAmelCase_ , disable=lowerCAmelCase_ )
649
1
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Tuple , __a : str , __a : str=13 , __a : Optional[int]=7 , __a : Optional[int]=True , __a : int=True , __a : Any=True , __a : List[Any]=True , __a : Any=True , __a : Union[str, Any]=False , __a : Dict=False , __a : List[Any]=False , __a : List[str]=2 , __a : Union[str, Any]=99 , __a : int=0 , __a : List[Any]=32 , __a : Dict=5 , __a : Optional[int]=4 , __a : List[Any]=0.1 , __a : Optional[Any]=0.1 , __a : List[Any]=512 , __a : Tuple=12 , __a : str=2 , __a : List[Any]=0.02 , __a : int=3 , __a : int=4 , __a : Optional[int]="last" , __a : str=None , __a : Optional[Any]=None , ) -> Optional[Any]: """simple docstring""" __lowercase : List[str] = parent __lowercase : List[str] = batch_size __lowercase : Union[str, Any] = seq_length __lowercase : Any = is_training __lowercase : Any = use_input_lengths __lowercase : str = use_token_type_ids __lowercase : Union[str, Any] = use_labels __lowercase : Optional[int] = gelu_activation __lowercase : Optional[Any] = sinusoidal_embeddings __lowercase : List[str] = causal __lowercase : List[Any] = asm __lowercase : List[str] = n_langs __lowercase : Dict = vocab_size __lowercase : Optional[int] = n_special __lowercase : List[Any] = hidden_size __lowercase : Union[str, Any] = num_hidden_layers __lowercase : List[Any] = num_attention_heads __lowercase : Any = hidden_dropout_prob __lowercase : List[str] = attention_probs_dropout_prob __lowercase : Any = max_position_embeddings __lowercase : Dict = type_vocab_size __lowercase : Tuple = type_sequence_label_size __lowercase : int = initializer_range __lowercase : Union[str, Any] = num_labels __lowercase : List[str] = num_choices __lowercase : int = summary_type __lowercase : Any = use_proj __lowercase : int = scope def lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" __lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : int = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : Optional[int] = None if self.use_input_lengths: __lowercase : Union[str, Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __lowercase : Tuple = None if self.use_token_type_ids: __lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __lowercase : int = None __lowercase : List[str] = None __lowercase : str = None if self.use_labels: __lowercase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : List[Any] = ids_tensor([self.batch_size] , 2 ).float() __lowercase : Dict = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : List[str] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def lowerCAmelCase ( self : Optional[Any] , __a : Any , __a : Optional[int] , __a : List[Any] , __a : List[str] , __a : Optional[Any] , __a : int , __a : Tuple , __a : Optional[int] , __a : Optional[Any] , ) -> Tuple: """simple docstring""" __lowercase : Any = FlaubertModel(config=__a ) model.to(__a ) model.eval() __lowercase : Any = model(__a , lengths=__a , langs=__a ) __lowercase : Dict = model(__a , langs=__a ) __lowercase : str = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Union[str, Any] , __a : str , __a : List[Any] , __a : Tuple , __a : Any , __a : Tuple , __a : str , __a : Tuple , __a : int , __a : Tuple , ) -> List[Any]: """simple docstring""" __lowercase : List[str] = FlaubertWithLMHeadModel(__a ) model.to(__a ) model.eval() __lowercase : Tuple = model(__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[Any] , __a : int , __a : Optional[int] , __a : Optional[int] , __a : List[Any] , __a : int , __a : int , __a : Optional[Any] , __a : Optional[int] , __a : Dict , ) -> List[Any]: """simple docstring""" __lowercase : List[str] = FlaubertForQuestionAnsweringSimple(__a ) model.to(__a ) model.eval() __lowercase : Tuple = model(__a ) __lowercase : int = model(__a , start_positions=__a , end_positions=__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Any , __a : Dict , __a : Dict , __a : Any , __a : Tuple , __a : List[str] , __a : Any , __a : List[Any] , __a : Optional[Any] , __a : Dict , ) -> str: """simple docstring""" __lowercase : int = FlaubertForQuestionAnswering(__a ) model.to(__a ) model.eval() __lowercase : List[str] = model(__a ) __lowercase : str = model( __a , start_positions=__a , end_positions=__a , cls_index=__a , is_impossible=__a , p_mask=__a , ) __lowercase : List[str] = model( __a , start_positions=__a , end_positions=__a , cls_index=__a , is_impossible=__a , ) ((__lowercase) , ) : Optional[int] = result_with_labels.to_tuple() __lowercase : List[Any] = model(__a , start_positions=__a , end_positions=__a ) ((__lowercase) , ) : int = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowerCAmelCase ( self : int , __a : Dict , __a : int , __a : List[str] , __a : str , __a : List[Any] , __a : Union[str, Any] , __a : Any , __a : Optional[int] , __a : Dict , ) -> List[str]: """simple docstring""" __lowercase : Any = FlaubertForSequenceClassification(__a ) model.to(__a ) model.eval() __lowercase : List[Any] = model(__a ) __lowercase : int = model(__a , labels=__a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase ( self : Dict , __a : Optional[Any] , __a : Optional[Any] , __a : Dict , __a : Tuple , __a : List[Any] , __a : Any , __a : str , __a : int , __a : Any , ) -> str: """simple docstring""" __lowercase : List[str] = self.num_labels __lowercase : str = FlaubertForTokenClassification(__a ) model.to(__a ) model.eval() __lowercase : Any = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Tuple , __a : List[str] , __a : Dict , __a : Tuple , __a : Optional[Any] , __a : Dict , __a : Any , __a : List[str] , __a : Optional[Any] , __a : int , ) -> Any: """simple docstring""" __lowercase : Optional[int] = self.num_choices __lowercase : Optional[int] = FlaubertForMultipleChoice(config=__a ) model.to(__a ) model.eval() __lowercase : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase : List[str] = model( __a , attention_mask=__a , token_type_ids=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : List[Any] = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : Optional[int] = config_and_inputs __lowercase : Dict = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Optional[int] = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) _A : List[str] = ( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : str , __a : Optional[int] , __a : Optional[int] , __a : Union[str, Any] ) -> Tuple: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowerCAmelCase ( self : Optional[Any] , __a : str , __a : List[Any] , __a : List[str]=False ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = super()._prepare_for_class(__a , __a , return_labels=__a ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": __lowercase : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a ) __lowercase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a ) return inputs_dict def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" __lowercase : Tuple = FlaubertModelTester(self ) __lowercase : str = ConfigTester(self , config_class=__a , emb_dim=37 ) def lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__a ) def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" __lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__a ) def lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*__a ) def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__a ) def lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__a ) def lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*__a ) def lowerCAmelCase ( self : int ) -> str: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*__a ) @slow def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : Any = FlaubertModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @slow @require_torch_gpu def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return __lowercase : Tuple = True __lowercase : List[Any] = model_class(config=__a ) __lowercase : List[Any] = self._prepare_for_class(__a , __a ) __lowercase : Tuple = torch.jit.trace( __a , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__a , os.path.join(__a , """traced_model.pt""" ) ) __lowercase : Dict = torch.jit.load(os.path.join(__a , """traced_model.pt""" ) , map_location=__a ) loaded(inputs_dict["""input_ids"""].to(__a ) , inputs_dict["""attention_mask"""].to(__a ) ) @require_torch class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase : List[str] = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) __lowercase : Optional[Any] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): __lowercase : Dict = model(__a )[0] __lowercase : Tuple = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __a ) __lowercase : Optional[int] = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1E-4 ) )
649
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : list[int] ): if not nums: return 0 __lowercase : Tuple = nums[0] __lowercase : Tuple = 0 for num in nums[1:]: __lowercase , __lowercase : List[str] = ( max_excluding + num, max(lowerCAmelCase_ , lowerCAmelCase_ ), ) return max(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
649
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase : Union[str, Any] = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[Any] = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
649
lowerCamelCase : List[str] = '''0.18.2''' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
649
1
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : Dict = prime_factors(lowerCAmelCase_ ) if is_square_free(lowerCAmelCase_ ): return -1 if len(lowerCAmelCase_ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
649
