code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class lowercase : """simple docstring""" a__ = 42 a__ = 42 class lowercase : """simple docstring""" def __init__( self , __snake_case): _UpperCamelCase : Tuple = [[] for _ in range(snake_case__)] _UpperCamelCase : Union[str, Any] = size def __getitem__( self , __snake_case): return iter(self._graph[vertex]) @property def A__ ( self): return self._size def A__ ( self , __snake_case , __snake_case , __snake_case): if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.') if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).') self._graph[from_vertex].append(Edge(snake_case__ , snake_case__)) def A__ ( self , __snake_case , __snake_case): _UpperCamelCase : str = deque([start_vertex]) _UpperCamelCase : Any = [None] * self.size _UpperCamelCase : Optional[int] = 0 while queue: _UpperCamelCase : Union[str, Any] = queue.popleft() _UpperCamelCase : int = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _UpperCamelCase : int = current_distance + edge.weight _UpperCamelCase : List[Any] = distances[edge.destination_vertex] if ( isinstance(snake_case__ , snake_case__) and new_distance >= dest_vertex_distance ): continue _UpperCamelCase : Optional[Any] = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex) else: queue.append(edge.destination_vertex) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.') return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
706
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer lowerCAmelCase__ = ["""bert-base-uncased""", """bert-base-cased"""] lowerCAmelCase__ = """hf-internal-testing/tiny-bert-tf-only""" if is_tf_available(): class lowercase ( tf.keras.Model ): """simple docstring""" def __init__( self , __snake_case): super().__init__() _UpperCamelCase : List[Any] = tokenizer _UpperCamelCase : List[Any] = AutoConfig.from_pretrained(__snake_case) _UpperCamelCase : Dict = TFAutoModel.from_config(__snake_case) def A__ ( self , __snake_case): _UpperCamelCase : Any = self.tokenizer(__snake_case) _UpperCamelCase : Dict = self.bert(**__snake_case) return out["pooler_output"] @require_tf @require_tensorflow_text class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self): super().setUp() _UpperCamelCase : Optional[Any] = [ BertTokenizer.from_pretrained(__snake_case) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false _UpperCamelCase : Optional[Any] = [TFBertTokenizer.from_pretrained(__snake_case) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(__snake_case , use_fast_bert_tokenizer=__snake_case) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers) == len(self.tf_tokenizers) _UpperCamelCase : Optional[Any] = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] _UpperCamelCase : Dict = list(zip(self.test_sentences , self.test_sentences[::-1])) def A__ ( self): for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers): for test_inputs in (self.test_sentences, self.paired_sentences): _UpperCamelCase : List[str] = tokenizer(__snake_case , return_tensors='tf' , padding='longest') _UpperCamelCase : Tuple = tf_tokenizer(__snake_case) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape)) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa) == tf_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Tuple = tf_tokenizer(self.paired_sentences) _UpperCamelCase : Optional[Any] = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa) == separated_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Tuple = tf.function(__snake_case) for test_inputs in (self.test_sentences, self.paired_sentences): _UpperCamelCase : Optional[int] = tf.constant(__snake_case) _UpperCamelCase : Union[str, Any] = compiled_tokenizer(__snake_case) _UpperCamelCase : Tuple = tf_tokenizer(__snake_case) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Any = ModelToSave(tokenizer=__snake_case) _UpperCamelCase : Any = tf.convert_to_tensor(self.test_sentences) _UpperCamelCase : Union[str, Any] = model(__snake_case) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _UpperCamelCase : int = Path(__snake_case) / 'saved.model' model.save(__snake_case) _UpperCamelCase : Optional[int] = tf.keras.models.load_model(__snake_case) _UpperCamelCase : int = loaded_model(__snake_case) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output)) , 1e-5)
648
0
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class __A ( __lowerCamelCase ): """simple docstring""" a__ = 42 a__ = 42 class __A ( nn.Module ): """simple docstring""" a__ = 42 a__ = (1_6, 3_2, 9_6, 2_5_6) a__ = jnp.floataa def A__ ( self): _UpperCamelCase : Union[str, Any] = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _UpperCamelCase : Optional[int] = [] for i in range(len(self.block_out_channels) - 1): _UpperCamelCase : str = self.block_out_channels[i] _UpperCamelCase : List[Any] = self.block_out_channels[i + 1] _UpperCamelCase : Tuple = nn.Conv( a_ , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(a_) _UpperCamelCase : Optional[Any] = nn.Conv( a_ , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(a_) _UpperCamelCase : Union[str, Any] = blocks _UpperCamelCase : int = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , __snake_case): _UpperCamelCase : Optional[Any] = self.conv_in(a_) _UpperCamelCase : Optional[Any] = nn.silu(a_) for block in self.blocks: _UpperCamelCase : str = block(a_) _UpperCamelCase : str = nn.silu(a_) _UpperCamelCase : Any = self.conv_out(a_) return embedding @flax_register_to_config class __A ( nn.Module , __lowerCamelCase , __lowerCamelCase ): """simple docstring""" a__ = 3_2 a__ = 4 a__ = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) a__ = False a__ = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) a__ = 2 a__ = 8 a__ = None a__ = 1_2_8_0 a__ = 0.0 a__ = False a__ = jnp.floataa a__ = True a__ = 0 a__ = "rgb" a__ = (1_6, 3_2, 9_6, 2_5_6) def A__ ( self , __snake_case): # init input tensors _UpperCamelCase : Tuple = (1, self.in_channels, self.sample_size, self.sample_size) _UpperCamelCase : Union[str, Any] = jnp.zeros(a_ , dtype=jnp.floataa) _UpperCamelCase : int = jnp.ones((1,) , dtype=jnp.intaa) _UpperCamelCase : int = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa) _UpperCamelCase : Union[str, Any] = (1, 3, self.sample_size * 8, self.sample_size * 8) _UpperCamelCase : List[str] = jnp.zeros(a_ , dtype=jnp.floataa) _UpperCamelCase : List[str] = jax.random.split(a_) _UpperCamelCase : Dict = {"params": params_rng, "dropout": dropout_rng} return self.init(a_ , a_ , a_ , a_ , a_)["params"] def A__ ( self): _UpperCamelCase : Tuple = self.block_out_channels _UpperCamelCase : Optional[Any] = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. _UpperCamelCase : List[str] = self.num_attention_heads or self.attention_head_dim # input _UpperCamelCase : Dict = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time _UpperCamelCase : Union[str, Any] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift) _UpperCamelCase : int = FlaxTimestepEmbedding(a_ , dtype=self.dtype) _UpperCamelCase : List[str] = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) _UpperCamelCase : Dict = self.only_cross_attention if isinstance(a_ , a_): _UpperCamelCase : List[Any] = (only_cross_attention,) * len(self.down_block_types) if isinstance(a_ , a_): _UpperCamelCase : Optional[Any] = (num_attention_heads,) * len(self.down_block_types) # down _UpperCamelCase : Tuple = [] _UpperCamelCase : List[str] = [] _UpperCamelCase : Dict = block_out_channels[0] _UpperCamelCase : Any = nn.Conv( a_ , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(a_) for i, down_block_type in enumerate(self.down_block_types): _UpperCamelCase : List[str] = output_channel _UpperCamelCase : Any = block_out_channels[i] _UpperCamelCase : Optional[Any] = i == len(a_) - 1 if down_block_type == "CrossAttnDownBlock2D": _UpperCamelCase : Dict = FlaxCrossAttnDownBlockaD( in_channels=a_ , out_channels=a_ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: _UpperCamelCase : Dict = FlaxDownBlockaD( in_channels=a_ , out_channels=a_ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(a_) for _ in range(self.layers_per_block): _UpperCamelCase : Dict = nn.Conv( a_ , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(a_) if not is_final_block: _UpperCamelCase : Union[str, Any] = nn.Conv( a_ , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(a_) _UpperCamelCase : List[str] = down_blocks _UpperCamelCase : Union[str, Any] = controlnet_down_blocks # mid _UpperCamelCase : Optional[int] = block_out_channels[-1] _UpperCamelCase : List[str] = FlaxUNetMidBlockaDCrossAttn( in_channels=a_ , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) _UpperCamelCase : str = nn.Conv( a_ , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = 1.0 , __snake_case = True , __snake_case = False , ): _UpperCamelCase : int = self.controlnet_conditioning_channel_order if channel_order == "bgr": _UpperCamelCase : int = jnp.flip(a_ , axis=1) # 1. time if not isinstance(a_ , jnp.ndarray): _UpperCamelCase : List[str] = jnp.array([timesteps] , dtype=jnp.intaa) elif isinstance(a_ , jnp.ndarray) and len(timesteps.shape) == 0: _UpperCamelCase : str = timesteps.astype(dtype=jnp.floataa) _UpperCamelCase : Any = jnp.expand_dims(a_ , 0) _UpperCamelCase : Optional[int] = self.time_proj(a_) _UpperCamelCase : Any = self.time_embedding(a_) # 2. pre-process _UpperCamelCase : Union[str, Any] = jnp.transpose(a_ , (0, 2, 3, 1)) _UpperCamelCase : Tuple = self.conv_in(a_) _UpperCamelCase : Tuple = jnp.transpose(a_ , (0, 2, 3, 1)) _UpperCamelCase : int = self.controlnet_cond_embedding(a_) sample += controlnet_cond # 3. down _UpperCamelCase : str = (sample,) for down_block in self.down_blocks: if isinstance(a_ , a_): _UpperCamelCase : Dict = down_block(a_ , a_ , a_ , deterministic=not train) else: _UpperCamelCase : Tuple = down_block(a_ , a_ , deterministic=not train) down_block_res_samples += res_samples # 4. mid _UpperCamelCase : List[str] = self.mid_block(a_ , a_ , a_ , deterministic=not train) # 5. contronet blocks _UpperCamelCase : Union[str, Any] = () for down_block_res_sample, controlnet_block in zip(a_ , self.controlnet_down_blocks): _UpperCamelCase : Optional[int] = controlnet_block(a_) controlnet_down_block_res_samples += (down_block_res_sample,) _UpperCamelCase : List[Any] = controlnet_down_block_res_samples _UpperCamelCase : Any = self.controlnet_mid_block(a_) # 6. scaling _UpperCamelCase : Optional[int] = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=a_ , mid_block_res_sample=a_)
707
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ = { """configuration_canine""": ["""CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CanineConfig"""], """tokenization_canine""": ["""CanineTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """CANINE_PRETRAINED_MODEL_ARCHIVE_LIST""", """CanineForMultipleChoice""", """CanineForQuestionAnswering""", """CanineForSequenceClassification""", """CanineForTokenClassification""", """CanineLayer""", """CanineModel""", """CaninePreTrainedModel""", """load_tf_weights_in_canine""", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
648
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase ( _lowercase ): """simple docstring""" a__ = ["image_processor", "tokenizer"] a__ = "CLIPImageProcessor" a__ = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , __snake_case=None , __snake_case=None , **__snake_case): _UpperCamelCase : str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __snake_case , ) _UpperCamelCase : List[str] = kwargs.pop('feature_extractor') _UpperCamelCase : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') super().__init__(__snake_case , __snake_case) def __call__( self , __snake_case=None , __snake_case=None , __snake_case=None , **__snake_case): if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.') if text is not None: _UpperCamelCase : Optional[Any] = self.tokenizer(__snake_case , return_tensors=__snake_case , **__snake_case) if images is not None: _UpperCamelCase : Any = self.image_processor(__snake_case , return_tensors=__snake_case , **__snake_case) if text is not None and images is not None: _UpperCamelCase : Dict = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__snake_case) , tensor_type=__snake_case) def A__ ( self , *__snake_case , **__snake_case): return self.tokenizer.batch_decode(*__snake_case , **__snake_case) def A__ ( self , *__snake_case , **__snake_case): return self.tokenizer.decode(*__snake_case , **__snake_case) @property def A__ ( self): _UpperCamelCase : List[Any] = self.tokenizer.model_input_names _UpperCamelCase : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) @property def A__ ( self): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __snake_case , ) return self.image_processor_class @property def A__ ( self): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __snake_case , ) return self.image_processor
708
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case=3 , __snake_case=32 , __snake_case=3 , __snake_case=10 , __snake_case=[8, 16, 32, 64] , __snake_case=[1, 1, 2, 1] , __snake_case=True , __snake_case=True , __snake_case="relu" , __snake_case=3 , __snake_case=None , __snake_case=["stage2", "stage3", "stage4"] , __snake_case=[2, 3, 4] , __snake_case=1 , ): _UpperCamelCase : List[Any] = parent _UpperCamelCase : Dict = batch_size _UpperCamelCase : Optional[int] = image_size _UpperCamelCase : str = num_channels _UpperCamelCase : Optional[Any] = embeddings_size _UpperCamelCase : Tuple = hidden_sizes _UpperCamelCase : Dict = depths _UpperCamelCase : str = is_training _UpperCamelCase : Optional[int] = use_labels _UpperCamelCase : str = hidden_act _UpperCamelCase : Optional[int] = num_labels _UpperCamelCase : Optional[int] = scope _UpperCamelCase : Tuple = len(__snake_case) _UpperCamelCase : Dict = out_features _UpperCamelCase : Union[str, Any] = out_indices _UpperCamelCase : int = num_groups def A__ ( self): _UpperCamelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase : str = None if self.use_labels: _UpperCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels) _UpperCamelCase : str = self.get_config() return config, pixel_values, labels def A__ ( self): return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : str = BitModel(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[Any] = model(__snake_case) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Dict = self.num_labels _UpperCamelCase : Dict = BitForImageClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Dict = model(__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[Any] = BitBackbone(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = model(__snake_case) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:]) # verify backbone works with out_features=None _UpperCamelCase : Any = None _UpperCamelCase : str = BitBackbone(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Any = model(__snake_case) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , 1) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[-1], 1, 1]) # verify channels self.parent.assertEqual(len(model.channels) , 1) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]]) def A__ ( self): _UpperCamelCase : Optional[int] = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : int = config_and_inputs _UpperCamelCase : int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () a__ = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False a__ = False def A__ ( self): _UpperCamelCase : Dict = BitModelTester(self) _UpperCamelCase : Optional[Any] = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case) def A__ ( self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self): return @unittest.skip(reason='Bit does not output attentions') def A__ ( self): pass @unittest.skip(reason='Bit does not use inputs_embeds') def A__ ( self): pass @unittest.skip(reason='Bit does not support input and output embeddings') def A__ ( self): pass def A__ ( self): _UpperCamelCase , _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : int = model_class(__snake_case) _UpperCamelCase : List[Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : Optional[int] = [*signature.parameters.keys()] _UpperCamelCase : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __snake_case) def A__ ( self): _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case) def A__ ( self): _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__snake_case) def A__ ( self): _UpperCamelCase , _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Union[str, Any] = model_class(config=__snake_case) for name, module in model.named_modules(): if isinstance(__snake_case , (nn.BatchNormad, nn.GroupNorm)): self.assertTrue( torch.all(module.weight == 1) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def A__ ( self): def check_hidden_states_output(__snake_case , __snake_case , __snake_case): _UpperCamelCase : str = model_class(__snake_case) model.to(__snake_case) model.eval() with torch.no_grad(): _UpperCamelCase : Union[str, Any] = model(**self._prepare_for_class(__snake_case , __snake_case)) _UpperCamelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase : str = self.model_tester.num_stages self.assertEqual(len(__snake_case) , expected_num_stages + 1) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCamelCase , _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : List[str] = ['preactivation', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _UpperCamelCase : Any = layer_type _UpperCamelCase : Tuple = True check_hidden_states_output(__snake_case , __snake_case , __snake_case) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase : List[str] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case) @unittest.skip(reason='Bit does not use feedforward chunking') def A__ ( self): pass def A__ ( self): _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case) @slow def A__ ( self): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : Optional[Any] = BitModel.from_pretrained(__snake_case) self.assertIsNotNone(__snake_case) def lowerCamelCase_ ( ) -> Optional[int]: '''simple docstring''' _UpperCamelCase : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def A__ ( self): _UpperCamelCase : Optional[Any] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(__snake_case) _UpperCamelCase : str = self.default_image_processor _UpperCamelCase : List[str] = prepare_img() _UpperCamelCase : int = image_processor(images=__snake_case , return_tensors='pt').to(__snake_case) # forward pass with torch.no_grad(): _UpperCamelCase : Any = model(**__snake_case) # verify the logits _UpperCamelCase : Dict = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , __snake_case) _UpperCamelCase : Optional[int] = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]]).to(__snake_case) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1e-4)) @require_torch class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" a__ = (BitBackbone,) if is_torch_available() else () a__ = BitConfig a__ = False def A__ ( self): _UpperCamelCase : List[str] = BitModelTester(self)
648
0
'''simple docstring''' import random from typing import Any def lowerCamelCase_ ( UpperCAmelCase_ : list ) -> list[Any]: '''simple docstring''' for _ in range(len(_A ) ): _UpperCamelCase : Dict = random.randint(0 , len(_A ) - 1 ) _UpperCamelCase : Any = random.randint(0 , len(_A ) - 1 ) _UpperCamelCase , _UpperCamelCase : str = data[b], data[a] return data if __name__ == "__main__": lowerCAmelCase__ = [0, 1, 2, 3, 4, 5, 6, 7] lowerCAmelCase__ = ['python', 'says', 'hello', '!'] print("""Fisher-Yates Shuffle:""") print("""List""", integers, strings) print("""FY Shuffle""", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
709
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowerCAmelCase__ = numpy.array([0, 0]) lowerCAmelCase__ = numpy.array([0.5, 0.8_66_02_54]) lowerCAmelCase__ = numpy.array([1, 0]) lowerCAmelCase__ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] , UpperCAmelCase_ : int ) -> list[numpy.ndarray]: '''simple docstring''' _UpperCamelCase : Tuple = initial_vectors for _ in range(UpperCAmelCase_ ): _UpperCamelCase : str = iteration_step(UpperCAmelCase_ ) return vectors def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] ) -> list[numpy.ndarray]: '''simple docstring''' _UpperCamelCase : int = [] for i, start_vector in enumerate(vectors[:-1] ): _UpperCamelCase : Union[str, Any] = vectors[i + 1] new_vectors.append(UpperCAmelCase_ ) _UpperCamelCase : Tuple = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def lowerCamelCase_ ( UpperCAmelCase_ : numpy.ndarray , UpperCAmelCase_ : float ) -> numpy.ndarray: '''simple docstring''' _UpperCamelCase : str = numpy.radians(UpperCAmelCase_ ) _UpperCamelCase , _UpperCamelCase : Optional[Any] = numpy.cos(UpperCAmelCase_ ), numpy.sin(UpperCAmelCase_ ) _UpperCamelCase : Any = numpy.array(((c, -s), (s, c)) ) return numpy.dot(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] ) -> None: '''simple docstring''' _UpperCamelCase : str = plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _UpperCamelCase , _UpperCamelCase : Dict = zip(*UpperCAmelCase_ ) plt.plot(UpperCAmelCase_ , UpperCAmelCase_ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
648
0
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": lowerCAmelCase__ = pd.read_csv('''sample_data.csv''', header=None) lowerCAmelCase__ = df.shape[:1][0] # If you're using some other dataset input the target column lowerCAmelCase__ = df.iloc[:, 1:2] lowerCAmelCase__ = actual_data.values.reshape(len_data, 1) lowerCAmelCase__ = MinMaxScaler().fit_transform(actual_data) lowerCAmelCase__ = 1_0 lowerCAmelCase__ = 5 lowerCAmelCase__ = 2_0 lowerCAmelCase__ = len_data - periods * look_back lowerCAmelCase__ = actual_data[:division] lowerCAmelCase__ = actual_data[division - look_back :] lowerCAmelCase__ = [], [] lowerCAmelCase__ = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) lowerCAmelCase__ = np.array(train_x) lowerCAmelCase__ = np.array(test_x) lowerCAmelCase__ = np.array([list(i.ravel()) for i in train_y]) lowerCAmelCase__ = np.array([list(i.ravel()) for i in test_y]) lowerCAmelCase__ = Sequential() model.add(LSTM(1_2_8, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(6_4, input_shape=(1_2_8, 1))) model.add(Dense(forward_days)) model.compile(loss='''mean_squared_error''', optimizer='''adam''') lowerCAmelCase__ = model.fit( x_train, y_train, epochs=1_5_0, verbose=1, shuffle=True, batch_size=4 ) lowerCAmelCase__ = model.predict(x_test)
710
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCAmelCase__ = abspath(join(dirname(__file__), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def lowerCamelCase_ ( UpperCAmelCase_ : Any ) -> Union[str, Any]: '''simple docstring''' config.addinivalue_line( 'markers' , 'is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested' ) config.addinivalue_line( 'markers' , 'is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested' ) config.addinivalue_line('markers' , 'is_pipeline_test: mark test to run only when pipelines are tested' ) config.addinivalue_line('markers' , 'is_staging_test: mark test to run only in the staging environment' ) config.addinivalue_line('markers' , 'accelerate_tests: mark test that require accelerate' ) config.addinivalue_line('markers' , 'tool_tests: mark the tool tests that are run on their specific schedule' ) def lowerCamelCase_ ( UpperCAmelCase_ : Optional[int] ) -> List[Any]: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : Any ) -> List[Any]: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main _UpperCamelCase : str = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(UpperCAmelCase_ , id=UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict ) -> Tuple: '''simple docstring''' if exitstatus == 5: _UpperCamelCase : List[Any] = 0 # Doctest custom flag to ignore output. lowerCAmelCase__ = doctest.register_optionflag("""IGNORE_RESULT""") lowerCAmelCase__ = doctest.OutputChecker class lowercase ( _lowercase ): """simple docstring""" def A__ ( self , __snake_case , __snake_case , __snake_case): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , __snake_case , __snake_case , __snake_case) lowerCAmelCase__ = CustomOutputChecker lowerCAmelCase__ = HfDoctestModule lowerCAmelCase__ = HfDocTestParser
648
0
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : Dict = "cpu" , UpperCAmelCase_ : Union[str, Any] = None ) -> None: '''simple docstring''' _UpperCamelCase : Tuple = torch.load(UpperCAmelCase_ , map_location=UpperCAmelCase_ ) for k, v in tqdm(state_dict.items() ): if not isinstance(UpperCAmelCase_ , torch.Tensor ): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin' ) _UpperCamelCase : List[str] = v.half() if save_path is None: # overwrite src_path _UpperCamelCase : List[str] = src_path torch.save(UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": fire.Fire(convert)
711
lowerCAmelCase__ = range(2, 2_0 + 1) lowerCAmelCase__ = [1_0**k for k in range(ks[-1] + 1)] lowerCAmelCase__ = {} def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int ) -> Tuple: '''simple docstring''' _UpperCamelCase : Dict = sum(a_i[j] for j in range(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) ) _UpperCamelCase : Optional[int] = sum(a_i[j] * base[j] for j in range(min(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) ) ) _UpperCamelCase , _UpperCamelCase : Dict = 0, 0 _UpperCamelCase : Optional[int] = n - i _UpperCamelCase : Union[str, Any] = memo.get(UpperCAmelCase_ ) if sub_memo is not None: _UpperCamelCase : str = sub_memo.get(UpperCAmelCase_ ) if jumps is not None and len(UpperCAmelCase_ ) > 0: # find and make the largest jump without going over _UpperCamelCase : str = -1 for _k in range(len(UpperCAmelCase_ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _UpperCamelCase : Optional[Any] = _k break if max_jump >= 0: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = jumps[max_jump] # since the difference between jumps is cached, add c _UpperCamelCase : Tuple = diff + c for j in range(min(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) ): _UpperCamelCase , _UpperCamelCase : Dict = divmod(UpperCAmelCase_ , 1_0 ) if new_c > 0: add(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) else: _UpperCamelCase : Union[str, Any] = [] else: _UpperCamelCase : List[Any] = {c: []} _UpperCamelCase : Optional[int] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _UpperCamelCase , _UpperCamelCase : Optional[Any] = next_term(UpperCAmelCase_ , k - 1 , i + dn , UpperCAmelCase_ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _UpperCamelCase , _UpperCamelCase : Any = compute(UpperCAmelCase_ , UpperCAmelCase_ , i + dn , UpperCAmelCase_ ) diff += _diff dn += terms_jumped _UpperCamelCase : List[str] = sub_memo[c] # keep jumps sorted by # of terms skipped _UpperCamelCase : Union[str, Any] = 0 while j < len(UpperCAmelCase_ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCAmelCase_ , (diff, dn, k) ) return (diff, dn) def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any ) -> Dict: '''simple docstring''' if i >= n: return 0, i if k > len(UpperCAmelCase_ ): a_i.extend([0 for _ in range(k - len(UpperCAmelCase_ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _UpperCamelCase : Any = i _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Any = 0, 0, 0 for j in range(len(UpperCAmelCase_ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _UpperCamelCase : Union[str, Any] = ds_c + ds_b diff += addend _UpperCamelCase : Union[str, Any] = 0 for j in range(UpperCAmelCase_ ): _UpperCamelCase : Union[str, Any] = a_i[j] + addend _UpperCamelCase , _UpperCamelCase : Any = divmod(UpperCAmelCase_ , 1_0 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return diff, i - start_i def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any ) -> Dict: '''simple docstring''' for j in range(UpperCAmelCase_ , len(UpperCAmelCase_ ) ): _UpperCamelCase : List[str] = digits[j] + addend if s >= 1_0: _UpperCamelCase , _UpperCamelCase : Any = divmod(UpperCAmelCase_ , 1_0 ) _UpperCamelCase : Union[str, Any] = addend // 1_0 + quotient else: _UpperCamelCase : Dict = s _UpperCamelCase : Optional[Any] = addend // 1_0 if addend == 0: break while addend > 0: _UpperCamelCase , _UpperCamelCase : Dict = divmod(UpperCAmelCase_ , 1_0 ) digits.append(UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : int = 1_0**1_5 ) -> int: '''simple docstring''' _UpperCamelCase : Optional[Any] = [1] _UpperCamelCase : Optional[int] = 1 _UpperCamelCase : int = 0 while True: _UpperCamelCase , _UpperCamelCase : List[Any] = next_term(UpperCAmelCase_ , 2_0 , i + dn , UpperCAmelCase_ ) dn += terms_jumped if dn == n - i: break _UpperCamelCase : str = 0 for j in range(len(UpperCAmelCase_ ) ): a_n += digits[j] * 1_0**j return a_n if __name__ == "__main__": print(f'{solution() = }')
648
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ = { """configuration_funnel""": ["""FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FunnelConfig"""], """convert_funnel_original_tf_checkpoint_to_pytorch""": [], """tokenization_funnel""": ["""FunnelTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ["""FunnelTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """FunnelBaseModel""", """FunnelForMaskedLM""", """FunnelForMultipleChoice""", """FunnelForPreTraining""", """FunnelForQuestionAnswering""", """FunnelForSequenceClassification""", """FunnelForTokenClassification""", """FunnelModel""", """FunnelPreTrainedModel""", """load_tf_weights_in_funnel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFFunnelBaseModel""", """TFFunnelForMaskedLM""", """TFFunnelForMultipleChoice""", """TFFunnelForPreTraining""", """TFFunnelForQuestionAnswering""", """TFFunnelForSequenceClassification""", """TFFunnelForTokenClassification""", """TFFunnelModel""", """TFFunnelPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
712
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowercase ( _lowercase ): """simple docstring""" a__ = "vit_mae" def __init__( self , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=2_24 , __snake_case=16 , __snake_case=3 , __snake_case=True , __snake_case=16 , __snake_case=5_12 , __snake_case=8 , __snake_case=20_48 , __snake_case=0.7_5 , __snake_case=False , **__snake_case , ): super().__init__(**__snake_case) _UpperCamelCase : Optional[int] = hidden_size _UpperCamelCase : Optional[int] = num_hidden_layers _UpperCamelCase : Tuple = num_attention_heads _UpperCamelCase : List[str] = intermediate_size _UpperCamelCase : str = hidden_act _UpperCamelCase : List[str] = hidden_dropout_prob _UpperCamelCase : List[Any] = attention_probs_dropout_prob _UpperCamelCase : str = initializer_range _UpperCamelCase : Any = layer_norm_eps _UpperCamelCase : int = image_size _UpperCamelCase : Any = patch_size _UpperCamelCase : List[Any] = num_channels _UpperCamelCase : Union[str, Any] = qkv_bias _UpperCamelCase : str = decoder_num_attention_heads _UpperCamelCase : Union[str, Any] = decoder_hidden_size _UpperCamelCase : Union[str, Any] = decoder_num_hidden_layers _UpperCamelCase : Any = decoder_intermediate_size _UpperCamelCase : int = mask_ratio _UpperCamelCase : List[Any] = norm_pix_loss
648
0
def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> str: '''simple docstring''' return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Optional[Any] = 0 _UpperCamelCase : List[str] = number while duplicate > 0: _UpperCamelCase : Dict = divmod(lowerCamelCase_ , 1_0 ) fact_sum += factorial(lowerCamelCase_ ) return fact_sum == number if __name__ == "__main__": print("""Program to check whether a number is a Krisnamurthy Number or not.""") lowerCAmelCase__ = int(input("""Enter number: """).strip()) print( f'{number} is {"" if krishnamurthy(number) else "not "}a Krishnamurthy Number.' )
713
import functools def lowerCamelCase_ ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int] ) -> int: '''simple docstring''' if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or not all(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(UpperCAmelCase_ ) != 3 or not all(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(UpperCAmelCase_ ) == 0: return 0 if min(UpperCAmelCase_ ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(UpperCAmelCase_ ) >= 3_6_6: raise ValueError('All days elements should be less than 366' ) _UpperCamelCase : Union[str, Any] = set(UpperCAmelCase_ ) @functools.cache def dynamic_programming(UpperCAmelCase_ : int ) -> int: if index > 3_6_5: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 3_0 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
648
0
'''simple docstring''' import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCAmelCase__ = logging.getLogger() lowerCAmelCase__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowercase ( __lowerCamelCase ): """simple docstring""" def A__ ( self , __snake_case): os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_) _UpperCamelCase : List[str] = {'source': 'What is love ?', 'target': 'life'} _UpperCamelCase : int = {'train': 12, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: _UpperCamelCase : Optional[Any] = '\n'.join([contents[field]] * n_lines[split]) with open(os.path.join(UpperCamelCase_ , f'''{split}.{field}''') , 'w') as f: f.write(UpperCamelCase_) def A__ ( self , __snake_case , __snake_case = "pytorch"): _UpperCamelCase : Any = self.get_auto_remove_tmp_dir() _UpperCamelCase : List[str] = os.path.join(UpperCamelCase_ , 'output') _UpperCamelCase : Union[str, Any] = os.path.join(UpperCamelCase_ , 'data') self._create_dummy_data(data_dir=UpperCamelCase_) _UpperCamelCase : Optional[int] = f'''\n --data_dir {data_dir} \\n --output_dir {output_dir} \\n --model_name_or_path facebook/rag-sequence-base \\n --model_type rag_sequence \\n --do_train \\n --do_predict \\n --n_val -1 \\n --val_check_interval 1.0 \\n --train_batch_size 2 \\n --eval_batch_size 1 \\n --max_source_length 25 \\n --max_target_length 25 \\n --val_max_target_length 25 \\n --test_max_target_length 25 \\n --label_smoothing 0.1 \\n --dropout 0.1 \\n --attention_dropout 0.1 \\n --weight_decay 0.001 \\n --adam_epsilon 1e-08 \\n --max_grad_norm 0.1 \\n --lr_scheduler polynomial \\n --learning_rate 3e-04 \\n --num_train_epochs 1 \\n --warmup_steps 4 \\n --gradient_accumulation_steps 1 \\n --distributed-port 8787 \\n --use_dummy_dataset 1 \\n --distributed_retriever {distributed_retriever} \\n '''.split() if gpus > 0: testargs.append(f'''--gpus={gpus}''') if is_apex_available(): testargs.append('--fp16') else: testargs.append('--gpus=0') testargs.append('--distributed_backend=ddp_cpu') testargs.append('--num_processes=2') _UpperCamelCase : List[Any] = [sys.executable, str(Path(finetune_rag.__file__).resolve())] + testargs execute_subprocess_async(UpperCamelCase_ , env=self.get_env()) _UpperCamelCase : Any = os.path.join(UpperCamelCase_ , 'metrics.json') with open(UpperCamelCase_) as f: _UpperCamelCase : Optional[int] = json.load(UpperCamelCase_) return result @require_torch_gpu def A__ ( self): _UpperCamelCase : str = self._run_finetune(gpus=1) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2) @require_torch_multi_gpu def A__ ( self): _UpperCamelCase : List[str] = self._run_finetune(gpus=2) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2) @require_torch_gpu @require_ray def A__ ( self): _UpperCamelCase : List[Any] = self._run_finetune(gpus=1 , distributed_retriever='ray') self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2) @require_torch_multi_gpu @require_ray def A__ ( self): _UpperCamelCase : Any = self._run_finetune(gpus=1 , distributed_retriever='ray') self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2)
714
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=99 , __snake_case=64 , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=37 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=16 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=3 , __snake_case=4 , __snake_case=None , ): _UpperCamelCase : List[Any] = parent _UpperCamelCase : Optional[Any] = batch_size _UpperCamelCase : int = seq_length _UpperCamelCase : str = is_training _UpperCamelCase : Tuple = use_input_mask _UpperCamelCase : Union[str, Any] = use_token_type_ids _UpperCamelCase : Union[str, Any] = use_labels _UpperCamelCase : Optional[Any] = vocab_size _UpperCamelCase : List[Any] = hidden_size _UpperCamelCase : Optional[Any] = embedding_size _UpperCamelCase : str = num_hidden_layers _UpperCamelCase : str = num_attention_heads _UpperCamelCase : int = intermediate_size _UpperCamelCase : int = hidden_act _UpperCamelCase : Tuple = hidden_dropout_prob _UpperCamelCase : int = attention_probs_dropout_prob _UpperCamelCase : Tuple = max_position_embeddings _UpperCamelCase : List[str] = type_vocab_size _UpperCamelCase : Dict = type_sequence_label_size _UpperCamelCase : List[str] = initializer_range _UpperCamelCase : Optional[Any] = num_labels _UpperCamelCase : Tuple = num_choices _UpperCamelCase : List[str] = scope def A__ ( self): _UpperCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase : Any = None if self.use_input_mask: _UpperCamelCase : int = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase : Optional[Any] = None if self.use_token_type_ids: _UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase : int = None _UpperCamelCase : List[str] = None _UpperCamelCase : Dict = None if self.use_labels: _UpperCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self): return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : List[str] = MegatronBertModel(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case) _UpperCamelCase : Dict = model(__snake_case , token_type_ids=__snake_case) _UpperCamelCase : Optional[Any] = model(__snake_case) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : int = MegatronBertForMaskedLM(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Dict = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : str = MegatronBertForCausalLM(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Tuple = MegatronBertForNextSentencePrediction(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[Any] = MegatronBertForPreTraining(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[str] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , next_sentence_label=__snake_case , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : int = MegatronBertForQuestionAnswering(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[int] = self.num_labels _UpperCamelCase : Union[str, Any] = MegatronBertForSequenceClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Any = self.num_labels _UpperCamelCase : Optional[int] = MegatronBertForTokenClassification(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Tuple = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : List[str] = self.num_choices _UpperCamelCase : Optional[int] = MegatronBertForMultipleChoice(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : List[Any] = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : Optional[Any] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : Union[str, Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def A__ ( self): _UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) : Optional[int] = config_and_inputs _UpperCamelCase : int = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) a__ = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) a__ = True # test_resize_embeddings = False a__ = False def A__ ( self , __snake_case , __snake_case , __snake_case=False): _UpperCamelCase : str = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case) if return_labels: if model_class in get_values(__snake_case): _UpperCamelCase : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__snake_case) _UpperCamelCase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case) return inputs_dict def A__ ( self): _UpperCamelCase : Any = MegatronBertModelTester(self) _UpperCamelCase : int = ConfigTester(self , config_class=__snake_case , hidden_size=37) def A__ ( self): self.config_tester.run_common_tests() def A__ ( self): _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__snake_case) def A__ ( self): _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__snake_case) def A__ ( self): _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__snake_case) def A__ ( self): _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__snake_case) def A__ ( self): _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__snake_case) def A__ ( self): _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__snake_case) def A__ ( self): _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__snake_case) def A__ ( self): _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__snake_case) def lowerCamelCase_ ( UpperCAmelCase_ : str ) -> Optional[Any]: '''simple docstring''' return torch.tensor( UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ , ) lowerCAmelCase__ = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip('Model is not available.') def A__ ( self): _UpperCamelCase : int = 'nvidia/megatron-bert-uncased-345m' if "MYDIR" in os.environ: _UpperCamelCase : int = os.path.join(os.environ['MYDIR'] , __snake_case) _UpperCamelCase : Optional[int] = MegatronBertModel.from_pretrained(__snake_case) model.to(__snake_case) model.half() _UpperCamelCase : Optional[Any] = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]]) with torch.no_grad(): _UpperCamelCase : str = model(__snake_case)[0] _UpperCamelCase : Optional[int] = torch.Size((1, 9, 10_24)) self.assertEqual(output.shape , __snake_case) _UpperCamelCase : Union[str, Any] = [-0.6_0_4_0, -0.2_5_1_7, -0.1_0_2_5, 0.3_4_2_0, -0.6_7_5_8, -0.0_0_1_7, -0.1_0_8_9, -0.1_9_9_0, 0.5_7_2_8] for ii in range(3): for jj in range(3): _UpperCamelCase : Optional[Any] = output[0, ii, jj] _UpperCamelCase : Dict = expected[3 * ii + jj] _UpperCamelCase : Optional[int] = 'ii={} jj={} a={} b={}'.format(__snake_case , __snake_case , __snake_case , __snake_case) self.assertTrue(math.isclose(__snake_case , __snake_case , rel_tol=__snake_case , abs_tol=__snake_case) , msg=__snake_case)
648
0
from __future__ import annotations def lowerCamelCase_ ( UpperCAmelCase_ : Dict ) -> str: '''simple docstring''' if len(lowerCamelCase__ ) == 0: return array _UpperCamelCase : Tuple = min(lowerCamelCase__ ), max(lowerCamelCase__ ) # Compute the variables _UpperCamelCase : str = _max - _min + 1 _UpperCamelCase : Dict = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: _UpperCamelCase : int = i - _min _UpperCamelCase : Optional[int] = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. _UpperCamelCase : Optional[int] = 0 for i in range(lowerCamelCase__ ): while holes_repeat[i] > 0: _UpperCamelCase : List[Any] = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = input("""Enter numbers separated by comma:\n""") lowerCAmelCase__ = [int(x) for x in user_input.split(""",""")] print(pigeon_sort(unsorted))
715
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = """▁""" lowerCAmelCase__ = {"""vocab_file""": """sentencepiece.bpe.model"""} lowerCAmelCase__ = { """vocab_file""": { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model""" ), } } lowerCAmelCase__ = { """xlm-roberta-base""": 5_1_2, """xlm-roberta-large""": 5_1_2, """xlm-roberta-large-finetuned-conll02-dutch""": 5_1_2, """xlm-roberta-large-finetuned-conll02-spanish""": 5_1_2, """xlm-roberta-large-finetuned-conll03-english""": 5_1_2, """xlm-roberta-large-finetuned-conll03-german""": 5_1_2, } class lowercase ( _lowercase ): """simple docstring""" a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = ["input_ids", "attention_mask"] def __init__( self , __snake_case , __snake_case="<s>" , __snake_case="</s>" , __snake_case="</s>" , __snake_case="<s>" , __snake_case="<unk>" , __snake_case="<pad>" , __snake_case="<mask>" , __snake_case = None , **__snake_case , ): # Mask token behave like a normal word, i.e. include the space before it _UpperCamelCase : Dict = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case) if isinstance(__snake_case , __snake_case) else mask_token _UpperCamelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) _UpperCamelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(__snake_case)) _UpperCamelCase : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _UpperCamelCase : int = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _UpperCamelCase : List[Any] = 1 _UpperCamelCase : Any = len(self.sp_model) + self.fairseq_offset _UpperCamelCase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self): _UpperCamelCase : List[Any] = self.__dict__.copy() _UpperCamelCase : Optional[Any] = None _UpperCamelCase : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self , __snake_case): _UpperCamelCase : int = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): _UpperCamelCase : Tuple = {} _UpperCamelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) def A__ ( self , __snake_case , __snake_case = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCamelCase : Tuple = [self.cls_token_id] _UpperCamelCase : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self , __snake_case , __snake_case = None , __snake_case = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case) if token_ids_a is None: return [1] + ([0] * len(__snake_case)) + [1] return [1] + ([0] * len(__snake_case)) + [1, 1] + ([0] * len(__snake_case)) + [1] def A__ ( self , __snake_case , __snake_case = None): _UpperCamelCase : Optional[Any] = [self.sep_token_id] _UpperCamelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def A__ ( self): return len(self.sp_model) + self.fairseq_offset + 1 # Add the <mask> token def A__ ( self): _UpperCamelCase : List[str] = {self.convert_ids_to_tokens(__snake_case): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def A__ ( self , __snake_case): return self.sp_model.encode(__snake_case , out_type=__snake_case) def A__ ( self , __snake_case): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCamelCase : str = self.sp_model.PieceToId(__snake_case) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A__ ( self , __snake_case): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def A__ ( self , __snake_case): _UpperCamelCase : Optional[int] = ''.join(__snake_case).replace(__snake_case , ' ').strip() return out_string def A__ ( self , __snake_case , __snake_case = None): if not os.path.isdir(__snake_case): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return _UpperCamelCase : str = os.path.join( __snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(__snake_case) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , __snake_case) elif not os.path.isfile(self.vocab_file): with open(__snake_case , 'wb') as fi: _UpperCamelCase : Any = self.sp_model.serialized_model_proto() fi.write(__snake_case) return (out_vocab_file,)
648
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCAmelCase__ = logging.get_logger(__name__) if is_vision_available(): import PIL class lowercase ( _lowercase ): """simple docstring""" a__ = ["pixel_values"] def __init__( self , __snake_case = True , __snake_case = None , __snake_case = PILImageResampling.BICUBIC , __snake_case = True , __snake_case = None , __snake_case = True , __snake_case = 1 / 2_55 , __snake_case = True , __snake_case = None , __snake_case = None , __snake_case = True , **__snake_case , ): super().__init__(**lowercase_) _UpperCamelCase : List[str] = size if size is not None else {'shortest_edge': 2_24} _UpperCamelCase : str = get_size_dict(lowercase_ , default_to_square=lowercase_) _UpperCamelCase : Union[str, Any] = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} _UpperCamelCase : Any = get_size_dict(lowercase_ , default_to_square=lowercase_ , param_name='crop_size') _UpperCamelCase : Optional[Any] = do_resize _UpperCamelCase : str = size _UpperCamelCase : Union[str, Any] = resample _UpperCamelCase : List[str] = do_center_crop _UpperCamelCase : Optional[int] = crop_size _UpperCamelCase : int = do_rescale _UpperCamelCase : List[str] = rescale_factor _UpperCamelCase : Optional[Any] = do_normalize _UpperCamelCase : str = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _UpperCamelCase : List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD _UpperCamelCase : Optional[Any] = do_convert_rgb def A__ ( self , __snake_case , __snake_case , __snake_case = PILImageResampling.BICUBIC , __snake_case = None , **__snake_case , ): _UpperCamelCase : int = get_size_dict(lowercase_ , default_to_square=lowercase_) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''') _UpperCamelCase : Union[str, Any] = get_resize_output_image_size(lowercase_ , size=size['shortest_edge'] , default_to_square=lowercase_) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_) def A__ ( self , __snake_case , __snake_case , __snake_case = None , **__snake_case , ): _UpperCamelCase : Any = get_size_dict(lowercase_) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''') return center_crop(lowercase_ , size=(size['height'], size['width']) , data_format=lowercase_ , **lowercase_) def A__ ( self , __snake_case , __snake_case , __snake_case = None , **__snake_case , ): return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case = None , **__snake_case , ): return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_) def A__ ( self , __snake_case , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = ChannelDimension.FIRST , **__snake_case , ): _UpperCamelCase : Tuple = do_resize if do_resize is not None else self.do_resize _UpperCamelCase : List[Any] = size if size is not None else self.size _UpperCamelCase : Optional[int] = get_size_dict(lowercase_ , param_name='size' , default_to_square=lowercase_) _UpperCamelCase : Tuple = resample if resample is not None else self.resample _UpperCamelCase : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase : str = crop_size if crop_size is not None else self.crop_size _UpperCamelCase : Optional[int] = get_size_dict(lowercase_ , param_name='crop_size' , default_to_square=lowercase_) _UpperCamelCase : str = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase : Any = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase : str = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase : Dict = image_mean if image_mean is not None else self.image_mean _UpperCamelCase : Optional[Any] = image_std if image_std is not None else self.image_std _UpperCamelCase : Tuple = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _UpperCamelCase : Dict = make_list_of_images(lowercase_) if not valid_images(lowercase_): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # PIL RGBA images are converted to RGB if do_convert_rgb: _UpperCamelCase : List[Any] = [convert_to_rgb(lowercase_) for image in images] # All transformations expect numpy arrays. _UpperCamelCase : int = [to_numpy_array(lowercase_) for image in images] if do_resize: _UpperCamelCase : Optional[Any] = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_) for image in images] if do_center_crop: _UpperCamelCase : Tuple = [self.center_crop(image=lowercase_ , size=lowercase_) for image in images] if do_rescale: _UpperCamelCase : Optional[int] = [self.rescale(image=lowercase_ , scale=lowercase_) for image in images] if do_normalize: _UpperCamelCase : Any = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_) for image in images] _UpperCamelCase : Optional[Any] = [to_channel_dimension_format(lowercase_ , lowercase_) for image in images] _UpperCamelCase : Dict = {'pixel_values': images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_)
716
from ...processing_utils import ProcessorMixin class lowercase ( _lowercase ): """simple docstring""" a__ = ["image_processor", "feature_extractor"] a__ = "TvltImageProcessor" a__ = "TvltFeatureExtractor" def __init__( self , __snake_case , __snake_case): super().__init__(image_processor=__snake_case , feature_extractor=__snake_case) _UpperCamelCase : List[str] = image_processor _UpperCamelCase : Dict = feature_extractor def __call__( self , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=False , __snake_case=False , *__snake_case , **__snake_case , ): if images is None and audio is None: raise ValueError('You need to specify either an `images` or `audio` input to process.') _UpperCamelCase : Union[str, Any] = None if images is not None: _UpperCamelCase : Tuple = self.image_processor(__snake_case , mask_pixel=__snake_case , *__snake_case , **__snake_case) if images_mixed is not None: _UpperCamelCase : Union[str, Any] = self.image_processor(__snake_case , is_mixed=__snake_case , *__snake_case , **__snake_case) if audio is not None: _UpperCamelCase : Tuple = self.feature_extractor( __snake_case , *__snake_case , sampling_rate=__snake_case , mask_audio=__snake_case , **__snake_case) _UpperCamelCase : Tuple = {} if audio is not None: output_dict.update(__snake_case) if images is not None: output_dict.update(__snake_case) if images_mixed_dict is not None: output_dict.update(__snake_case) return output_dict @property def A__ ( self): _UpperCamelCase : List[Any] = self.image_processor.model_input_names _UpperCamelCase : List[Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
648
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """Salesforce/blip-vqa-base""": """https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json""", """Salesforce/blip-vqa-capfit-large""": ( """https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json""" ), """Salesforce/blip-image-captioning-base""": ( """https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json""" ), """Salesforce/blip-image-captioning-large""": ( """https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json""" ), """Salesforce/blip-itm-base-coco""": """https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json""", """Salesforce/blip-itm-large-coco""": """https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json""", """Salesforce/blip-itm-base-flikr""": """https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json""", """Salesforce/blip-itm-large-flikr""": ( """https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json""" ), } class lowercase ( __lowerCAmelCase ): """simple docstring""" a__ = '''blip_text_model''' def __init__( self , __snake_case=3_05_24 , __snake_case=7_68 , __snake_case=7_68 , __snake_case=30_72 , __snake_case=7_68 , __snake_case=12 , __snake_case=8 , __snake_case=5_12 , __snake_case="gelu" , __snake_case=1e-12 , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.0_2 , __snake_case=3_05_22 , __snake_case=2 , __snake_case=0 , __snake_case=1_02 , __snake_case=True , __snake_case=True , **__snake_case , ): super().__init__( pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , sep_token_id=lowerCAmelCase_ , **lowerCAmelCase_ , ) _UpperCamelCase : Any = vocab_size _UpperCamelCase : Union[str, Any] = hidden_size _UpperCamelCase : Optional[int] = encoder_hidden_size _UpperCamelCase : str = intermediate_size _UpperCamelCase : List[str] = projection_dim _UpperCamelCase : Dict = hidden_dropout_prob _UpperCamelCase : str = num_hidden_layers _UpperCamelCase : Optional[Any] = num_attention_heads _UpperCamelCase : str = max_position_embeddings _UpperCamelCase : str = layer_norm_eps _UpperCamelCase : int = hidden_act _UpperCamelCase : Union[str, Any] = initializer_range _UpperCamelCase : List[Any] = attention_probs_dropout_prob _UpperCamelCase : Dict = is_decoder _UpperCamelCase : Dict = use_cache @classmethod def A__ ( cls , __snake_case , **__snake_case): cls._set_token_in_kwargs(lowerCAmelCase_) _UpperCamelCase , _UpperCamelCase : str = cls.get_config_dict(lowerCAmelCase_ , **lowerCAmelCase_) # get the text config dict if we are loading from BlipConfig if config_dict.get('model_type') == "blip": _UpperCamelCase : Optional[int] = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type') and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''') return cls.from_dict(lowerCAmelCase_ , **lowerCAmelCase_) class lowercase ( __lowerCAmelCase ): """simple docstring""" a__ = '''blip_vision_model''' def __init__( self , __snake_case=7_68 , __snake_case=30_72 , __snake_case=5_12 , __snake_case=12 , __snake_case=12 , __snake_case=3_84 , __snake_case=16 , __snake_case="gelu" , __snake_case=1e-5 , __snake_case=0.0 , __snake_case=1e-10 , **__snake_case , ): super().__init__(**lowerCAmelCase_) _UpperCamelCase : str = hidden_size _UpperCamelCase : int = intermediate_size _UpperCamelCase : List[Any] = projection_dim _UpperCamelCase : Optional[Any] = num_hidden_layers _UpperCamelCase : Optional[int] = num_attention_heads _UpperCamelCase : List[str] = patch_size _UpperCamelCase : Dict = image_size _UpperCamelCase : Optional[Any] = initializer_range _UpperCamelCase : List[Any] = attention_dropout _UpperCamelCase : Optional[int] = layer_norm_eps _UpperCamelCase : Dict = hidden_act @classmethod def A__ ( cls , __snake_case , **__snake_case): cls._set_token_in_kwargs(lowerCAmelCase_) _UpperCamelCase , _UpperCamelCase : Dict = cls.get_config_dict(lowerCAmelCase_ , **lowerCAmelCase_) # get the vision config dict if we are loading from BlipConfig if config_dict.get('model_type') == "blip": _UpperCamelCase : Dict = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type') and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''') return cls.from_dict(lowerCAmelCase_ , **lowerCAmelCase_) class lowercase ( __lowerCAmelCase ): """simple docstring""" a__ = '''blip''' a__ = True def __init__( self , __snake_case=None , __snake_case=None , __snake_case=5_12 , __snake_case=2.6_5_9_2 , __snake_case=2_56 , **__snake_case , ): super().__init__(**lowerCAmelCase_) if text_config is None: _UpperCamelCase : Dict = {} logger.info('`text_config` is `None`. Initializing the `BlipTextConfig` with default values.') if vision_config is None: _UpperCamelCase : Any = {} logger.info('`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.') _UpperCamelCase : List[Any] = BlipTextConfig(**lowerCAmelCase_) _UpperCamelCase : Any = BlipVisionConfig(**lowerCAmelCase_) _UpperCamelCase : Dict = self.vision_config.hidden_size _UpperCamelCase : Optional[Any] = projection_dim _UpperCamelCase : Optional[int] = logit_scale_init_value _UpperCamelCase : Any = 1.0 _UpperCamelCase : Tuple = 0.0_2 _UpperCamelCase : Optional[int] = image_text_hidden_size @classmethod def A__ ( cls , __snake_case , __snake_case , **__snake_case): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowerCAmelCase_) def A__ ( self): _UpperCamelCase : str = copy.deepcopy(self.__dict__) _UpperCamelCase : List[Any] = self.text_config.to_dict() _UpperCamelCase : Any = self.vision_config.to_dict() _UpperCamelCase : List[str] = self.__class__.model_type return output
717
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class lowercase ( _lowercase ): """simple docstring""" a__ = "rwkv" a__ = {"max_position_embeddings": "context_length"} def __init__( self , __snake_case=5_02_77 , __snake_case=10_24 , __snake_case=40_96 , __snake_case=32 , __snake_case=None , __snake_case=None , __snake_case=1e-5 , __snake_case=0 , __snake_case=0 , __snake_case=6 , __snake_case=False , __snake_case=True , **__snake_case , ): _UpperCamelCase : str = vocab_size _UpperCamelCase : int = context_length _UpperCamelCase : Tuple = hidden_size _UpperCamelCase : Tuple = num_hidden_layers _UpperCamelCase : Dict = attention_hidden_size if attention_hidden_size is not None else hidden_size _UpperCamelCase : Tuple = intermediate_size if intermediate_size is not None else 4 * hidden_size _UpperCamelCase : Union[str, Any] = layer_norm_epsilon _UpperCamelCase : Dict = rescale_every _UpperCamelCase : Optional[Any] = use_cache _UpperCamelCase : str = bos_token_id _UpperCamelCase : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case)
648
0
from timeit import timeit def lowerCamelCase_ ( UpperCAmelCase_ : Tuple ) -> int: '''simple docstring''' if number < 0: raise ValueError('the value of input must not be negative' ) _UpperCamelCase : Optional[Any] = 0 while number: number &= number - 1 result += 1 return result def lowerCamelCase_ ( UpperCAmelCase_ : Tuple ) -> int: '''simple docstring''' if number < 0: raise ValueError('the value of input must not be negative' ) _UpperCamelCase : int = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def lowerCamelCase_ ( ) -> None: '''simple docstring''' def do_benchmark(UpperCAmelCase_ : str ) -> None: _UpperCamelCase : Tuple = '''import __main__ as z''' print(F'''Benchmark when {number = }:''' ) print(F'''{get_set_bits_count_using_modulo_operator(UpperCAmelCase_ ) = }''' ) _UpperCamelCase : Tuple = timeit('z.get_set_bits_count_using_modulo_operator(25)' , setup=UpperCAmelCase_ ) print(F'''timeit() runs in {timing} seconds''' ) print(F'''{get_set_bits_count_using_brian_kernighans_algorithm(UpperCAmelCase_ ) = }''' ) _UpperCamelCase : Union[str, Any] = timeit( 'z.get_set_bits_count_using_brian_kernighans_algorithm(25)' , setup=UpperCAmelCase_ , ) print(F'''timeit() runs in {timing} seconds''' ) for number in (2_5, 3_7, 5_8, 0): do_benchmark(UpperCAmelCase_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
718
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class lowercase ( _lowercase ): """simple docstring""" a__ = "bert" def __init__( self , __snake_case=3_05_22 , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=0 , __snake_case="absolute" , __snake_case=True , __snake_case=None , **__snake_case , ): super().__init__(pad_token_id=__snake_case , **__snake_case) _UpperCamelCase : int = vocab_size _UpperCamelCase : Optional[Any] = hidden_size _UpperCamelCase : Optional[Any] = num_hidden_layers _UpperCamelCase : List[str] = num_attention_heads _UpperCamelCase : int = hidden_act _UpperCamelCase : Optional[Any] = intermediate_size _UpperCamelCase : Union[str, Any] = hidden_dropout_prob _UpperCamelCase : Tuple = attention_probs_dropout_prob _UpperCamelCase : Optional[int] = max_position_embeddings _UpperCamelCase : str = type_vocab_size _UpperCamelCase : Optional[Any] = initializer_range _UpperCamelCase : List[str] = layer_norm_eps _UpperCamelCase : Any = position_embedding_type _UpperCamelCase : Any = use_cache _UpperCamelCase : Any = classifier_dropout class lowercase ( _lowercase ): """simple docstring""" @property def A__ ( self): if self.task == "multiple-choice": _UpperCamelCase : Union[str, Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCamelCase : Optional[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ])
648
0
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" a__ = ["image_processor", "tokenizer"] a__ = "BridgeTowerImageProcessor" a__ = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , __snake_case , __snake_case): super().__init__(snake_case__ , snake_case__) def __call__( self , __snake_case , __snake_case = None , __snake_case = True , __snake_case = False , __snake_case = None , __snake_case = None , __snake_case = 0 , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = False , __snake_case = False , __snake_case = False , __snake_case = False , __snake_case = True , __snake_case = None , **__snake_case , ): _UpperCamelCase : Optional[int] = self.tokenizer( text=snake_case__ , add_special_tokens=snake_case__ , padding=snake_case__ , truncation=snake_case__ , max_length=snake_case__ , stride=snake_case__ , pad_to_multiple_of=snake_case__ , return_token_type_ids=snake_case__ , return_attention_mask=snake_case__ , return_overflowing_tokens=snake_case__ , return_special_tokens_mask=snake_case__ , return_offsets_mapping=snake_case__ , return_length=snake_case__ , verbose=snake_case__ , return_tensors=snake_case__ , **snake_case__ , ) # add pixel_values + pixel_mask _UpperCamelCase : Optional[int] = self.image_processor( snake_case__ , return_tensors=snake_case__ , do_normalize=snake_case__ , do_center_crop=snake_case__ , **snake_case__) encoding.update(snake_case__) return encoding def A__ ( self , *__snake_case , **__snake_case): return self.tokenizer.batch_decode(*snake_case__ , **snake_case__) def A__ ( self , *__snake_case , **__snake_case): return self.tokenizer.decode(*snake_case__ , **snake_case__) @property def A__ ( self): _UpperCamelCase : Optional[Any] = self.tokenizer.model_input_names _UpperCamelCase : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
719
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowercase ( _lowercase ): """simple docstring""" a__ = "facebook/bart-large-mnli" a__ = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) a__ = "text_classifier" a__ = AutoTokenizer a__ = AutoModelForSequenceClassification a__ = ["text", ["text"]] a__ = ["text"] def A__ ( self): super().setup() _UpperCamelCase : List[Any] = self.model.config _UpperCamelCase : Optional[int] = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail'): _UpperCamelCase : Tuple = int(__snake_case) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.') def A__ ( self , __snake_case , __snake_case): _UpperCamelCase : List[Any] = labels return self.pre_processor( [text] * len(__snake_case) , [f'''This example is {label}''' for label in labels] , return_tensors='pt' , padding='max_length' , ) def A__ ( self , __snake_case): _UpperCamelCase : str = outputs.logits _UpperCamelCase : Optional[Any] = torch.argmax(logits[:, 2]).item() return self._labels[label_id]
648
0
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib lowerCAmelCase__ = get_logger() lowerCAmelCase__ = None class lowercase ( TensorFormatter[Mapping, "jax.Array", Mapping] ): """simple docstring""" def __init__( self , __snake_case=None , __snake_case=None , **__snake_case): super().__init__(features=SCREAMING_SNAKE_CASE_) import jax from jaxlib.xla_client import Device if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): raise ValueError( f'''Expected {device} to be a `str` not {type(SCREAMING_SNAKE_CASE_)}, as `jaxlib.xla_extension.Device` ''' 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.') _UpperCamelCase : Tuple = device if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else str(jax.devices()[0]) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _UpperCamelCase : List[Any] = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys()): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys())}, so falling back to the default ''' f'''device: {str(jax.devices()[0])}.''') _UpperCamelCase : str = str(jax.devices()[0]) _UpperCamelCase : Optional[int] = jnp_array_kwargs @staticmethod def A__ ( ): import jax return {str(SCREAMING_SNAKE_CASE_): device for device in jax.devices()} def A__ ( self , __snake_case): import jax import jax.numpy as jnp if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and column: if all( isinstance(SCREAMING_SNAKE_CASE_ , jax.Array) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column): return jnp.stack(SCREAMING_SNAKE_CASE_ , axis=0) return column def A__ ( self , __snake_case): import jax import jax.numpy as jnp if isinstance(SCREAMING_SNAKE_CASE_ , (str, bytes, type(SCREAMING_SNAKE_CASE_))): return value elif isinstance(SCREAMING_SNAKE_CASE_ , (np.character, np.ndarray)) and np.issubdtype(value.dtype , np.character): return value.tolist() _UpperCamelCase : Optional[Any] = {} if isinstance(SCREAMING_SNAKE_CASE_ , (np.number, np.ndarray)) and np.issubdtype(value.dtype , np.integer): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: _UpperCamelCase : int = {'dtype': jnp.intaa} else: _UpperCamelCase : Optional[int] = {'dtype': jnp.intaa} elif isinstance(SCREAMING_SNAKE_CASE_ , (np.number, np.ndarray)) and np.issubdtype(value.dtype , np.floating): _UpperCamelCase : int = {'dtype': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(SCREAMING_SNAKE_CASE_ , PIL.Image.Image): _UpperCamelCase : List[str] = np.asarray(SCREAMING_SNAKE_CASE_) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _UpperCamelCase : Union[str, Any] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device]): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(SCREAMING_SNAKE_CASE_ , **{**default_dtype, **self.jnp_array_kwargs}) def A__ ( self , __snake_case): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor): return self._tensorize(data_struct.detach().cpu().numpy()[()]) if hasattr(SCREAMING_SNAKE_CASE_ , '__array__') and not isinstance(SCREAMING_SNAKE_CASE_ , jax.Array): _UpperCamelCase : Any = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(SCREAMING_SNAKE_CASE_) for substruct in data_struct]) elif isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple)): return self._consolidate([self.recursive_tensorize(SCREAMING_SNAKE_CASE_) for substruct in data_struct]) return self._tensorize(SCREAMING_SNAKE_CASE_) def A__ ( self , __snake_case): return map_nested(self._recursive_tensorize , SCREAMING_SNAKE_CASE_ , map_list=SCREAMING_SNAKE_CASE_) def A__ ( self , __snake_case): _UpperCamelCase : Any = self.numpy_arrow_extractor().extract_row(SCREAMING_SNAKE_CASE_) _UpperCamelCase : Union[str, Any] = self.python_features_decoder.decode_row(SCREAMING_SNAKE_CASE_) return self.recursive_tensorize(SCREAMING_SNAKE_CASE_) def A__ ( self , __snake_case): _UpperCamelCase : Optional[Any] = self.numpy_arrow_extractor().extract_column(SCREAMING_SNAKE_CASE_) _UpperCamelCase : Tuple = self.python_features_decoder.decode_column(SCREAMING_SNAKE_CASE_ , pa_table.column_names[0]) _UpperCamelCase : str = self.recursive_tensorize(SCREAMING_SNAKE_CASE_) _UpperCamelCase : int = self._consolidate(SCREAMING_SNAKE_CASE_) return column def A__ ( self , __snake_case): _UpperCamelCase : Any = self.numpy_arrow_extractor().extract_batch(SCREAMING_SNAKE_CASE_) _UpperCamelCase : str = self.python_features_decoder.decode_batch(SCREAMING_SNAKE_CASE_) _UpperCamelCase : int = self.recursive_tensorize(SCREAMING_SNAKE_CASE_) for column_name in batch: _UpperCamelCase : str = self._consolidate(batch[column_name]) return batch
720
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
648
0
def lowerCamelCase_ ( UpperCAmelCase_ : str ) -> str: '''simple docstring''' return "".join(chr(ord(UpperCAmelCase_ ) - 3_2 ) if 'a' <= char <= 'z' else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
721
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
648
0
