code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> np.ndarray: '''simple docstring''' if (ksize % 2) == 0: _UpperCamelCase : Dict = ksize + 1 _UpperCamelCase : Optional[Any] = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(UpperCAmelCase_ ): for x in range(UpperCAmelCase_ ): # distance from center _UpperCamelCase : Union[str, Any] = x - ksize // 2 _UpperCamelCase : int = y - ksize // 2 # degree to radiant _UpperCamelCase : List[Any] = theta / 1_8_0 * np.pi _UpperCamelCase : Any = np.cos(_theta ) _UpperCamelCase : List[str] = np.sin(_theta ) # get kernel x _UpperCamelCase : List[str] = cos_theta * px + sin_theta * py # get kernel y _UpperCamelCase : int = -sin_theta * px + cos_theta * py # fill kernel _UpperCamelCase : List[str] = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image lowerCAmelCase__ = imread("""../image_data/lena.jpg""") # turn image in gray scale value lowerCAmelCase__ = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges lowerCAmelCase__ = np.zeros(gray.shape[:2]) for theta in [0, 3_0, 6_0, 9_0, 1_2_0, 1_5_0]: lowerCAmelCase__ = gabor_filter_kernel(1_0, 8, theta, 1_0, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) lowerCAmelCase__ = out / out.max() * 2_5_5 lowerCAmelCase__ = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
648
def lowerCamelCase_ ( UpperCAmelCase_ : list ) -> list: '''simple docstring''' if len(UpperCAmelCase_ ) <= 1: return [tuple(UpperCAmelCase_ )] _UpperCamelCase : List[Any] = [] def generate(UpperCAmelCase_ : int , UpperCAmelCase_ : list ): _UpperCamelCase : Optional[int] = [0] * n res.append(tuple(UpperCAmelCase_ ) ) _UpperCamelCase : List[Any] = 0 while i < n: if c[i] < i: if i % 2 == 0: _UpperCamelCase , _UpperCamelCase : List[str] = arr[i], arr[0] else: _UpperCamelCase , _UpperCamelCase : List[str] = arr[i], arr[c[i]] res.append(tuple(UpperCAmelCase_ ) ) c[i] += 1 _UpperCamelCase : Tuple = 0 else: _UpperCamelCase : Tuple = 0 i += 1 generate(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) return res if __name__ == "__main__": lowerCAmelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCAmelCase__ = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
648
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase__ = 1_6 lowerCAmelCase__ = 3_2 def lowerCamelCase_ ( UpperCAmelCase_ : Accelerator , UpperCAmelCase_ : int = 1_6 ) -> Tuple: '''simple docstring''' _UpperCamelCase : Tuple = AutoTokenizer.from_pretrained('bert-base-cased' ) _UpperCamelCase : Union[str, Any] = load_dataset('glue' , 'mrpc' ) def tokenize_function(UpperCAmelCase_ : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) _UpperCamelCase : Optional[int] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCamelCase : Optional[Any] = datasets.map( UpperCAmelCase_ , batched=UpperCAmelCase_ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCamelCase : Optional[int] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(UpperCAmelCase_ : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCamelCase : int = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCamelCase : List[str] = 1_6 elif accelerator.mixed_precision != "no": _UpperCamelCase : List[str] = 8 else: _UpperCamelCase : int = None return tokenizer.pad( UpperCAmelCase_ , padding='longest' , max_length=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_tensors='pt' , ) # Instantiate dataloaders. _UpperCamelCase : int = DataLoader( tokenized_datasets['train'] , shuffle=UpperCAmelCase_ , collate_fn=UpperCAmelCase_ , batch_size=UpperCAmelCase_ ) _UpperCamelCase : Any = DataLoader( tokenized_datasets['validation'] , shuffle=UpperCAmelCase_ , collate_fn=UpperCAmelCase_ , batch_size=UpperCAmelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase__ = mocked_dataloaders # noqa: F811 def lowerCamelCase_ ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str ) -> Any: '''simple docstring''' if os.environ.get('TESTING_MOCKED_DATALOADERS' , UpperCAmelCase_ ) == "1": _UpperCamelCase : Any = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: _UpperCamelCase : Union[str, Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: _UpperCamelCase : Optional[int] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCamelCase : Any = config['lr'] _UpperCamelCase : int = int(config['num_epochs'] ) _UpperCamelCase : int = int(config['seed'] ) _UpperCamelCase : Dict = int(config['batch_size'] ) set_seed(UpperCAmelCase_ ) _UpperCamelCase , _UpperCamelCase : Dict = get_dataloaders(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Dict = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation _UpperCamelCase : Optional[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _UpperCamelCase : Optional[int] = batch_size // MAX_GPU_BATCH_SIZE _UpperCamelCase : Any = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCamelCase : int = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=UpperCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCamelCase : Tuple = model.to(accelerator.device ) # Instantiate optimizer _UpperCamelCase : int = AdamW(params=model.parameters() , lr=UpperCAmelCase_ ) # Instantiate scheduler _UpperCamelCase : int = get_linear_schedule_with_warmup( optimizer=UpperCAmelCase_ , num_warmup_steps=1_0_0 , num_training_steps=(len(UpperCAmelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = accelerator.prepare( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: _UpperCamelCase : Any = os.path.split(UpperCAmelCase_ )[-1].split('.' )[0] accelerator.init_trackers(UpperCAmelCase_ , UpperCAmelCase_ ) # Now we train the model for epoch in range(UpperCAmelCase_ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: _UpperCamelCase : Optional[int] = 0 for step, batch in enumerate(UpperCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _UpperCamelCase : str = model(**UpperCAmelCase_ ) _UpperCamelCase : List[str] = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() _UpperCamelCase : int = loss / gradient_accumulation_steps accelerator.backward(UpperCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): _UpperCamelCase : List[str] = model(**UpperCAmelCase_ ) _UpperCamelCase : List[Any] = outputs.logits.argmax(dim=-1 ) _UpperCamelCase , _UpperCamelCase : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=UpperCAmelCase_ , references=UpperCAmelCase_ , ) _UpperCamelCase : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , UpperCAmelCase_ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { 'accuracy': eval_metric['accuracy'], 'f1': eval_metric['f1'], 'train_loss': total_loss.item() / len(UpperCAmelCase_ ), 'epoch': epoch, } , step=UpperCAmelCase_ , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowerCamelCase_ ( ) -> List[Any]: '''simple docstring''' _UpperCamelCase : Union[str, Any] = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=UpperCAmelCase_ , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) _UpperCamelCase : Dict = parser.parse_args() _UpperCamelCase : Tuple = {'lr': 2e-5, 'num_epochs': 3, 'seed': 4_2, 'batch_size': 1_6} training_function(UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": main()
648
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = [ ["""attention""", """attn"""], ["""encoder_attention""", """encoder_attn"""], ["""q_lin""", """q_proj"""], ["""k_lin""", """k_proj"""], ["""v_lin""", """v_proj"""], ["""out_lin""", """out_proj"""], ["""norm_embeddings""", """layernorm_embedding"""], ["""position_embeddings""", """embed_positions"""], ["""embeddings""", """embed_tokens"""], ["""ffn.lin""", """fc"""], ] def lowerCamelCase_ ( UpperCAmelCase_ : List[Any] ) -> Optional[int]: '''simple docstring''' if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: _UpperCamelCase : List[Any] = k.replace(UpperCAmelCase_ , UpperCAmelCase_ ) if k.startswith('encoder' ): _UpperCamelCase : Optional[Any] = k.replace('.attn' , '.self_attn' ) _UpperCamelCase : Optional[int] = k.replace('norm1' , 'self_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): _UpperCamelCase : Any = k.replace('norm1' , 'self_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm2' , 'encoder_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm3' , 'final_layer_norm' ) return k def lowerCamelCase_ ( UpperCAmelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Union[str, Any] = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: _UpperCamelCase : Optional[int] = sd.pop(UpperCAmelCase_ ) _UpperCamelCase : str = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd _UpperCamelCase : Tuple = v lowerCAmelCase__ = ["""START"""] @torch.no_grad() def lowerCamelCase_ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ) -> List[str]: '''simple docstring''' _UpperCamelCase : Optional[Any] = torch.load(UpperCAmelCase_ , map_location='cpu' ) _UpperCamelCase : int = model['model'] _UpperCamelCase : List[Any] = BlenderbotConfig.from_json_file(UpperCAmelCase_ ) _UpperCamelCase : Any = BlenderbotForConditionalGeneration(UpperCAmelCase_ ) _UpperCamelCase : int = m.model.state_dict().keys() _UpperCamelCase : Union[str, Any] = [] _UpperCamelCase : int = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue _UpperCamelCase : Optional[int] = rename_state_dict_key(UpperCAmelCase_ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: _UpperCamelCase : int = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(UpperCAmelCase_ ) m.model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) m.half() m.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("""--src_path""", type=str, help="""like blenderbot-model.bin""") parser.add_argument("""--save_dir""", default="""hf_blenderbot""", type=str, help="""Where to save converted model.""") parser.add_argument( """--hf_config_json""", default="""blenderbot-3b-config.json""", type=str, help="""Path to config to use""" ) lowerCAmelCase__ = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
648
1
from __future__ import annotations def lowerCamelCase_ ( UpperCAmelCase_ : list[float] ) -> float: '''simple docstring''' _UpperCamelCase : str = 0.0_0 _UpperCamelCase : str = 0 for resistor in resistors: if resistor <= 0: _UpperCamelCase : Union[str, Any] = F'''Resistor at index {index} has a negative or zero value!''' raise ValueError(UpperCAmelCase_ ) first_sum += 1 / float(UpperCAmelCase_ ) index += 1 return 1 / first_sum def lowerCamelCase_ ( UpperCAmelCase_ : list[float] ) -> float: '''simple docstring''' _UpperCamelCase : Union[str, Any] = 0.0_0 _UpperCamelCase : Union[str, Any] = 0 for resistor in resistors: sum_r += resistor if resistor < 0: _UpperCamelCase : Dict = F'''Resistor at index {index} has a negative value!''' raise ValueError(UpperCAmelCase_ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
648
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer lowerCAmelCase__ = ["""bert-base-uncased""", """bert-base-cased"""] lowerCAmelCase__ = """hf-internal-testing/tiny-bert-tf-only""" if is_tf_available(): class lowercase ( tf.keras.Model ): """simple docstring""" def __init__( self , __snake_case): super().__init__() _UpperCamelCase : List[Any] = tokenizer _UpperCamelCase : List[Any] = AutoConfig.from_pretrained(__snake_case) _UpperCamelCase : Dict = TFAutoModel.from_config(__snake_case) def A__ ( self , __snake_case): _UpperCamelCase : Any = self.tokenizer(__snake_case) _UpperCamelCase : Dict = self.bert(**__snake_case) return out["pooler_output"] @require_tf @require_tensorflow_text class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self): super().setUp() _UpperCamelCase : Optional[Any] = [ BertTokenizer.from_pretrained(__snake_case) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false _UpperCamelCase : Optional[Any] = [TFBertTokenizer.from_pretrained(__snake_case) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(__snake_case , use_fast_bert_tokenizer=__snake_case) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers) == len(self.tf_tokenizers) _UpperCamelCase : Optional[Any] = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] _UpperCamelCase : Dict = list(zip(self.test_sentences , self.test_sentences[::-1])) def A__ ( self): for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers): for test_inputs in (self.test_sentences, self.paired_sentences): _UpperCamelCase : List[str] = tokenizer(__snake_case , return_tensors='tf' , padding='longest') _UpperCamelCase : Tuple = tf_tokenizer(__snake_case) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape)) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa) == tf_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Tuple = tf_tokenizer(self.paired_sentences) _UpperCamelCase : Optional[Any] = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa) == separated_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Tuple = tf.function(__snake_case) for test_inputs in (self.test_sentences, self.paired_sentences): _UpperCamelCase : Optional[int] = tf.constant(__snake_case) _UpperCamelCase : Union[str, Any] = compiled_tokenizer(__snake_case) _UpperCamelCase : Tuple = tf_tokenizer(__snake_case) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Any = ModelToSave(tokenizer=__snake_case) _UpperCamelCase : Any = tf.convert_to_tensor(self.test_sentences) _UpperCamelCase : Union[str, Any] = model(__snake_case) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _UpperCamelCase : int = Path(__snake_case) / 'saved.model' model.save(__snake_case) _UpperCamelCase : Optional[int] = tf.keras.models.load_model(__snake_case) _UpperCamelCase : int = loaded_model(__snake_case) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output)) , 1e-5)
648
1
from typing import Dict, Optional import numpy as np import datasets lowerCAmelCase__ = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ lowerCAmelCase__ = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ lowerCAmelCase__ = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : bool , UpperCAmelCase_ : Optional[Dict[int, int]] = None , UpperCAmelCase_ : bool = False , ) -> Dict: '''simple docstring''' if label_map is not None: for old_id, new_id in label_map.items(): _UpperCamelCase : Optional[Any] = new_id # turn into Numpy arrays _UpperCamelCase : Dict = np.array(UpperCAmelCase_ ) _UpperCamelCase : Tuple = np.array(UpperCAmelCase_ ) if reduce_labels: _UpperCamelCase : Dict = 2_5_5 _UpperCamelCase : Tuple = label - 1 _UpperCamelCase : Any = 2_5_5 _UpperCamelCase : Any = label != ignore_index _UpperCamelCase : int = np.not_equal(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Union[str, Any] = pred_label[mask] _UpperCamelCase : Any = np.array(UpperCAmelCase_ )[mask] _UpperCamelCase : Optional[int] = pred_label[pred_label == label] _UpperCamelCase : Any = np.histogram(UpperCAmelCase_ , bins=UpperCAmelCase_ , range=(0, num_labels - 1) )[0] _UpperCamelCase : Optional[Any] = np.histogram(UpperCAmelCase_ , bins=UpperCAmelCase_ , range=(0, num_labels - 1) )[0] _UpperCamelCase : Optional[int] = np.histogram(UpperCAmelCase_ , bins=UpperCAmelCase_ , range=(0, num_labels - 1) )[0] _UpperCamelCase : Dict = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def lowerCamelCase_ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : bool , UpperCAmelCase_ : Optional[Dict[int, int]] = None , UpperCAmelCase_ : bool = False , ) -> Optional[int]: '''simple docstring''' _UpperCamelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) _UpperCamelCase : Dict = np.zeros((num_labels,) , dtype=np.floataa ) _UpperCamelCase : int = np.zeros((num_labels,) , dtype=np.floataa ) _UpperCamelCase : List[str] = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Union[str, Any] = intersect_and_union( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def lowerCamelCase_ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : bool , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[Dict[int, int]] = None , UpperCAmelCase_ : bool = False , ) -> Optional[int]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : int = total_intersect_and_union( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # compute metrics _UpperCamelCase : Dict = {} _UpperCamelCase : List[Any] = total_area_intersect.sum() / total_area_label.sum() _UpperCamelCase : Union[str, Any] = total_area_intersect / total_area_union _UpperCamelCase : str = total_area_intersect / total_area_label _UpperCamelCase : Union[str, Any] = np.nanmean(UpperCAmelCase_ ) _UpperCamelCase : int = np.nanmean(UpperCAmelCase_ ) _UpperCamelCase : List[str] = all_acc _UpperCamelCase : List[str] = iou _UpperCamelCase : Tuple = acc if nan_to_num is not None: _UpperCamelCase : Dict = {metric: np.nan_to_num(UpperCAmelCase_ , nan=UpperCAmelCase_ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): """simple docstring""" def A__ ( self): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { 'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16'))), 'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16'))), }) , reference_urls=[ 'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py' ] , ) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = None , __snake_case = None , __snake_case = False , ): _UpperCamelCase : str = mean_iou( results=__snake_case , gt_seg_maps=__snake_case , num_labels=__snake_case , ignore_index=__snake_case , nan_to_num=__snake_case , label_map=__snake_case , reduce_labels=__snake_case , ) return iou_result
648
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ = { """configuration_canine""": ["""CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CanineConfig"""], """tokenization_canine""": ["""CanineTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """CANINE_PRETRAINED_MODEL_ARCHIVE_LIST""", """CanineForMultipleChoice""", """CanineForQuestionAnswering""", """CanineForSequenceClassification""", """CanineForTokenClassification""", """CanineLayer""", """CanineModel""", """CaninePreTrainedModel""", """load_tf_weights_in_canine""", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
648
1
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
648
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case=3 , __snake_case=32 , __snake_case=3 , __snake_case=10 , __snake_case=[8, 16, 32, 64] , __snake_case=[1, 1, 2, 1] , __snake_case=True , __snake_case=True , __snake_case="relu" , __snake_case=3 , __snake_case=None , __snake_case=["stage2", "stage3", "stage4"] , __snake_case=[2, 3, 4] , __snake_case=1 , ): _UpperCamelCase : List[Any] = parent _UpperCamelCase : Dict = batch_size _UpperCamelCase : Optional[int] = image_size _UpperCamelCase : str = num_channels _UpperCamelCase : Optional[Any] = embeddings_size _UpperCamelCase : Tuple = hidden_sizes _UpperCamelCase : Dict = depths _UpperCamelCase : str = is_training _UpperCamelCase : Optional[int] = use_labels _UpperCamelCase : str = hidden_act _UpperCamelCase : Optional[int] = num_labels _UpperCamelCase : Optional[int] = scope _UpperCamelCase : Tuple = len(__snake_case) _UpperCamelCase : Dict = out_features _UpperCamelCase : Union[str, Any] = out_indices _UpperCamelCase : int = num_groups def A__ ( self): _UpperCamelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase : str = None if self.use_labels: _UpperCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels) _UpperCamelCase : str = self.get_config() return config, pixel_values, labels def A__ ( self): return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : str = BitModel(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[Any] = model(__snake_case) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Dict = self.num_labels _UpperCamelCase : Dict = BitForImageClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Dict = model(__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[Any] = BitBackbone(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = model(__snake_case) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:]) # verify backbone works with out_features=None _UpperCamelCase : Any = None _UpperCamelCase : str = BitBackbone(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Any = model(__snake_case) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , 1) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[-1], 1, 1]) # verify channels self.parent.assertEqual(len(model.channels) , 1) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]]) def A__ ( self): _UpperCamelCase : Optional[int] = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : int = config_and_inputs _UpperCamelCase : int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () a__ = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False a__ = False def A__ ( self): _UpperCamelCase : Dict = BitModelTester(self) _UpperCamelCase : Optional[Any] = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case) def A__ ( self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self): return @unittest.skip(reason='Bit does not output attentions') def A__ ( self): pass @unittest.skip(reason='Bit does not use inputs_embeds') def A__ ( self): pass @unittest.skip(reason='Bit does not support input and output embeddings') def A__ ( self): pass def A__ ( self): _UpperCamelCase , _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : int = model_class(__snake_case) _UpperCamelCase : List[Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : Optional[int] = [*signature.parameters.keys()] _UpperCamelCase : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __snake_case) def A__ ( self): _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case) def A__ ( self): _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__snake_case) def A__ ( self): _UpperCamelCase , _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Union[str, Any] = model_class(config=__snake_case) for name, module in model.named_modules(): if isinstance(__snake_case , (nn.BatchNormad, nn.GroupNorm)): self.assertTrue( torch.all(module.weight == 1) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def A__ ( self): def check_hidden_states_output(__snake_case , __snake_case , __snake_case): _UpperCamelCase : str = model_class(__snake_case) model.to(__snake_case) model.eval() with torch.no_grad(): _UpperCamelCase : Union[str, Any] = model(**self._prepare_for_class(__snake_case , __snake_case)) _UpperCamelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase : str = self.model_tester.num_stages self.assertEqual(len(__snake_case) , expected_num_stages + 1) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCamelCase , _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : List[str] = ['preactivation', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _UpperCamelCase : Any = layer_type _UpperCamelCase : Tuple = True check_hidden_states_output(__snake_case , __snake_case , __snake_case) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase : List[str] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case) @unittest.skip(reason='Bit does not use feedforward chunking') def A__ ( self): pass def A__ ( self): _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case) @slow def A__ ( self): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : Optional[Any] = BitModel.from_pretrained(__snake_case) self.assertIsNotNone(__snake_case) def lowerCamelCase_ ( ) -> Optional[int]: '''simple docstring''' _UpperCamelCase : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def A__ ( self): _UpperCamelCase : Optional[Any] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(__snake_case) _UpperCamelCase : str = self.default_image_processor _UpperCamelCase : List[str] = prepare_img() _UpperCamelCase : int = image_processor(images=__snake_case , return_tensors='pt').to(__snake_case) # forward pass with torch.no_grad(): _UpperCamelCase : Any = model(**__snake_case) # verify the logits _UpperCamelCase : Dict = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , __snake_case) _UpperCamelCase : Optional[int] = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]]).to(__snake_case) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1e-4)) @require_torch class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" a__ = (BitBackbone,) if is_torch_available() else () a__ = BitConfig a__ = False def A__ ( self): _UpperCamelCase : List[str] = BitModelTester(self)
648
1