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : List[Any] = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : str=False , lowerCAmelCase_ : Any=False ): __lowercase : Any = """backbone.""" if is_semantic else """""" __lowercase : Optional[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"{prefix}blocks.{i}.norm1.weight", F"beit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm1.bias", F"beit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.weight", F"beit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.bias", F"beit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.weight", F"beit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.bias", F"beit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.weight", F"beit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.bias", F"beit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.weight", F"beit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.bias", F"beit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ (F"{prefix}cls_token", """beit.embeddings.cls_token"""), (F"{prefix}patch_embed.proj.weight", """beit.embeddings.patch_embeddings.projection.weight"""), (F"{prefix}patch_embed.proj.bias", """beit.embeddings.patch_embeddings.projection.bias"""), (F"{prefix}pos_embed", """beit.embeddings.position_embeddings"""), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("""mask_token""", """beit.embeddings.mask_token"""), ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) else: # layernorm + classification head rename_keys.extend( [ ("""fc_norm.weight""", """beit.pooler.layernorm.weight"""), ("""fc_norm.bias""", """beit.pooler.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : List[Any]=False ): for i in range(config.num_hidden_layers ): __lowercase : Tuple = """backbone.""" if is_semantic else """""" # queries, keys and values __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.attn.qkv.weight" ) __lowercase : Dict = state_dict.pop(F"{prefix}blocks.{i}.attn.q_bias" ) __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.attn.v_bias" ) __lowercase : List[str] = in_proj_weight[ : config.hidden_size, : ] __lowercase : Union[str, Any] = q_bias __lowercase : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] __lowercase : str = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.gamma_1" ) __lowercase : str = state_dict.pop(F"{prefix}blocks.{i}.gamma_2" ) __lowercase : List[str] = gamma_a __lowercase : Optional[int] = gamma_a def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : int ): __lowercase : Tuple = dct.pop(lowerCAmelCase_ ) __lowercase : Tuple = val def snake_case_ ( ): __lowercase : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase : Any = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]=False ): __lowercase : Dict = False if """rvlcdip""" in checkpoint_url else True __lowercase : Tuple = BeitConfig(use_absolute_position_embeddings=lowerCAmelCase_ , use_mask_token=lowerCAmelCase_ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: __lowercase : Union[str, Any] = 1024 __lowercase : Optional[int] = 4096 __lowercase : List[Any] = 24 __lowercase : Dict = 16 # labels if "rvlcdip" in checkpoint_url: __lowercase : Optional[int] = 16 __lowercase : Any = """huggingface/label-files""" __lowercase : Union[str, Any] = """rvlcdip-id2label.json""" __lowercase : List[str] = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) __lowercase : Optional[int] = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowercase : Union[str, Any] = idalabel __lowercase : Optional[Any] = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys __lowercase : Optional[int] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ , map_location="""cpu""" )["""model"""] __lowercase : Union[str, Any] = create_rename_keys(lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) # load HuggingFace model __lowercase : Dict = BeitForMaskedImageModeling(lowerCAmelCase_ ) if has_lm_head else BeitForImageClassification(lowerCAmelCase_ ) model.eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image __lowercase : List[str] = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=lowerCAmelCase_ ) __lowercase : List[str] = prepare_img() __lowercase : Optional[Any] = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""" ) __lowercase : Optional[int] = encoding["""pixel_values"""] __lowercase : str = model(lowerCAmelCase_ ) __lowercase : Tuple = outputs.logits # verify logits __lowercase : str = [1, 16] if """rvlcdip""" in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(lowerCAmelCase_ ), "Shape of logits not as expected" Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: if has_lm_head: __lowercase : Optional[Any] = """dit-base""" if """base""" in checkpoint_url else """dit-large""" else: __lowercase : Tuple = """dit-base-finetuned-rvlcdip""" if """dit-b""" in checkpoint_url else """dit-large-finetuned-rvlcdip""" image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=lowerCAmelCase_ , ) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=lowerCAmelCase_ , ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) lowerCamelCase : List[str] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
649
1