import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets lowerCAmelCase__ = """\ @inproceedings{kakwani2020indicnlpsuite, title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}}, author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar}, year={2020}, booktitle={Findings of EMNLP}, } """ lowerCAmelCase__ = """\ IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te. """ lowerCAmelCase__ = """ Compute IndicGLUE evaluation metric associated to each IndicGLUE dataset. Args: predictions: list of predictions to score (as int64), except for 'cvit-mkb-clsr' where each prediction is a vector (of float32). references: list of ground truth labels corresponding to the predictions (as int64), except for 'cvit-mkb-clsr' where each reference is a vector (of float32). Returns: depending on the IndicGLUE subset, one or several of: \"accuracy\": Accuracy \"f1\": F1 score \"precision\": Precision@10 Examples: >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wnli') # 'wnli' or any of [\"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wiki-ner') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> indic_glue_metric = datasets.load_metric('indic_glue', 'cvit-mkb-clsr') >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'precision@10': 1.0} """ def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] ) -> Optional[int]: '''simple docstring''' return float((preds == labels).mean() ) def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple ) -> Tuple: '''simple docstring''' _UpperCamelCase : List[Any] = simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : List[str] = float(fa_score(y_true=UpperCAmelCase_ , y_pred=UpperCAmelCase_ ) ) return { "accuracy": acc, "f1": fa, } def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] ) -> int: '''simple docstring''' _UpperCamelCase : List[str] = np.array(UpperCAmelCase_ ) _UpperCamelCase : List[str] = np.array(UpperCAmelCase_ ) _UpperCamelCase : str = en_sentvecs.shape[0] # mean centering _UpperCamelCase : Tuple = en_sentvecs - np.mean(UpperCAmelCase_ , axis=0 ) _UpperCamelCase : str = in_sentvecs - np.mean(UpperCAmelCase_ , axis=0 ) _UpperCamelCase : str = cdist(UpperCAmelCase_ , UpperCAmelCase_ , 'cosine' ) _UpperCamelCase : List[str] = np.array(range(UpperCAmelCase_ ) ) _UpperCamelCase : Dict = sim.argsort(axis=1 )[:, :1_0] _UpperCamelCase : Optional[int] = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): """simple docstring""" def A__ ( self): if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( 'You should supply a configuration name selected in ' '["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ' '"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ' '"wiki-ner"]') return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64') if self.config_name != 'cvit-mkb-clsr' else datasets.Sequence(datasets.Value('float32')), 'references': datasets.Value('int64') if self.config_name != 'cvit-mkb-clsr' else datasets.Sequence(datasets.Value('float32')), }) , codebase_urls=[] , reference_urls=[] , format='numpy' if self.config_name != 'cvit-mkb-clsr' else None , ) def A__ ( self , __snake_case , __snake_case): if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(UpperCAmelCase__ , UpperCAmelCase__)} elif self.config_name in ["wiki-ner"]: return acc_and_fa(UpperCAmelCase__ , UpperCAmelCase__) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(UpperCAmelCase__ , UpperCAmelCase__)} else: raise KeyError( 'You should supply a configuration name selected in ' '["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ' '"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ' '"wiki-ner"]')
700
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_sentencepiece_available(): import sentencepiece as sp lowerCAmelCase__ = 5 lowerCAmelCase__ = 1_0 @require_sentencepiece @require_tokenizers class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" a__ = SpeechaTextTokenizer a__ = False a__ = True def A__ ( self): super().setUp() _UpperCamelCase : Any = sp.SentencePieceProcessor() spm_model.Load(__snake_case) _UpperCamelCase : List[str] = ['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_) for id_ in range(len(__snake_case))] _UpperCamelCase : Dict = dict(zip(__snake_case , range(len(__snake_case)))) _UpperCamelCase : Tuple = Path(self.tmpdirname) save_json(__snake_case , save_dir / VOCAB_FILES_NAMES['vocab_file']) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__snake_case , save_dir / VOCAB_FILES_NAMES['spm_file']) _UpperCamelCase : int = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def A__ ( self): _UpperCamelCase : str = '<pad>' _UpperCamelCase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case) , __snake_case) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case) , __snake_case) def A__ ( self): _UpperCamelCase : Optional[Any] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(vocab_keys[-1] , 'j') self.assertEqual(len(__snake_case) , 10_01) def A__ ( self): self.assertEqual(self.get_tokenizer().vocab_size , 10_01) def A__ ( self): _UpperCamelCase : Any = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) _UpperCamelCase : List[str] = tokenizer.tokenize('This is a test') self.assertListEqual(__snake_case , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case) , [2_89, 50, 14, 1_74, 3_86] , ) _UpperCamelCase : int = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( __snake_case , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) _UpperCamelCase : int = tokenizer.convert_tokens_to_ids(__snake_case) self.assertListEqual(__snake_case , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8]) _UpperCamelCase : Tuple = tokenizer.convert_ids_to_tokens(__snake_case) self.assertListEqual( __snake_case , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def A__ ( self): # fmt: off _UpperCamelCase : Optional[int] = {'input_ids': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , ) @require_sentencepiece class lowercase ( unittest.TestCase ): """simple docstring""" a__ = "valhalla/s2t_mustc_multilinguial_medium" a__ = "C'est trop cool" a__ = "Esto es genial" @classmethod def A__ ( cls): _UpperCamelCase : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name) return cls def A__ ( self): self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4) self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6) self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9) self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11) def A__ ( self): self.assertEqual(self.tokenizer.vocab_size , 1_00_00) def A__ ( self): self.assertIn(__snake_case , self.tokenizer.all_special_ids) _UpperCamelCase : Optional[int] = [ES_CODE, 4, 16_01, 47, 76_47, 2] _UpperCamelCase : Tuple = self.tokenizer.decode(__snake_case , skip_special_tokens=__snake_case) _UpperCamelCase : Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__snake_case) self.assertEqual(__snake_case , __snake_case) self.assertNotIn(self.tokenizer.eos_token , __snake_case) def A__ ( self): _UpperCamelCase : Any = 'fr' _UpperCamelCase : List[Any] = self.tokenizer(self.french_text).input_ids self.assertEqual(encoded[0] , __snake_case) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id) def A__ ( self): _UpperCamelCase : Union[str, Any] = 'fr' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE]) _UpperCamelCase : List[str] = 'es' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE])
648
0
'''simple docstring''' import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin lowerCAmelCase__ = logging.get_logger(__name__) enable_full_determinism() class lowercase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): """simple docstring""" a__ = UNetaDModel a__ = "sample" @property def A__ ( self): _UpperCamelCase : Dict = 4 _UpperCamelCase : Tuple = 3 _UpperCamelCase : Dict = (32, 32) _UpperCamelCase : str = floats_tensor((batch_size, num_channels) + sizes).to(_lowerCamelCase) _UpperCamelCase : Any = torch.tensor([10]).to(_lowerCamelCase) return {"sample": noise, "timestep": time_step} @property def A__ ( self): return (3, 32, 32) @property def A__ ( self): return (3, 32, 32) def A__ ( self): _UpperCamelCase : List[Any] = { 'block_out_channels': (32, 64), 'down_block_types': ('DownBlock2D', 'AttnDownBlock2D'), 'up_block_types': ('AttnUpBlock2D', 'UpBlock2D'), 'attention_head_dim': 3, 'out_channels': 3, 'in_channels': 3, 'layers_per_block': 2, 'sample_size': 32, } _UpperCamelCase : int = self.dummy_input return init_dict, inputs_dict class lowercase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): """simple docstring""" a__ = UNetaDModel a__ = "sample" @property def A__ ( self): _UpperCamelCase : str = 4 _UpperCamelCase : int = 4 _UpperCamelCase : Union[str, Any] = (32, 32) _UpperCamelCase : Optional[int] = floats_tensor((batch_size, num_channels) + sizes).to(_lowerCamelCase) _UpperCamelCase : Dict = torch.tensor([10]).to(_lowerCamelCase) return {"sample": noise, "timestep": time_step} @property def A__ ( self): return (4, 32, 32) @property def A__ ( self): return (4, 32, 32) def A__ ( self): _UpperCamelCase : List[str] = { 'sample_size': 32, 'in_channels': 4, 'out_channels': 4, 'layers_per_block': 2, 'block_out_channels': (32, 64), 'attention_head_dim': 32, 'down_block_types': ('DownBlock2D', 'DownBlock2D'), 'up_block_types': ('UpBlock2D', 'UpBlock2D'), } _UpperCamelCase : Any = self.dummy_input return init_dict, inputs_dict def A__ ( self): _UpperCamelCase , _UpperCamelCase : Optional[Any] = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=_lowerCamelCase) self.assertIsNotNone(_lowerCamelCase) self.assertEqual(len(loading_info['missing_keys']) , 0) model.to(_lowerCamelCase) _UpperCamelCase : List[Any] = model(**self.dummy_input).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU') def A__ ( self): _UpperCamelCase , _UpperCamelCase : Tuple = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=_lowerCamelCase) model.to(_lowerCamelCase) _UpperCamelCase : List[Any] = model(**self.dummy_input).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU') def A__ ( self): # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` _UpperCamelCase , _UpperCamelCase : List[Any] = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=_lowerCamelCase) model_accelerate.to(_lowerCamelCase) model_accelerate.eval() _UpperCamelCase : Optional[int] = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0) , ) _UpperCamelCase : int = noise.to(_lowerCamelCase) _UpperCamelCase : Optional[int] = torch.tensor([10] * noise.shape[0]).to(_lowerCamelCase) _UpperCamelCase : Any = model_accelerate(_lowerCamelCase , _lowerCamelCase)['sample'] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() _UpperCamelCase , _UpperCamelCase : Tuple = UNetaDModel.from_pretrained( 'fusing/unet-ldm-dummy-update' , output_loading_info=_lowerCamelCase , low_cpu_mem_usage=_lowerCamelCase) model_normal_load.to(_lowerCamelCase) model_normal_load.eval() _UpperCamelCase : int = model_normal_load(_lowerCamelCase , _lowerCamelCase)['sample'] assert torch_all_close(_lowerCamelCase , _lowerCamelCase , rtol=1e-3) def A__ ( self): _UpperCamelCase : Dict = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update') model.eval() model.to(_lowerCamelCase) _UpperCamelCase : List[str] = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0) , ) _UpperCamelCase : Dict = noise.to(_lowerCamelCase) _UpperCamelCase : Union[str, Any] = torch.tensor([10] * noise.shape[0]).to(_lowerCamelCase) with torch.no_grad(): _UpperCamelCase : List[Any] = model(_lowerCamelCase , _lowerCamelCase).sample _UpperCamelCase : Union[str, Any] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off _UpperCamelCase : Tuple = torch.tensor([-1_3.3_2_5_8, -2_0.1_1_0_0, -1_5.9_8_7_3, -1_7.6_6_1_7, -2_3.0_5_9_6, -1_7.9_4_1_9, -1_3.3_6_7_5, -1_6.1_8_8_9, -1_2.3_8_0_0]) # fmt: on self.assertTrue(torch_all_close(_lowerCamelCase , _lowerCamelCase , rtol=1e-3)) class lowercase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): """simple docstring""" a__ = UNetaDModel a__ = "sample" @property def A__ ( self , __snake_case=(32, 32)): _UpperCamelCase : Optional[Any] = 4 _UpperCamelCase : int = 3 _UpperCamelCase : Dict = floats_tensor((batch_size, num_channels) + sizes).to(_lowerCamelCase) _UpperCamelCase : Union[str, Any] = torch.tensor(batch_size * [10]).to(dtype=torch.intaa , device=_lowerCamelCase) return {"sample": noise, "timestep": time_step} @property def A__ ( self): return (3, 32, 32) @property def A__ ( self): return (3, 32, 32) def A__ ( self): _UpperCamelCase : Optional[int] = { 'block_out_channels': [32, 64, 64, 64], 'in_channels': 3, 'layers_per_block': 1, 'out_channels': 3, 'time_embedding_type': 'fourier', 'norm_eps': 1e-6, 'mid_block_scale_factor': math.sqrt(2.0), 'norm_num_groups': None, 'down_block_types': [ 'SkipDownBlock2D', 'AttnSkipDownBlock2D', 'SkipDownBlock2D', 'SkipDownBlock2D', ], 'up_block_types': [ 'SkipUpBlock2D', 'SkipUpBlock2D', 'AttnSkipUpBlock2D', 'SkipUpBlock2D', ], } _UpperCamelCase : Tuple = self.dummy_input return init_dict, inputs_dict @slow def A__ ( self): _UpperCamelCase , _UpperCamelCase : Tuple = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' , output_loading_info=_lowerCamelCase) self.assertIsNotNone(_lowerCamelCase) self.assertEqual(len(loading_info['missing_keys']) , 0) model.to(_lowerCamelCase) _UpperCamelCase : Dict = self.dummy_input _UpperCamelCase : Dict = floats_tensor((4, 3) + (2_56, 2_56)).to(_lowerCamelCase) _UpperCamelCase : str = noise _UpperCamelCase : Union[str, Any] = model(**_lowerCamelCase) assert image is not None, "Make sure output is not None" @slow def A__ ( self): _UpperCamelCase : int = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256') model.to(_lowerCamelCase) _UpperCamelCase : List[Any] = 4 _UpperCamelCase : int = 3 _UpperCamelCase : Union[str, Any] = (2_56, 2_56) _UpperCamelCase : Union[str, Any] = torch.ones((batch_size, num_channels) + sizes).to(_lowerCamelCase) _UpperCamelCase : Optional[Any] = torch.tensor(batch_size * [1e-4]).to(_lowerCamelCase) with torch.no_grad(): _UpperCamelCase : Optional[int] = model(_lowerCamelCase , _lowerCamelCase).sample _UpperCamelCase : Dict = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off _UpperCamelCase : int = torch.tensor([-48_42.86_91, -64_99.66_31, -38_00.19_53, -79_78.26_86, -1_09_80.71_29, -2_00_28.85_35, 81_48.28_22, 23_42.29_05, 5_67.76_08]) # fmt: on self.assertTrue(torch_all_close(_lowerCamelCase , _lowerCamelCase , rtol=1e-2)) def A__ ( self): _UpperCamelCase : Optional[int] = UNetaDModel.from_pretrained('fusing/ncsnpp-ffhq-ve-dummy-update') model.to(_lowerCamelCase) _UpperCamelCase : Optional[int] = 4 _UpperCamelCase : Tuple = 3 _UpperCamelCase : List[Any] = (32, 32) _UpperCamelCase : Dict = torch.ones((batch_size, num_channels) + sizes).to(_lowerCamelCase) _UpperCamelCase : str = torch.tensor(batch_size * [1e-4]).to(_lowerCamelCase) with torch.no_grad(): _UpperCamelCase : Union[str, Any] = model(_lowerCamelCase , _lowerCamelCase).sample _UpperCamelCase : str = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off _UpperCamelCase : int = torch.tensor([-0.0_3_2_5, -0.0_9_0_0, -0.0_8_6_9, -0.0_3_3_2, -0.0_7_2_5, -0.0_2_7_0, -0.0_1_0_1, 0.0_2_2_7, 0.0_2_5_6]) # fmt: on self.assertTrue(torch_all_close(_lowerCamelCase , _lowerCamelCase , rtol=1e-2)) def A__ ( self): # not required for this model pass
701
import logging from transformers.configuration_utils import PretrainedConfig lowerCAmelCase__ = logging.getLogger(__name__) class lowercase ( _lowercase ): """simple docstring""" a__ = "masked_bert" def __init__( self , __snake_case=3_05_22 , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=0 , __snake_case="topK" , __snake_case="constant" , __snake_case=0.0 , **__snake_case , ): super().__init__(pad_token_id=__snake_case , **__snake_case) _UpperCamelCase : List[Any] = vocab_size _UpperCamelCase : Union[str, Any] = hidden_size _UpperCamelCase : Optional[int] = num_hidden_layers _UpperCamelCase : Any = num_attention_heads _UpperCamelCase : int = hidden_act _UpperCamelCase : str = intermediate_size _UpperCamelCase : str = hidden_dropout_prob _UpperCamelCase : Any = attention_probs_dropout_prob _UpperCamelCase : Tuple = max_position_embeddings _UpperCamelCase : Dict = type_vocab_size _UpperCamelCase : str = initializer_range _UpperCamelCase : List[Any] = layer_norm_eps _UpperCamelCase : Tuple = pruning_method _UpperCamelCase : Tuple = mask_init _UpperCamelCase : Dict = mask_scale
648
0
import itertools import math def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> Union[str, Any]: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCamelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCamelCase_ ( ) -> int: '''simple docstring''' _UpperCamelCase : Dict = 2 while True: if is_prime(lowerCamelCase_ ): yield num num += 1 def lowerCamelCase_ ( UpperCAmelCase_ : int = 1_0_0_0_1 ) -> List[Any]: '''simple docstring''' return next(itertools.islice(prime_generator() , nth - 1 , lowerCamelCase_ ) ) if __name__ == "__main__": print(f'{solution() = }')
702
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow lowerCAmelCase__ = False class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self , __snake_case=32): set_seed(0) _UpperCamelCase : int = UNetaDModel(sample_size=__snake_case , in_channels=3 , out_channels=3) _UpperCamelCase : str = torch.optim.SGD(model.parameters() , lr=0.0_0_0_1) return model, optimizer @slow def A__ ( self): _UpperCamelCase : Tuple = 'cpu' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable _UpperCamelCase : List[Any] = DDPMScheduler( num_train_timesteps=10_00 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='linear' , clip_sample=__snake_case , ) _UpperCamelCase : List[Any] = DDIMScheduler( num_train_timesteps=10_00 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='linear' , clip_sample=__snake_case , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0) _UpperCamelCase : Optional[Any] = [torch.randn((4, 3, 32, 32)).clip(-1 , 1).to(__snake_case) for _ in range(4)] _UpperCamelCase : str = [torch.randn((4, 3, 32, 32)).to(__snake_case) for _ in range(4)] _UpperCamelCase : int = [torch.randint(0 , 10_00 , (4,)).long().to(__snake_case) for _ in range(4)] # train with a DDPM scheduler _UpperCamelCase , _UpperCamelCase : List[Any] = self.get_model_optimizer(resolution=32) model.train().to(__snake_case) for i in range(4): optimizer.zero_grad() _UpperCamelCase : int = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) _UpperCamelCase : Any = model(__snake_case , timesteps[i]).sample _UpperCamelCase : str = torch.nn.functional.mse_loss(__snake_case , noise[i]) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM _UpperCamelCase , _UpperCamelCase : Union[str, Any] = self.get_model_optimizer(resolution=32) model.train().to(__snake_case) for i in range(4): optimizer.zero_grad() _UpperCamelCase : Dict = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) _UpperCamelCase : Dict = model(__snake_case , timesteps[i]).sample _UpperCamelCase : Tuple = torch.nn.functional.mse_loss(__snake_case , noise[i]) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1e-5)) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1e-5))
648
0
class lowercase : """simple docstring""" def __init__( self): _UpperCamelCase : Optional[Any] = 0 _UpperCamelCase : List[str] = 0 _UpperCamelCase : Dict = {} def A__ ( self , __snake_case): if vertex not in self.adjacency: _UpperCamelCase : str = {} self.num_vertices += 1 def A__ ( self , __snake_case , __snake_case , __snake_case): self.add_vertex(_lowercase) self.add_vertex(_lowercase) if head == tail: return _UpperCamelCase : Tuple = weight _UpperCamelCase : List[str] = weight def A__ ( self): _UpperCamelCase : str = self.get_edges() for edge in edges: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : List[Any] = edge edges.remove((tail, head, weight)) for i in range(len(_lowercase)): _UpperCamelCase : List[Any] = list(edges[i]) edges.sort(key=lambda __snake_case: e[2]) for i in range(len(_lowercase) - 1): if edges[i][2] >= edges[i + 1][2]: _UpperCamelCase : Optional[Any] = edges[i][2] + 1 for edge in edges: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Dict = edge _UpperCamelCase : str = weight _UpperCamelCase : Optional[Any] = weight def __str__( self): _UpperCamelCase : Optional[Any] = '' for tail in self.adjacency: for head in self.adjacency[tail]: _UpperCamelCase : Optional[Any] = self.adjacency[head][tail] string += f'''{head} -> {tail} == {weight}\n''' return string.rstrip('\n') def A__ ( self): _UpperCamelCase : List[Any] = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail])) return output def A__ ( self): return self.adjacency.keys() @staticmethod def A__ ( __snake_case=None , __snake_case=None): _UpperCamelCase : List[str] = Graph() if vertices is None: _UpperCamelCase : Dict = [] if edges is None: _UpperCamelCase : int = [] for vertex in vertices: g.add_vertex(_lowercase) for edge in edges: g.add_edge(*_lowercase) return g class lowercase : """simple docstring""" def __init__( self): _UpperCamelCase : str = {} _UpperCamelCase : str = {} def __len__( self): return len(self.parent) def A__ ( self , __snake_case): if item in self.parent: return self.find(_lowercase) _UpperCamelCase : Any = item _UpperCamelCase : List[Any] = 0 return item def A__ ( self , __snake_case): if item not in self.parent: return self.make_set(_lowercase) if item != self.parent[item]: _UpperCamelCase : Optional[Any] = self.find(self.parent[item]) return self.parent[item] def A__ ( self , __snake_case , __snake_case): _UpperCamelCase : Tuple = self.find(_lowercase) _UpperCamelCase : Optional[int] = self.find(_lowercase) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _UpperCamelCase : Union[str, Any] = roota return roota if self.rank[roota] < self.rank[roota]: _UpperCamelCase : Optional[int] = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _UpperCamelCase : Optional[int] = roota return roota return None @staticmethod def A__ ( __snake_case): _UpperCamelCase : Tuple = graph.num_vertices _UpperCamelCase : Tuple = Graph.UnionFind() _UpperCamelCase : Optional[Any] = [] while num_components > 1: _UpperCamelCase : List[str] = {} for vertex in graph.get_vertices(): _UpperCamelCase : Dict = -1 _UpperCamelCase : Optional[Any] = graph.get_edges() for edge in edges: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[int] = edge edges.remove((tail, head, weight)) for edge in edges: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : List[Any] = edge _UpperCamelCase : Union[str, Any] = union_find.find(_lowercase) _UpperCamelCase : List[Any] = union_find.find(_lowercase) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _UpperCamelCase : List[Any] = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _UpperCamelCase : int = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : List[Any] = cheap_edge[vertex] if union_find.find(_lowercase) != union_find.find(_lowercase): union_find.union(_lowercase , _lowercase) mst_edges.append(cheap_edge[vertex]) _UpperCamelCase : Any = num_components - 1 _UpperCamelCase : List[Any] = Graph.build(edges=_lowercase) return mst
703
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) lowerCAmelCase__ = { """sample_size""": 3_2, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 1_0_0_0, """block_out_channels""": [3_2, 6_4], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """sample_size""": 6_4, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 1_0_0_0, """block_out_channels""": [1_9_2, 1_9_2 * 2, 1_9_2 * 3, 1_9_2 * 4], """attention_head_dim""": 6_4, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """sample_size""": 2_5_6, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [2_5_6, 2_5_6, 2_5_6 * 2, 2_5_6 * 2, 2_5_6 * 4, 2_5_6 * 4], """attention_head_dim""": 6_4, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """num_train_timesteps""": 4_0, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } lowerCAmelCase__ = { """num_train_timesteps""": 2_0_1, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } lowerCAmelCase__ = { """num_train_timesteps""": 1_5_1, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> List[str]: '''simple docstring''' if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def lowerCamelCase_ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any]=False ) -> str: '''simple docstring''' _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.in_layers.0.weight'''] _UpperCamelCase : str = checkpoint[F'''{old_prefix}.in_layers.0.bias'''] _UpperCamelCase : str = checkpoint[F'''{old_prefix}.in_layers.2.weight'''] _UpperCamelCase : Union[str, Any] = checkpoint[F'''{old_prefix}.in_layers.2.bias'''] _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.emb_layers.1.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.emb_layers.1.bias'''] _UpperCamelCase : Tuple = checkpoint[F'''{old_prefix}.out_layers.0.weight'''] _UpperCamelCase : List[Any] = checkpoint[F'''{old_prefix}.out_layers.0.bias'''] _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.out_layers.3.weight'''] _UpperCamelCase : Union[str, Any] = checkpoint[F'''{old_prefix}.out_layers.3.bias'''] if has_skip: _UpperCamelCase : Tuple = checkpoint[F'''{old_prefix}.skip_connection.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any=None ) -> int: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 ) _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.norm.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.norm.bias'''] _UpperCamelCase : List[str] = weight_q.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Dict = bias_q.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Any = weight_k.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : List[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Dict = weight_v.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Tuple = bias_v.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Optional[Any] = ( checkpoint[F'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] ) -> Tuple: '''simple docstring''' _UpperCamelCase : Any = torch.load(UpperCAmelCase_ , map_location='cpu' ) _UpperCamelCase : Union[str, Any] = {} _UpperCamelCase : Optional[int] = checkpoint['time_embed.0.weight'] _UpperCamelCase : List[Any] = checkpoint['time_embed.0.bias'] _UpperCamelCase : Dict = checkpoint['time_embed.2.weight'] _UpperCamelCase : Optional[Any] = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: _UpperCamelCase : List[str] = checkpoint['label_emb.weight'] _UpperCamelCase : Optional[int] = checkpoint['input_blocks.0.0.weight'] _UpperCamelCase : Union[str, Any] = checkpoint['input_blocks.0.0.bias'] _UpperCamelCase : Optional[int] = unet_config['down_block_types'] _UpperCamelCase : Optional[Any] = unet_config['layers_per_block'] _UpperCamelCase : Dict = unet_config['attention_head_dim'] _UpperCamelCase : List[str] = unet_config['block_out_channels'] _UpperCamelCase : str = 1 _UpperCamelCase : Optional[int] = channels_list[0] for i, layer_type in enumerate(UpperCAmelCase_ ): _UpperCamelCase : List[str] = channels_list[i] _UpperCamelCase : str = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(UpperCAmelCase_ ): _UpperCamelCase : str = F'''down_blocks.{i}.resnets.{j}''' _UpperCamelCase : List[Any] = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : Any = True if j == 0 and downsample_block_has_skip else False _UpperCamelCase : str = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(UpperCAmelCase_ ): _UpperCamelCase : List[str] = F'''down_blocks.{i}.resnets.{j}''' _UpperCamelCase : str = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : int = True if j == 0 and downsample_block_has_skip else False _UpperCamelCase : Any = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) _UpperCamelCase : Dict = F'''down_blocks.{i}.attentions.{j}''' _UpperCamelCase : Optional[int] = F'''input_blocks.{current_layer}.1''' _UpperCamelCase : Dict = convert_attention( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : int = F'''down_blocks.{i}.downsamplers.0''' _UpperCamelCase : Optional[int] = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : List[Any] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 _UpperCamelCase : Tuple = current_channels # hardcoded the mid-block for now _UpperCamelCase : Any = 'mid_block.resnets.0' _UpperCamelCase : Optional[Any] = 'middle_block.0' _UpperCamelCase : Tuple = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = 'mid_block.attentions.0' _UpperCamelCase : Tuple = 'middle_block.1' _UpperCamelCase : Union[str, Any] = convert_attention(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Tuple = 'mid_block.resnets.1' _UpperCamelCase : str = 'middle_block.2' _UpperCamelCase : List[str] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : List[Any] = 0 _UpperCamelCase : Optional[int] = unet_config['up_block_types'] for i, layer_type in enumerate(UpperCAmelCase_ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _UpperCamelCase : Optional[Any] = F'''up_blocks.{i}.resnets.{j}''' _UpperCamelCase : Optional[int] = F'''output_blocks.{current_layer}.0''' _UpperCamelCase : str = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : List[Any] = F'''up_blocks.{i}.upsamplers.0''' _UpperCamelCase : Dict = F'''output_blocks.{current_layer-1}.1''' _UpperCamelCase : Optional[int] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _UpperCamelCase : str = F'''up_blocks.{i}.resnets.{j}''' _UpperCamelCase : Union[str, Any] = F'''output_blocks.{current_layer}.0''' _UpperCamelCase : Optional[int] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) _UpperCamelCase : int = F'''up_blocks.{i}.attentions.{j}''' _UpperCamelCase : List[Any] = F'''output_blocks.{current_layer}.1''' _UpperCamelCase : Optional[int] = convert_attention( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : List[Any] = F'''up_blocks.{i}.upsamplers.0''' _UpperCamelCase : Union[str, Any] = F'''output_blocks.{current_layer-1}.2''' _UpperCamelCase : List[str] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : List[Any] = checkpoint['out.0.weight'] _UpperCamelCase : str = checkpoint['out.0.bias'] _UpperCamelCase : int = checkpoint['out.2.weight'] _UpperCamelCase : List[Any] = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = strabool(args.class_cond) lowerCAmelCase__ = os.path.basename(args.unet_path) print(f'Checkpoint: {ckpt_name}') # Get U-Net config if "imagenet64" in ckpt_name: lowerCAmelCase__ = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCAmelCase__ = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: lowerCAmelCase__ = TEST_UNET_CONFIG else: raise ValueError(f'Checkpoint type {ckpt_name} is not currently supported.') if not args.class_cond: lowerCAmelCase__ = None lowerCAmelCase__ = con_pt_to_diffuser(args.unet_path, unet_config) lowerCAmelCase__ = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: lowerCAmelCase__ = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: lowerCAmelCase__ = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCAmelCase__ = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f'Checkpoint type {ckpt_name} is not currently supported.') lowerCAmelCase__ = CMStochasticIterativeScheduler(**scheduler_config) lowerCAmelCase__ = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
648
0
import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests lowerCAmelCase__ = open # noqa: we just need to have a builtin inside this module to test it properly
704
def lowerCamelCase_ ( UpperCAmelCase_ : list ) -> list: '''simple docstring''' if len(UpperCAmelCase_ ) <= 1: return [tuple(UpperCAmelCase_ )] _UpperCamelCase : List[Any] = [] def generate(UpperCAmelCase_ : int , UpperCAmelCase_ : list ): _UpperCamelCase : Optional[int] = [0] * n res.append(tuple(UpperCAmelCase_ ) ) _UpperCamelCase : List[Any] = 0 while i < n: if c[i] < i: if i % 2 == 0: _UpperCamelCase , _UpperCamelCase : List[str] = arr[i], arr[0] else: _UpperCamelCase , _UpperCamelCase : List[str] = arr[i], arr[c[i]] res.append(tuple(UpperCAmelCase_ ) ) c[i] += 1 _UpperCamelCase : Tuple = 0 else: _UpperCamelCase : Tuple = 0 i += 1 generate(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) return res if __name__ == "__main__": lowerCAmelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCAmelCase__ = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
648
0
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput lowerCAmelCase__ = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowercase ( _UpperCAmelCase ): """simple docstring""" def __init__( self , *__snake_case , __snake_case=None , __snake_case=None , __snake_case=None , **__snake_case): super().__init__(*A_ , **A_) _UpperCamelCase : Dict = eval_examples _UpperCamelCase : Tuple = post_process_function _UpperCamelCase : List[Any] = quant_trainer_args _UpperCamelCase : List[Any] = 1_28 # default number of calibration samples def A__ ( self , __snake_case=None): if calib_dataset is None and self.calib_dataset is None: raise ValueError('Trainer: calibration requires an calib_dataset.') _UpperCamelCase : Optional[int] = calib_dataset if calib_dataset is not None else self.calib_dataset _UpperCamelCase : Union[str, Any] = self._remove_unused_columns(A_ , description='Calibration') return DataLoader( A_ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=A_ , ) def A__ ( self , __snake_case=None): _UpperCamelCase : Optional[int] = self.train_dataset if calib_dataset is None else calib_dataset _UpperCamelCase : int = self.get_calib_dataloader(A_) _UpperCamelCase : List[str] = self.model quant_trainer.configure_model(A_ , self.quant_trainer_args , calib=A_) model.eval() quant_trainer.enable_calibration(A_) logger.info('***** Running calibration *****') logger.info(f''' Num examples = {self.calib_num}''') logger.info(f''' Batch size = {calib_dataloader.batch_size}''') for step, inputs in enumerate(A_): # Prediction step _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Union[str, Any] = self.prediction_step(A_ , A_ , prediction_loss_only=A_) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(A_ , self.quant_trainer_args) _UpperCamelCase : Any = model def A__ ( self , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case = "eval"): _UpperCamelCase : List[str] = self.eval_dataset if eval_dataset is None else eval_dataset _UpperCamelCase : Union[str, Any] = self.get_eval_dataloader(A_) _UpperCamelCase : Dict = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _UpperCamelCase : Tuple = self.compute_metrics _UpperCamelCase : Union[str, Any] = None _UpperCamelCase : Union[str, Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _UpperCamelCase : Tuple = eval_loop( A_ , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=A_ , ) finally: _UpperCamelCase : Optional[int] = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: _UpperCamelCase : int = self.post_process_function(A_ , A_ , output.predictions) _UpperCamelCase : int = self.compute_metrics(A_) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f'''{metric_key_prefix}_'''): _UpperCamelCase : Tuple = metrics.pop(A_) self.log(A_) else: _UpperCamelCase : Dict = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) _UpperCamelCase : str = self.callback_handler.on_evaluate(self.args , self.state , self.control , A_) return metrics def A__ ( self , __snake_case , __snake_case , __snake_case=None , __snake_case = "test"): _UpperCamelCase : Any = self.get_test_dataloader(A_) # Temporarily disable metric computation, we will do it in the loop here. _UpperCamelCase : str = self.compute_metrics _UpperCamelCase : Any = None _UpperCamelCase : Tuple = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _UpperCamelCase : Optional[Any] = eval_loop( A_ , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=A_ , ) finally: _UpperCamelCase : List[Any] = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output _UpperCamelCase : List[Any] = self.post_process_function(A_ , A_ , output.predictions , 'predict') _UpperCamelCase : Optional[Any] = self.compute_metrics(A_) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f'''{metric_key_prefix}_'''): _UpperCamelCase : Union[str, Any] = metrics.pop(A_) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=A_) def A__ ( self , __snake_case="./"): _UpperCamelCase : str = self.eval_dataset _UpperCamelCase : List[str] = self.get_eval_dataloader(A_) _UpperCamelCase : List[Any] = next(iter(A_)) # saving device - to make it consistent _UpperCamelCase : Tuple = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # convert to tuple _UpperCamelCase : Union[str, Any] = tuple(v.to(A_) for k, v in batch.items()) logger.info('Converting model to be onnx compatible') from pytorch_quantization.nn import TensorQuantizer _UpperCamelCase : Dict = True _UpperCamelCase : int = self.model.to(A_) model.eval() model.float() _UpperCamelCase : List[str] = model.module if hasattr(A_ , 'module') else model quant_trainer.configure_model(A_ , self.quant_trainer_args) _UpperCamelCase : Dict = os.path.join(A_ , 'model.onnx') logger.info(f'''exporting model to {output_model_file}''') _UpperCamelCase : Optional[int] = {0: 'batch_size', 1: 'seq_len'} torch.onnx.export( A_ , A_ , A_ , export_params=A_ , opset_version=13 , do_constant_folding=A_ , input_names=['input_ids', 'attention_mask', 'token_type_ids'] , output_names=['output_start_logits', 'output_end_logits'] , dynamic_axes={ 'input_ids': axes, 'attention_mask': axes, 'token_type_ids': axes, 'output_start_logits': axes, 'output_end_logits': axes, } , verbose=A_ , ) logger.info('onnx export finished')
705
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = [ ["""attention""", """attn"""], ["""encoder_attention""", """encoder_attn"""], ["""q_lin""", """q_proj"""], ["""k_lin""", """k_proj"""], ["""v_lin""", """v_proj"""], ["""out_lin""", """out_proj"""], ["""norm_embeddings""", """layernorm_embedding"""], ["""position_embeddings""", """embed_positions"""], ["""embeddings""", """embed_tokens"""], ["""ffn.lin""", """fc"""], ] def lowerCamelCase_ ( UpperCAmelCase_ : List[Any] ) -> Optional[int]: '''simple docstring''' if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: _UpperCamelCase : List[Any] = k.replace(UpperCAmelCase_ , UpperCAmelCase_ ) if k.startswith('encoder' ): _UpperCamelCase : Optional[Any] = k.replace('.attn' , '.self_attn' ) _UpperCamelCase : Optional[int] = k.replace('norm1' , 'self_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): _UpperCamelCase : Any = k.replace('norm1' , 'self_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm2' , 'encoder_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm3' , 'final_layer_norm' ) return k def lowerCamelCase_ ( UpperCAmelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Union[str, Any] = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: _UpperCamelCase : Optional[int] = sd.pop(UpperCAmelCase_ ) _UpperCamelCase : str = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd _UpperCamelCase : Tuple = v lowerCAmelCase__ = ["""START"""] @torch.no_grad() def lowerCamelCase_ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ) -> List[str]: '''simple docstring''' _UpperCamelCase : Optional[Any] = torch.load(UpperCAmelCase_ , map_location='cpu' ) _UpperCamelCase : int = model['model'] _UpperCamelCase : List[Any] = BlenderbotConfig.from_json_file(UpperCAmelCase_ ) _UpperCamelCase : Any = BlenderbotForConditionalGeneration(UpperCAmelCase_ ) _UpperCamelCase : int = m.model.state_dict().keys() _UpperCamelCase : Union[str, Any] = [] _UpperCamelCase : int = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue _UpperCamelCase : Optional[int] = rename_state_dict_key(UpperCAmelCase_ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: _UpperCamelCase : int = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(UpperCAmelCase_ ) m.model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) m.half() m.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("""--src_path""", type=str, help="""like blenderbot-model.bin""") parser.add_argument("""--save_dir""", default="""hf_blenderbot""", type=str, help="""Where to save converted model.""") parser.add_argument( """--hf_config_json""", default="""blenderbot-3b-config.json""", type=str, help="""Path to config to use""" ) lowerCAmelCase__ = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
648
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class lowercase ( __lowercase ): """simple docstring""" a__ = "dandelin/vilt-b32-finetuned-vqa" a__ = ( "This is a tool that answers a question about an image. It takes an input named `image` which should be the " "image containing the information, as well as a `question` which should be the question in English. It " "returns a text that is the answer to the question." ) a__ = "image_qa" a__ = AutoProcessor a__ = AutoModelForVisualQuestionAnswering a__ = ["image", "text"] a__ = ["text"] def __init__( self , *__snake_case , **__snake_case): requires_backends(self , ['vision']) super().__init__(*__snake_case , **__snake_case) def A__ ( self , __snake_case , __snake_case): return self.pre_processor(__snake_case , __snake_case , return_tensors='pt') def A__ ( self , __snake_case): with torch.no_grad(): return self.model(**__snake_case).logits def A__ ( self , __snake_case): _UpperCamelCase : List[str] = outputs.argmax(-1).item() return self.model.config.idalabel[idx]
706
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer lowerCAmelCase__ = ["""bert-base-uncased""", """bert-base-cased"""] lowerCAmelCase__ = """hf-internal-testing/tiny-bert-tf-only""" if is_tf_available(): class lowercase ( tf.keras.Model ): """simple docstring""" def __init__( self , __snake_case): super().__init__() _UpperCamelCase : List[Any] = tokenizer _UpperCamelCase : List[Any] = AutoConfig.from_pretrained(__snake_case) _UpperCamelCase : Dict = TFAutoModel.from_config(__snake_case) def A__ ( self , __snake_case): _UpperCamelCase : Any = self.tokenizer(__snake_case) _UpperCamelCase : Dict = self.bert(**__snake_case) return out["pooler_output"] @require_tf @require_tensorflow_text class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self): super().setUp() _UpperCamelCase : Optional[Any] = [ BertTokenizer.from_pretrained(__snake_case) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false _UpperCamelCase : Optional[Any] = [TFBertTokenizer.from_pretrained(__snake_case) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(__snake_case , use_fast_bert_tokenizer=__snake_case) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers) == len(self.tf_tokenizers) _UpperCamelCase : Optional[Any] = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] _UpperCamelCase : Dict = list(zip(self.test_sentences , self.test_sentences[::-1])) def A__ ( self): for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers): for test_inputs in (self.test_sentences, self.paired_sentences): _UpperCamelCase : List[str] = tokenizer(__snake_case , return_tensors='tf' , padding='longest') _UpperCamelCase : Tuple = tf_tokenizer(__snake_case) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape)) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa) == tf_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Tuple = tf_tokenizer(self.paired_sentences) _UpperCamelCase : Optional[Any] = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa) == separated_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Tuple = tf.function(__snake_case) for test_inputs in (self.test_sentences, self.paired_sentences): _UpperCamelCase : Optional[int] = tf.constant(__snake_case) _UpperCamelCase : Union[str, Any] = compiled_tokenizer(__snake_case) _UpperCamelCase : Tuple = tf_tokenizer(__snake_case) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Any = ModelToSave(tokenizer=__snake_case) _UpperCamelCase : Any = tf.convert_to_tensor(self.test_sentences) _UpperCamelCase : Union[str, Any] = model(__snake_case) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _UpperCamelCase : int = Path(__snake_case) / 'saved.model' model.save(__snake_case) _UpperCamelCase : Optional[int] = tf.keras.models.load_model(__snake_case) _UpperCamelCase : int = loaded_model(__snake_case) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output)) , 1e-5)
648
0
lowerCAmelCase__ = "Input must be a string of 8 numbers plus letter" lowerCAmelCase__ = "TRWAGMYFPDXBNJZSQVHLCKE" def lowerCamelCase_ ( UpperCAmelCase_ : str ) -> Optional[Any]: '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCamelCase : Optional[int] = F'''Expected string as input, found {type(_SCREAMING_SNAKE_CASE ).__name__}''' raise TypeError(_SCREAMING_SNAKE_CASE ) _UpperCamelCase : Tuple = spanish_id.replace('-' , '' ).upper() if len(_SCREAMING_SNAKE_CASE ) != 9: raise ValueError(_SCREAMING_SNAKE_CASE ) try: _UpperCamelCase : Optional[int] = int(spanish_id_clean[0:8] ) _UpperCamelCase : List[Any] = spanish_id_clean[8] except ValueError as ex: raise ValueError(_SCREAMING_SNAKE_CASE ) from ex if letter.isdigit(): raise ValueError(_SCREAMING_SNAKE_CASE ) return letter == LOOKUP_LETTERS[number % 2_3] if __name__ == "__main__": import doctest doctest.testmod()
707
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ = { """configuration_canine""": ["""CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CanineConfig"""], """tokenization_canine""": ["""CanineTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """CANINE_PRETRAINED_MODEL_ARCHIVE_LIST""", """CanineForMultipleChoice""", """CanineForQuestionAnswering""", """CanineForSequenceClassification""", """CanineForTokenClassification""", """CanineLayer""", """CanineModel""", """CaninePreTrainedModel""", """load_tf_weights_in_canine""", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
648
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class lowercase ( A_ ): """simple docstring""" a__ = '''levit''' def __init__( self , __snake_case=2_24 , __snake_case=3 , __snake_case=3 , __snake_case=2 , __snake_case=1 , __snake_case=16 , __snake_case=[1_28, 2_56, 3_84] , __snake_case=[4, 8, 12] , __snake_case=[4, 4, 4] , __snake_case=[16, 16, 16] , __snake_case=0 , __snake_case=[2, 2, 2] , __snake_case=[2, 2, 2] , __snake_case=0.0_2 , **__snake_case , ): super().__init__(**__snake_case) _UpperCamelCase : Union[str, Any] = image_size _UpperCamelCase : Any = num_channels _UpperCamelCase : int = kernel_size _UpperCamelCase : Optional[int] = stride _UpperCamelCase : List[str] = padding _UpperCamelCase : Optional[Any] = hidden_sizes _UpperCamelCase : Union[str, Any] = num_attention_heads _UpperCamelCase : str = depths _UpperCamelCase : int = key_dim _UpperCamelCase : Optional[int] = drop_path_rate _UpperCamelCase : str = patch_size _UpperCamelCase : Union[str, Any] = attention_ratio _UpperCamelCase : Optional[int] = mlp_ratio _UpperCamelCase : List[str] = initializer_range _UpperCamelCase : Optional[Any] = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class lowercase ( A_ ): """simple docstring""" a__ = version.parse("1.11" ) @property def A__ ( self): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def A__ ( self): return 1e-4
708
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case=3 , __snake_case=32 , __snake_case=3 , __snake_case=10 , __snake_case=[8, 16, 32, 64] , __snake_case=[1, 1, 2, 1] , __snake_case=True , __snake_case=True , __snake_case="relu" , __snake_case=3 , __snake_case=None , __snake_case=["stage2", "stage3", "stage4"] , __snake_case=[2, 3, 4] , __snake_case=1 , ): _UpperCamelCase : List[Any] = parent _UpperCamelCase : Dict = batch_size _UpperCamelCase : Optional[int] = image_size _UpperCamelCase : str = num_channels _UpperCamelCase : Optional[Any] = embeddings_size _UpperCamelCase : Tuple = hidden_sizes _UpperCamelCase : Dict = depths _UpperCamelCase : str = is_training _UpperCamelCase : Optional[int] = use_labels _UpperCamelCase : str = hidden_act _UpperCamelCase : Optional[int] = num_labels _UpperCamelCase : Optional[int] = scope _UpperCamelCase : Tuple = len(__snake_case) _UpperCamelCase : Dict = out_features _UpperCamelCase : Union[str, Any] = out_indices _UpperCamelCase : int = num_groups def A__ ( self): _UpperCamelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase : str = None if self.use_labels: _UpperCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels) _UpperCamelCase : str = self.get_config() return config, pixel_values, labels def A__ ( self): return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : str = BitModel(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[Any] = model(__snake_case) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Dict = self.num_labels _UpperCamelCase : Dict = BitForImageClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Dict = model(__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[Any] = BitBackbone(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = model(__snake_case) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:]) # verify backbone works with out_features=None _UpperCamelCase : Any = None _UpperCamelCase : str = BitBackbone(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Any = model(__snake_case) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , 1) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[-1], 1, 1]) # verify channels self.parent.assertEqual(len(model.channels) , 1) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]]) def A__ ( self): _UpperCamelCase : Optional[int] = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : int = config_and_inputs _UpperCamelCase : int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () a__ = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False a__ = False def A__ ( self): _UpperCamelCase : Dict = BitModelTester(self) _UpperCamelCase : Optional[Any] = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case) def A__ ( self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self): return @unittest.skip(reason='Bit does not output attentions') def A__ ( self): pass @unittest.skip(reason='Bit does not use inputs_embeds') def A__ ( self): pass @unittest.skip(reason='Bit does not support input and output embeddings') def A__ ( self): pass def A__ ( self): _UpperCamelCase , _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : int = model_class(__snake_case) _UpperCamelCase : List[Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : Optional[int] = [*signature.parameters.keys()] _UpperCamelCase : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __snake_case) def A__ ( self): _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case) def A__ ( self): _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__snake_case) def A__ ( self): _UpperCamelCase , _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Union[str, Any] = model_class(config=__snake_case) for name, module in model.named_modules(): if isinstance(__snake_case , (nn.BatchNormad, nn.GroupNorm)): self.assertTrue( torch.all(module.weight == 1) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def A__ ( self): def check_hidden_states_output(__snake_case , __snake_case , __snake_case): _UpperCamelCase : str = model_class(__snake_case) model.to(__snake_case) model.eval() with torch.no_grad(): _UpperCamelCase : Union[str, Any] = model(**self._prepare_for_class(__snake_case , __snake_case)) _UpperCamelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase : str = self.model_tester.num_stages self.assertEqual(len(__snake_case) , expected_num_stages + 1) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCamelCase , _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : List[str] = ['preactivation', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _UpperCamelCase : Any = layer_type _UpperCamelCase : Tuple = True check_hidden_states_output(__snake_case , __snake_case , __snake_case) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase : List[str] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case) @unittest.skip(reason='Bit does not use feedforward chunking') def A__ ( self): pass def A__ ( self): _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case) @slow def A__ ( self): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : Optional[Any] = BitModel.from_pretrained(__snake_case) self.assertIsNotNone(__snake_case) def lowerCamelCase_ ( ) -> Optional[int]: '''simple docstring''' _UpperCamelCase : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def A__ ( self): _UpperCamelCase : Optional[Any] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(__snake_case) _UpperCamelCase : str = self.default_image_processor _UpperCamelCase : List[str] = prepare_img() _UpperCamelCase : int = image_processor(images=__snake_case , return_tensors='pt').to(__snake_case) # forward pass with torch.no_grad(): _UpperCamelCase : Any = model(**__snake_case) # verify the logits _UpperCamelCase : Dict = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , __snake_case) _UpperCamelCase : Optional[int] = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]]).to(__snake_case) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1e-4)) @require_torch class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" a__ = (BitBackbone,) if is_torch_available() else () a__ = BitConfig a__ = False def A__ ( self): _UpperCamelCase : List[str] = BitModelTester(self)
648
0
'''simple docstring''' import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCamelCase_ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : str ) -> str: '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple ) -> Dict: '''simple docstring''' _UpperCamelCase : Any = tmp_path / 'cache' _UpperCamelCase : Tuple = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCamelCase : Tuple = JsonDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ ).read() _check_json_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] ) -> Any: '''simple docstring''' _UpperCamelCase : Tuple = tmp_path / 'cache' _UpperCamelCase : Tuple = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} _UpperCamelCase : Optional[Any] = features.copy() if features else default_expected_features _UpperCamelCase : Optional[int] = ( Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCamelCase : List[str] = JsonDatasetReader(lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_json_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize( 'features' , [ None, {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'}, ] , ) def lowerCamelCase_ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str ) -> Optional[int]: '''simple docstring''' _UpperCamelCase : List[str] = tmp_path / 'cache' _UpperCamelCase : int = {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'} _UpperCamelCase : Optional[Any] = features.copy() if features else default_expected_features _UpperCamelCase : Tuple = ( Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCamelCase : Any = JsonDatasetReader(lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def lowerCamelCase_ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] ) -> int: '''simple docstring''' _UpperCamelCase : List[Any] = {'col_2': 'int64', 'col_3': 'float64', 'col_1': 'string'} _UpperCamelCase : List[str] = features.copy() _UpperCamelCase : Any = ( Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCamelCase : str = tmp_path / 'cache' _UpperCamelCase : Tuple = JsonDatasetReader(lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def lowerCamelCase_ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple ) -> int: '''simple docstring''' _UpperCamelCase : str = tmp_path / 'cache' _UpperCamelCase : Optional[int] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} _UpperCamelCase : Union[str, Any] = JsonDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , split=lowerCAmelCase__ ).read() _check_json_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] ) -> int: '''simple docstring''' if issubclass(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase : Any = jsonl_path elif issubclass(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase : List[str] = [jsonl_path] _UpperCamelCase : str = tmp_path / 'cache' _UpperCamelCase : Tuple = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} _UpperCamelCase : Optional[int] = JsonDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_json_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) def lowerCamelCase_ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any=("train",) ) -> int: '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for split in splits: _UpperCamelCase : List[Any] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def lowerCamelCase_ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] ) -> str: '''simple docstring''' _UpperCamelCase : Dict = tmp_path / 'cache' _UpperCamelCase : Tuple = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCamelCase : Union[str, Any] = JsonDatasetReader({'train': jsonl_path} , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ ).read() _check_json_datasetdict(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] ) -> Dict: '''simple docstring''' _UpperCamelCase : Dict = tmp_path / 'cache' _UpperCamelCase : List[Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} _UpperCamelCase : Dict = features.copy() if features else default_expected_features _UpperCamelCase : Any = ( Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCamelCase : str = JsonDatasetReader({'train': jsonl_path} , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_json_datasetdict(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def lowerCamelCase_ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str ) -> str: '''simple docstring''' if split: _UpperCamelCase : str = {split: jsonl_path} else: _UpperCamelCase : List[str] = 'train' _UpperCamelCase : Optional[int] = {'train': jsonl_path, 'test': jsonl_path} _UpperCamelCase : Optional[int] = tmp_path / 'cache' _UpperCamelCase : Optional[Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} _UpperCamelCase : Tuple = JsonDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_json_datasetdict(lowerCAmelCase__ , lowerCAmelCase__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return json.load(lowerCAmelCase__ ) def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> Optional[int]: '''simple docstring''' return [json.loads(lowerCAmelCase__ ) for line in buffer] class lowercase : """simple docstring""" @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)]) def A__ ( self , __snake_case , __snake_case , __snake_case): with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__ , UpperCamelCase__ , lines=UpperCamelCase__).write() buffer.seek(0) _UpperCamelCase : Any = load_json_function(UpperCamelCase__) assert isinstance(UpperCamelCase__ , UpperCamelCase__) assert isinstance(exported_content[0] , UpperCamelCase__) assert len(UpperCamelCase__) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789'), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__ , UpperCamelCase__ , lines=UpperCamelCase__ , orient=UpperCamelCase__).write() buffer.seek(0) _UpperCamelCase : Optional[int] = load_json(UpperCamelCase__) assert isinstance(UpperCamelCase__ , UpperCamelCase__) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(UpperCamelCase__ , 'keys') and not hasattr(exported_content[0] , 'keys') if len_at: assert len(exported_content[len_at]) == 10 else: assert len(UpperCamelCase__) == 10 @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)]) def A__ ( self , __snake_case , __snake_case , __snake_case): with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__ , UpperCamelCase__ , lines=UpperCamelCase__ , num_proc=2).write() buffer.seek(0) _UpperCamelCase : Any = load_json_function(UpperCamelCase__) assert isinstance(UpperCamelCase__ , UpperCamelCase__) assert isinstance(exported_content[0] , UpperCamelCase__) assert len(UpperCamelCase__) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789'), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__ , UpperCamelCase__ , lines=UpperCamelCase__ , orient=UpperCamelCase__ , num_proc=2).write() buffer.seek(0) _UpperCamelCase : Union[str, Any] = load_json(UpperCamelCase__) assert isinstance(UpperCamelCase__ , UpperCamelCase__) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(UpperCamelCase__ , 'keys') and not hasattr(exported_content[0] , 'keys') if len_at: assert len(exported_content[len_at]) == 10 else: assert len(UpperCamelCase__) == 10 def A__ ( self , __snake_case): with pytest.raises(UpperCamelCase__): with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__ , UpperCamelCase__ , num_proc=0) @pytest.mark.parametrize('compression, extension' , [('gzip', 'gz'), ('bz2', 'bz2'), ('xz', 'xz')]) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Union[str, Any] = tmp_path_factory.mktemp('data') / f'''test.json.{extension}''' _UpperCamelCase : Tuple = str(shared_datadir / f'''test_file.json.{extension}''') JsonDatasetWriter(UpperCamelCase__ , UpperCamelCase__ , compression=UpperCamelCase__).write() with fsspec.open(UpperCamelCase__ , 'rb' , compression='infer') as f: _UpperCamelCase : int = f.read() with fsspec.open(UpperCamelCase__ , 'rb' , compression='infer') as f: _UpperCamelCase : List[str] = f.read() assert exported_content == original_content
709
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowerCAmelCase__ = numpy.array([0, 0]) lowerCAmelCase__ = numpy.array([0.5, 0.8_66_02_54]) lowerCAmelCase__ = numpy.array([1, 0]) lowerCAmelCase__ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] , UpperCAmelCase_ : int ) -> list[numpy.ndarray]: '''simple docstring''' _UpperCamelCase : Tuple = initial_vectors for _ in range(UpperCAmelCase_ ): _UpperCamelCase : str = iteration_step(UpperCAmelCase_ ) return vectors def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] ) -> list[numpy.ndarray]: '''simple docstring''' _UpperCamelCase : int = [] for i, start_vector in enumerate(vectors[:-1] ): _UpperCamelCase : Union[str, Any] = vectors[i + 1] new_vectors.append(UpperCAmelCase_ ) _UpperCamelCase : Tuple = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def lowerCamelCase_ ( UpperCAmelCase_ : numpy.ndarray , UpperCAmelCase_ : float ) -> numpy.ndarray: '''simple docstring''' _UpperCamelCase : str = numpy.radians(UpperCAmelCase_ ) _UpperCamelCase , _UpperCamelCase : Optional[Any] = numpy.cos(UpperCAmelCase_ ), numpy.sin(UpperCAmelCase_ ) _UpperCamelCase : Any = numpy.array(((c, -s), (s, c)) ) return numpy.dot(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] ) -> None: '''simple docstring''' _UpperCamelCase : str = plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _UpperCamelCase , _UpperCamelCase : Dict = zip(*UpperCAmelCase_ ) plt.plot(UpperCAmelCase_ , UpperCAmelCase_ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
648
0
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase ( a__ ): """simple docstring""" a__ = ["image_processor", "tokenizer"] a__ = "BlipImageProcessor" a__ = ("BertTokenizer", "BertTokenizerFast") def __init__( self , __snake_case , __snake_case): _UpperCamelCase : Optional[Any] = False super().__init__(lowerCamelCase_ , lowerCamelCase_) _UpperCamelCase : List[Any] = self.image_processor def __call__( self , __snake_case = None , __snake_case = None , __snake_case = True , __snake_case = False , __snake_case = None , __snake_case = None , __snake_case = 0 , __snake_case = None , __snake_case = None , __snake_case = False , __snake_case = False , __snake_case = False , __snake_case = False , __snake_case = False , __snake_case = True , __snake_case = None , **__snake_case , ): if images is None and text is None: raise ValueError('You have to specify either images or text.') # Get only text if images is None: _UpperCamelCase : Any = self.tokenizer _UpperCamelCase : Any = self.tokenizer( text=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , stride=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , return_overflowing_tokens=lowerCamelCase_ , return_special_tokens_mask=lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ , return_length=lowerCamelCase_ , verbose=lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ , ) return text_encoding # add pixel_values _UpperCamelCase : Any = self.image_processor(lowerCamelCase_ , return_tensors=lowerCamelCase_) if text is not None: _UpperCamelCase : Union[str, Any] = self.tokenizer( text=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , stride=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , return_overflowing_tokens=lowerCamelCase_ , return_special_tokens_mask=lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ , return_length=lowerCamelCase_ , verbose=lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ , ) else: _UpperCamelCase : Optional[int] = None if text_encoding is not None: encoding_image_processor.update(lowerCamelCase_) return encoding_image_processor def A__ ( self , *__snake_case , **__snake_case): return self.tokenizer.batch_decode(*lowerCamelCase_ , **lowerCamelCase_) def A__ ( self , *__snake_case , **__snake_case): return self.tokenizer.decode(*lowerCamelCase_ , **lowerCamelCase_) @property def A__ ( self): _UpperCamelCase : List[Any] = self.tokenizer.model_input_names _UpperCamelCase : Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
710
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCAmelCase__ = abspath(join(dirname(__file__), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def lowerCamelCase_ ( UpperCAmelCase_ : Any ) -> Union[str, Any]: '''simple docstring''' config.addinivalue_line( 'markers' , 'is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested' ) config.addinivalue_line( 'markers' , 'is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested' ) config.addinivalue_line('markers' , 'is_pipeline_test: mark test to run only when pipelines are tested' ) config.addinivalue_line('markers' , 'is_staging_test: mark test to run only in the staging environment' ) config.addinivalue_line('markers' , 'accelerate_tests: mark test that require accelerate' ) config.addinivalue_line('markers' , 'tool_tests: mark the tool tests that are run on their specific schedule' ) def lowerCamelCase_ ( UpperCAmelCase_ : Optional[int] ) -> List[Any]: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : Any ) -> List[Any]: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main _UpperCamelCase : str = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(UpperCAmelCase_ , id=UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict ) -> Tuple: '''simple docstring''' if exitstatus == 5: _UpperCamelCase : List[Any] = 0 # Doctest custom flag to ignore output. lowerCAmelCase__ = doctest.register_optionflag("""IGNORE_RESULT""") lowerCAmelCase__ = doctest.OutputChecker class lowercase ( _lowercase ): """simple docstring""" def A__ ( self , __snake_case , __snake_case , __snake_case): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , __snake_case , __snake_case , __snake_case) lowerCAmelCase__ = CustomOutputChecker lowerCAmelCase__ = HfDoctestModule lowerCAmelCase__ = HfDocTestParser
648
0
'''simple docstring''' def lowerCamelCase_ ( UpperCAmelCase_ : int = 4_0_0_0_0_0_0 ) -> int: '''simple docstring''' _UpperCamelCase : int = [0, 1] _UpperCamelCase : Any = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 _UpperCamelCase : Dict = 0 for j in range(len(UpperCAmelCase_ ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f'{solution() = }')
711
lowerCAmelCase__ = range(2, 2_0 + 1) lowerCAmelCase__ = [1_0**k for k in range(ks[-1] + 1)] lowerCAmelCase__ = {} def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int ) -> Tuple: '''simple docstring''' _UpperCamelCase : Dict = sum(a_i[j] for j in range(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) ) _UpperCamelCase : Optional[int] = sum(a_i[j] * base[j] for j in range(min(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) ) ) _UpperCamelCase , _UpperCamelCase : Dict = 0, 0 _UpperCamelCase : Optional[int] = n - i _UpperCamelCase : Union[str, Any] = memo.get(UpperCAmelCase_ ) if sub_memo is not None: _UpperCamelCase : str = sub_memo.get(UpperCAmelCase_ ) if jumps is not None and len(UpperCAmelCase_ ) > 0: # find and make the largest jump without going over _UpperCamelCase : str = -1 for _k in range(len(UpperCAmelCase_ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _UpperCamelCase : Optional[Any] = _k break if max_jump >= 0: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = jumps[max_jump] # since the difference between jumps is cached, add c _UpperCamelCase : Tuple = diff + c for j in range(min(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) ): _UpperCamelCase , _UpperCamelCase : Dict = divmod(UpperCAmelCase_ , 1_0 ) if new_c > 0: add(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) else: _UpperCamelCase : Union[str, Any] = [] else: _UpperCamelCase : List[Any] = {c: []} _UpperCamelCase : Optional[int] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _UpperCamelCase , _UpperCamelCase : Optional[Any] = next_term(UpperCAmelCase_ , k - 1 , i + dn , UpperCAmelCase_ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _UpperCamelCase , _UpperCamelCase : Any = compute(UpperCAmelCase_ , UpperCAmelCase_ , i + dn , UpperCAmelCase_ ) diff += _diff dn += terms_jumped _UpperCamelCase : List[str] = sub_memo[c] # keep jumps sorted by # of terms skipped _UpperCamelCase : Union[str, Any] = 0 while j < len(UpperCAmelCase_ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCAmelCase_ , (diff, dn, k) ) return (diff, dn) def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any ) -> Dict: '''simple docstring''' if i >= n: return 0, i if k > len(UpperCAmelCase_ ): a_i.extend([0 for _ in range(k - len(UpperCAmelCase_ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _UpperCamelCase : Any = i _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Any = 0, 0, 0 for j in range(len(UpperCAmelCase_ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _UpperCamelCase : Union[str, Any] = ds_c + ds_b diff += addend _UpperCamelCase : Union[str, Any] = 0 for j in range(UpperCAmelCase_ ): _UpperCamelCase : Union[str, Any] = a_i[j] + addend _UpperCamelCase , _UpperCamelCase : Any = divmod(UpperCAmelCase_ , 1_0 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return diff, i - start_i def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any ) -> Dict: '''simple docstring''' for j in range(UpperCAmelCase_ , len(UpperCAmelCase_ ) ): _UpperCamelCase : List[str] = digits[j] + addend if s >= 1_0: _UpperCamelCase , _UpperCamelCase : Any = divmod(UpperCAmelCase_ , 1_0 ) _UpperCamelCase : Union[str, Any] = addend // 1_0 + quotient else: _UpperCamelCase : Dict = s _UpperCamelCase : Optional[Any] = addend // 1_0 if addend == 0: break while addend > 0: _UpperCamelCase , _UpperCamelCase : Dict = divmod(UpperCAmelCase_ , 1_0 ) digits.append(UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : int = 1_0**1_5 ) -> int: '''simple docstring''' _UpperCamelCase : Optional[Any] = [1] _UpperCamelCase : Optional[int] = 1 _UpperCamelCase : int = 0 while True: _UpperCamelCase , _UpperCamelCase : List[Any] = next_term(UpperCAmelCase_ , 2_0 , i + dn , UpperCAmelCase_ ) dn += terms_jumped if dn == n - i: break _UpperCamelCase : str = 0 for j in range(len(UpperCAmelCase_ ) ): a_n += digits[j] * 1_0**j return a_n if __name__ == "__main__": print(f'{solution() = }')
648