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def lowerCamelCase_ ( UpperCAmelCase_ : str ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Optional[Any] = SwinConfig.from_pretrained( 'microsoft/swin-tiny-patch4-window7-224' , out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) _UpperCamelCase : int = MaskFormerConfig(backbone_config=UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = 'huggingface/label-files' if "ade20k-full" in model_name: # this should be ok _UpperCamelCase : Tuple = 8_4_7 _UpperCamelCase : int = 'maskformer-ade20k-full-id2label.json' elif "ade" in model_name: # this should be ok _UpperCamelCase : int = 1_5_0 _UpperCamelCase : str = 'ade20k-id2label.json' elif "coco-stuff" in model_name: # this should be ok _UpperCamelCase : List[Any] = 1_7_1 _UpperCamelCase : List[str] = 'maskformer-coco-stuff-id2label.json' elif "coco" in model_name: # TODO _UpperCamelCase : str = 1_3_3 _UpperCamelCase : Union[str, Any] = 'coco-panoptic-id2label.json' elif "cityscapes" in model_name: # this should be ok _UpperCamelCase : Dict = 1_9 _UpperCamelCase : Optional[Any] = 'cityscapes-id2label.json' elif "vistas" in model_name: # this should be ok _UpperCamelCase : int = 6_5 _UpperCamelCase : Optional[int] = 'mapillary-vistas-id2label.json' _UpperCamelCase : Union[str, Any] = json.load(open(hf_hub_download(UpperCAmelCase_ , UpperCAmelCase_ , repo_type='dataset' ) , 'r' ) ) _UpperCamelCase : List[str] = {int(UpperCAmelCase_ ): v for k, v in idalabel.items()} return config def lowerCamelCase_ ( UpperCAmelCase_ : str ) -> Dict: '''simple docstring''' _UpperCamelCase : Optional[int] = [] # stem # fmt: off rename_keys.append(('backbone.patch_embed.proj.weight', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.proj.bias', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'model.pixel_level_module.encoder.model.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'model.pixel_level_module.encoder.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.layers.{i}.downsample.reduction.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.layers.{i}.downsample.norm.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.layers.{i}.downsample.norm.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') ) # FPN rename_keys.append(('sem_seg_head.layer_4.weight', 'model.pixel_level_module.decoder.fpn.stem.0.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.weight', 'model.pixel_level_module.decoder.fpn.stem.1.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.bias', 'model.pixel_level_module.decoder.fpn.stem.1.bias') ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'''sem_seg_head.adapter_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') ) rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') ) rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') ) rename_keys.append(('sem_seg_head.mask_features.weight', 'model.pixel_level_module.decoder.mask_projection.weight') ) rename_keys.append(('sem_seg_head.mask_features.bias', 'model.pixel_level_module.decoder.mask_projection.bias') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') ) # cross-attention out projection rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') ) # MLP 1 rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') ) # MLP 2 rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') ) # layernorm 3 (final layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.weight', 'model.transformer_module.decoder.layernorm.weight') ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.bias', 'model.transformer_module.decoder.layernorm.bias') ) # heads on top rename_keys.append(('sem_seg_head.predictor.query_embed.weight', 'model.transformer_module.queries_embedder.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.weight', 'model.transformer_module.input_projection.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.bias', 'model.transformer_module.input_projection.bias') ) rename_keys.append(('sem_seg_head.predictor.class_embed.weight', 'class_predictor.weight') ) rename_keys.append(('sem_seg_head.predictor.class_embed.bias', 'class_predictor.bias') ) for i in range(3 ): rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', F'''mask_embedder.{i}.0.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', F'''mask_embedder.{i}.0.bias''') ) # fmt: on return rename_keys def lowerCamelCase_ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase : Optional[int] = dct.pop(UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = val def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict ) -> Dict: '''simple docstring''' _UpperCamelCase : Union[str, Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _UpperCamelCase : Optional[int] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _UpperCamelCase : Optional[int] = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' ) _UpperCamelCase : Union[str, Any] = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase : int = in_proj_weight[:dim, :] _UpperCamelCase : Union[str, Any] = in_proj_bias[: dim] _UpperCamelCase : Dict = in_proj_weight[ dim : dim * 2, : ] _UpperCamelCase : Union[str, Any] = in_proj_bias[ dim : dim * 2 ] _UpperCamelCase : Tuple = in_proj_weight[ -dim :, : ] _UpperCamelCase : Dict = in_proj_bias[-dim :] # fmt: on def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : str = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) _UpperCamelCase : Tuple = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' ) _UpperCamelCase : Any = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase : Tuple = in_proj_weight[: hidden_size, :] _UpperCamelCase : Union[str, Any] = in_proj_bias[:config.hidden_size] _UpperCamelCase : List[Any] = in_proj_weight[hidden_size : hidden_size * 2, :] _UpperCamelCase : int = in_proj_bias[hidden_size : hidden_size * 2] _UpperCamelCase : Any = in_proj_weight[-hidden_size :, :] _UpperCamelCase : int = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) _UpperCamelCase : Optional[Any] = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' ) _UpperCamelCase : Dict = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase : int = in_proj_weight[: hidden_size, :] _UpperCamelCase : int = in_proj_bias[:config.hidden_size] _UpperCamelCase : str = in_proj_weight[hidden_size : hidden_size * 2, :] _UpperCamelCase : Optional[int] = in_proj_bias[hidden_size : hidden_size * 2] _UpperCamelCase : Dict = in_proj_weight[-hidden_size :, :] _UpperCamelCase : Optional[Any] = in_proj_bias[-hidden_size :] # fmt: on def lowerCamelCase_ ( ) -> torch.Tensor: '''simple docstring''' _UpperCamelCase : Optional[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' _UpperCamelCase : Tuple = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ) return im @torch.no_grad() def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : bool = False ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Optional[int] = get_maskformer_config(UpperCAmelCase_ ) # load original state_dict with open(UpperCAmelCase_ , 'rb' ) as f: _UpperCamelCase : Dict = pickle.load(UpperCAmelCase_ ) _UpperCamelCase : Union[str, Any] = data['model'] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys _UpperCamelCase : Dict = create_rename_keys(UpperCAmelCase_ ) for src, dest in rename_keys: rename_key(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) read_in_swin_q_k_v(UpperCAmelCase_ , config.backbone_config ) read_in_decoder_q_k_v(UpperCAmelCase_ , UpperCAmelCase_ ) # update to torch tensors for key, value in state_dict.items(): _UpperCamelCase : List[Any] = torch.from_numpy(UpperCAmelCase_ ) # load 🤗 model _UpperCamelCase : str = MaskFormerForInstanceSegmentation(UpperCAmelCase_ ) model.eval() for name, param in model.named_parameters(): print(UpperCAmelCase_ , param.shape ) _UpperCamelCase , _UpperCamelCase : List[Any] = model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(UpperCAmelCase_ ) == 0, F'''Unexpected keys: {unexpected_keys}''' # verify results _UpperCamelCase : Optional[int] = prepare_img() if "vistas" in model_name: _UpperCamelCase : Union[str, Any] = 6_5 elif "cityscapes" in model_name: _UpperCamelCase : Union[str, Any] = 6_5_5_3_5 else: _UpperCamelCase : List[Any] = 2_5_5 _UpperCamelCase : Optional[Any] = True if 'ade' in model_name else False _UpperCamelCase : Any = MaskFormerImageProcessor(ignore_index=UpperCAmelCase_ , reduce_labels=UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = image_processor(UpperCAmelCase_ , return_tensors='pt' ) _UpperCamelCase : Optional[int] = model(**UpperCAmelCase_ ) print('Logits:' , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": _UpperCamelCase : Tuple = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase_ , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' ) Path(UpperCAmelCase_ ).mkdir(exist_ok=UpperCAmelCase_ ) model.save_pretrained(UpperCAmelCase_ ) image_processor.save_pretrained(UpperCAmelCase_ ) if push_to_hub: print('Pushing model and image processor to the hub...' ) model.push_to_hub(F'''nielsr/{model_name}''' ) image_processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCAmelCase__ = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
648
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowerCAmelCase__ = numpy.array([0, 0]) lowerCAmelCase__ = numpy.array([0.5, 0.8_66_02_54]) lowerCAmelCase__ = numpy.array([1, 0]) lowerCAmelCase__ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] , UpperCAmelCase_ : int ) -> list[numpy.ndarray]: '''simple docstring''' _UpperCamelCase : Tuple = initial_vectors for _ in range(UpperCAmelCase_ ): _UpperCamelCase : str = iteration_step(UpperCAmelCase_ ) return vectors def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] ) -> list[numpy.ndarray]: '''simple docstring''' _UpperCamelCase : int = [] for i, start_vector in enumerate(vectors[:-1] ): _UpperCamelCase : Union[str, Any] = vectors[i + 1] new_vectors.append(UpperCAmelCase_ ) _UpperCamelCase : Tuple = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def lowerCamelCase_ ( UpperCAmelCase_ : numpy.ndarray , UpperCAmelCase_ : float ) -> numpy.ndarray: '''simple docstring''' _UpperCamelCase : str = numpy.radians(UpperCAmelCase_ ) _UpperCamelCase , _UpperCamelCase : Optional[Any] = numpy.cos(UpperCAmelCase_ ), numpy.sin(UpperCAmelCase_ ) _UpperCamelCase : Any = numpy.array(((c, -s), (s, c)) ) return numpy.dot(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] ) -> None: '''simple docstring''' _UpperCamelCase : str = plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _UpperCamelCase , _UpperCamelCase : Dict = zip(*UpperCAmelCase_ ) plt.plot(UpperCAmelCase_ , UpperCAmelCase_ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
648
1
from dataclasses import dataclass, field from typing import Optional @dataclass class lowercase : """simple docstring""" a__ = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be trained."} ) a__ = field( default="./" , metadata={"help": "Save dir where model repo is cloned and models updates are saved to."} ) a__ = field( default="codeparrot/codeparrot-clean-train" , metadata={"help": "Name or path of training dataset."} ) a__ = field( default="codeparrot/codeparrot-clean-valid" , metadata={"help": "Name or path of validation dataset."} ) a__ = field(default=2 , metadata={"help": "Batch size for training."} ) a__ = field(default=2 , metadata={"help": "Batch size for evaluation."} ) a__ = field(default=0.1 , metadata={"help": "Value of weight decay."} ) a__ = field( default=1_0_0_0_0 , metadata={"help": "Size of buffer used to shuffle streaming dataset."} ) a__ = field(default=2e-4 , metadata={"help": "Learning rate fo training."} ) a__ = field(default="cosine" , metadata={"help": "Learning rate."} ) a__ = field( default=7_5_0 , metadata={"help": "Number of warmup steps in the learning rate schedule."} ) a__ = field( default=1_6 , metadata={"help": "Number of gradient accumulation steps."} ) a__ = field( default=_lowercase , metadata={"help": "Use gradient checkpointing to reduce memory footprint."} ) a__ = field(default=5_0_0_0_0 , metadata={"help": "Maximum number of training steps."} ) a__ = field( default=-1 , metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) a__ = field(default=1_0_2_4 , metadata={"help": "Sequence lengths used for training."} ) a__ = field(default=1 , metadata={"help": "Training seed."} ) a__ = field( default=1_0_2_4 , metadata={"help": "Interval to save checkpoints. Measured as number of forward passes not training steps."} , ) a__ = field( default=_lowercase , metadata={"help": "States path if the training should continue from a checkpoint folder."} ) a__ = field(default=_lowercase , metadata={"help": "If True the data is pretokenized."} ) @dataclass class lowercase : """simple docstring""" a__ = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be evaluated."} ) a__ = field( default="codeparrot/codeparrot-clean-valid" , metadata={"help": "Name or path of validation dataset."} ) a__ = field(default=2 , metadata={"help": "Batch size used for evaluation."} ) a__ = field( default=-1 , metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) a__ = field(default=1_0_2_4 , metadata={"help": "Length of sequences to be evaluated."} ) a__ = field(default=1 , metadata={"help": "Random seed used for evaluation."} ) @dataclass class lowercase : """simple docstring""" a__ = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be evaluated."} ) a__ = field(default=_lowercase , metadata={"help": "Number of workers used for code evaluation."} ) a__ = field( default=_lowercase , metadata={"help": "The number of human-eval tasks to run. If not included all tasks are evaluated."} , ) a__ = field( default=_lowercase , metadata={"help": "Sample from the language model's output distribution."} ) a__ = field(default=0.2 , metadata={"help": "Sampling temperature used for generation."} ) a__ = field(default=2_5_6 , metadata={"help": "Maximum number of newly generated tokens."} ) a__ = field(default=0 , metadata={"help": "Top-k parameter used for generation."} ) a__ = field(default=0.95 , metadata={"help": "Top-p parameter used for nucleus sampling."} ) a__ = field(default=1_0 , metadata={"help": "Number of generations to run in parallel."} ) a__ = field( default=2_0_0 , metadata={"help": "Number of completions to generate for each sample."} ) a__ = field(default=1 , metadata={"help": "Random seed used for evaluation."} ) a__ = field( default="eval_results.json" , metadata={"help": "Random seed used for evaluation."} ) a__ = field( default="0" , metadata={"help": "Allow `code_eval` to execute Python code on machine"} ) a__ = field( default=-1 , metadata={ "help": ( "Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive" " number corresponds to which GPU device id to run on." ) } , ) @dataclass class lowercase : """simple docstring""" a__ = field( default=_lowercase , metadata={ "help": "The number of CPU cores to use for parallel preprocessing. Default uses the maximum available." } , ) a__ = field( default="transformersbook/codeparrot" , metadata={"help": "Folder or name of dataset to process."} ) a__ = field( default="codeparrot-clean" , metadata={"help": "Folder to save processed processed dataset."} ) a__ = field( default=1_0_0_0_0_0 , metadata={"help": "Number of files to save per JSON output file."} ) a__ = field(default="content" , metadata={"help": "Column containing text data to process."} ) a__ = field( default=1_0_0_0 , metadata={"help": "Maximum line length in file, otherwise file is filtered."} ) a__ = field( default=1_0_0 , metadata={"help": "Maximum mean line length in file, otherwise file is filtered."} ) a__ = field( default=0.25 , metadata={"help": "Maximum fraction of non-alphanumeric characters, otherwise file is filtered."} ) a__ = field( default=1.5 , metadata={"help": "Minimum character token ratio for the file, otherwise file is filtered."} ) a__ = field( default=0.7 , metadata={"help": "Probability for filtering config, test and uncommon files."} ) a__ = field( default="codeparrot/codeparrot" , metadata={"help": "Name or path to the tokenizer."} , ) a__ = field( default=_lowercase , metadata={"help": "If True, near-duplicate samples are removed."} ) a__ = field( default=0.85 , metadata={"help": "Jaccard threshold for near-duplicate samples."} ) @dataclass class lowercase : """simple docstring""" a__ = field( default="gpt2" , metadata={"help": "Base tokenizer to build new tokenizer from."} ) a__ = field( default="transformersbook/codeparrot-train" , metadata={"help": "Dataset to train tokenizer on."} ) a__ = field(default="content" , metadata={"help": "Column containing text data to process."} ) a__ = field(default=2_0_0_0_0_0 , metadata={"help": "Number of examples to train tokenizer on."} ) a__ = field( default=3_2_7_6_8 , metadata={"help": "Number of examples to train the tokenizer on."} ) a__ = field(default="codeparrot" , metadata={"help": "Name of new tokenizer."} ) a__ = field(default=_lowercase , metadata={"help": "Push saved tokenizer to the hub."} ) @dataclass class lowercase : """simple docstring""" a__ = field( default="codeparrot/codeparrot" , metadata={"help": "Name or path to the tokenizer."} ) a__ = field( default="codeparrot/codeparrot-clean-train" , metadata={"help": "Name or path to the dataset to pretokenize."} ) a__ = field( default="tokenized-codeparrot-train" , metadata={"help": "Repo name of the pretokenized data."} ) a__ = field(default=_lowercase , metadata={"help": "Number of workers used for code evaluation."} ) @dataclass class lowercase : """simple docstring""" a__ = field( default="gpt2-large" , metadata={"help": "Configuration to use for model initialization."} ) a__ = field( default="codeparrot/codeparrot" , metadata={"help": "Tokenizer attached to model."} ) a__ = field(default="codeparrot" , metadata={"help": "Name of the created model."} ) a__ = field(default=_lowercase , metadata={"help": "Push saved tokenizer to the hub."} )
648
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCAmelCase__ = abspath(join(dirname(__file__), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def lowerCamelCase_ ( UpperCAmelCase_ : Any ) -> Union[str, Any]: '''simple docstring''' config.addinivalue_line( 'markers' , 'is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested' ) config.addinivalue_line( 'markers' , 'is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested' ) config.addinivalue_line('markers' , 'is_pipeline_test: mark test to run only when pipelines are tested' ) config.addinivalue_line('markers' , 'is_staging_test: mark test to run only in the staging environment' ) config.addinivalue_line('markers' , 'accelerate_tests: mark test that require accelerate' ) config.addinivalue_line('markers' , 'tool_tests: mark the tool tests that are run on their specific schedule' ) def lowerCamelCase_ ( UpperCAmelCase_ : Optional[int] ) -> List[Any]: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : Any ) -> List[Any]: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main _UpperCamelCase : str = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(UpperCAmelCase_ , id=UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict ) -> Tuple: '''simple docstring''' if exitstatus == 5: _UpperCamelCase : List[Any] = 0 # Doctest custom flag to ignore output. lowerCAmelCase__ = doctest.register_optionflag("""IGNORE_RESULT""") lowerCAmelCase__ = doctest.OutputChecker class lowercase ( _lowercase ): """simple docstring""" def A__ ( self , __snake_case , __snake_case , __snake_case): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , __snake_case , __snake_case , __snake_case) lowerCAmelCase__ = CustomOutputChecker lowerCAmelCase__ = HfDoctestModule lowerCAmelCase__ = HfDocTestParser
648
1
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowerCAmelCase__ = { """/attention/""": """/0/SelfAttention/""", """/self_attention/""": """/0/SelfAttention/""", """/encoder_decoder_attention/""": """/1/EncDecAttention/""", """value""": """v""", """query""": """q""", """key""": """k""", """out""": """o""", """pre_self_attention_layer_norm""": """0/layer_norm""", """pre_cross_attention_layer_norm""": """1/layer_norm""", """pre_attention_layer_norm""": """0/layer_norm""", # previously 1, but seems wrong """token_embedder""": """shared""", """encoder_norm""": """final_layer_norm""", """decoder_norm""": """final_layer_norm""", """relpos_bias/rel_embedding""": """block/0/layer/0/SelfAttention/relative_attention_bias/weight""", """router/router_weights/w/""": """router/classifier/""", """roer/roer_weights/w/""": """router/classifier/""", """logits_dense""": """lm_head""", } def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase : Union[str, Any] = list(s_dict.keys() ) for key in keys: _UpperCamelCase : Optional[int] = R'.*/layers_(\d+)' _UpperCamelCase : int = key if re.match(UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : List[str] = re.sub(R'layers_(\d+)' , R'block/\1/layer' , UpperCAmelCase_ ) _UpperCamelCase : Tuple = R'(encoder|decoder)\/' if re.match(UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Optional[Any] = re.match(UpperCAmelCase_ , UpperCAmelCase_ ).groups() if groups[0] == "encoder": _UpperCamelCase : Tuple = re.sub(R'/mlp/' , R'/1/mlp/' , UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = re.sub(R'/pre_mlp_layer_norm/' , R'/1/layer_norm/' , UpperCAmelCase_ ) elif groups[0] == "decoder": _UpperCamelCase : int = re.sub(R'/mlp/' , R'/2/mlp/' , UpperCAmelCase_ ) _UpperCamelCase : Union[str, Any] = re.sub(R'/pre_mlp_layer_norm/' , R'/2/layer_norm/' , UpperCAmelCase_ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: _UpperCamelCase : Optional[int] = new_key.replace(UpperCAmelCase_ , UpperCAmelCase_ ) print(F'''{key} -> {new_key}''' ) _UpperCamelCase : Union[str, Any] = s_dict.pop(UpperCAmelCase_ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _UpperCamelCase : Optional[Any] = s_dict[ 'encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _UpperCamelCase : Any = s_dict[ 'decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: _UpperCamelCase : Any = s_dict[key].shape[0] _UpperCamelCase : Union[str, Any] = s_dict[key] for idx in range(UpperCAmelCase_ ): _UpperCamelCase : Any = expert_weihts[idx] print(F'''{key} -> {key.replace("expert/" , "nested fstring" )}''' ) s_dict.pop(UpperCAmelCase_ ) return s_dict lowerCAmelCase__ = { """NUM_ENCODER_LAYERS""": """num_layers""", """NUM_DECODER_LAYERS""": """num_decoder_layers""", """NUM_HEADS""": """num_heads""", """HEAD_DIM""": """d_kv""", """EMBED_DIM""": """d_model""", """MLP_DIM""": """d_ff""", """NUM_SELECTED_EXPERTS""": """num_selected_experts""", """NUM_ENCODER_SPARSE_LAYERS""": """num_sparse_encoder_layers""", """NUM_DECODER_SPARSE_LAYERS""": """num_sparse_decoder_layers""", """dense.MlpBlock.activations""": """feed_forward_proj""", } def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict ) -> List[str]: '''simple docstring''' import regex as re with open(UpperCAmelCase_ , 'r' ) as f: _UpperCamelCase : str = f.read() _UpperCamelCase : Optional[int] = re.findall(R'(.*) = ([0-9.]*)' , UpperCAmelCase_ ) _UpperCamelCase : int = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": _UpperCamelCase : List[Any] = float(UpperCAmelCase_ ) if '.' in value else int(UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = re.findall(R'(.*activations) = \(\'(.*)\',\)' , UpperCAmelCase_ )[0] _UpperCamelCase : Union[str, Any] = str(activation[1] ) _UpperCamelCase : Any = num_experts _UpperCamelCase : Optional[Any] = SwitchTransformersConfig(**UpperCAmelCase_ ) return config def lowerCamelCase_ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Dict="./" , UpperCAmelCase_ : Optional[int]=8 ) -> Optional[int]: '''simple docstring''' print(F'''Loading flax weights from : {flax_checkpoint_path}''' ) _UpperCamelCase : Tuple = checkpoints.load_tax_checkpoint(UpperCAmelCase_ ) if gin_file is not None: _UpperCamelCase : str = convert_gin_to_config(UpperCAmelCase_ , UpperCAmelCase_ ) else: _UpperCamelCase : Optional[Any] = SwitchTransformersConfig.from_pretrained(UpperCAmelCase_ ) _UpperCamelCase : Union[str, Any] = SwitchTransformersForConditionalGeneration(UpperCAmelCase_ ) _UpperCamelCase : Dict = flax_params['target'] _UpperCamelCase : str = flatten_dict(UpperCAmelCase_ , sep='/' ) _UpperCamelCase : Dict = rename_keys(UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = unflatten_dict(UpperCAmelCase_ , sep='/' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(UpperCAmelCase_ , UpperCAmelCase_ ) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) pt_model.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the""" """ model architecture. If not provided, a `gin_file` has to be provided.""" ), ) parser.add_argument( """--gin_file""", default=None, type=str, required=False, help="""Path to the gin config file. If not provided, a `config_file` has to be passed """, ) parser.add_argument( """--config_name""", default=None, type=str, required=False, help="""Config name of SwitchTransformers model.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output pytorch model.""" ) parser.add_argument("""--num_experts""", default=8, type=int, required=False, help="""Number of experts""") lowerCAmelCase__ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
648