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowercase ( __UpperCAmelCase ): """simple docstring""" a__ = "yolos" def __init__( self , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=[5_12, 8_64] , __snake_case=16 , __snake_case=3 , __snake_case=True , __snake_case=1_00 , __snake_case=True , __snake_case=False , __snake_case=1 , __snake_case=5 , __snake_case=2 , __snake_case=5 , __snake_case=2 , __snake_case=0.1 , **__snake_case , ): super().__init__(**lowerCAmelCase_) _UpperCamelCase : Union[str, Any] = hidden_size _UpperCamelCase : Optional[int] = num_hidden_layers _UpperCamelCase : int = num_attention_heads _UpperCamelCase : Dict = intermediate_size _UpperCamelCase : Union[str, Any] = hidden_act _UpperCamelCase : Dict = hidden_dropout_prob _UpperCamelCase : Dict = attention_probs_dropout_prob _UpperCamelCase : List[str] = initializer_range _UpperCamelCase : List[str] = layer_norm_eps _UpperCamelCase : int = image_size _UpperCamelCase : List[Any] = patch_size _UpperCamelCase : Any = num_channels _UpperCamelCase : Optional[Any] = qkv_bias _UpperCamelCase : Optional[Any] = num_detection_tokens _UpperCamelCase : int = use_mid_position_embeddings _UpperCamelCase : Optional[int] = auxiliary_loss # Hungarian matcher _UpperCamelCase : List[str] = class_cost _UpperCamelCase : str = bbox_cost _UpperCamelCase : Tuple = giou_cost # Loss coefficients _UpperCamelCase : str = bbox_loss_coefficient _UpperCamelCase : List[str] = giou_loss_coefficient _UpperCamelCase : Any = eos_coefficient class lowercase ( __UpperCAmelCase ): """simple docstring""" a__ = version.parse("1.11" ) @property def A__ ( self): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def A__ ( self): return 1e-4 @property def A__ ( self): return 12
712
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowercase ( _lowercase ): """simple docstring""" a__ = "vit_mae" def __init__( self , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=2_24 , __snake_case=16 , __snake_case=3 , __snake_case=True , __snake_case=16 , __snake_case=5_12 , __snake_case=8 , __snake_case=20_48 , __snake_case=0.7_5 , __snake_case=False , **__snake_case , ): super().__init__(**__snake_case) _UpperCamelCase : Optional[int] = hidden_size _UpperCamelCase : Optional[int] = num_hidden_layers _UpperCamelCase : Tuple = num_attention_heads _UpperCamelCase : List[str] = intermediate_size _UpperCamelCase : str = hidden_act _UpperCamelCase : List[str] = hidden_dropout_prob _UpperCamelCase : List[Any] = attention_probs_dropout_prob _UpperCamelCase : str = initializer_range _UpperCamelCase : Any = layer_norm_eps _UpperCamelCase : int = image_size _UpperCamelCase : Any = patch_size _UpperCamelCase : List[Any] = num_channels _UpperCamelCase : Union[str, Any] = qkv_bias _UpperCamelCase : str = decoder_num_attention_heads _UpperCamelCase : Union[str, Any] = decoder_hidden_size _UpperCamelCase : Union[str, Any] = decoder_num_hidden_layers _UpperCamelCase : Any = decoder_intermediate_size _UpperCamelCase : int = mask_ratio _UpperCamelCase : List[Any] = norm_pix_loss
648
0
def lowerCamelCase_ ( UpperCAmelCase_ : list[list[int]] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : set ) -> int: '''simple docstring''' _UpperCamelCase : List[Any] = len(a_ ), len(grid[0] ) if ( min(a_ , a_ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) _UpperCamelCase : Optional[Any] = 0 count += depth_first_search(a_ , row + 1 , a_ , a_ ) count += depth_first_search(a_ , row - 1 , a_ , a_ ) count += depth_first_search(a_ , a_ , col + 1 , a_ ) count += depth_first_search(a_ , a_ , col - 1 , a_ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
713
import functools def lowerCamelCase_ ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int] ) -> int: '''simple docstring''' if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or not all(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(UpperCAmelCase_ ) != 3 or not all(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(UpperCAmelCase_ ) == 0: return 0 if min(UpperCAmelCase_ ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(UpperCAmelCase_ ) >= 3_6_6: raise ValueError('All days elements should be less than 366' ) _UpperCamelCase : Union[str, Any] = set(UpperCAmelCase_ ) @functools.cache def dynamic_programming(UpperCAmelCase_ : int ) -> int: if index > 3_6_5: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 3_0 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
648
0
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCAmelCase__ = """pt""" elif is_tf_available(): lowerCAmelCase__ = """tf""" else: lowerCAmelCase__ = """jax""" class lowercase ( _a , unittest.TestCase ): """simple docstring""" a__ = PerceiverTokenizer a__ = False def A__ ( self): super().setUp() _UpperCamelCase : Optional[Any] = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname) @cached_property def A__ ( self): return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver') def A__ ( self , **__snake_case): return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A) def A__ ( self , __snake_case , __snake_case=False , __snake_case=20 , __snake_case=5): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. _UpperCamelCase : List[Any] = [] for i in range(len(_A)): try: _UpperCamelCase : Union[str, Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=_A) except UnicodeDecodeError: pass toks.append((i, tok)) _UpperCamelCase : List[str] = list(filter(lambda __snake_case: re.match(r'^[ a-zA-Z]+$' , t[1]) , _A)) _UpperCamelCase : Optional[Any] = list(filter(lambda __snake_case: [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_A) , _A)) if max_length is not None and len(_A) > max_length: _UpperCamelCase : Any = toks[:max_length] if min_length is not None and len(_A) < min_length and len(_A) > 0: while len(_A) < min_length: _UpperCamelCase : List[Any] = toks + toks # toks_str = [t[1] for t in toks] _UpperCamelCase : Union[str, Any] = [t[0] for t in toks] # Ensure consistency _UpperCamelCase : List[str] = tokenizer.decode(_A , clean_up_tokenization_spaces=_A) if " " not in output_txt and len(_A) > 1: _UpperCamelCase : int = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_A) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_A) ) if with_prefix_space: _UpperCamelCase : Dict = ' ' + output_txt _UpperCamelCase : str = tokenizer.encode(_A , add_special_tokens=_A) return output_txt, output_ids def A__ ( self): _UpperCamelCase : Optional[Any] = self.perceiver_tokenizer _UpperCamelCase : Tuple = 'Unicode €.' _UpperCamelCase : Dict = tokenizer(_A) _UpperCamelCase : Union[str, Any] = [4, 91, 1_16, 1_11, 1_05, 1_17, 1_06, 1_07, 38, 2_32, 1_36, 1_78, 52, 5] self.assertEqual(encoded['input_ids'] , _A) # decoding _UpperCamelCase : int = tokenizer.decode(_A) self.assertEqual(_A , '[CLS]Unicode €.[SEP]') _UpperCamelCase : str = tokenizer('e è é ê ë') _UpperCamelCase : List[str] = [4, 1_07, 38, 2_01, 1_74, 38, 2_01, 1_75, 38, 2_01, 1_76, 38, 2_01, 1_77, 5] self.assertEqual(encoded['input_ids'] , _A) # decoding _UpperCamelCase : int = tokenizer.decode(_A) self.assertEqual(_A , '[CLS]e è é ê ë[SEP]') # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë')) , '[CLS]e è é ê ë[SEP]') def A__ ( self): _UpperCamelCase : Union[str, Any] = self.perceiver_tokenizer _UpperCamelCase : str = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _UpperCamelCase : Optional[Any] = [4, 71, 38, 1_14, 1_17, 1_16, 1_09, 38, 1_18, 1_03, 1_20, 1_03, 1_09, 1_20, 1_03, 1_18, 1_10, 38, 1_08, 1_17, 1_20, 38, 1_21, 1_23, 1_15, 1_15, 1_03, 1_20, 1_11, 1_28, 1_03, 1_22, 1_11, 1_17, 1_16, 52, 5, 0] # fmt: on _UpperCamelCase : List[Any] = tokenizer(_A , padding=_A , return_tensors=_A) self.assertIsInstance(_A , _A) if FRAMEWORK != "jax": _UpperCamelCase : Optional[int] = list(batch.input_ids.numpy()[0]) else: _UpperCamelCase : int = list(batch.input_ids.tolist()[0]) self.assertListEqual(_A , _A) self.assertEqual((2, 38) , batch.input_ids.shape) self.assertEqual((2, 38) , batch.attention_mask.shape) def A__ ( self): _UpperCamelCase : Optional[int] = self.perceiver_tokenizer _UpperCamelCase : Any = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _UpperCamelCase : List[str] = tokenizer(_A , padding=_A , return_tensors=_A) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _A) self.assertIn('attention_mask' , _A) self.assertNotIn('decoder_input_ids' , _A) self.assertNotIn('decoder_attention_mask' , _A) def A__ ( self): _UpperCamelCase : Dict = self.perceiver_tokenizer _UpperCamelCase : List[Any] = [ 'Summary of the text.', 'Another summary.', ] _UpperCamelCase : int = tokenizer( text_target=_A , max_length=32 , padding='max_length' , truncation=_A , return_tensors=_A) self.assertEqual(32 , targets['input_ids'].shape[1]) def A__ ( self): # safety check on max_len default value so we are sure the test works _UpperCamelCase : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}'''): self.assertNotEqual(tokenizer.model_max_length , 42) # Now let's start the test _UpperCamelCase : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}'''): # Isolate this from the other tests because we save additional tokens/etc _UpperCamelCase : Union[str, Any] = tempfile.mkdtemp() _UpperCamelCase : Optional[int] = ' He is very happy, UNwant\u00E9d,running' _UpperCamelCase : List[Any] = tokenizer.encode(_A , add_special_tokens=_A) tokenizer.save_pretrained(_A) _UpperCamelCase : List[str] = tokenizer.__class__.from_pretrained(_A) _UpperCamelCase : Tuple = after_tokenizer.encode(_A , add_special_tokens=_A) self.assertListEqual(_A , _A) shutil.rmtree(_A) _UpperCamelCase : List[str] = self.get_tokenizers(model_max_length=42) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}'''): # Isolate this from the other tests because we save additional tokens/etc _UpperCamelCase : List[Any] = tempfile.mkdtemp() _UpperCamelCase : List[str] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam']) _UpperCamelCase : List[Any] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token') tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens}) _UpperCamelCase : Optional[Any] = tokenizer.encode(_A , add_special_tokens=_A) tokenizer.save_pretrained(_A) _UpperCamelCase : str = tokenizer.__class__.from_pretrained(_A) _UpperCamelCase : Optional[Any] = after_tokenizer.encode(_A , add_special_tokens=_A) self.assertListEqual(_A , _A) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens) self.assertEqual(after_tokenizer.model_max_length , 42) _UpperCamelCase : List[str] = tokenizer.__class__.from_pretrained(_A , model_max_length=43) self.assertEqual(tokenizer.model_max_length , 43) shutil.rmtree(_A) def A__ ( self): _UpperCamelCase : Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer())) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer())) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A) with open(os.path.join(_A , 'special_tokens_map.json') , encoding='utf-8') as json_file: _UpperCamelCase : Any = json.load(_A) with open(os.path.join(_A , 'tokenizer_config.json') , encoding='utf-8') as json_file: _UpperCamelCase : str = json.load(_A) _UpperCamelCase : List[str] = [f'''<extra_id_{i}>''' for i in range(1_25)] _UpperCamelCase : Union[str, Any] = added_tokens_extra_ids + [ 'an_additional_special_token' ] _UpperCamelCase : Any = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_A , 'special_tokens_map.json') , 'w' , encoding='utf-8') as outfile: json.dump(_A , _A) with open(os.path.join(_A , 'tokenizer_config.json') , 'w' , encoding='utf-8') as outfile: json.dump(_A , _A) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _UpperCamelCase : int = tokenizer_class.from_pretrained( _A , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'])) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _UpperCamelCase : Dict = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_A)] _UpperCamelCase : Optional[int] = tokenizer_class.from_pretrained( _A , additional_special_tokens=_A , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'])) , ) def A__ ( self): _UpperCamelCase : int = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_78]) , '�') def A__ ( self): pass def A__ ( self): pass def A__ ( self): pass def A__ ( self): pass def A__ ( self): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens _UpperCamelCase : List[str] = self.get_tokenizers(fast=_A , do_lower_case=_A) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}'''): _UpperCamelCase : Union[str, Any] = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] _UpperCamelCase : List[Any] = tokenizer.convert_tokens_to_string(_A) self.assertIsInstance(_A , _A)
714
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=99 , __snake_case=64 , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=37 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=16 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=3 , __snake_case=4 , __snake_case=None , ): _UpperCamelCase : List[Any] = parent _UpperCamelCase : Optional[Any] = batch_size _UpperCamelCase : int = seq_length _UpperCamelCase : str = is_training _UpperCamelCase : Tuple = use_input_mask _UpperCamelCase : Union[str, Any] = use_token_type_ids _UpperCamelCase : Union[str, Any] = use_labels _UpperCamelCase : Optional[Any] = vocab_size _UpperCamelCase : List[Any] = hidden_size _UpperCamelCase : Optional[Any] = embedding_size _UpperCamelCase : str = num_hidden_layers _UpperCamelCase : str = num_attention_heads _UpperCamelCase : int = intermediate_size _UpperCamelCase : int = hidden_act _UpperCamelCase : Tuple = hidden_dropout_prob _UpperCamelCase : int = attention_probs_dropout_prob _UpperCamelCase : Tuple = max_position_embeddings _UpperCamelCase : List[str] = type_vocab_size _UpperCamelCase : Dict = type_sequence_label_size _UpperCamelCase : List[str] = initializer_range _UpperCamelCase : Optional[Any] = num_labels _UpperCamelCase : Tuple = num_choices _UpperCamelCase : List[str] = scope def A__ ( self): _UpperCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase : Any = None if self.use_input_mask: _UpperCamelCase : int = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase : Optional[Any] = None if self.use_token_type_ids: _UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase : int = None _UpperCamelCase : List[str] = None _UpperCamelCase : Dict = None if self.use_labels: _UpperCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self): return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : List[str] = MegatronBertModel(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case) _UpperCamelCase : Dict = model(__snake_case , token_type_ids=__snake_case) _UpperCamelCase : Optional[Any] = model(__snake_case) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : int = MegatronBertForMaskedLM(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Dict = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : str = MegatronBertForCausalLM(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Tuple = MegatronBertForNextSentencePrediction(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[Any] = MegatronBertForPreTraining(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[str] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , next_sentence_label=__snake_case , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : int = MegatronBertForQuestionAnswering(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[int] = self.num_labels _UpperCamelCase : Union[str, Any] = MegatronBertForSequenceClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Any = self.num_labels _UpperCamelCase : Optional[int] = MegatronBertForTokenClassification(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Tuple = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : List[str] = self.num_choices _UpperCamelCase : Optional[int] = MegatronBertForMultipleChoice(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : List[Any] = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : Optional[Any] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : Union[str, Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def A__ ( self): _UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) : Optional[int] = config_and_inputs _UpperCamelCase : int = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) a__ = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) a__ = True # test_resize_embeddings = False a__ = False def A__ ( self , __snake_case , __snake_case , __snake_case=False): _UpperCamelCase : str = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case) if return_labels: if model_class in get_values(__snake_case): _UpperCamelCase : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__snake_case) _UpperCamelCase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case) return inputs_dict def A__ ( self): _UpperCamelCase : Any = MegatronBertModelTester(self) _UpperCamelCase : int = ConfigTester(self , config_class=__snake_case , hidden_size=37) def A__ ( self): self.config_tester.run_common_tests() def A__ ( self): _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__snake_case) def A__ ( self): _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__snake_case) def A__ ( self): _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__snake_case) def A__ ( self): _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__snake_case) def A__ ( self): _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__snake_case) def A__ ( self): _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__snake_case) def A__ ( self): _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__snake_case) def A__ ( self): _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__snake_case) def lowerCamelCase_ ( UpperCAmelCase_ : str ) -> Optional[Any]: '''simple docstring''' return torch.tensor( UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ , ) lowerCAmelCase__ = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip('Model is not available.') def A__ ( self): _UpperCamelCase : int = 'nvidia/megatron-bert-uncased-345m' if "MYDIR" in os.environ: _UpperCamelCase : int = os.path.join(os.environ['MYDIR'] , __snake_case) _UpperCamelCase : Optional[int] = MegatronBertModel.from_pretrained(__snake_case) model.to(__snake_case) model.half() _UpperCamelCase : Optional[Any] = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]]) with torch.no_grad(): _UpperCamelCase : str = model(__snake_case)[0] _UpperCamelCase : Optional[int] = torch.Size((1, 9, 10_24)) self.assertEqual(output.shape , __snake_case) _UpperCamelCase : Union[str, Any] = [-0.6_0_4_0, -0.2_5_1_7, -0.1_0_2_5, 0.3_4_2_0, -0.6_7_5_8, -0.0_0_1_7, -0.1_0_8_9, -0.1_9_9_0, 0.5_7_2_8] for ii in range(3): for jj in range(3): _UpperCamelCase : Optional[Any] = output[0, ii, jj] _UpperCamelCase : Dict = expected[3 * ii + jj] _UpperCamelCase : Optional[int] = 'ii={} jj={} a={} b={}'.format(__snake_case , __snake_case , __snake_case , __snake_case) self.assertTrue(math.isclose(__snake_case , __snake_case , rel_tol=__snake_case , abs_tol=__snake_case) , msg=__snake_case)
648
0
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class lowercase ( _lowercase ): """simple docstring""" def __init__( self , __snake_case , __snake_case = None , __snake_case = None , __snake_case = False , __snake_case = False , __snake_case = None , __snake_case = None , **__snake_case , ): super().__init__( features=__UpperCamelCase , cache_dir=__UpperCamelCase , keep_in_memory=__UpperCamelCase , streaming=__UpperCamelCase , num_proc=__UpperCamelCase , **__UpperCamelCase , ) _UpperCamelCase : int = Generator( cache_dir=__UpperCamelCase , features=__UpperCamelCase , generator=__UpperCamelCase , gen_kwargs=__UpperCamelCase , **__UpperCamelCase , ) def A__ ( self): # Build iterable dataset if self.streaming: _UpperCamelCase : Union[str, Any] = self.builder.as_streaming_dataset(split='train') # Build regular (map-style) dataset else: _UpperCamelCase : List[Any] = None _UpperCamelCase : List[str] = None _UpperCamelCase : Dict = None _UpperCamelCase : Optional[int] = None self.builder.download_and_prepare( download_config=__UpperCamelCase , download_mode=__UpperCamelCase , verification_mode=__UpperCamelCase , base_path=__UpperCamelCase , num_proc=self.num_proc , ) _UpperCamelCase : Optional[Any] = self.builder.as_dataset( split='train' , verification_mode=__UpperCamelCase , in_memory=self.keep_in_memory) return dataset
715
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = """▁""" lowerCAmelCase__ = {"""vocab_file""": """sentencepiece.bpe.model"""} lowerCAmelCase__ = { """vocab_file""": { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model""" ), } } lowerCAmelCase__ = { """xlm-roberta-base""": 5_1_2, """xlm-roberta-large""": 5_1_2, """xlm-roberta-large-finetuned-conll02-dutch""": 5_1_2, """xlm-roberta-large-finetuned-conll02-spanish""": 5_1_2, """xlm-roberta-large-finetuned-conll03-english""": 5_1_2, """xlm-roberta-large-finetuned-conll03-german""": 5_1_2, } class lowercase ( _lowercase ): """simple docstring""" a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = ["input_ids", "attention_mask"] def __init__( self , __snake_case , __snake_case="<s>" , __snake_case="</s>" , __snake_case="</s>" , __snake_case="<s>" , __snake_case="<unk>" , __snake_case="<pad>" , __snake_case="<mask>" , __snake_case = None , **__snake_case , ): # Mask token behave like a normal word, i.e. include the space before it _UpperCamelCase : Dict = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case) if isinstance(__snake_case , __snake_case) else mask_token _UpperCamelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) _UpperCamelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(__snake_case)) _UpperCamelCase : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _UpperCamelCase : int = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _UpperCamelCase : List[Any] = 1 _UpperCamelCase : Any = len(self.sp_model) + self.fairseq_offset _UpperCamelCase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self): _UpperCamelCase : List[Any] = self.__dict__.copy() _UpperCamelCase : Optional[Any] = None _UpperCamelCase : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self , __snake_case): _UpperCamelCase : int = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): _UpperCamelCase : Tuple = {} _UpperCamelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) def A__ ( self , __snake_case , __snake_case = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCamelCase : Tuple = [self.cls_token_id] _UpperCamelCase : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self , __snake_case , __snake_case = None , __snake_case = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case) if token_ids_a is None: return [1] + ([0] * len(__snake_case)) + [1] return [1] + ([0] * len(__snake_case)) + [1, 1] + ([0] * len(__snake_case)) + [1] def A__ ( self , __snake_case , __snake_case = None): _UpperCamelCase : Optional[Any] = [self.sep_token_id] _UpperCamelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def A__ ( self): return len(self.sp_model) + self.fairseq_offset + 1 # Add the <mask> token def A__ ( self): _UpperCamelCase : List[str] = {self.convert_ids_to_tokens(__snake_case): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def A__ ( self , __snake_case): return self.sp_model.encode(__snake_case , out_type=__snake_case) def A__ ( self , __snake_case): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCamelCase : str = self.sp_model.PieceToId(__snake_case) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A__ ( self , __snake_case): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def A__ ( self , __snake_case): _UpperCamelCase : Optional[int] = ''.join(__snake_case).replace(__snake_case , ' ').strip() return out_string def A__ ( self , __snake_case , __snake_case = None): if not os.path.isdir(__snake_case): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return _UpperCamelCase : str = os.path.join( __snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(__snake_case) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , __snake_case) elif not os.path.isfile(self.vocab_file): with open(__snake_case , 'wb') as fi: _UpperCamelCase : Any = self.sp_model.serialized_model_proto() fi.write(__snake_case) return (out_vocab_file,)
648
0
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig lowerCAmelCase__ = logging.get_logger(__name__) # General docstring lowerCAmelCase__ = """RegNetConfig""" # Base docstring lowerCAmelCase__ = """facebook/regnet-y-040""" lowerCAmelCase__ = [1, 1_0_8_8, 7, 7] # Image classification docstring lowerCAmelCase__ = """facebook/regnet-y-040""" lowerCAmelCase__ = """tabby, tabby cat""" lowerCAmelCase__ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowercase ( nn.Module ): """simple docstring""" def __init__( self , __snake_case , __snake_case , __snake_case = 3 , __snake_case = 1 , __snake_case = 1 , __snake_case = "relu" , ): super().__init__() _UpperCamelCase : List[str] = nn.Convad( __snake_case , __snake_case , kernel_size=__snake_case , stride=__snake_case , padding=kernel_size // 2 , groups=__snake_case , bias=__snake_case , ) _UpperCamelCase : Any = nn.BatchNormad(__snake_case) _UpperCamelCase : Tuple = ACTaFN[activation] if activation is not None else nn.Identity() def A__ ( self , __snake_case): _UpperCamelCase : List[Any] = self.convolution(__snake_case) _UpperCamelCase : Union[str, Any] = self.normalization(__snake_case) _UpperCamelCase : str = self.activation(__snake_case) return hidden_state class lowercase ( nn.Module ): """simple docstring""" def __init__( self , __snake_case): super().__init__() _UpperCamelCase : str = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act) _UpperCamelCase : str = config.num_channels def A__ ( self , __snake_case): _UpperCamelCase : List[str] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.') _UpperCamelCase : List[str] = self.embedder(__snake_case) return hidden_state class lowercase ( nn.Module ): """simple docstring""" def __init__( self , __snake_case , __snake_case , __snake_case = 2): super().__init__() _UpperCamelCase : int = nn.Convad(__snake_case , __snake_case , kernel_size=1 , stride=__snake_case , bias=__snake_case) _UpperCamelCase : Optional[Any] = nn.BatchNormad(__snake_case) def A__ ( self , __snake_case): _UpperCamelCase : str = self.convolution(__snake_case) _UpperCamelCase : int = self.normalization(__snake_case) return hidden_state class lowercase ( nn.Module ): """simple docstring""" def __init__( self , __snake_case , __snake_case): super().__init__() _UpperCamelCase : Optional[int] = nn.AdaptiveAvgPoolad((1, 1)) _UpperCamelCase : List[str] = nn.Sequential( nn.Convad(__snake_case , __snake_case , kernel_size=1) , nn.ReLU() , nn.Convad(__snake_case , __snake_case , kernel_size=1) , nn.Sigmoid() , ) def A__ ( self , __snake_case): _UpperCamelCase : str = self.pooler(__snake_case) _UpperCamelCase : Any = self.attention(__snake_case) _UpperCamelCase : List[str] = hidden_state * attention return hidden_state class lowercase ( nn.Module ): """simple docstring""" def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case = 1): super().__init__() _UpperCamelCase : Dict = in_channels != out_channels or stride != 1 _UpperCamelCase : Optional[int] = max(1 , out_channels // config.groups_width) _UpperCamelCase : Optional[int] = ( RegNetShortCut(__snake_case , __snake_case , stride=__snake_case) if should_apply_shortcut else nn.Identity() ) _UpperCamelCase : Union[str, Any] = nn.Sequential( RegNetConvLayer(__snake_case , __snake_case , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(__snake_case , __snake_case , stride=__snake_case , groups=__snake_case , activation=config.hidden_act) , RegNetConvLayer(__snake_case , __snake_case , kernel_size=1 , activation=__snake_case) , ) _UpperCamelCase : List[Any] = ACTaFN[config.hidden_act] def A__ ( self , __snake_case): _UpperCamelCase : List[Any] = hidden_state _UpperCamelCase : List[Any] = self.layer(__snake_case) _UpperCamelCase : Optional[int] = self.shortcut(__snake_case) hidden_state += residual _UpperCamelCase : Any = self.activation(__snake_case) return hidden_state class lowercase ( nn.Module ): """simple docstring""" def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case = 1): super().__init__() _UpperCamelCase : int = in_channels != out_channels or stride != 1 _UpperCamelCase : Optional[int] = max(1 , out_channels // config.groups_width) _UpperCamelCase : List[str] = ( RegNetShortCut(__snake_case , __snake_case , stride=__snake_case) if should_apply_shortcut else nn.Identity() ) _UpperCamelCase : Optional[Any] = nn.Sequential( RegNetConvLayer(__snake_case , __snake_case , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(__snake_case , __snake_case , stride=__snake_case , groups=__snake_case , activation=config.hidden_act) , RegNetSELayer(__snake_case , reduced_channels=int(round(in_channels / 4))) , RegNetConvLayer(__snake_case , __snake_case , kernel_size=1 , activation=__snake_case) , ) _UpperCamelCase : Dict = ACTaFN[config.hidden_act] def A__ ( self , __snake_case): _UpperCamelCase : Tuple = hidden_state _UpperCamelCase : int = self.layer(__snake_case) _UpperCamelCase : int = self.shortcut(__snake_case) hidden_state += residual _UpperCamelCase : Optional[int] = self.activation(__snake_case) return hidden_state class lowercase ( nn.Module ): """simple docstring""" def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case = 2 , __snake_case = 2 , ): super().__init__() _UpperCamelCase : Dict = RegNetXLayer if config.layer_type == 'x' else RegNetYLayer _UpperCamelCase : Any = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( __snake_case , __snake_case , __snake_case , stride=__snake_case , ) , *[layer(__snake_case , __snake_case , __snake_case) for _ in range(depth - 1)] , ) def A__ ( self , __snake_case): _UpperCamelCase : List[Any] = self.layers(__snake_case) return hidden_state class lowercase ( nn.Module ): """simple docstring""" def __init__( self , __snake_case): super().__init__() _UpperCamelCase : Optional[int] = nn.ModuleList([]) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( __snake_case , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , )) _UpperCamelCase : str = zip(config.hidden_sizes , config.hidden_sizes[1:]) for (in_channels, out_channels), depth in zip(__snake_case , config.depths[1:]): self.stages.append(RegNetStage(__snake_case , __snake_case , __snake_case , depth=__snake_case)) def A__ ( self , __snake_case , __snake_case = False , __snake_case = True): _UpperCamelCase : List[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _UpperCamelCase : str = hidden_states + (hidden_state,) _UpperCamelCase : List[str] = stage_module(__snake_case) if output_hidden_states: _UpperCamelCase : int = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=__snake_case , hidden_states=__snake_case) class lowercase ( _lowercase ): """simple docstring""" a__ = RegNetConfig a__ = """regnet""" a__ = """pixel_values""" a__ = True def A__ ( self , __snake_case): if isinstance(__snake_case , nn.Convad): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu') elif isinstance(__snake_case , (nn.BatchNormad, nn.GroupNorm)): nn.init.constant_(module.weight , 1) nn.init.constant_(module.bias , 0) def A__ ( self , __snake_case , __snake_case=False): if isinstance(__snake_case , __snake_case): _UpperCamelCase : Optional[Any] = value lowerCAmelCase__ = R"""\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n""" lowerCAmelCase__ = R"""\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n""" @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , _lowercase , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class lowercase ( _lowercase ): """simple docstring""" def __init__( self , __snake_case): super().__init__(__snake_case) _UpperCamelCase : Optional[int] = config _UpperCamelCase : Dict = RegNetEmbeddings(__snake_case) _UpperCamelCase : Optional[int] = RegNetEncoder(__snake_case) _UpperCamelCase : Dict = nn.AdaptiveAvgPoolad((1, 1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__snake_case) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__snake_case , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def A__ ( self , __snake_case , __snake_case = None , __snake_case = None): _UpperCamelCase : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCamelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCamelCase : Dict = self.embedder(__snake_case) _UpperCamelCase : Any = self.encoder( __snake_case , output_hidden_states=__snake_case , return_dict=__snake_case) _UpperCamelCase : str = encoder_outputs[0] _UpperCamelCase : Union[str, Any] = self.pooler(__snake_case) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__snake_case , pooler_output=__snake_case , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , _lowercase , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class lowercase ( _lowercase ): """simple docstring""" def __init__( self , __snake_case): super().__init__(__snake_case) _UpperCamelCase : Tuple = config.num_labels _UpperCamelCase : int = RegNetModel(__snake_case) # classification head _UpperCamelCase : str = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__snake_case) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__snake_case , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def A__ ( self , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , ): _UpperCamelCase : Any = return_dict if return_dict is not None else self.config.use_return_dict _UpperCamelCase : Optional[Any] = self.regnet(__snake_case , output_hidden_states=__snake_case , return_dict=__snake_case) _UpperCamelCase : int = outputs.pooler_output if return_dict else outputs[1] _UpperCamelCase : Optional[int] = self.classifier(__snake_case) _UpperCamelCase : Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _UpperCamelCase : int = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _UpperCamelCase : Union[str, Any] = 'single_label_classification' else: _UpperCamelCase : Dict = 'multi_label_classification' if self.config.problem_type == "regression": _UpperCamelCase : List[Any] = MSELoss() if self.num_labels == 1: _UpperCamelCase : List[Any] = loss_fct(logits.squeeze() , labels.squeeze()) else: _UpperCamelCase : Union[str, Any] = loss_fct(__snake_case , __snake_case) elif self.config.problem_type == "single_label_classification": _UpperCamelCase : List[Any] = CrossEntropyLoss() _UpperCamelCase : List[Any] = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": _UpperCamelCase : List[str] = BCEWithLogitsLoss() _UpperCamelCase : Any = loss_fct(__snake_case , __snake_case) if not return_dict: _UpperCamelCase : int = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__snake_case , logits=__snake_case , hidden_states=outputs.hidden_states)
716
from ...processing_utils import ProcessorMixin class lowercase ( _lowercase ): """simple docstring""" a__ = ["image_processor", "feature_extractor"] a__ = "TvltImageProcessor" a__ = "TvltFeatureExtractor" def __init__( self , __snake_case , __snake_case): super().__init__(image_processor=__snake_case , feature_extractor=__snake_case) _UpperCamelCase : List[str] = image_processor _UpperCamelCase : Dict = feature_extractor def __call__( self , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=False , __snake_case=False , *__snake_case , **__snake_case , ): if images is None and audio is None: raise ValueError('You need to specify either an `images` or `audio` input to process.') _UpperCamelCase : Union[str, Any] = None if images is not None: _UpperCamelCase : Tuple = self.image_processor(__snake_case , mask_pixel=__snake_case , *__snake_case , **__snake_case) if images_mixed is not None: _UpperCamelCase : Union[str, Any] = self.image_processor(__snake_case , is_mixed=__snake_case , *__snake_case , **__snake_case) if audio is not None: _UpperCamelCase : Tuple = self.feature_extractor( __snake_case , *__snake_case , sampling_rate=__snake_case , mask_audio=__snake_case , **__snake_case) _UpperCamelCase : Tuple = {} if audio is not None: output_dict.update(__snake_case) if images is not None: output_dict.update(__snake_case) if images_mixed_dict is not None: output_dict.update(__snake_case) return output_dict @property def A__ ( self): _UpperCamelCase : List[Any] = self.image_processor.model_input_names _UpperCamelCase : List[Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
648
0
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self , __snake_case , __snake_case): _UpperCamelCase : int = jnp.ones((batch_size, length)) / length return scores def A__ ( self): _UpperCamelCase : Optional[Any] = None _UpperCamelCase : Tuple = 20 _UpperCamelCase : Union[str, Any] = self._get_uniform_logits(batch_size=2 , length=__snake_case) # tweak scores to not be uniform anymore _UpperCamelCase : str = scores.at[1, 5].set((1 / length) + 0.1) # peak, 1st batch _UpperCamelCase : Any = scores.at[1, 10].set((1 / length) - 0.4) # valley, 1st batch # compute softmax _UpperCamelCase : str = jax.nn.softmax(__snake_case , axis=-1) _UpperCamelCase : Tuple = FlaxTemperatureLogitsWarper(temperature=0.5) _UpperCamelCase : Optional[int] = FlaxTemperatureLogitsWarper(temperature=1.3) _UpperCamelCase : Optional[int] = jax.nn.softmax(temp_dist_warper_sharper(__snake_case , scores.copy() , cur_len=__snake_case) , axis=-1) _UpperCamelCase : Any = jax.nn.softmax(temp_dist_warper_smoother(__snake_case , scores.copy() , cur_len=__snake_case) , axis=-1) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3)) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3)) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max()) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min()) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max()) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min()) def A__ ( self): _UpperCamelCase : Optional[int] = None _UpperCamelCase : List[str] = 10 _UpperCamelCase : Optional[int] = 2 # create ramp distribution _UpperCamelCase : int = np.broadcast_to(np.arange(__snake_case)[None, :] , (batch_size, vocab_size)).copy() _UpperCamelCase : Tuple = ramp_logits[1:, : vocab_size // 2] + vocab_size _UpperCamelCase : List[Any] = FlaxTopKLogitsWarper(3) _UpperCamelCase : List[Any] = top_k_warp(__snake_case , __snake_case , cur_len=__snake_case) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0]).tolist() , 7 * [True] + 3 * [False]) self.assertListEqual(jnp.isinf(scores[1]).tolist() , 2 * [True] + 3 * [False] + 5 * [True]) # check special case _UpperCamelCase : Optional[int] = 5 _UpperCamelCase : str = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3) _UpperCamelCase : str = np.broadcast_to(np.arange(__snake_case)[None, :] , (batch_size, length)).copy() _UpperCamelCase : str = top_k_warp_safety_check(__snake_case , __snake_case , cur_len=__snake_case) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1).tolist() , [2, 2]) def A__ ( self): _UpperCamelCase : Union[str, Any] = None _UpperCamelCase : Any = 10 _UpperCamelCase : str = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) _UpperCamelCase : Union[str, Any] = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.1_5, 0.3, 0.3, 0.2_5]])) _UpperCamelCase : Optional[Any] = FlaxTopPLogitsWarper(0.8) _UpperCamelCase : List[str] = np.exp(top_p_warp(__snake_case , __snake_case , cur_len=__snake_case)) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 _UpperCamelCase : str = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.2_5]]) self.assertTrue(np.allclose(__snake_case , __snake_case , atol=1e-3)) # check edge cases with negative and extreme logits _UpperCamelCase : List[Any] = np.broadcast_to(np.arange(__snake_case)[None, :] , (batch_size, vocab_size)).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme _UpperCamelCase : List[Any] = ramp_logits[1] * 1_0_0.0 # make sure at least 2 tokens are kept _UpperCamelCase : Optional[int] = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0) _UpperCamelCase : List[str] = top_p_warp(__snake_case , __snake_case , cur_len=__snake_case) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1).tolist() , [3, 2]) def A__ ( self): _UpperCamelCase : Optional[Any] = 20 _UpperCamelCase : Any = 4 _UpperCamelCase : Optional[int] = 0 _UpperCamelCase : Tuple = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__snake_case) # check that min length is applied at length 5 _UpperCamelCase : Dict = ids_tensor((batch_size, 20) , vocab_size=20) _UpperCamelCase : str = 5 _UpperCamelCase : int = self._get_uniform_logits(__snake_case , __snake_case) _UpperCamelCase : Dict = min_dist_processor(__snake_case , __snake_case , cur_len=__snake_case) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('inf')]) # check that min length is not applied anymore at length 15 _UpperCamelCase : Union[str, Any] = self._get_uniform_logits(__snake_case , __snake_case) _UpperCamelCase : int = 15 _UpperCamelCase : Optional[int] = min_dist_processor(__snake_case , __snake_case , cur_len=__snake_case) self.assertFalse(jnp.isinf(__snake_case).any()) def A__ ( self): _UpperCamelCase : int = 20 _UpperCamelCase : List[Any] = 4 _UpperCamelCase : Optional[int] = 0 _UpperCamelCase : Dict = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__snake_case) # check that all scores are -inf except the bos_token_id score _UpperCamelCase : Dict = ids_tensor((batch_size, 1) , vocab_size=20) _UpperCamelCase : Optional[int] = 1 _UpperCamelCase : Dict = self._get_uniform_logits(__snake_case , __snake_case) _UpperCamelCase : Optional[int] = logits_processor(__snake_case , __snake_case , cur_len=__snake_case) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :]).all()) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0]) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 _UpperCamelCase : List[str] = 3 _UpperCamelCase : Any = self._get_uniform_logits(__snake_case , __snake_case) _UpperCamelCase : Optional[int] = logits_processor(__snake_case , __snake_case , cur_len=__snake_case) self.assertFalse(jnp.isinf(__snake_case).any()) def A__ ( self): _UpperCamelCase : Any = 20 _UpperCamelCase : Any = 4 _UpperCamelCase : str = 0 _UpperCamelCase : List[Any] = 5 _UpperCamelCase : Any = FlaxForcedEOSTokenLogitsProcessor(max_length=__snake_case , eos_token_id=__snake_case) # check that all scores are -inf except the eos_token_id when max_length is reached _UpperCamelCase : Tuple = ids_tensor((batch_size, 4) , vocab_size=20) _UpperCamelCase : Union[str, Any] = 4 _UpperCamelCase : Optional[int] = self._get_uniform_logits(__snake_case , __snake_case) _UpperCamelCase : Union[str, Any] = logits_processor(__snake_case , __snake_case , cur_len=__snake_case) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :]).all()) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0]) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached _UpperCamelCase : Any = 3 _UpperCamelCase : str = self._get_uniform_logits(__snake_case , __snake_case) _UpperCamelCase : Dict = logits_processor(__snake_case , __snake_case , cur_len=__snake_case) self.assertFalse(jnp.isinf(__snake_case).any()) def A__ ( self): _UpperCamelCase : Union[str, Any] = 4 _UpperCamelCase : int = 10 _UpperCamelCase : int = 15 _UpperCamelCase : Tuple = 2 _UpperCamelCase : Optional[int] = 1 _UpperCamelCase : Dict = 15 # dummy input_ids and scores _UpperCamelCase : Union[str, Any] = ids_tensor((batch_size, sequence_length) , __snake_case) _UpperCamelCase : Dict = input_ids.copy() _UpperCamelCase : Union[str, Any] = self._get_uniform_logits(__snake_case , __snake_case) _UpperCamelCase : int = scores.copy() # instantiate all dist processors _UpperCamelCase : Any = FlaxTemperatureLogitsWarper(temperature=0.5) _UpperCamelCase : Optional[Any] = FlaxTopKLogitsWarper(3) _UpperCamelCase : Any = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors _UpperCamelCase : str = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__snake_case) _UpperCamelCase : Any = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__snake_case) _UpperCamelCase : Union[str, Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=__snake_case , eos_token_id=__snake_case) _UpperCamelCase : List[Any] = 10 # no processor list _UpperCamelCase : str = temp_dist_warp(__snake_case , __snake_case , cur_len=__snake_case) _UpperCamelCase : Tuple = top_k_warp(__snake_case , __snake_case , cur_len=__snake_case) _UpperCamelCase : Tuple = top_p_warp(__snake_case , __snake_case , cur_len=__snake_case) _UpperCamelCase : Dict = min_dist_proc(__snake_case , __snake_case , cur_len=__snake_case) _UpperCamelCase : Dict = bos_dist_proc(__snake_case , __snake_case , cur_len=__snake_case) _UpperCamelCase : int = eos_dist_proc(__snake_case , __snake_case , cur_len=__snake_case) # with processor list _UpperCamelCase : List[str] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) _UpperCamelCase : Optional[Any] = processor(__snake_case , __snake_case , cur_len=__snake_case) # scores should be equal self.assertTrue(jnp.allclose(__snake_case , __snake_case , atol=1e-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist()) def A__ ( self): _UpperCamelCase : int = 4 _UpperCamelCase : Dict = 10 _UpperCamelCase : Optional[Any] = 15 _UpperCamelCase : Union[str, Any] = 2 _UpperCamelCase : Dict = 1 _UpperCamelCase : Tuple = 15 # dummy input_ids and scores _UpperCamelCase : Any = ids_tensor((batch_size, sequence_length) , __snake_case) _UpperCamelCase : Any = input_ids.copy() _UpperCamelCase : Dict = self._get_uniform_logits(__snake_case , __snake_case) _UpperCamelCase : Tuple = scores.copy() # instantiate all dist processors _UpperCamelCase : List[str] = FlaxTemperatureLogitsWarper(temperature=0.5) _UpperCamelCase : Any = FlaxTopKLogitsWarper(3) _UpperCamelCase : Optional[Any] = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors _UpperCamelCase : List[str] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__snake_case) _UpperCamelCase : Optional[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__snake_case) _UpperCamelCase : Dict = FlaxForcedEOSTokenLogitsProcessor(max_length=__snake_case , eos_token_id=__snake_case) _UpperCamelCase : List[Any] = 10 # no processor list def run_no_processor_list(__snake_case , __snake_case , __snake_case): _UpperCamelCase : str = temp_dist_warp(__snake_case , __snake_case , cur_len=__snake_case) _UpperCamelCase : Union[str, Any] = top_k_warp(__snake_case , __snake_case , cur_len=__snake_case) _UpperCamelCase : Union[str, Any] = top_p_warp(__snake_case , __snake_case , cur_len=__snake_case) _UpperCamelCase : Optional[Any] = min_dist_proc(__snake_case , __snake_case , cur_len=__snake_case) _UpperCamelCase : int = bos_dist_proc(__snake_case , __snake_case , cur_len=__snake_case) _UpperCamelCase : List[str] = eos_dist_proc(__snake_case , __snake_case , cur_len=__snake_case) return scores # with processor list def run_processor_list(__snake_case , __snake_case , __snake_case): _UpperCamelCase : List[Any] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) _UpperCamelCase : int = processor(__snake_case , __snake_case , cur_len=__snake_case) return scores _UpperCamelCase : Dict = jax.jit(__snake_case) _UpperCamelCase : Union[str, Any] = jax.jit(__snake_case) _UpperCamelCase : str = jitted_run_no_processor_list(__snake_case , __snake_case , __snake_case) _UpperCamelCase : Any = jitted_run_processor_list(__snake_case , __snake_case , __snake_case) # scores should be equal self.assertTrue(jnp.allclose(__snake_case , __snake_case , atol=1e-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist())
717
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class lowercase ( _lowercase ): """simple docstring""" a__ = "rwkv" a__ = {"max_position_embeddings": "context_length"} def __init__( self , __snake_case=5_02_77 , __snake_case=10_24 , __snake_case=40_96 , __snake_case=32 , __snake_case=None , __snake_case=None , __snake_case=1e-5 , __snake_case=0 , __snake_case=0 , __snake_case=6 , __snake_case=False , __snake_case=True , **__snake_case , ): _UpperCamelCase : str = vocab_size _UpperCamelCase : int = context_length _UpperCamelCase : Tuple = hidden_size _UpperCamelCase : Tuple = num_hidden_layers _UpperCamelCase : Dict = attention_hidden_size if attention_hidden_size is not None else hidden_size _UpperCamelCase : Tuple = intermediate_size if intermediate_size is not None else 4 * hidden_size _UpperCamelCase : Union[str, Any] = layer_norm_epsilon _UpperCamelCase : Dict = rescale_every _UpperCamelCase : Optional[Any] = use_cache _UpperCamelCase : str = bos_token_id _UpperCamelCase : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case)
648
0
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline lowerCAmelCase__ = { "n_samples": 6_4, "horizon": 3_2, "num_inference_steps": 2_0, "n_guide_steps": 2, # can set to 0 for faster sampling, does not use value network "scale_grad_by_std": True, "scale": 0.1, "eta": 0.0, "t_grad_cutoff": 2, "device": "cpu", } if __name__ == "__main__": lowerCAmelCase__ = "hopper-medium-v2" lowerCAmelCase__ = gym.make(env_name) lowerCAmelCase__ = ValueGuidedRLPipeline.from_pretrained( """bglick13/hopper-medium-v2-value-function-hor32""", env=env, ) env.seed(0) lowerCAmelCase__ = env.reset() lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 1_0_0_0 lowerCAmelCase__ = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy lowerCAmelCase__ = pipeline(obs, planning_horizon=3_2) # execute action in environment lowerCAmelCase__ = env.step(denorm_actions) lowerCAmelCase__ = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( f'Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:' f' {total_score}' ) # save observations for rendering rollout.append(next_observation.copy()) lowerCAmelCase__ = next_observation except KeyboardInterrupt: pass print(f'Total reward: {total_reward}')
718
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class lowercase ( _lowercase ): """simple docstring""" a__ = "bert" def __init__( self , __snake_case=3_05_22 , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=0 , __snake_case="absolute" , __snake_case=True , __snake_case=None , **__snake_case , ): super().__init__(pad_token_id=__snake_case , **__snake_case) _UpperCamelCase : int = vocab_size _UpperCamelCase : Optional[Any] = hidden_size _UpperCamelCase : Optional[Any] = num_hidden_layers _UpperCamelCase : List[str] = num_attention_heads _UpperCamelCase : int = hidden_act _UpperCamelCase : Optional[Any] = intermediate_size _UpperCamelCase : Union[str, Any] = hidden_dropout_prob _UpperCamelCase : Tuple = attention_probs_dropout_prob _UpperCamelCase : Optional[int] = max_position_embeddings _UpperCamelCase : str = type_vocab_size _UpperCamelCase : Optional[Any] = initializer_range _UpperCamelCase : List[str] = layer_norm_eps _UpperCamelCase : Any = position_embedding_type _UpperCamelCase : Any = use_cache _UpperCamelCase : Any = classifier_dropout class lowercase ( _lowercase ): """simple docstring""" @property def A__ ( self): if self.task == "multiple-choice": _UpperCamelCase : Union[str, Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCamelCase : Optional[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ])
648
0
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase__ = logging.get_logger(__name__) class lowercase ( UpperCamelCase_ ): """simple docstring""" a__ = ["audio_values", "audio_mask"] def __init__( self , __snake_case=20_48 , __snake_case=1 , __snake_case=[16, 16] , __snake_case=1_28 , __snake_case=4_41_00 , __snake_case=86 , __snake_case=20_48 , __snake_case=0.0 , **__snake_case , ): super().__init__( feature_size=__snake_case , sampling_rate=__snake_case , padding_value=__snake_case , **__snake_case , ) _UpperCamelCase : Optional[int] = spectrogram_length _UpperCamelCase : Optional[int] = num_channels _UpperCamelCase : Any = patch_size _UpperCamelCase : Any = feature_size // self.patch_size[1] _UpperCamelCase : List[str] = n_fft _UpperCamelCase : Optional[Any] = sampling_rate // hop_length_to_sampling_rate _UpperCamelCase : List[str] = sampling_rate _UpperCamelCase : Any = padding_value _UpperCamelCase : Dict = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__snake_case , min_frequency=0.0 , max_frequency=2_2_0_5_0.0 , sampling_rate=__snake_case , norm='slaney' , mel_scale='slaney' , ).T def A__ ( self , __snake_case): _UpperCamelCase : str = spectrogram( __snake_case , window_function(self.n_fft , 'hann') , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='dB' , db_range=8_0.0 , ) _UpperCamelCase : Optional[Any] = log_spec[:, :-1] _UpperCamelCase : Any = log_spec - 2_0.0 _UpperCamelCase : Any = np.clip(log_spec / 4_0.0 , -2.0 , 0.0) + 1.0 return log_spec def __call__( self , __snake_case , __snake_case = None , __snake_case = True , __snake_case = None , __snake_case = False , __snake_case = False , **__snake_case , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' f''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled''' f''' with {self.sampling_rate} and not {sampling_rate}.''') else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.') _UpperCamelCase : int = isinstance(__snake_case , np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''') _UpperCamelCase : Optional[int] = is_batched_numpy or ( isinstance(__snake_case , (list, tuple)) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list))) ) if is_batched: _UpperCamelCase : List[str] = [np.asarray([speech] , dtype=np.floataa).T for speech in raw_speech] elif not is_batched and not isinstance(__snake_case , np.ndarray): _UpperCamelCase : List[Any] = np.asarray(__snake_case , dtype=np.floataa) elif isinstance(__snake_case , np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): _UpperCamelCase : str = raw_speech.astype(np.floataa) # always return batch if not is_batched: _UpperCamelCase : List[Any] = [np.asarray([raw_speech]).T] # Convert audio signals to log mel spectrograms, truncate by time axis _UpperCamelCase : Optional[int] = [ self._np_extract_fbank_features(waveform.squeeze()).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , __snake_case): _UpperCamelCase : Optional[Any] = [np.asarray(__snake_case , dtype=np.floataa) for feature in audio_features] # Create audio attention mask _UpperCamelCase : Optional[int] = max( [ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len for feature in audio_features]) # The maximum number of audio patches in a batch if return_attention_mask: _UpperCamelCase : Union[str, Any] = [ (ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len) * [0] for feature in audio_features ] _UpperCamelCase : List[Any] = np.array(__snake_case).astype(np.floataa) # convert into correct format for padding _UpperCamelCase : Optional[Any] = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch _UpperCamelCase : int = np.ones([len(__snake_case), 1, max_time_len, self.feature_size]).astype(np.floataa) _UpperCamelCase : List[str] = padded_audio_features * self.padding_value for i in range(len(__snake_case)): _UpperCamelCase : str = audio_features[i] _UpperCamelCase : str = feature # return as BatchFeature if return_attention_mask: _UpperCamelCase : List[Any] = {'''audio_values''': padded_audio_features, '''audio_mask''': audio_mask} else: _UpperCamelCase : Union[str, Any] = {'''audio_values''': padded_audio_features} _UpperCamelCase : Dict = BatchFeature(data=__snake_case , tensor_type=__snake_case) return encoded_inputs
719
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowercase ( _lowercase ): """simple docstring""" a__ = "facebook/bart-large-mnli" a__ = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) a__ = "text_classifier" a__ = AutoTokenizer a__ = AutoModelForSequenceClassification a__ = ["text", ["text"]] a__ = ["text"] def A__ ( self): super().setup() _UpperCamelCase : List[Any] = self.model.config _UpperCamelCase : Optional[int] = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail'): _UpperCamelCase : Tuple = int(__snake_case) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.') def A__ ( self , __snake_case , __snake_case): _UpperCamelCase : List[Any] = labels return self.pre_processor( [text] * len(__snake_case) , [f'''This example is {label}''' for label in labels] , return_tensors='pt' , padding='max_length' , ) def A__ ( self , __snake_case): _UpperCamelCase : str = outputs.logits _UpperCamelCase : Optional[Any] = torch.argmax(logits[:, 2]).item() return self._labels[label_id]
648
0
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class lowercase : """simple docstring""" a__ = 42 a__ = None a__ = None def lowerCamelCase_ ( ) -> Any: _UpperCamelCase : int = Node(1 ) _UpperCamelCase : List[Any] = Node(2 ) _UpperCamelCase : Dict = Node(3 ) _UpperCamelCase : List[str] = Node(4 ) _UpperCamelCase : Dict = Node(5 ) return tree def lowerCamelCase_ ( UpperCAmelCase_ : Tuple ) -> Dict: return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any] ) -> Optional[Any]: return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def lowerCamelCase_ ( UpperCAmelCase_ : List[Any] ) -> Dict: return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def lowerCamelCase_ ( UpperCAmelCase_ : Any ) -> Optional[int]: return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def lowerCamelCase_ ( UpperCAmelCase_ : List[str] ) -> int: _UpperCamelCase : Dict = [] if root is None: return output _UpperCamelCase : Optional[int] = deque([root] ) while process_queue: _UpperCamelCase : Optional[Any] = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] ) -> List[Any]: _UpperCamelCase : Union[str, Any] = [] def populate_output(UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(UpperCamelCase__ , UpperCamelCase__ ) return output def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int ) -> List[str]: _UpperCamelCase : int = [] def populate_output(UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(UpperCamelCase__ , UpperCamelCase__ ) return output def lowerCamelCase_ ( UpperCAmelCase_ : List[str] ) -> Optional[Any]: if root is None: return [] _UpperCamelCase : List[Any] = [] _UpperCamelCase : List[str] = 0 _UpperCamelCase : Optional[int] = height(UpperCamelCase__ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(UpperCamelCase__ , UpperCamelCase__ ) ) _UpperCamelCase : int = 1 else: output.append(get_nodes_from_right_to_left(UpperCamelCase__ , UpperCamelCase__ ) ) _UpperCamelCase : int = 0 return output def lowerCamelCase_ ( ) -> Any: # Main function for testing. _UpperCamelCase : Optional[Any] = make_tree() print(F'''In-order Traversal: {inorder(UpperCamelCase__ )}''' ) print(F'''Pre-order Traversal: {preorder(UpperCamelCase__ )}''' ) print(F'''Post-order Traversal: {postorder(UpperCamelCase__ )}''' , '\n' ) print(F'''Height of Tree: {height(UpperCamelCase__ )}''' , '\n' ) print('Complete Level Order Traversal: ' ) print(level_order(UpperCamelCase__ ) , '\n' ) print('Level-wise order Traversal: ' ) for level in range(1 , height(UpperCamelCase__ ) + 1 ): print(F'''Level {level}:''' , get_nodes_from_left_to_right(UpperCamelCase__ , level=UpperCamelCase__ ) ) print('\nZigZag order Traversal: ' ) print(zigzag(UpperCamelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
720
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
648
0
import re def lowerCamelCase_ ( UpperCAmelCase_ : List[str] ) -> list: '''simple docstring''' return [char.split() for char in re.split(R'[^ a-z A-Z 0-9 \s]' , str_ )] def lowerCamelCase_ ( UpperCAmelCase_ : str ) -> str: '''simple docstring''' _UpperCamelCase : Tuple = split_input(str_ ) return "".join( [''.join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def lowerCamelCase_ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str ) -> str: '''simple docstring''' try: _UpperCamelCase : Optional[Any] = split_input(lowerCamelCase__ ) if upper: _UpperCamelCase : Tuple = ''.join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: _UpperCamelCase : Optional[Any] = ''.join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def lowerCamelCase_ ( UpperCAmelCase_ : List[Any] ) -> str: '''simple docstring''' return to_simple_case(lowerCamelCase__ ) def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any] ) -> str: '''simple docstring''' try: _UpperCamelCase : str = to_simple_case(lowerCamelCase__ ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def lowerCamelCase_ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] ) -> str: '''simple docstring''' return to_complex_case(lowerCamelCase__ , lowerCamelCase__ , '_' ) def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int ) -> str: '''simple docstring''' return to_complex_case(lowerCamelCase__ , lowerCamelCase__ , '-' ) if __name__ == "__main__": __import__("""doctest""").testmod()
721
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
648
0
lowerCAmelCase__ = [ [0, 1_6, 1_3, 0, 0, 0], [0, 0, 1_0, 1_2, 0, 0], [0, 4, 0, 0, 1_4, 0], [0, 0, 9, 0, 0, 2_0], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any ) -> List[Any]: '''simple docstring''' _UpperCamelCase : List[Any] = [False] * len(UpperCAmelCase_ ) _UpperCamelCase : str = [s] _UpperCamelCase : int = True while queue: _UpperCamelCase : Any = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = True _UpperCamelCase : List[str] = u return visited[t] def lowerCamelCase_ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict ) -> str: '''simple docstring''' _UpperCamelCase : Union[str, Any] = [-1] * (len(UpperCAmelCase_ )) _UpperCamelCase : Union[str, Any] = 0 _UpperCamelCase : Optional[int] = [] _UpperCamelCase : Union[str, Any] = [i[:] for i in graph] # Record original cut, copy. while bfs(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Any = float('Inf' ) _UpperCamelCase : Tuple = sink while s != source: # Find the minimum value in select path _UpperCamelCase : Optional[Any] = min(UpperCAmelCase_ , graph[parent[s]][s] ) _UpperCamelCase : Tuple = parent[s] max_flow += path_flow _UpperCamelCase : Optional[Any] = sink while v != source: _UpperCamelCase : Dict = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _UpperCamelCase : List[str] = parent[v] for i in range(len(UpperCAmelCase_ ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
700
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_sentencepiece_available(): import sentencepiece as sp lowerCAmelCase__ = 5 lowerCAmelCase__ = 1_0 @require_sentencepiece @require_tokenizers class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" a__ = SpeechaTextTokenizer a__ = False a__ = True def A__ ( self): super().setUp() _UpperCamelCase : Any = sp.SentencePieceProcessor() spm_model.Load(__snake_case) _UpperCamelCase : List[str] = ['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_) for id_ in range(len(__snake_case))] _UpperCamelCase : Dict = dict(zip(__snake_case , range(len(__snake_case)))) _UpperCamelCase : Tuple = Path(self.tmpdirname) save_json(__snake_case , save_dir / VOCAB_FILES_NAMES['vocab_file']) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__snake_case , save_dir / VOCAB_FILES_NAMES['spm_file']) _UpperCamelCase : int = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def A__ ( self): _UpperCamelCase : str = '<pad>' _UpperCamelCase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case) , __snake_case) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case) , __snake_case) def A__ ( self): _UpperCamelCase : Optional[Any] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(vocab_keys[-1] , 'j') self.assertEqual(len(__snake_case) , 10_01) def A__ ( self): self.assertEqual(self.get_tokenizer().vocab_size , 10_01) def A__ ( self): _UpperCamelCase : Any = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) _UpperCamelCase : List[str] = tokenizer.tokenize('This is a test') self.assertListEqual(__snake_case , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case) , [2_89, 50, 14, 1_74, 3_86] , ) _UpperCamelCase : int = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( __snake_case , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) _UpperCamelCase : int = tokenizer.convert_tokens_to_ids(__snake_case) self.assertListEqual(__snake_case , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8]) _UpperCamelCase : Tuple = tokenizer.convert_ids_to_tokens(__snake_case) self.assertListEqual( __snake_case , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def A__ ( self): # fmt: off _UpperCamelCase : Optional[int] = {'input_ids': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , ) @require_sentencepiece class lowercase ( unittest.TestCase ): """simple docstring""" a__ = "valhalla/s2t_mustc_multilinguial_medium" a__ = "C'est trop cool" a__ = "Esto es genial" @classmethod def A__ ( cls): _UpperCamelCase : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name) return cls def A__ ( self): self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4) self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6) self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9) self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11) def A__ ( self): self.assertEqual(self.tokenizer.vocab_size , 1_00_00) def A__ ( self): self.assertIn(__snake_case , self.tokenizer.all_special_ids) _UpperCamelCase : Optional[int] = [ES_CODE, 4, 16_01, 47, 76_47, 2] _UpperCamelCase : Tuple = self.tokenizer.decode(__snake_case , skip_special_tokens=__snake_case) _UpperCamelCase : Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__snake_case) self.assertEqual(__snake_case , __snake_case) self.assertNotIn(self.tokenizer.eos_token , __snake_case) def A__ ( self): _UpperCamelCase : Any = 'fr' _UpperCamelCase : List[Any] = self.tokenizer(self.french_text).input_ids self.assertEqual(encoded[0] , __snake_case) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id) def A__ ( self): _UpperCamelCase : Union[str, Any] = 'fr' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE]) _UpperCamelCase : List[str] = 'es' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE])
648
0
'''simple docstring''' from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class lowercase : """simple docstring""" a__ = 4_2 # [batch_size x 3] a__ = 4_2 # [batch_size x 3] a__ = 4_2 # [batch_size x 3] a__ = 4_2 # [batch_size x 3] a__ = 4_2 a__ = 4_2 a__ = 4_2 a__ = 4_2 a__ = 4_2 def A__ ( self): assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape) == len(self.y.shape) == len(self.z.shape) == len(self.origin.shape) == 2 def A__ ( self): return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa)) def A__ ( self): return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa)) def A__ ( self): _UpperCamelCase : Optional[int] = torch.arange(self.height * self.width) _UpperCamelCase : Optional[Any] = torch.stack( [ pixel_indices % self.width, torch.div(__snake_case , self.width , rounding_mode='trunc'), ] , axis=1 , ) return coords @property def A__ ( self): _UpperCamelCase : str = self.shape _UpperCamelCase : Any = int(np.prod(__snake_case)) _UpperCamelCase : Union[str, Any] = self.get_image_coords() _UpperCamelCase : str = torch.broadcast_to(coords.unsqueeze(0) , [batch_size * inner_batch_size, *coords.shape]) _UpperCamelCase : List[Any] = self.get_camera_rays(__snake_case) _UpperCamelCase : Tuple = rays.view(__snake_case , inner_batch_size * self.height * self.width , 2 , 3) return rays def A__ ( self , __snake_case): _UpperCamelCase : Optional[Any] = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] _UpperCamelCase : str = coords.view(__snake_case , -1 , 2) _UpperCamelCase : Optional[Any] = self.resolution() _UpperCamelCase : str = self.fov() _UpperCamelCase : int = (flat.float() / (res - 1)) * 2 - 1 _UpperCamelCase : str = fracs * torch.tan(fov / 2) _UpperCamelCase : Optional[Any] = fracs.view(__snake_case , -1 , 2) _UpperCamelCase : Any = ( self.z.view(__snake_case , 1 , 3) + self.x.view(__snake_case , 1 , 3) * fracs[:, :, :1] + self.y.view(__snake_case , 1 , 3) * fracs[:, :, 1:] ) _UpperCamelCase : int = directions / directions.norm(dim=-1 , keepdim=__snake_case) _UpperCamelCase : Union[str, Any] = torch.stack( [ torch.broadcast_to(self.origin.view(__snake_case , 1 , 3) , [batch_size, directions.shape[1], 3]), directions, ] , dim=2 , ) return rays.view(__snake_case , *__snake_case , 2 , 3) def A__ ( self , __snake_case , __snake_case): assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=__snake_case , height=__snake_case , x_fov=self.x_fov , y_fov=self.y_fov , ) def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> DifferentiableProjectiveCamera: '''simple docstring''' _UpperCamelCase : Union[str, Any] = [] _UpperCamelCase : Optional[Any] = [] _UpperCamelCase : Tuple = [] _UpperCamelCase : Tuple = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): _UpperCamelCase : Optional[Any] = np.array([np.sin(UpperCAmelCase_ ), np.cos(UpperCAmelCase_ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) _UpperCamelCase : List[Any] = -z * 4 _UpperCamelCase : Dict = np.array([np.cos(UpperCAmelCase_ ), -np.sin(UpperCAmelCase_ ), 0.0] ) _UpperCamelCase : int = np.cross(UpperCAmelCase_ , UpperCAmelCase_ ) origins.append(UpperCAmelCase_ ) xs.append(UpperCAmelCase_ ) ys.append(UpperCAmelCase_ ) zs.append(UpperCAmelCase_ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(UpperCAmelCase_ , axis=0 ) ).float() , x=torch.from_numpy(np.stack(UpperCAmelCase_ , axis=0 ) ).float() , y=torch.from_numpy(np.stack(UpperCAmelCase_ , axis=0 ) ).float() , z=torch.from_numpy(np.stack(UpperCAmelCase_ , axis=0 ) ).float() , width=UpperCAmelCase_ , height=UpperCAmelCase_ , x_fov=0.7 , y_fov=0.7 , shape=(1, len(UpperCAmelCase_ )) , )
701
import logging from transformers.configuration_utils import PretrainedConfig lowerCAmelCase__ = logging.getLogger(__name__) class lowercase ( _lowercase ): """simple docstring""" a__ = "masked_bert" def __init__( self , __snake_case=3_05_22 , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=0 , __snake_case="topK" , __snake_case="constant" , __snake_case=0.0 , **__snake_case , ): super().__init__(pad_token_id=__snake_case , **__snake_case) _UpperCamelCase : List[Any] = vocab_size _UpperCamelCase : Union[str, Any] = hidden_size _UpperCamelCase : Optional[int] = num_hidden_layers _UpperCamelCase : Any = num_attention_heads _UpperCamelCase : int = hidden_act _UpperCamelCase : str = intermediate_size _UpperCamelCase : str = hidden_dropout_prob _UpperCamelCase : Any = attention_probs_dropout_prob _UpperCamelCase : Tuple = max_position_embeddings _UpperCamelCase : Dict = type_vocab_size _UpperCamelCase : str = initializer_range _UpperCamelCase : List[Any] = layer_norm_eps _UpperCamelCase : Tuple = pruning_method _UpperCamelCase : Tuple = mask_init _UpperCamelCase : Dict = mask_scale
648
0
from __future__ import annotations import os from typing import Any import requests lowerCAmelCase__ = """https://api.github.com""" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user lowerCAmelCase__ = BASE_URL + """/user""" # https://github.com/settings/tokens lowerCAmelCase__ = os.environ.get("""USER_TOKEN""", """""") def lowerCamelCase_ ( UpperCAmelCase_ : str ) -> dict[Any, Any]: '''simple docstring''' _UpperCamelCase : Tuple = { 'Authorization': F'''token {auth_token}''', 'Accept': 'application/vnd.github.v3+json', } return requests.get(UpperCAmelCase_ , headers=UpperCAmelCase_ ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'{key}: {value}') else: raise ValueError("""'USER_TOKEN' field cannot be empty.""")
702
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow lowerCAmelCase__ = False class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self , __snake_case=32): set_seed(0) _UpperCamelCase : int = UNetaDModel(sample_size=__snake_case , in_channels=3 , out_channels=3) _UpperCamelCase : str = torch.optim.SGD(model.parameters() , lr=0.0_0_0_1) return model, optimizer @slow def A__ ( self): _UpperCamelCase : Tuple = 'cpu' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable _UpperCamelCase : List[Any] = DDPMScheduler( num_train_timesteps=10_00 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='linear' , clip_sample=__snake_case , ) _UpperCamelCase : List[Any] = DDIMScheduler( num_train_timesteps=10_00 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='linear' , clip_sample=__snake_case , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0) _UpperCamelCase : Optional[Any] = [torch.randn((4, 3, 32, 32)).clip(-1 , 1).to(__snake_case) for _ in range(4)] _UpperCamelCase : str = [torch.randn((4, 3, 32, 32)).to(__snake_case) for _ in range(4)] _UpperCamelCase : int = [torch.randint(0 , 10_00 , (4,)).long().to(__snake_case) for _ in range(4)] # train with a DDPM scheduler _UpperCamelCase , _UpperCamelCase : List[Any] = self.get_model_optimizer(resolution=32) model.train().to(__snake_case) for i in range(4): optimizer.zero_grad() _UpperCamelCase : int = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) _UpperCamelCase : Any = model(__snake_case , timesteps[i]).sample _UpperCamelCase : str = torch.nn.functional.mse_loss(__snake_case , noise[i]) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM _UpperCamelCase , _UpperCamelCase : Union[str, Any] = self.get_model_optimizer(resolution=32) model.train().to(__snake_case) for i in range(4): optimizer.zero_grad() _UpperCamelCase : Dict = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) _UpperCamelCase : Dict = model(__snake_case , timesteps[i]).sample _UpperCamelCase : Tuple = torch.nn.functional.mse_loss(__snake_case , noise[i]) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1e-5)) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1e-5))
648
0
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class lowercase ( unittest.TestCase ): """simple docstring""" a__ = inspect.getfile(accelerate.test_utils ) a__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_cli.py"] ) a__ = ["accelerate", "launch"] a__ = Path.home() / ".cache/huggingface/accelerate" a__ = "default_config.yaml" a__ = config_folder / config_file a__ = config_folder / "_default_config.yaml" a__ = Path("tests/test_configs" ) @classmethod def A__ ( cls): if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path) @classmethod def A__ ( cls): if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path) def A__ ( self): _UpperCamelCase : Dict = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy()) def A__ ( self): for config in sorted(self.test_config_path.glob('**/*.yaml')): with self.subTest(config_file=__snake_case): execute_subprocess_async( self.base_cmd + ['--config_file', str(__snake_case), self.test_file_path] , env=os.environ.copy()) def A__ ( self): execute_subprocess_async(['accelerate', 'test'] , env=os.environ.copy()) class lowercase ( unittest.TestCase ): """simple docstring""" a__ = "test-tpu" a__ = "us-central1-a" a__ = "ls" a__ = ["accelerate", "tpu-config"] a__ = "cd /usr/share" a__ = "tests/test_samples/test_command_file.sh" a__ = "Running gcloud compute tpus tpu-vm ssh" def A__ ( self): _UpperCamelCase : List[str] = run_command( self.cmd + ['--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug'] , return_stdout=__snake_case , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , __snake_case , ) def A__ ( self): _UpperCamelCase : Any = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=__snake_case , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , __snake_case , ) def A__ ( self): _UpperCamelCase : Tuple = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--debug'] , return_stdout=__snake_case) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , __snake_case , ) def A__ ( self): _UpperCamelCase : List[str] = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--debug'] , return_stdout=__snake_case , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , __snake_case , ) def A__ ( self): _UpperCamelCase : Tuple = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--command', 'echo "Hello World"', '--debug', ] , return_stdout=__snake_case , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all''' , __snake_case , ) def A__ ( self): _UpperCamelCase : Optional[int] = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command_file', self.command_file, '--debug'] , return_stdout=__snake_case , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , __snake_case , ) def A__ ( self): _UpperCamelCase : Optional[Any] = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command_file', self.command_file, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=__snake_case , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , __snake_case , ) def A__ ( self): _UpperCamelCase : Optional[Any] = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--debug'] , return_stdout=__snake_case , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all''' , __snake_case , ) def A__ ( self): _UpperCamelCase : Any = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--accelerate_version', '12.0.0', '--debug', ] , return_stdout=__snake_case , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all''' , __snake_case , )
703
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) lowerCAmelCase__ = { """sample_size""": 3_2, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 1_0_0_0, """block_out_channels""": [3_2, 6_4], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """sample_size""": 6_4, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 1_0_0_0, """block_out_channels""": [1_9_2, 1_9_2 * 2, 1_9_2 * 3, 1_9_2 * 4], """attention_head_dim""": 6_4, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """sample_size""": 2_5_6, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [2_5_6, 2_5_6, 2_5_6 * 2, 2_5_6 * 2, 2_5_6 * 4, 2_5_6 * 4], """attention_head_dim""": 6_4, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """num_train_timesteps""": 4_0, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } lowerCAmelCase__ = { """num_train_timesteps""": 2_0_1, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } lowerCAmelCase__ = { """num_train_timesteps""": 1_5_1, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> List[str]: '''simple docstring''' if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def lowerCamelCase_ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any]=False ) -> str: '''simple docstring''' _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.in_layers.0.weight'''] _UpperCamelCase : str = checkpoint[F'''{old_prefix}.in_layers.0.bias'''] _UpperCamelCase : str = checkpoint[F'''{old_prefix}.in_layers.2.weight'''] _UpperCamelCase : Union[str, Any] = checkpoint[F'''{old_prefix}.in_layers.2.bias'''] _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.emb_layers.1.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.emb_layers.1.bias'''] _UpperCamelCase : Tuple = checkpoint[F'''{old_prefix}.out_layers.0.weight'''] _UpperCamelCase : List[Any] = checkpoint[F'''{old_prefix}.out_layers.0.bias'''] _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.out_layers.3.weight'''] _UpperCamelCase : Union[str, Any] = checkpoint[F'''{old_prefix}.out_layers.3.bias'''] if has_skip: _UpperCamelCase : Tuple = checkpoint[F'''{old_prefix}.skip_connection.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any=None ) -> int: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 ) _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.norm.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.norm.bias'''] _UpperCamelCase : List[str] = weight_q.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Dict = bias_q.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Any = weight_k.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : List[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Dict = weight_v.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Tuple = bias_v.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Optional[Any] = ( checkpoint[F'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] ) -> Tuple: '''simple docstring''' _UpperCamelCase : Any = torch.load(UpperCAmelCase_ , map_location='cpu' ) _UpperCamelCase : Union[str, Any] = {} _UpperCamelCase : Optional[int] = checkpoint['time_embed.0.weight'] _UpperCamelCase : List[Any] = checkpoint['time_embed.0.bias'] _UpperCamelCase : Dict = checkpoint['time_embed.2.weight'] _UpperCamelCase : Optional[Any] = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: _UpperCamelCase : List[str] = checkpoint['label_emb.weight'] _UpperCamelCase : Optional[int] = checkpoint['input_blocks.0.0.weight'] _UpperCamelCase : Union[str, Any] = checkpoint['input_blocks.0.0.bias'] _UpperCamelCase : Optional[int] = unet_config['down_block_types'] _UpperCamelCase : Optional[Any] = unet_config['layers_per_block'] _UpperCamelCase : Dict = unet_config['attention_head_dim'] _UpperCamelCase : List[str] = unet_config['block_out_channels'] _UpperCamelCase : str = 1 _UpperCamelCase : Optional[int] = channels_list[0] for i, layer_type in enumerate(UpperCAmelCase_ ): _UpperCamelCase : List[str] = channels_list[i] _UpperCamelCase : str = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(UpperCAmelCase_ ): _UpperCamelCase : str = F'''down_blocks.{i}.resnets.{j}''' _UpperCamelCase : List[Any] = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : Any = True if j == 0 and downsample_block_has_skip else False _UpperCamelCase : str = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(UpperCAmelCase_ ): _UpperCamelCase : List[str] = F'''down_blocks.{i}.resnets.{j}''' _UpperCamelCase : str = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : int = True if j == 0 and downsample_block_has_skip else False _UpperCamelCase : Any = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) _UpperCamelCase : Dict = F'''down_blocks.{i}.attentions.{j}''' _UpperCamelCase : Optional[int] = F'''input_blocks.{current_layer}.1''' _UpperCamelCase : Dict = convert_attention( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : int = F'''down_blocks.{i}.downsamplers.0''' _UpperCamelCase : Optional[int] = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : List[Any] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 _UpperCamelCase : Tuple = current_channels # hardcoded the mid-block for now _UpperCamelCase : Any = 'mid_block.resnets.0' _UpperCamelCase : Optional[Any] = 'middle_block.0' _UpperCamelCase : Tuple = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = 'mid_block.attentions.0' _UpperCamelCase : Tuple = 'middle_block.1' _UpperCamelCase : Union[str, Any] = convert_attention(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Tuple = 'mid_block.resnets.1' _UpperCamelCase : str = 'middle_block.2' _UpperCamelCase : List[str] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : List[Any] = 0 _UpperCamelCase : Optional[int] = unet_config['up_block_types'] for i, layer_type in enumerate(UpperCAmelCase_ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _UpperCamelCase : Optional[Any] = F'''up_blocks.{i}.resnets.{j}''' _UpperCamelCase : Optional[int] = F'''output_blocks.{current_layer}.0''' _UpperCamelCase : str = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : List[Any] = F'''up_blocks.{i}.upsamplers.0''' _UpperCamelCase : Dict = F'''output_blocks.{current_layer-1}.1''' _UpperCamelCase : Optional[int] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _UpperCamelCase : str = F'''up_blocks.{i}.resnets.{j}''' _UpperCamelCase : Union[str, Any] = F'''output_blocks.{current_layer}.0''' _UpperCamelCase : Optional[int] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) _UpperCamelCase : int = F'''up_blocks.{i}.attentions.{j}''' _UpperCamelCase : List[Any] = F'''output_blocks.{current_layer}.1''' _UpperCamelCase : Optional[int] = convert_attention( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : List[Any] = F'''up_blocks.{i}.upsamplers.0''' _UpperCamelCase : Union[str, Any] = F'''output_blocks.{current_layer-1}.2''' _UpperCamelCase : List[str] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : List[Any] = checkpoint['out.0.weight'] _UpperCamelCase : str = checkpoint['out.0.bias'] _UpperCamelCase : int = checkpoint['out.2.weight'] _UpperCamelCase : List[Any] = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = strabool(args.class_cond) lowerCAmelCase__ = os.path.basename(args.unet_path) print(f'Checkpoint: {ckpt_name}') # Get U-Net config if "imagenet64" in ckpt_name: lowerCAmelCase__ = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCAmelCase__ = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: lowerCAmelCase__ = TEST_UNET_CONFIG else: raise ValueError(f'Checkpoint type {ckpt_name} is not currently supported.') if not args.class_cond: lowerCAmelCase__ = None lowerCAmelCase__ = con_pt_to_diffuser(args.unet_path, unet_config) lowerCAmelCase__ = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: lowerCAmelCase__ = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: lowerCAmelCase__ = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCAmelCase__ = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f'Checkpoint type {ckpt_name} is not currently supported.') lowerCAmelCase__ = CMStochasticIterativeScheduler(**scheduler_config) lowerCAmelCase__ = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
648
0
from itertools import product def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> list[int]: '''simple docstring''' _UpperCamelCase : int = sides_number _UpperCamelCase : List[Any] = max_face_number * dice_number _UpperCamelCase : Any = [0] * (max_total + 1) _UpperCamelCase : Dict = 1 _UpperCamelCase : int = range(UpperCAmelCase_ , max_face_number + 1 ) for dice_numbers in product(UpperCAmelCase_ , repeat=UpperCAmelCase_ ): _UpperCamelCase : str = sum(UpperCAmelCase_ ) totals_frequencies[total] += 1 return totals_frequencies def lowerCamelCase_ ( ) -> float: '''simple docstring''' _UpperCamelCase : Optional[int] = total_frequency_distribution( sides_number=4 , dice_number=9 ) _UpperCamelCase : Optional[Any] = total_frequency_distribution( sides_number=6 , dice_number=6 ) _UpperCamelCase : Dict = 0 _UpperCamelCase : Tuple = 9 _UpperCamelCase : int = 4 * 9 _UpperCamelCase : Union[str, Any] = 6 for peter_total in range(UpperCAmelCase_ , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _UpperCamelCase : int = (4**9) * (6**6) _UpperCamelCase : Tuple = peter_wins_count / total_games_number _UpperCamelCase : str = round(UpperCAmelCase_ , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f'{solution() = }')
704
def lowerCamelCase_ ( UpperCAmelCase_ : list ) -> list: '''simple docstring''' if len(UpperCAmelCase_ ) <= 1: return [tuple(UpperCAmelCase_ )] _UpperCamelCase : List[Any] = [] def generate(UpperCAmelCase_ : int , UpperCAmelCase_ : list ): _UpperCamelCase : Optional[int] = [0] * n res.append(tuple(UpperCAmelCase_ ) ) _UpperCamelCase : List[Any] = 0 while i < n: if c[i] < i: if i % 2 == 0: _UpperCamelCase , _UpperCamelCase : List[str] = arr[i], arr[0] else: _UpperCamelCase , _UpperCamelCase : List[str] = arr[i], arr[c[i]] res.append(tuple(UpperCAmelCase_ ) ) c[i] += 1 _UpperCamelCase : Tuple = 0 else: _UpperCamelCase : Tuple = 0 i += 1 generate(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) return res if __name__ == "__main__": lowerCAmelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCAmelCase__ = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
648
0
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class lowercase ( _lowercase ): """simple docstring""" def __init__( self , *__snake_case , **__snake_case): warnings.warn( 'The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PerceiverImageProcessor instead.' , __snake_case , ) super().__init__(*__snake_case , **__snake_case)
705
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = [ ["""attention""", """attn"""], ["""encoder_attention""", """encoder_attn"""], ["""q_lin""", """q_proj"""], ["""k_lin""", """k_proj"""], ["""v_lin""", """v_proj"""], ["""out_lin""", """out_proj"""], ["""norm_embeddings""", """layernorm_embedding"""], ["""position_embeddings""", """embed_positions"""], ["""embeddings""", """embed_tokens"""], ["""ffn.lin""", """fc"""], ] def lowerCamelCase_ ( UpperCAmelCase_ : List[Any] ) -> Optional[int]: '''simple docstring''' if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: _UpperCamelCase : List[Any] = k.replace(UpperCAmelCase_ , UpperCAmelCase_ ) if k.startswith('encoder' ): _UpperCamelCase : Optional[Any] = k.replace('.attn' , '.self_attn' ) _UpperCamelCase : Optional[int] = k.replace('norm1' , 'self_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): _UpperCamelCase : Any = k.replace('norm1' , 'self_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm2' , 'encoder_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm3' , 'final_layer_norm' ) return k def lowerCamelCase_ ( UpperCAmelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Union[str, Any] = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: _UpperCamelCase : Optional[int] = sd.pop(UpperCAmelCase_ ) _UpperCamelCase : str = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd _UpperCamelCase : Tuple = v lowerCAmelCase__ = ["""START"""] @torch.no_grad() def lowerCamelCase_ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ) -> List[str]: '''simple docstring''' _UpperCamelCase : Optional[Any] = torch.load(UpperCAmelCase_ , map_location='cpu' ) _UpperCamelCase : int = model['model'] _UpperCamelCase : List[Any] = BlenderbotConfig.from_json_file(UpperCAmelCase_ ) _UpperCamelCase : Any = BlenderbotForConditionalGeneration(UpperCAmelCase_ ) _UpperCamelCase : int = m.model.state_dict().keys() _UpperCamelCase : Union[str, Any] = [] _UpperCamelCase : int = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue _UpperCamelCase : Optional[int] = rename_state_dict_key(UpperCAmelCase_ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: _UpperCamelCase : int = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(UpperCAmelCase_ ) m.model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) m.half() m.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("""--src_path""", type=str, help="""like blenderbot-model.bin""") parser.add_argument("""--save_dir""", default="""hf_blenderbot""", type=str, help="""Where to save converted model.""") parser.add_argument( """--hf_config_json""", default="""blenderbot-3b-config.json""", type=str, help="""Path to config to use""" ) lowerCAmelCase__ = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
648
0
import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py lowerCAmelCase__ = """src/transformers""" lowerCAmelCase__ = """docs/source/en""" lowerCAmelCase__ = """.""" def lowerCamelCase_ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] ) -> Dict: '''simple docstring''' with open(UpperCAmelCase_ , 'r' , encoding='utf-8' , newline='\n' ) as f: _UpperCamelCase : Optional[Any] = f.readlines() # Find the start prompt. _UpperCamelCase : Dict = 0 while not lines[start_index].startswith(UpperCAmelCase_ ): start_index += 1 start_index += 1 _UpperCamelCase : int = start_index while not lines[end_index].startswith(UpperCAmelCase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | lowerCAmelCase__ = """Model|Encoder|Decoder|ForConditionalGeneration""" # Regexes that match TF/Flax/PT model names. lowerCAmelCase__ = re.compile(R"""TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") lowerCAmelCase__ = re.compile(R"""Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowerCAmelCase__ = re.compile(R"""(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase__ = direct_transformers_import(TRANSFORMERS_PATH) def lowerCamelCase_ ( UpperCAmelCase_ : List[str] ) -> List[str]: '''simple docstring''' _UpperCamelCase : Tuple = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)' , UpperCAmelCase_ ) return [m.group(0 ) for m in matches] def lowerCamelCase_ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] ) -> str: '''simple docstring''' _UpperCamelCase : Union[str, Any] = 2 if text == '✅' or text == '❌' else len(UpperCAmelCase_ ) _UpperCamelCase : Any = (width - text_length) // 2 _UpperCamelCase : Any = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowerCamelCase_ ( ) -> List[Any]: '''simple docstring''' _UpperCamelCase : Dict = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _UpperCamelCase : List[Any] = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } _UpperCamelCase : Optional[int] = {name: config.replace('Config' , '' ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. _UpperCamelCase : Optional[Any] = collections.defaultdict(UpperCAmelCase_ ) _UpperCamelCase : List[str] = collections.defaultdict(UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = collections.defaultdict(UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = collections.defaultdict(UpperCAmelCase_ ) _UpperCamelCase : Union[str, Any] = collections.defaultdict(UpperCAmelCase_ ) # Let's lookup through all transformers object (once). for attr_name in dir(UpperCAmelCase_ ): _UpperCamelCase : int = None if attr_name.endswith('Tokenizer' ): _UpperCamelCase : Optional[int] = slow_tokenizers _UpperCamelCase : Any = attr_name[:-9] elif attr_name.endswith('TokenizerFast' ): _UpperCamelCase : int = fast_tokenizers _UpperCamelCase : Optional[Any] = attr_name[:-1_3] elif _re_tf_models.match(UpperCAmelCase_ ) is not None: _UpperCamelCase : Tuple = tf_models _UpperCamelCase : Union[str, Any] = _re_tf_models.match(UpperCAmelCase_ ).groups()[0] elif _re_flax_models.match(UpperCAmelCase_ ) is not None: _UpperCamelCase : List[Any] = flax_models _UpperCamelCase : Union[str, Any] = _re_flax_models.match(UpperCAmelCase_ ).groups()[0] elif _re_pt_models.match(UpperCAmelCase_ ) is not None: _UpperCamelCase : Any = pt_models _UpperCamelCase : Optional[int] = _re_pt_models.match(UpperCAmelCase_ ).groups()[0] if lookup_dict is not None: while len(UpperCAmelCase_ ) > 0: if attr_name in model_name_to_prefix.values(): _UpperCamelCase : Optional[Any] = True break # Try again after removing the last word in the name _UpperCamelCase : Any = ''.join(camel_case_split(UpperCAmelCase_ )[:-1] ) # Let's build that table! _UpperCamelCase : Optional[Any] = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) _UpperCamelCase : Any = ['Model', 'Tokenizer slow', 'Tokenizer fast', 'PyTorch support', 'TensorFlow support', 'Flax Support'] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). _UpperCamelCase : List[Any] = [len(UpperCAmelCase_ ) + 2 for c in columns] _UpperCamelCase : Optional[int] = max([len(UpperCAmelCase_ ) for name in model_names] ) + 2 # Build the table per se _UpperCamelCase : Optional[Any] = '|' + '|'.join([_center_text(UpperCAmelCase_ , UpperCAmelCase_ ) for c, w in zip(UpperCAmelCase_ , UpperCAmelCase_ )] ) + '|\n' # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([':' + '-' * (w - 2) + ':' for w in widths] ) + "|\n" _UpperCamelCase : str = {True: '✅', False: '❌'} for name in model_names: _UpperCamelCase : Tuple = model_name_to_prefix[name] _UpperCamelCase : int = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(UpperCAmelCase_ , UpperCAmelCase_ ) for l, w in zip(UpperCAmelCase_ , UpperCAmelCase_ )] ) + "|\n" return table def lowerCamelCase_ ( UpperCAmelCase_ : Optional[int]=False ) -> Tuple: '''simple docstring''' _UpperCamelCase : str = _find_text_in_file( filename=os.path.join(UpperCAmelCase_ , 'index.md' ) , start_prompt='<!--This table is updated automatically from the auto modules' , end_prompt='<!-- End table-->' , ) _UpperCamelCase : Union[str, Any] = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(UpperCAmelCase_ , 'index.md' ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( 'The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.' ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") lowerCAmelCase__ = parser.parse_args() check_model_table(args.fix_and_overwrite)
706
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer lowerCAmelCase__ = ["""bert-base-uncased""", """bert-base-cased"""] lowerCAmelCase__ = """hf-internal-testing/tiny-bert-tf-only""" if is_tf_available(): class lowercase ( tf.keras.Model ): """simple docstring""" def __init__( self , __snake_case): super().__init__() _UpperCamelCase : List[Any] = tokenizer _UpperCamelCase : List[Any] = AutoConfig.from_pretrained(__snake_case) _UpperCamelCase : Dict = TFAutoModel.from_config(__snake_case) def A__ ( self , __snake_case): _UpperCamelCase : Any = self.tokenizer(__snake_case) _UpperCamelCase : Dict = self.bert(**__snake_case) return out["pooler_output"] @require_tf @require_tensorflow_text class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self): super().setUp() _UpperCamelCase : Optional[Any] = [ BertTokenizer.from_pretrained(__snake_case) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false _UpperCamelCase : Optional[Any] = [TFBertTokenizer.from_pretrained(__snake_case) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(__snake_case , use_fast_bert_tokenizer=__snake_case) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers) == len(self.tf_tokenizers) _UpperCamelCase : Optional[Any] = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] _UpperCamelCase : Dict = list(zip(self.test_sentences , self.test_sentences[::-1])) def A__ ( self): for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers): for test_inputs in (self.test_sentences, self.paired_sentences): _UpperCamelCase : List[str] = tokenizer(__snake_case , return_tensors='tf' , padding='longest') _UpperCamelCase : Tuple = tf_tokenizer(__snake_case) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape)) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa) == tf_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Tuple = tf_tokenizer(self.paired_sentences) _UpperCamelCase : Optional[Any] = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa) == separated_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Tuple = tf.function(__snake_case) for test_inputs in (self.test_sentences, self.paired_sentences): _UpperCamelCase : Optional[int] = tf.constant(__snake_case) _UpperCamelCase : Union[str, Any] = compiled_tokenizer(__snake_case) _UpperCamelCase : Tuple = tf_tokenizer(__snake_case) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Any = ModelToSave(tokenizer=__snake_case) _UpperCamelCase : Any = tf.convert_to_tensor(self.test_sentences) _UpperCamelCase : Union[str, Any] = model(__snake_case) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _UpperCamelCase : int = Path(__snake_case) / 'saved.model' model.save(__snake_case) _UpperCamelCase : Optional[int] = tf.keras.models.load_model(__snake_case) _UpperCamelCase : int = loaded_model(__snake_case) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output)) , 1e-5)
648
0
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def lowerCamelCase_ ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple ) -> str: '''simple docstring''' _UpperCamelCase : Union[str, Any] = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''encoder.deit.blocks.{i}.norm1.weight''', F'''encoder.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''encoder.deit.blocks.{i}.norm1.bias''', F'''encoder.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.attn.proj.weight''', F'''encoder.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.attn.proj.bias''', F'''encoder.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.norm2.weight''', F'''encoder.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''encoder.deit.blocks.{i}.norm2.bias''', F'''encoder.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.mlp.fc1.weight''', F'''encoder.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.mlp.fc1.bias''', F'''encoder.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.mlp.fc2.weight''', F'''encoder.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''encoder.deit.blocks.{i}.mlp.fc2.bias''', F'''encoder.encoder.layer.{i}.output.dense.bias''') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('encoder.deit.cls_token', 'encoder.embeddings.cls_token'), ('encoder.deit.pos_embed', 'encoder.embeddings.position_embeddings'), ('encoder.deit.patch_embed.proj.weight', 'encoder.embeddings.patch_embeddings.projection.weight'), ('encoder.deit.patch_embed.proj.bias', 'encoder.embeddings.patch_embeddings.projection.bias'), ('encoder.deit.norm.weight', 'encoder.layernorm.weight'), ('encoder.deit.norm.bias', 'encoder.layernorm.bias'), ] ) return rename_keys def lowerCamelCase_ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : int ) -> Tuple: '''simple docstring''' for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) _UpperCamelCase : Dict = state_dict.pop(F'''encoder.deit.blocks.{i}.attn.qkv.weight''' ) _UpperCamelCase : List[Any] = in_proj_weight[ : encoder_config.hidden_size, : ] _UpperCamelCase : Optional[Any] = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] _UpperCamelCase : Union[str, Any] = in_proj_weight[ -encoder_config.hidden_size :, : ] def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : int ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase : Optional[Any] = dct.pop(UpperCAmelCase_ ) _UpperCamelCase : int = val def lowerCamelCase_ ( UpperCAmelCase_ : Dict ) -> str: '''simple docstring''' if "handwritten" in checkpoint_url: _UpperCamelCase : str = 'https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: _UpperCamelCase : List[Any] = 'https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg' _UpperCamelCase : Optional[Any] = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ).convert('RGB' ) return im @torch.no_grad() def lowerCamelCase_ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int ) -> Optional[int]: '''simple docstring''' _UpperCamelCase : Tuple = ViTConfig(image_size=3_8_4 , qkv_bias=UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: _UpperCamelCase : Optional[Any] = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder _UpperCamelCase : Any = 1_0_2_4 _UpperCamelCase : Union[str, Any] = 4_0_9_6 _UpperCamelCase : int = 2_4 _UpperCamelCase : List[str] = 1_6 _UpperCamelCase : Optional[Any] = 1_0_2_4 else: raise ValueError('Should either find \'base\' or \'large\' in checkpoint URL' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: _UpperCamelCase : Optional[Any] = False _UpperCamelCase : List[Any] = 'relu' _UpperCamelCase : List[Any] = 1_0_2_4 _UpperCamelCase : str = True _UpperCamelCase : Dict = False _UpperCamelCase : Any = False # load HuggingFace model _UpperCamelCase : str = ViTModel(UpperCAmelCase_ , add_pooling_layer=UpperCAmelCase_ ) _UpperCamelCase : Union[str, Any] = TrOCRForCausalLM(UpperCAmelCase_ ) _UpperCamelCase : Dict = VisionEncoderDecoderModel(encoder=UpperCAmelCase_ , decoder=UpperCAmelCase_ ) model.eval() # load state_dict of original model, rename some keys _UpperCamelCase : int = torch.hub.load_state_dict_from_url(UpperCAmelCase_ , map_location='cpu' , check_hash=UpperCAmelCase_ )['model'] _UpperCamelCase : List[Any] = create_rename_keys(UpperCAmelCase_ , UpperCAmelCase_ ) for src, dest in rename_keys: rename_key(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) read_in_q_k_v(UpperCAmelCase_ , UpperCAmelCase_ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): _UpperCamelCase : List[Any] = state_dict.pop(UpperCAmelCase_ ) if key.startswith('decoder' ) and "output_projection" not in key: _UpperCamelCase : List[str] = val else: _UpperCamelCase : Optional[Any] = val # load state dict model.load_state_dict(UpperCAmelCase_ ) # Check outputs on an image _UpperCamelCase : List[Any] = ViTImageProcessor(size=encoder_config.image_size ) _UpperCamelCase : Optional[Any] = RobertaTokenizer.from_pretrained('roberta-large' ) _UpperCamelCase : Optional[Any] = TrOCRProcessor(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Dict = processor(images=prepare_img(UpperCAmelCase_ ) , return_tensors='pt' ).pixel_values # verify logits _UpperCamelCase : int = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) _UpperCamelCase : Tuple = model(pixel_values=UpperCAmelCase_ , decoder_input_ids=UpperCAmelCase_ ) _UpperCamelCase : Any = outputs.logits _UpperCamelCase : Optional[Any] = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: _UpperCamelCase : Any = torch.tensor( [-1.4_5_0_2, -4.6_6_8_3, -0.5_3_4_7, -2.9_2_9_1, 9.1_4_3_5, -3.0_5_7_1, 8.9_7_6_4, 1.7_5_6_0, 8.7_3_5_8, -1.5_3_1_1] ) elif "trocr-large-handwritten" in checkpoint_url: _UpperCamelCase : Dict = torch.tensor( [-2.6_4_3_7, -1.3_1_2_9, -2.2_5_9_6, -5.3_4_5_5, 6.3_5_3_9, 1.7_6_0_4, 5.4_9_9_1, 1.4_7_0_2, 5.6_1_1_3, 2.0_1_7_0] ) elif "trocr-base-printed" in checkpoint_url: _UpperCamelCase : List[str] = torch.tensor( [-5.6_8_1_6, -5.8_3_8_8, 1.1_3_9_8, -6.9_0_3_4, 6.8_5_0_5, -2.4_3_9_3, 1.2_2_8_4, -1.0_2_3_2, -1.9_6_6_1, -3.9_2_1_0] ) elif "trocr-large-printed" in checkpoint_url: _UpperCamelCase : Optional[Any] = torch.tensor( [-6.0_1_6_2, -7.0_9_5_9, 4.4_1_5_5, -5.1_0_6_3, 7.0_4_6_8, -3.1_6_3_1, 2.6_4_6_6, -0.3_0_8_1, -0.8_1_0_6, -1.7_5_3_5] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , UpperCAmelCase_ , atol=1e-3 ), "First elements of logits not as expected" Path(UpperCAmelCase_ ).mkdir(exist_ok=UpperCAmelCase_ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase_ ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) lowerCAmelCase__ = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
707
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ = { """configuration_canine""": ["""CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CanineConfig"""], """tokenization_canine""": ["""CanineTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """CANINE_PRETRAINED_MODEL_ARCHIVE_LIST""", """CanineForMultipleChoice""", """CanineForQuestionAnswering""", """CanineForSequenceClassification""", """CanineForTokenClassification""", """CanineLayer""", """CanineModel""", """CaninePreTrainedModel""", """load_tf_weights_in_canine""", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
648
0
from __future__ import annotations from collections.abc import Iterator class lowercase : """simple docstring""" def __init__( self , __snake_case): _UpperCamelCase : Tuple = value _UpperCamelCase : Node | None = None _UpperCamelCase : Node | None = None class lowercase : """simple docstring""" def __init__( self , __snake_case): _UpperCamelCase : Optional[Any] = tree def A__ ( self , __snake_case): if node is None: return 0 return node.value + ( self.depth_first_search(node.left) + self.depth_first_search(node.right) ) def __iter__( self): yield self.depth_first_search(self.tree) if __name__ == "__main__": import doctest doctest.testmod()
708
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case=3 , __snake_case=32 , __snake_case=3 , __snake_case=10 , __snake_case=[8, 16, 32, 64] , __snake_case=[1, 1, 2, 1] , __snake_case=True , __snake_case=True , __snake_case="relu" , __snake_case=3 , __snake_case=None , __snake_case=["stage2", "stage3", "stage4"] , __snake_case=[2, 3, 4] , __snake_case=1 , ): _UpperCamelCase : List[Any] = parent _UpperCamelCase : Dict = batch_size _UpperCamelCase : Optional[int] = image_size _UpperCamelCase : str = num_channels _UpperCamelCase : Optional[Any] = embeddings_size _UpperCamelCase : Tuple = hidden_sizes _UpperCamelCase : Dict = depths _UpperCamelCase : str = is_training _UpperCamelCase : Optional[int] = use_labels _UpperCamelCase : str = hidden_act _UpperCamelCase : Optional[int] = num_labels _UpperCamelCase : Optional[int] = scope _UpperCamelCase : Tuple = len(__snake_case) _UpperCamelCase : Dict = out_features _UpperCamelCase : Union[str, Any] = out_indices _UpperCamelCase : int = num_groups def A__ ( self): _UpperCamelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase : str = None if self.use_labels: _UpperCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels) _UpperCamelCase : str = self.get_config() return config, pixel_values, labels def A__ ( self): return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : str = BitModel(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[Any] = model(__snake_case) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Dict = self.num_labels _UpperCamelCase : Dict = BitForImageClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Dict = model(__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[Any] = BitBackbone(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = model(__snake_case) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:]) # verify backbone works with out_features=None _UpperCamelCase : Any = None _UpperCamelCase : str = BitBackbone(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Any = model(__snake_case) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , 1) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[-1], 1, 1]) # verify channels self.parent.assertEqual(len(model.channels) , 1) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]]) def A__ ( self): _UpperCamelCase : Optional[int] = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : int = config_and_inputs _UpperCamelCase : int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () a__ = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False a__ = False def A__ ( self): _UpperCamelCase : Dict = BitModelTester(self) _UpperCamelCase : Optional[Any] = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case) def A__ ( self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self): return @unittest.skip(reason='Bit does not output attentions') def A__ ( self): pass @unittest.skip(reason='Bit does not use inputs_embeds') def A__ ( self): pass @unittest.skip(reason='Bit does not support input and output embeddings') def A__ ( self): pass def A__ ( self): _UpperCamelCase , _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : int = model_class(__snake_case) _UpperCamelCase : List[Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : Optional[int] = [*signature.parameters.keys()] _UpperCamelCase : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __snake_case) def A__ ( self): _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case) def A__ ( self): _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__snake_case) def A__ ( self): _UpperCamelCase , _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Union[str, Any] = model_class(config=__snake_case) for name, module in model.named_modules(): if isinstance(__snake_case , (nn.BatchNormad, nn.GroupNorm)): self.assertTrue( torch.all(module.weight == 1) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def A__ ( self): def check_hidden_states_output(__snake_case , __snake_case , __snake_case): _UpperCamelCase : str = model_class(__snake_case) model.to(__snake_case) model.eval() with torch.no_grad(): _UpperCamelCase : Union[str, Any] = model(**self._prepare_for_class(__snake_case , __snake_case)) _UpperCamelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase : str = self.model_tester.num_stages self.assertEqual(len(__snake_case) , expected_num_stages + 1) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCamelCase , _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : List[str] = ['preactivation', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _UpperCamelCase : Any = layer_type _UpperCamelCase : Tuple = True check_hidden_states_output(__snake_case , __snake_case , __snake_case) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase : List[str] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case) @unittest.skip(reason='Bit does not use feedforward chunking') def A__ ( self): pass def A__ ( self): _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case) @slow def A__ ( self): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : Optional[Any] = BitModel.from_pretrained(__snake_case) self.assertIsNotNone(__snake_case) def lowerCamelCase_ ( ) -> Optional[int]: '''simple docstring''' _UpperCamelCase : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def A__ ( self): _UpperCamelCase : Optional[Any] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(__snake_case) _UpperCamelCase : str = self.default_image_processor _UpperCamelCase : List[str] = prepare_img() _UpperCamelCase : int = image_processor(images=__snake_case , return_tensors='pt').to(__snake_case) # forward pass with torch.no_grad(): _UpperCamelCase : Any = model(**__snake_case) # verify the logits _UpperCamelCase : Dict = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , __snake_case) _UpperCamelCase : Optional[int] = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]]).to(__snake_case) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1e-4)) @require_torch class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" a__ = (BitBackbone,) if is_torch_available() else () a__ = BitConfig a__ = False def A__ ( self): _UpperCamelCase : List[str] = BitModelTester(self)
648
0
'''simple docstring''' import cmath import math def lowerCamelCase_ ( UpperCAmelCase_ : float , UpperCAmelCase_ : float , UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> complex: '''simple docstring''' _UpperCamelCase : Dict = math.radians(UpperCAmelCase_ ) _UpperCamelCase : Tuple = math.radians(UpperCAmelCase_ ) # Convert voltage and current to rectangular form _UpperCamelCase : Dict = cmath.rect(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Union[str, Any] = cmath.rect(UpperCAmelCase_ , UpperCAmelCase_ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
709
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowerCAmelCase__ = numpy.array([0, 0]) lowerCAmelCase__ = numpy.array([0.5, 0.8_66_02_54]) lowerCAmelCase__ = numpy.array([1, 0]) lowerCAmelCase__ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] , UpperCAmelCase_ : int ) -> list[numpy.ndarray]: '''simple docstring''' _UpperCamelCase : Tuple = initial_vectors for _ in range(UpperCAmelCase_ ): _UpperCamelCase : str = iteration_step(UpperCAmelCase_ ) return vectors def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] ) -> list[numpy.ndarray]: '''simple docstring''' _UpperCamelCase : int = [] for i, start_vector in enumerate(vectors[:-1] ): _UpperCamelCase : Union[str, Any] = vectors[i + 1] new_vectors.append(UpperCAmelCase_ ) _UpperCamelCase : Tuple = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def lowerCamelCase_ ( UpperCAmelCase_ : numpy.ndarray , UpperCAmelCase_ : float ) -> numpy.ndarray: '''simple docstring''' _UpperCamelCase : str = numpy.radians(UpperCAmelCase_ ) _UpperCamelCase , _UpperCamelCase : Optional[Any] = numpy.cos(UpperCAmelCase_ ), numpy.sin(UpperCAmelCase_ ) _UpperCamelCase : Any = numpy.array(((c, -s), (s, c)) ) return numpy.dot(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] ) -> None: '''simple docstring''' _UpperCamelCase : str = plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _UpperCamelCase , _UpperCamelCase : Dict = zip(*UpperCAmelCase_ ) plt.plot(UpperCAmelCase_ , UpperCAmelCase_ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
648
0
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
710
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCAmelCase__ = abspath(join(dirname(__file__), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def lowerCamelCase_ ( UpperCAmelCase_ : Any ) -> Union[str, Any]: '''simple docstring''' config.addinivalue_line( 'markers' , 'is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested' ) config.addinivalue_line( 'markers' , 'is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested' ) config.addinivalue_line('markers' , 'is_pipeline_test: mark test to run only when pipelines are tested' ) config.addinivalue_line('markers' , 'is_staging_test: mark test to run only in the staging environment' ) config.addinivalue_line('markers' , 'accelerate_tests: mark test that require accelerate' ) config.addinivalue_line('markers' , 'tool_tests: mark the tool tests that are run on their specific schedule' ) def lowerCamelCase_ ( UpperCAmelCase_ : Optional[int] ) -> List[Any]: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : Any ) -> List[Any]: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main _UpperCamelCase : str = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(UpperCAmelCase_ , id=UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict ) -> Tuple: '''simple docstring''' if exitstatus == 5: _UpperCamelCase : List[Any] = 0 # Doctest custom flag to ignore output. lowerCAmelCase__ = doctest.register_optionflag("""IGNORE_RESULT""") lowerCAmelCase__ = doctest.OutputChecker class lowercase ( _lowercase ): """simple docstring""" def A__ ( self , __snake_case , __snake_case , __snake_case): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , __snake_case , __snake_case , __snake_case) lowerCAmelCase__ = CustomOutputChecker lowerCAmelCase__ = HfDoctestModule lowerCAmelCase__ = HfDocTestParser
648
0
'''simple docstring''' import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case="resnet50" , __snake_case=3 , __snake_case=32 , __snake_case=3 , __snake_case=True , __snake_case=True , ): _UpperCamelCase : Optional[Any] = parent _UpperCamelCase : Dict = out_indices if out_indices is not None else [4] _UpperCamelCase : Optional[Any] = stage_names _UpperCamelCase : int = out_features _UpperCamelCase : Any = backbone _UpperCamelCase : Dict = batch_size _UpperCamelCase : Union[str, Any] = image_size _UpperCamelCase : List[Any] = num_channels _UpperCamelCase : Any = use_pretrained_backbone _UpperCamelCase : Dict = is_training def A__ ( self): _UpperCamelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase : Optional[Any] = self.get_config() return config, pixel_values def A__ ( self): return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def A__ ( self , __snake_case , __snake_case): _UpperCamelCase : Optional[int] = TimmBackbone(config=__snake_case) model.to(__snake_case) model.eval() with torch.no_grad(): _UpperCamelCase : Any = model(__snake_case) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def A__ ( self): _UpperCamelCase : str = self.prepare_config_and_inputs() _UpperCamelCase : int = config_and_inputs _UpperCamelCase : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class lowercase ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = (TimmBackbone,) if is_torch_available() else () a__ = {"feature-extraction": TimmBackbone} if is_torch_available() else {} a__ = False a__ = False a__ = False a__ = False def A__ ( self): _UpperCamelCase : List[str] = TimmBackboneModelTester(self) _UpperCamelCase : List[Any] = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case) def A__ ( self): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self): _UpperCamelCase : int = 'resnet18' _UpperCamelCase : Tuple = 'microsoft/resnet-18' _UpperCamelCase : int = AutoBackbone.from_pretrained(__snake_case , use_timm_backbone=__snake_case) _UpperCamelCase : List[Any] = AutoBackbone.from_pretrained(__snake_case) self.assertEqual(len(timm_model.out_features) , len(transformers_model.out_features)) self.assertEqual(len(timm_model.stage_names) , len(transformers_model.stage_names)) self.assertEqual(timm_model.channels , transformers_model.channels) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,)) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names) - 1]) _UpperCamelCase : Optional[Any] = AutoBackbone.from_pretrained(__snake_case , use_timm_backbone=__snake_case , out_indices=[1, 2, 3]) _UpperCamelCase : Dict = AutoBackbone.from_pretrained(__snake_case , out_indices=[1, 2, 3]) self.assertEqual(timm_model.out_indices , transformers_model.out_indices) self.assertEqual(len(timm_model.out_features) , len(transformers_model.out_features)) self.assertEqual(timm_model.channels , transformers_model.channels) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking') def A__ ( self): pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute') def A__ ( self): pass @unittest.skip('TimmBackbone initialization is managed on the timm side') def A__ ( self): pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds') def A__ ( self): pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds') def A__ ( self): pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint') def A__ ( self): pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def A__ ( self): pass @unittest.skip('model weights aren\'t tied in TimmBackbone.') def A__ ( self): pass @unittest.skip('model weights aren\'t tied in TimmBackbone.') def A__ ( self): pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def A__ ( self): pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def A__ ( self): pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.') def A__ ( self): pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.') def A__ ( self): pass @unittest.skip('Safetensors is not supported by timm.') def A__ ( self): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def A__ ( self): pass def A__ ( self): _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : str = model_class(__snake_case) _UpperCamelCase : Dict = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : int = [*signature.parameters.keys()] _UpperCamelCase : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , __snake_case) def A__ ( self): _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : Dict = True _UpperCamelCase : int = self.has_attentions # no need to test all models as different heads yield the same functionality _UpperCamelCase : Any = self.all_model_classes[0] _UpperCamelCase : List[Any] = model_class(__snake_case) model.to(__snake_case) _UpperCamelCase : List[Any] = self._prepare_for_class(__snake_case , __snake_case) _UpperCamelCase : Optional[Any] = model(**__snake_case) _UpperCamelCase : int = outputs[0][-1] # Encoder-/Decoder-only models _UpperCamelCase : List[Any] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: _UpperCamelCase : List[Any] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__snake_case) self.assertIsNotNone(hidden_states.grad) if self.has_attentions: self.assertIsNotNone(attentions.grad) def A__ ( self): _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : List[Any] = model_class(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : str = model(**__snake_case) self.assertEqual(len(result.feature_maps) , len(config.out_indices)) self.assertEqual(len(model.channels) , len(config.out_indices)) # Check output of last stage is taken if out_features=None, out_indices=None _UpperCamelCase : int = copy.deepcopy(__snake_case) _UpperCamelCase : str = None _UpperCamelCase : Optional[Any] = model_class(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Tuple = model(**__snake_case) self.assertEqual(len(result.feature_maps) , 1) self.assertEqual(len(model.channels) , 1) # Check backbone can be initialized with fresh weights _UpperCamelCase : Union[str, Any] = copy.deepcopy(__snake_case) _UpperCamelCase : Optional[int] = False _UpperCamelCase : Optional[int] = model_class(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Any = model(**__snake_case)
711
lowerCAmelCase__ = range(2, 2_0 + 1) lowerCAmelCase__ = [1_0**k for k in range(ks[-1] + 1)] lowerCAmelCase__ = {} def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int ) -> Tuple: '''simple docstring''' _UpperCamelCase : Dict = sum(a_i[j] for j in range(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) ) _UpperCamelCase : Optional[int] = sum(a_i[j] * base[j] for j in range(min(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) ) ) _UpperCamelCase , _UpperCamelCase : Dict = 0, 0 _UpperCamelCase : Optional[int] = n - i _UpperCamelCase : Union[str, Any] = memo.get(UpperCAmelCase_ ) if sub_memo is not None: _UpperCamelCase : str = sub_memo.get(UpperCAmelCase_ ) if jumps is not None and len(UpperCAmelCase_ ) > 0: # find and make the largest jump without going over _UpperCamelCase : str = -1 for _k in range(len(UpperCAmelCase_ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _UpperCamelCase : Optional[Any] = _k break if max_jump >= 0: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = jumps[max_jump] # since the difference between jumps is cached, add c _UpperCamelCase : Tuple = diff + c for j in range(min(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) ): _UpperCamelCase , _UpperCamelCase : Dict = divmod(UpperCAmelCase_ , 1_0 ) if new_c > 0: add(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) else: _UpperCamelCase : Union[str, Any] = [] else: _UpperCamelCase : List[Any] = {c: []} _UpperCamelCase : Optional[int] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _UpperCamelCase , _UpperCamelCase : Optional[Any] = next_term(UpperCAmelCase_ , k - 1 , i + dn , UpperCAmelCase_ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _UpperCamelCase , _UpperCamelCase : Any = compute(UpperCAmelCase_ , UpperCAmelCase_ , i + dn , UpperCAmelCase_ ) diff += _diff dn += terms_jumped _UpperCamelCase : List[str] = sub_memo[c] # keep jumps sorted by # of terms skipped _UpperCamelCase : Union[str, Any] = 0 while j < len(UpperCAmelCase_ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCAmelCase_ , (diff, dn, k) ) return (diff, dn) def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any ) -> Dict: '''simple docstring''' if i >= n: return 0, i if k > len(UpperCAmelCase_ ): a_i.extend([0 for _ in range(k - len(UpperCAmelCase_ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _UpperCamelCase : Any = i _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Any = 0, 0, 0 for j in range(len(UpperCAmelCase_ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _UpperCamelCase : Union[str, Any] = ds_c + ds_b diff += addend _UpperCamelCase : Union[str, Any] = 0 for j in range(UpperCAmelCase_ ): _UpperCamelCase : Union[str, Any] = a_i[j] + addend _UpperCamelCase , _UpperCamelCase : Any = divmod(UpperCAmelCase_ , 1_0 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return diff, i - start_i def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any ) -> Dict: '''simple docstring''' for j in range(UpperCAmelCase_ , len(UpperCAmelCase_ ) ): _UpperCamelCase : List[str] = digits[j] + addend if s >= 1_0: _UpperCamelCase , _UpperCamelCase : Any = divmod(UpperCAmelCase_ , 1_0 ) _UpperCamelCase : Union[str, Any] = addend // 1_0 + quotient else: _UpperCamelCase : Dict = s _UpperCamelCase : Optional[Any] = addend // 1_0 if addend == 0: break while addend > 0: _UpperCamelCase , _UpperCamelCase : Dict = divmod(UpperCAmelCase_ , 1_0 ) digits.append(UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : int = 1_0**1_5 ) -> int: '''simple docstring''' _UpperCamelCase : Optional[Any] = [1] _UpperCamelCase : Optional[int] = 1 _UpperCamelCase : int = 0 while True: _UpperCamelCase , _UpperCamelCase : List[Any] = next_term(UpperCAmelCase_ , 2_0 , i + dn , UpperCAmelCase_ ) dn += terms_jumped if dn == n - i: break _UpperCamelCase : str = 0 for j in range(len(UpperCAmelCase_ ) ): a_n += digits[j] * 1_0**j return a_n if __name__ == "__main__": print(f'{solution() = }')
648
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {"""vocab_file""": """spiece.model"""} lowerCAmelCase__ = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", } } lowerCAmelCase__ = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } # Segments (not really needed) lowerCAmelCase__ = 0 lowerCAmelCase__ = 1 lowerCAmelCase__ = 2 lowerCAmelCase__ = 3 lowerCAmelCase__ = 4 class lowercase ( _lowercase ): """simple docstring""" a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = "left" def __init__( self , __snake_case , __snake_case=False , __snake_case=True , __snake_case=False , __snake_case="<s>" , __snake_case="</s>" , __snake_case="<unk>" , __snake_case="<sep>" , __snake_case="<pad>" , __snake_case="<cls>" , __snake_case="<mask>" , __snake_case=["<eop>", "<eod>"] , __snake_case = None , **__snake_case , ): # Mask token behave like a normal word, i.e. include the space before it _UpperCamelCase : str = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case) if isinstance(__snake_case , __snake_case) else mask_token _UpperCamelCase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__snake_case , remove_space=__snake_case , keep_accents=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , additional_special_tokens=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) _UpperCamelCase : Any = 3 _UpperCamelCase : List[Any] = do_lower_case _UpperCamelCase : int = remove_space _UpperCamelCase : Union[str, Any] = keep_accents _UpperCamelCase : List[str] = vocab_file _UpperCamelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(__snake_case) @property def A__ ( self): return len(self.sp_model) def A__ ( self): _UpperCamelCase : List[str] = {self.convert_ids_to_tokens(__snake_case): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self): _UpperCamelCase : Dict = self.__dict__.copy() _UpperCamelCase : str = None return state def __setstate__( self , __snake_case): _UpperCamelCase : str = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): _UpperCamelCase : Optional[Any] = {} _UpperCamelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def A__ ( self , __snake_case): if self.remove_space: _UpperCamelCase : Any = ' '.join(inputs.strip().split()) else: _UpperCamelCase : Optional[Any] = inputs _UpperCamelCase : str = outputs.replace('``' , '"').replace('\'\'' , '"') if not self.keep_accents: _UpperCamelCase : List[str] = unicodedata.normalize('NFKD' , __snake_case) _UpperCamelCase : Optional[int] = ''.join([c for c in outputs if not unicodedata.combining(__snake_case)]) if self.do_lower_case: _UpperCamelCase : Dict = outputs.lower() return outputs def A__ ( self , __snake_case): _UpperCamelCase : Any = self.preprocess_text(__snake_case) _UpperCamelCase : Dict = self.sp_model.encode(__snake_case , out_type=__snake_case) _UpperCamelCase : List[Any] = [] for piece in pieces: if len(__snake_case) > 1 and piece[-1] == str(',') and piece[-2].isdigit(): _UpperCamelCase : List[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(__snake_case , '')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: _UpperCamelCase : int = cur_pieces[1:] else: _UpperCamelCase : Optional[Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(__snake_case) else: new_pieces.append(__snake_case) return new_pieces def A__ ( self , __snake_case): return self.sp_model.PieceToId(__snake_case) def A__ ( self , __snake_case): return self.sp_model.IdToPiece(__snake_case) def A__ ( self , __snake_case): _UpperCamelCase : Optional[Any] = ''.join(__snake_case).replace(__snake_case , ' ').strip() return out_string def A__ ( self , __snake_case , __snake_case = False , __snake_case = None , __snake_case = True , **__snake_case , ): _UpperCamelCase : List[Any] = kwargs.pop('use_source_tokenizer' , __snake_case) _UpperCamelCase : Union[str, Any] = self.convert_ids_to_tokens(__snake_case , skip_special_tokens=__snake_case) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _UpperCamelCase : Optional[int] = [] _UpperCamelCase : Dict = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__snake_case)) _UpperCamelCase : List[Any] = [] sub_texts.append(__snake_case) else: current_sub_text.append(__snake_case) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__snake_case)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens _UpperCamelCase : Optional[Any] = ''.join(__snake_case) _UpperCamelCase : Any = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _UpperCamelCase : int = self.clean_up_tokenization(__snake_case) return clean_text else: return text def A__ ( self , __snake_case , __snake_case = None): _UpperCamelCase : Optional[Any] = [self.sep_token_id] _UpperCamelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def A__ ( self , __snake_case , __snake_case = None , __snake_case = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case) if token_ids_a is not None: return ([0] * len(__snake_case)) + [1] + ([0] * len(__snake_case)) + [1, 1] return ([0] * len(__snake_case)) + [1, 1] def A__ ( self , __snake_case , __snake_case = None): _UpperCamelCase : Optional[Any] = [self.sep_token_id] _UpperCamelCase : Any = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def A__ ( self , __snake_case , __snake_case = None): if not os.path.isdir(__snake_case): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return _UpperCamelCase : Tuple = os.path.join( __snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(__snake_case) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , __snake_case) elif not os.path.isfile(self.vocab_file): with open(__snake_case , 'wb') as fi: _UpperCamelCase : List[str] = self.sp_model.serialized_model_proto() fi.write(__snake_case) return (out_vocab_file,)
712
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowercase ( _lowercase ): """simple docstring""" a__ = "vit_mae" def __init__( self , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=2_24 , __snake_case=16 , __snake_case=3 , __snake_case=True , __snake_case=16 , __snake_case=5_12 , __snake_case=8 , __snake_case=20_48 , __snake_case=0.7_5 , __snake_case=False , **__snake_case , ): super().__init__(**__snake_case) _UpperCamelCase : Optional[int] = hidden_size _UpperCamelCase : Optional[int] = num_hidden_layers _UpperCamelCase : Tuple = num_attention_heads _UpperCamelCase : List[str] = intermediate_size _UpperCamelCase : str = hidden_act _UpperCamelCase : List[str] = hidden_dropout_prob _UpperCamelCase : List[Any] = attention_probs_dropout_prob _UpperCamelCase : str = initializer_range _UpperCamelCase : Any = layer_norm_eps _UpperCamelCase : int = image_size _UpperCamelCase : Any = patch_size _UpperCamelCase : List[Any] = num_channels _UpperCamelCase : Union[str, Any] = qkv_bias _UpperCamelCase : str = decoder_num_attention_heads _UpperCamelCase : Union[str, Any] = decoder_hidden_size _UpperCamelCase : Union[str, Any] = decoder_num_hidden_layers _UpperCamelCase : Any = decoder_intermediate_size _UpperCamelCase : int = mask_ratio _UpperCamelCase : List[Any] = norm_pix_loss
648
0
from math import ceil def lowerCamelCase_ ( UpperCAmelCase_ : int = 1_0_0_1 ) -> int: '''simple docstring''' _UpperCamelCase : List[Any] = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): _UpperCamelCase : Any = 2 * i + 1 _UpperCamelCase : Dict = 2 * i _UpperCamelCase : Dict = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: lowerCAmelCase__ = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number""")
713
import functools def lowerCamelCase_ ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int] ) -> int: '''simple docstring''' if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or not all(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(UpperCAmelCase_ ) != 3 or not all(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(UpperCAmelCase_ ) == 0: return 0 if min(UpperCAmelCase_ ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(UpperCAmelCase_ ) >= 3_6_6: raise ValueError('All days elements should be less than 366' ) _UpperCamelCase : Union[str, Any] = set(UpperCAmelCase_ ) @functools.cache def dynamic_programming(UpperCAmelCase_ : int ) -> int: if index > 3_6_5: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 3_0 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
648
0