lowerCAmelCase__ = range(2, 2_0 + 1) lowerCAmelCase__ = [1_0**k for k in range(ks[-1] + 1)] lowerCAmelCase__ = {} def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int ) -> Tuple: '''simple docstring''' _UpperCamelCase : Dict = sum(a_i[j] for j in range(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) ) _UpperCamelCase : Optional[int] = sum(a_i[j] * base[j] for j in range(min(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) ) ) _UpperCamelCase , _UpperCamelCase : Dict = 0, 0 _UpperCamelCase : Optional[int] = n - i _UpperCamelCase : Union[str, Any] = memo.get(UpperCAmelCase_ ) if sub_memo is not None: _UpperCamelCase : str = sub_memo.get(UpperCAmelCase_ ) if jumps is not None and len(UpperCAmelCase_ ) > 0: # find and make the largest jump without going over _UpperCamelCase : str = -1 for _k in range(len(UpperCAmelCase_ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _UpperCamelCase : Optional[Any] = _k break if max_jump >= 0: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = jumps[max_jump] # since the difference between jumps is cached, add c _UpperCamelCase : Tuple = diff + c for j in range(min(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) ): _UpperCamelCase , _UpperCamelCase : Dict = divmod(UpperCAmelCase_ , 1_0 ) if new_c > 0: add(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) else: _UpperCamelCase : Union[str, Any] = [] else: _UpperCamelCase : List[Any] = {c: []} _UpperCamelCase : Optional[int] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _UpperCamelCase , _UpperCamelCase : Optional[Any] = next_term(UpperCAmelCase_ , k - 1 , i + dn , UpperCAmelCase_ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _UpperCamelCase , _UpperCamelCase : Any = compute(UpperCAmelCase_ , UpperCAmelCase_ , i + dn , UpperCAmelCase_ ) diff += _diff dn += terms_jumped _UpperCamelCase : List[str] = sub_memo[c] # keep jumps sorted by # of terms skipped _UpperCamelCase : Union[str, Any] = 0 while j < len(UpperCAmelCase_ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCAmelCase_ , (diff, dn, k) ) return (diff, dn) def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any ) -> Dict: '''simple docstring''' if i >= n: return 0, i if k > len(UpperCAmelCase_ ): a_i.extend([0 for _ in range(k - len(UpperCAmelCase_ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _UpperCamelCase : Any = i _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Any = 0, 0, 0 for j in range(len(UpperCAmelCase_ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _UpperCamelCase : Union[str, Any] = ds_c + ds_b diff += addend _UpperCamelCase : Union[str, Any] = 0 for j in range(UpperCAmelCase_ ): _UpperCamelCase : Union[str, Any] = a_i[j] + addend _UpperCamelCase , _UpperCamelCase : Any = divmod(UpperCAmelCase_ , 1_0 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return diff, i - start_i def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any ) -> Dict: '''simple docstring''' for j in range(UpperCAmelCase_ , len(UpperCAmelCase_ ) ): _UpperCamelCase : List[str] = digits[j] + addend if s >= 1_0: _UpperCamelCase , _UpperCamelCase : Any = divmod(UpperCAmelCase_ , 1_0 ) _UpperCamelCase : Union[str, Any] = addend // 1_0 + quotient else: _UpperCamelCase : Dict = s _UpperCamelCase : Optional[Any] = addend // 1_0 if addend == 0: break while addend > 0: _UpperCamelCase , _UpperCamelCase : Dict = divmod(UpperCAmelCase_ , 1_0 ) digits.append(UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : int = 1_0**1_5 ) -> int: '''simple docstring''' _UpperCamelCase : Optional[Any] = [1] _UpperCamelCase : Optional[int] = 1 _UpperCamelCase : int = 0 while True: _UpperCamelCase , _UpperCamelCase : List[Any] = next_term(UpperCAmelCase_ , 2_0 , i + dn , UpperCAmelCase_ ) dn += terms_jumped if dn == n - i: break _UpperCamelCase : str = 0 for j in range(len(UpperCAmelCase_ ) ): a_n += digits[j] * 1_0**j return a_n if __name__ == "__main__": print(f'{solution() = }')
648
1
def lowerCamelCase_ ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int ) -> bool: '''simple docstring''' _UpperCamelCase : List[Any] = len(UpperCAmelCase_ ) _UpperCamelCase : List[Any] = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): _UpperCamelCase : str = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): _UpperCamelCase : int = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: _UpperCamelCase : Any = subset[i - 1][j] if arr[i - 1] <= j: _UpperCamelCase : Tuple = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
648
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowercase ( _lowercase ): """simple docstring""" a__ = "vit_mae" def __init__( self , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=2_24 , __snake_case=16 , __snake_case=3 , __snake_case=True , __snake_case=16 , __snake_case=5_12 , __snake_case=8 , __snake_case=20_48 , __snake_case=0.7_5 , __snake_case=False , **__snake_case , ): super().__init__(**__snake_case) _UpperCamelCase : Optional[int] = hidden_size _UpperCamelCase : Optional[int] = num_hidden_layers _UpperCamelCase : Tuple = num_attention_heads _UpperCamelCase : List[str] = intermediate_size _UpperCamelCase : str = hidden_act _UpperCamelCase : List[str] = hidden_dropout_prob _UpperCamelCase : List[Any] = attention_probs_dropout_prob _UpperCamelCase : str = initializer_range _UpperCamelCase : Any = layer_norm_eps _UpperCamelCase : int = image_size _UpperCamelCase : Any = patch_size _UpperCamelCase : List[Any] = num_channels _UpperCamelCase : Union[str, Any] = qkv_bias _UpperCamelCase : str = decoder_num_attention_heads _UpperCamelCase : Union[str, Any] = decoder_hidden_size _UpperCamelCase : Union[str, Any] = decoder_num_hidden_layers _UpperCamelCase : Any = decoder_intermediate_size _UpperCamelCase : int = mask_ratio _UpperCamelCase : List[Any] = norm_pix_loss
648
1
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer lowerCAmelCase__ = ["""bert-base-uncased""", """bert-base-cased"""] lowerCAmelCase__ = """hf-internal-testing/tiny-bert-tf-only""" if is_tf_available(): class lowercase ( tf.keras.Model ): """simple docstring""" def __init__( self , __snake_case): super().__init__() _UpperCamelCase : List[Any] = tokenizer _UpperCamelCase : List[Any] = AutoConfig.from_pretrained(__snake_case) _UpperCamelCase : Dict = TFAutoModel.from_config(__snake_case) def A__ ( self , __snake_case): _UpperCamelCase : Any = self.tokenizer(__snake_case) _UpperCamelCase : Dict = self.bert(**__snake_case) return out["pooler_output"] @require_tf @require_tensorflow_text class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self): super().setUp() _UpperCamelCase : Optional[Any] = [ BertTokenizer.from_pretrained(__snake_case) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false _UpperCamelCase : Optional[Any] = [TFBertTokenizer.from_pretrained(__snake_case) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(__snake_case , use_fast_bert_tokenizer=__snake_case) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers) == len(self.tf_tokenizers) _UpperCamelCase : Optional[Any] = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] _UpperCamelCase : Dict = list(zip(self.test_sentences , self.test_sentences[::-1])) def A__ ( self): for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers): for test_inputs in (self.test_sentences, self.paired_sentences): _UpperCamelCase : List[str] = tokenizer(__snake_case , return_tensors='tf' , padding='longest') _UpperCamelCase : Tuple = tf_tokenizer(__snake_case) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape)) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa) == tf_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Tuple = tf_tokenizer(self.paired_sentences) _UpperCamelCase : Optional[Any] = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa) == separated_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Tuple = tf.function(__snake_case) for test_inputs in (self.test_sentences, self.paired_sentences): _UpperCamelCase : Optional[int] = tf.constant(__snake_case) _UpperCamelCase : Union[str, Any] = compiled_tokenizer(__snake_case) _UpperCamelCase : Tuple = tf_tokenizer(__snake_case) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Any = ModelToSave(tokenizer=__snake_case) _UpperCamelCase : Any = tf.convert_to_tensor(self.test_sentences) _UpperCamelCase : Union[str, Any] = model(__snake_case) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _UpperCamelCase : int = Path(__snake_case) / 'saved.model' model.save(__snake_case) _UpperCamelCase : Optional[int] = tf.keras.models.load_model(__snake_case) _UpperCamelCase : int = loaded_model(__snake_case) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output)) , 1e-5)
648
import functools def lowerCamelCase_ ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int] ) -> int: '''simple docstring''' if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or not all(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(UpperCAmelCase_ ) != 3 or not all(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(UpperCAmelCase_ ) == 0: return 0 if min(UpperCAmelCase_ ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(UpperCAmelCase_ ) >= 3_6_6: raise ValueError('All days elements should be less than 366' ) _UpperCamelCase : Union[str, Any] = set(UpperCAmelCase_ ) @functools.cache def dynamic_programming(UpperCAmelCase_ : int ) -> int: if index > 3_6_5: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 3_0 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
648
1
import itertools import string from collections.abc import Generator, Iterable def lowerCamelCase_ ( UpperCAmelCase_ : Iterable[str] , UpperCAmelCase_ : int ) -> Generator[tuple[str, ...], None, None]: '''simple docstring''' _UpperCamelCase : List[str] = iter(UpperCAmelCase_ ) while True: _UpperCamelCase : Tuple = tuple(itertools.islice(UpperCAmelCase_ , UpperCAmelCase_ ) ) if not chunk: return yield chunk def lowerCamelCase_ ( UpperCAmelCase_ : str ) -> str: '''simple docstring''' _UpperCamelCase : Dict = ''.join([c.upper() for c in dirty if c in string.ascii_letters] ) _UpperCamelCase : Any = '' if len(UpperCAmelCase_ ) < 2: return dirty for i in range(len(UpperCAmelCase_ ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(UpperCAmelCase_ ) & 1: clean += "X" return clean def lowerCamelCase_ ( UpperCAmelCase_ : str ) -> list[str]: '''simple docstring''' _UpperCamelCase : Tuple = 'ABCDEFGHIKLMNOPQRSTUVWXYZ' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler _UpperCamelCase : Optional[int] = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(UpperCAmelCase_ ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(UpperCAmelCase_ ) return table def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ) -> str: '''simple docstring''' _UpperCamelCase : str = generate_table(UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = prepare_input(UpperCAmelCase_ ) _UpperCamelCase : List[Any] = '' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(UpperCAmelCase_ , 2 ): _UpperCamelCase , _UpperCamelCase : str = divmod(table.index(UpperCAmelCase_ ) , 5 ) _UpperCamelCase , _UpperCamelCase : Union[str, Any] = divmod(table.index(UpperCAmelCase_ ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ) -> str: '''simple docstring''' _UpperCamelCase : Any = generate_table(UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = '' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(UpperCAmelCase_ , 2 ): _UpperCamelCase , _UpperCamelCase : Union[str, Any] = divmod(table.index(UpperCAmelCase_ ) , 5 ) _UpperCamelCase , _UpperCamelCase : List[str] = divmod(table.index(UpperCAmelCase_ ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
648
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=99 , __snake_case=64 , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=37 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=16 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=3 , __snake_case=4 , __snake_case=None , ): _UpperCamelCase : List[Any] = parent _UpperCamelCase : Optional[Any] = batch_size _UpperCamelCase : int = seq_length _UpperCamelCase : str = is_training _UpperCamelCase : Tuple = use_input_mask _UpperCamelCase : Union[str, Any] = use_token_type_ids _UpperCamelCase : Union[str, Any] = use_labels _UpperCamelCase : Optional[Any] = vocab_size _UpperCamelCase : List[Any] = hidden_size _UpperCamelCase : Optional[Any] = embedding_size _UpperCamelCase : str = num_hidden_layers _UpperCamelCase : str = num_attention_heads _UpperCamelCase : int = intermediate_size _UpperCamelCase : int = hidden_act _UpperCamelCase : Tuple = hidden_dropout_prob _UpperCamelCase : int = attention_probs_dropout_prob _UpperCamelCase : Tuple = max_position_embeddings _UpperCamelCase : List[str] = type_vocab_size _UpperCamelCase : Dict = type_sequence_label_size _UpperCamelCase : List[str] = initializer_range _UpperCamelCase : Optional[Any] = num_labels _UpperCamelCase : Tuple = num_choices _UpperCamelCase : List[str] = scope def A__ ( self): _UpperCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase : Any = None if self.use_input_mask: _UpperCamelCase : int = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase : Optional[Any] = None if self.use_token_type_ids: _UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase : int = None _UpperCamelCase : List[str] = None _UpperCamelCase : Dict = None if self.use_labels: _UpperCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self): return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : List[str] = MegatronBertModel(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case) _UpperCamelCase : Dict = model(__snake_case , token_type_ids=__snake_case) _UpperCamelCase : Optional[Any] = model(__snake_case) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : int = MegatronBertForMaskedLM(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Dict = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : str = MegatronBertForCausalLM(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Tuple = MegatronBertForNextSentencePrediction(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[Any] = MegatronBertForPreTraining(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[str] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , next_sentence_label=__snake_case , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : int = MegatronBertForQuestionAnswering(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[int] = self.num_labels _UpperCamelCase : Union[str, Any] = MegatronBertForSequenceClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Any = self.num_labels _UpperCamelCase : Optional[int] = MegatronBertForTokenClassification(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Tuple = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : List[str] = self.num_choices _UpperCamelCase : Optional[int] = MegatronBertForMultipleChoice(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : List[Any] = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : Optional[Any] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : Union[str, Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def A__ ( self): _UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) : Optional[int] = config_and_inputs _UpperCamelCase : int = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) a__ = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) a__ = True # test_resize_embeddings = False a__ = False def A__ ( self , __snake_case , __snake_case , __snake_case=False): _UpperCamelCase : str = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case) if return_labels: if model_class in get_values(__snake_case): _UpperCamelCase : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__snake_case) _UpperCamelCase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case) return inputs_dict def A__ ( self): _UpperCamelCase : Any = MegatronBertModelTester(self) _UpperCamelCase : int = ConfigTester(self , config_class=__snake_case , hidden_size=37) def A__ ( self): self.config_tester.run_common_tests() def A__ ( self): _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__snake_case) def A__ ( self): _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__snake_case) def A__ ( self): _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__snake_case) def A__ ( self): _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__snake_case) def A__ ( self): _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__snake_case) def A__ ( self): _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__snake_case) def A__ ( self): _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__snake_case) def A__ ( self): _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__snake_case) def lowerCamelCase_ ( UpperCAmelCase_ : str ) -> Optional[Any]: '''simple docstring''' return torch.tensor( UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ , ) lowerCAmelCase__ = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip('Model is not available.') def A__ ( self): _UpperCamelCase : int = 'nvidia/megatron-bert-uncased-345m' if "MYDIR" in os.environ: _UpperCamelCase : int = os.path.join(os.environ['MYDIR'] , __snake_case) _UpperCamelCase : Optional[int] = MegatronBertModel.from_pretrained(__snake_case) model.to(__snake_case) model.half() _UpperCamelCase : Optional[Any] = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]]) with torch.no_grad(): _UpperCamelCase : str = model(__snake_case)[0] _UpperCamelCase : Optional[int] = torch.Size((1, 9, 10_24)) self.assertEqual(output.shape , __snake_case) _UpperCamelCase : Union[str, Any] = [-0.6_0_4_0, -0.2_5_1_7, -0.1_0_2_5, 0.3_4_2_0, -0.6_7_5_8, -0.0_0_1_7, -0.1_0_8_9, -0.1_9_9_0, 0.5_7_2_8] for ii in range(3): for jj in range(3): _UpperCamelCase : Optional[Any] = output[0, ii, jj] _UpperCamelCase : Dict = expected[3 * ii + jj] _UpperCamelCase : Optional[int] = 'ii={} jj={} a={} b={}'.format(__snake_case , __snake_case , __snake_case , __snake_case) self.assertTrue(math.isclose(__snake_case , __snake_case , rel_tol=__snake_case , abs_tol=__snake_case) , msg=__snake_case)
648
1
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : float | Decimal , UpperCAmelCase_ : float = 1_0**-1_0 ) -> float: '''simple docstring''' _UpperCamelCase : Optional[Any] = a while True: _UpperCamelCase : Optional[Any] = Decimal(UpperCAmelCase_ ) - ( Decimal(eval(UpperCAmelCase_ ) ) / Decimal(eval(str(diff(UpperCAmelCase_ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(UpperCAmelCase_ ) ) < precision: # noqa: S307 return float(UpperCAmelCase_ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial print(f'The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}') # Find Square Root of 5 print(f'The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}') # Exponential Roots print(f'The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}')
648
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = """▁""" lowerCAmelCase__ = {"""vocab_file""": """sentencepiece.bpe.model"""} lowerCAmelCase__ = { """vocab_file""": { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model""" ), } } lowerCAmelCase__ = { """xlm-roberta-base""": 5_1_2, """xlm-roberta-large""": 5_1_2, """xlm-roberta-large-finetuned-conll02-dutch""": 5_1_2, """xlm-roberta-large-finetuned-conll02-spanish""": 5_1_2, """xlm-roberta-large-finetuned-conll03-english""": 5_1_2, """xlm-roberta-large-finetuned-conll03-german""": 5_1_2, } class lowercase ( _lowercase ): """simple docstring""" a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = ["input_ids", "attention_mask"] def __init__( self , __snake_case , __snake_case="<s>" , __snake_case="</s>" , __snake_case="</s>" , __snake_case="<s>" , __snake_case="<unk>" , __snake_case="<pad>" , __snake_case="<mask>" , __snake_case = None , **__snake_case , ): # Mask token behave like a normal word, i.e. include the space before it _UpperCamelCase : Dict = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case) if isinstance(__snake_case , __snake_case) else mask_token _UpperCamelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) _UpperCamelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(__snake_case)) _UpperCamelCase : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _UpperCamelCase : int = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _UpperCamelCase : List[Any] = 1 _UpperCamelCase : Any = len(self.sp_model) + self.fairseq_offset _UpperCamelCase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self): _UpperCamelCase : List[Any] = self.__dict__.copy() _UpperCamelCase : Optional[Any] = None _UpperCamelCase : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self , __snake_case): _UpperCamelCase : int = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): _UpperCamelCase : Tuple = {} _UpperCamelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) def A__ ( self , __snake_case , __snake_case = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCamelCase : Tuple = [self.cls_token_id] _UpperCamelCase : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self , __snake_case , __snake_case = None , __snake_case = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case) if token_ids_a is None: return [1] + ([0] * len(__snake_case)) + [1] return [1] + ([0] * len(__snake_case)) + [1, 1] + ([0] * len(__snake_case)) + [1] def A__ ( self , __snake_case , __snake_case = None): _UpperCamelCase : Optional[Any] = [self.sep_token_id] _UpperCamelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def A__ ( self): return len(self.sp_model) + self.fairseq_offset + 1 # Add the <mask> token def A__ ( self): _UpperCamelCase : List[str] = {self.convert_ids_to_tokens(__snake_case): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def A__ ( self , __snake_case): return self.sp_model.encode(__snake_case , out_type=__snake_case) def A__ ( self , __snake_case): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCamelCase : str = self.sp_model.PieceToId(__snake_case) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A__ ( self , __snake_case): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def A__ ( self , __snake_case): _UpperCamelCase : Optional[int] = ''.join(__snake_case).replace(__snake_case , ' ').strip() return out_string def A__ ( self , __snake_case , __snake_case = None): if not os.path.isdir(__snake_case): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return _UpperCamelCase : str = os.path.join( __snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(__snake_case) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , __snake_case) elif not os.path.isfile(self.vocab_file): with open(__snake_case , 'wb') as fi: _UpperCamelCase : Any = self.sp_model.serialized_model_proto() fi.write(__snake_case) return (out_vocab_file,)
648
1
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class lowercase ( _lowercase ): """simple docstring""" def __init__( self , *__snake_case , **__snake_case): warnings.warn( 'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PoolFormerImageProcessor instead.' , __snake_case , ) super().__init__(*__snake_case , **__snake_case)
648
from ...processing_utils import ProcessorMixin class lowercase ( _lowercase ): """simple docstring""" a__ = ["image_processor", "feature_extractor"] a__ = "TvltImageProcessor" a__ = "TvltFeatureExtractor" def __init__( self , __snake_case , __snake_case): super().__init__(image_processor=__snake_case , feature_extractor=__snake_case) _UpperCamelCase : List[str] = image_processor _UpperCamelCase : Dict = feature_extractor def __call__( self , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=False , __snake_case=False , *__snake_case , **__snake_case , ): if images is None and audio is None: raise ValueError('You need to specify either an `images` or `audio` input to process.') _UpperCamelCase : Union[str, Any] = None if images is not None: _UpperCamelCase : Tuple = self.image_processor(__snake_case , mask_pixel=__snake_case , *__snake_case , **__snake_case) if images_mixed is not None: _UpperCamelCase : Union[str, Any] = self.image_processor(__snake_case , is_mixed=__snake_case , *__snake_case , **__snake_case) if audio is not None: _UpperCamelCase : Tuple = self.feature_extractor( __snake_case , *__snake_case , sampling_rate=__snake_case , mask_audio=__snake_case , **__snake_case) _UpperCamelCase : Tuple = {} if audio is not None: output_dict.update(__snake_case) if images is not None: output_dict.update(__snake_case) if images_mixed_dict is not None: output_dict.update(__snake_case) return output_dict @property def A__ ( self): _UpperCamelCase : List[Any] = self.image_processor.model_input_names _UpperCamelCase : List[Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
648
1
lowerCAmelCase__ = [ [0, 1_6, 1_3, 0, 0, 0], [0, 0, 1_0, 1_2, 0, 0], [0, 4, 0, 0, 1_4, 0], [0, 0, 9, 0, 0, 2_0], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any ) -> List[Any]: '''simple docstring''' _UpperCamelCase : List[Any] = [False] * len(UpperCAmelCase_ ) _UpperCamelCase : str = [s] _UpperCamelCase : int = True while queue: _UpperCamelCase : Any = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = True _UpperCamelCase : List[str] = u return visited[t] def lowerCamelCase_ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict ) -> str: '''simple docstring''' _UpperCamelCase : Union[str, Any] = [-1] * (len(UpperCAmelCase_ )) _UpperCamelCase : Union[str, Any] = 0 _UpperCamelCase : Optional[int] = [] _UpperCamelCase : Union[str, Any] = [i[:] for i in graph] # Record original cut, copy. while bfs(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Any = float('Inf' ) _UpperCamelCase : Tuple = sink while s != source: # Find the minimum value in select path _UpperCamelCase : Optional[Any] = min(UpperCAmelCase_ , graph[parent[s]][s] ) _UpperCamelCase : Tuple = parent[s] max_flow += path_flow _UpperCamelCase : Optional[Any] = sink while v != source: _UpperCamelCase : Dict = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _UpperCamelCase : List[str] = parent[v] for i in range(len(UpperCAmelCase_ ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
648