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = IFInpaintingSuperResolutionPipeline a__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} a__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) a__ = PipelineTesterMixin.required_optional_params - {"latents"} def A__ ( self): return self._get_superresolution_dummy_components() def A__ ( self , __snake_case , __snake_case=0): if str(__snake_case).startswith('mps'): _UpperCamelCase : List[str] = torch.manual_seed(__snake_case) else: _UpperCamelCase : Any = torch.Generator(device=__snake_case).manual_seed(__snake_case) _UpperCamelCase : Union[str, Any] = floats_tensor((1, 3, 16, 16) , rng=random.Random(__snake_case)).to(__snake_case) _UpperCamelCase : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(__snake_case)).to(__snake_case) _UpperCamelCase : List[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__snake_case)).to(__snake_case) _UpperCamelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def A__ ( self): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3) def A__ ( self): self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA') def A__ ( self): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1) def A__ ( self): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2) def A__ ( self): self._test_save_load_local() def A__ ( self): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
714
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=99 , __snake_case=64 , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=37 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=16 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=3 , __snake_case=4 , __snake_case=None , ): _UpperCamelCase : List[Any] = parent _UpperCamelCase : Optional[Any] = batch_size _UpperCamelCase : int = seq_length _UpperCamelCase : str = is_training _UpperCamelCase : Tuple = use_input_mask _UpperCamelCase : Union[str, Any] = use_token_type_ids _UpperCamelCase : Union[str, Any] = use_labels _UpperCamelCase : Optional[Any] = vocab_size _UpperCamelCase : List[Any] = hidden_size _UpperCamelCase : Optional[Any] = embedding_size _UpperCamelCase : str = num_hidden_layers _UpperCamelCase : str = num_attention_heads _UpperCamelCase : int = intermediate_size _UpperCamelCase : int = hidden_act _UpperCamelCase : Tuple = hidden_dropout_prob _UpperCamelCase : int = attention_probs_dropout_prob _UpperCamelCase : Tuple = max_position_embeddings _UpperCamelCase : List[str] = type_vocab_size _UpperCamelCase : Dict = type_sequence_label_size _UpperCamelCase : List[str] = initializer_range _UpperCamelCase : Optional[Any] = num_labels _UpperCamelCase : Tuple = num_choices _UpperCamelCase : List[str] = scope def A__ ( self): _UpperCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase : Any = None if self.use_input_mask: _UpperCamelCase : int = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase : Optional[Any] = None if self.use_token_type_ids: _UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase : int = None _UpperCamelCase : List[str] = None _UpperCamelCase : Dict = None if self.use_labels: _UpperCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self): return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : List[str] = MegatronBertModel(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case) _UpperCamelCase : Dict = model(__snake_case , token_type_ids=__snake_case) _UpperCamelCase : Optional[Any] = model(__snake_case) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : int = MegatronBertForMaskedLM(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Dict = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : str = MegatronBertForCausalLM(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Tuple = MegatronBertForNextSentencePrediction(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[Any] = MegatronBertForPreTraining(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[str] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , next_sentence_label=__snake_case , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : int = MegatronBertForQuestionAnswering(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[int] = self.num_labels _UpperCamelCase : Union[str, Any] = MegatronBertForSequenceClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Any = self.num_labels _UpperCamelCase : Optional[int] = MegatronBertForTokenClassification(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Tuple = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : List[str] = self.num_choices _UpperCamelCase : Optional[int] = MegatronBertForMultipleChoice(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : List[Any] = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : Optional[Any] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : Union[str, Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def A__ ( self): _UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) : Optional[int] = config_and_inputs _UpperCamelCase : int = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) a__ = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) a__ = True # test_resize_embeddings = False a__ = False def A__ ( self , __snake_case , __snake_case , __snake_case=False): _UpperCamelCase : str = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case) if return_labels: if model_class in get_values(__snake_case): _UpperCamelCase : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__snake_case) _UpperCamelCase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case) return inputs_dict def A__ ( self): _UpperCamelCase : Any = MegatronBertModelTester(self) _UpperCamelCase : int = ConfigTester(self , config_class=__snake_case , hidden_size=37) def A__ ( self): self.config_tester.run_common_tests() def A__ ( self): _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__snake_case) def A__ ( self): _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__snake_case) def A__ ( self): _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__snake_case) def A__ ( self): _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__snake_case) def A__ ( self): _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__snake_case) def A__ ( self): _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__snake_case) def A__ ( self): _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__snake_case) def A__ ( self): _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__snake_case) def lowerCamelCase_ ( UpperCAmelCase_ : str ) -> Optional[Any]: '''simple docstring''' return torch.tensor( UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ , ) lowerCAmelCase__ = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip('Model is not available.') def A__ ( self): _UpperCamelCase : int = 'nvidia/megatron-bert-uncased-345m' if "MYDIR" in os.environ: _UpperCamelCase : int = os.path.join(os.environ['MYDIR'] , __snake_case) _UpperCamelCase : Optional[int] = MegatronBertModel.from_pretrained(__snake_case) model.to(__snake_case) model.half() _UpperCamelCase : Optional[Any] = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]]) with torch.no_grad(): _UpperCamelCase : str = model(__snake_case)[0] _UpperCamelCase : Optional[int] = torch.Size((1, 9, 10_24)) self.assertEqual(output.shape , __snake_case) _UpperCamelCase : Union[str, Any] = [-0.6_0_4_0, -0.2_5_1_7, -0.1_0_2_5, 0.3_4_2_0, -0.6_7_5_8, -0.0_0_1_7, -0.1_0_8_9, -0.1_9_9_0, 0.5_7_2_8] for ii in range(3): for jj in range(3): _UpperCamelCase : Optional[Any] = output[0, ii, jj] _UpperCamelCase : Dict = expected[3 * ii + jj] _UpperCamelCase : Optional[int] = 'ii={} jj={} a={} b={}'.format(__snake_case , __snake_case , __snake_case , __snake_case) self.assertTrue(math.isclose(__snake_case , __snake_case , rel_tol=__snake_case , abs_tol=__snake_case) , msg=__snake_case)
648
0
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path lowerCAmelCase__ = [ {"""dataset""": """wikipedia""", """config_name""": """20220301.de"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.en"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.fr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.frr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.it"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.simple"""}, {"""dataset""": """snli""", """config_name""": """plain_text"""}, {"""dataset""": """eli5""", """config_name""": """LFQA_reddit"""}, {"""dataset""": """wiki40b""", """config_name""": """en"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.compressed"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.no_index"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.multiset.no_index"""}, {"""dataset""": """natural_questions""", """config_name""": """default"""}, ] def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any]=True ) -> Any: '''simple docstring''' if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_lowercase ) ) class lowercase ( _lowercase ): """simple docstring""" a__ = None a__ = None def A__ ( self , __snake_case , __snake_case): with TemporaryDirectory() as tmp_dir: _UpperCamelCase : List[Any] = dataset_module_factory(__snake_case , cache_dir=__snake_case) _UpperCamelCase : int = import_main_class(dataset_module.module_path , dataset=__snake_case) _UpperCamelCase : DatasetBuilder = builder_cls( cache_dir=__snake_case , config_name=__snake_case , hash=dataset_module.hash , ) _UpperCamelCase : Union[str, Any] = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=__snake_case).replace(os.sep , '/'), config.DATASET_INFO_FILENAME, ]) _UpperCamelCase : Tuple = cached_path(__snake_case , cache_dir=__snake_case) self.assertTrue(os.path.exists(__snake_case)) @pytest.mark.integration def lowerCamelCase_ ( UpperCAmelCase_ : Dict ) -> List[str]: '''simple docstring''' _UpperCamelCase : Dict = tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' _UpperCamelCase : Optional[Any] = dataset_module_factory('wikipedia' , cache_dir=UpperCAmelCase_ ) _UpperCamelCase : Tuple = import_main_class(dataset_module.module_path ) _UpperCamelCase : DatasetBuilder = builder_cls( cache_dir=UpperCAmelCase_ , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam _UpperCamelCase : Dict = None builder_instance.download_and_prepare() _UpperCamelCase : Optional[Any] = builder_instance.as_dataset() assert ds @pytest.mark.integration def lowerCamelCase_ ( UpperCAmelCase_ : Any ) -> Optional[int]: '''simple docstring''' _UpperCamelCase : Tuple = dataset_module_factory('wikipedia' , cache_dir=UpperCAmelCase_ ) _UpperCamelCase : Tuple = import_main_class(dataset_module.module_path , dataset=UpperCAmelCase_ ) _UpperCamelCase : DatasetBuilder = builder_cls( cache_dir=UpperCAmelCase_ , config_name='20220301.frr' , hash=dataset_module.hash , ) _UpperCamelCase : Union[str, Any] = builder_instance.as_streaming_dataset() assert ds assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) assert "train" in ds assert isinstance(ds['train'] , UpperCAmelCase_ ) assert next(iter(ds['train'] ) )
715
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = """▁""" lowerCAmelCase__ = {"""vocab_file""": """sentencepiece.bpe.model"""} lowerCAmelCase__ = { """vocab_file""": { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model""" ), } } lowerCAmelCase__ = { """xlm-roberta-base""": 5_1_2, """xlm-roberta-large""": 5_1_2, """xlm-roberta-large-finetuned-conll02-dutch""": 5_1_2, """xlm-roberta-large-finetuned-conll02-spanish""": 5_1_2, """xlm-roberta-large-finetuned-conll03-english""": 5_1_2, """xlm-roberta-large-finetuned-conll03-german""": 5_1_2, } class lowercase ( _lowercase ): """simple docstring""" a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = ["input_ids", "attention_mask"] def __init__( self , __snake_case , __snake_case="<s>" , __snake_case="</s>" , __snake_case="</s>" , __snake_case="<s>" , __snake_case="<unk>" , __snake_case="<pad>" , __snake_case="<mask>" , __snake_case = None , **__snake_case , ): # Mask token behave like a normal word, i.e. include the space before it _UpperCamelCase : Dict = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case) if isinstance(__snake_case , __snake_case) else mask_token _UpperCamelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) _UpperCamelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(__snake_case)) _UpperCamelCase : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _UpperCamelCase : int = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _UpperCamelCase : List[Any] = 1 _UpperCamelCase : Any = len(self.sp_model) + self.fairseq_offset _UpperCamelCase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self): _UpperCamelCase : List[Any] = self.__dict__.copy() _UpperCamelCase : Optional[Any] = None _UpperCamelCase : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self , __snake_case): _UpperCamelCase : int = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): _UpperCamelCase : Tuple = {} _UpperCamelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) def A__ ( self , __snake_case , __snake_case = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCamelCase : Tuple = [self.cls_token_id] _UpperCamelCase : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self , __snake_case , __snake_case = None , __snake_case = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case) if token_ids_a is None: return [1] + ([0] * len(__snake_case)) + [1] return [1] + ([0] * len(__snake_case)) + [1, 1] + ([0] * len(__snake_case)) + [1] def A__ ( self , __snake_case , __snake_case = None): _UpperCamelCase : Optional[Any] = [self.sep_token_id] _UpperCamelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def A__ ( self): return len(self.sp_model) + self.fairseq_offset + 1 # Add the <mask> token def A__ ( self): _UpperCamelCase : List[str] = {self.convert_ids_to_tokens(__snake_case): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def A__ ( self , __snake_case): return self.sp_model.encode(__snake_case , out_type=__snake_case) def A__ ( self , __snake_case): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCamelCase : str = self.sp_model.PieceToId(__snake_case) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A__ ( self , __snake_case): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def A__ ( self , __snake_case): _UpperCamelCase : Optional[int] = ''.join(__snake_case).replace(__snake_case , ' ').strip() return out_string def A__ ( self , __snake_case , __snake_case = None): if not os.path.isdir(__snake_case): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return _UpperCamelCase : str = os.path.join( __snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(__snake_case) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , __snake_case) elif not os.path.isfile(self.vocab_file): with open(__snake_case , 'wb') as fi: _UpperCamelCase : Any = self.sp_model.serialized_model_proto() fi.write(__snake_case) return (out_vocab_file,)
648
0
from __future__ import annotations def lowerCamelCase_ ( UpperCAmelCase_ : int | float | str , UpperCAmelCase_ : int | float | str ) -> list[str]: '''simple docstring''' if nth_term == "": return [""] _UpperCamelCase : str = int(UpperCAmelCase_ ) _UpperCamelCase : Tuple = int(UpperCAmelCase_ ) _UpperCamelCase : list[str] = [] for temp in range(int(UpperCAmelCase_ ) ): series.append(F'''1 / {pow(temp + 1 , int(UpperCAmelCase_ ) )}''' if series else '1' ) return series if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = int(input("""Enter the last number (nth term) of the P-Series""")) lowerCAmelCase__ = int(input("""Enter the power for P-Series""")) print("""Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p""") print(p_series(nth_term, power))
716
from ...processing_utils import ProcessorMixin class lowercase ( _lowercase ): """simple docstring""" a__ = ["image_processor", "feature_extractor"] a__ = "TvltImageProcessor" a__ = "TvltFeatureExtractor" def __init__( self , __snake_case , __snake_case): super().__init__(image_processor=__snake_case , feature_extractor=__snake_case) _UpperCamelCase : List[str] = image_processor _UpperCamelCase : Dict = feature_extractor def __call__( self , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=False , __snake_case=False , *__snake_case , **__snake_case , ): if images is None and audio is None: raise ValueError('You need to specify either an `images` or `audio` input to process.') _UpperCamelCase : Union[str, Any] = None if images is not None: _UpperCamelCase : Tuple = self.image_processor(__snake_case , mask_pixel=__snake_case , *__snake_case , **__snake_case) if images_mixed is not None: _UpperCamelCase : Union[str, Any] = self.image_processor(__snake_case , is_mixed=__snake_case , *__snake_case , **__snake_case) if audio is not None: _UpperCamelCase : Tuple = self.feature_extractor( __snake_case , *__snake_case , sampling_rate=__snake_case , mask_audio=__snake_case , **__snake_case) _UpperCamelCase : Tuple = {} if audio is not None: output_dict.update(__snake_case) if images is not None: output_dict.update(__snake_case) if images_mixed_dict is not None: output_dict.update(__snake_case) return output_dict @property def A__ ( self): _UpperCamelCase : List[Any] = self.image_processor.model_input_names _UpperCamelCase : List[Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
648
0
from math import loga def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> int: '''simple docstring''' if a < 0: raise ValueError('Input value must be a positive integer' ) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise TypeError('Input value must be a \'int\' type' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
717
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class lowercase ( _lowercase ): """simple docstring""" a__ = "rwkv" a__ = {"max_position_embeddings": "context_length"} def __init__( self , __snake_case=5_02_77 , __snake_case=10_24 , __snake_case=40_96 , __snake_case=32 , __snake_case=None , __snake_case=None , __snake_case=1e-5 , __snake_case=0 , __snake_case=0 , __snake_case=6 , __snake_case=False , __snake_case=True , **__snake_case , ): _UpperCamelCase : str = vocab_size _UpperCamelCase : int = context_length _UpperCamelCase : Tuple = hidden_size _UpperCamelCase : Tuple = num_hidden_layers _UpperCamelCase : Dict = attention_hidden_size if attention_hidden_size is not None else hidden_size _UpperCamelCase : Tuple = intermediate_size if intermediate_size is not None else 4 * hidden_size _UpperCamelCase : Union[str, Any] = layer_norm_epsilon _UpperCamelCase : Dict = rescale_every _UpperCamelCase : Optional[Any] = use_cache _UpperCamelCase : str = bos_token_id _UpperCamelCase : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case)
648
0
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" a__ = TextToVideoSDPipeline a__ = TEXT_TO_IMAGE_PARAMS a__ = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. a__ = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def A__ ( self): torch.manual_seed(0) _UpperCamelCase : List[str] = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=32 , attention_head_dim=4 , ) _UpperCamelCase : List[str] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) torch.manual_seed(0) _UpperCamelCase : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0) _UpperCamelCase : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='gelu' , projection_dim=5_12 , ) _UpperCamelCase : Any = CLIPTextModel(__snake_case) _UpperCamelCase : List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') _UpperCamelCase : Tuple = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def A__ ( self , __snake_case , __snake_case=0): if str(__snake_case).startswith('mps'): _UpperCamelCase : Optional[Any] = torch.manual_seed(__snake_case) else: _UpperCamelCase : Dict = torch.Generator(device=__snake_case).manual_seed(__snake_case) _UpperCamelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def A__ ( self): _UpperCamelCase : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator _UpperCamelCase : List[str] = self.get_dummy_components() _UpperCamelCase : Optional[int] = TextToVideoSDPipeline(**__snake_case) _UpperCamelCase : Any = sd_pipe.to(__snake_case) sd_pipe.set_progress_bar_config(disable=__snake_case) _UpperCamelCase : Any = self.get_dummy_inputs(__snake_case) _UpperCamelCase : Dict = 'np' _UpperCamelCase : List[Any] = sd_pipe(**__snake_case).frames _UpperCamelCase : Any = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) _UpperCamelCase : Dict = np.array([1_58.0, 1_60.0, 1_53.0, 1_25.0, 1_00.0, 1_21.0, 1_11.0, 93.0, 1_13.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def A__ ( self): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__snake_case , expected_max_diff=3e-3) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def A__ ( self): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__snake_case , expected_max_diff=1e-2) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.') def A__ ( self): pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.') def A__ ( self): pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.') def A__ ( self): pass def A__ ( self): return super().test_progress_bar() @slow @skip_mps class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self): _UpperCamelCase : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy') _UpperCamelCase : Any = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b') _UpperCamelCase : Tuple = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) _UpperCamelCase : Optional[int] = pipe.to('cuda') _UpperCamelCase : List[str] = 'Spiderman is surfing' _UpperCamelCase : str = torch.Generator(device='cpu').manual_seed(0) _UpperCamelCase : Any = pipe(__snake_case , generator=__snake_case , num_inference_steps=25 , output_type='pt').frames _UpperCamelCase : Union[str, Any] = video_frames.cpu().numpy() assert np.abs(expected_video - video).mean() < 5e-2 def A__ ( self): _UpperCamelCase : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy') _UpperCamelCase : List[str] = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b') _UpperCamelCase : List[str] = pipe.to('cuda') _UpperCamelCase : List[Any] = 'Spiderman is surfing' _UpperCamelCase : Tuple = torch.Generator(device='cpu').manual_seed(0) _UpperCamelCase : int = pipe(__snake_case , generator=__snake_case , num_inference_steps=2 , output_type='pt').frames _UpperCamelCase : int = video_frames.cpu().numpy() assert np.abs(expected_video - video).mean() < 5e-2
718
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class lowercase ( _lowercase ): """simple docstring""" a__ = "bert" def __init__( self , __snake_case=3_05_22 , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=0 , __snake_case="absolute" , __snake_case=True , __snake_case=None , **__snake_case , ): super().__init__(pad_token_id=__snake_case , **__snake_case) _UpperCamelCase : int = vocab_size _UpperCamelCase : Optional[Any] = hidden_size _UpperCamelCase : Optional[Any] = num_hidden_layers _UpperCamelCase : List[str] = num_attention_heads _UpperCamelCase : int = hidden_act _UpperCamelCase : Optional[Any] = intermediate_size _UpperCamelCase : Union[str, Any] = hidden_dropout_prob _UpperCamelCase : Tuple = attention_probs_dropout_prob _UpperCamelCase : Optional[int] = max_position_embeddings _UpperCamelCase : str = type_vocab_size _UpperCamelCase : Optional[Any] = initializer_range _UpperCamelCase : List[str] = layer_norm_eps _UpperCamelCase : Any = position_embedding_type _UpperCamelCase : Any = use_cache _UpperCamelCase : Any = classifier_dropout class lowercase ( _lowercase ): """simple docstring""" @property def A__ ( self): if self.task == "multiple-choice": _UpperCamelCase : Union[str, Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCamelCase : Optional[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ])
648
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class lowercase ( _lowercase ): """simple docstring""" a__ = "rwkv" a__ = {"max_position_embeddings": "context_length"} def __init__( self , __snake_case=5_02_77 , __snake_case=10_24 , __snake_case=40_96 , __snake_case=32 , __snake_case=None , __snake_case=None , __snake_case=1e-5 , __snake_case=0 , __snake_case=0 , __snake_case=6 , __snake_case=False , __snake_case=True , **__snake_case , ): _UpperCamelCase : str = vocab_size _UpperCamelCase : int = context_length _UpperCamelCase : Tuple = hidden_size _UpperCamelCase : Tuple = num_hidden_layers _UpperCamelCase : Dict = attention_hidden_size if attention_hidden_size is not None else hidden_size _UpperCamelCase : Tuple = intermediate_size if intermediate_size is not None else 4 * hidden_size _UpperCamelCase : Union[str, Any] = layer_norm_epsilon _UpperCamelCase : Dict = rescale_every _UpperCamelCase : Optional[Any] = use_cache _UpperCamelCase : str = bos_token_id _UpperCamelCase : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case)
719
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowercase ( _lowercase ): """simple docstring""" a__ = "facebook/bart-large-mnli" a__ = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) a__ = "text_classifier" a__ = AutoTokenizer a__ = AutoModelForSequenceClassification a__ = ["text", ["text"]] a__ = ["text"] def A__ ( self): super().setup() _UpperCamelCase : List[Any] = self.model.config _UpperCamelCase : Optional[int] = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail'): _UpperCamelCase : Tuple = int(__snake_case) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.') def A__ ( self , __snake_case , __snake_case): _UpperCamelCase : List[Any] = labels return self.pre_processor( [text] * len(__snake_case) , [f'''This example is {label}''' for label in labels] , return_tensors='pt' , padding='max_length' , ) def A__ ( self , __snake_case): _UpperCamelCase : str = outputs.logits _UpperCamelCase : Optional[Any] = torch.argmax(logits[:, 2]).item() return self._labels[label_id]
648
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/resolve/main/config.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/config.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/config.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json""", } class lowercase ( _lowercase ): """simple docstring""" a__ = "bloom" a__ = ["past_key_values"] a__ = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self , __snake_case=25_08_80 , __snake_case=64 , __snake_case=2 , __snake_case=8 , __snake_case=1e-5 , __snake_case=0.0_2 , __snake_case=True , __snake_case=1 , __snake_case=2 , __snake_case=False , __snake_case=0.0 , __snake_case=0.0 , __snake_case=1 , __snake_case=False , **__snake_case , ): _UpperCamelCase : Dict = vocab_size # Backward compatibility with n_embed kwarg _UpperCamelCase : Dict = kwargs.pop('n_embed' , __snake_case) _UpperCamelCase : Optional[int] = hidden_size if n_embed is None else n_embed _UpperCamelCase : Optional[int] = n_layer _UpperCamelCase : Tuple = n_head _UpperCamelCase : Any = layer_norm_epsilon _UpperCamelCase : Tuple = initializer_range _UpperCamelCase : Tuple = use_cache _UpperCamelCase : Union[str, Any] = pretraining_tp _UpperCamelCase : List[str] = apply_residual_connection_post_layernorm _UpperCamelCase : Optional[int] = hidden_dropout _UpperCamelCase : str = attention_dropout _UpperCamelCase : List[str] = bos_token_id _UpperCamelCase : Dict = eos_token_id _UpperCamelCase : Optional[int] = slow_but_exact super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case) class lowercase ( _lowercase ): """simple docstring""" a__ = version.parse("1.12" ) def __init__( self , __snake_case , __snake_case = "default" , __snake_case = None , __snake_case = False , ): super().__init__(__snake_case , task=__snake_case , patching_specs=__snake_case , use_past=__snake_case) if not getattr(self._config , 'pad_token_id' , __snake_case): # TODO: how to do that better? _UpperCamelCase : int = 0 @property def A__ ( self): _UpperCamelCase : List[Any] = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}}) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(__snake_case , direction='inputs' , inverted_values_shape=__snake_case) _UpperCamelCase : int = {0: 'batch', 1: 'past_sequence + sequence'} else: _UpperCamelCase : Dict = {0: 'batch', 1: 'sequence'} return common_inputs @property def A__ ( self): return self._config.n_layer @property def A__ ( self): return self._config.n_head @property def A__ ( self): return 1e-3 def A__ ( self , __snake_case , __snake_case = -1 , __snake_case = -1 , __snake_case = False , __snake_case = None , ): _UpperCamelCase : int = super(__snake_case , self).generate_dummy_inputs( __snake_case , batch_size=__snake_case , seq_length=__snake_case , is_pair=__snake_case , framework=__snake_case) # We need to order the input in the way they appears in the forward() _UpperCamelCase : Tuple = OrderedDict({'input_ids': common_inputs['input_ids']}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.') else: import torch _UpperCamelCase : int = common_inputs['input_ids'].shape # Not using the same length for past_key_values _UpperCamelCase : List[str] = seqlen + 2 _UpperCamelCase : Union[str, Any] = self._config.hidden_size // self.num_attention_heads _UpperCamelCase : str = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) _UpperCamelCase : List[Any] = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) _UpperCamelCase : List[Any] = [ (torch.zeros(__snake_case), torch.zeros(__snake_case)) for _ in range(self.num_layers) ] _UpperCamelCase : Optional[Any] = common_inputs['attention_mask'] if self.use_past: _UpperCamelCase : List[Any] = ordered_inputs['attention_mask'].dtype _UpperCamelCase : Optional[int] = torch.cat( [ordered_inputs['attention_mask'], torch.ones(__snake_case , __snake_case , dtype=__snake_case)] , dim=1) return ordered_inputs @property def A__ ( self): return 13
720
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
648
0
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" a__ = BarthezTokenizer a__ = BarthezTokenizerFast a__ = True a__ = True def A__ ( self): super().setUp() _UpperCamelCase : Tuple = BarthezTokenizerFast.from_pretrained('moussaKam/mbarthez') tokenizer.save_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname , legacy_format=__snake_case) _UpperCamelCase : Optional[Any] = tokenizer def A__ ( self): _UpperCamelCase : List[Any] = '<pad>' _UpperCamelCase : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case) , __snake_case) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case) , __snake_case) def A__ ( self): _UpperCamelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(vocab_keys[-1] , '<mask>') self.assertEqual(len(__snake_case) , 10_11_22) def A__ ( self): self.assertEqual(self.get_tokenizer().vocab_size , 10_11_22) @require_torch def A__ ( self): _UpperCamelCase : str = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _UpperCamelCase : Tuple = [0, 57, 30_18, 7_03_07, 91, 2] _UpperCamelCase : str = self.tokenizer( __snake_case , max_length=len(__snake_case) , padding=__snake_case , truncation=__snake_case , return_tensors='pt') self.assertIsInstance(__snake_case , __snake_case) self.assertEqual((2, 6) , batch.input_ids.shape) self.assertEqual((2, 6) , batch.attention_mask.shape) _UpperCamelCase : Optional[int] = batch.input_ids.tolist()[0] self.assertListEqual(__snake_case , __snake_case) def A__ ( self): if not self.test_rust_tokenizer: return _UpperCamelCase : Union[str, Any] = self.get_tokenizer() _UpperCamelCase : Dict = self.get_rust_tokenizer() _UpperCamelCase : Optional[int] = 'I was born in 92000, and this is falsé.' _UpperCamelCase : int = tokenizer.tokenize(__snake_case) _UpperCamelCase : str = rust_tokenizer.tokenize(__snake_case) self.assertListEqual(__snake_case , __snake_case) _UpperCamelCase : Optional[int] = tokenizer.encode(__snake_case , add_special_tokens=__snake_case) _UpperCamelCase : str = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case) self.assertListEqual(__snake_case , __snake_case) _UpperCamelCase : List[str] = self.get_rust_tokenizer() _UpperCamelCase : Any = tokenizer.encode(__snake_case) _UpperCamelCase : Optional[int] = rust_tokenizer.encode(__snake_case) self.assertListEqual(__snake_case , __snake_case) @slow def A__ ( self): # fmt: off _UpperCamelCase : Union[str, Any] = {'input_ids': [[0, 4_90, 1_43_28, 45_07, 3_54, 47, 4_36_69, 95, 25, 7_81_17, 2_02_15, 1_97_79, 1_90, 22, 4_00, 4, 3_53_43, 8_03_10, 6_03, 86, 2_49_37, 1_05, 3_34_38, 9_47_62, 1_96, 3_96_42, 7, 15, 1_59_33, 1_73, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_05_34, 87, 25, 66, 33_58, 1_96, 5_52_89, 8, 8_29_61, 81, 22_04, 7_52_03, 7, 15, 7_63, 1_29_56, 2_16, 1_78, 1_43_28, 95_95, 13_77, 6_96_93, 7, 4_48, 7_10_21, 1_96, 1_81_06, 14_37, 1_39_74, 1_08, 90_83, 4, 4_93_15, 7, 39, 86, 13_26, 27_93, 4_63_33, 4, 4_48, 1_96, 7_45_88, 7, 4_93_15, 7, 39, 21, 8_22, 3_84_70, 74, 21, 6_67_23, 6_24_80, 8, 2_20_50, 5, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _UpperCamelCase : Optional[int] = [ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name='moussaKam/mbarthez' , revision='c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6' , sequences=__snake_case , )
721
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
648
0
def lowerCamelCase_ ( UpperCAmelCase_ : float , UpperCAmelCase_ : list[float] ) -> float: '''simple docstring''' if discount_rate < 0: raise ValueError('Discount rate cannot be negative' ) if not cash_flows: raise ValueError('Cash flows list cannot be empty' ) _UpperCamelCase : List[str] = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(UpperCAmelCase_ ) ) return round(UpperCAmelCase_ , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
700
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_sentencepiece_available(): import sentencepiece as sp lowerCAmelCase__ = 5 lowerCAmelCase__ = 1_0 @require_sentencepiece @require_tokenizers class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" a__ = SpeechaTextTokenizer a__ = False a__ = True def A__ ( self): super().setUp() _UpperCamelCase : Any = sp.SentencePieceProcessor() spm_model.Load(__snake_case) _UpperCamelCase : List[str] = ['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_) for id_ in range(len(__snake_case))] _UpperCamelCase : Dict = dict(zip(__snake_case , range(len(__snake_case)))) _UpperCamelCase : Tuple = Path(self.tmpdirname) save_json(__snake_case , save_dir / VOCAB_FILES_NAMES['vocab_file']) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__snake_case , save_dir / VOCAB_FILES_NAMES['spm_file']) _UpperCamelCase : int = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def A__ ( self): _UpperCamelCase : str = '<pad>' _UpperCamelCase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case) , __snake_case) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case) , __snake_case) def A__ ( self): _UpperCamelCase : Optional[Any] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(vocab_keys[-1] , 'j') self.assertEqual(len(__snake_case) , 10_01) def A__ ( self): self.assertEqual(self.get_tokenizer().vocab_size , 10_01) def A__ ( self): _UpperCamelCase : Any = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) _UpperCamelCase : List[str] = tokenizer.tokenize('This is a test') self.assertListEqual(__snake_case , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case) , [2_89, 50, 14, 1_74, 3_86] , ) _UpperCamelCase : int = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( __snake_case , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) _UpperCamelCase : int = tokenizer.convert_tokens_to_ids(__snake_case) self.assertListEqual(__snake_case , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8]) _UpperCamelCase : Tuple = tokenizer.convert_ids_to_tokens(__snake_case) self.assertListEqual( __snake_case , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def A__ ( self): # fmt: off _UpperCamelCase : Optional[int] = {'input_ids': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , ) @require_sentencepiece class lowercase ( unittest.TestCase ): """simple docstring""" a__ = "valhalla/s2t_mustc_multilinguial_medium" a__ = "C'est trop cool" a__ = "Esto es genial" @classmethod def A__ ( cls): _UpperCamelCase : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name) return cls def A__ ( self): self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4) self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6) self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9) self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11) def A__ ( self): self.assertEqual(self.tokenizer.vocab_size , 1_00_00) def A__ ( self): self.assertIn(__snake_case , self.tokenizer.all_special_ids) _UpperCamelCase : Optional[int] = [ES_CODE, 4, 16_01, 47, 76_47, 2] _UpperCamelCase : Tuple = self.tokenizer.decode(__snake_case , skip_special_tokens=__snake_case) _UpperCamelCase : Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__snake_case) self.assertEqual(__snake_case , __snake_case) self.assertNotIn(self.tokenizer.eos_token , __snake_case) def A__ ( self): _UpperCamelCase : Any = 'fr' _UpperCamelCase : List[Any] = self.tokenizer(self.french_text).input_ids self.assertEqual(encoded[0] , __snake_case) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id) def A__ ( self): _UpperCamelCase : Union[str, Any] = 'fr' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE]) _UpperCamelCase : List[str] = 'es' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE])
648
0
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowerCAmelCase__ = { """/attention/""": """/0/SelfAttention/""", """/self_attention/""": """/0/SelfAttention/""", """/encoder_decoder_attention/""": """/1/EncDecAttention/""", """value""": """v""", """query""": """q""", """key""": """k""", """out""": """o""", """pre_self_attention_layer_norm""": """0/layer_norm""", """pre_cross_attention_layer_norm""": """1/layer_norm""", """pre_attention_layer_norm""": """0/layer_norm""", # previously 1, but seems wrong """token_embedder""": """shared""", """encoder_norm""": """final_layer_norm""", """decoder_norm""": """final_layer_norm""", """relpos_bias/rel_embedding""": """block/0/layer/0/SelfAttention/relative_attention_bias/weight""", """router/router_weights/w/""": """router/classifier/""", """roer/roer_weights/w/""": """router/classifier/""", """logits_dense""": """lm_head""", } def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase : Union[str, Any] = list(s_dict.keys() ) for key in keys: _UpperCamelCase : Optional[int] = R'.*/layers_(\d+)' _UpperCamelCase : int = key if re.match(UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : List[str] = re.sub(R'layers_(\d+)' , R'block/\1/layer' , UpperCAmelCase_ ) _UpperCamelCase : Tuple = R'(encoder|decoder)\/' if re.match(UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Optional[Any] = re.match(UpperCAmelCase_ , UpperCAmelCase_ ).groups() if groups[0] == "encoder": _UpperCamelCase : Tuple = re.sub(R'/mlp/' , R'/1/mlp/' , UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = re.sub(R'/pre_mlp_layer_norm/' , R'/1/layer_norm/' , UpperCAmelCase_ ) elif groups[0] == "decoder": _UpperCamelCase : int = re.sub(R'/mlp/' , R'/2/mlp/' , UpperCAmelCase_ ) _UpperCamelCase : Union[str, Any] = re.sub(R'/pre_mlp_layer_norm/' , R'/2/layer_norm/' , UpperCAmelCase_ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: _UpperCamelCase : Optional[int] = new_key.replace(UpperCAmelCase_ , UpperCAmelCase_ ) print(F'''{key} -> {new_key}''' ) _UpperCamelCase : Union[str, Any] = s_dict.pop(UpperCAmelCase_ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _UpperCamelCase : Optional[Any] = s_dict[ 'encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _UpperCamelCase : Any = s_dict[ 'decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: _UpperCamelCase : Any = s_dict[key].shape[0] _UpperCamelCase : Union[str, Any] = s_dict[key] for idx in range(UpperCAmelCase_ ): _UpperCamelCase : Any = expert_weihts[idx] print(F'''{key} -> {key.replace("expert/" , "nested fstring" )}''' ) s_dict.pop(UpperCAmelCase_ ) return s_dict lowerCAmelCase__ = { """NUM_ENCODER_LAYERS""": """num_layers""", """NUM_DECODER_LAYERS""": """num_decoder_layers""", """NUM_HEADS""": """num_heads""", """HEAD_DIM""": """d_kv""", """EMBED_DIM""": """d_model""", """MLP_DIM""": """d_ff""", """NUM_SELECTED_EXPERTS""": """num_selected_experts""", """NUM_ENCODER_SPARSE_LAYERS""": """num_sparse_encoder_layers""", """NUM_DECODER_SPARSE_LAYERS""": """num_sparse_decoder_layers""", """dense.MlpBlock.activations""": """feed_forward_proj""", } def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict ) -> List[str]: '''simple docstring''' import regex as re with open(UpperCAmelCase_ , 'r' ) as f: _UpperCamelCase : str = f.read() _UpperCamelCase : Optional[int] = re.findall(R'(.*) = ([0-9.]*)' , UpperCAmelCase_ ) _UpperCamelCase : int = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": _UpperCamelCase : List[Any] = float(UpperCAmelCase_ ) if '.' in value else int(UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = re.findall(R'(.*activations) = \(\'(.*)\',\)' , UpperCAmelCase_ )[0] _UpperCamelCase : Union[str, Any] = str(activation[1] ) _UpperCamelCase : Any = num_experts _UpperCamelCase : Optional[Any] = SwitchTransformersConfig(**UpperCAmelCase_ ) return config def lowerCamelCase_ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Dict="./" , UpperCAmelCase_ : Optional[int]=8 ) -> Optional[int]: '''simple docstring''' print(F'''Loading flax weights from : {flax_checkpoint_path}''' ) _UpperCamelCase : Tuple = checkpoints.load_tax_checkpoint(UpperCAmelCase_ ) if gin_file is not None: _UpperCamelCase : str = convert_gin_to_config(UpperCAmelCase_ , UpperCAmelCase_ ) else: _UpperCamelCase : Optional[Any] = SwitchTransformersConfig.from_pretrained(UpperCAmelCase_ ) _UpperCamelCase : Union[str, Any] = SwitchTransformersForConditionalGeneration(UpperCAmelCase_ ) _UpperCamelCase : Dict = flax_params['target'] _UpperCamelCase : str = flatten_dict(UpperCAmelCase_ , sep='/' ) _UpperCamelCase : Dict = rename_keys(UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = unflatten_dict(UpperCAmelCase_ , sep='/' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(UpperCAmelCase_ , UpperCAmelCase_ ) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) pt_model.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the""" """ model architecture. If not provided, a `gin_file` has to be provided.""" ), ) parser.add_argument( """--gin_file""", default=None, type=str, required=False, help="""Path to the gin config file. If not provided, a `config_file` has to be passed """, ) parser.add_argument( """--config_name""", default=None, type=str, required=False, help="""Config name of SwitchTransformers model.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output pytorch model.""" ) parser.add_argument("""--num_experts""", default=8, type=int, required=False, help="""Number of experts""") lowerCAmelCase__ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
701
import logging from transformers.configuration_utils import PretrainedConfig lowerCAmelCase__ = logging.getLogger(__name__) class lowercase ( _lowercase ): """simple docstring""" a__ = "masked_bert" def __init__( self , __snake_case=3_05_22 , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=0 , __snake_case="topK" , __snake_case="constant" , __snake_case=0.0 , **__snake_case , ): super().__init__(pad_token_id=__snake_case , **__snake_case) _UpperCamelCase : List[Any] = vocab_size _UpperCamelCase : Union[str, Any] = hidden_size _UpperCamelCase : Optional[int] = num_hidden_layers _UpperCamelCase : Any = num_attention_heads _UpperCamelCase : int = hidden_act _UpperCamelCase : str = intermediate_size _UpperCamelCase : str = hidden_dropout_prob _UpperCamelCase : Any = attention_probs_dropout_prob _UpperCamelCase : Tuple = max_position_embeddings _UpperCamelCase : Dict = type_vocab_size _UpperCamelCase : str = initializer_range _UpperCamelCase : List[Any] = layer_norm_eps _UpperCamelCase : Tuple = pruning_method _UpperCamelCase : Tuple = mask_init _UpperCamelCase : Dict = mask_scale
648
0
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node lowerCAmelCase__ = 4 lowerCAmelCase__ = 3 class lowercase ( _lowercase ): """simple docstring""" pass def lowerCamelCase_ ( UpperCAmelCase_ : List[str] ) -> Union[str, Any]: '''simple docstring''' for shard in shards: for i in range(UpperCAmelCase_ ): yield {"i": i, "shard": shard} def lowerCamelCase_ ( ) -> Tuple: '''simple docstring''' _UpperCamelCase : Optional[Any] = int(os.environ['RANK'] ) _UpperCamelCase : str = int(os.environ['WORLD_SIZE'] ) _UpperCamelCase : List[str] = ArgumentParser() parser.add_argument('--streaming' , type=UpperCAmelCase_ ) parser.add_argument('--local_rank' , type=UpperCAmelCase_ ) parser.add_argument('--num_workers' , type=UpperCAmelCase_ , default=0 ) _UpperCamelCase : Optional[Any] = parser.parse_args() _UpperCamelCase : Optional[int] = args.streaming _UpperCamelCase : int = args.num_workers _UpperCamelCase : List[str] = {'shards': [F'''shard_{shard_idx}''' for shard_idx in range(UpperCAmelCase_ )]} _UpperCamelCase : Tuple = IterableDataset.from_generator(UpperCAmelCase_ , gen_kwargs=UpperCAmelCase_ ) if not streaming: _UpperCamelCase : List[Any] = Dataset.from_list(list(UpperCAmelCase_ ) ) _UpperCamelCase : int = split_dataset_by_node(UpperCAmelCase_ , rank=UpperCAmelCase_ , world_size=UpperCAmelCase_ ) _UpperCamelCase : Any = torch.utils.data.DataLoader(UpperCAmelCase_ , num_workers=UpperCAmelCase_ ) _UpperCamelCase : Dict = NUM_SHARDS * NUM_ITEMS_PER_SHARD _UpperCamelCase : Union[str, Any] = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) _UpperCamelCase : int = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F'''local_size {local_size} != expected_local_size {expected_local_size}''' ) if __name__ == "__main__": main()
702
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow lowerCAmelCase__ = False class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self , __snake_case=32): set_seed(0) _UpperCamelCase : int = UNetaDModel(sample_size=__snake_case , in_channels=3 , out_channels=3) _UpperCamelCase : str = torch.optim.SGD(model.parameters() , lr=0.0_0_0_1) return model, optimizer @slow def A__ ( self): _UpperCamelCase : Tuple = 'cpu' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable _UpperCamelCase : List[Any] = DDPMScheduler( num_train_timesteps=10_00 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='linear' , clip_sample=__snake_case , ) _UpperCamelCase : List[Any] = DDIMScheduler( num_train_timesteps=10_00 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='linear' , clip_sample=__snake_case , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0) _UpperCamelCase : Optional[Any] = [torch.randn((4, 3, 32, 32)).clip(-1 , 1).to(__snake_case) for _ in range(4)] _UpperCamelCase : str = [torch.randn((4, 3, 32, 32)).to(__snake_case) for _ in range(4)] _UpperCamelCase : int = [torch.randint(0 , 10_00 , (4,)).long().to(__snake_case) for _ in range(4)] # train with a DDPM scheduler _UpperCamelCase , _UpperCamelCase : List[Any] = self.get_model_optimizer(resolution=32) model.train().to(__snake_case) for i in range(4): optimizer.zero_grad() _UpperCamelCase : int = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) _UpperCamelCase : Any = model(__snake_case , timesteps[i]).sample _UpperCamelCase : str = torch.nn.functional.mse_loss(__snake_case , noise[i]) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM _UpperCamelCase , _UpperCamelCase : Union[str, Any] = self.get_model_optimizer(resolution=32) model.train().to(__snake_case) for i in range(4): optimizer.zero_grad() _UpperCamelCase : Dict = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) _UpperCamelCase : Dict = model(__snake_case , timesteps[i]).sample _UpperCamelCase : Tuple = torch.nn.functional.mse_loss(__snake_case , noise[i]) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1e-5)) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1e-5))
648
0
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) lowerCAmelCase__ = { """sample_size""": 3_2, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 1_0_0_0, """block_out_channels""": [3_2, 6_4], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """sample_size""": 6_4, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 1_0_0_0, """block_out_channels""": [1_9_2, 1_9_2 * 2, 1_9_2 * 3, 1_9_2 * 4], """attention_head_dim""": 6_4, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """sample_size""": 2_5_6, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [2_5_6, 2_5_6, 2_5_6 * 2, 2_5_6 * 2, 2_5_6 * 4, 2_5_6 * 4], """attention_head_dim""": 6_4, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """num_train_timesteps""": 4_0, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } lowerCAmelCase__ = { """num_train_timesteps""": 2_0_1, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } lowerCAmelCase__ = { """num_train_timesteps""": 1_5_1, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> List[str]: '''simple docstring''' if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def lowerCamelCase_ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any]=False ) -> str: '''simple docstring''' _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.in_layers.0.weight'''] _UpperCamelCase : str = checkpoint[F'''{old_prefix}.in_layers.0.bias'''] _UpperCamelCase : str = checkpoint[F'''{old_prefix}.in_layers.2.weight'''] _UpperCamelCase : Union[str, Any] = checkpoint[F'''{old_prefix}.in_layers.2.bias'''] _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.emb_layers.1.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.emb_layers.1.bias'''] _UpperCamelCase : Tuple = checkpoint[F'''{old_prefix}.out_layers.0.weight'''] _UpperCamelCase : List[Any] = checkpoint[F'''{old_prefix}.out_layers.0.bias'''] _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.out_layers.3.weight'''] _UpperCamelCase : Union[str, Any] = checkpoint[F'''{old_prefix}.out_layers.3.bias'''] if has_skip: _UpperCamelCase : Tuple = checkpoint[F'''{old_prefix}.skip_connection.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any=None ) -> int: '''simple docstring''' _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 ) _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 ) _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.norm.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.norm.bias'''] _UpperCamelCase : List[str] = weight_q.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Dict = bias_q.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Any = weight_k.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : List[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Dict = weight_v.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Tuple = bias_v.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Optional[Any] = ( checkpoint[F'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] ) -> Tuple: '''simple docstring''' _UpperCamelCase : Any = torch.load(UpperCAmelCase_ , map_location='cpu' ) _UpperCamelCase : Union[str, Any] = {} _UpperCamelCase : Optional[int] = checkpoint['time_embed.0.weight'] _UpperCamelCase : List[Any] = checkpoint['time_embed.0.bias'] _UpperCamelCase : Dict = checkpoint['time_embed.2.weight'] _UpperCamelCase : Optional[Any] = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: _UpperCamelCase : List[str] = checkpoint['label_emb.weight'] _UpperCamelCase : Optional[int] = checkpoint['input_blocks.0.0.weight'] _UpperCamelCase : Union[str, Any] = checkpoint['input_blocks.0.0.bias'] _UpperCamelCase : Optional[int] = unet_config['down_block_types'] _UpperCamelCase : Optional[Any] = unet_config['layers_per_block'] _UpperCamelCase : Dict = unet_config['attention_head_dim'] _UpperCamelCase : List[str] = unet_config['block_out_channels'] _UpperCamelCase : str = 1 _UpperCamelCase : Optional[int] = channels_list[0] for i, layer_type in enumerate(UpperCAmelCase_ ): _UpperCamelCase : List[str] = channels_list[i] _UpperCamelCase : str = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(UpperCAmelCase_ ): _UpperCamelCase : str = F'''down_blocks.{i}.resnets.{j}''' _UpperCamelCase : List[Any] = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : Any = True if j == 0 and downsample_block_has_skip else False _UpperCamelCase : str = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(UpperCAmelCase_ ): _UpperCamelCase : List[str] = F'''down_blocks.{i}.resnets.{j}''' _UpperCamelCase : str = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : int = True if j == 0 and downsample_block_has_skip else False _UpperCamelCase : Any = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) _UpperCamelCase : Dict = F'''down_blocks.{i}.attentions.{j}''' _UpperCamelCase : Optional[int] = F'''input_blocks.{current_layer}.1''' _UpperCamelCase : Dict = convert_attention( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : int = F'''down_blocks.{i}.downsamplers.0''' _UpperCamelCase : Optional[int] = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : List[Any] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 _UpperCamelCase : Tuple = current_channels # hardcoded the mid-block for now _UpperCamelCase : Any = 'mid_block.resnets.0' _UpperCamelCase : Optional[Any] = 'middle_block.0' _UpperCamelCase : Tuple = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = 'mid_block.attentions.0' _UpperCamelCase : Tuple = 'middle_block.1' _UpperCamelCase : Union[str, Any] = convert_attention(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Tuple = 'mid_block.resnets.1' _UpperCamelCase : str = 'middle_block.2' _UpperCamelCase : List[str] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : List[Any] = 0 _UpperCamelCase : Optional[int] = unet_config['up_block_types'] for i, layer_type in enumerate(UpperCAmelCase_ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _UpperCamelCase : Optional[Any] = F'''up_blocks.{i}.resnets.{j}''' _UpperCamelCase : Optional[int] = F'''output_blocks.{current_layer}.0''' _UpperCamelCase : str = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : List[Any] = F'''up_blocks.{i}.upsamplers.0''' _UpperCamelCase : Dict = F'''output_blocks.{current_layer-1}.1''' _UpperCamelCase : Optional[int] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _UpperCamelCase : str = F'''up_blocks.{i}.resnets.{j}''' _UpperCamelCase : Union[str, Any] = F'''output_blocks.{current_layer}.0''' _UpperCamelCase : Optional[int] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) _UpperCamelCase : int = F'''up_blocks.{i}.attentions.{j}''' _UpperCamelCase : List[Any] = F'''output_blocks.{current_layer}.1''' _UpperCamelCase : Optional[int] = convert_attention( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : List[Any] = F'''up_blocks.{i}.upsamplers.0''' _UpperCamelCase : Union[str, Any] = F'''output_blocks.{current_layer-1}.2''' _UpperCamelCase : List[str] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : List[Any] = checkpoint['out.0.weight'] _UpperCamelCase : str = checkpoint['out.0.bias'] _UpperCamelCase : int = checkpoint['out.2.weight'] _UpperCamelCase : List[Any] = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = strabool(args.class_cond) lowerCAmelCase__ = os.path.basename(args.unet_path) print(f'Checkpoint: {ckpt_name}') # Get U-Net config if "imagenet64" in ckpt_name: lowerCAmelCase__ = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCAmelCase__ = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: lowerCAmelCase__ = TEST_UNET_CONFIG else: raise ValueError(f'Checkpoint type {ckpt_name} is not currently supported.') if not args.class_cond: lowerCAmelCase__ = None lowerCAmelCase__ = con_pt_to_diffuser(args.unet_path, unet_config) lowerCAmelCase__ = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: lowerCAmelCase__ = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: lowerCAmelCase__ = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCAmelCase__ = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f'Checkpoint type {ckpt_name} is not currently supported.') lowerCAmelCase__ = CMStochasticIterativeScheduler(**scheduler_config) lowerCAmelCase__ = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
703
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) lowerCAmelCase__ = { """sample_size""": 3_2, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 1_0_0_0, """block_out_channels""": [3_2, 6_4], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """sample_size""": 6_4, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 1_0_0_0, """block_out_channels""": [1_9_2, 1_9_2 * 2, 1_9_2 * 3, 1_9_2 * 4], """attention_head_dim""": 6_4, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """sample_size""": 2_5_6, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [2_5_6, 2_5_6, 2_5_6 * 2, 2_5_6 * 2, 2_5_6 * 4, 2_5_6 * 4], """attention_head_dim""": 6_4, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """num_train_timesteps""": 4_0, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } lowerCAmelCase__ = { """num_train_timesteps""": 2_0_1, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } lowerCAmelCase__ = { """num_train_timesteps""": 1_5_1, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> List[str]: '''simple docstring''' if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def lowerCamelCase_ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any]=False ) -> str: '''simple docstring''' _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.in_layers.0.weight'''] _UpperCamelCase : str = checkpoint[F'''{old_prefix}.in_layers.0.bias'''] _UpperCamelCase : str = checkpoint[F'''{old_prefix}.in_layers.2.weight'''] _UpperCamelCase : Union[str, Any] = checkpoint[F'''{old_prefix}.in_layers.2.bias'''] _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.emb_layers.1.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.emb_layers.1.bias'''] _UpperCamelCase : Tuple = checkpoint[F'''{old_prefix}.out_layers.0.weight'''] _UpperCamelCase : List[Any] = checkpoint[F'''{old_prefix}.out_layers.0.bias'''] _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.out_layers.3.weight'''] _UpperCamelCase : Union[str, Any] = checkpoint[F'''{old_prefix}.out_layers.3.bias'''] if has_skip: _UpperCamelCase : Tuple = checkpoint[F'''{old_prefix}.skip_connection.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any=None ) -> int: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 ) _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.norm.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.norm.bias'''] _UpperCamelCase : List[str] = weight_q.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Dict = bias_q.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Any = weight_k.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : List[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Dict = weight_v.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Tuple = bias_v.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Optional[Any] = ( checkpoint[F'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] ) -> Tuple: '''simple docstring''' _UpperCamelCase : Any = torch.load(UpperCAmelCase_ , map_location='cpu' ) _UpperCamelCase : Union[str, Any] = {} _UpperCamelCase : Optional[int] = checkpoint['time_embed.0.weight'] _UpperCamelCase : List[Any] = checkpoint['time_embed.0.bias'] _UpperCamelCase : Dict = checkpoint['time_embed.2.weight'] _UpperCamelCase : Optional[Any] = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: _UpperCamelCase : List[str] = checkpoint['label_emb.weight'] _UpperCamelCase : Optional[int] = checkpoint['input_blocks.0.0.weight'] _UpperCamelCase : Union[str, Any] = checkpoint['input_blocks.0.0.bias'] _UpperCamelCase : Optional[int] = unet_config['down_block_types'] _UpperCamelCase : Optional[Any] = unet_config['layers_per_block'] _UpperCamelCase : Dict = unet_config['attention_head_dim'] _UpperCamelCase : List[str] = unet_config['block_out_channels'] _UpperCamelCase : str = 1 _UpperCamelCase : Optional[int] = channels_list[0] for i, layer_type in enumerate(UpperCAmelCase_ ): _UpperCamelCase : List[str] = channels_list[i] _UpperCamelCase : str = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(UpperCAmelCase_ ): _UpperCamelCase : str = F'''down_blocks.{i}.resnets.{j}''' _UpperCamelCase : List[Any] = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : Any = True if j == 0 and downsample_block_has_skip else False _UpperCamelCase : str = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(UpperCAmelCase_ ): _UpperCamelCase : List[str] = F'''down_blocks.{i}.resnets.{j}''' _UpperCamelCase : str = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : int = True if j == 0 and downsample_block_has_skip else False _UpperCamelCase : Any = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) _UpperCamelCase : Dict = F'''down_blocks.{i}.attentions.{j}''' _UpperCamelCase : Optional[int] = F'''input_blocks.{current_layer}.1''' _UpperCamelCase : Dict = convert_attention( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : int = F'''down_blocks.{i}.downsamplers.0''' _UpperCamelCase : Optional[int] = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : List[Any] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 _UpperCamelCase : Tuple = current_channels # hardcoded the mid-block for now _UpperCamelCase : Any = 'mid_block.resnets.0' _UpperCamelCase : Optional[Any] = 'middle_block.0' _UpperCamelCase : Tuple = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = 'mid_block.attentions.0' _UpperCamelCase : Tuple = 'middle_block.1' _UpperCamelCase : Union[str, Any] = convert_attention(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Tuple = 'mid_block.resnets.1' _UpperCamelCase : str = 'middle_block.2' _UpperCamelCase : List[str] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : List[Any] = 0 _UpperCamelCase : Optional[int] = unet_config['up_block_types'] for i, layer_type in enumerate(UpperCAmelCase_ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _UpperCamelCase : Optional[Any] = F'''up_blocks.{i}.resnets.{j}''' _UpperCamelCase : Optional[int] = F'''output_blocks.{current_layer}.0''' _UpperCamelCase : str = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : List[Any] = F'''up_blocks.{i}.upsamplers.0''' _UpperCamelCase : Dict = F'''output_blocks.{current_layer-1}.1''' _UpperCamelCase : Optional[int] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _UpperCamelCase : str = F'''up_blocks.{i}.resnets.{j}''' _UpperCamelCase : Union[str, Any] = F'''output_blocks.{current_layer}.0''' _UpperCamelCase : Optional[int] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) _UpperCamelCase : int = F'''up_blocks.{i}.attentions.{j}''' _UpperCamelCase : List[Any] = F'''output_blocks.{current_layer}.1''' _UpperCamelCase : Optional[int] = convert_attention( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : List[Any] = F'''up_blocks.{i}.upsamplers.0''' _UpperCamelCase : Union[str, Any] = F'''output_blocks.{current_layer-1}.2''' _UpperCamelCase : List[str] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : List[Any] = checkpoint['out.0.weight'] _UpperCamelCase : str = checkpoint['out.0.bias'] _UpperCamelCase : int = checkpoint['out.2.weight'] _UpperCamelCase : List[Any] = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = strabool(args.class_cond) lowerCAmelCase__ = os.path.basename(args.unet_path) print(f'Checkpoint: {ckpt_name}') # Get U-Net config if "imagenet64" in ckpt_name: lowerCAmelCase__ = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCAmelCase__ = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: lowerCAmelCase__ = TEST_UNET_CONFIG else: raise ValueError(f'Checkpoint type {ckpt_name} is not currently supported.') if not args.class_cond: lowerCAmelCase__ = None lowerCAmelCase__ = con_pt_to_diffuser(args.unet_path, unet_config) lowerCAmelCase__ = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: lowerCAmelCase__ = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: lowerCAmelCase__ = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCAmelCase__ = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f'Checkpoint type {ckpt_name} is not currently supported.') lowerCAmelCase__ = CMStochasticIterativeScheduler(**scheduler_config) lowerCAmelCase__ = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