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class lowercase ( _lowercase ): """simple docstring""" a__ = "rwkv" a__ = {"max_position_embeddings": "context_length"} def __init__( self , __snake_case=5_02_77 , __snake_case=10_24 , __snake_case=40_96 , __snake_case=32 , __snake_case=None , __snake_case=None , __snake_case=1e-5 , __snake_case=0 , __snake_case=0 , __snake_case=6 , __snake_case=False , __snake_case=True , **__snake_case , ): _UpperCamelCase : str = vocab_size _UpperCamelCase : int = context_length _UpperCamelCase : Tuple = hidden_size _UpperCamelCase : Tuple = num_hidden_layers _UpperCamelCase : Dict = attention_hidden_size if attention_hidden_size is not None else hidden_size _UpperCamelCase : Tuple = intermediate_size if intermediate_size is not None else 4 * hidden_size _UpperCamelCase : Union[str, Any] = layer_norm_epsilon _UpperCamelCase : Dict = rescale_every _UpperCamelCase : Optional[Any] = use_cache _UpperCamelCase : str = bos_token_id _UpperCamelCase : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case)
648
1
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class lowercase ( _lowercase ): """simple docstring""" def __lt__( self , __snake_case): return self[-1] < other[-1] def __eq__( self , __snake_case): return self[-1] == other[-1] def lowerCamelCase_ ( UpperCAmelCase_ : list ) -> list: '''simple docstring''' _UpperCamelCase : list[Stack] = [] # sort into stacks for element in collection: _UpperCamelCase : Any = Stack([element] ) _UpperCamelCase : Optional[int] = bisect_left(UpperCAmelCase_ , UpperCAmelCase_ ) if i != len(UpperCAmelCase_ ): stacks[i].append(UpperCAmelCase_ ) else: stacks.append(UpperCAmelCase_ ) # use a heap-based merge to merge stack efficiently _UpperCamelCase : str = merge(*(reversed(UpperCAmelCase_ ) for stack in stacks) ) return collection if __name__ == "__main__": lowerCAmelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCAmelCase__ = [int(item) for item in user_input.split(""",""")] print(patience_sort(unsorted))
648
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class lowercase ( _lowercase ): """simple docstring""" a__ = "bert" def __init__( self , __snake_case=3_05_22 , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=0 , __snake_case="absolute" , __snake_case=True , __snake_case=None , **__snake_case , ): super().__init__(pad_token_id=__snake_case , **__snake_case) _UpperCamelCase : int = vocab_size _UpperCamelCase : Optional[Any] = hidden_size _UpperCamelCase : Optional[Any] = num_hidden_layers _UpperCamelCase : List[str] = num_attention_heads _UpperCamelCase : int = hidden_act _UpperCamelCase : Optional[Any] = intermediate_size _UpperCamelCase : Union[str, Any] = hidden_dropout_prob _UpperCamelCase : Tuple = attention_probs_dropout_prob _UpperCamelCase : Optional[int] = max_position_embeddings _UpperCamelCase : str = type_vocab_size _UpperCamelCase : Optional[Any] = initializer_range _UpperCamelCase : List[str] = layer_norm_eps _UpperCamelCase : Any = position_embedding_type _UpperCamelCase : Any = use_cache _UpperCamelCase : Any = classifier_dropout class lowercase ( _lowercase ): """simple docstring""" @property def A__ ( self): if self.task == "multiple-choice": _UpperCamelCase : Union[str, Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCamelCase : Optional[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ])
648
1
import enum import shutil import sys lowerCAmelCase__ , lowerCAmelCase__ = shutil.get_terminal_size() lowerCAmelCase__ = {"""UP""": """A""", """DOWN""": """B""", """RIGHT""": """C""", """LEFT""": """D"""} class lowercase ( enum.Enum ): """simple docstring""" a__ = 0 a__ = 1 def lowerCamelCase_ ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple="" ) -> Union[str, Any]: '''simple docstring''' sys.stdout.write(str(UpperCAmelCase_ ) + end ) sys.stdout.flush() def lowerCamelCase_ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple="" ) -> Any: '''simple docstring''' forceWrite(F'''\u001b[{color}m{content}\u001b[0m''' , UpperCAmelCase_ ) def lowerCamelCase_ ( ) -> Tuple: '''simple docstring''' forceWrite('\r' ) def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : str ) -> List[str]: '''simple docstring''' forceWrite(F'''\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}''' ) def lowerCamelCase_ ( ) -> Tuple: '''simple docstring''' forceWrite(' ' * TERMINAL_WIDTH ) reset_cursor() def lowerCamelCase_ ( ) -> Union[str, Any]: '''simple docstring''' reset_cursor() forceWrite('-' * TERMINAL_WIDTH )
648
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowercase ( _lowercase ): """simple docstring""" a__ = "facebook/bart-large-mnli" a__ = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) a__ = "text_classifier" a__ = AutoTokenizer a__ = AutoModelForSequenceClassification a__ = ["text", ["text"]] a__ = ["text"] def A__ ( self): super().setup() _UpperCamelCase : List[Any] = self.model.config _UpperCamelCase : Optional[int] = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail'): _UpperCamelCase : Tuple = int(__snake_case) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.') def A__ ( self , __snake_case , __snake_case): _UpperCamelCase : List[Any] = labels return self.pre_processor( [text] * len(__snake_case) , [f'''This example is {label}''' for label in labels] , return_tensors='pt' , padding='max_length' , ) def A__ ( self , __snake_case): _UpperCamelCase : str = outputs.logits _UpperCamelCase : Optional[Any] = torch.argmax(logits[:, 2]).item() return self._labels[label_id]
648
1
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowerCAmelCase__ = numpy.array([0, 0]) lowerCAmelCase__ = numpy.array([0.5, 0.8_66_02_54]) lowerCAmelCase__ = numpy.array([1, 0]) lowerCAmelCase__ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] , UpperCAmelCase_ : int ) -> list[numpy.ndarray]: '''simple docstring''' _UpperCamelCase : Tuple = initial_vectors for _ in range(UpperCAmelCase_ ): _UpperCamelCase : str = iteration_step(UpperCAmelCase_ ) return vectors def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] ) -> list[numpy.ndarray]: '''simple docstring''' _UpperCamelCase : int = [] for i, start_vector in enumerate(vectors[:-1] ): _UpperCamelCase : Union[str, Any] = vectors[i + 1] new_vectors.append(UpperCAmelCase_ ) _UpperCamelCase : Tuple = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def lowerCamelCase_ ( UpperCAmelCase_ : numpy.ndarray , UpperCAmelCase_ : float ) -> numpy.ndarray: '''simple docstring''' _UpperCamelCase : str = numpy.radians(UpperCAmelCase_ ) _UpperCamelCase , _UpperCamelCase : Optional[Any] = numpy.cos(UpperCAmelCase_ ), numpy.sin(UpperCAmelCase_ ) _UpperCamelCase : Any = numpy.array(((c, -s), (s, c)) ) return numpy.dot(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] ) -> None: '''simple docstring''' _UpperCamelCase : str = plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _UpperCamelCase , _UpperCamelCase : Dict = zip(*UpperCAmelCase_ ) plt.plot(UpperCAmelCase_ , UpperCAmelCase_ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
648
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
648
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class lowercase ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self): _UpperCamelCase : Dict = XLMRobertaModel.from_pretrained('xlm-roberta-base') _UpperCamelCase : Optional[int] = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]]) # The dog is cute and lives in the garden house _UpperCamelCase : str = torch.Size((1, 12, 7_68)) # batch_size, sequence_length, embedding_vector_dim _UpperCamelCase : Optional[int] = torch.tensor( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _UpperCamelCase : List[Any] = model(__snake_case)['last_hidden_state'].detach() self.assertEqual(output.shape , __snake_case) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , __snake_case , atol=1e-3)) @slow def A__ ( self): _UpperCamelCase : Optional[Any] = XLMRobertaModel.from_pretrained('xlm-roberta-large') _UpperCamelCase : Tuple = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]]) # The dog is cute and lives in the garden house _UpperCamelCase : Dict = torch.Size((1, 12, 10_24)) # batch_size, sequence_length, embedding_vector_dim _UpperCamelCase : List[str] = torch.tensor( [[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _UpperCamelCase : str = model(__snake_case)['last_hidden_state'].detach() self.assertEqual(output.shape , __snake_case) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , __snake_case , atol=1e-3))
648
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
648
1
import functools def lowerCamelCase_ ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int] ) -> int: '''simple docstring''' if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or not all(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(UpperCAmelCase_ ) != 3 or not all(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(UpperCAmelCase_ ) == 0: return 0 if min(UpperCAmelCase_ ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(UpperCAmelCase_ ) >= 3_6_6: raise ValueError('All days elements should be less than 366' ) _UpperCamelCase : Union[str, Any] = set(UpperCAmelCase_ ) @functools.cache def dynamic_programming(UpperCAmelCase_ : int ) -> int: if index > 3_6_5: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 3_0 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
648
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_sentencepiece_available(): import sentencepiece as sp lowerCAmelCase__ = 5 lowerCAmelCase__ = 1_0 @require_sentencepiece @require_tokenizers class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" a__ = SpeechaTextTokenizer a__ = False a__ = True def A__ ( self): super().setUp() _UpperCamelCase : Any = sp.SentencePieceProcessor() spm_model.Load(__snake_case) _UpperCamelCase : List[str] = ['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_) for id_ in range(len(__snake_case))] _UpperCamelCase : Dict = dict(zip(__snake_case , range(len(__snake_case)))) _UpperCamelCase : Tuple = Path(self.tmpdirname) save_json(__snake_case , save_dir / VOCAB_FILES_NAMES['vocab_file']) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__snake_case , save_dir / VOCAB_FILES_NAMES['spm_file']) _UpperCamelCase : int = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def A__ ( self): _UpperCamelCase : str = '<pad>' _UpperCamelCase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case) , __snake_case) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case) , __snake_case) def A__ ( self): _UpperCamelCase : Optional[Any] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(vocab_keys[-1] , 'j') self.assertEqual(len(__snake_case) , 10_01) def A__ ( self): self.assertEqual(self.get_tokenizer().vocab_size , 10_01) def A__ ( self): _UpperCamelCase : Any = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) _UpperCamelCase : List[str] = tokenizer.tokenize('This is a test') self.assertListEqual(__snake_case , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case) , [2_89, 50, 14, 1_74, 3_86] , ) _UpperCamelCase : int = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( __snake_case , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) _UpperCamelCase : int = tokenizer.convert_tokens_to_ids(__snake_case) self.assertListEqual(__snake_case , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8]) _UpperCamelCase : Tuple = tokenizer.convert_ids_to_tokens(__snake_case) self.assertListEqual( __snake_case , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def A__ ( self): # fmt: off _UpperCamelCase : Optional[int] = {'input_ids': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , ) @require_sentencepiece class lowercase ( unittest.TestCase ): """simple docstring""" a__ = "valhalla/s2t_mustc_multilinguial_medium" a__ = "C'est trop cool" a__ = "Esto es genial" @classmethod def A__ ( cls): _UpperCamelCase : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name) return cls def A__ ( self): self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4) self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6) self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9) self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11) def A__ ( self): self.assertEqual(self.tokenizer.vocab_size , 1_00_00) def A__ ( self): self.assertIn(__snake_case , self.tokenizer.all_special_ids) _UpperCamelCase : Optional[int] = [ES_CODE, 4, 16_01, 47, 76_47, 2] _UpperCamelCase : Tuple = self.tokenizer.decode(__snake_case , skip_special_tokens=__snake_case) _UpperCamelCase : Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__snake_case) self.assertEqual(__snake_case , __snake_case) self.assertNotIn(self.tokenizer.eos_token , __snake_case) def A__ ( self): _UpperCamelCase : Any = 'fr' _UpperCamelCase : List[Any] = self.tokenizer(self.french_text).input_ids self.assertEqual(encoded[0] , __snake_case) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id) def A__ ( self): _UpperCamelCase : Union[str, Any] = 'fr' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE]) _UpperCamelCase : List[str] = 'es' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE])
648
1
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever lowerCAmelCase__ = logging.getLogger(__name__) class lowercase ( _lowercase ): """simple docstring""" def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case=None): super().__init__( __snake_case , question_encoder_tokenizer=__snake_case , generator_tokenizer=__snake_case , index=__snake_case , init_retrieval=__snake_case , ) _UpperCamelCase : List[str] = None def A__ ( self , __snake_case): logger.info('initializing retrieval') # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info('dist initialized') # needs to be set manually _UpperCamelCase : Any = self._infer_socket_ifname() # avoid clash with the NCCL port _UpperCamelCase : Optional[Any] = str(distributed_port + 1) _UpperCamelCase : List[str] = dist.new_group(ranks=__snake_case , backend='gloo') # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info('dist not initialized / main') self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group) def A__ ( self): return dist.get_rank(group=self.process_group) == 0 def A__ ( self , __snake_case , __snake_case , __snake_case=torch.floataa): _UpperCamelCase : List[Any] = torch.empty(__snake_case , dtype=__snake_case) dist.scatter(__snake_case , src=0 , scatter_list=__snake_case , group=self.process_group) return target_tensor def A__ ( self): _UpperCamelCase : Tuple = psutil.net_if_addrs() # a hacky way to deal with varying network interface names _UpperCamelCase : int = next((addr for addr in addrs if addr.startswith('e')) , __snake_case) return ifname def A__ ( self , __snake_case , __snake_case): # single GPU training if not dist.is_initialized(): _UpperCamelCase , _UpperCamelCase : Optional[int] = self._main_retrieve(__snake_case , __snake_case) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__snake_case) # distributed training _UpperCamelCase : Dict = dist.get_world_size(group=self.process_group) # gather logic _UpperCamelCase : int = None if self._is_main(): _UpperCamelCase : List[str] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa) for _ in range(__snake_case)] dist.gather(torch.tensor(__snake_case) , dst=0 , gather_list=__snake_case , group=self.process_group) # scatter logic _UpperCamelCase : str = question_hidden_states.shape[0] _UpperCamelCase : Any = [] _UpperCamelCase : Optional[int] = [] if self._is_main(): assert len(__snake_case) == world_size _UpperCamelCase , _UpperCamelCase : int = self._main_retrieve(torch.cat(__snake_case).numpy() , __snake_case) _UpperCamelCase , _UpperCamelCase : int = torch.tensor(__snake_case), torch.tensor(__snake_case) _UpperCamelCase : Tuple = self._chunk_tensor(__snake_case , __snake_case) _UpperCamelCase : str = self._chunk_tensor(__snake_case , __snake_case) _UpperCamelCase : Dict = self._scattered(__snake_case , [n_queries, n_docs] , target_type=torch.intaa) _UpperCamelCase : Optional[Any] = self._scattered(__snake_case , [n_queries, n_docs, question_hidden_states.shape[1]]) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__snake_case)
648
import logging from transformers.configuration_utils import PretrainedConfig lowerCAmelCase__ = logging.getLogger(__name__) class lowercase ( _lowercase ): """simple docstring""" a__ = "masked_bert" def __init__( self , __snake_case=3_05_22 , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=0 , __snake_case="topK" , __snake_case="constant" , __snake_case=0.0 , **__snake_case , ): super().__init__(pad_token_id=__snake_case , **__snake_case) _UpperCamelCase : List[Any] = vocab_size _UpperCamelCase : Union[str, Any] = hidden_size _UpperCamelCase : Optional[int] = num_hidden_layers _UpperCamelCase : Any = num_attention_heads _UpperCamelCase : int = hidden_act _UpperCamelCase : str = intermediate_size _UpperCamelCase : str = hidden_dropout_prob _UpperCamelCase : Any = attention_probs_dropout_prob _UpperCamelCase : Tuple = max_position_embeddings _UpperCamelCase : Dict = type_vocab_size _UpperCamelCase : str = initializer_range _UpperCamelCase : List[Any] = layer_norm_eps _UpperCamelCase : Tuple = pruning_method _UpperCamelCase : Tuple = mask_init _UpperCamelCase : Dict = mask_scale
648
1
import os import re import shutil import sys import tempfile import unittest import black lowerCAmelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowerCAmelCase__ = """ \"\"\" Output class for the scheduler's step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \"\"\" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None """ class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self): _UpperCamelCase : Optional[Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/')) _UpperCamelCase : List[str] = self.diffusers_dir shutil.copy( os.path.join(__snake_case , 'src/diffusers/schedulers/scheduling_ddpm.py') , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py') , ) def A__ ( self): _UpperCamelCase : Tuple = 'src/diffusers' shutil.rmtree(self.diffusers_dir) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case=None): _UpperCamelCase : List[str] = comment + f'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: _UpperCamelCase : Union[str, Any] = comment + f'''\nclass {class_name}(nn.Module):\n''' + overwrite_result _UpperCamelCase : int = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19) _UpperCamelCase : List[Any] = black.format_str(__snake_case , mode=__snake_case) _UpperCamelCase : Dict = os.path.join(self.diffusers_dir , 'new_code.py') with open(__snake_case , 'w' , newline='\n') as f: f.write(__snake_case) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(__snake_case)) == 0) else: check_copies.is_copy_consistent(f.name , overwrite=__snake_case) with open(__snake_case , 'r') as f: self.assertTrue(f.read() , __snake_case) def A__ ( self): _UpperCamelCase : List[Any] = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput') self.assertEqual(__snake_case , __snake_case) def A__ ( self): # Base copy consistency self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , __snake_case , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , __snake_case) , ) # Copy consistency with a really long name _UpperCamelCase : Dict = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , f'''{long_class_name}SchedulerOutput''' , re.sub('Bert' , __snake_case , __snake_case) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , __snake_case , overwrite_result=re.sub('DDPM' , 'Test' , __snake_case) , )
648
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow lowerCAmelCase__ = False class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self , __snake_case=32): set_seed(0) _UpperCamelCase : int = UNetaDModel(sample_size=__snake_case , in_channels=3 , out_channels=3) _UpperCamelCase : str = torch.optim.SGD(model.parameters() , lr=0.0_0_0_1) return model, optimizer @slow def A__ ( self): _UpperCamelCase : Tuple = 'cpu' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable _UpperCamelCase : List[Any] = DDPMScheduler( num_train_timesteps=10_00 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='linear' , clip_sample=__snake_case , ) _UpperCamelCase : List[Any] = DDIMScheduler( num_train_timesteps=10_00 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='linear' , clip_sample=__snake_case , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0) _UpperCamelCase : Optional[Any] = [torch.randn((4, 3, 32, 32)).clip(-1 , 1).to(__snake_case) for _ in range(4)] _UpperCamelCase : str = [torch.randn((4, 3, 32, 32)).to(__snake_case) for _ in range(4)] _UpperCamelCase : int = [torch.randint(0 , 10_00 , (4,)).long().to(__snake_case) for _ in range(4)] # train with a DDPM scheduler _UpperCamelCase , _UpperCamelCase : List[Any] = self.get_model_optimizer(resolution=32) model.train().to(__snake_case) for i in range(4): optimizer.zero_grad() _UpperCamelCase : int = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) _UpperCamelCase : Any = model(__snake_case , timesteps[i]).sample _UpperCamelCase : str = torch.nn.functional.mse_loss(__snake_case , noise[i]) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM _UpperCamelCase , _UpperCamelCase : Union[str, Any] = self.get_model_optimizer(resolution=32) model.train().to(__snake_case) for i in range(4): optimizer.zero_grad() _UpperCamelCase : Dict = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) _UpperCamelCase : Dict = model(__snake_case , timesteps[i]).sample _UpperCamelCase : Tuple = torch.nn.functional.mse_loss(__snake_case , noise[i]) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1e-5)) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1e-5))
648
1
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCAmelCase__ = abspath(join(dirname(__file__), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def lowerCamelCase_ ( UpperCAmelCase_ : Any ) -> Union[str, Any]: '''simple docstring''' config.addinivalue_line( 'markers' , 'is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested' ) config.addinivalue_line( 'markers' , 'is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested' ) config.addinivalue_line('markers' , 'is_pipeline_test: mark test to run only when pipelines are tested' ) config.addinivalue_line('markers' , 'is_staging_test: mark test to run only in the staging environment' ) config.addinivalue_line('markers' , 'accelerate_tests: mark test that require accelerate' ) config.addinivalue_line('markers' , 'tool_tests: mark the tool tests that are run on their specific schedule' ) def lowerCamelCase_ ( UpperCAmelCase_ : Optional[int] ) -> List[Any]: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : Any ) -> List[Any]: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main _UpperCamelCase : str = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(UpperCAmelCase_ , id=UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict ) -> Tuple: '''simple docstring''' if exitstatus == 5: _UpperCamelCase : List[Any] = 0 # Doctest custom flag to ignore output. lowerCAmelCase__ = doctest.register_optionflag("""IGNORE_RESULT""") lowerCAmelCase__ = doctest.OutputChecker class lowercase ( _lowercase ): """simple docstring""" def A__ ( self , __snake_case , __snake_case , __snake_case): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , __snake_case , __snake_case , __snake_case) lowerCAmelCase__ = CustomOutputChecker lowerCAmelCase__ = HfDoctestModule lowerCAmelCase__ = HfDocTestParser
648
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) lowerCAmelCase__ = { """sample_size""": 3_2, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 1_0_0_0, """block_out_channels""": [3_2, 6_4], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """sample_size""": 6_4, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 1_0_0_0, """block_out_channels""": [1_9_2, 1_9_2 * 2, 1_9_2 * 3, 1_9_2 * 4], """attention_head_dim""": 6_4, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """sample_size""": 2_5_6, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [2_5_6, 2_5_6, 2_5_6 * 2, 2_5_6 * 2, 2_5_6 * 4, 2_5_6 * 4], """attention_head_dim""": 6_4, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """num_train_timesteps""": 4_0, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } lowerCAmelCase__ = { """num_train_timesteps""": 2_0_1, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } lowerCAmelCase__ = { """num_train_timesteps""": 1_5_1, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> List[str]: '''simple docstring''' if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def lowerCamelCase_ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any]=False ) -> str: '''simple docstring''' _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.in_layers.0.weight'''] _UpperCamelCase : str = checkpoint[F'''{old_prefix}.in_layers.0.bias'''] _UpperCamelCase : str = checkpoint[F'''{old_prefix}.in_layers.2.weight'''] _UpperCamelCase : Union[str, Any] = checkpoint[F'''{old_prefix}.in_layers.2.bias'''] _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.emb_layers.1.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.emb_layers.1.bias'''] _UpperCamelCase : Tuple = checkpoint[F'''{old_prefix}.out_layers.0.weight'''] _UpperCamelCase : List[Any] = checkpoint[F'''{old_prefix}.out_layers.0.bias'''] _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.out_layers.3.weight'''] _UpperCamelCase : Union[str, Any] = checkpoint[F'''{old_prefix}.out_layers.3.bias'''] if has_skip: _UpperCamelCase : Tuple = checkpoint[F'''{old_prefix}.skip_connection.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any=None ) -> int: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 ) _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.norm.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.norm.bias'''] _UpperCamelCase : List[str] = weight_q.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Dict = bias_q.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Any = weight_k.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : List[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Dict = weight_v.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Tuple = bias_v.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Optional[Any] = ( checkpoint[F'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] ) -> Tuple: '''simple docstring''' _UpperCamelCase : Any = torch.load(UpperCAmelCase_ , map_location='cpu' ) _UpperCamelCase : Union[str, Any] = {} _UpperCamelCase : Optional[int] = checkpoint['time_embed.0.weight'] _UpperCamelCase : List[Any] = checkpoint['time_embed.0.bias'] _UpperCamelCase : Dict = checkpoint['time_embed.2.weight'] _UpperCamelCase : Optional[Any] = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: _UpperCamelCase : List[str] = checkpoint['label_emb.weight'] _UpperCamelCase : Optional[int] = checkpoint['input_blocks.0.0.weight'] _UpperCamelCase : Union[str, Any] = checkpoint['input_blocks.0.0.bias'] _UpperCamelCase : Optional[int] = unet_config['down_block_types'] _UpperCamelCase : Optional[Any] = unet_config['layers_per_block'] _UpperCamelCase : Dict = unet_config['attention_head_dim'] _UpperCamelCase : List[str] = unet_config['block_out_channels'] _UpperCamelCase : str = 1 _UpperCamelCase : Optional[int] = channels_list[0] for i, layer_type in enumerate(UpperCAmelCase_ ): _UpperCamelCase : List[str] = channels_list[i] _UpperCamelCase : str = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(UpperCAmelCase_ ): _UpperCamelCase : str = F'''down_blocks.{i}.resnets.{j}''' _UpperCamelCase : List[Any] = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : Any = True if j == 0 and downsample_block_has_skip else False _UpperCamelCase : str = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(UpperCAmelCase_ ): _UpperCamelCase : List[str] = F'''down_blocks.{i}.resnets.{j}''' _UpperCamelCase : str = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : int = True if j == 0 and downsample_block_has_skip else False _UpperCamelCase : Any = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) _UpperCamelCase : Dict = F'''down_blocks.{i}.attentions.{j}''' _UpperCamelCase : Optional[int] = F'''input_blocks.{current_layer}.1''' _UpperCamelCase : Dict = convert_attention( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : int = F'''down_blocks.{i}.downsamplers.0''' _UpperCamelCase : Optional[int] = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : List[Any] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 _UpperCamelCase : Tuple = current_channels # hardcoded the mid-block for now _UpperCamelCase : Any = 'mid_block.resnets.0' _UpperCamelCase : Optional[Any] = 'middle_block.0' _UpperCamelCase : Tuple = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = 'mid_block.attentions.0' _UpperCamelCase : Tuple = 'middle_block.1' _UpperCamelCase : Union[str, Any] = convert_attention(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Tuple = 'mid_block.resnets.1' _UpperCamelCase : str = 'middle_block.2' _UpperCamelCase : List[str] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : List[Any] = 0 _UpperCamelCase : Optional[int] = unet_config['up_block_types'] for i, layer_type in enumerate(UpperCAmelCase_ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _UpperCamelCase : Optional[Any] = F'''up_blocks.{i}.resnets.{j}''' _UpperCamelCase : Optional[int] = F'''output_blocks.{current_layer}.0''' _UpperCamelCase : str = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : List[Any] = F'''up_blocks.{i}.upsamplers.0''' _UpperCamelCase : Dict = F'''output_blocks.{current_layer-1}.1''' _UpperCamelCase : Optional[int] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _UpperCamelCase : str = F'''up_blocks.{i}.resnets.{j}''' _UpperCamelCase : Union[str, Any] = F'''output_blocks.{current_layer}.0''' _UpperCamelCase : Optional[int] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) _UpperCamelCase : int = F'''up_blocks.{i}.attentions.{j}''' _UpperCamelCase : List[Any] = F'''output_blocks.{current_layer}.1''' _UpperCamelCase : Optional[int] = convert_attention( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : List[Any] = F'''up_blocks.{i}.upsamplers.0''' _UpperCamelCase : Union[str, Any] = F'''output_blocks.{current_layer-1}.2''' _UpperCamelCase : List[str] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : List[Any] = checkpoint['out.0.weight'] _UpperCamelCase : str = checkpoint['out.0.bias'] _UpperCamelCase : int = checkpoint['out.2.weight'] _UpperCamelCase : List[Any] = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = strabool(args.class_cond) lowerCAmelCase__ = os.path.basename(args.unet_path) print(f'Checkpoint: {ckpt_name}') # Get U-Net config if "imagenet64" in ckpt_name: lowerCAmelCase__ = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCAmelCase__ = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: lowerCAmelCase__ = TEST_UNET_CONFIG else: raise ValueError(f'Checkpoint type {ckpt_name} is not currently supported.') if not args.class_cond: lowerCAmelCase__ = None lowerCAmelCase__ = con_pt_to_diffuser(args.unet_path, unet_config) lowerCAmelCase__ = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: lowerCAmelCase__ = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: lowerCAmelCase__ = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCAmelCase__ = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f'Checkpoint type {ckpt_name} is not currently supported.') lowerCAmelCase__ = CMStochasticIterativeScheduler(**scheduler_config) lowerCAmelCase__ = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
648
1
import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class lowercase ( unittest.TestCase ): """simple docstring""" def __init__( self , __snake_case , __snake_case=13 , __snake_case=30 , __snake_case=2 , __snake_case=3 , __snake_case=True , __snake_case=True , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=37 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=10 , __snake_case=0.0_2 , ): _UpperCamelCase : List[str] = parent _UpperCamelCase : Tuple = batch_size _UpperCamelCase : Optional[int] = image_size _UpperCamelCase : List[str] = patch_size _UpperCamelCase : str = num_channels _UpperCamelCase : List[str] = is_training _UpperCamelCase : Tuple = use_labels _UpperCamelCase : Dict = hidden_size _UpperCamelCase : List[str] = num_hidden_layers _UpperCamelCase : Optional[Any] = num_attention_heads _UpperCamelCase : str = intermediate_size _UpperCamelCase : Dict = hidden_act _UpperCamelCase : Optional[int] = hidden_dropout_prob _UpperCamelCase : Optional[Any] = attention_probs_dropout_prob _UpperCamelCase : Tuple = type_sequence_label_size _UpperCamelCase : Dict = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCamelCase : List[str] = (image_size // patch_size) ** 2 _UpperCamelCase : Any = num_patches + 1 def A__ ( self): _UpperCamelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase : Any = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__snake_case , initializer_range=self.initializer_range , ) return config, pixel_values def A__ ( self , __snake_case , __snake_case): _UpperCamelCase : Dict = FlaxViTModel(config=__snake_case) _UpperCamelCase : Optional[Any] = model(__snake_case) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) _UpperCamelCase : Union[str, Any] = (self.image_size, self.image_size) _UpperCamelCase : List[str] = (self.patch_size, self.patch_size) _UpperCamelCase : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size)) def A__ ( self , __snake_case , __snake_case): _UpperCamelCase : List[str] = self.type_sequence_label_size _UpperCamelCase : Union[str, Any] = FlaxViTForImageClassification(config=__snake_case) _UpperCamelCase : Union[str, Any] = model(__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images _UpperCamelCase : Any = 1 _UpperCamelCase : int = FlaxViTForImageClassification(__snake_case) _UpperCamelCase : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _UpperCamelCase : Any = model(__snake_case) def A__ ( self): _UpperCamelCase : Tuple = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) : Dict = config_and_inputs _UpperCamelCase : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" a__ = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def A__ ( self): _UpperCamelCase : List[str] = FlaxViTModelTester(self) _UpperCamelCase : Optional[int] = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=37) def A__ ( self): self.config_tester.run_common_tests() def A__ ( self): _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case) def A__ ( self): _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case) def A__ ( self): _UpperCamelCase , _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Optional[int] = model_class(__snake_case) _UpperCamelCase : Optional[int] = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : List[str] = [*signature.parameters.keys()] _UpperCamelCase : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , __snake_case) def A__ ( self): _UpperCamelCase , _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _UpperCamelCase : Optional[int] = self._prepare_for_class(__snake_case , __snake_case) _UpperCamelCase : Optional[int] = model_class(__snake_case) @jax.jit def model_jitted(__snake_case , **__snake_case): return model(pixel_values=__snake_case , **__snake_case) with self.subTest('JIT Enabled'): _UpperCamelCase : Optional[Any] = model_jitted(**__snake_case).to_tuple() with self.subTest('JIT Disabled'): with jax.disable_jit(): _UpperCamelCase : Optional[int] = model_jitted(**__snake_case).to_tuple() self.assertEqual(len(__snake_case) , len(__snake_case)) for jitted_output, output in zip(__snake_case , __snake_case): self.assertEqual(jitted_output.shape , output.shape) @slow def A__ ( self): for model_class_name in self.all_model_classes: _UpperCamelCase : Any = model_class_name.from_pretrained('google/vit-base-patch16-224') _UpperCamelCase : List[str] = model(np.ones((1, 3, 2_24, 2_24))) self.assertIsNotNone(__snake_case)
648
def lowerCamelCase_ ( UpperCAmelCase_ : list ) -> list: '''simple docstring''' if len(UpperCAmelCase_ ) <= 1: return [tuple(UpperCAmelCase_ )] _UpperCamelCase : List[Any] = [] def generate(UpperCAmelCase_ : int , UpperCAmelCase_ : list ): _UpperCamelCase : Optional[int] = [0] * n res.append(tuple(UpperCAmelCase_ ) ) _UpperCamelCase : List[Any] = 0 while i < n: if c[i] < i: if i % 2 == 0: _UpperCamelCase , _UpperCamelCase : List[str] = arr[i], arr[0] else: _UpperCamelCase , _UpperCamelCase : List[str] = arr[i], arr[c[i]] res.append(tuple(UpperCAmelCase_ ) ) c[i] += 1 _UpperCamelCase : Tuple = 0 else: _UpperCamelCase : Tuple = 0 i += 1 generate(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) return res if __name__ == "__main__": lowerCAmelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCAmelCase__ = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
648
1
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = IFInpaintingSuperResolutionPipeline a__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} a__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) a__ = PipelineTesterMixin.required_optional_params - {"latents"} def A__ ( self): return self._get_superresolution_dummy_components() def A__ ( self , __snake_case , __snake_case=0): if str(__snake_case).startswith('mps'): _UpperCamelCase : List[str] = torch.manual_seed(__snake_case) else: _UpperCamelCase : Any = torch.Generator(device=__snake_case).manual_seed(__snake_case) _UpperCamelCase : Union[str, Any] = floats_tensor((1, 3, 16, 16) , rng=random.Random(__snake_case)).to(__snake_case) _UpperCamelCase : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(__snake_case)).to(__snake_case) _UpperCamelCase : List[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__snake_case)).to(__snake_case) _UpperCamelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def A__ ( self): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3) def A__ ( self): self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA') def A__ ( self): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1) def A__ ( self): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2) def A__ ( self): self._test_save_load_local() def A__ ( self): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
648
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = [ ["""attention""", """attn"""], ["""encoder_attention""", """encoder_attn"""], ["""q_lin""", """q_proj"""], ["""k_lin""", """k_proj"""], ["""v_lin""", """v_proj"""], ["""out_lin""", """out_proj"""], ["""norm_embeddings""", """layernorm_embedding"""], ["""position_embeddings""", """embed_positions"""], ["""embeddings""", """embed_tokens"""], ["""ffn.lin""", """fc"""], ] def lowerCamelCase_ ( UpperCAmelCase_ : List[Any] ) -> Optional[int]: '''simple docstring''' if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: _UpperCamelCase : List[Any] = k.replace(UpperCAmelCase_ , UpperCAmelCase_ ) if k.startswith('encoder' ): _UpperCamelCase : Optional[Any] = k.replace('.attn' , '.self_attn' ) _UpperCamelCase : Optional[int] = k.replace('norm1' , 'self_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): _UpperCamelCase : Any = k.replace('norm1' , 'self_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm2' , 'encoder_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm3' , 'final_layer_norm' ) return k def lowerCamelCase_ ( UpperCAmelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Union[str, Any] = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: _UpperCamelCase : Optional[int] = sd.pop(UpperCAmelCase_ ) _UpperCamelCase : str = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd _UpperCamelCase : Tuple = v lowerCAmelCase__ = ["""START"""] @torch.no_grad() def lowerCamelCase_ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ) -> List[str]: '''simple docstring''' _UpperCamelCase : Optional[Any] = torch.load(UpperCAmelCase_ , map_location='cpu' ) _UpperCamelCase : int = model['model'] _UpperCamelCase : List[Any] = BlenderbotConfig.from_json_file(UpperCAmelCase_ ) _UpperCamelCase : Any = BlenderbotForConditionalGeneration(UpperCAmelCase_ ) _UpperCamelCase : int = m.model.state_dict().keys() _UpperCamelCase : Union[str, Any] = [] _UpperCamelCase : int = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue _UpperCamelCase : Optional[int] = rename_state_dict_key(UpperCAmelCase_ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: _UpperCamelCase : int = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(UpperCAmelCase_ ) m.model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) m.half() m.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("""--src_path""", type=str, help="""like blenderbot-model.bin""") parser.add_argument("""--save_dir""", default="""hf_blenderbot""", type=str, help="""Where to save converted model.""") parser.add_argument( """--hf_config_json""", default="""blenderbot-3b-config.json""", type=str, help="""Path to config to use""" ) lowerCAmelCase__ = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
648
1
from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class lowercase ( _lowercase ): """simple docstring""" a__ = None a__ = None a__ = None a__ = None class lowercase ( _lowercase ): """simple docstring""" def __init__( self , __snake_case=1 , __snake_case=0 , __snake_case=2 , __snake_case=5_12 , __snake_case="cls" , __snake_case=False , __snake_case=True , **__snake_case , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case) _UpperCamelCase : str = project_dim _UpperCamelCase : Any = pooler_fn _UpperCamelCase : Any = learn_encoder _UpperCamelCase : Optional[Any] = use_attention_mask class lowercase ( _lowercase ): """simple docstring""" a__ = [r"pooler", r"logit_scale"] a__ = [r"position_ids", r"predictions.decoder.bias"] a__ = "roberta" a__ = RobertaSeriesConfig def __init__( self , __snake_case): super().__init__(__snake_case) _UpperCamelCase : Optional[Any] = XLMRobertaModel(__snake_case) _UpperCamelCase : List[Any] = nn.Linear(config.hidden_size , config.project_dim) _UpperCamelCase : Any = getattr(__snake_case , 'has_pre_transformation' , __snake_case) if self.has_pre_transformation: _UpperCamelCase : Optional[Any] = nn.Linear(config.hidden_size , config.project_dim) _UpperCamelCase : str = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps) self.post_init() def A__ ( self , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , ): _UpperCamelCase : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCamelCase : Optional[int] = self.base_model( input_ids=__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , position_ids=__snake_case , head_mask=__snake_case , inputs_embeds=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , output_attentions=__snake_case , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=__snake_case , ) if self.has_pre_transformation: _UpperCamelCase : Any = outputs['hidden_states'][-2] _UpperCamelCase : List[Any] = self.pre_LN(__snake_case) _UpperCamelCase : Union[str, Any] = self.transformation_pre(__snake_case) return TransformationModelOutput( projection_state=__snake_case , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: _UpperCamelCase : Tuple = self.transformation(outputs.last_hidden_state) return TransformationModelOutput( projection_state=__snake_case , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
648
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer lowerCAmelCase__ = ["""bert-base-uncased""", """bert-base-cased"""] lowerCAmelCase__ = """hf-internal-testing/tiny-bert-tf-only""" if is_tf_available(): class lowercase ( tf.keras.Model ): """simple docstring""" def __init__( self , __snake_case): super().__init__() _UpperCamelCase : List[Any] = tokenizer _UpperCamelCase : List[Any] = AutoConfig.from_pretrained(__snake_case) _UpperCamelCase : Dict = TFAutoModel.from_config(__snake_case) def A__ ( self , __snake_case): _UpperCamelCase : Any = self.tokenizer(__snake_case) _UpperCamelCase : Dict = self.bert(**__snake_case) return out["pooler_output"] @require_tf @require_tensorflow_text class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self): super().setUp() _UpperCamelCase : Optional[Any] = [ BertTokenizer.from_pretrained(__snake_case) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false _UpperCamelCase : Optional[Any] = [TFBertTokenizer.from_pretrained(__snake_case) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(__snake_case , use_fast_bert_tokenizer=__snake_case) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers) == len(self.tf_tokenizers) _UpperCamelCase : Optional[Any] = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] _UpperCamelCase : Dict = list(zip(self.test_sentences , self.test_sentences[::-1])) def A__ ( self): for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers): for test_inputs in (self.test_sentences, self.paired_sentences): _UpperCamelCase : List[str] = tokenizer(__snake_case , return_tensors='tf' , padding='longest') _UpperCamelCase : Tuple = tf_tokenizer(__snake_case) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape)) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa) == tf_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Tuple = tf_tokenizer(self.paired_sentences) _UpperCamelCase : Optional[Any] = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa) == separated_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Tuple = tf.function(__snake_case) for test_inputs in (self.test_sentences, self.paired_sentences): _UpperCamelCase : Optional[int] = tf.constant(__snake_case) _UpperCamelCase : Union[str, Any] = compiled_tokenizer(__snake_case) _UpperCamelCase : Tuple = tf_tokenizer(__snake_case) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Any = ModelToSave(tokenizer=__snake_case) _UpperCamelCase : Any = tf.convert_to_tensor(self.test_sentences) _UpperCamelCase : Union[str, Any] = model(__snake_case) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _UpperCamelCase : int = Path(__snake_case) / 'saved.model' model.save(__snake_case) _UpperCamelCase : Optional[int] = tf.keras.models.load_model(__snake_case) _UpperCamelCase : int = loaded_model(__snake_case) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output)) , 1e-5)
648
1
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar("""T""") class lowercase ( Generic[T] ): """simple docstring""" a__ = 42 # Cache store of keys a__ = 42 # References of the keys in cache a__ = 1_0 # Maximum capacity of cache def __init__( self , __snake_case): _UpperCamelCase : str = deque() _UpperCamelCase : str = set() if not n: _UpperCamelCase : Union[str, Any] = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.') else: _UpperCamelCase : Tuple = n def A__ ( self , __snake_case): if x not in self.key_reference: if len(self.dq_store) == LRUCache._MAX_CAPACITY: _UpperCamelCase : Any = self.dq_store.pop() self.key_reference.remove(__snake_case) else: self.dq_store.remove(__snake_case) self.dq_store.appendleft(__snake_case) self.key_reference.add(__snake_case) def A__ ( self): for k in self.dq_store: print(__snake_case) def __repr__( self): return f'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store)}''' if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = LRUCache(4) lru_cache.refer("""A""") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("""A""") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
648
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ = { """configuration_canine""": ["""CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CanineConfig"""], """tokenization_canine""": ["""CanineTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """CANINE_PRETRAINED_MODEL_ARCHIVE_LIST""", """CanineForMultipleChoice""", """CanineForQuestionAnswering""", """CanineForSequenceClassification""", """CanineForTokenClassification""", """CanineLayer""", """CanineModel""", """CaninePreTrainedModel""", """load_tf_weights_in_canine""", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
648
1
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def lowerCamelCase_ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int ) -> Union[str, Any]: '''simple docstring''' assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def lowerCamelCase_ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any ) -> Any: '''simple docstring''' _UpperCamelCase : List[str] = tmp_path / 'cache' _UpperCamelCase : Tuple = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCamelCase : int = SqlDatasetReader( 'dataset' , 'sqlite:///' + sqlite_path , cache_dir=UpperCAmelCase_ , keep_in_memory=UpperCAmelCase_ ).read() _check_sql_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) @require_sqlalchemy @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def lowerCamelCase_ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any ) -> List[str]: '''simple docstring''' _UpperCamelCase : List[Any] = tmp_path / 'cache' _UpperCamelCase : Any = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} _UpperCamelCase : Optional[Any] = features.copy() if features else default_expected_features _UpperCamelCase : Optional[Any] = ( Features({feature: Value(UpperCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCamelCase : int = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ).read() _check_sql_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : Optional[int] ) -> Optional[int]: '''simple docstring''' with contextlib.closing(sqlitea.connect(UpperCAmelCase_ ) ) as con: _UpperCamelCase : Dict = con.cursor() cur.execute('SELECT * FROM dataset' ) for row in cur: yield row @require_sqlalchemy def lowerCamelCase_ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] ) -> List[Any]: '''simple docstring''' _UpperCamelCase : List[str] = tmp_path / 'cache' _UpperCamelCase : List[Any] = os.path.join(UpperCAmelCase_ , 'tmp.sql' ) _UpperCamelCase : Tuple = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=UpperCAmelCase_ ).read() SqlDatasetWriter(UpperCAmelCase_ , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=1 ).write() _UpperCamelCase : Any = iter_sql_file(UpperCAmelCase_ ) _UpperCamelCase : List[Any] = iter_sql_file(UpperCAmelCase_ ) for rowa, rowa in zip(UpperCAmelCase_ , UpperCAmelCase_ ): assert rowa == rowa @require_sqlalchemy def lowerCamelCase_ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] ) -> int: '''simple docstring''' _UpperCamelCase : List[str] = tmp_path / 'cache' _UpperCamelCase : Tuple = os.path.join(UpperCAmelCase_ , 'tmp.sql' ) _UpperCamelCase : Optional[Any] = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=UpperCAmelCase_ ).read() SqlDatasetWriter(UpperCAmelCase_ , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=2 ).write() _UpperCamelCase : str = iter_sql_file(UpperCAmelCase_ ) _UpperCamelCase : List[str] = iter_sql_file(UpperCAmelCase_ ) for rowa, rowa in zip(UpperCAmelCase_ , UpperCAmelCase_ ): assert rowa == rowa @require_sqlalchemy def lowerCamelCase_ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase : str = tmp_path / 'cache' _UpperCamelCase : Any = os.path.join(UpperCAmelCase_ , 'tmp.sql' ) _UpperCamelCase : List[Any] = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=UpperCAmelCase_ ).read() with pytest.raises(UpperCAmelCase_ ): SqlDatasetWriter(UpperCAmelCase_ , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=0 ).write()