648
0
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow lowerCAmelCase__ = False class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self , __snake_case=32): set_seed(0) _UpperCamelCase : int = UNetaDModel(sample_size=__snake_case , in_channels=3 , out_channels=3) _UpperCamelCase : str = torch.optim.SGD(model.parameters() , lr=0.0_0_0_1) return model, optimizer @slow def A__ ( self): _UpperCamelCase : Tuple = 'cpu' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable _UpperCamelCase : List[Any] = DDPMScheduler( num_train_timesteps=10_00 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='linear' , clip_sample=__snake_case , ) _UpperCamelCase : List[Any] = DDIMScheduler( num_train_timesteps=10_00 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='linear' , clip_sample=__snake_case , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0) _UpperCamelCase : Optional[Any] = [torch.randn((4, 3, 32, 32)).clip(-1 , 1).to(__snake_case) for _ in range(4)] _UpperCamelCase : str = [torch.randn((4, 3, 32, 32)).to(__snake_case) for _ in range(4)] _UpperCamelCase : int = [torch.randint(0 , 10_00 , (4,)).long().to(__snake_case) for _ in range(4)] # train with a DDPM scheduler _UpperCamelCase : List[Any] = self.get_model_optimizer(resolution=32) model.train().to(__snake_case) for i in range(4): optimizer.zero_grad() _UpperCamelCase : int = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) _UpperCamelCase : Any = model(__snake_case , timesteps[i]).sample _UpperCamelCase : str = torch.nn.functional.mse_loss(__snake_case , noise[i]) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM _UpperCamelCase : Union[str, Any] = self.get_model_optimizer(resolution=32) model.train().to(__snake_case) for i in range(4): optimizer.zero_grad() _UpperCamelCase : Dict = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) _UpperCamelCase : Dict = model(__snake_case , timesteps[i]).sample _UpperCamelCase : Tuple = torch.nn.functional.mse_loss(__snake_case , noise[i]) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1e-5)) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1e-5))
704
def lowerCamelCase_ ( UpperCAmelCase_ : list ) -> list: '''simple docstring''' if len(UpperCAmelCase_ ) <= 1: return [tuple(UpperCAmelCase_ )] _UpperCamelCase : List[Any] = [] def generate(UpperCAmelCase_ : int , UpperCAmelCase_ : list ): _UpperCamelCase : Optional[int] = [0] * n res.append(tuple(UpperCAmelCase_ ) ) _UpperCamelCase : List[Any] = 0 while i < n: if c[i] < i: if i % 2 == 0: _UpperCamelCase , _UpperCamelCase : List[str] = arr[i], arr[0] else: _UpperCamelCase , _UpperCamelCase : List[str] = arr[i], arr[c[i]] res.append(tuple(UpperCAmelCase_ ) ) c[i] += 1 _UpperCamelCase : Tuple = 0 else: _UpperCamelCase : Tuple = 0 i += 1 generate(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) return res if __name__ == "__main__": lowerCAmelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCAmelCase__ = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
648
0
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case=13 , __snake_case=30 , __snake_case=2 , __snake_case=3 , __snake_case=True , __snake_case=True , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=37 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=10 , __snake_case=0.0_2 , __snake_case=None , __snake_case=2 , ): _UpperCamelCase : Dict = parent _UpperCamelCase : str = batch_size _UpperCamelCase : int = image_size _UpperCamelCase : Optional[Any] = patch_size _UpperCamelCase : List[Any] = num_channels _UpperCamelCase : List[str] = is_training _UpperCamelCase : List[str] = use_labels _UpperCamelCase : Union[str, Any] = hidden_size _UpperCamelCase : Optional[Any] = num_hidden_layers _UpperCamelCase : Union[str, Any] = num_attention_heads _UpperCamelCase : Optional[int] = intermediate_size _UpperCamelCase : Tuple = hidden_act _UpperCamelCase : Optional[Any] = hidden_dropout_prob _UpperCamelCase : Optional[int] = attention_probs_dropout_prob _UpperCamelCase : Union[str, Any] = type_sequence_label_size _UpperCamelCase : Optional[int] = initializer_range _UpperCamelCase : Dict = scope _UpperCamelCase : List[str] = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCamelCase : Dict = (image_size // patch_size) ** 2 _UpperCamelCase : Dict = num_patches + 1 def A__ ( self): _UpperCamelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase : int = None if self.use_labels: _UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def A__ ( self): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__snake_case , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : List[str] = ViTModel(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = model(__snake_case) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Dict = ViTForMaskedImageModeling(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Any = model(__snake_case) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images _UpperCamelCase : Dict = 1 _UpperCamelCase : Optional[Any] = ViTForMaskedImageModeling(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _UpperCamelCase : Union[str, Any] = model(__snake_case) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[Any] = self.type_sequence_label_size _UpperCamelCase : Optional[int] = ViTForImageClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Any = model(__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images _UpperCamelCase : Dict = 1 _UpperCamelCase : List[Any] = ViTForImageClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _UpperCamelCase : Union[str, Any] = model(__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def A__ ( self): _UpperCamelCase : Any = self.prepare_config_and_inputs() ( _UpperCamelCase ) : Optional[Any] = config_and_inputs _UpperCamelCase : str = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) a__ = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) a__ = True a__ = False a__ = False a__ = False def A__ ( self): _UpperCamelCase : Any = ViTModelTester(self) _UpperCamelCase : Any = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=37) def A__ ( self): self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds') def A__ ( self): pass def A__ ( self): _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Any = model_class(__snake_case) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _UpperCamelCase : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case , nn.Linear)) def A__ ( self): _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Tuple = model_class(__snake_case) _UpperCamelCase : int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : List[str] = [*signature.parameters.keys()] _UpperCamelCase : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __snake_case) def A__ ( self): _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case) def A__ ( self): _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__snake_case) def A__ ( self): _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case) @slow def A__ ( self): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : Any = ViTModel.from_pretrained(__snake_case) self.assertIsNotNone(__snake_case) def lowerCamelCase_ ( ) -> List[str]: '''simple docstring''' _UpperCamelCase : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self): return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224') if is_vision_available() else None @slow def A__ ( self): _UpperCamelCase : List[str] = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224').to(__snake_case) _UpperCamelCase : Optional[int] = self.default_image_processor _UpperCamelCase : List[str] = prepare_img() _UpperCamelCase : Optional[Any] = image_processor(images=__snake_case , return_tensors='pt').to(__snake_case) # forward pass with torch.no_grad(): _UpperCamelCase : List[str] = model(**__snake_case) # verify the logits _UpperCamelCase : Optional[int] = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , __snake_case) _UpperCamelCase : int = torch.tensor([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6]).to(__snake_case) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1e-4)) @slow def A__ ( self): # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. _UpperCamelCase : Tuple = ViTModel.from_pretrained('facebook/dino-vits8').to(__snake_case) _UpperCamelCase : Optional[int] = ViTImageProcessor.from_pretrained('facebook/dino-vits8' , size=4_80) _UpperCamelCase : Tuple = prepare_img() _UpperCamelCase : Union[str, Any] = image_processor(images=__snake_case , return_tensors='pt') _UpperCamelCase : str = inputs.pixel_values.to(__snake_case) # forward pass with torch.no_grad(): _UpperCamelCase : Optional[Any] = model(__snake_case , interpolate_pos_encoding=__snake_case) # verify the logits _UpperCamelCase : Dict = torch.Size((1, 36_01, 3_84)) self.assertEqual(outputs.last_hidden_state.shape , __snake_case) _UpperCamelCase : Any = torch.tensor( [[4.2_3_4_0, 4.3_9_0_6, -6.6_6_9_2], [4.5_4_6_3, 1.8_9_2_8, -6.7_2_5_7], [4.4_4_2_9, 0.8_4_9_6, -5.8_5_8_5]]).to(__snake_case) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __snake_case , atol=1e-4)) @slow @require_accelerate @require_torch_gpu def A__ ( self): _UpperCamelCase : Any = ViTModel.from_pretrained('facebook/dino-vits8' , torch_dtype=torch.floataa , device_map='auto') _UpperCamelCase : Union[str, Any] = self.default_image_processor _UpperCamelCase : Union[str, Any] = prepare_img() _UpperCamelCase : Tuple = image_processor(images=__snake_case , return_tensors='pt') _UpperCamelCase : List[Any] = inputs.pixel_values.to(__snake_case) # forward pass to make sure inference works in fp16 with torch.no_grad(): _UpperCamelCase : str = model(__snake_case)
705
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = [ ["""attention""", """attn"""], ["""encoder_attention""", """encoder_attn"""], ["""q_lin""", """q_proj"""], ["""k_lin""", """k_proj"""], ["""v_lin""", """v_proj"""], ["""out_lin""", """out_proj"""], ["""norm_embeddings""", """layernorm_embedding"""], ["""position_embeddings""", """embed_positions"""], ["""embeddings""", """embed_tokens"""], ["""ffn.lin""", """fc"""], ] def lowerCamelCase_ ( UpperCAmelCase_ : List[Any] ) -> Optional[int]: '''simple docstring''' if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: _UpperCamelCase : List[Any] = k.replace(UpperCAmelCase_ , UpperCAmelCase_ ) if k.startswith('encoder' ): _UpperCamelCase : Optional[Any] = k.replace('.attn' , '.self_attn' ) _UpperCamelCase : Optional[int] = k.replace('norm1' , 'self_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): _UpperCamelCase : Any = k.replace('norm1' , 'self_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm2' , 'encoder_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm3' , 'final_layer_norm' ) return k def lowerCamelCase_ ( UpperCAmelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Union[str, Any] = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: _UpperCamelCase : Optional[int] = sd.pop(UpperCAmelCase_ ) _UpperCamelCase : str = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd _UpperCamelCase : Tuple = v lowerCAmelCase__ = ["""START"""] @torch.no_grad() def lowerCamelCase_ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ) -> List[str]: '''simple docstring''' _UpperCamelCase : Optional[Any] = torch.load(UpperCAmelCase_ , map_location='cpu' ) _UpperCamelCase : int = model['model'] _UpperCamelCase : List[Any] = BlenderbotConfig.from_json_file(UpperCAmelCase_ ) _UpperCamelCase : Any = BlenderbotForConditionalGeneration(UpperCAmelCase_ ) _UpperCamelCase : int = m.model.state_dict().keys() _UpperCamelCase : Union[str, Any] = [] _UpperCamelCase : int = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue _UpperCamelCase : Optional[int] = rename_state_dict_key(UpperCAmelCase_ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: _UpperCamelCase : int = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(UpperCAmelCase_ ) m.model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) m.half() m.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("""--src_path""", type=str, help="""like blenderbot-model.bin""") parser.add_argument("""--save_dir""", default="""hf_blenderbot""", type=str, help="""Where to save converted model.""") parser.add_argument( """--hf_config_json""", default="""blenderbot-3b-config.json""", type=str, help="""Path to config to use""" ) lowerCAmelCase__ = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
648
0
from typing import Union import fire import torch from tqdm import tqdm def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str = "cpu" , UpperCAmelCase_ : Union[str, None] = None ) -> None: '''simple docstring''' _UpperCamelCase : Tuple = torch.load(UpperCAmelCase_ , map_location=UpperCAmelCase_ ) for k, v in tqdm(state_dict.items() ): if not isinstance(UpperCAmelCase_ , torch.Tensor ): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin' ) _UpperCamelCase : Dict = v.half() if save_path is None: # overwrite src_path _UpperCamelCase : str = src_path torch.save(UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": fire.Fire(convert)
706
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer lowerCAmelCase__ = ["""bert-base-uncased""", """bert-base-cased"""] lowerCAmelCase__ = """hf-internal-testing/tiny-bert-tf-only""" if is_tf_available(): class lowercase ( tf.keras.Model ): """simple docstring""" def __init__( self , __snake_case): super().__init__() _UpperCamelCase : List[Any] = tokenizer _UpperCamelCase : List[Any] = AutoConfig.from_pretrained(__snake_case) _UpperCamelCase : Dict = TFAutoModel.from_config(__snake_case) def A__ ( self , __snake_case): _UpperCamelCase : Any = self.tokenizer(__snake_case) _UpperCamelCase : Dict = self.bert(**__snake_case) return out["pooler_output"] @require_tf @require_tensorflow_text class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self): super().setUp() _UpperCamelCase : Optional[Any] = [ BertTokenizer.from_pretrained(__snake_case) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false _UpperCamelCase : Optional[Any] = [TFBertTokenizer.from_pretrained(__snake_case) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(__snake_case , use_fast_bert_tokenizer=__snake_case) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers) == len(self.tf_tokenizers) _UpperCamelCase : Optional[Any] = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] _UpperCamelCase : Dict = list(zip(self.test_sentences , self.test_sentences[::-1])) def A__ ( self): for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers): for test_inputs in (self.test_sentences, self.paired_sentences): _UpperCamelCase : List[str] = tokenizer(__snake_case , return_tensors='tf' , padding='longest') _UpperCamelCase : Tuple = tf_tokenizer(__snake_case) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape)) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa) == tf_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Tuple = tf_tokenizer(self.paired_sentences) _UpperCamelCase : Optional[Any] = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa) == separated_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Tuple = tf.function(__snake_case) for test_inputs in (self.test_sentences, self.paired_sentences): _UpperCamelCase : Optional[int] = tf.constant(__snake_case) _UpperCamelCase : Union[str, Any] = compiled_tokenizer(__snake_case) _UpperCamelCase : Tuple = tf_tokenizer(__snake_case) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Any = ModelToSave(tokenizer=__snake_case) _UpperCamelCase : Any = tf.convert_to_tensor(self.test_sentences) _UpperCamelCase : Union[str, Any] = model(__snake_case) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _UpperCamelCase : int = Path(__snake_case) / 'saved.model' model.save(__snake_case) _UpperCamelCase : Optional[int] = tf.keras.models.load_model(__snake_case) _UpperCamelCase : int = loaded_model(__snake_case) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output)) , 1e-5)
648
0
from scipy.stats import spearmanr import datasets lowerCAmelCase__ = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ lowerCAmelCase__ = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ lowerCAmelCase__ = R"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): """simple docstring""" def A__ ( self): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float'), 'references': datasets.Value('float'), }) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'] , ) def A__ ( self , __snake_case , __snake_case , __snake_case=False): _UpperCamelCase : Any = spearmanr(__snake_case , __snake_case) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
707
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ = { """configuration_canine""": ["""CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CanineConfig"""], """tokenization_canine""": ["""CanineTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """CANINE_PRETRAINED_MODEL_ARCHIVE_LIST""", """CanineForMultipleChoice""", """CanineForQuestionAnswering""", """CanineForSequenceClassification""", """CanineForTokenClassification""", """CanineLayer""", """CanineModel""", """CaninePreTrainedModel""", """load_tf_weights_in_canine""", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
648
0
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" a__ = KandinskyVaaInpaintPipeline a__ = ["image_embeds", "negative_image_embeds", "image", "mask_image"] a__ = [ "image_embeds", "negative_image_embeds", "image", "mask_image", ] a__ = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] a__ = False @property def A__ ( self): return 32 @property def A__ ( self): return 32 @property def A__ ( self): return self.time_input_dim @property def A__ ( self): return self.time_input_dim * 4 @property def A__ ( self): return 1_00 @property def A__ ( self): torch.manual_seed(0) _UpperCamelCase : Optional[Any] = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _UpperCamelCase : Tuple = UNetaDConditionModel(**__snake_case) return model @property def A__ ( self): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A__ ( self): torch.manual_seed(0) _UpperCamelCase : int = VQModel(**self.dummy_movq_kwargs) return model def A__ ( self): _UpperCamelCase : Optional[Any] = self.dummy_unet _UpperCamelCase : List[str] = self.dummy_movq _UpperCamelCase : List[Any] = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule='linear' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__snake_case , set_alpha_to_one=__snake_case , steps_offset=1 , prediction_type='epsilon' , thresholding=__snake_case , ) _UpperCamelCase : str = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def A__ ( self , __snake_case , __snake_case=0): _UpperCamelCase : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__snake_case)).to(__snake_case) _UpperCamelCase : Dict = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1)).to( __snake_case) # create init_image _UpperCamelCase : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case)).to(__snake_case) _UpperCamelCase : Tuple = image.cpu().permute(0 , 2 , 3 , 1)[0] _UpperCamelCase : Dict = Image.fromarray(np.uinta(__snake_case)).convert('RGB').resize((2_56, 2_56)) # create mask _UpperCamelCase : Tuple = np.ones((64, 64) , dtype=np.floataa) _UpperCamelCase : int = 0 if str(__snake_case).startswith('mps'): _UpperCamelCase : List[str] = torch.manual_seed(__snake_case) else: _UpperCamelCase : Tuple = torch.Generator(device=__snake_case).manual_seed(__snake_case) _UpperCamelCase : Optional[Any] = { 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def A__ ( self): _UpperCamelCase : List[str] = 'cpu' _UpperCamelCase : Union[str, Any] = self.get_dummy_components() _UpperCamelCase : str = self.pipeline_class(**__snake_case) _UpperCamelCase : int = pipe.to(__snake_case) pipe.set_progress_bar_config(disable=__snake_case) _UpperCamelCase : Optional[Any] = pipe(**self.get_dummy_inputs(__snake_case)) _UpperCamelCase : List[str] = output.images _UpperCamelCase : Union[str, Any] = pipe( **self.get_dummy_inputs(__snake_case) , return_dict=__snake_case , )[0] _UpperCamelCase : Union[str, Any] = image[0, -3:, -3:, -1] _UpperCamelCase : List[Any] = image_from_tuple[0, -3:, -3:, -1] print(f'''image.shape {image.shape}''') assert image.shape == (1, 64, 64, 3) _UpperCamelCase : List[Any] = np.array( [0.5_0_7_7_5_9_0_3, 0.4_9_5_2_7_1_9_5, 0.4_8_8_2_4_5_4_3, 0.5_0_1_9_2_2_3_7, 0.4_8_6_4_4_9_0_6, 0.4_9_3_7_3_8_1_4, 0.4_7_8_0_5_9_8, 0.4_7_2_3_4_8_2_7, 0.4_8_3_2_7_8_4_8]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def A__ ( self): super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self): _UpperCamelCase : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy') _UpperCamelCase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png') _UpperCamelCase : List[Any] = np.ones((7_68, 7_68) , dtype=np.floataa) _UpperCamelCase : Optional[int] = 0 _UpperCamelCase : List[str] = 'a hat' _UpperCamelCase : List[Any] = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa) pipe_prior.to(__snake_case) _UpperCamelCase : List[str] = KandinskyVaaInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder-inpaint' , torch_dtype=torch.floataa) _UpperCamelCase : Union[str, Any] = pipeline.to(__snake_case) pipeline.set_progress_bar_config(disable=__snake_case) _UpperCamelCase : int = torch.Generator(device='cpu').manual_seed(0) _UpperCamelCase : Union[str, Any] = pipe_prior( __snake_case , generator=__snake_case , num_inference_steps=5 , negative_prompt='' , ).to_tuple() _UpperCamelCase : List[Any] = pipeline( image=__snake_case , mask_image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type='np' , ) _UpperCamelCase : Union[str, Any] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__snake_case , __snake_case)
708
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case=3 , __snake_case=32 , __snake_case=3 , __snake_case=10 , __snake_case=[8, 16, 32, 64] , __snake_case=[1, 1, 2, 1] , __snake_case=True , __snake_case=True , __snake_case="relu" , __snake_case=3 , __snake_case=None , __snake_case=["stage2", "stage3", "stage4"] , __snake_case=[2, 3, 4] , __snake_case=1 , ): _UpperCamelCase : List[Any] = parent _UpperCamelCase : Dict = batch_size _UpperCamelCase : Optional[int] = image_size _UpperCamelCase : str = num_channels _UpperCamelCase : Optional[Any] = embeddings_size _UpperCamelCase : Tuple = hidden_sizes _UpperCamelCase : Dict = depths _UpperCamelCase : str = is_training _UpperCamelCase : Optional[int] = use_labels _UpperCamelCase : str = hidden_act _UpperCamelCase : Optional[int] = num_labels _UpperCamelCase : Optional[int] = scope _UpperCamelCase : Tuple = len(__snake_case) _UpperCamelCase : Dict = out_features _UpperCamelCase : Union[str, Any] = out_indices _UpperCamelCase : int = num_groups def A__ ( self): _UpperCamelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase : str = None if self.use_labels: _UpperCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels) _UpperCamelCase : str = self.get_config() return config, pixel_values, labels def A__ ( self): return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : str = BitModel(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[Any] = model(__snake_case) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Dict = self.num_labels _UpperCamelCase : Dict = BitForImageClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Dict = model(__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[Any] = BitBackbone(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = model(__snake_case) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:]) # verify backbone works with out_features=None _UpperCamelCase : Any = None _UpperCamelCase : str = BitBackbone(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Any = model(__snake_case) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , 1) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[-1], 1, 1]) # verify channels self.parent.assertEqual(len(model.channels) , 1) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]]) def A__ ( self): _UpperCamelCase : Optional[int] = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : int = config_and_inputs _UpperCamelCase : int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () a__ = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False a__ = False def A__ ( self): _UpperCamelCase : Dict = BitModelTester(self) _UpperCamelCase : Optional[Any] = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case) def A__ ( self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self): return @unittest.skip(reason='Bit does not output attentions') def A__ ( self): pass @unittest.skip(reason='Bit does not use inputs_embeds') def A__ ( self): pass @unittest.skip(reason='Bit does not support input and output embeddings') def A__ ( self): pass def A__ ( self): _UpperCamelCase , _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : int = model_class(__snake_case) _UpperCamelCase : List[Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : Optional[int] = [*signature.parameters.keys()] _UpperCamelCase : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __snake_case) def A__ ( self): _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case) def A__ ( self): _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__snake_case) def A__ ( self): _UpperCamelCase , _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Union[str, Any] = model_class(config=__snake_case) for name, module in model.named_modules(): if isinstance(__snake_case , (nn.BatchNormad, nn.GroupNorm)): self.assertTrue( torch.all(module.weight == 1) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def A__ ( self): def check_hidden_states_output(__snake_case , __snake_case , __snake_case): _UpperCamelCase : str = model_class(__snake_case) model.to(__snake_case) model.eval() with torch.no_grad(): _UpperCamelCase : Union[str, Any] = model(**self._prepare_for_class(__snake_case , __snake_case)) _UpperCamelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase : str = self.model_tester.num_stages self.assertEqual(len(__snake_case) , expected_num_stages + 1) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCamelCase , _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : List[str] = ['preactivation', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _UpperCamelCase : Any = layer_type _UpperCamelCase : Tuple = True check_hidden_states_output(__snake_case , __snake_case , __snake_case) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase : List[str] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case) @unittest.skip(reason='Bit does not use feedforward chunking') def A__ ( self): pass def A__ ( self): _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case) @slow def A__ ( self): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : Optional[Any] = BitModel.from_pretrained(__snake_case) self.assertIsNotNone(__snake_case) def lowerCamelCase_ ( ) -> Optional[int]: '''simple docstring''' _UpperCamelCase : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def A__ ( self): _UpperCamelCase : Optional[Any] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(__snake_case) _UpperCamelCase : str = self.default_image_processor _UpperCamelCase : List[str] = prepare_img() _UpperCamelCase : int = image_processor(images=__snake_case , return_tensors='pt').to(__snake_case) # forward pass with torch.no_grad(): _UpperCamelCase : Any = model(**__snake_case) # verify the logits _UpperCamelCase : Dict = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , __snake_case) _UpperCamelCase : Optional[int] = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]]).to(__snake_case) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1e-4)) @require_torch class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" a__ = (BitBackbone,) if is_torch_available() else () a__ = BitConfig a__ = False def A__ ( self): _UpperCamelCase : List[str] = BitModelTester(self)
648
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """vinvino02/glpn-kitti""": """https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json""", # See all GLPN models at https://huggingface.co/models?filter=glpn } class lowercase ( _lowercase ): """simple docstring""" a__ = "glpn" def __init__( self , __snake_case=3 , __snake_case=4 , __snake_case=[2, 2, 2, 2] , __snake_case=[8, 4, 2, 1] , __snake_case=[32, 64, 1_60, 2_56] , __snake_case=[7, 3, 3, 3] , __snake_case=[4, 2, 2, 2] , __snake_case=[1, 2, 5, 8] , __snake_case=[4, 4, 4, 4] , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.0_2 , __snake_case=0.1 , __snake_case=1e-6 , __snake_case=64 , __snake_case=10 , __snake_case=-1 , **__snake_case , ): super().__init__(**__snake_case) _UpperCamelCase : Any = num_channels _UpperCamelCase : Any = num_encoder_blocks _UpperCamelCase : List[str] = depths _UpperCamelCase : List[str] = sr_ratios _UpperCamelCase : str = hidden_sizes _UpperCamelCase : str = patch_sizes _UpperCamelCase : Tuple = strides _UpperCamelCase : Union[str, Any] = mlp_ratios _UpperCamelCase : str = num_attention_heads _UpperCamelCase : List[str] = hidden_act _UpperCamelCase : Dict = hidden_dropout_prob _UpperCamelCase : Optional[int] = attention_probs_dropout_prob _UpperCamelCase : int = initializer_range _UpperCamelCase : List[Any] = drop_path_rate _UpperCamelCase : Dict = layer_norm_eps _UpperCamelCase : Dict = decoder_hidden_size _UpperCamelCase : Union[str, Any] = max_depth _UpperCamelCase : List[Any] = head_in_index
709
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowerCAmelCase__ = numpy.array([0, 0]) lowerCAmelCase__ = numpy.array([0.5, 0.8_66_02_54]) lowerCAmelCase__ = numpy.array([1, 0]) lowerCAmelCase__ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] , UpperCAmelCase_ : int ) -> list[numpy.ndarray]: '''simple docstring''' _UpperCamelCase : Tuple = initial_vectors for _ in range(UpperCAmelCase_ ): _UpperCamelCase : str = iteration_step(UpperCAmelCase_ ) return vectors def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] ) -> list[numpy.ndarray]: '''simple docstring''' _UpperCamelCase : int = [] for i, start_vector in enumerate(vectors[:-1] ): _UpperCamelCase : Union[str, Any] = vectors[i + 1] new_vectors.append(UpperCAmelCase_ ) _UpperCamelCase : Tuple = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def lowerCamelCase_ ( UpperCAmelCase_ : numpy.ndarray , UpperCAmelCase_ : float ) -> numpy.ndarray: '''simple docstring''' _UpperCamelCase : str = numpy.radians(UpperCAmelCase_ ) _UpperCamelCase , _UpperCamelCase : Optional[Any] = numpy.cos(UpperCAmelCase_ ), numpy.sin(UpperCAmelCase_ ) _UpperCamelCase : Any = numpy.array(((c, -s), (s, c)) ) return numpy.dot(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] ) -> None: '''simple docstring''' _UpperCamelCase : str = plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _UpperCamelCase , _UpperCamelCase : Dict = zip(*UpperCAmelCase_ ) plt.plot(UpperCAmelCase_ , UpperCAmelCase_ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
648
0
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> Any: '''simple docstring''' if isinstance(UpperCAmelCase_ , collections.abc.Iterable ): return x return (x, x) @require_tf class lowercase : """simple docstring""" def A__ ( self , __snake_case , __snake_case): pass def A__ ( self): pass def A__ ( self): pass def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=None , **__snake_case): _UpperCamelCase : int = VisionTextDualEncoderConfig.from_vision_text_configs(__snake_case , __snake_case) _UpperCamelCase : int = TFVisionTextDualEncoderModel(__snake_case) _UpperCamelCase : str = model(input_ids=__snake_case , pixel_values=__snake_case , attention_mask=__snake_case) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim)) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=None , **__snake_case): _UpperCamelCase : Optional[Any] = self.get_vision_text_model(__snake_case , __snake_case) _UpperCamelCase : List[str] = TFVisionTextDualEncoderModel(vision_model=__snake_case , text_model=__snake_case) _UpperCamelCase : str = model(input_ids=__snake_case , pixel_values=__snake_case , attention_mask=__snake_case) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=None , **__snake_case): _UpperCamelCase : List[Any] = self.get_vision_text_model(__snake_case , __snake_case) _UpperCamelCase : List[str] = {'vision_model': vision_model, 'text_model': text_model} _UpperCamelCase : Dict = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**__snake_case) _UpperCamelCase : List[Any] = model(input_ids=__snake_case , pixel_values=__snake_case , attention_mask=__snake_case) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=None , **__snake_case): _UpperCamelCase : Union[str, Any] = self.get_vision_text_model(__snake_case , __snake_case) _UpperCamelCase : List[Any] = TFVisionTextDualEncoderModel(vision_model=__snake_case , text_model=__snake_case) _UpperCamelCase : Optional[Any] = model(input_ids=__snake_case , pixel_values=__snake_case , attention_mask=__snake_case) _UpperCamelCase : int = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__snake_case) _UpperCamelCase : Optional[int] = TFVisionTextDualEncoderModel.from_pretrained(__snake_case) _UpperCamelCase : Dict = model(input_ids=__snake_case , pixel_values=__snake_case , attention_mask=__snake_case) _UpperCamelCase : str = after_output[0].numpy() _UpperCamelCase : Optional[int] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(__snake_case , 1e-5) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=None , **__snake_case): _UpperCamelCase : List[Any] = self.get_vision_text_model(__snake_case , __snake_case) _UpperCamelCase : Tuple = TFVisionTextDualEncoderModel(vision_model=__snake_case , text_model=__snake_case) _UpperCamelCase : Tuple = model( input_ids=__snake_case , pixel_values=__snake_case , attention_mask=__snake_case , output_attentions=__snake_case) _UpperCamelCase : str = output.vision_model_output.attentions self.assertEqual(len(__snake_case) , vision_config.num_hidden_layers) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCamelCase : int = to_atuple(vision_model.config.image_size) _UpperCamelCase : int = to_atuple(vision_model.config.patch_size) _UpperCamelCase : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _UpperCamelCase : Union[str, Any] = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len)) _UpperCamelCase : List[Any] = output.text_model_output.attentions self.assertEqual(len(__snake_case) , text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[int] = np.abs((a - b)).max() self.assertLessEqual(__snake_case , __snake_case , f'''Difference between torch and flax is {diff} (>= {tol}).''') def A__ ( self): _UpperCamelCase : str = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**__snake_case) def A__ ( self): _UpperCamelCase : Optional[Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__snake_case) def A__ ( self): _UpperCamelCase : Optional[Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__snake_case) def A__ ( self): _UpperCamelCase : Dict = self.prepare_config_and_inputs() self.check_save_load(**__snake_case) def A__ ( self): _UpperCamelCase : Tuple = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__snake_case) @slow def A__ ( self): _UpperCamelCase : Optional[Any] = self.get_pretrained_model_and_inputs() _UpperCamelCase : Optional[Any] = model_a(**__snake_case) _UpperCamelCase : str = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__snake_case) _UpperCamelCase : Union[str, Any] = TFVisionTextDualEncoderModel.from_pretrained(__snake_case) _UpperCamelCase : str = model_a(**__snake_case) _UpperCamelCase : Optional[int] = after_outputs[0].numpy() _UpperCamelCase : Tuple = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(__snake_case , 1e-5) @require_tf class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" def A__ ( self): _UpperCamelCase : Union[str, Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-random-bert') _UpperCamelCase : List[Any] = 13 _UpperCamelCase : Any = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) _UpperCamelCase : Any = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size) _UpperCamelCase : str = random_attention_mask([batch_size, 4]) _UpperCamelCase : Any = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def A__ ( self , __snake_case , __snake_case): _UpperCamelCase : Tuple = TFViTModel(__snake_case , name='vision_model') _UpperCamelCase : Dict = TFBertModel(__snake_case , name='text_model') return vision_model, text_model def A__ ( self): _UpperCamelCase : Tuple = TFViTModelTester(self) _UpperCamelCase : int = TFBertModelTester(self) _UpperCamelCase : List[Any] = vit_model_tester.prepare_config_and_inputs() _UpperCamelCase : Dict = bert_model_tester.prepare_config_and_inputs() _UpperCamelCase : Tuple = vision_config_and_inputs ( _UpperCamelCase ) : int = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" def A__ ( self): # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. _UpperCamelCase : Dict = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-deit-tf' , 'hf-internal-testing/tiny-random-roberta') _UpperCamelCase : Dict = 13 _UpperCamelCase : Tuple = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) _UpperCamelCase : Tuple = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size) _UpperCamelCase : Tuple = random_attention_mask([batch_size, 4]) _UpperCamelCase : str = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=None , **__snake_case): _UpperCamelCase : Optional[int] = self.get_vision_text_model(__snake_case , __snake_case) _UpperCamelCase : Tuple = TFVisionTextDualEncoderModel(vision_model=__snake_case , text_model=__snake_case) _UpperCamelCase : List[str] = model( input_ids=__snake_case , pixel_values=__snake_case , attention_mask=__snake_case , output_attentions=__snake_case) _UpperCamelCase : str = output.vision_model_output.attentions self.assertEqual(len(__snake_case) , vision_config.num_hidden_layers) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _UpperCamelCase : List[str] = to_atuple(vision_model.config.image_size) _UpperCamelCase : Union[str, Any] = to_atuple(vision_model.config.patch_size) _UpperCamelCase : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _UpperCamelCase : str = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len)) _UpperCamelCase : Tuple = output.text_model_output.attentions self.assertEqual(len(__snake_case) , text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def A__ ( self , __snake_case , __snake_case): _UpperCamelCase : str = TFDeiTModel(__snake_case , name='vision_model') _UpperCamelCase : Dict = TFRobertaModel(__snake_case , name='text_model') return vision_model, text_model def A__ ( self): _UpperCamelCase : List[str] = TFDeiTModelTester(self) _UpperCamelCase : int = TFRobertaModelTester(self) _UpperCamelCase : int = vit_model_tester.prepare_config_and_inputs() _UpperCamelCase : Optional[Any] = bert_model_tester.prepare_config_and_inputs() _UpperCamelCase : str = vision_config_and_inputs ( _UpperCamelCase ) : List[Any] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" def A__ ( self): _UpperCamelCase : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-clip-tf' , 'hf-internal-testing/tiny-random-bert') _UpperCamelCase : List[Any] = 13 _UpperCamelCase : Tuple = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) _UpperCamelCase : Optional[Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size) _UpperCamelCase : str = random_attention_mask([batch_size, 4]) _UpperCamelCase : Tuple = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def A__ ( self , __snake_case , __snake_case): _UpperCamelCase : Dict = TFCLIPVisionModel(__snake_case , name='vision_model') _UpperCamelCase : Tuple = TFBertModel(__snake_case , name='text_model') return vision_model, text_model def A__ ( self): _UpperCamelCase : int = TFCLIPVisionModelTester(self) _UpperCamelCase : str = TFBertModelTester(self) _UpperCamelCase : Union[str, Any] = clip_model_tester.prepare_config_and_inputs() _UpperCamelCase : Tuple = bert_model_tester.prepare_config_and_inputs() _UpperCamelCase : List[str] = vision_config_and_inputs ( _UpperCamelCase ) : Optional[int] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class lowercase ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self): _UpperCamelCase : Tuple = TFVisionTextDualEncoderModel.from_pretrained( 'clip-italian/clip-italian' , logit_scale_init_value=1.0 , from_pt=__snake_case) _UpperCamelCase : str = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian') _UpperCamelCase : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCamelCase : str = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=__snake_case , padding=__snake_case , return_tensors='np') _UpperCamelCase : Union[str, Any] = model(**__snake_case) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0])) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _UpperCamelCase : List[Any] = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]]) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , __snake_case , atol=1e-3))
710
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCAmelCase__ = abspath(join(dirname(__file__), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def lowerCamelCase_ ( UpperCAmelCase_ : Any ) -> Union[str, Any]: '''simple docstring''' config.addinivalue_line( 'markers' , 'is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested' ) config.addinivalue_line( 'markers' , 'is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested' ) config.addinivalue_line('markers' , 'is_pipeline_test: mark test to run only when pipelines are tested' ) config.addinivalue_line('markers' , 'is_staging_test: mark test to run only in the staging environment' ) config.addinivalue_line('markers' , 'accelerate_tests: mark test that require accelerate' ) config.addinivalue_line('markers' , 'tool_tests: mark the tool tests that are run on their specific schedule' ) def lowerCamelCase_ ( UpperCAmelCase_ : Optional[int] ) -> List[Any]: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : Any ) -> List[Any]: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main _UpperCamelCase : str = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(UpperCAmelCase_ , id=UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict ) -> Tuple: '''simple docstring''' if exitstatus == 5: _UpperCamelCase : List[Any] = 0 # Doctest custom flag to ignore output. lowerCAmelCase__ = doctest.register_optionflag("""IGNORE_RESULT""") lowerCAmelCase__ = doctest.OutputChecker class lowercase ( _lowercase ): """simple docstring""" def A__ ( self , __snake_case , __snake_case , __snake_case): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , __snake_case , __snake_case , __snake_case) lowerCAmelCase__ = CustomOutputChecker lowerCAmelCase__ = HfDoctestModule lowerCAmelCase__ = HfDocTestParser
648
0
'''simple docstring''' from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class lowercase ( _lowercase ): """simple docstring""" def __lt__( self , __snake_case): return self[-1] < other[-1] def __eq__( self , __snake_case): return self[-1] == other[-1] def lowerCamelCase_ ( UpperCAmelCase_ : list ) -> list: '''simple docstring''' _UpperCamelCase : list[Stack] = [] # sort into stacks for element in collection: _UpperCamelCase : Any = Stack([element] ) _UpperCamelCase : Optional[int] = bisect_left(UpperCAmelCase_ , UpperCAmelCase_ ) if i != len(UpperCAmelCase_ ): stacks[i].append(UpperCAmelCase_ ) else: stacks.append(UpperCAmelCase_ ) # use a heap-based merge to merge stack efficiently _UpperCamelCase : str = merge(*(reversed(UpperCAmelCase_ ) for stack in stacks) ) return collection if __name__ == "__main__": lowerCAmelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCAmelCase__ = [int(item) for item in user_input.split(""",""")] print(patience_sort(unsorted))
711
lowerCAmelCase__ = range(2, 2_0 + 1) lowerCAmelCase__ = [1_0**k for k in range(ks[-1] + 1)] lowerCAmelCase__ = {} def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int ) -> Tuple: '''simple docstring''' _UpperCamelCase : Dict = sum(a_i[j] for j in range(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) ) _UpperCamelCase : Optional[int] = sum(a_i[j] * base[j] for j in range(min(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) ) ) _UpperCamelCase , _UpperCamelCase : Dict = 0, 0 _UpperCamelCase : Optional[int] = n - i _UpperCamelCase : Union[str, Any] = memo.get(UpperCAmelCase_ ) if sub_memo is not None: _UpperCamelCase : str = sub_memo.get(UpperCAmelCase_ ) if jumps is not None and len(UpperCAmelCase_ ) > 0: # find and make the largest jump without going over _UpperCamelCase : str = -1 for _k in range(len(UpperCAmelCase_ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _UpperCamelCase : Optional[Any] = _k break if max_jump >= 0: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = jumps[max_jump] # since the difference between jumps is cached, add c _UpperCamelCase : Tuple = diff + c for j in range(min(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) ): _UpperCamelCase , _UpperCamelCase : Dict = divmod(UpperCAmelCase_ , 1_0 ) if new_c > 0: add(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) else: _UpperCamelCase : Union[str, Any] = [] else: _UpperCamelCase : List[Any] = {c: []} _UpperCamelCase : Optional[int] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _UpperCamelCase , _UpperCamelCase : Optional[Any] = next_term(UpperCAmelCase_ , k - 1 , i + dn , UpperCAmelCase_ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _UpperCamelCase , _UpperCamelCase : Any = compute(UpperCAmelCase_ , UpperCAmelCase_ , i + dn , UpperCAmelCase_ ) diff += _diff dn += terms_jumped _UpperCamelCase : List[str] = sub_memo[c] # keep jumps sorted by # of terms skipped _UpperCamelCase : Union[str, Any] = 0 while j < len(UpperCAmelCase_ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCAmelCase_ , (diff, dn, k) ) return (diff, dn) def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any ) -> Dict: '''simple docstring''' if i >= n: return 0, i if k > len(UpperCAmelCase_ ): a_i.extend([0 for _ in range(k - len(UpperCAmelCase_ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _UpperCamelCase : Any = i _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Any = 0, 0, 0 for j in range(len(UpperCAmelCase_ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _UpperCamelCase : Union[str, Any] = ds_c + ds_b diff += addend _UpperCamelCase : Union[str, Any] = 0 for j in range(UpperCAmelCase_ ): _UpperCamelCase : Union[str, Any] = a_i[j] + addend _UpperCamelCase , _UpperCamelCase : Any = divmod(UpperCAmelCase_ , 1_0 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return diff, i - start_i def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any ) -> Dict: '''simple docstring''' for j in range(UpperCAmelCase_ , len(UpperCAmelCase_ ) ): _UpperCamelCase : List[str] = digits[j] + addend if s >= 1_0: _UpperCamelCase , _UpperCamelCase : Any = divmod(UpperCAmelCase_ , 1_0 ) _UpperCamelCase : Union[str, Any] = addend // 1_0 + quotient else: _UpperCamelCase : Dict = s _UpperCamelCase : Optional[Any] = addend // 1_0 if addend == 0: break while addend > 0: _UpperCamelCase , _UpperCamelCase : Dict = divmod(UpperCAmelCase_ , 1_0 ) digits.append(UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : int = 1_0**1_5 ) -> int: '''simple docstring''' _UpperCamelCase : Optional[Any] = [1] _UpperCamelCase : Optional[int] = 1 _UpperCamelCase : int = 0 while True: _UpperCamelCase , _UpperCamelCase : List[Any] = next_term(UpperCAmelCase_ , 2_0 , i + dn , UpperCAmelCase_ ) dn += terms_jumped if dn == n - i: break _UpperCamelCase : str = 0 for j in range(len(UpperCAmelCase_ ) ): a_n += digits[j] * 1_0**j return a_n if __name__ == "__main__": print(f'{solution() = }')
648
0
import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case , __snake_case): if dst_width < 0 or dst_height < 0: raise ValueError('Destination width/height should be > 0') _UpperCamelCase : Dict = img _UpperCamelCase : Optional[int] = img.shape[1] _UpperCamelCase : str = img.shape[0] _UpperCamelCase : Any = dst_width _UpperCamelCase : Dict = dst_height _UpperCamelCase : Any = self.src_w / self.dst_w _UpperCamelCase : Optional[int] = self.src_h / self.dst_h _UpperCamelCase : str = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta) * 2_55 ) def A__ ( self): for i in range(self.dst_h): for j in range(self.dst_w): _UpperCamelCase : Optional[Any] = self.img[self.get_y(__snake_case)][self.get_x(__snake_case)] def A__ ( self , __snake_case): return int(self.ratio_x * x) def A__ ( self , __snake_case): return int(self.ratio_y * y) if __name__ == "__main__": lowerCAmelCase__ , lowerCAmelCase__ = 8_0_0, 6_0_0 lowerCAmelCase__ = imread("""image_data/lena.jpg""", 1) lowerCAmelCase__ = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( f'Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}', n.output ) waitKey(0) destroyAllWindows()
712
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowercase ( _lowercase ): """simple docstring""" a__ = "vit_mae" def __init__( self , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=2_24 , __snake_case=16 , __snake_case=3 , __snake_case=True , __snake_case=16 , __snake_case=5_12 , __snake_case=8 , __snake_case=20_48 , __snake_case=0.7_5 , __snake_case=False , **__snake_case , ): super().__init__(**__snake_case) _UpperCamelCase : Optional[int] = hidden_size _UpperCamelCase : Optional[int] = num_hidden_layers _UpperCamelCase : Tuple = num_attention_heads _UpperCamelCase : List[str] = intermediate_size _UpperCamelCase : str = hidden_act _UpperCamelCase : List[str] = hidden_dropout_prob _UpperCamelCase : List[Any] = attention_probs_dropout_prob _UpperCamelCase : str = initializer_range _UpperCamelCase : Any = layer_norm_eps _UpperCamelCase : int = image_size _UpperCamelCase : Any = patch_size _UpperCamelCase : List[Any] = num_channels _UpperCamelCase : Union[str, Any] = qkv_bias _UpperCamelCase : str = decoder_num_attention_heads _UpperCamelCase : Union[str, Any] = decoder_hidden_size _UpperCamelCase : Union[str, Any] = decoder_num_hidden_layers _UpperCamelCase : Any = decoder_intermediate_size _UpperCamelCase : int = mask_ratio _UpperCamelCase : List[Any] = norm_pix_loss
648
0
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case=3 , __snake_case=32 , __snake_case=3 , __snake_case=10 , __snake_case=[8, 16, 32, 64] , __snake_case=[1, 1, 2, 1] , __snake_case=True , __snake_case=True , __snake_case="relu" , __snake_case=3 , __snake_case=None , __snake_case=["stage2", "stage3", "stage4"] , __snake_case=[2, 3, 4] , __snake_case=1 , ): _UpperCamelCase : List[Any] = parent _UpperCamelCase : Dict = batch_size _UpperCamelCase : Optional[int] = image_size _UpperCamelCase : str = num_channels _UpperCamelCase : Optional[Any] = embeddings_size _UpperCamelCase : Tuple = hidden_sizes _UpperCamelCase : Dict = depths _UpperCamelCase : str = is_training _UpperCamelCase : Optional[int] = use_labels _UpperCamelCase : str = hidden_act _UpperCamelCase : Optional[int] = num_labels _UpperCamelCase : Optional[int] = scope _UpperCamelCase : Tuple = len(__snake_case) _UpperCamelCase : Dict = out_features _UpperCamelCase : Union[str, Any] = out_indices _UpperCamelCase : int = num_groups def A__ ( self): _UpperCamelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase : str = None if self.use_labels: _UpperCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels) _UpperCamelCase : str = self.get_config() return config, pixel_values, labels def A__ ( self): return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : str = BitModel(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[Any] = model(__snake_case) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Dict = self.num_labels _UpperCamelCase : Dict = BitForImageClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Dict = model(__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[Any] = BitBackbone(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = model(__snake_case) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:]) # verify backbone works with out_features=None _UpperCamelCase : Any = None _UpperCamelCase : str = BitBackbone(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Any = model(__snake_case) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , 1) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[-1], 1, 1]) # verify channels self.parent.assertEqual(len(model.channels) , 1) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]]) def A__ ( self): _UpperCamelCase : Optional[int] = self.prepare_config_and_inputs() _UpperCamelCase : int = config_and_inputs _UpperCamelCase : int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () a__ = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False a__ = False def A__ ( self): _UpperCamelCase : Dict = BitModelTester(self) _UpperCamelCase : Optional[Any] = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case) def A__ ( self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self): return @unittest.skip(reason='Bit does not output attentions') def A__ ( self): pass @unittest.skip(reason='Bit does not use inputs_embeds') def A__ ( self): pass @unittest.skip(reason='Bit does not support input and output embeddings') def A__ ( self): pass def A__ ( self): _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : int = model_class(__snake_case) _UpperCamelCase : List[Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : Optional[int] = [*signature.parameters.keys()] _UpperCamelCase : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __snake_case) def A__ ( self): _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case) def A__ ( self): _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__snake_case) def A__ ( self): _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Union[str, Any] = model_class(config=__snake_case) for name, module in model.named_modules(): if isinstance(__snake_case , (nn.BatchNormad, nn.GroupNorm)): self.assertTrue( torch.all(module.weight == 1) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def A__ ( self): def check_hidden_states_output(__snake_case , __snake_case , __snake_case): _UpperCamelCase : str = model_class(__snake_case) model.to(__snake_case) model.eval() with torch.no_grad(): _UpperCamelCase : Union[str, Any] = model(**self._prepare_for_class(__snake_case , __snake_case)) _UpperCamelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase : str = self.model_tester.num_stages self.assertEqual(len(__snake_case) , expected_num_stages + 1) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : List[str] = ['preactivation', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _UpperCamelCase : Any = layer_type _UpperCamelCase : Tuple = True check_hidden_states_output(__snake_case , __snake_case , __snake_case) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase : List[str] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case) @unittest.skip(reason='Bit does not use feedforward chunking') def A__ ( self): pass def A__ ( self): _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case) @slow def A__ ( self): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : Optional[Any] = BitModel.from_pretrained(__snake_case) self.assertIsNotNone(__snake_case) def lowerCamelCase_ ( ) -> Optional[int]: '''simple docstring''' _UpperCamelCase : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def A__ ( self): _UpperCamelCase : Optional[Any] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(__snake_case) _UpperCamelCase : str = self.default_image_processor _UpperCamelCase : List[str] = prepare_img() _UpperCamelCase : int = image_processor(images=__snake_case , return_tensors='pt').to(__snake_case) # forward pass with torch.no_grad(): _UpperCamelCase : Any = model(**__snake_case) # verify the logits _UpperCamelCase : Dict = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , __snake_case) _UpperCamelCase : Optional[int] = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]]).to(__snake_case) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1e-4)) @require_torch class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" a__ = (BitBackbone,) if is_torch_available() else () a__ = BitConfig a__ = False def A__ ( self): _UpperCamelCase : List[str] = BitModelTester(self)
713
import functools def lowerCamelCase_ ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int] ) -> int: '''simple docstring''' if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or not all(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(UpperCAmelCase_ ) != 3 or not all(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(UpperCAmelCase_ ) == 0: return 0 if min(UpperCAmelCase_ ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(UpperCAmelCase_ ) >= 3_6_6: raise ValueError('All days elements should be less than 366' ) _UpperCamelCase : Union[str, Any] = set(UpperCAmelCase_ ) @functools.cache def dynamic_programming(UpperCAmelCase_ : int ) -> int: if index > 3_6_5: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 3_0 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
648
0
'''simple docstring''' def lowerCamelCase_ ( UpperCAmelCase_ : str ) -> str: '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
714
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=99 , __snake_case=64 , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=37 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=16 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=3 , __snake_case=4 , __snake_case=None , ): _UpperCamelCase : List[Any] = parent _UpperCamelCase : Optional[Any] = batch_size _UpperCamelCase : int = seq_length _UpperCamelCase : str = is_training _UpperCamelCase : Tuple = use_input_mask _UpperCamelCase : Union[str, Any] = use_token_type_ids _UpperCamelCase : Union[str, Any] = use_labels _UpperCamelCase : Optional[Any] = vocab_size _UpperCamelCase : List[Any] = hidden_size _UpperCamelCase : Optional[Any] = embedding_size _UpperCamelCase : str = num_hidden_layers _UpperCamelCase : str = num_attention_heads _UpperCamelCase : int = intermediate_size _UpperCamelCase : int = hidden_act _UpperCamelCase : Tuple = hidden_dropout_prob _UpperCamelCase : int = attention_probs_dropout_prob _UpperCamelCase : Tuple = max_position_embeddings _UpperCamelCase : List[str] = type_vocab_size _UpperCamelCase : Dict = type_sequence_label_size _UpperCamelCase : List[str] = initializer_range _UpperCamelCase : Optional[Any] = num_labels _UpperCamelCase : Tuple = num_choices _UpperCamelCase : List[str] = scope def A__ ( self): _UpperCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase : Any = None if self.use_input_mask: _UpperCamelCase : int = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase : Optional[Any] = None if self.use_token_type_ids: _UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase : int = None _UpperCamelCase : List[str] = None _UpperCamelCase : Dict = None if self.use_labels: _UpperCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self): return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : List[str] = MegatronBertModel(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case) _UpperCamelCase : Dict = model(__snake_case , token_type_ids=__snake_case) _UpperCamelCase : Optional[Any] = model(__snake_case) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : int = MegatronBertForMaskedLM(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Dict = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : str = MegatronBertForCausalLM(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Tuple = MegatronBertForNextSentencePrediction(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[Any] = MegatronBertForPreTraining(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[str] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , next_sentence_label=__snake_case , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : int = MegatronBertForQuestionAnswering(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[int] = self.num_labels _UpperCamelCase : Union[str, Any] = MegatronBertForSequenceClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Any = self.num_labels _UpperCamelCase : Optional[int] = MegatronBertForTokenClassification(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Tuple = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : List[str] = self.num_choices _UpperCamelCase : Optional[int] = MegatronBertForMultipleChoice(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : List[Any] = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : Optional[Any] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : Union[str, Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def A__ ( self): _UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) : Optional[int] = config_and_inputs _UpperCamelCase : int = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) a__ = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) a__ = True # test_resize_embeddings = False a__ = False def A__ ( self , __snake_case , __snake_case , __snake_case=False): _UpperCamelCase : str = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case) if return_labels: if model_class in get_values(__snake_case): _UpperCamelCase : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__snake_case) _UpperCamelCase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case) return inputs_dict def A__ ( self): _UpperCamelCase : Any = MegatronBertModelTester(self) _UpperCamelCase : int = ConfigTester(self , config_class=__snake_case , hidden_size=37) def A__ ( self): self.config_tester.run_common_tests() def A__ ( self): _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__snake_case) def A__ ( self): _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__snake_case) def A__ ( self): _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__snake_case) def A__ ( self): _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__snake_case) def A__ ( self): _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__snake_case) def A__ ( self): _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__snake_case) def A__ ( self): _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__snake_case) def A__ ( self): _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__snake_case) def lowerCamelCase_ ( UpperCAmelCase_ : str ) -> Optional[Any]: '''simple docstring''' return torch.tensor( UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ , ) lowerCAmelCase__ = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip('Model is not available.') def A__ ( self): _UpperCamelCase : int = 'nvidia/megatron-bert-uncased-345m' if "MYDIR" in os.environ: _UpperCamelCase : int = os.path.join(os.environ['MYDIR'] , __snake_case) _UpperCamelCase : Optional[int] = MegatronBertModel.from_pretrained(__snake_case) model.to(__snake_case) model.half() _UpperCamelCase : Optional[Any] = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]]) with torch.no_grad(): _UpperCamelCase : str = model(__snake_case)[0] _UpperCamelCase : Optional[int] = torch.Size((1, 9, 10_24)) self.assertEqual(output.shape , __snake_case) _UpperCamelCase : Union[str, Any] = [-0.6_0_4_0, -0.2_5_1_7, -0.1_0_2_5, 0.3_4_2_0, -0.6_7_5_8, -0.0_0_1_7, -0.1_0_8_9, -0.1_9_9_0, 0.5_7_2_8] for ii in range(3): for jj in range(3): _UpperCamelCase : Optional[Any] = output[0, ii, jj] _UpperCamelCase : Dict = expected[3 * ii + jj] _UpperCamelCase : Optional[int] = 'ii={} jj={} a={} b={}'.format(__snake_case , __snake_case , __snake_case , __snake_case) self.assertTrue(math.isclose(__snake_case , __snake_case , rel_tol=__snake_case , abs_tol=__snake_case) , msg=__snake_case)
648
0