648
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case=3 , __snake_case=32 , __snake_case=3 , __snake_case=10 , __snake_case=[8, 16, 32, 64] , __snake_case=[1, 1, 2, 1] , __snake_case=True , __snake_case=True , __snake_case="relu" , __snake_case=3 , __snake_case=None , __snake_case=["stage2", "stage3", "stage4"] , __snake_case=[2, 3, 4] , __snake_case=1 , ): _UpperCamelCase : List[Any] = parent _UpperCamelCase : Dict = batch_size _UpperCamelCase : Optional[int] = image_size _UpperCamelCase : str = num_channels _UpperCamelCase : Optional[Any] = embeddings_size _UpperCamelCase : Tuple = hidden_sizes _UpperCamelCase : Dict = depths _UpperCamelCase : str = is_training _UpperCamelCase : Optional[int] = use_labels _UpperCamelCase : str = hidden_act _UpperCamelCase : Optional[int] = num_labels _UpperCamelCase : Optional[int] = scope _UpperCamelCase : Tuple = len(__snake_case) _UpperCamelCase : Dict = out_features _UpperCamelCase : Union[str, Any] = out_indices _UpperCamelCase : int = num_groups def A__ ( self): _UpperCamelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase : str = None if self.use_labels: _UpperCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels) _UpperCamelCase : str = self.get_config() return config, pixel_values, labels def A__ ( self): return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : str = BitModel(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[Any] = model(__snake_case) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Dict = self.num_labels _UpperCamelCase : Dict = BitForImageClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Dict = model(__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[Any] = BitBackbone(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = model(__snake_case) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:]) # verify backbone works with out_features=None _UpperCamelCase : Any = None _UpperCamelCase : str = BitBackbone(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Any = model(__snake_case) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , 1) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[-1], 1, 1]) # verify channels self.parent.assertEqual(len(model.channels) , 1) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]]) def A__ ( self): _UpperCamelCase : Optional[int] = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : int = config_and_inputs _UpperCamelCase : int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () a__ = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False a__ = False def A__ ( self): _UpperCamelCase : Dict = BitModelTester(self) _UpperCamelCase : Optional[Any] = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case) def A__ ( self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self): return @unittest.skip(reason='Bit does not output attentions') def A__ ( self): pass @unittest.skip(reason='Bit does not use inputs_embeds') def A__ ( self): pass @unittest.skip(reason='Bit does not support input and output embeddings') def A__ ( self): pass def A__ ( self): _UpperCamelCase , _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : int = model_class(__snake_case) _UpperCamelCase : List[Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : Optional[int] = [*signature.parameters.keys()] _UpperCamelCase : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __snake_case) def A__ ( self): _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case) def A__ ( self): _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__snake_case) def A__ ( self): _UpperCamelCase , _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Union[str, Any] = model_class(config=__snake_case) for name, module in model.named_modules(): if isinstance(__snake_case , (nn.BatchNormad, nn.GroupNorm)): self.assertTrue( torch.all(module.weight == 1) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def A__ ( self): def check_hidden_states_output(__snake_case , __snake_case , __snake_case): _UpperCamelCase : str = model_class(__snake_case) model.to(__snake_case) model.eval() with torch.no_grad(): _UpperCamelCase : Union[str, Any] = model(**self._prepare_for_class(__snake_case , __snake_case)) _UpperCamelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase : str = self.model_tester.num_stages self.assertEqual(len(__snake_case) , expected_num_stages + 1) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCamelCase , _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : List[str] = ['preactivation', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _UpperCamelCase : Any = layer_type _UpperCamelCase : Tuple = True check_hidden_states_output(__snake_case , __snake_case , __snake_case) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase : List[str] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case) @unittest.skip(reason='Bit does not use feedforward chunking') def A__ ( self): pass def A__ ( self): _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case) @slow def A__ ( self): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : Optional[Any] = BitModel.from_pretrained(__snake_case) self.assertIsNotNone(__snake_case) def lowerCamelCase_ ( ) -> Optional[int]: '''simple docstring''' _UpperCamelCase : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def A__ ( self): _UpperCamelCase : Optional[Any] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(__snake_case) _UpperCamelCase : str = self.default_image_processor _UpperCamelCase : List[str] = prepare_img() _UpperCamelCase : int = image_processor(images=__snake_case , return_tensors='pt').to(__snake_case) # forward pass with torch.no_grad(): _UpperCamelCase : Any = model(**__snake_case) # verify the logits _UpperCamelCase : Dict = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , __snake_case) _UpperCamelCase : Optional[int] = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]]).to(__snake_case) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1e-4)) @require_torch class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" a__ = (BitBackbone,) if is_torch_available() else () a__ = BitConfig a__ = False def A__ ( self): _UpperCamelCase : List[str] = BitModelTester(self)
648
1
from __future__ import annotations from collections.abc import Generator def lowerCamelCase_ ( ) -> Generator[int, None, None]: '''simple docstring''' _UpperCamelCase : dict[int, int] = {} _UpperCamelCase : Tuple = 2 while True: _UpperCamelCase : int = factor_map.pop(UpperCAmelCase_ , UpperCAmelCase_ ) if factor: _UpperCamelCase : Any = factor + prime while x in factor_map: x += factor _UpperCamelCase : Optional[int] = factor else: _UpperCamelCase : Any = prime yield prime prime += 1 def lowerCamelCase_ ( UpperCAmelCase_ : float = 1e1_0 ) -> int: '''simple docstring''' _UpperCamelCase : List[Any] = sieve() _UpperCamelCase : Optional[int] = 1 while True: _UpperCamelCase : List[str] = next(UpperCAmelCase_ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(UpperCAmelCase_ ) n += 2 if __name__ == "__main__": print(solution())
648
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowerCAmelCase__ = numpy.array([0, 0]) lowerCAmelCase__ = numpy.array([0.5, 0.8_66_02_54]) lowerCAmelCase__ = numpy.array([1, 0]) lowerCAmelCase__ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] , UpperCAmelCase_ : int ) -> list[numpy.ndarray]: '''simple docstring''' _UpperCamelCase : Tuple = initial_vectors for _ in range(UpperCAmelCase_ ): _UpperCamelCase : str = iteration_step(UpperCAmelCase_ ) return vectors def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] ) -> list[numpy.ndarray]: '''simple docstring''' _UpperCamelCase : int = [] for i, start_vector in enumerate(vectors[:-1] ): _UpperCamelCase : Union[str, Any] = vectors[i + 1] new_vectors.append(UpperCAmelCase_ ) _UpperCamelCase : Tuple = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def lowerCamelCase_ ( UpperCAmelCase_ : numpy.ndarray , UpperCAmelCase_ : float ) -> numpy.ndarray: '''simple docstring''' _UpperCamelCase : str = numpy.radians(UpperCAmelCase_ ) _UpperCamelCase , _UpperCamelCase : Optional[Any] = numpy.cos(UpperCAmelCase_ ), numpy.sin(UpperCAmelCase_ ) _UpperCamelCase : Any = numpy.array(((c, -s), (s, c)) ) return numpy.dot(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] ) -> None: '''simple docstring''' _UpperCamelCase : str = plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _UpperCamelCase , _UpperCamelCase : Dict = zip(*UpperCAmelCase_ ) plt.plot(UpperCAmelCase_ , UpperCAmelCase_ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
648
1
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class lowercase ( _lowercase ): """simple docstring""" def __init__( self , *__snake_case , **__snake_case): warnings.warn( 'The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PerceiverImageProcessor instead.' , __snake_case , ) super().__init__(*__snake_case , **__snake_case)
648
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCAmelCase__ = abspath(join(dirname(__file__), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def lowerCamelCase_ ( UpperCAmelCase_ : Any ) -> Union[str, Any]: '''simple docstring''' config.addinivalue_line( 'markers' , 'is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested' ) config.addinivalue_line( 'markers' , 'is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested' ) config.addinivalue_line('markers' , 'is_pipeline_test: mark test to run only when pipelines are tested' ) config.addinivalue_line('markers' , 'is_staging_test: mark test to run only in the staging environment' ) config.addinivalue_line('markers' , 'accelerate_tests: mark test that require accelerate' ) config.addinivalue_line('markers' , 'tool_tests: mark the tool tests that are run on their specific schedule' ) def lowerCamelCase_ ( UpperCAmelCase_ : Optional[int] ) -> List[Any]: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : Any ) -> List[Any]: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main _UpperCamelCase : str = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(UpperCAmelCase_ , id=UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict ) -> Tuple: '''simple docstring''' if exitstatus == 5: _UpperCamelCase : List[Any] = 0 # Doctest custom flag to ignore output. lowerCAmelCase__ = doctest.register_optionflag("""IGNORE_RESULT""") lowerCAmelCase__ = doctest.OutputChecker class lowercase ( _lowercase ): """simple docstring""" def A__ ( self , __snake_case , __snake_case , __snake_case): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , __snake_case , __snake_case , __snake_case) lowerCAmelCase__ = CustomOutputChecker lowerCAmelCase__ = HfDoctestModule lowerCAmelCase__ = HfDocTestParser
648
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase__ = { """configuration_wav2vec2""": ["""WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Wav2Vec2Config"""], """feature_extraction_wav2vec2""": ["""Wav2Vec2FeatureExtractor"""], """processing_wav2vec2""": ["""Wav2Vec2Processor"""], """tokenization_wav2vec2""": ["""Wav2Vec2CTCTokenizer""", """Wav2Vec2Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Wav2Vec2ForAudioFrameClassification""", """Wav2Vec2ForCTC""", """Wav2Vec2ForMaskedLM""", """Wav2Vec2ForPreTraining""", """Wav2Vec2ForSequenceClassification""", """Wav2Vec2ForXVector""", """Wav2Vec2Model""", """Wav2Vec2PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWav2Vec2ForCTC""", """TFWav2Vec2Model""", """TFWav2Vec2PreTrainedModel""", """TFWav2Vec2ForSequenceClassification""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """FlaxWav2Vec2ForCTC""", """FlaxWav2Vec2ForPreTraining""", """FlaxWav2Vec2Model""", """FlaxWav2Vec2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
648
lowerCAmelCase__ = range(2, 2_0 + 1) lowerCAmelCase__ = [1_0**k for k in range(ks[-1] + 1)] lowerCAmelCase__ = {} def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int ) -> Tuple: '''simple docstring''' _UpperCamelCase : Dict = sum(a_i[j] for j in range(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) ) _UpperCamelCase : Optional[int] = sum(a_i[j] * base[j] for j in range(min(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) ) ) _UpperCamelCase , _UpperCamelCase : Dict = 0, 0 _UpperCamelCase : Optional[int] = n - i _UpperCamelCase : Union[str, Any] = memo.get(UpperCAmelCase_ ) if sub_memo is not None: _UpperCamelCase : str = sub_memo.get(UpperCAmelCase_ ) if jumps is not None and len(UpperCAmelCase_ ) > 0: # find and make the largest jump without going over _UpperCamelCase : str = -1 for _k in range(len(UpperCAmelCase_ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _UpperCamelCase : Optional[Any] = _k break if max_jump >= 0: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = jumps[max_jump] # since the difference between jumps is cached, add c _UpperCamelCase : Tuple = diff + c for j in range(min(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) ): _UpperCamelCase , _UpperCamelCase : Dict = divmod(UpperCAmelCase_ , 1_0 ) if new_c > 0: add(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) else: _UpperCamelCase : Union[str, Any] = [] else: _UpperCamelCase : List[Any] = {c: []} _UpperCamelCase : Optional[int] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _UpperCamelCase , _UpperCamelCase : Optional[Any] = next_term(UpperCAmelCase_ , k - 1 , i + dn , UpperCAmelCase_ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _UpperCamelCase , _UpperCamelCase : Any = compute(UpperCAmelCase_ , UpperCAmelCase_ , i + dn , UpperCAmelCase_ ) diff += _diff dn += terms_jumped _UpperCamelCase : List[str] = sub_memo[c] # keep jumps sorted by # of terms skipped _UpperCamelCase : Union[str, Any] = 0 while j < len(UpperCAmelCase_ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCAmelCase_ , (diff, dn, k) ) return (diff, dn) def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any ) -> Dict: '''simple docstring''' if i >= n: return 0, i if k > len(UpperCAmelCase_ ): a_i.extend([0 for _ in range(k - len(UpperCAmelCase_ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _UpperCamelCase : Any = i _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Any = 0, 0, 0 for j in range(len(UpperCAmelCase_ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _UpperCamelCase : Union[str, Any] = ds_c + ds_b diff += addend _UpperCamelCase : Union[str, Any] = 0 for j in range(UpperCAmelCase_ ): _UpperCamelCase : Union[str, Any] = a_i[j] + addend _UpperCamelCase , _UpperCamelCase : Any = divmod(UpperCAmelCase_ , 1_0 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return diff, i - start_i def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any ) -> Dict: '''simple docstring''' for j in range(UpperCAmelCase_ , len(UpperCAmelCase_ ) ): _UpperCamelCase : List[str] = digits[j] + addend if s >= 1_0: _UpperCamelCase , _UpperCamelCase : Any = divmod(UpperCAmelCase_ , 1_0 ) _UpperCamelCase : Union[str, Any] = addend // 1_0 + quotient else: _UpperCamelCase : Dict = s _UpperCamelCase : Optional[Any] = addend // 1_0 if addend == 0: break while addend > 0: _UpperCamelCase , _UpperCamelCase : Dict = divmod(UpperCAmelCase_ , 1_0 ) digits.append(UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : int = 1_0**1_5 ) -> int: '''simple docstring''' _UpperCamelCase : Optional[Any] = [1] _UpperCamelCase : Optional[int] = 1 _UpperCamelCase : int = 0 while True: _UpperCamelCase , _UpperCamelCase : List[Any] = next_term(UpperCAmelCase_ , 2_0 , i + dn , UpperCAmelCase_ ) dn += terms_jumped if dn == n - i: break _UpperCamelCase : str = 0 for j in range(len(UpperCAmelCase_ ) ): a_n += digits[j] * 1_0**j return a_n if __name__ == "__main__": print(f'{solution() = }')
648
1
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> bool: '''simple docstring''' _UpperCamelCase : int = int(number**0.5 ) return number == sq * sq def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> tuple[int, int]: '''simple docstring''' _UpperCamelCase : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _UpperCamelCase : int = x_den * y_den * z_den _UpperCamelCase : int = gcd(UpperCAmelCase_ , UpperCAmelCase_ ) top //= hcf bottom //= hcf return top, bottom def lowerCamelCase_ ( UpperCAmelCase_ : int = 3_5 ) -> int: '''simple docstring''' _UpperCamelCase : set = set() _UpperCamelCase : int _UpperCamelCase : Fraction = Fraction(0 ) _UpperCamelCase : tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _UpperCamelCase : Dict = x_num * y_den + x_den * y_num _UpperCamelCase : int = x_den * y_den _UpperCamelCase : int = gcd(UpperCAmelCase_ , UpperCAmelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCamelCase : Any = add_three( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) unique_s.add(UpperCAmelCase_ ) # n=2 _UpperCamelCase : List[str] = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _UpperCamelCase : List[str] = x_den * x_den * y_den * y_den if is_sq(UpperCAmelCase_ ) and is_sq(UpperCAmelCase_ ): _UpperCamelCase : List[str] = int(sqrt(UpperCAmelCase_ ) ) _UpperCamelCase : Optional[Any] = int(sqrt(UpperCAmelCase_ ) ) _UpperCamelCase : List[Any] = gcd(UpperCAmelCase_ , UpperCAmelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCamelCase : str = add_three( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) unique_s.add(UpperCAmelCase_ ) # n=-1 _UpperCamelCase : Optional[int] = x_num * y_num _UpperCamelCase : int = x_den * y_num + x_num * y_den _UpperCamelCase : Tuple = gcd(UpperCAmelCase_ , UpperCAmelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCamelCase : List[str] = add_three( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) unique_s.add(UpperCAmelCase_ ) # n=2 _UpperCamelCase : List[Any] = x_num * x_num * y_num * y_num _UpperCamelCase : Optional[Any] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(UpperCAmelCase_ ) and is_sq(UpperCAmelCase_ ): _UpperCamelCase : Any = int(sqrt(UpperCAmelCase_ ) ) _UpperCamelCase : Tuple = int(sqrt(UpperCAmelCase_ ) ) _UpperCamelCase : List[Any] = gcd(UpperCAmelCase_ , UpperCAmelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCamelCase : Optional[Any] = add_three( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) unique_s.add(UpperCAmelCase_ ) for num, den in unique_s: total += Fraction(UpperCAmelCase_ , UpperCAmelCase_ ) return total.denominator + total.numerator if __name__ == "__main__": print(f'{solution() = }')
648
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowercase ( _lowercase ): """simple docstring""" a__ = "vit_mae" def __init__( self , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=2_24 , __snake_case=16 , __snake_case=3 , __snake_case=True , __snake_case=16 , __snake_case=5_12 , __snake_case=8 , __snake_case=20_48 , __snake_case=0.7_5 , __snake_case=False , **__snake_case , ): super().__init__(**__snake_case) _UpperCamelCase : Optional[int] = hidden_size _UpperCamelCase : Optional[int] = num_hidden_layers _UpperCamelCase : Tuple = num_attention_heads _UpperCamelCase : List[str] = intermediate_size _UpperCamelCase : str = hidden_act _UpperCamelCase : List[str] = hidden_dropout_prob _UpperCamelCase : List[Any] = attention_probs_dropout_prob _UpperCamelCase : str = initializer_range _UpperCamelCase : Any = layer_norm_eps _UpperCamelCase : int = image_size _UpperCamelCase : Any = patch_size _UpperCamelCase : List[Any] = num_channels _UpperCamelCase : Union[str, Any] = qkv_bias _UpperCamelCase : str = decoder_num_attention_heads _UpperCamelCase : Union[str, Any] = decoder_hidden_size _UpperCamelCase : Union[str, Any] = decoder_num_hidden_layers _UpperCamelCase : Any = decoder_intermediate_size _UpperCamelCase : int = mask_ratio _UpperCamelCase : List[Any] = norm_pix_loss
648
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ = { """configuration_canine""": ["""CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CanineConfig"""], """tokenization_canine""": ["""CanineTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """CANINE_PRETRAINED_MODEL_ARCHIVE_LIST""", """CanineForMultipleChoice""", """CanineForQuestionAnswering""", """CanineForSequenceClassification""", """CanineForTokenClassification""", """CanineLayer""", """CanineModel""", """CaninePreTrainedModel""", """load_tf_weights_in_canine""", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
648
import functools def lowerCamelCase_ ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int] ) -> int: '''simple docstring''' if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or not all(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(UpperCAmelCase_ ) != 3 or not all(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(UpperCAmelCase_ ) == 0: return 0 if min(UpperCAmelCase_ ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(UpperCAmelCase_ ) >= 3_6_6: raise ValueError('All days elements should be less than 366' ) _UpperCamelCase : Union[str, Any] = set(UpperCAmelCase_ ) @functools.cache def dynamic_programming(UpperCAmelCase_ : int ) -> int: if index > 3_6_5: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 3_0 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
648
1
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCAmelCase__ = 3 def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> int: '''simple docstring''' print('Generating primitive root of p' ) while True: _UpperCamelCase : Optional[int] = random.randrange(3 , UpperCAmelCase_ ) if pow(UpperCAmelCase_ , 2 , UpperCAmelCase_ ) == 1: continue if pow(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) == 1: continue return g def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: '''simple docstring''' print('Generating prime p...' ) _UpperCamelCase : List[Any] = rabin_miller.generate_large_prime(UpperCAmelCase_ ) # select large prime number. _UpperCamelCase : Tuple = primitive_root(UpperCAmelCase_ ) # one primitive root on modulo p. _UpperCamelCase : Optional[int] = random.randrange(3 , UpperCAmelCase_ ) # private_key -> have to be greater than 2 for safety. _UpperCamelCase : Optional[int] = cryptomath.find_mod_inverse(pow(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) , UpperCAmelCase_ ) _UpperCamelCase : List[str] = (key_size, e_a, e_a, p) _UpperCamelCase : List[str] = (key_size, d) return public_key, private_key def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : int ) -> None: '''simple docstring''' if os.path.exists(F'''{name}_pubkey.txt''' ) or os.path.exists(F'''{name}_privkey.txt''' ): print('\nWARNING:' ) print( F'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n''' 'Use a different name or delete these files and re-run this program.' ) sys.exit() _UpperCamelCase , _UpperCamelCase : Union[str, Any] = generate_key(UpperCAmelCase_ ) print(F'''\nWriting public key to file {name}_pubkey.txt...''' ) with open(F'''{name}_pubkey.txt''' , 'w' ) as fo: fo.write(F'''{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}''' ) print(F'''Writing private key to file {name}_privkey.txt...''' ) with open(F'''{name}_privkey.txt''' , 'w' ) as fo: fo.write(F'''{private_key[0]},{private_key[1]}''' ) def lowerCamelCase_ ( ) -> None: '''simple docstring''' print('Making key files...' ) make_key_files('elgamal' , 2_0_4_8 ) print('Key files generation successful' ) if __name__ == "__main__": main()
648
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=99 , __snake_case=64 , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=37 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=16 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=3 , __snake_case=4 , __snake_case=None , ): _UpperCamelCase : List[Any] = parent _UpperCamelCase : Optional[Any] = batch_size _UpperCamelCase : int = seq_length _UpperCamelCase : str = is_training _UpperCamelCase : Tuple = use_input_mask _UpperCamelCase : Union[str, Any] = use_token_type_ids _UpperCamelCase : Union[str, Any] = use_labels _UpperCamelCase : Optional[Any] = vocab_size _UpperCamelCase : List[Any] = hidden_size _UpperCamelCase : Optional[Any] = embedding_size _UpperCamelCase : str = num_hidden_layers _UpperCamelCase : str = num_attention_heads _UpperCamelCase : int = intermediate_size _UpperCamelCase : int = hidden_act _UpperCamelCase : Tuple = hidden_dropout_prob _UpperCamelCase : int = attention_probs_dropout_prob _UpperCamelCase : Tuple = max_position_embeddings _UpperCamelCase : List[str] = type_vocab_size _UpperCamelCase : Dict = type_sequence_label_size _UpperCamelCase : List[str] = initializer_range _UpperCamelCase : Optional[Any] = num_labels _UpperCamelCase : Tuple = num_choices _UpperCamelCase : List[str] = scope def A__ ( self): _UpperCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase : Any = None if self.use_input_mask: _UpperCamelCase : int = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase : Optional[Any] = None if self.use_token_type_ids: _UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase : int = None _UpperCamelCase : List[str] = None _UpperCamelCase : Dict = None if self.use_labels: _UpperCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self): return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : List[str] = MegatronBertModel(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case) _UpperCamelCase : Dict = model(__snake_case , token_type_ids=__snake_case) _UpperCamelCase : Optional[Any] = model(__snake_case) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : int = MegatronBertForMaskedLM(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Dict = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : str = MegatronBertForCausalLM(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Tuple = MegatronBertForNextSentencePrediction(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[Any] = MegatronBertForPreTraining(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[str] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , next_sentence_label=__snake_case , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : int = MegatronBertForQuestionAnswering(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[int] = self.num_labels _UpperCamelCase : Union[str, Any] = MegatronBertForSequenceClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Any = self.num_labels _UpperCamelCase : Optional[int] = MegatronBertForTokenClassification(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Tuple = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : List[str] = self.num_choices _UpperCamelCase : Optional[int] = MegatronBertForMultipleChoice(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : List[Any] = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : Optional[Any] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : Union[str, Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def A__ ( self): _UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) : Optional[int] = config_and_inputs _UpperCamelCase : int = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) a__ = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) a__ = True # test_resize_embeddings = False a__ = False def A__ ( self , __snake_case , __snake_case , __snake_case=False): _UpperCamelCase : str = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case) if return_labels: if model_class in get_values(__snake_case): _UpperCamelCase : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__snake_case) _UpperCamelCase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case) return inputs_dict def A__ ( self): _UpperCamelCase : Any = MegatronBertModelTester(self) _UpperCamelCase : int = ConfigTester(self , config_class=__snake_case , hidden_size=37) def A__ ( self): self.config_tester.run_common_tests() def A__ ( self): _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__snake_case) def A__ ( self): _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__snake_case) def A__ ( self): _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__snake_case) def A__ ( self): _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__snake_case) def A__ ( self): _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__snake_case) def A__ ( self): _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__snake_case) def A__ ( self): _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__snake_case) def A__ ( self): _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__snake_case) def lowerCamelCase_ ( UpperCAmelCase_ : str ) -> Optional[Any]: '''simple docstring''' return torch.tensor( UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ , ) lowerCAmelCase__ = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip('Model is not available.') def A__ ( self): _UpperCamelCase : int = 'nvidia/megatron-bert-uncased-345m' if "MYDIR" in os.environ: _UpperCamelCase : int = os.path.join(os.environ['MYDIR'] , __snake_case) _UpperCamelCase : Optional[int] = MegatronBertModel.from_pretrained(__snake_case) model.to(__snake_case) model.half() _UpperCamelCase : Optional[Any] = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]]) with torch.no_grad(): _UpperCamelCase : str = model(__snake_case)[0] _UpperCamelCase : Optional[int] = torch.Size((1, 9, 10_24)) self.assertEqual(output.shape , __snake_case) _UpperCamelCase : Union[str, Any] = [-0.6_0_4_0, -0.2_5_1_7, -0.1_0_2_5, 0.3_4_2_0, -0.6_7_5_8, -0.0_0_1_7, -0.1_0_8_9, -0.1_9_9_0, 0.5_7_2_8] for ii in range(3): for jj in range(3): _UpperCamelCase : Optional[Any] = output[0, ii, jj] _UpperCamelCase : Dict = expected[3 * ii + jj] _UpperCamelCase : Optional[int] = 'ii={} jj={} a={} b={}'.format(__snake_case , __snake_case , __snake_case , __snake_case) self.assertTrue(math.isclose(__snake_case , __snake_case , rel_tol=__snake_case , abs_tol=__snake_case) , msg=__snake_case)
648
1
def lowerCamelCase_ ( UpperCAmelCase_ : str ) -> list: '''simple docstring''' if n_term == "": return [] _UpperCamelCase : list = [] for temp in range(int(UpperCAmelCase_ ) ): series.append(F'''1/{temp + 1}''' if series else '1' ) return series if __name__ == "__main__": lowerCAmelCase__ = input("""Enter the last number (nth term) of the Harmonic Series""") print("""Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n""") print(harmonic_series(nth_term))
648
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = """▁""" lowerCAmelCase__ = {"""vocab_file""": """sentencepiece.bpe.model"""} lowerCAmelCase__ = { """vocab_file""": { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model""" ), } } lowerCAmelCase__ = { """xlm-roberta-base""": 5_1_2, """xlm-roberta-large""": 5_1_2, """xlm-roberta-large-finetuned-conll02-dutch""": 5_1_2, """xlm-roberta-large-finetuned-conll02-spanish""": 5_1_2, """xlm-roberta-large-finetuned-conll03-english""": 5_1_2, """xlm-roberta-large-finetuned-conll03-german""": 5_1_2, } class lowercase ( _lowercase ): """simple docstring""" a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = ["input_ids", "attention_mask"] def __init__( self , __snake_case , __snake_case="<s>" , __snake_case="</s>" , __snake_case="</s>" , __snake_case="<s>" , __snake_case="<unk>" , __snake_case="<pad>" , __snake_case="<mask>" , __snake_case = None , **__snake_case , ): # Mask token behave like a normal word, i.e. include the space before it _UpperCamelCase : Dict = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case) if isinstance(__snake_case , __snake_case) else mask_token _UpperCamelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) _UpperCamelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(__snake_case)) _UpperCamelCase : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _UpperCamelCase : int = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _UpperCamelCase : List[Any] = 1 _UpperCamelCase : Any = len(self.sp_model) + self.fairseq_offset _UpperCamelCase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self): _UpperCamelCase : List[Any] = self.__dict__.copy() _UpperCamelCase : Optional[Any] = None _UpperCamelCase : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self , __snake_case): _UpperCamelCase : int = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): _UpperCamelCase : Tuple = {} _UpperCamelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) def A__ ( self , __snake_case , __snake_case = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCamelCase : Tuple = [self.cls_token_id] _UpperCamelCase : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self , __snake_case , __snake_case = None , __snake_case = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case) if token_ids_a is None: return [1] + ([0] * len(__snake_case)) + [1] return [1] + ([0] * len(__snake_case)) + [1, 1] + ([0] * len(__snake_case)) + [1] def A__ ( self , __snake_case , __snake_case = None): _UpperCamelCase : Optional[Any] = [self.sep_token_id] _UpperCamelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def A__ ( self): return len(self.sp_model) + self.fairseq_offset + 1 # Add the <mask> token def A__ ( self): _UpperCamelCase : List[str] = {self.convert_ids_to_tokens(__snake_case): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def A__ ( self , __snake_case): return self.sp_model.encode(__snake_case , out_type=__snake_case) def A__ ( self , __snake_case): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCamelCase : str = self.sp_model.PieceToId(__snake_case) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A__ ( self , __snake_case): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def A__ ( self , __snake_case): _UpperCamelCase : Optional[int] = ''.join(__snake_case).replace(__snake_case , ' ').strip() return out_string def A__ ( self , __snake_case , __snake_case = None): if not os.path.isdir(__snake_case): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return _UpperCamelCase : str = os.path.join( __snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(__snake_case) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , __snake_case) elif not os.path.isfile(self.vocab_file): with open(__snake_case , 'wb') as fi: _UpperCamelCase : Any = self.sp_model.serialized_model_proto() fi.write(__snake_case) return (out_vocab_file,)
648
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ = { """configuration_altclip""": [ """ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AltCLIPConfig""", """AltCLIPTextConfig""", """AltCLIPVisionConfig""", ], """processing_altclip""": ["""AltCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """AltCLIPPreTrainedModel""", """AltCLIPModel""", """AltCLIPTextModel""", """AltCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
648
from ...processing_utils import ProcessorMixin class lowercase ( _lowercase ): """simple docstring""" a__ = ["image_processor", "feature_extractor"] a__ = "TvltImageProcessor" a__ = "TvltFeatureExtractor" def __init__( self , __snake_case , __snake_case): super().__init__(image_processor=__snake_case , feature_extractor=__snake_case) _UpperCamelCase : List[str] = image_processor _UpperCamelCase : Dict = feature_extractor def __call__( self , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=False , __snake_case=False , *__snake_case , **__snake_case , ): if images is None and audio is None: raise ValueError('You need to specify either an `images` or `audio` input to process.') _UpperCamelCase : Union[str, Any] = None if images is not None: _UpperCamelCase : Tuple = self.image_processor(__snake_case , mask_pixel=__snake_case , *__snake_case , **__snake_case) if images_mixed is not None: _UpperCamelCase : Union[str, Any] = self.image_processor(__snake_case , is_mixed=__snake_case , *__snake_case , **__snake_case) if audio is not None: _UpperCamelCase : Tuple = self.feature_extractor( __snake_case , *__snake_case , sampling_rate=__snake_case , mask_audio=__snake_case , **__snake_case) _UpperCamelCase : Tuple = {} if audio is not None: output_dict.update(__snake_case) if images is not None: output_dict.update(__snake_case) if images_mixed_dict is not None: output_dict.update(__snake_case) return output_dict @property def A__ ( self): _UpperCamelCase : List[Any] = self.image_processor.model_input_names _UpperCamelCase : List[Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
648
1
from __future__ import annotations def lowerCamelCase_ ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int ) -> int: '''simple docstring''' if len(UpperCAmelCase_ ) < k or k < 0: raise ValueError('Invalid Input' ) _UpperCamelCase : int = sum(array[:k] ) for i in range(len(UpperCAmelCase_ ) - k ): _UpperCamelCase : int = current_sum - array[i] + array[i + k] _UpperCamelCase : str = max(UpperCAmelCase_ , UpperCAmelCase_ ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() lowerCAmelCase__ = [randint(-1_0_0_0, 1_0_0_0) for i in range(1_0_0)] lowerCAmelCase__ = randint(0, 1_1_0) print(f'The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}')
648
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class lowercase ( _lowercase ): """simple docstring""" a__ = "rwkv" a__ = {"max_position_embeddings": "context_length"} def __init__( self , __snake_case=5_02_77 , __snake_case=10_24 , __snake_case=40_96 , __snake_case=32 , __snake_case=None , __snake_case=None , __snake_case=1e-5 , __snake_case=0 , __snake_case=0 , __snake_case=6 , __snake_case=False , __snake_case=True , **__snake_case , ): _UpperCamelCase : str = vocab_size _UpperCamelCase : int = context_length _UpperCamelCase : Tuple = hidden_size _UpperCamelCase : Tuple = num_hidden_layers _UpperCamelCase : Dict = attention_hidden_size if attention_hidden_size is not None else hidden_size _UpperCamelCase : Tuple = intermediate_size if intermediate_size is not None else 4 * hidden_size _UpperCamelCase : Union[str, Any] = layer_norm_epsilon _UpperCamelCase : Dict = rescale_every _UpperCamelCase : Optional[Any] = use_cache _UpperCamelCase : str = bos_token_id _UpperCamelCase : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case)
648
1
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCAmelCase__ = 1_6 lowerCAmelCase__ = 3_2 def lowerCamelCase_ ( UpperCAmelCase_ : Accelerator , UpperCAmelCase_ : int = 1_6 , UpperCAmelCase_ : str = "bert-base-cased" ) -> Tuple: '''simple docstring''' _UpperCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = load_dataset('glue' , 'mrpc' ) def tokenize_function(UpperCAmelCase_ : Optional[int] ): # max_length=None => use the model max length (it's actually the default) _UpperCamelCase : Optional[Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _UpperCamelCase : int = datasets.map( UpperCAmelCase_ , batched=UpperCAmelCase_ , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=UpperCAmelCase_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCamelCase : Union[str, Any] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(UpperCAmelCase_ : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCAmelCase_ , padding='max_length' , max_length=1_2_8 , return_tensors='pt' ) return tokenizer.pad(UpperCAmelCase_ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. _UpperCamelCase : List[str] = DataLoader( tokenized_datasets['train'] , shuffle=UpperCAmelCase_ , collate_fn=UpperCAmelCase_ , batch_size=UpperCAmelCase_ ) _UpperCamelCase : Any = DataLoader( tokenized_datasets['validation'] , shuffle=UpperCAmelCase_ , collate_fn=UpperCAmelCase_ , batch_size=UpperCAmelCase_ ) return train_dataloader, eval_dataloader def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str ) -> str: '''simple docstring''' _UpperCamelCase : int = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCamelCase : int = config['lr'] _UpperCamelCase : Union[str, Any] = int(config['num_epochs'] ) _UpperCamelCase : Optional[int] = int(config['seed'] ) _UpperCamelCase : Dict = int(config['batch_size'] ) _UpperCamelCase : Tuple = args.model_name_or_path set_seed(UpperCAmelCase_ ) _UpperCamelCase , _UpperCamelCase : Optional[Any] = get_dataloaders(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCamelCase : Any = AutoModelForSequenceClassification.from_pretrained(UpperCAmelCase_ , return_dict=UpperCAmelCase_ ) # Instantiate optimizer _UpperCamelCase : List[str] = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _UpperCamelCase : int = optimizer_cls(params=model.parameters() , lr=UpperCAmelCase_ ) if accelerator.state.deepspeed_plugin is not None: _UpperCamelCase : List[str] = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: _UpperCamelCase : Tuple = 1 _UpperCamelCase : Union[str, Any] = (len(UpperCAmelCase_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _UpperCamelCase : Optional[int] = get_linear_schedule_with_warmup( optimizer=UpperCAmelCase_ , num_warmup_steps=0 , num_training_steps=UpperCAmelCase_ , ) else: _UpperCamelCase : Any = DummyScheduler(UpperCAmelCase_ , total_num_steps=UpperCAmelCase_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : str = accelerator.prepare( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # We need to keep track of how many total steps we have iterated over _UpperCamelCase : int = 0 # We also need to keep track of the stating epoch so files are named properly _UpperCamelCase : Union[str, Any] = 0 # Now we train the model _UpperCamelCase : str = evaluate.load('glue' , 'mrpc' ) _UpperCamelCase : Dict = 0 _UpperCamelCase : List[str] = {} for epoch in range(UpperCAmelCase_ , UpperCAmelCase_ ): model.train() for step, batch in enumerate(UpperCAmelCase_ ): _UpperCamelCase : List[str] = model(**UpperCAmelCase_ ) _UpperCamelCase : List[str] = outputs.loss _UpperCamelCase : Any = loss / gradient_accumulation_steps accelerator.backward(UpperCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() _UpperCamelCase : Optional[int] = 0 for step, batch in enumerate(UpperCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCamelCase : List[str] = model(**UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times _UpperCamelCase , _UpperCamelCase : str = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(UpperCAmelCase_ ) - 1: _UpperCamelCase : Union[str, Any] = predictions[: len(eval_dataloader.dataset ) - samples_seen] _UpperCamelCase : Tuple = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=UpperCAmelCase_ , references=UpperCAmelCase_ , ) _UpperCamelCase : Any = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , UpperCAmelCase_ ) _UpperCamelCase : Any = eval_metric['accuracy'] if best_performance < eval_metric["accuracy"]: _UpperCamelCase : Optional[Any] = eval_metric['accuracy'] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , 'all_results.json' ) , 'w' ) as f: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( ) -> Optional[int]: '''simple docstring''' _UpperCamelCase : int = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=UpperCAmelCase_ , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=UpperCAmelCase_ , ) parser.add_argument( '--output_dir' , type=UpperCAmelCase_ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--performance_lower_bound' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , help='Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.' , ) parser.add_argument( '--num_epochs' , type=UpperCAmelCase_ , default=3 , help='Number of train epochs.' , ) _UpperCamelCase : Tuple = parser.parse_args() _UpperCamelCase : Optional[int] = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 4_2, 'batch_size': 1_6} training_function(UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": main()
648
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class lowercase ( _lowercase ): """simple docstring""" a__ = "bert" def __init__( self , __snake_case=3_05_22 , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=0 , __snake_case="absolute" , __snake_case=True , __snake_case=None , **__snake_case , ): super().__init__(pad_token_id=__snake_case , **__snake_case) _UpperCamelCase : int = vocab_size _UpperCamelCase : Optional[Any] = hidden_size _UpperCamelCase : Optional[Any] = num_hidden_layers _UpperCamelCase : List[str] = num_attention_heads _UpperCamelCase : int = hidden_act _UpperCamelCase : Optional[Any] = intermediate_size _UpperCamelCase : Union[str, Any] = hidden_dropout_prob _UpperCamelCase : Tuple = attention_probs_dropout_prob _UpperCamelCase : Optional[int] = max_position_embeddings _UpperCamelCase : str = type_vocab_size _UpperCamelCase : Optional[Any] = initializer_range _UpperCamelCase : List[str] = layer_norm_eps _UpperCamelCase : Any = position_embedding_type _UpperCamelCase : Any = use_cache _UpperCamelCase : Any = classifier_dropout class lowercase ( _lowercase ): """simple docstring""" @property def A__ ( self): if self.task == "multiple-choice": _UpperCamelCase : Union[str, Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCamelCase : Optional[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ])
648
1
from math import factorial lowerCAmelCase__ = {str(digit): factorial(digit) for digit in range(1_0)} def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> int: '''simple docstring''' if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise TypeError('Parameter number must be int' ) if number < 0: raise ValueError('Parameter number must be greater than or equal to 0' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(UpperCAmelCase_ ) ) def lowerCamelCase_ ( UpperCAmelCase_ : int = 6_0 , UpperCAmelCase_ : int = 1_0_0_0_0_0_0 ) -> int: '''simple docstring''' if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise TypeError('Parameters chain_length and number_limit must be int' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( 'Parameters chain_length and number_limit must be greater than 0' ) # the counter for the chains with the exact desired length _UpperCamelCase : str = 0 # the cached sizes of the previous chains _UpperCamelCase : dict[int, int] = {} for start_chain_element in range(1 , UpperCAmelCase_ ): # The temporary set will contain the elements of the chain _UpperCamelCase : int = set() _UpperCamelCase : Optional[Any] = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. _UpperCamelCase : int = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(UpperCAmelCase_ ) chain_set_length += 1 _UpperCamelCase : Optional[int] = digit_factorial_sum(UpperCAmelCase_ ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] _UpperCamelCase : List[str] = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(f'{solution()}')
648
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowercase ( _lowercase ): """simple docstring""" a__ = "facebook/bart-large-mnli" a__ = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) a__ = "text_classifier" a__ = AutoTokenizer a__ = AutoModelForSequenceClassification a__ = ["text", ["text"]] a__ = ["text"] def A__ ( self): super().setup() _UpperCamelCase : List[Any] = self.model.config _UpperCamelCase : Optional[int] = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail'): _UpperCamelCase : Tuple = int(__snake_case) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.') def A__ ( self , __snake_case , __snake_case): _UpperCamelCase : List[Any] = labels return self.pre_processor( [text] * len(__snake_case) , [f'''This example is {label}''' for label in labels] , return_tensors='pt' , padding='max_length' , ) def A__ ( self , __snake_case): _UpperCamelCase : str = outputs.logits _UpperCamelCase : Optional[Any] = torch.argmax(logits[:, 2]).item() return self._labels[label_id]
648
1
from functools import lru_cache def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> set: '''simple docstring''' _UpperCamelCase : Dict = 2 _UpperCamelCase : Optional[int] = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(UpperCAmelCase_ ) if n > 1: factors.add(UpperCAmelCase_ ) return factors @lru_cache def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> int: '''simple docstring''' return len(unique_prime_factors(UpperCAmelCase_ ) ) def lowerCamelCase_ ( UpperCAmelCase_ : list ) -> bool: '''simple docstring''' return len(set(UpperCAmelCase_ ) ) in (0, 1) def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> list: '''simple docstring''' _UpperCamelCase : List[Any] = 2 while True: # Increment each value of a generated range _UpperCamelCase : str = [base + i for i in range(UpperCAmelCase_ )] # Run elements through out unique_prime_factors function # Append our target number to the end. _UpperCamelCase : Union[str, Any] = [upf_len(UpperCAmelCase_ ) for x in group] checker.append(UpperCAmelCase_ ) # If all numbers in the list are equal, return the group variable. if equality(UpperCAmelCase_ ): return group # Increment our base variable by 1 base += 1 def lowerCamelCase_ ( UpperCAmelCase_ : int = 4 ) -> int: '''simple docstring''' _UpperCamelCase : Any = run(UpperCAmelCase_ ) return results[0] if len(UpperCAmelCase_ ) else None if __name__ == "__main__": print(solution())
648
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
648
1
from __future__ import annotations import os from typing import Any import requests lowerCAmelCase__ = """https://api.github.com""" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user lowerCAmelCase__ = BASE_URL + """/user""" # https://github.com/settings/tokens lowerCAmelCase__ = os.environ.get("""USER_TOKEN""", """""") def lowerCamelCase_ ( UpperCAmelCase_ : str ) -> dict[Any, Any]: '''simple docstring''' _UpperCamelCase : Tuple = { 'Authorization': F'''token {auth_token}''', 'Accept': 'application/vnd.github.v3+json', } return requests.get(UpperCAmelCase_ , headers=UpperCAmelCase_ ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'{key}: {value}') else: raise ValueError("""'USER_TOKEN' field cannot be empty.""")