import string from math import logaa def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ) -> int: '''simple docstring''' _UpperCamelCase : Union[str, Any] = document.translate( str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' ) _UpperCamelCase : Optional[Any] = document_without_punctuation.split(' ' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ) -> tuple[int, int]: '''simple docstring''' _UpperCamelCase : int = corpus.lower().translate( str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with '' _UpperCamelCase : Union[str, Any] = corpus_without_punctuation.split('\n' ) _UpperCamelCase : Dict = term.lower() return (len([doc for doc in docs if term in doc] ), len(UpperCAmelCase_ )) def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int]=False ) -> float: '''simple docstring''' if smoothing: if n == 0: raise ValueError('log10(0) is undefined.' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('df must be > 0' ) elif n == 0: raise ValueError('log10(0) is undefined.' ) return round(logaa(n / df ) , 3 ) def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> float: '''simple docstring''' return round(tf * idf , 3 )
715
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = """▁""" lowerCAmelCase__ = {"""vocab_file""": """sentencepiece.bpe.model"""} lowerCAmelCase__ = { """vocab_file""": { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model""" ), } } lowerCAmelCase__ = { """xlm-roberta-base""": 5_1_2, """xlm-roberta-large""": 5_1_2, """xlm-roberta-large-finetuned-conll02-dutch""": 5_1_2, """xlm-roberta-large-finetuned-conll02-spanish""": 5_1_2, """xlm-roberta-large-finetuned-conll03-english""": 5_1_2, """xlm-roberta-large-finetuned-conll03-german""": 5_1_2, } class lowercase ( _lowercase ): """simple docstring""" a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = ["input_ids", "attention_mask"] def __init__( self , __snake_case , __snake_case="<s>" , __snake_case="</s>" , __snake_case="</s>" , __snake_case="<s>" , __snake_case="<unk>" , __snake_case="<pad>" , __snake_case="<mask>" , __snake_case = None , **__snake_case , ): # Mask token behave like a normal word, i.e. include the space before it _UpperCamelCase : Dict = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case) if isinstance(__snake_case , __snake_case) else mask_token _UpperCamelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) _UpperCamelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(__snake_case)) _UpperCamelCase : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _UpperCamelCase : int = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _UpperCamelCase : List[Any] = 1 _UpperCamelCase : Any = len(self.sp_model) + self.fairseq_offset _UpperCamelCase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self): _UpperCamelCase : List[Any] = self.__dict__.copy() _UpperCamelCase : Optional[Any] = None _UpperCamelCase : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self , __snake_case): _UpperCamelCase : int = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): _UpperCamelCase : Tuple = {} _UpperCamelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) def A__ ( self , __snake_case , __snake_case = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCamelCase : Tuple = [self.cls_token_id] _UpperCamelCase : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self , __snake_case , __snake_case = None , __snake_case = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case) if token_ids_a is None: return [1] + ([0] * len(__snake_case)) + [1] return [1] + ([0] * len(__snake_case)) + [1, 1] + ([0] * len(__snake_case)) + [1] def A__ ( self , __snake_case , __snake_case = None): _UpperCamelCase : Optional[Any] = [self.sep_token_id] _UpperCamelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def A__ ( self): return len(self.sp_model) + self.fairseq_offset + 1 # Add the <mask> token def A__ ( self): _UpperCamelCase : List[str] = {self.convert_ids_to_tokens(__snake_case): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def A__ ( self , __snake_case): return self.sp_model.encode(__snake_case , out_type=__snake_case) def A__ ( self , __snake_case): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCamelCase : str = self.sp_model.PieceToId(__snake_case) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A__ ( self , __snake_case): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def A__ ( self , __snake_case): _UpperCamelCase : Optional[int] = ''.join(__snake_case).replace(__snake_case , ' ').strip() return out_string def A__ ( self , __snake_case , __snake_case = None): if not os.path.isdir(__snake_case): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return _UpperCamelCase : str = os.path.join( __snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(__snake_case) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , __snake_case) elif not os.path.isfile(self.vocab_file): with open(__snake_case , 'wb') as fi: _UpperCamelCase : Any = self.sp_model.serialized_model_proto() fi.write(__snake_case) return (out_vocab_file,)
648
0
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration lowerCAmelCase__ = { """tiny.en""": """https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt""", """tiny""": """https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt""", """base.en""": """https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt""", """base""": """https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt""", """small.en""": """https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt""", """small""": """https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt""", """medium.en""": """https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt""", """medium""": """https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt""", """large""": """https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt""", """large-v2""": """https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt""", } def lowerCamelCase_ ( UpperCAmelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : int = ['layers', 'blocks'] for k in ignore_keys: state_dict.pop(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase__ = { """blocks""": """layers""", """mlp.0""": """fc1""", """mlp.2""": """fc2""", """mlp_ln""": """final_layer_norm""", """.attn.query""": """.self_attn.q_proj""", """.attn.key""": """.self_attn.k_proj""", """.attn.value""": """.self_attn.v_proj""", """.attn_ln""": """.self_attn_layer_norm""", """.attn.out""": """.self_attn.out_proj""", """.cross_attn.query""": """.encoder_attn.q_proj""", """.cross_attn.key""": """.encoder_attn.k_proj""", """.cross_attn.value""": """.encoder_attn.v_proj""", """.cross_attn_ln""": """.encoder_attn_layer_norm""", """.cross_attn.out""": """.encoder_attn.out_proj""", """decoder.ln.""": """decoder.layer_norm.""", """encoder.ln.""": """encoder.layer_norm.""", """token_embedding""": """embed_tokens""", """encoder.positional_embedding""": """encoder.embed_positions.weight""", """decoder.positional_embedding""": """decoder.embed_positions.weight""", """ln_post""": """layer_norm""", } def lowerCamelCase_ ( UpperCAmelCase_ : Dict ) -> List[Any]: '''simple docstring''' _UpperCamelCase : str = list(s_dict.keys() ) for key in keys: _UpperCamelCase : Tuple = key for k, v in WHISPER_MAPPING.items(): if k in key: _UpperCamelCase : List[str] = new_key.replace(UpperCAmelCase_ , UpperCAmelCase_ ) print(F'''{key} -> {new_key}''' ) _UpperCamelCase : int = s_dict.pop(UpperCAmelCase_ ) return s_dict def lowerCamelCase_ ( UpperCAmelCase_ : Dict ) -> List[str]: '''simple docstring''' _UpperCamelCase : Union[str, Any] = emb.weight.shape _UpperCamelCase : Tuple = nn.Linear(UpperCAmelCase_ , UpperCAmelCase_ , bias=UpperCAmelCase_ ) _UpperCamelCase : Any = emb.weight.data return lin_layer def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ) -> bytes: '''simple docstring''' os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = os.path.basename(UpperCAmelCase_ ) _UpperCamelCase : Tuple = url.split('/' )[-2] _UpperCamelCase : Any = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) if os.path.exists(UpperCAmelCase_ ) and not os.path.isfile(UpperCAmelCase_ ): raise RuntimeError(F'''{download_target} exists and is not a regular file''' ) if os.path.isfile(UpperCAmelCase_ ): _UpperCamelCase : List[Any] = open(UpperCAmelCase_ , 'rb' ).read() if hashlib.shaaaa(UpperCAmelCase_ ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F'''{download_target} exists, but the SHA256 checksum does not match; re-downloading the file''' ) with urllib.request.urlopen(UpperCAmelCase_ ) as source, open(UpperCAmelCase_ , 'wb' ) as output: with tqdm( total=int(source.info().get('Content-Length' ) ) , ncols=8_0 , unit='iB' , unit_scale=UpperCAmelCase_ , unit_divisor=1_0_2_4 ) as loop: while True: _UpperCamelCase : Optional[Any] = source.read(8_1_9_2 ) if not buffer: break output.write(UpperCAmelCase_ ) loop.update(len(UpperCAmelCase_ ) ) _UpperCamelCase : Union[str, Any] = open(UpperCAmelCase_ , 'rb' ).read() if hashlib.shaaaa(UpperCAmelCase_ ).hexdigest() != expected_shaaaa: raise RuntimeError( 'Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.' ) return model_bytes def lowerCamelCase_ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] ) -> Optional[Any]: '''simple docstring''' if ".pt" not in checkpoint_path: _UpperCamelCase : List[Any] = _download(_MODELS[checkpoint_path] ) else: _UpperCamelCase : Dict = torch.load(UpperCAmelCase_ , map_location='cpu' ) _UpperCamelCase : str = original_checkpoint['dims'] _UpperCamelCase : Dict = original_checkpoint['model_state_dict'] _UpperCamelCase : Optional[int] = state_dict['decoder.token_embedding.weight'] remove_ignore_keys_(UpperCAmelCase_ ) rename_keys(UpperCAmelCase_ ) _UpperCamelCase : Dict = True _UpperCamelCase : str = state_dict['decoder.layers.0.fc1.weight'].shape[0] _UpperCamelCase : Any = WhisperConfig( vocab_size=dimensions['n_vocab'] , encoder_ffn_dim=UpperCAmelCase_ , decoder_ffn_dim=UpperCAmelCase_ , num_mel_bins=dimensions['n_mels'] , d_model=dimensions['n_audio_state'] , max_target_positions=dimensions['n_text_ctx'] , encoder_layers=dimensions['n_audio_layer'] , encoder_attention_heads=dimensions['n_audio_head'] , decoder_layers=dimensions['n_text_layer'] , decoder_attention_heads=dimensions['n_text_state'] , max_source_positions=dimensions['n_audio_ctx'] , ) _UpperCamelCase : Any = WhisperForConditionalGeneration(UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = model.model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) if len(UpperCAmelCase_ ) > 0 and not set(UpperCAmelCase_ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( 'Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,' F''' but all the following weights are missing {missing}''' ) if tie_embeds: _UpperCamelCase : str = make_linear_from_emb(model.model.decoder.embed_tokens ) else: _UpperCamelCase : str = proj_out_weights model.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Patht to the downloaded checkpoints""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") lowerCAmelCase__ = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
716
from ...processing_utils import ProcessorMixin class lowercase ( _lowercase ): """simple docstring""" a__ = ["image_processor", "feature_extractor"] a__ = "TvltImageProcessor" a__ = "TvltFeatureExtractor" def __init__( self , __snake_case , __snake_case): super().__init__(image_processor=__snake_case , feature_extractor=__snake_case) _UpperCamelCase : List[str] = image_processor _UpperCamelCase : Dict = feature_extractor def __call__( self , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=False , __snake_case=False , *__snake_case , **__snake_case , ): if images is None and audio is None: raise ValueError('You need to specify either an `images` or `audio` input to process.') _UpperCamelCase : Union[str, Any] = None if images is not None: _UpperCamelCase : Tuple = self.image_processor(__snake_case , mask_pixel=__snake_case , *__snake_case , **__snake_case) if images_mixed is not None: _UpperCamelCase : Union[str, Any] = self.image_processor(__snake_case , is_mixed=__snake_case , *__snake_case , **__snake_case) if audio is not None: _UpperCamelCase : Tuple = self.feature_extractor( __snake_case , *__snake_case , sampling_rate=__snake_case , mask_audio=__snake_case , **__snake_case) _UpperCamelCase : Tuple = {} if audio is not None: output_dict.update(__snake_case) if images is not None: output_dict.update(__snake_case) if images_mixed_dict is not None: output_dict.update(__snake_case) return output_dict @property def A__ ( self): _UpperCamelCase : List[Any] = self.image_processor.model_input_names _UpperCamelCase : List[Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
648
0
from typing import TYPE_CHECKING from ...utils import _LazyModule lowerCAmelCase__ = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
717
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class lowercase ( _lowercase ): """simple docstring""" a__ = "rwkv" a__ = {"max_position_embeddings": "context_length"} def __init__( self , __snake_case=5_02_77 , __snake_case=10_24 , __snake_case=40_96 , __snake_case=32 , __snake_case=None , __snake_case=None , __snake_case=1e-5 , __snake_case=0 , __snake_case=0 , __snake_case=6 , __snake_case=False , __snake_case=True , **__snake_case , ): _UpperCamelCase : str = vocab_size _UpperCamelCase : int = context_length _UpperCamelCase : Tuple = hidden_size _UpperCamelCase : Tuple = num_hidden_layers _UpperCamelCase : Dict = attention_hidden_size if attention_hidden_size is not None else hidden_size _UpperCamelCase : Tuple = intermediate_size if intermediate_size is not None else 4 * hidden_size _UpperCamelCase : Union[str, Any] = layer_norm_epsilon _UpperCamelCase : Dict = rescale_every _UpperCamelCase : Optional[Any] = use_cache _UpperCamelCase : str = bos_token_id _UpperCamelCase : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case)
648
0
import torch from transformers import AutoModel class lowercase ( torch.nn.Module ): """simple docstring""" def __init__( self , __snake_case="sayef/fsner-bert-base-uncased"): super(__snake_case , self).__init__() _UpperCamelCase : Any = AutoModel.from_pretrained(__snake_case , return_dict=__snake_case) _UpperCamelCase : List[Any] = torch.nn.CosineSimilarity(3 , 1e-08) _UpperCamelCase : Tuple = torch.nn.Softmax(dim=1) def A__ ( self , **__snake_case): return self.bert(**__snake_case).last_hidden_state def A__ ( self , __snake_case): return token_embeddings.sum(2 , keepdim=__snake_case) def A__ ( self , __snake_case , __snake_case , __snake_case=1): return self.softmax(T * self.cos(__snake_case , __snake_case)) def A__ ( self , __snake_case , __snake_case): _UpperCamelCase : List[Any] = W_supports['sizes'].tolist() _UpperCamelCase : Dict = W_supports['start_token_id'].item() _UpperCamelCase : str = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] _UpperCamelCase : Optional[Any] = self.BERT(**__snake_case) _UpperCamelCase : List[str] = self.BERT(**__snake_case) _UpperCamelCase : Union[str, Any] = None _UpperCamelCase : Optional[Any] = None _UpperCamelCase : Any = W_supports['input_ids'] == start_token_id _UpperCamelCase : Optional[Any] = W_supports['input_ids'] == end_token_id for i, size in enumerate(__snake_case): if i == 0: _UpperCamelCase : str = 0 else: _UpperCamelCase : Dict = support_sizes[i - 1] _UpperCamelCase : Optional[Any] = S[s : s + size][start_token_masks[s : s + size]] _UpperCamelCase : Union[str, Any] = S[s : s + size][end_token_masks[s : s + size]] _UpperCamelCase : List[Any] = torch.matmul(q[i] , s_start.T).sum(1).softmax(0) _UpperCamelCase : List[str] = torch.matmul(q[i] , s_end.T).sum(1).softmax(0) if p_starts is not None: _UpperCamelCase : List[Any] = torch.vstack((p_starts, p_start)) _UpperCamelCase : Any = torch.vstack((p_ends, p_end)) else: _UpperCamelCase : int = p_start _UpperCamelCase : Tuple = p_end return p_starts, p_ends
718
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class lowercase ( _lowercase ): """simple docstring""" a__ = "bert" def __init__( self , __snake_case=3_05_22 , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=0 , __snake_case="absolute" , __snake_case=True , __snake_case=None , **__snake_case , ): super().__init__(pad_token_id=__snake_case , **__snake_case) _UpperCamelCase : int = vocab_size _UpperCamelCase : Optional[Any] = hidden_size _UpperCamelCase : Optional[Any] = num_hidden_layers _UpperCamelCase : List[str] = num_attention_heads _UpperCamelCase : int = hidden_act _UpperCamelCase : Optional[Any] = intermediate_size _UpperCamelCase : Union[str, Any] = hidden_dropout_prob _UpperCamelCase : Tuple = attention_probs_dropout_prob _UpperCamelCase : Optional[int] = max_position_embeddings _UpperCamelCase : str = type_vocab_size _UpperCamelCase : Optional[Any] = initializer_range _UpperCamelCase : List[str] = layer_norm_eps _UpperCamelCase : Any = position_embedding_type _UpperCamelCase : Any = use_cache _UpperCamelCase : Any = classifier_dropout class lowercase ( _lowercase ): """simple docstring""" @property def A__ ( self): if self.task == "multiple-choice": _UpperCamelCase : Union[str, Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCamelCase : Optional[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ])
648
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ = { """configuration_bloom""": ["""BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BloomConfig""", """BloomOnnxConfig"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ["""BloomTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST""", """BloomForCausalLM""", """BloomModel""", """BloomPreTrainedModel""", """BloomForSequenceClassification""", """BloomForTokenClassification""", """BloomForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
719
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowercase ( _lowercase ): """simple docstring""" a__ = "facebook/bart-large-mnli" a__ = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) a__ = "text_classifier" a__ = AutoTokenizer a__ = AutoModelForSequenceClassification a__ = ["text", ["text"]] a__ = ["text"] def A__ ( self): super().setup() _UpperCamelCase : List[Any] = self.model.config _UpperCamelCase : Optional[int] = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail'): _UpperCamelCase : Tuple = int(__snake_case) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.') def A__ ( self , __snake_case , __snake_case): _UpperCamelCase : List[Any] = labels return self.pre_processor( [text] * len(__snake_case) , [f'''This example is {label}''' for label in labels] , return_tensors='pt' , padding='max_length' , ) def A__ ( self , __snake_case): _UpperCamelCase : str = outputs.logits _UpperCamelCase : Optional[Any] = torch.argmax(logits[:, 2]).item() return self._labels[label_id]
648
0
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case=13 , __snake_case=32 , __snake_case=2 , __snake_case=3 , __snake_case=16 , __snake_case=[1, 2, 1] , __snake_case=[2, 2, 4] , __snake_case=2 , __snake_case=2.0 , __snake_case=True , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.1 , __snake_case="gelu" , __snake_case=False , __snake_case=True , __snake_case=0.0_2 , __snake_case=1e-5 , __snake_case=True , __snake_case=None , __snake_case=True , __snake_case=10 , __snake_case=8 , ): _UpperCamelCase : int = parent _UpperCamelCase : Tuple = batch_size _UpperCamelCase : Optional[Any] = image_size _UpperCamelCase : List[str] = patch_size _UpperCamelCase : Tuple = num_channels _UpperCamelCase : Union[str, Any] = embed_dim _UpperCamelCase : Dict = depths _UpperCamelCase : Tuple = num_heads _UpperCamelCase : Dict = window_size _UpperCamelCase : List[Any] = mlp_ratio _UpperCamelCase : Optional[Any] = qkv_bias _UpperCamelCase : Tuple = hidden_dropout_prob _UpperCamelCase : str = attention_probs_dropout_prob _UpperCamelCase : Optional[Any] = drop_path_rate _UpperCamelCase : int = hidden_act _UpperCamelCase : List[Any] = use_absolute_embeddings _UpperCamelCase : Tuple = patch_norm _UpperCamelCase : str = layer_norm_eps _UpperCamelCase : Tuple = initializer_range _UpperCamelCase : Tuple = is_training _UpperCamelCase : List[str] = scope _UpperCamelCase : int = use_labels _UpperCamelCase : List[str] = type_sequence_label_size _UpperCamelCase : List[Any] = encoder_stride def A__ ( self): _UpperCamelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase : Optional[Any] = None if self.use_labels: _UpperCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase : List[str] = self.get_config() return config, pixel_values, labels def A__ ( self): return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : List[str] = SwinvaModel(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Any = model(__snake_case) _UpperCamelCase : List[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) _UpperCamelCase : Tuple = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim)) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Any = SwinvaForMaskedImageModeling(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Tuple = model(__snake_case) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images _UpperCamelCase : Tuple = 1 _UpperCamelCase : Tuple = SwinvaForMaskedImageModeling(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _UpperCamelCase : Dict = model(__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size)) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Union[str, Any] = self.type_sequence_label_size _UpperCamelCase : List[str] = SwinvaForImageClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Union[str, Any] = model(__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def A__ ( self): _UpperCamelCase : Optional[Any] = self.prepare_config_and_inputs() _UpperCamelCase : List[str] = config_and_inputs _UpperCamelCase : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) a__ = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False def A__ ( self): _UpperCamelCase : Optional[Any] = SwinvaModelTester(self) _UpperCamelCase : Dict = ConfigTester(self , config_class=__snake_case , embed_dim=37) def A__ ( self): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self): _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case) @unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.') def A__ ( self): pass @unittest.skip(reason='Swinv2 does not use inputs_embeds') def A__ ( self): pass def A__ ( self): _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Dict = model_class(__snake_case) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _UpperCamelCase : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case , nn.Linear)) def A__ ( self): _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Union[str, Any] = model_class(__snake_case) _UpperCamelCase : Optional[int] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : int = [*signature.parameters.keys()] _UpperCamelCase : Tuple = ['pixel_values'] self.assertListEqual(arg_names[:1] , __snake_case) def A__ ( self): _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : Optional[Any] = True for model_class in self.all_model_classes: _UpperCamelCase : Optional[Any] = True _UpperCamelCase : Optional[Any] = False _UpperCamelCase : str = True _UpperCamelCase : Optional[int] = model_class(__snake_case) model.to(__snake_case) model.eval() with torch.no_grad(): _UpperCamelCase : Optional[int] = model(**self._prepare_for_class(__snake_case , __snake_case)) _UpperCamelCase : List[Any] = outputs.attentions _UpperCamelCase : Tuple = len(self.model_tester.depths) self.assertEqual(len(__snake_case) , __snake_case) # check that output_attentions also work using config del inputs_dict["output_attentions"] _UpperCamelCase : str = True _UpperCamelCase : List[Any] = config.window_size**2 _UpperCamelCase : str = model_class(__snake_case) model.to(__snake_case) model.eval() with torch.no_grad(): _UpperCamelCase : int = model(**self._prepare_for_class(__snake_case , __snake_case)) _UpperCamelCase : str = outputs.attentions self.assertEqual(len(__snake_case) , __snake_case) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) _UpperCamelCase : Optional[int] = len(__snake_case) # Check attention is always last and order is fine _UpperCamelCase : int = True _UpperCamelCase : Any = True _UpperCamelCase : int = model_class(__snake_case) model.to(__snake_case) model.eval() with torch.no_grad(): _UpperCamelCase : Dict = model(**self._prepare_for_class(__snake_case , __snake_case)) if hasattr(self.model_tester , 'num_hidden_states_types'): _UpperCamelCase : Any = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states _UpperCamelCase : Optional[Any] = 2 self.assertEqual(out_len + added_hidden_states , len(__snake_case)) _UpperCamelCase : Tuple = outputs.attentions self.assertEqual(len(__snake_case) , __snake_case) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Dict = model_class(__snake_case) model.to(__snake_case) model.eval() with torch.no_grad(): _UpperCamelCase : Any = model(**self._prepare_for_class(__snake_case , __snake_case)) _UpperCamelCase : int = outputs.hidden_states _UpperCamelCase : List[str] = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths) + 1) self.assertEqual(len(__snake_case) , __snake_case) # Swinv2 has a different seq_length _UpperCamelCase : Tuple = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) _UpperCamelCase : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) _UpperCamelCase : Optional[int] = outputs.reshaped_hidden_states self.assertEqual(len(__snake_case) , __snake_case) _UpperCamelCase : List[Any] = reshaped_hidden_states[0].shape _UpperCamelCase : Tuple = ( reshaped_hidden_states[0].view(__snake_case , __snake_case , height * width).permute(0 , 2 , 1) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) def A__ ( self): _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _UpperCamelCase : List[Any] = True self.check_hidden_states_output(__snake_case , __snake_case , __snake_case , __snake_case) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase : Optional[Any] = True self.check_hidden_states_output(__snake_case , __snake_case , __snake_case , __snake_case) def A__ ( self): _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : List[str] = 3 _UpperCamelCase : Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) _UpperCamelCase : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) _UpperCamelCase : Tuple = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _UpperCamelCase : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _UpperCamelCase : List[Any] = True self.check_hidden_states_output(__snake_case , __snake_case , __snake_case , (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase : List[str] = True self.check_hidden_states_output(__snake_case , __snake_case , __snake_case , (padded_height, padded_width)) def A__ ( self): _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__snake_case) def A__ ( self): _UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case) @slow def A__ ( self): for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : Tuple = SwinvaModel.from_pretrained(__snake_case) self.assertIsNotNone(__snake_case) def A__ ( self): _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : str = _config_zero_init(__snake_case) for model_class in self.all_model_classes: _UpperCamelCase : List[str] = model_class(config=__snake_case) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @require_vision @require_torch class lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self): return ( AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256') if is_vision_available() else None ) @slow def A__ ( self): _UpperCamelCase : Dict = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256').to( __snake_case) _UpperCamelCase : Any = self.default_image_processor _UpperCamelCase : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCamelCase : Dict = image_processor(images=__snake_case , return_tensors='pt').to(__snake_case) # forward pass with torch.no_grad(): _UpperCamelCase : int = model(**__snake_case) # verify the logits _UpperCamelCase : int = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , __snake_case) _UpperCamelCase : Any = torch.tensor([-0.3_9_4_7, -0.4_3_0_6, 0.0_0_2_6]).to(__snake_case) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1e-4))
720
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
648
0
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCAmelCase__ = 1_6 lowerCAmelCase__ = 3_2 def lowerCamelCase_ ( UpperCAmelCase_ : Accelerator , UpperCAmelCase_ : int = 1_6 , UpperCAmelCase_ : str = "bert-base-cased" ) -> str: '''simple docstring''' _UpperCamelCase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = load_dataset('glue' , 'mrpc' ) def tokenize_function(UpperCAmelCase_ : Any ): # max_length=None => use the model max length (it's actually the default) _UpperCamelCase : int = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _UpperCamelCase : Any = datasets.map( UpperCAmelCase_ , batched=UpperCAmelCase_ , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=UpperCAmelCase_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCamelCase : Union[str, Any] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(UpperCAmelCase_ : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCAmelCase_ , padding='max_length' , max_length=1_2_8 , return_tensors='pt' ) return tokenizer.pad(UpperCAmelCase_ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. _UpperCamelCase : Any = DataLoader( tokenized_datasets['train'] , shuffle=UpperCAmelCase_ , collate_fn=UpperCAmelCase_ , batch_size=UpperCAmelCase_ ) _UpperCamelCase : List[str] = DataLoader( tokenized_datasets['validation'] , shuffle=UpperCAmelCase_ , collate_fn=UpperCAmelCase_ , batch_size=UpperCAmelCase_ ) return train_dataloader, eval_dataloader def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Any ) -> List[Any]: '''simple docstring''' model.eval() _UpperCamelCase : int = 0 for step, batch in enumerate(UpperCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCamelCase : List[Any] = model(**UpperCAmelCase_ ) _UpperCamelCase : List[Any] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times _UpperCamelCase : int = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(UpperCAmelCase_ ) - 1: _UpperCamelCase : Optional[int] = predictions[: len(eval_dataloader.dataset ) - samples_seen] _UpperCamelCase : str = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=UpperCAmelCase_ , references=UpperCAmelCase_ , ) _UpperCamelCase : Optional[Any] = metric.compute() return eval_metric["accuracy"] def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any ) -> List[Any]: '''simple docstring''' _UpperCamelCase : Union[str, Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCamelCase : Any = config['lr'] _UpperCamelCase : List[str] = int(config['num_epochs'] ) _UpperCamelCase : Optional[int] = int(config['seed'] ) _UpperCamelCase : List[Any] = int(config['batch_size'] ) _UpperCamelCase : Optional[Any] = args.model_name_or_path set_seed(UpperCAmelCase_ ) _UpperCamelCase : List[str] = get_dataloaders(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCamelCase : Optional[Any] = AutoModelForSequenceClassification.from_pretrained(UpperCAmelCase_ , return_dict=UpperCAmelCase_ ) # Instantiate optimizer _UpperCamelCase : Tuple = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _UpperCamelCase : Dict = optimizer_cls(params=model.parameters() , lr=UpperCAmelCase_ ) if accelerator.state.deepspeed_plugin is not None: _UpperCamelCase : Any = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: _UpperCamelCase : Optional[Any] = 1 _UpperCamelCase : List[Any] = (len(UpperCAmelCase_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _UpperCamelCase : Optional[int] = get_linear_schedule_with_warmup( optimizer=UpperCAmelCase_ , num_warmup_steps=0 , num_training_steps=UpperCAmelCase_ , ) else: _UpperCamelCase : List[Any] = DummyScheduler(UpperCAmelCase_ , total_num_steps=UpperCAmelCase_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCamelCase : Any = accelerator.prepare( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # We need to keep track of how many total steps we have iterated over _UpperCamelCase : Optional[int] = 0 # We also need to keep track of the stating epoch so files are named properly _UpperCamelCase : List[str] = 0 _UpperCamelCase : Any = evaluate.load('glue' , 'mrpc' ) _UpperCamelCase : int = num_epochs if args.partial_train_epoch is not None: _UpperCamelCase : int = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) _UpperCamelCase : str = args.resume_from_checkpoint.split('epoch_' )[1] _UpperCamelCase : List[str] = '' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break _UpperCamelCase : Any = int(UpperCAmelCase_ ) + 1 _UpperCamelCase : Optional[Any] = evaluation_loop(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) accelerator.print('resumed checkpoint performance:' , UpperCAmelCase_ ) accelerator.print('resumed checkpoint\'s scheduler\'s lr:' , lr_scheduler.get_lr()[0] ) accelerator.print('resumed optimizers\'s lr:' , optimizer.param_groups[0]['lr'] ) with open(os.path.join(args.output_dir , F'''state_{starting_epoch-1}.json''' ) , 'r' ) as f: _UpperCamelCase : Dict = json.load(UpperCAmelCase_ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model _UpperCamelCase : int = {} for epoch in range(UpperCAmelCase_ , UpperCAmelCase_ ): model.train() for step, batch in enumerate(UpperCAmelCase_ ): _UpperCamelCase : Optional[Any] = model(**UpperCAmelCase_ ) _UpperCamelCase : int = outputs.loss _UpperCamelCase : List[str] = loss / gradient_accumulation_steps accelerator.backward(UpperCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 _UpperCamelCase : int = F'''epoch_{epoch}''' _UpperCamelCase : Tuple = os.path.join(args.output_dir , UpperCAmelCase_ ) accelerator.save_state(UpperCAmelCase_ ) _UpperCamelCase : Any = evaluation_loop(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : int = accuracy _UpperCamelCase : Tuple = lr_scheduler.get_lr()[0] _UpperCamelCase : int = optimizer.param_groups[0]['lr'] _UpperCamelCase : int = epoch _UpperCamelCase : List[Any] = overall_step accelerator.print(F'''epoch {epoch}:''' , UpperCAmelCase_ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F'''state_{epoch}.json''' ) , 'w' ) as f: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( ) -> Any: '''simple docstring''' _UpperCamelCase : Optional[int] = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=UpperCAmelCase_ , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=UpperCAmelCase_ , ) parser.add_argument( '--output_dir' , type=UpperCAmelCase_ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--partial_train_epoch' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , help='If passed, the training will stop after this number of epochs.' , ) parser.add_argument( '--num_epochs' , type=UpperCAmelCase_ , default=2 , help='Number of train epochs.' , ) _UpperCamelCase : Optional[int] = parser.parse_args() _UpperCamelCase : Union[str, Any] = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 4_2, 'batch_size': 1_6} training_function(UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": main()
721
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
648
0
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class lowercase : """simple docstring""" a__ = BlenderbotSmallConfig a__ = {} a__ = "gelu" def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=False , __snake_case=99 , __snake_case=32 , __snake_case=2 , __snake_case=4 , __snake_case=37 , __snake_case=0.1 , __snake_case=0.1 , __snake_case=20 , __snake_case=2 , __snake_case=1 , __snake_case=0 , ): _UpperCamelCase : List[str] = parent _UpperCamelCase : List[Any] = batch_size _UpperCamelCase : Any = seq_length _UpperCamelCase : Tuple = is_training _UpperCamelCase : List[str] = use_labels _UpperCamelCase : Dict = vocab_size _UpperCamelCase : Optional[Any] = hidden_size _UpperCamelCase : Any = num_hidden_layers _UpperCamelCase : Optional[Any] = num_attention_heads _UpperCamelCase : Union[str, Any] = intermediate_size _UpperCamelCase : List[str] = hidden_dropout_prob _UpperCamelCase : Union[str, Any] = attention_probs_dropout_prob _UpperCamelCase : int = max_position_embeddings _UpperCamelCase : Optional[int] = eos_token_id _UpperCamelCase : List[Any] = pad_token_id _UpperCamelCase : Optional[Any] = bos_token_id def A__ ( self): _UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) _UpperCamelCase : int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size) , 1) _UpperCamelCase : List[Any] = tf.concat([input_ids, eos_tensor] , axis=1) _UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase : int = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _UpperCamelCase : Any = prepare_blenderbot_small_inputs_dict(__snake_case , __snake_case , __snake_case) return config, inputs_dict def A__ ( self , __snake_case , __snake_case): _UpperCamelCase : Tuple = TFBlenderbotSmallModel(config=__snake_case).get_decoder() _UpperCamelCase : Dict = inputs_dict['input_ids'] _UpperCamelCase : Optional[int] = input_ids[:1, :] _UpperCamelCase : List[Any] = inputs_dict['attention_mask'][:1, :] _UpperCamelCase : Union[str, Any] = inputs_dict['head_mask'] _UpperCamelCase : Tuple = 1 # first forward pass _UpperCamelCase : Tuple = model(__snake_case , attention_mask=__snake_case , head_mask=__snake_case , use_cache=__snake_case) _UpperCamelCase : Optional[Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCamelCase : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size) _UpperCamelCase : Tuple = tf.cast(ids_tensor((self.batch_size, 3) , 2) , tf.inta) # append to next input_ids and _UpperCamelCase : Any = tf.concat([input_ids, next_tokens] , axis=-1) _UpperCamelCase : List[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1) _UpperCamelCase : Union[str, Any] = model(__snake_case , attention_mask=__snake_case)[0] _UpperCamelCase : Union[str, Any] = model(__snake_case , attention_mask=__snake_case , past_key_values=__snake_case)[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1]) # select random slice _UpperCamelCase : Optional[Any] = int(ids_tensor((1,) , output_from_past.shape[-1])) _UpperCamelCase : int = output_from_no_past[:, -3:, random_slice_idx] _UpperCamelCase : Optional[int] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__snake_case , __snake_case , rtol=1e-3) def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Dict=None , ) -> Any: '''simple docstring''' if attention_mask is None: _UpperCamelCase : Optional[int] = tf.cast(tf.math.not_equal(UpperCAmelCase_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _UpperCamelCase : List[Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _UpperCamelCase : Any = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _UpperCamelCase : str = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _UpperCamelCase : Optional[int] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) a__ = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () a__ = ( { "conversational": TFBlenderbotSmallForConditionalGeneration, "feature-extraction": TFBlenderbotSmallModel, "summarization": TFBlenderbotSmallForConditionalGeneration, "text2text-generation": TFBlenderbotSmallForConditionalGeneration, "translation": TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) a__ = True a__ = False a__ = False def A__ ( self): _UpperCamelCase : Tuple = TFBlenderbotSmallModelTester(self) _UpperCamelCase : Any = ConfigTester(self , config_class=__snake_case) def A__ ( self): self.config_tester.run_common_tests() def A__ ( self): _UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__snake_case) @require_tokenizers @require_tf class lowercase ( unittest.TestCase ): """simple docstring""" a__ = [ "Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like " " i'm going to throw up.\nand why is that?" ] a__ = "facebook/blenderbot_small-90M" @cached_property def A__ ( self): # use "old" tokenizer here because of bug when downloading new tokenizer return BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M') @cached_property def A__ ( self): _UpperCamelCase : str = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name) return model @slow def A__ ( self): _UpperCamelCase : Optional[int] = self.tokenizer(self.src_text , return_tensors='tf') _UpperCamelCase : List[str] = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__snake_case , ) _UpperCamelCase : Dict = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__snake_case)[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
700
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_sentencepiece_available(): import sentencepiece as sp lowerCAmelCase__ = 5 lowerCAmelCase__ = 1_0 @require_sentencepiece @require_tokenizers class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" a__ = SpeechaTextTokenizer a__ = False a__ = True def A__ ( self): super().setUp() _UpperCamelCase : Any = sp.SentencePieceProcessor() spm_model.Load(__snake_case) _UpperCamelCase : List[str] = ['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_) for id_ in range(len(__snake_case))] _UpperCamelCase : Dict = dict(zip(__snake_case , range(len(__snake_case)))) _UpperCamelCase : Tuple = Path(self.tmpdirname) save_json(__snake_case , save_dir / VOCAB_FILES_NAMES['vocab_file']) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__snake_case , save_dir / VOCAB_FILES_NAMES['spm_file']) _UpperCamelCase : int = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def A__ ( self): _UpperCamelCase : str = '<pad>' _UpperCamelCase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case) , __snake_case) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case) , __snake_case) def A__ ( self): _UpperCamelCase : Optional[Any] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(vocab_keys[-1] , 'j') self.assertEqual(len(__snake_case) , 10_01) def A__ ( self): self.assertEqual(self.get_tokenizer().vocab_size , 10_01) def A__ ( self): _UpperCamelCase : Any = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) _UpperCamelCase : List[str] = tokenizer.tokenize('This is a test') self.assertListEqual(__snake_case , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case) , [2_89, 50, 14, 1_74, 3_86] , ) _UpperCamelCase : int = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( __snake_case , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) _UpperCamelCase : int = tokenizer.convert_tokens_to_ids(__snake_case) self.assertListEqual(__snake_case , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8]) _UpperCamelCase : Tuple = tokenizer.convert_ids_to_tokens(__snake_case) self.assertListEqual( __snake_case , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def A__ ( self): # fmt: off _UpperCamelCase : Optional[int] = {'input_ids': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , ) @require_sentencepiece class lowercase ( unittest.TestCase ): """simple docstring""" a__ = "valhalla/s2t_mustc_multilinguial_medium" a__ = "C'est trop cool" a__ = "Esto es genial" @classmethod def A__ ( cls): _UpperCamelCase : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name) return cls def A__ ( self): self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4) self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6) self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9) self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11) def A__ ( self): self.assertEqual(self.tokenizer.vocab_size , 1_00_00) def A__ ( self): self.assertIn(__snake_case , self.tokenizer.all_special_ids) _UpperCamelCase : Optional[int] = [ES_CODE, 4, 16_01, 47, 76_47, 2] _UpperCamelCase : Tuple = self.tokenizer.decode(__snake_case , skip_special_tokens=__snake_case) _UpperCamelCase : Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__snake_case) self.assertEqual(__snake_case , __snake_case) self.assertNotIn(self.tokenizer.eos_token , __snake_case) def A__ ( self): _UpperCamelCase : Any = 'fr' _UpperCamelCase : List[Any] = self.tokenizer(self.french_text).input_ids self.assertEqual(encoded[0] , __snake_case) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id) def A__ ( self): _UpperCamelCase : Union[str, Any] = 'fr' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE]) _UpperCamelCase : List[str] = 'es' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE])
648
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ = { """configuration_distilbert""": [ """DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DistilBertConfig""", """DistilBertOnnxConfig""", ], """tokenization_distilbert""": ["""DistilBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ["""DistilBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DistilBertForMaskedLM""", """DistilBertForMultipleChoice""", """DistilBertForQuestionAnswering""", """DistilBertForSequenceClassification""", """DistilBertForTokenClassification""", """DistilBertModel""", """DistilBertPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDistilBertForMaskedLM""", """TFDistilBertForMultipleChoice""", """TFDistilBertForQuestionAnswering""", """TFDistilBertForSequenceClassification""", """TFDistilBertForTokenClassification""", """TFDistilBertMainLayer""", """TFDistilBertModel""", """TFDistilBertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """FlaxDistilBertForMaskedLM""", """FlaxDistilBertForMultipleChoice""", """FlaxDistilBertForQuestionAnswering""", """FlaxDistilBertForSequenceClassification""", """FlaxDistilBertForTokenClassification""", """FlaxDistilBertModel""", """FlaxDistilBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
701
import logging from transformers.configuration_utils import PretrainedConfig lowerCAmelCase__ = logging.getLogger(__name__) class lowercase ( _lowercase ): """simple docstring""" a__ = "masked_bert" def __init__( self , __snake_case=3_05_22 , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=0 , __snake_case="topK" , __snake_case="constant" , __snake_case=0.0 , **__snake_case , ): super().__init__(pad_token_id=__snake_case , **__snake_case) _UpperCamelCase : List[Any] = vocab_size _UpperCamelCase : Union[str, Any] = hidden_size _UpperCamelCase : Optional[int] = num_hidden_layers _UpperCamelCase : Any = num_attention_heads _UpperCamelCase : int = hidden_act _UpperCamelCase : str = intermediate_size _UpperCamelCase : str = hidden_dropout_prob _UpperCamelCase : Any = attention_probs_dropout_prob _UpperCamelCase : Tuple = max_position_embeddings _UpperCamelCase : Dict = type_vocab_size _UpperCamelCase : str = initializer_range _UpperCamelCase : List[Any] = layer_norm_eps _UpperCamelCase : Tuple = pruning_method _UpperCamelCase : Tuple = mask_init _UpperCamelCase : Dict = mask_scale
648
0
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCAmelCase__ = 1_6 lowerCAmelCase__ = 3_2 def lowerCamelCase_ ( UpperCAmelCase_ : Accelerator , UpperCAmelCase_ : int = 1_6 , UpperCAmelCase_ : str = "bert-base-cased" ) -> Tuple: '''simple docstring''' _UpperCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = load_dataset('glue' , 'mrpc' ) def tokenize_function(UpperCAmelCase_ : Optional[int] ): # max_length=None => use the model max length (it's actually the default) _UpperCamelCase : Optional[Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _UpperCamelCase : int = datasets.map( UpperCAmelCase_ , batched=UpperCAmelCase_ , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=UpperCAmelCase_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCamelCase : Union[str, Any] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(UpperCAmelCase_ : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCAmelCase_ , padding='max_length' , max_length=1_2_8 , return_tensors='pt' ) return tokenizer.pad(UpperCAmelCase_ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. _UpperCamelCase : List[str] = DataLoader( tokenized_datasets['train'] , shuffle=UpperCAmelCase_ , collate_fn=UpperCAmelCase_ , batch_size=UpperCAmelCase_ ) _UpperCamelCase : Any = DataLoader( tokenized_datasets['validation'] , shuffle=UpperCAmelCase_ , collate_fn=UpperCAmelCase_ , batch_size=UpperCAmelCase_ ) return train_dataloader, eval_dataloader def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str ) -> str: '''simple docstring''' _UpperCamelCase : int = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCamelCase : int = config['lr'] _UpperCamelCase : Union[str, Any] = int(config['num_epochs'] ) _UpperCamelCase : Optional[int] = int(config['seed'] ) _UpperCamelCase : Dict = int(config['batch_size'] ) _UpperCamelCase : Tuple = args.model_name_or_path set_seed(UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = get_dataloaders(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCamelCase : Any = AutoModelForSequenceClassification.from_pretrained(UpperCAmelCase_ , return_dict=UpperCAmelCase_ ) # Instantiate optimizer _UpperCamelCase : List[str] = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _UpperCamelCase : int = optimizer_cls(params=model.parameters() , lr=UpperCAmelCase_ ) if accelerator.state.deepspeed_plugin is not None: _UpperCamelCase : List[str] = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: _UpperCamelCase : Tuple = 1 _UpperCamelCase : Union[str, Any] = (len(UpperCAmelCase_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _UpperCamelCase : Optional[int] = get_linear_schedule_with_warmup( optimizer=UpperCAmelCase_ , num_warmup_steps=0 , num_training_steps=UpperCAmelCase_ , ) else: _UpperCamelCase : Any = DummyScheduler(UpperCAmelCase_ , total_num_steps=UpperCAmelCase_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCamelCase : str = accelerator.prepare( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # We need to keep track of how many total steps we have iterated over _UpperCamelCase : int = 0 # We also need to keep track of the stating epoch so files are named properly _UpperCamelCase : Union[str, Any] = 0 # Now we train the model _UpperCamelCase : str = evaluate.load('glue' , 'mrpc' ) _UpperCamelCase : Dict = 0 _UpperCamelCase : List[str] = {} for epoch in range(UpperCAmelCase_ , UpperCAmelCase_ ): model.train() for step, batch in enumerate(UpperCAmelCase_ ): _UpperCamelCase : List[str] = model(**UpperCAmelCase_ ) _UpperCamelCase : List[str] = outputs.loss _UpperCamelCase : Any = loss / gradient_accumulation_steps accelerator.backward(UpperCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() _UpperCamelCase : Optional[int] = 0 for step, batch in enumerate(UpperCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCamelCase : List[str] = model(**UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times _UpperCamelCase : str = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(UpperCAmelCase_ ) - 1: _UpperCamelCase : Union[str, Any] = predictions[: len(eval_dataloader.dataset ) - samples_seen] _UpperCamelCase : Tuple = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=UpperCAmelCase_ , references=UpperCAmelCase_ , ) _UpperCamelCase : Any = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , UpperCAmelCase_ ) _UpperCamelCase : Any = eval_metric['accuracy'] if best_performance < eval_metric["accuracy"]: _UpperCamelCase : Optional[Any] = eval_metric['accuracy'] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , 'all_results.json' ) , 'w' ) as f: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( ) -> Optional[int]: '''simple docstring''' _UpperCamelCase : int = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=UpperCAmelCase_ , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=UpperCAmelCase_ , ) parser.add_argument( '--output_dir' , type=UpperCAmelCase_ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--performance_lower_bound' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , help='Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.' , ) parser.add_argument( '--num_epochs' , type=UpperCAmelCase_ , default=3 , help='Number of train epochs.' , ) _UpperCamelCase : Tuple = parser.parse_args() _UpperCamelCase : Optional[int] = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 4_2, 'batch_size': 1_6} training_function(UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": main()
702
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow lowerCAmelCase__ = False class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self , __snake_case=32): set_seed(0) _UpperCamelCase : int = UNetaDModel(sample_size=__snake_case , in_channels=3 , out_channels=3) _UpperCamelCase : str = torch.optim.SGD(model.parameters() , lr=0.0_0_0_1) return model, optimizer @slow def A__ ( self): _UpperCamelCase : Tuple = 'cpu' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable _UpperCamelCase : List[Any] = DDPMScheduler( num_train_timesteps=10_00 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='linear' , clip_sample=__snake_case , ) _UpperCamelCase : List[Any] = DDIMScheduler( num_train_timesteps=10_00 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='linear' , clip_sample=__snake_case , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0) _UpperCamelCase : Optional[Any] = [torch.randn((4, 3, 32, 32)).clip(-1 , 1).to(__snake_case) for _ in range(4)] _UpperCamelCase : str = [torch.randn((4, 3, 32, 32)).to(__snake_case) for _ in range(4)] _UpperCamelCase : int = [torch.randint(0 , 10_00 , (4,)).long().to(__snake_case) for _ in range(4)] # train with a DDPM scheduler _UpperCamelCase , _UpperCamelCase : List[Any] = self.get_model_optimizer(resolution=32) model.train().to(__snake_case) for i in range(4): optimizer.zero_grad() _UpperCamelCase : int = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) _UpperCamelCase : Any = model(__snake_case , timesteps[i]).sample _UpperCamelCase : str = torch.nn.functional.mse_loss(__snake_case , noise[i]) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM _UpperCamelCase , _UpperCamelCase : Union[str, Any] = self.get_model_optimizer(resolution=32) model.train().to(__snake_case) for i in range(4): optimizer.zero_grad() _UpperCamelCase : Dict = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) _UpperCamelCase : Dict = model(__snake_case , timesteps[i]).sample _UpperCamelCase : Tuple = torch.nn.functional.mse_loss(__snake_case , noise[i]) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1e-5)) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1e-5))
648
0
import flax.linen as nn import jax import jax.numpy as jnp class lowercase ( nn.Module ): """simple docstring""" a__ = 4_2 a__ = jnp.floataa def A__ ( self): _UpperCamelCase : str = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , __snake_case): _UpperCamelCase : str = hidden_states.shape _UpperCamelCase : Union[str, Any] = jax.image.resize( __snake_case , shape=(batch, height * 2, width * 2, channels) , method='nearest' , ) _UpperCamelCase : Dict = self.conv(__snake_case) return hidden_states class lowercase ( nn.Module ): """simple docstring""" a__ = 4_2 a__ = jnp.floataa def A__ ( self): _UpperCamelCase : Optional[Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , __snake_case): # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) _UpperCamelCase : Any = self.conv(__snake_case) return hidden_states class lowercase ( nn.Module ): """simple docstring""" a__ = 4_2 a__ = None a__ = 0.0 a__ = None a__ = jnp.floataa def A__ ( self): _UpperCamelCase : Optional[int] = self.in_channels if self.out_channels is None else self.out_channels _UpperCamelCase : Any = nn.GroupNorm(num_groups=32 , epsilon=1e-5) _UpperCamelCase : Tuple = nn.Conv( __snake_case , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _UpperCamelCase : int = nn.Dense(__snake_case , dtype=self.dtype) _UpperCamelCase : Union[str, Any] = nn.GroupNorm(num_groups=32 , epsilon=1e-5) _UpperCamelCase : Tuple = nn.Dropout(self.dropout_prob) _UpperCamelCase : List[str] = nn.Conv( __snake_case , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _UpperCamelCase : str = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut _UpperCamelCase : str = None if use_nin_shortcut: _UpperCamelCase : Optional[int] = nn.Conv( __snake_case , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , ) def __call__( self , __snake_case , __snake_case , __snake_case=True): _UpperCamelCase : str = hidden_states _UpperCamelCase : Optional[Any] = self.norma(__snake_case) _UpperCamelCase : List[Any] = nn.swish(__snake_case) _UpperCamelCase : List[Any] = self.conva(__snake_case) _UpperCamelCase : List[str] = self.time_emb_proj(nn.swish(__snake_case)) _UpperCamelCase : Dict = jnp.expand_dims(jnp.expand_dims(__snake_case , 1) , 1) _UpperCamelCase : str = hidden_states + temb _UpperCamelCase : Optional[int] = self.norma(__snake_case) _UpperCamelCase : List[Any] = nn.swish(__snake_case) _UpperCamelCase : Optional[Any] = self.dropout(__snake_case , __snake_case) _UpperCamelCase : Tuple = self.conva(__snake_case) if self.conv_shortcut is not None: _UpperCamelCase : Dict = self.conv_shortcut(__snake_case) return hidden_states + residual
703
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) lowerCAmelCase__ = { """sample_size""": 3_2, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 1_0_0_0, """block_out_channels""": [3_2, 6_4], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """sample_size""": 6_4, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 1_0_0_0, """block_out_channels""": [1_9_2, 1_9_2 * 2, 1_9_2 * 3, 1_9_2 * 4], """attention_head_dim""": 6_4, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """sample_size""": 2_5_6, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [2_5_6, 2_5_6, 2_5_6 * 2, 2_5_6 * 2, 2_5_6 * 4, 2_5_6 * 4], """attention_head_dim""": 6_4, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """num_train_timesteps""": 4_0, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } lowerCAmelCase__ = { """num_train_timesteps""": 2_0_1, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } lowerCAmelCase__ = { """num_train_timesteps""": 1_5_1, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> List[str]: '''simple docstring''' if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def lowerCamelCase_ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any]=False ) -> str: '''simple docstring''' _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.in_layers.0.weight'''] _UpperCamelCase : str = checkpoint[F'''{old_prefix}.in_layers.0.bias'''] _UpperCamelCase : str = checkpoint[F'''{old_prefix}.in_layers.2.weight'''] _UpperCamelCase : Union[str, Any] = checkpoint[F'''{old_prefix}.in_layers.2.bias'''] _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.emb_layers.1.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.emb_layers.1.bias'''] _UpperCamelCase : Tuple = checkpoint[F'''{old_prefix}.out_layers.0.weight'''] _UpperCamelCase : List[Any] = checkpoint[F'''{old_prefix}.out_layers.0.bias'''] _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.out_layers.3.weight'''] _UpperCamelCase : Union[str, Any] = checkpoint[F'''{old_prefix}.out_layers.3.bias'''] if has_skip: _UpperCamelCase : Tuple = checkpoint[F'''{old_prefix}.skip_connection.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any=None ) -> int: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 ) _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.norm.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.norm.bias'''] _UpperCamelCase : List[str] = weight_q.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Dict = bias_q.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Any = weight_k.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : List[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Dict = weight_v.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Tuple = bias_v.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Optional[Any] = ( checkpoint[F'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] ) -> Tuple: '''simple docstring''' _UpperCamelCase : Any = torch.load(UpperCAmelCase_ , map_location='cpu' ) _UpperCamelCase : Union[str, Any] = {} _UpperCamelCase : Optional[int] = checkpoint['time_embed.0.weight'] _UpperCamelCase : List[Any] = checkpoint['time_embed.0.bias'] _UpperCamelCase : Dict = checkpoint['time_embed.2.weight'] _UpperCamelCase : Optional[Any] = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: _UpperCamelCase : List[str] = checkpoint['label_emb.weight'] _UpperCamelCase : Optional[int] = checkpoint['input_blocks.0.0.weight'] _UpperCamelCase : Union[str, Any] = checkpoint['input_blocks.0.0.bias'] _UpperCamelCase : Optional[int] = unet_config['down_block_types'] _UpperCamelCase : Optional[Any] = unet_config['layers_per_block'] _UpperCamelCase : Dict = unet_config['attention_head_dim'] _UpperCamelCase : List[str] = unet_config['block_out_channels'] _UpperCamelCase : str = 1 _UpperCamelCase : Optional[int] = channels_list[0] for i, layer_type in enumerate(UpperCAmelCase_ ): _UpperCamelCase : List[str] = channels_list[i] _UpperCamelCase : str = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(UpperCAmelCase_ ): _UpperCamelCase : str = F'''down_blocks.{i}.resnets.{j}''' _UpperCamelCase : List[Any] = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : Any = True if j == 0 and downsample_block_has_skip else False _UpperCamelCase : str = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(UpperCAmelCase_ ): _UpperCamelCase : List[str] = F'''down_blocks.{i}.resnets.{j}''' _UpperCamelCase : str = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : int = True if j == 0 and downsample_block_has_skip else False _UpperCamelCase : Any = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) _UpperCamelCase : Dict = F'''down_blocks.{i}.attentions.{j}''' _UpperCamelCase : Optional[int] = F'''input_blocks.{current_layer}.1''' _UpperCamelCase : Dict = convert_attention( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : int = F'''down_blocks.{i}.downsamplers.0''' _UpperCamelCase : Optional[int] = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : List[Any] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 _UpperCamelCase : Tuple = current_channels # hardcoded the mid-block for now _UpperCamelCase : Any = 'mid_block.resnets.0' _UpperCamelCase : Optional[Any] = 'middle_block.0' _UpperCamelCase : Tuple = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = 'mid_block.attentions.0' _UpperCamelCase : Tuple = 'middle_block.1' _UpperCamelCase : Union[str, Any] = convert_attention(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Tuple = 'mid_block.resnets.1' _UpperCamelCase : str = 'middle_block.2' _UpperCamelCase : List[str] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : List[Any] = 0 _UpperCamelCase : Optional[int] = unet_config['up_block_types'] for i, layer_type in enumerate(UpperCAmelCase_ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _UpperCamelCase : Optional[Any] = F'''up_blocks.{i}.resnets.{j}''' _UpperCamelCase : Optional[int] = F'''output_blocks.{current_layer}.0''' _UpperCamelCase : str = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : List[Any] = F'''up_blocks.{i}.upsamplers.0''' _UpperCamelCase : Dict = F'''output_blocks.{current_layer-1}.1''' _UpperCamelCase : Optional[int] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _UpperCamelCase : str = F'''up_blocks.{i}.resnets.{j}''' _UpperCamelCase : Union[str, Any] = F'''output_blocks.{current_layer}.0''' _UpperCamelCase : Optional[int] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) _UpperCamelCase : int = F'''up_blocks.{i}.attentions.{j}''' _UpperCamelCase : List[Any] = F'''output_blocks.{current_layer}.1''' _UpperCamelCase : Optional[int] = convert_attention( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : List[Any] = F'''up_blocks.{i}.upsamplers.0''' _UpperCamelCase : Union[str, Any] = F'''output_blocks.{current_layer-1}.2''' _UpperCamelCase : List[str] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : List[Any] = checkpoint['out.0.weight'] _UpperCamelCase : str = checkpoint['out.0.bias'] _UpperCamelCase : int = checkpoint['out.2.weight'] _UpperCamelCase : List[Any] = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = strabool(args.class_cond) lowerCAmelCase__ = os.path.basename(args.unet_path) print(f'Checkpoint: {ckpt_name}') # Get U-Net config if "imagenet64" in ckpt_name: lowerCAmelCase__ = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCAmelCase__ = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: lowerCAmelCase__ = TEST_UNET_CONFIG else: raise ValueError(f'Checkpoint type {ckpt_name} is not currently supported.') if not args.class_cond: lowerCAmelCase__ = None lowerCAmelCase__ = con_pt_to_diffuser(args.unet_path, unet_config) lowerCAmelCase__ = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: lowerCAmelCase__ = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: lowerCAmelCase__ = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCAmelCase__ = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f'Checkpoint type {ckpt_name} is not currently supported.') lowerCAmelCase__ = CMStochasticIterativeScheduler(**scheduler_config) lowerCAmelCase__ = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
648
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ = { """configuration_canine""": ["""CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CanineConfig"""], """tokenization_canine""": ["""CanineTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """CANINE_PRETRAINED_MODEL_ARCHIVE_LIST""", """CanineForMultipleChoice""", """CanineForQuestionAnswering""", """CanineForSequenceClassification""", """CanineForTokenClassification""", """CanineLayer""", """CanineModel""", """CaninePreTrainedModel""", """load_tf_weights_in_canine""", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
704
def lowerCamelCase_ ( UpperCAmelCase_ : list ) -> list: '''simple docstring''' if len(UpperCAmelCase_ ) <= 1: return [tuple(UpperCAmelCase_ )] _UpperCamelCase : List[Any] = [] def generate(UpperCAmelCase_ : int , UpperCAmelCase_ : list ): _UpperCamelCase : Optional[int] = [0] * n res.append(tuple(UpperCAmelCase_ ) ) _UpperCamelCase : List[Any] = 0 while i < n: if c[i] < i: if i % 2 == 0: _UpperCamelCase , _UpperCamelCase : List[str] = arr[i], arr[0] else: _UpperCamelCase , _UpperCamelCase : List[str] = arr[i], arr[c[i]] res.append(tuple(UpperCAmelCase_ ) ) c[i] += 1 _UpperCamelCase : Tuple = 0 else: _UpperCamelCase : Tuple = 0 i += 1 generate(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) return res if __name__ == "__main__": lowerCAmelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCAmelCase__ = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
648
0
def lowerCamelCase_ ( UpperCAmelCase_ : int = 1_0 , UpperCAmelCase_ : int = 1_0_0_0 , UpperCAmelCase_ : bool = True ) -> int: '''simple docstring''' assert ( isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('Invalid value for min_val or max_val (min_value < max_value)' ) return min_val if option else max_val def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: '''simple docstring''' return int((number_a + number_a) / 2 ) def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> None: '''simple docstring''' assert ( isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('argument value for lower and higher must be(lower > higher)' ) if not lower < to_guess < higher: raise ValueError( 'guess value must be within the range of lower and higher value' ) def answer(UpperCAmelCase_ : int ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('started...' ) _UpperCamelCase : Optional[int] = lower _UpperCamelCase : int = higher _UpperCamelCase : List[str] = [] while True: _UpperCamelCase : int = get_avg(UpperCAmelCase_ , UpperCAmelCase_ ) last_numbers.append(UpperCAmelCase_ ) if answer(UpperCAmelCase_ ) == "low": _UpperCamelCase : List[str] = number elif answer(UpperCAmelCase_ ) == "high": _UpperCamelCase : int = number else: break print(F'''guess the number : {last_numbers[-1]}''' ) print(F'''details : {last_numbers!s}''' ) def lowerCamelCase_ ( ) -> None: '''simple docstring''' _UpperCamelCase : Dict = int(input('Enter lower value : ' ).strip() ) _UpperCamelCase : List[Any] = int(input('Enter high value : ' ).strip() ) _UpperCamelCase : Dict = int(input('Enter value to guess : ' ).strip() ) guess_the_number(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": main()
705
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = [ ["""attention""", """attn"""], ["""encoder_attention""", """encoder_attn"""], ["""q_lin""", """q_proj"""], ["""k_lin""", """k_proj"""], ["""v_lin""", """v_proj"""], ["""out_lin""", """out_proj"""], ["""norm_embeddings""", """layernorm_embedding"""], ["""position_embeddings""", """embed_positions"""], ["""embeddings""", """embed_tokens"""], ["""ffn.lin""", """fc"""], ] def lowerCamelCase_ ( UpperCAmelCase_ : List[Any] ) -> Optional[int]: '''simple docstring''' if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: _UpperCamelCase : List[Any] = k.replace(UpperCAmelCase_ , UpperCAmelCase_ ) if k.startswith('encoder' ): _UpperCamelCase : Optional[Any] = k.replace('.attn' , '.self_attn' ) _UpperCamelCase : Optional[int] = k.replace('norm1' , 'self_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): _UpperCamelCase : Any = k.replace('norm1' , 'self_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm2' , 'encoder_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm3' , 'final_layer_norm' ) return k def lowerCamelCase_ ( UpperCAmelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Union[str, Any] = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: _UpperCamelCase : Optional[int] = sd.pop(UpperCAmelCase_ ) _UpperCamelCase : str = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd _UpperCamelCase : Tuple = v lowerCAmelCase__ = ["""START"""] @torch.no_grad() def lowerCamelCase_ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ) -> List[str]: '''simple docstring''' _UpperCamelCase : Optional[Any] = torch.load(UpperCAmelCase_ , map_location='cpu' ) _UpperCamelCase : int = model['model'] _UpperCamelCase : List[Any] = BlenderbotConfig.from_json_file(UpperCAmelCase_ ) _UpperCamelCase : Any = BlenderbotForConditionalGeneration(UpperCAmelCase_ ) _UpperCamelCase : int = m.model.state_dict().keys() _UpperCamelCase : Union[str, Any] = [] _UpperCamelCase : int = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue _UpperCamelCase : Optional[int] = rename_state_dict_key(UpperCAmelCase_ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: _UpperCamelCase : int = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(UpperCAmelCase_ ) m.model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) m.half() m.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("""--src_path""", type=str, help="""like blenderbot-model.bin""") parser.add_argument("""--save_dir""", default="""hf_blenderbot""", type=str, help="""Where to save converted model.""") parser.add_argument( """--hf_config_json""", default="""blenderbot-3b-config.json""", type=str, help="""Path to config to use""" ) lowerCAmelCase__ = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
648
0
import string def lowerCamelCase_ ( UpperCAmelCase_ : str ) -> None: '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): _UpperCamelCase : List[Any] = '' for symbol in message: if symbol in string.ascii_uppercase: _UpperCamelCase : Optional[int] = string.ascii_uppercase.find(UpperCAmelCase_ ) _UpperCamelCase : Union[str, Any] = num - key if num < 0: _UpperCamelCase : List[str] = num + len(string.ascii_uppercase ) _UpperCamelCase : Union[str, Any] = translated + string.ascii_uppercase[num] else: _UpperCamelCase : Optional[Any] = translated + symbol print(F'''Decryption using Key #{key}: {translated}''' ) def lowerCamelCase_ ( ) -> None: '''simple docstring''' _UpperCamelCase : Any = input('Encrypted message: ' ) _UpperCamelCase : Any = message.upper() decrypt(UpperCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
706
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer lowerCAmelCase__ = ["""bert-base-uncased""", """bert-base-cased"""] lowerCAmelCase__ = """hf-internal-testing/tiny-bert-tf-only""" if is_tf_available(): class lowercase ( tf.keras.Model ): """simple docstring""" def __init__( self , __snake_case): super().__init__() _UpperCamelCase : List[Any] = tokenizer _UpperCamelCase : List[Any] = AutoConfig.from_pretrained(__snake_case) _UpperCamelCase : Dict = TFAutoModel.from_config(__snake_case) def A__ ( self , __snake_case): _UpperCamelCase : Any = self.tokenizer(__snake_case) _UpperCamelCase : Dict = self.bert(**__snake_case) return out["pooler_output"] @require_tf @require_tensorflow_text class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self): super().setUp() _UpperCamelCase : Optional[Any] = [ BertTokenizer.from_pretrained(__snake_case) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false _UpperCamelCase : Optional[Any] = [TFBertTokenizer.from_pretrained(__snake_case) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(__snake_case , use_fast_bert_tokenizer=__snake_case) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers) == len(self.tf_tokenizers) _UpperCamelCase : Optional[Any] = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] _UpperCamelCase : Dict = list(zip(self.test_sentences , self.test_sentences[::-1])) def A__ ( self): for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers): for test_inputs in (self.test_sentences, self.paired_sentences): _UpperCamelCase : List[str] = tokenizer(__snake_case , return_tensors='tf' , padding='longest') _UpperCamelCase : Tuple = tf_tokenizer(__snake_case) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape)) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa) == tf_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Tuple = tf_tokenizer(self.paired_sentences) _UpperCamelCase : Optional[Any] = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa) == separated_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Tuple = tf.function(__snake_case) for test_inputs in (self.test_sentences, self.paired_sentences): _UpperCamelCase : Optional[int] = tf.constant(__snake_case) _UpperCamelCase : Union[str, Any] = compiled_tokenizer(__snake_case) _UpperCamelCase : Tuple = tf_tokenizer(__snake_case) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Any = ModelToSave(tokenizer=__snake_case) _UpperCamelCase : Any = tf.convert_to_tensor(self.test_sentences) _UpperCamelCase : Union[str, Any] = model(__snake_case) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _UpperCamelCase : int = Path(__snake_case) / 'saved.model' model.save(__snake_case) _UpperCamelCase : Optional[int] = tf.keras.models.load_model(__snake_case) _UpperCamelCase : int = loaded_model(__snake_case) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output)) , 1e-5)
648
0
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class __A ( _lowercase , unittest.TestCase ): """simple docstring""" a__ = DebertaVaTokenizer a__ = DebertaVaTokenizerFast a__ = True a__ = True def A__ ( self): super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase : List[str] = DebertaVaTokenizer(__snake_case , unk_token='<unk>') tokenizer.save_pretrained(self.tmpdirname) def A__ ( self , __snake_case): _UpperCamelCase : List[Any] = 'this is a test' _UpperCamelCase : int = 'this is a test' return input_text, output_text def A__ ( self): _UpperCamelCase : List[str] = '<pad>' _UpperCamelCase : Union[str, Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case) , __snake_case) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case) , __snake_case) def A__ ( self): _UpperCamelCase : Tuple = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<pad>') self.assertEqual(vocab_keys[1] , '<unk>') self.assertEqual(vocab_keys[-1] , '[PAD]') self.assertEqual(len(__snake_case) , 3_00_01) def A__ ( self): self.assertEqual(self.get_tokenizer().vocab_size , 3_00_00) def A__ ( self): # fmt: off _UpperCamelCase : Union[str, Any] = ' \tHeLLo!how \n Are yoU? ' _UpperCamelCase : Tuple = ['▁hello', '!', 'how', '▁are', '▁you', '?'] # fmt: on _UpperCamelCase : str = DebertaVaTokenizer(__snake_case , do_lower_case=__snake_case) _UpperCamelCase : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(__snake_case , add_special_tokens=__snake_case)) self.assertListEqual(__snake_case , __snake_case) _UpperCamelCase : int = DebertaVaTokenizerFast(__snake_case , do_lower_case=__snake_case) _UpperCamelCase : str = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case)) self.assertListEqual(__snake_case , __snake_case) @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.') def A__ ( self): pass @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.') def A__ ( self): pass def A__ ( self): # fmt: off _UpperCamelCase : List[str] = 'I was born in 92000, and this is falsé.' _UpperCamelCase : str = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on _UpperCamelCase : int = DebertaVaTokenizer(__snake_case , split_by_punct=__snake_case) _UpperCamelCase : str = tokenizer.convert_ids_to_tokens(tokenizer.encode(__snake_case , add_special_tokens=__snake_case)) self.assertListEqual(__snake_case , __snake_case) _UpperCamelCase : Optional[int] = DebertaVaTokenizerFast(__snake_case , split_by_punct=__snake_case) _UpperCamelCase : List[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case)) self.assertListEqual(__snake_case , __snake_case) def A__ ( self): # fmt: off _UpperCamelCase : Optional[Any] = 'I was born in 92000, and this is falsé.' _UpperCamelCase : List[Any] = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on _UpperCamelCase : Optional[Any] = DebertaVaTokenizer(__snake_case , do_lower_case=__snake_case , split_by_punct=__snake_case) _UpperCamelCase : List[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(__snake_case , add_special_tokens=__snake_case)) self.assertListEqual(__snake_case , __snake_case) _UpperCamelCase : Optional[Any] = DebertaVaTokenizerFast(__snake_case , do_lower_case=__snake_case , split_by_punct=__snake_case) _UpperCamelCase : str = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case)) self.assertListEqual(__snake_case , __snake_case) def A__ ( self): # fmt: off _UpperCamelCase : Tuple = 'I was born in 92000, and this is falsé.' _UpperCamelCase : List[Any] = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on _UpperCamelCase : Any = DebertaVaTokenizer(__snake_case , do_lower_case=__snake_case , split_by_punct=__snake_case) _UpperCamelCase : Tuple = tokenizer.convert_ids_to_tokens(tokenizer.encode(__snake_case , add_special_tokens=__snake_case)) self.assertListEqual(__snake_case , __snake_case) _UpperCamelCase : Optional[Any] = DebertaVaTokenizerFast(__snake_case , do_lower_case=__snake_case , split_by_punct=__snake_case) _UpperCamelCase : str = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case)) self.assertListEqual(__snake_case , __snake_case) def A__ ( self): # fmt: off _UpperCamelCase : Tuple = 'I was born in 92000, and this is falsé.' _UpperCamelCase : int = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on _UpperCamelCase : List[str] = DebertaVaTokenizer(__snake_case , do_lower_case=__snake_case , split_by_punct=__snake_case) _UpperCamelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(__snake_case , add_special_tokens=__snake_case)) self.assertListEqual(__snake_case , __snake_case) _UpperCamelCase : List[str] = DebertaVaTokenizerFast(__snake_case , do_lower_case=__snake_case , split_by_punct=__snake_case) _UpperCamelCase : Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case)) self.assertListEqual(__snake_case , __snake_case) def A__ ( self): # fmt: off _UpperCamelCase : Optional[Any] = ' \tHeLLo!how \n Are yoU? ' _UpperCamelCase : Dict = ['▁', '<unk>', 'e', '<unk>', 'o', '!', 'how', '▁', '<unk>', 're', '▁yo', '<unk>', '?'] # fmt: on _UpperCamelCase : List[Any] = DebertaVaTokenizer(__snake_case , do_lower_case=__snake_case , split_by_punct=__snake_case) _UpperCamelCase : List[str] = tokenizer.convert_ids_to_tokens(tokenizer.encode(__snake_case , add_special_tokens=__snake_case)) self.assertListEqual(__snake_case , __snake_case) _UpperCamelCase : Union[str, Any] = DebertaVaTokenizerFast(__snake_case , do_lower_case=__snake_case , split_by_punct=__snake_case) _UpperCamelCase : Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case)) self.assertListEqual(__snake_case , __snake_case) def A__ ( self): _UpperCamelCase : Any = self.get_tokenizer() _UpperCamelCase : Union[str, Any] = self.get_rust_tokenizer() _UpperCamelCase : int = 'I was born in 92000, and this is falsé.' _UpperCamelCase : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(__snake_case , add_special_tokens=__snake_case)) _UpperCamelCase : Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case)) self.assertListEqual(__snake_case , __snake_case) _UpperCamelCase : List[str] = tokenizer.encode(__snake_case , add_special_tokens=__snake_case) _UpperCamelCase : Optional[int] = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case) self.assertListEqual(__snake_case , __snake_case) _UpperCamelCase : int = self.get_rust_tokenizer() _UpperCamelCase : List[str] = tokenizer.encode(__snake_case) _UpperCamelCase : List[str] = rust_tokenizer.encode(__snake_case) self.assertListEqual(__snake_case , __snake_case) def A__ ( self): _UpperCamelCase : Dict = 'This is a test' _UpperCamelCase : Tuple = [13, 1, 43_98, 25, 21, 12_89] _UpperCamelCase : Any = ['▁', 'T', 'his', '▁is', '▁a', '▁test'] _UpperCamelCase : Any = ['▁', '<unk>', 'his', '▁is', '▁a', '▁test'] _UpperCamelCase : Optional[Any] = DebertaVaTokenizer(__snake_case , keep_accents=__snake_case) _UpperCamelCase : Union[str, Any] = DebertaVaTokenizerFast(__snake_case , keep_accents=__snake_case) _UpperCamelCase : Union[str, Any] = tokenizer.encode(__snake_case , add_special_tokens=__snake_case) self.assertListEqual(__snake_case , __snake_case) _UpperCamelCase : List[Any] = tokenizer.tokenize(__snake_case) self.assertListEqual(__snake_case , __snake_case) _UpperCamelCase : int = tokenizer.convert_ids_to_tokens(__snake_case) self.assertListEqual(__snake_case , __snake_case) _UpperCamelCase : Dict = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case) self.assertListEqual(__snake_case , __snake_case) _UpperCamelCase : Dict = rust_tokenizer.tokenize(__snake_case) self.assertListEqual(__snake_case , __snake_case) _UpperCamelCase : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(__snake_case) self.assertListEqual(__snake_case , __snake_case) # fmt: off _UpperCamelCase : Optional[Any] = 'I was born in 92000, and this is falsé.' _UpperCamelCase : List[str] = [13, 1, 23, 3_86, 19, 5_61, 30_50, 15, 17, 48, 25, 82_56, 18, 1, 9] _UpperCamelCase : List[str] = ['▁', 'I', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.', ] _UpperCamelCase : Any = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on _UpperCamelCase : Any = tokenizer.encode(__snake_case , add_special_tokens=__snake_case) self.assertListEqual(__snake_case , __snake_case) _UpperCamelCase : str = tokenizer.tokenize(__snake_case) self.assertListEqual(__snake_case , __snake_case) _UpperCamelCase : Tuple = tokenizer.convert_ids_to_tokens(__snake_case) self.assertListEqual(__snake_case , __snake_case) _UpperCamelCase : Any = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case) self.assertListEqual(__snake_case , __snake_case) _UpperCamelCase : int = rust_tokenizer.tokenize(__snake_case) self.assertListEqual(__snake_case , __snake_case) _UpperCamelCase : int = rust_tokenizer.convert_ids_to_tokens(__snake_case) self.assertListEqual(__snake_case , __snake_case) def A__ ( self): _UpperCamelCase : Union[str, Any] = DebertaVaTokenizer(__snake_case) _UpperCamelCase : Tuple = tokenizer.encode('sequence builders') _UpperCamelCase : List[Any] = tokenizer.encode('multi-sequence build') _UpperCamelCase : str = tokenizer.build_inputs_with_special_tokens(__snake_case) _UpperCamelCase : List[str] = tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , __snake_case) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , __snake_case , ) @slow def A__ ( self): # fmt: off _UpperCamelCase : Optional[Any] = {'input_ids': [[1, 3_98_67, 36, 1_93_90, 4_86, 27, 3_50_52, 8_14_36, 18, 6_06_85, 12_25, 7, 3_50_52, 8_14_36, 18, 93_67, 1_68_99, 18, 1_59_37, 53, 5_94, 7_73, 18, 1_62_87, 3_04_65, 36, 1_59_37, 6, 4_11_39, 38, 3_69_79, 6_07_63, 1_91, 6, 3_41_32, 99, 6, 5_05_38, 3_90, 4_32_30, 6, 3_41_32, 27_79, 2_08_50, 14, 6_99, 10_72, 11_94, 36, 3_82, 1_09_01, 53, 7, 6_99, 10_72, 20_84, 36, 2_04_22, 6_30, 53, 19, 1_05, 30_49, 18_96, 10_53, 1_68_99, 15_06, 11, 3_79_78, 42_43, 7, 12_37, 3_18_69, 2_00, 1_65_66, 6_54, 6, 3_50_52, 8_14_36, 7, 5_56_30, 1_35_93, 4, 2], [1, 26, 1_50_11, 13, 6_67, 8, 10_53, 18, 2_36_11, 12_37, 7_23_56, 1_28_20, 34, 10_41_34, 12_09, 35, 1_33_13, 66_27, 21, 2_02, 3_47, 7, 1_64, 23_99, 11, 46, 44_85, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 12_32, 28_64, 1_57_85, 1_49_51, 1_05, 5, 85_81, 12_50, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name='microsoft/deberta-v2-xlarge' , revision='ad6e42c1532ddf3a15c39246b63f5559d558b670' , )
707
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ = { """configuration_canine""": ["""CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CanineConfig"""], """tokenization_canine""": ["""CanineTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """CANINE_PRETRAINED_MODEL_ARCHIVE_LIST""", """CanineForMultipleChoice""", """CanineForQuestionAnswering""", """CanineForSequenceClassification""", """CanineForTokenClassification""", """CanineLayer""", """CanineModel""", """CaninePreTrainedModel""", """load_tf_weights_in_canine""", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
648
0
import math def lowerCamelCase_ ( ): '''simple docstring''' _UpperCamelCase : Any = input('Enter message: ' ) _UpperCamelCase : Optional[int] = int(input(F'''Enter key [2-{len(UpperCAmelCase_ ) - 1}]: ''' ) ) _UpperCamelCase : int = input('Encryption/Decryption [e/d]: ' ) if mode.lower().startswith('e' ): _UpperCamelCase : Dict = encrypt_message(UpperCAmelCase_ , UpperCAmelCase_ ) elif mode.lower().startswith('d' ): _UpperCamelCase : Union[str, Any] = decrypt_message(UpperCAmelCase_ , UpperCAmelCase_ ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(F'''Output:\n{text + "|"}''' ) def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : str ): '''simple docstring''' _UpperCamelCase : Any = [''] * key for col in range(UpperCAmelCase_ ): _UpperCamelCase : int = col while pointer < len(UpperCAmelCase_ ): cipher_text[col] += message[pointer] pointer += key return "".join(UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : str ): '''simple docstring''' _UpperCamelCase : Optional[Any] = math.ceil(len(UpperCAmelCase_ ) / key ) _UpperCamelCase : Union[str, Any] = key _UpperCamelCase : int = (num_cols * num_rows) - len(UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = [''] * num_cols _UpperCamelCase : Dict = 0 _UpperCamelCase : Union[str, Any] = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): _UpperCamelCase : str = 0 row += 1 return "".join(UpperCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
708
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case=3 , __snake_case=32 , __snake_case=3 , __snake_case=10 , __snake_case=[8, 16, 32, 64] , __snake_case=[1, 1, 2, 1] , __snake_case=True , __snake_case=True , __snake_case="relu" , __snake_case=3 , __snake_case=None , __snake_case=["stage2", "stage3", "stage4"] , __snake_case=[2, 3, 4] , __snake_case=1 , ): _UpperCamelCase : List[Any] = parent _UpperCamelCase : Dict = batch_size _UpperCamelCase : Optional[int] = image_size _UpperCamelCase : str = num_channels _UpperCamelCase : Optional[Any] = embeddings_size _UpperCamelCase : Tuple = hidden_sizes _UpperCamelCase : Dict = depths _UpperCamelCase : str = is_training _UpperCamelCase : Optional[int] = use_labels _UpperCamelCase : str = hidden_act _UpperCamelCase : Optional[int] = num_labels _UpperCamelCase : Optional[int] = scope _UpperCamelCase : Tuple = len(__snake_case) _UpperCamelCase : Dict = out_features _UpperCamelCase : Union[str, Any] = out_indices _UpperCamelCase : int = num_groups def A__ ( self): _UpperCamelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase : str = None if self.use_labels: _UpperCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels) _UpperCamelCase : str = self.get_config() return config, pixel_values, labels def A__ ( self): return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : str = BitModel(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[Any] = model(__snake_case) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Dict = self.num_labels _UpperCamelCase : Dict = BitForImageClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Dict = model(__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[Any] = BitBackbone(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = model(__snake_case) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:]) # verify backbone works with out_features=None _UpperCamelCase : Any = None _UpperCamelCase : str = BitBackbone(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Any = model(__snake_case) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , 1) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[-1], 1, 1]) # verify channels self.parent.assertEqual(len(model.channels) , 1) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]]) def A__ ( self): _UpperCamelCase : Optional[int] = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : int = config_and_inputs _UpperCamelCase : int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () a__ = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False a__ = False def A__ ( self): _UpperCamelCase : Dict = BitModelTester(self) _UpperCamelCase : Optional[Any] = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case) def A__ ( self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self): return @unittest.skip(reason='Bit does not output attentions') def A__ ( self): pass @unittest.skip(reason='Bit does not use inputs_embeds') def A__ ( self): pass @unittest.skip(reason='Bit does not support input and output embeddings') def A__ ( self): pass def A__ ( self): _UpperCamelCase , _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : int = model_class(__snake_case) _UpperCamelCase : List[Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : Optional[int] = [*signature.parameters.keys()] _UpperCamelCase : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __snake_case) def A__ ( self): _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case) def A__ ( self): _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__snake_case) def A__ ( self): _UpperCamelCase , _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Union[str, Any] = model_class(config=__snake_case) for name, module in model.named_modules(): if isinstance(__snake_case , (nn.BatchNormad, nn.GroupNorm)): self.assertTrue( torch.all(module.weight == 1) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def A__ ( self): def check_hidden_states_output(__snake_case , __snake_case , __snake_case): _UpperCamelCase : str = model_class(__snake_case) model.to(__snake_case) model.eval() with torch.no_grad(): _UpperCamelCase : Union[str, Any] = model(**self._prepare_for_class(__snake_case , __snake_case)) _UpperCamelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase : str = self.model_tester.num_stages self.assertEqual(len(__snake_case) , expected_num_stages + 1) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCamelCase , _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : List[str] = ['preactivation', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _UpperCamelCase : Any = layer_type _UpperCamelCase : Tuple = True check_hidden_states_output(__snake_case , __snake_case , __snake_case) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase : List[str] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case) @unittest.skip(reason='Bit does not use feedforward chunking') def A__ ( self): pass def A__ ( self): _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case) @slow def A__ ( self): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : Optional[Any] = BitModel.from_pretrained(__snake_case) self.assertIsNotNone(__snake_case) def lowerCamelCase_ ( ) -> Optional[int]: '''simple docstring''' _UpperCamelCase : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def A__ ( self): _UpperCamelCase : Optional[Any] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(__snake_case) _UpperCamelCase : str = self.default_image_processor _UpperCamelCase : List[str] = prepare_img() _UpperCamelCase : int = image_processor(images=__snake_case , return_tensors='pt').to(__snake_case) # forward pass with torch.no_grad(): _UpperCamelCase : Any = model(**__snake_case) # verify the logits _UpperCamelCase : Dict = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , __snake_case) _UpperCamelCase : Optional[int] = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]]).to(__snake_case) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1e-4)) @require_torch class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" a__ = (BitBackbone,) if is_torch_available() else () a__ = BitConfig a__ = False def A__ ( self): _UpperCamelCase : List[str] = BitModelTester(self)
648
0
'''simple docstring''' import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup lowerCAmelCase__ = { """User-Agent""": """Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36""" """ (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582""" } def lowerCamelCase_ ( UpperCAmelCase_ : str = "dhaka" , UpperCAmelCase_ : int = 5 ) -> int: '''simple docstring''' _UpperCamelCase : str = min(UpperCAmelCase_ , 5_0 ) # Prevent abuse! _UpperCamelCase : int = { 'q': query, 'tbm': 'isch', 'hl': 'en', 'ijn': '0', } _UpperCamelCase : str = requests.get('https://www.google.com/search' , params=UpperCAmelCase_ , headers=UpperCAmelCase_ ) _UpperCamelCase : List[Any] = BeautifulSoup(html.text , 'html.parser' ) _UpperCamelCase : int = ''.join( re.findall(R'AF_initDataCallback\(([^<]+)\);' , str(soup.select('script' ) ) ) ) _UpperCamelCase : Optional[Any] = json.dumps(UpperCAmelCase_ ) _UpperCamelCase : List[str] = json.loads(UpperCAmelCase_ ) _UpperCamelCase : Dict = re.findall( R'\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",' , UpperCAmelCase_ , ) if not matched_google_image_data: return 0 _UpperCamelCase : Union[str, Any] = re.sub( R'\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]' , '' , str(UpperCAmelCase_ ) , ) _UpperCamelCase : int = re.findall( R'(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]' , UpperCAmelCase_ , ) for index, fixed_full_res_image in enumerate(UpperCAmelCase_ ): if index >= max_images: return index _UpperCamelCase : Optional[Any] = bytes(UpperCAmelCase_ , 'ascii' ).decode( 'unicode-escape' ) _UpperCamelCase : Union[str, Any] = bytes(UpperCAmelCase_ , 'ascii' ).decode( 'unicode-escape' ) _UpperCamelCase : List[str] = urllib.request.build_opener() _UpperCamelCase : Tuple = [ ( 'User-Agent', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582', ) ] urllib.request.install_opener(UpperCAmelCase_ ) _UpperCamelCase : Union[str, Any] = F'''query_{query.replace(" " , "_" )}''' if not os.path.exists(UpperCAmelCase_ ): os.makedirs(UpperCAmelCase_ ) urllib.request.urlretrieve( # noqa: S310 UpperCAmelCase_ , F'''{path_name}/original_size_img_{index}.jpg''' ) return index if __name__ == "__main__": try: lowerCAmelCase__ = download_images_from_google_query(sys.argv[1]) print(f'{image_count} images were downloaded to disk.') except IndexError: print("""Please provide a search term.""") raise
709
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowerCAmelCase__ = numpy.array([0, 0]) lowerCAmelCase__ = numpy.array([0.5, 0.8_66_02_54]) lowerCAmelCase__ = numpy.array([1, 0]) lowerCAmelCase__ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] , UpperCAmelCase_ : int ) -> list[numpy.ndarray]: '''simple docstring''' _UpperCamelCase : Tuple = initial_vectors for _ in range(UpperCAmelCase_ ): _UpperCamelCase : str = iteration_step(UpperCAmelCase_ ) return vectors def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] ) -> list[numpy.ndarray]: '''simple docstring''' _UpperCamelCase : int = [] for i, start_vector in enumerate(vectors[:-1] ): _UpperCamelCase : Union[str, Any] = vectors[i + 1] new_vectors.append(UpperCAmelCase_ ) _UpperCamelCase : Tuple = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def lowerCamelCase_ ( UpperCAmelCase_ : numpy.ndarray , UpperCAmelCase_ : float ) -> numpy.ndarray: '''simple docstring''' _UpperCamelCase : str = numpy.radians(UpperCAmelCase_ ) _UpperCamelCase , _UpperCamelCase : Optional[Any] = numpy.cos(UpperCAmelCase_ ), numpy.sin(UpperCAmelCase_ ) _UpperCamelCase : Any = numpy.array(((c, -s), (s, c)) ) return numpy.dot(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] ) -> None: '''simple docstring''' _UpperCamelCase : str = plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _UpperCamelCase , _UpperCamelCase : Dict = zip(*UpperCAmelCase_ ) plt.plot(UpperCAmelCase_ , UpperCAmelCase_ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
648
0
def lowerCamelCase_ ( UpperCAmelCase_ : str ) -> list: '''simple docstring''' if n_term == "": return [] _UpperCamelCase : list = [] for temp in range(int(UpperCAmelCase_ ) ): series.append(F'''1/{temp + 1}''' if series else '1' ) return series if __name__ == "__main__": lowerCAmelCase__ = input('''Enter the last number (nth term) of the Harmonic Series''') print('''Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n''') print(harmonic_series(nth_term))
710
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCAmelCase__ = abspath(join(dirname(__file__), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def lowerCamelCase_ ( UpperCAmelCase_ : Any ) -> Union[str, Any]: '''simple docstring''' config.addinivalue_line( 'markers' , 'is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested' ) config.addinivalue_line( 'markers' , 'is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested' ) config.addinivalue_line('markers' , 'is_pipeline_test: mark test to run only when pipelines are tested' ) config.addinivalue_line('markers' , 'is_staging_test: mark test to run only in the staging environment' ) config.addinivalue_line('markers' , 'accelerate_tests: mark test that require accelerate' ) config.addinivalue_line('markers' , 'tool_tests: mark the tool tests that are run on their specific schedule' ) def lowerCamelCase_ ( UpperCAmelCase_ : Optional[int] ) -> List[Any]: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : Any ) -> List[Any]: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main _UpperCamelCase : str = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(UpperCAmelCase_ , id=UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict ) -> Tuple: '''simple docstring''' if exitstatus == 5: _UpperCamelCase : List[Any] = 0 # Doctest custom flag to ignore output. lowerCAmelCase__ = doctest.register_optionflag("""IGNORE_RESULT""") lowerCAmelCase__ = doctest.OutputChecker class lowercase ( _lowercase ): """simple docstring""" def A__ ( self , __snake_case , __snake_case , __snake_case): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , __snake_case , __snake_case , __snake_case) lowerCAmelCase__ = CustomOutputChecker lowerCAmelCase__ = HfDoctestModule lowerCAmelCase__ = HfDocTestParser
648
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase__ = { """configuration_mobilenet_v2""": [ """MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileNetV2Config""", """MobileNetV2OnnxConfig""", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ["""MobileNetV2FeatureExtractor"""] lowerCAmelCase__ = ["""MobileNetV2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileNetV2ForImageClassification""", """MobileNetV2ForSemanticSegmentation""", """MobileNetV2Model""", """MobileNetV2PreTrainedModel""", """load_tf_weights_in_mobilenet_v2""", ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
711
lowerCAmelCase__ = range(2, 2_0 + 1) lowerCAmelCase__ = [1_0**k for k in range(ks[-1] + 1)] lowerCAmelCase__ = {} def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int ) -> Tuple: '''simple docstring''' _UpperCamelCase : Dict = sum(a_i[j] for j in range(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) ) _UpperCamelCase : Optional[int] = sum(a_i[j] * base[j] for j in range(min(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) ) ) _UpperCamelCase , _UpperCamelCase : Dict = 0, 0 _UpperCamelCase : Optional[int] = n - i _UpperCamelCase : Union[str, Any] = memo.get(UpperCAmelCase_ ) if sub_memo is not None: _UpperCamelCase : str = sub_memo.get(UpperCAmelCase_ ) if jumps is not None and len(UpperCAmelCase_ ) > 0: # find and make the largest jump without going over _UpperCamelCase : str = -1 for _k in range(len(UpperCAmelCase_ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _UpperCamelCase : Optional[Any] = _k break if max_jump >= 0: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = jumps[max_jump] # since the difference between jumps is cached, add c _UpperCamelCase : Tuple = diff + c for j in range(min(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) ): _UpperCamelCase , _UpperCamelCase : Dict = divmod(UpperCAmelCase_ , 1_0 ) if new_c > 0: add(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) else: _UpperCamelCase : Union[str, Any] = [] else: _UpperCamelCase : List[Any] = {c: []} _UpperCamelCase : Optional[int] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _UpperCamelCase , _UpperCamelCase : Optional[Any] = next_term(UpperCAmelCase_ , k - 1 , i + dn , UpperCAmelCase_ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _UpperCamelCase , _UpperCamelCase : Any = compute(UpperCAmelCase_ , UpperCAmelCase_ , i + dn , UpperCAmelCase_ ) diff += _diff dn += terms_jumped _UpperCamelCase : List[str] = sub_memo[c] # keep jumps sorted by # of terms skipped _UpperCamelCase : Union[str, Any] = 0 while j < len(UpperCAmelCase_ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCAmelCase_ , (diff, dn, k) ) return (diff, dn) def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any ) -> Dict: '''simple docstring''' if i >= n: return 0, i if k > len(UpperCAmelCase_ ): a_i.extend([0 for _ in range(k - len(UpperCAmelCase_ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _UpperCamelCase : Any = i _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Any = 0, 0, 0 for j in range(len(UpperCAmelCase_ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _UpperCamelCase : Union[str, Any] = ds_c + ds_b diff += addend _UpperCamelCase : Union[str, Any] = 0 for j in range(UpperCAmelCase_ ): _UpperCamelCase : Union[str, Any] = a_i[j] + addend _UpperCamelCase , _UpperCamelCase : Any = divmod(UpperCAmelCase_ , 1_0 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return diff, i - start_i def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any ) -> Dict: '''simple docstring''' for j in range(UpperCAmelCase_ , len(UpperCAmelCase_ ) ): _UpperCamelCase : List[str] = digits[j] + addend if s >= 1_0: _UpperCamelCase , _UpperCamelCase : Any = divmod(UpperCAmelCase_ , 1_0 ) _UpperCamelCase : Union[str, Any] = addend // 1_0 + quotient else: _UpperCamelCase : Dict = s _UpperCamelCase : Optional[Any] = addend // 1_0 if addend == 0: break while addend > 0: _UpperCamelCase , _UpperCamelCase : Dict = divmod(UpperCAmelCase_ , 1_0 ) digits.append(UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : int = 1_0**1_5 ) -> int: '''simple docstring''' _UpperCamelCase : Optional[Any] = [1] _UpperCamelCase : Optional[int] = 1 _UpperCamelCase : int = 0 while True: _UpperCamelCase , _UpperCamelCase : List[Any] = next_term(UpperCAmelCase_ , 2_0 , i + dn , UpperCAmelCase_ ) dn += terms_jumped if dn == n - i: break _UpperCamelCase : str = 0 for j in range(len(UpperCAmelCase_ ) ): a_n += digits[j] * 1_0**j return a_n if __name__ == "__main__": print(f'{solution() = }')
648
0
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar("""T""") class lowercase ( Generic[T] ): """simple docstring""" a__ = 4_2 # Cache store of keys a__ = 4_2 # References of the keys in cache a__ = 1_0 # Maximum capacity of cache def __init__( self , __snake_case): _UpperCamelCase : str = deque() _UpperCamelCase : str = set() if not n: _UpperCamelCase : Union[str, Any] = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.') else: _UpperCamelCase : Tuple = n def A__ ( self , __snake_case): if x not in self.key_reference: if len(self.dq_store) == LRUCache._MAX_CAPACITY: _UpperCamelCase : Any = self.dq_store.pop() self.key_reference.remove(__snake_case) else: self.dq_store.remove(__snake_case) self.dq_store.appendleft(__snake_case) self.key_reference.add(__snake_case) def A__ ( self): for k in self.dq_store: print(__snake_case) def __repr__( self): return f'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store)}''' if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = LRUCache(4) lru_cache.refer("""A""") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("""A""") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
712
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowercase ( _lowercase ): """simple docstring""" a__ = "vit_mae" def __init__( self , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=2_24 , __snake_case=16 , __snake_case=3 , __snake_case=True , __snake_case=16 , __snake_case=5_12 , __snake_case=8 , __snake_case=20_48 , __snake_case=0.7_5 , __snake_case=False , **__snake_case , ): super().__init__(**__snake_case) _UpperCamelCase : Optional[int] = hidden_size _UpperCamelCase : Optional[int] = num_hidden_layers _UpperCamelCase : Tuple = num_attention_heads _UpperCamelCase : List[str] = intermediate_size _UpperCamelCase : str = hidden_act _UpperCamelCase : List[str] = hidden_dropout_prob _UpperCamelCase : List[Any] = attention_probs_dropout_prob _UpperCamelCase : str = initializer_range _UpperCamelCase : Any = layer_norm_eps _UpperCamelCase : int = image_size _UpperCamelCase : Any = patch_size _UpperCamelCase : List[Any] = num_channels _UpperCamelCase : Union[str, Any] = qkv_bias _UpperCamelCase : str = decoder_num_attention_heads _UpperCamelCase : Union[str, Any] = decoder_hidden_size _UpperCamelCase : Union[str, Any] = decoder_num_hidden_layers _UpperCamelCase : Any = decoder_intermediate_size _UpperCamelCase : int = mask_ratio _UpperCamelCase : List[Any] = norm_pix_loss
648
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase__ = { """configuration_vivit""": ["""VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """VivitConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ["""VivitImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """VivitModel""", """VivitPreTrainedModel""", """VivitForVideoClassification""", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
713
import functools def lowerCamelCase_ ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int] ) -> int: '''simple docstring''' if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or not all(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(UpperCAmelCase_ ) != 3 or not all(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(UpperCAmelCase_ ) == 0: return 0 if min(UpperCAmelCase_ ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(UpperCAmelCase_ ) >= 3_6_6: raise ValueError('All days elements should be less than 366' ) _UpperCamelCase : Union[str, Any] = set(UpperCAmelCase_ ) @functools.cache def dynamic_programming(UpperCAmelCase_ : int ) -> int: if index > 3_6_5: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 3_0 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
648
0
'''simple docstring''' from functools import lru_cache def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> set: '''simple docstring''' _UpperCamelCase : Dict = 2 _UpperCamelCase : Optional[int] = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(UpperCAmelCase_ ) if n > 1: factors.add(UpperCAmelCase_ ) return factors @lru_cache def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> int: '''simple docstring''' return len(unique_prime_factors(UpperCAmelCase_ ) ) def lowerCamelCase_ ( UpperCAmelCase_ : list ) -> bool: '''simple docstring''' return len(set(UpperCAmelCase_ ) ) in (0, 1) def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> list: '''simple docstring''' _UpperCamelCase : List[Any] = 2 while True: # Increment each value of a generated range _UpperCamelCase : str = [base + i for i in range(UpperCAmelCase_ )] # Run elements through out unique_prime_factors function # Append our target number to the end. _UpperCamelCase : Union[str, Any] = [upf_len(UpperCAmelCase_ ) for x in group] checker.append(UpperCAmelCase_ ) # If all numbers in the list are equal, return the group variable. if equality(UpperCAmelCase_ ): return group # Increment our base variable by 1 base += 1 def lowerCamelCase_ ( UpperCAmelCase_ : int = 4 ) -> int: '''simple docstring''' _UpperCamelCase : Any = run(UpperCAmelCase_ ) return results[0] if len(UpperCAmelCase_ ) else None if __name__ == "__main__": print(solution())
714
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=99 , __snake_case=64 , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=37 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=16 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=3 , __snake_case=4 , __snake_case=None , ): _UpperCamelCase : List[Any] = parent _UpperCamelCase : Optional[Any] = batch_size _UpperCamelCase : int = seq_length _UpperCamelCase : str = is_training _UpperCamelCase : Tuple = use_input_mask _UpperCamelCase : Union[str, Any] = use_token_type_ids _UpperCamelCase : Union[str, Any] = use_labels _UpperCamelCase : Optional[Any] = vocab_size _UpperCamelCase : List[Any] = hidden_size _UpperCamelCase : Optional[Any] = embedding_size _UpperCamelCase : str = num_hidden_layers _UpperCamelCase : str = num_attention_heads _UpperCamelCase : int = intermediate_size _UpperCamelCase : int = hidden_act _UpperCamelCase : Tuple = hidden_dropout_prob _UpperCamelCase : int = attention_probs_dropout_prob _UpperCamelCase : Tuple = max_position_embeddings _UpperCamelCase : List[str] = type_vocab_size _UpperCamelCase : Dict = type_sequence_label_size _UpperCamelCase : List[str] = initializer_range _UpperCamelCase : Optional[Any] = num_labels _UpperCamelCase : Tuple = num_choices _UpperCamelCase : List[str] = scope def A__ ( self): _UpperCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase : Any = None if self.use_input_mask: _UpperCamelCase : int = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase : Optional[Any] = None if self.use_token_type_ids: _UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase : int = None _UpperCamelCase : List[str] = None _UpperCamelCase : Dict = None if self.use_labels: _UpperCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self): return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : List[str] = MegatronBertModel(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case) _UpperCamelCase : Dict = model(__snake_case , token_type_ids=__snake_case) _UpperCamelCase : Optional[Any] = model(__snake_case) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : int = MegatronBertForMaskedLM(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Dict = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : str = MegatronBertForCausalLM(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Tuple = MegatronBertForNextSentencePrediction(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[Any] = MegatronBertForPreTraining(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[str] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , next_sentence_label=__snake_case , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : int = MegatronBertForQuestionAnswering(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[int] = self.num_labels _UpperCamelCase : Union[str, Any] = MegatronBertForSequenceClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Any = self.num_labels _UpperCamelCase : Optional[int] = MegatronBertForTokenClassification(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Tuple = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : List[str] = self.num_choices _UpperCamelCase : Optional[int] = MegatronBertForMultipleChoice(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : List[Any] = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : Optional[Any] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : Union[str, Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def A__ ( self): _UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) : Optional[int] = config_and_inputs _UpperCamelCase : int = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) a__ = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) a__ = True # test_resize_embeddings = False a__ = False def A__ ( self , __snake_case , __snake_case , __snake_case=False): _UpperCamelCase : str = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case) if return_labels: if model_class in get_values(__snake_case): _UpperCamelCase : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__snake_case) _UpperCamelCase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case) return inputs_dict def A__ ( self): _UpperCamelCase : Any = MegatronBertModelTester(self) _UpperCamelCase : int = ConfigTester(self , config_class=__snake_case , hidden_size=37) def A__ ( self): self.config_tester.run_common_tests() def A__ ( self): _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__snake_case) def A__ ( self): _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__snake_case) def A__ ( self): _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__snake_case) def A__ ( self): _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__snake_case) def A__ ( self): _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__snake_case) def A__ ( self): _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__snake_case) def A__ ( self): _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__snake_case) def A__ ( self): _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__snake_case) def lowerCamelCase_ ( UpperCAmelCase_ : str ) -> Optional[Any]: '''simple docstring''' return torch.tensor( UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ , ) lowerCAmelCase__ = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip('Model is not available.') def A__ ( self): _UpperCamelCase : int = 'nvidia/megatron-bert-uncased-345m' if "MYDIR" in os.environ: _UpperCamelCase : int = os.path.join(os.environ['MYDIR'] , __snake_case) _UpperCamelCase : Optional[int] = MegatronBertModel.from_pretrained(__snake_case) model.to(__snake_case) model.half() _UpperCamelCase : Optional[Any] = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]]) with torch.no_grad(): _UpperCamelCase : str = model(__snake_case)[0] _UpperCamelCase : Optional[int] = torch.Size((1, 9, 10_24)) self.assertEqual(output.shape , __snake_case) _UpperCamelCase : Union[str, Any] = [-0.6_0_4_0, -0.2_5_1_7, -0.1_0_2_5, 0.3_4_2_0, -0.6_7_5_8, -0.0_0_1_7, -0.1_0_8_9, -0.1_9_9_0, 0.5_7_2_8] for ii in range(3): for jj in range(3): _UpperCamelCase : Optional[Any] = output[0, ii, jj] _UpperCamelCase : Dict = expected[3 * ii + jj] _UpperCamelCase : Optional[int] = 'ii={} jj={} a={} b={}'.format(__snake_case , __snake_case , __snake_case , __snake_case) self.assertTrue(math.isclose(__snake_case , __snake_case , rel_tol=__snake_case , abs_tol=__snake_case) , msg=__snake_case)
648
0
lowerCAmelCase__ = range(2, 2_0 + 1) lowerCAmelCase__ = [1_0**k for k in range(ks[-1] + 1)] lowerCAmelCase__ = {} def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int ) -> Tuple: '''simple docstring''' _UpperCamelCase : Dict = sum(a_i[j] for j in range(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) ) _UpperCamelCase : Optional[int] = sum(a_i[j] * base[j] for j in range(min(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) ) ) _UpperCamelCase : Dict = 0, 0 _UpperCamelCase : Optional[int] = n - i _UpperCamelCase : Union[str, Any] = memo.get(UpperCAmelCase_ ) if sub_memo is not None: _UpperCamelCase : str = sub_memo.get(UpperCAmelCase_ ) if jumps is not None and len(UpperCAmelCase_ ) > 0: # find and make the largest jump without going over _UpperCamelCase : str = -1 for _k in range(len(UpperCAmelCase_ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _UpperCamelCase : Optional[Any] = _k break if max_jump >= 0: _UpperCamelCase : Optional[Any] = jumps[max_jump] # since the difference between jumps is cached, add c _UpperCamelCase : Tuple = diff + c for j in range(min(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) ): _UpperCamelCase : Dict = divmod(UpperCAmelCase_ , 1_0 ) if new_c > 0: add(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) else: _UpperCamelCase : Union[str, Any] = [] else: _UpperCamelCase : List[Any] = {c: []} _UpperCamelCase : Optional[int] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _UpperCamelCase : Optional[Any] = next_term(UpperCAmelCase_ , k - 1 , i + dn , UpperCAmelCase_ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _UpperCamelCase : Any = compute(UpperCAmelCase_ , UpperCAmelCase_ , i + dn , UpperCAmelCase_ ) diff += _diff dn += terms_jumped _UpperCamelCase : List[str] = sub_memo[c] # keep jumps sorted by # of terms skipped _UpperCamelCase : Union[str, Any] = 0 while j < len(UpperCAmelCase_ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCAmelCase_ , (diff, dn, k) ) return (diff, dn) def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any ) -> Dict: '''simple docstring''' if i >= n: return 0, i if k > len(UpperCAmelCase_ ): a_i.extend([0 for _ in range(k - len(UpperCAmelCase_ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _UpperCamelCase : Any = i _UpperCamelCase : Any = 0, 0, 0 for j in range(len(UpperCAmelCase_ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _UpperCamelCase : Union[str, Any] = ds_c + ds_b diff += addend _UpperCamelCase : Union[str, Any] = 0 for j in range(UpperCAmelCase_ ): _UpperCamelCase : Union[str, Any] = a_i[j] + addend _UpperCamelCase : Any = divmod(UpperCAmelCase_ , 1_0 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return diff, i - start_i def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any ) -> Dict: '''simple docstring''' for j in range(UpperCAmelCase_ , len(UpperCAmelCase_ ) ): _UpperCamelCase : List[str] = digits[j] + addend if s >= 1_0: _UpperCamelCase : Any = divmod(UpperCAmelCase_ , 1_0 ) _UpperCamelCase : Union[str, Any] = addend // 1_0 + quotient else: _UpperCamelCase : Dict = s _UpperCamelCase : Optional[Any] = addend // 1_0 if addend == 0: break while addend > 0: _UpperCamelCase : Dict = divmod(UpperCAmelCase_ , 1_0 ) digits.append(UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : int = 1_0**1_5 ) -> int: '''simple docstring''' _UpperCamelCase : Optional[Any] = [1] _UpperCamelCase : Optional[int] = 1 _UpperCamelCase : int = 0 while True: _UpperCamelCase : List[Any] = next_term(UpperCAmelCase_ , 2_0 , i + dn , UpperCAmelCase_ ) dn += terms_jumped if dn == n - i: break _UpperCamelCase : str = 0 for j in range(len(UpperCAmelCase_ ) ): a_n += digits[j] * 1_0**j return a_n if __name__ == "__main__": print(f'{solution() = }')
715
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = """▁""" lowerCAmelCase__ = {"""vocab_file""": """sentencepiece.bpe.model"""} lowerCAmelCase__ = { """vocab_file""": { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model""" ), } } lowerCAmelCase__ = { """xlm-roberta-base""": 5_1_2, """xlm-roberta-large""": 5_1_2, """xlm-roberta-large-finetuned-conll02-dutch""": 5_1_2, """xlm-roberta-large-finetuned-conll02-spanish""": 5_1_2, """xlm-roberta-large-finetuned-conll03-english""": 5_1_2, """xlm-roberta-large-finetuned-conll03-german""": 5_1_2, } class lowercase ( _lowercase ): """simple docstring""" a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = ["input_ids", "attention_mask"] def __init__( self , __snake_case , __snake_case="<s>" , __snake_case="</s>" , __snake_case="</s>" , __snake_case="<s>" , __snake_case="<unk>" , __snake_case="<pad>" , __snake_case="<mask>" , __snake_case = None , **__snake_case , ): # Mask token behave like a normal word, i.e. include the space before it _UpperCamelCase : Dict = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case) if isinstance(__snake_case , __snake_case) else mask_token _UpperCamelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) _UpperCamelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(__snake_case)) _UpperCamelCase : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _UpperCamelCase : int = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _UpperCamelCase : List[Any] = 1 _UpperCamelCase : Any = len(self.sp_model) + self.fairseq_offset _UpperCamelCase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self): _UpperCamelCase : List[Any] = self.__dict__.copy() _UpperCamelCase : Optional[Any] = None _UpperCamelCase : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self , __snake_case): _UpperCamelCase : int = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): _UpperCamelCase : Tuple = {} _UpperCamelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) def A__ ( self , __snake_case , __snake_case = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCamelCase : Tuple = [self.cls_token_id] _UpperCamelCase : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self , __snake_case , __snake_case = None , __snake_case = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case) if token_ids_a is None: return [1] + ([0] * len(__snake_case)) + [1] return [1] + ([0] * len(__snake_case)) + [1, 1] + ([0] * len(__snake_case)) + [1] def A__ ( self , __snake_case , __snake_case = None): _UpperCamelCase : Optional[Any] = [self.sep_token_id] _UpperCamelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def A__ ( self): return len(self.sp_model) + self.fairseq_offset + 1 # Add the <mask> token def A__ ( self): _UpperCamelCase : List[str] = {self.convert_ids_to_tokens(__snake_case): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def A__ ( self , __snake_case): return self.sp_model.encode(__snake_case , out_type=__snake_case) def A__ ( self , __snake_case): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCamelCase : str = self.sp_model.PieceToId(__snake_case) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A__ ( self , __snake_case): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def A__ ( self , __snake_case): _UpperCamelCase : Optional[int] = ''.join(__snake_case).replace(__snake_case , ' ').strip() return out_string def A__ ( self , __snake_case , __snake_case = None): if not os.path.isdir(__snake_case): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return _UpperCamelCase : str = os.path.join( __snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(__snake_case) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , __snake_case) elif not os.path.isfile(self.vocab_file): with open(__snake_case , 'wb') as fi: _UpperCamelCase : Any = self.sp_model.serialized_model_proto() fi.write(__snake_case) return (out_vocab_file,)
648
0
import math from datetime import datetime, timedelta def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> datetime: '''simple docstring''' _UpperCamelCase : Tuple = year % 1_9 _UpperCamelCase : int = year % 4 _UpperCamelCase : List[Any] = year % 7 _UpperCamelCase : Optional[int] = math.floor(year / 1_0_0 ) _UpperCamelCase : Optional[Any] = math.floor((1_3 + 8 * leap_day_inhibits) / 2_5 ) _UpperCamelCase : Any = leap_day_inhibits / 4 _UpperCamelCase : List[str] = ( 1_5 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 3_0 _UpperCamelCase : Optional[int] = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 _UpperCamelCase : Optional[int] = (1_9 * metonic_cycle + secular_moon_shift) % 3_0 # PHM -> Paschal Full Moon _UpperCamelCase : Optional[int] = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 2_9 and days_from_phm_to_sunday == 6: return datetime(UpperCAmelCase_ , 4 , 1_9 ) elif days_to_add == 2_8 and days_from_phm_to_sunday == 6: return datetime(UpperCAmelCase_ , 4 , 1_8 ) else: return datetime(UpperCAmelCase_ , 3 , 2_2 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_9_9_4, 2_0_0_0, 2_0_1_0, 2_0_2_1, 2_0_2_3): lowerCAmelCase__ = """will be""" if year > datetime.now().year else """was""" print(f'Easter in {year} {tense} {gauss_easter(year)}')
716
from ...processing_utils import ProcessorMixin class lowercase ( _lowercase ): """simple docstring""" a__ = ["image_processor", "feature_extractor"] a__ = "TvltImageProcessor" a__ = "TvltFeatureExtractor" def __init__( self , __snake_case , __snake_case): super().__init__(image_processor=__snake_case , feature_extractor=__snake_case) _UpperCamelCase : List[str] = image_processor _UpperCamelCase : Dict = feature_extractor def __call__( self , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=False , __snake_case=False , *__snake_case , **__snake_case , ): if images is None and audio is None: raise ValueError('You need to specify either an `images` or `audio` input to process.') _UpperCamelCase : Union[str, Any] = None if images is not None: _UpperCamelCase : Tuple = self.image_processor(__snake_case , mask_pixel=__snake_case , *__snake_case , **__snake_case) if images_mixed is not None: _UpperCamelCase : Union[str, Any] = self.image_processor(__snake_case , is_mixed=__snake_case , *__snake_case , **__snake_case) if audio is not None: _UpperCamelCase : Tuple = self.feature_extractor( __snake_case , *__snake_case , sampling_rate=__snake_case , mask_audio=__snake_case , **__snake_case) _UpperCamelCase : Tuple = {} if audio is not None: output_dict.update(__snake_case) if images is not None: output_dict.update(__snake_case) if images_mixed_dict is not None: output_dict.update(__snake_case) return output_dict @property def A__ ( self): _UpperCamelCase : List[Any] = self.image_processor.model_input_names _UpperCamelCase : List[Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
648
0
def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : bool = False ) -> str: '''simple docstring''' if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Dict = F'''Expected string as input, found {type(UpperCAmelCase_ )}''' raise ValueError(UpperCAmelCase_ ) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Tuple = F'''Expected boolean as use_pascal parameter, found {type(UpperCAmelCase_ )}''' raise ValueError(UpperCAmelCase_ ) _UpperCamelCase : Any = input_str.split('_' ) _UpperCamelCase : Dict = 0 if use_pascal else 1 _UpperCamelCase : Union[str, Any] = words[start_index:] _UpperCamelCase : str = [word[0].upper() + word[1:] for word in words_to_capitalize] _UpperCamelCase : Optional[int] = '' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
717
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class lowercase ( _lowercase ): """simple docstring""" a__ = "rwkv" a__ = {"max_position_embeddings": "context_length"} def __init__( self , __snake_case=5_02_77 , __snake_case=10_24 , __snake_case=40_96 , __snake_case=32 , __snake_case=None , __snake_case=None , __snake_case=1e-5 , __snake_case=0 , __snake_case=0 , __snake_case=6 , __snake_case=False , __snake_case=True , **__snake_case , ): _UpperCamelCase : str = vocab_size _UpperCamelCase : int = context_length _UpperCamelCase : Tuple = hidden_size _UpperCamelCase : Tuple = num_hidden_layers _UpperCamelCase : Dict = attention_hidden_size if attention_hidden_size is not None else hidden_size _UpperCamelCase : Tuple = intermediate_size if intermediate_size is not None else 4 * hidden_size _UpperCamelCase : Union[str, Any] = layer_norm_epsilon _UpperCamelCase : Dict = rescale_every _UpperCamelCase : Optional[Any] = use_cache _UpperCamelCase : str = bos_token_id _UpperCamelCase : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case)
648
0