648
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
648
1
from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = """T5Config""" class lowercase ( _lowercase ): """simple docstring""" a__ = "mt5" a__ = MTaConfig class lowercase ( _lowercase ): """simple docstring""" a__ = "mt5" a__ = MTaConfig class lowercase ( _lowercase ): """simple docstring""" a__ = "mt5" a__ = MTaConfig
648
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_sentencepiece_available(): import sentencepiece as sp lowerCAmelCase__ = 5 lowerCAmelCase__ = 1_0 @require_sentencepiece @require_tokenizers class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" a__ = SpeechaTextTokenizer a__ = False a__ = True def A__ ( self): super().setUp() _UpperCamelCase : Any = sp.SentencePieceProcessor() spm_model.Load(__snake_case) _UpperCamelCase : List[str] = ['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_) for id_ in range(len(__snake_case))] _UpperCamelCase : Dict = dict(zip(__snake_case , range(len(__snake_case)))) _UpperCamelCase : Tuple = Path(self.tmpdirname) save_json(__snake_case , save_dir / VOCAB_FILES_NAMES['vocab_file']) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__snake_case , save_dir / VOCAB_FILES_NAMES['spm_file']) _UpperCamelCase : int = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def A__ ( self): _UpperCamelCase : str = '<pad>' _UpperCamelCase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case) , __snake_case) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case) , __snake_case) def A__ ( self): _UpperCamelCase : Optional[Any] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(vocab_keys[-1] , 'j') self.assertEqual(len(__snake_case) , 10_01) def A__ ( self): self.assertEqual(self.get_tokenizer().vocab_size , 10_01) def A__ ( self): _UpperCamelCase : Any = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) _UpperCamelCase : List[str] = tokenizer.tokenize('This is a test') self.assertListEqual(__snake_case , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case) , [2_89, 50, 14, 1_74, 3_86] , ) _UpperCamelCase : int = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( __snake_case , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) _UpperCamelCase : int = tokenizer.convert_tokens_to_ids(__snake_case) self.assertListEqual(__snake_case , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8]) _UpperCamelCase : Tuple = tokenizer.convert_ids_to_tokens(__snake_case) self.assertListEqual( __snake_case , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def A__ ( self): # fmt: off _UpperCamelCase : Optional[int] = {'input_ids': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , ) @require_sentencepiece class lowercase ( unittest.TestCase ): """simple docstring""" a__ = "valhalla/s2t_mustc_multilinguial_medium" a__ = "C'est trop cool" a__ = "Esto es genial" @classmethod def A__ ( cls): _UpperCamelCase : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name) return cls def A__ ( self): self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4) self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6) self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9) self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11) def A__ ( self): self.assertEqual(self.tokenizer.vocab_size , 1_00_00) def A__ ( self): self.assertIn(__snake_case , self.tokenizer.all_special_ids) _UpperCamelCase : Optional[int] = [ES_CODE, 4, 16_01, 47, 76_47, 2] _UpperCamelCase : Tuple = self.tokenizer.decode(__snake_case , skip_special_tokens=__snake_case) _UpperCamelCase : Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__snake_case) self.assertEqual(__snake_case , __snake_case) self.assertNotIn(self.tokenizer.eos_token , __snake_case) def A__ ( self): _UpperCamelCase : Any = 'fr' _UpperCamelCase : List[Any] = self.tokenizer(self.french_text).input_ids self.assertEqual(encoded[0] , __snake_case) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id) def A__ ( self): _UpperCamelCase : Union[str, Any] = 'fr' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE]) _UpperCamelCase : List[str] = 'es' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE])
648
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase__ = { """configuration_vivit""": ["""VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """VivitConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ["""VivitImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """VivitModel""", """VivitPreTrainedModel""", """VivitForVideoClassification""", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
648
import logging from transformers.configuration_utils import PretrainedConfig lowerCAmelCase__ = logging.getLogger(__name__) class lowercase ( _lowercase ): """simple docstring""" a__ = "masked_bert" def __init__( self , __snake_case=3_05_22 , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=0 , __snake_case="topK" , __snake_case="constant" , __snake_case=0.0 , **__snake_case , ): super().__init__(pad_token_id=__snake_case , **__snake_case) _UpperCamelCase : List[Any] = vocab_size _UpperCamelCase : Union[str, Any] = hidden_size _UpperCamelCase : Optional[int] = num_hidden_layers _UpperCamelCase : Any = num_attention_heads _UpperCamelCase : int = hidden_act _UpperCamelCase : str = intermediate_size _UpperCamelCase : str = hidden_dropout_prob _UpperCamelCase : Any = attention_probs_dropout_prob _UpperCamelCase : Tuple = max_position_embeddings _UpperCamelCase : Dict = type_vocab_size _UpperCamelCase : str = initializer_range _UpperCamelCase : List[Any] = layer_norm_eps _UpperCamelCase : Tuple = pruning_method _UpperCamelCase : Tuple = mask_init _UpperCamelCase : Dict = mask_scale
648
1
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
648
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow lowerCAmelCase__ = False class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self , __snake_case=32): set_seed(0) _UpperCamelCase : int = UNetaDModel(sample_size=__snake_case , in_channels=3 , out_channels=3) _UpperCamelCase : str = torch.optim.SGD(model.parameters() , lr=0.0_0_0_1) return model, optimizer @slow def A__ ( self): _UpperCamelCase : Tuple = 'cpu' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable _UpperCamelCase : List[Any] = DDPMScheduler( num_train_timesteps=10_00 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='linear' , clip_sample=__snake_case , ) _UpperCamelCase : List[Any] = DDIMScheduler( num_train_timesteps=10_00 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='linear' , clip_sample=__snake_case , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0) _UpperCamelCase : Optional[Any] = [torch.randn((4, 3, 32, 32)).clip(-1 , 1).to(__snake_case) for _ in range(4)] _UpperCamelCase : str = [torch.randn((4, 3, 32, 32)).to(__snake_case) for _ in range(4)] _UpperCamelCase : int = [torch.randint(0 , 10_00 , (4,)).long().to(__snake_case) for _ in range(4)] # train with a DDPM scheduler _UpperCamelCase , _UpperCamelCase : List[Any] = self.get_model_optimizer(resolution=32) model.train().to(__snake_case) for i in range(4): optimizer.zero_grad() _UpperCamelCase : int = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) _UpperCamelCase : Any = model(__snake_case , timesteps[i]).sample _UpperCamelCase : str = torch.nn.functional.mse_loss(__snake_case , noise[i]) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM _UpperCamelCase , _UpperCamelCase : Union[str, Any] = self.get_model_optimizer(resolution=32) model.train().to(__snake_case) for i in range(4): optimizer.zero_grad() _UpperCamelCase : Dict = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) _UpperCamelCase : Dict = model(__snake_case , timesteps[i]).sample _UpperCamelCase : Tuple = torch.nn.functional.mse_loss(__snake_case , noise[i]) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1e-5)) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1e-5))
648
1
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder lowerCAmelCase__ = datasets.utils.logging.get_logger(__name__) class lowercase ( folder_based_builder.FolderBasedBuilderConfig ): """simple docstring""" a__ = None a__ = None class lowercase ( folder_based_builder.FolderBasedBuilder ): """simple docstring""" a__ = datasets.Audio() a__ = "audio" a__ = AudioFolderConfig a__ = 42 # definition at the bottom of the script a__ = AudioClassification(audio_column="audio" , label_column="label" ) lowerCAmelCase__ = [ """.aiff""", """.au""", """.avr""", """.caf""", """.flac""", """.htk""", """.svx""", """.mat4""", """.mat5""", """.mpc2k""", """.ogg""", """.paf""", """.pvf""", """.raw""", """.rf64""", """.sd2""", """.sds""", """.ircam""", """.voc""", """.w64""", """.wav""", """.nist""", """.wavex""", """.wve""", """.xi""", """.mp3""", """.opus""", ] lowerCAmelCase__ = AUDIO_EXTENSIONS
648
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) lowerCAmelCase__ = { """sample_size""": 3_2, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 1_0_0_0, """block_out_channels""": [3_2, 6_4], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """sample_size""": 6_4, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 1_0_0_0, """block_out_channels""": [1_9_2, 1_9_2 * 2, 1_9_2 * 3, 1_9_2 * 4], """attention_head_dim""": 6_4, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """sample_size""": 2_5_6, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [2_5_6, 2_5_6, 2_5_6 * 2, 2_5_6 * 2, 2_5_6 * 4, 2_5_6 * 4], """attention_head_dim""": 6_4, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """num_train_timesteps""": 4_0, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } lowerCAmelCase__ = { """num_train_timesteps""": 2_0_1, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } lowerCAmelCase__ = { """num_train_timesteps""": 1_5_1, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> List[str]: '''simple docstring''' if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def lowerCamelCase_ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any]=False ) -> str: '''simple docstring''' _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.in_layers.0.weight'''] _UpperCamelCase : str = checkpoint[F'''{old_prefix}.in_layers.0.bias'''] _UpperCamelCase : str = checkpoint[F'''{old_prefix}.in_layers.2.weight'''] _UpperCamelCase : Union[str, Any] = checkpoint[F'''{old_prefix}.in_layers.2.bias'''] _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.emb_layers.1.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.emb_layers.1.bias'''] _UpperCamelCase : Tuple = checkpoint[F'''{old_prefix}.out_layers.0.weight'''] _UpperCamelCase : List[Any] = checkpoint[F'''{old_prefix}.out_layers.0.bias'''] _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.out_layers.3.weight'''] _UpperCamelCase : Union[str, Any] = checkpoint[F'''{old_prefix}.out_layers.3.bias'''] if has_skip: _UpperCamelCase : Tuple = checkpoint[F'''{old_prefix}.skip_connection.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any=None ) -> int: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 ) _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.norm.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.norm.bias'''] _UpperCamelCase : List[str] = weight_q.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Dict = bias_q.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Any = weight_k.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : List[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Dict = weight_v.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Tuple = bias_v.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Optional[Any] = ( checkpoint[F'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] ) -> Tuple: '''simple docstring''' _UpperCamelCase : Any = torch.load(UpperCAmelCase_ , map_location='cpu' ) _UpperCamelCase : Union[str, Any] = {} _UpperCamelCase : Optional[int] = checkpoint['time_embed.0.weight'] _UpperCamelCase : List[Any] = checkpoint['time_embed.0.bias'] _UpperCamelCase : Dict = checkpoint['time_embed.2.weight'] _UpperCamelCase : Optional[Any] = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: _UpperCamelCase : List[str] = checkpoint['label_emb.weight'] _UpperCamelCase : Optional[int] = checkpoint['input_blocks.0.0.weight'] _UpperCamelCase : Union[str, Any] = checkpoint['input_blocks.0.0.bias'] _UpperCamelCase : Optional[int] = unet_config['down_block_types'] _UpperCamelCase : Optional[Any] = unet_config['layers_per_block'] _UpperCamelCase : Dict = unet_config['attention_head_dim'] _UpperCamelCase : List[str] = unet_config['block_out_channels'] _UpperCamelCase : str = 1 _UpperCamelCase : Optional[int] = channels_list[0] for i, layer_type in enumerate(UpperCAmelCase_ ): _UpperCamelCase : List[str] = channels_list[i] _UpperCamelCase : str = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(UpperCAmelCase_ ): _UpperCamelCase : str = F'''down_blocks.{i}.resnets.{j}''' _UpperCamelCase : List[Any] = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : Any = True if j == 0 and downsample_block_has_skip else False _UpperCamelCase : str = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(UpperCAmelCase_ ): _UpperCamelCase : List[str] = F'''down_blocks.{i}.resnets.{j}''' _UpperCamelCase : str = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : int = True if j == 0 and downsample_block_has_skip else False _UpperCamelCase : Any = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) _UpperCamelCase : Dict = F'''down_blocks.{i}.attentions.{j}''' _UpperCamelCase : Optional[int] = F'''input_blocks.{current_layer}.1''' _UpperCamelCase : Dict = convert_attention( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : int = F'''down_blocks.{i}.downsamplers.0''' _UpperCamelCase : Optional[int] = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : List[Any] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 _UpperCamelCase : Tuple = current_channels # hardcoded the mid-block for now _UpperCamelCase : Any = 'mid_block.resnets.0' _UpperCamelCase : Optional[Any] = 'middle_block.0' _UpperCamelCase : Tuple = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = 'mid_block.attentions.0' _UpperCamelCase : Tuple = 'middle_block.1' _UpperCamelCase : Union[str, Any] = convert_attention(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Tuple = 'mid_block.resnets.1' _UpperCamelCase : str = 'middle_block.2' _UpperCamelCase : List[str] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : List[Any] = 0 _UpperCamelCase : Optional[int] = unet_config['up_block_types'] for i, layer_type in enumerate(UpperCAmelCase_ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _UpperCamelCase : Optional[Any] = F'''up_blocks.{i}.resnets.{j}''' _UpperCamelCase : Optional[int] = F'''output_blocks.{current_layer}.0''' _UpperCamelCase : str = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : List[Any] = F'''up_blocks.{i}.upsamplers.0''' _UpperCamelCase : Dict = F'''output_blocks.{current_layer-1}.1''' _UpperCamelCase : Optional[int] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _UpperCamelCase : str = F'''up_blocks.{i}.resnets.{j}''' _UpperCamelCase : Union[str, Any] = F'''output_blocks.{current_layer}.0''' _UpperCamelCase : Optional[int] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) _UpperCamelCase : int = F'''up_blocks.{i}.attentions.{j}''' _UpperCamelCase : List[Any] = F'''output_blocks.{current_layer}.1''' _UpperCamelCase : Optional[int] = convert_attention( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : List[Any] = F'''up_blocks.{i}.upsamplers.0''' _UpperCamelCase : Union[str, Any] = F'''output_blocks.{current_layer-1}.2''' _UpperCamelCase : List[str] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : List[Any] = checkpoint['out.0.weight'] _UpperCamelCase : str = checkpoint['out.0.bias'] _UpperCamelCase : int = checkpoint['out.2.weight'] _UpperCamelCase : List[Any] = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = strabool(args.class_cond) lowerCAmelCase__ = os.path.basename(args.unet_path) print(f'Checkpoint: {ckpt_name}') # Get U-Net config if "imagenet64" in ckpt_name: lowerCAmelCase__ = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCAmelCase__ = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: lowerCAmelCase__ = TEST_UNET_CONFIG else: raise ValueError(f'Checkpoint type {ckpt_name} is not currently supported.') if not args.class_cond: lowerCAmelCase__ = None lowerCAmelCase__ = con_pt_to_diffuser(args.unet_path, unet_config) lowerCAmelCase__ = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: lowerCAmelCase__ = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: lowerCAmelCase__ = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCAmelCase__ = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f'Checkpoint type {ckpt_name} is not currently supported.') lowerCAmelCase__ = CMStochasticIterativeScheduler(**scheduler_config) lowerCAmelCase__ = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
648
1
def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ) -> Tuple: '''simple docstring''' assert x is not None assert y is not None _UpperCamelCase : List[str] = len(UpperCAmelCase_ ) _UpperCamelCase : Tuple = len(UpperCAmelCase_ ) # declaring the array for storing the dp values _UpperCamelCase : Tuple = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): _UpperCamelCase : List[Any] = 1 if x[i - 1] == y[j - 1] else 0 _UpperCamelCase : Any = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) _UpperCamelCase : int = '' _UpperCamelCase , _UpperCamelCase : Optional[int] = m, n while i > 0 and j > 0: _UpperCamelCase : Any = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: _UpperCamelCase : Optional[Any] = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": lowerCAmelCase__ = """AGGTAB""" lowerCAmelCase__ = """GXTXAYB""" lowerCAmelCase__ = 4 lowerCAmelCase__ = """GTAB""" lowerCAmelCase__ , lowerCAmelCase__ = longest_common_subsequence(a, b) print("""len =""", ln, """, sub-sequence =""", subseq) import doctest doctest.testmod()
648
def lowerCamelCase_ ( UpperCAmelCase_ : list ) -> list: '''simple docstring''' if len(UpperCAmelCase_ ) <= 1: return [tuple(UpperCAmelCase_ )] _UpperCamelCase : List[Any] = [] def generate(UpperCAmelCase_ : int , UpperCAmelCase_ : list ): _UpperCamelCase : Optional[int] = [0] * n res.append(tuple(UpperCAmelCase_ ) ) _UpperCamelCase : List[Any] = 0 while i < n: if c[i] < i: if i % 2 == 0: _UpperCamelCase , _UpperCamelCase : List[str] = arr[i], arr[0] else: _UpperCamelCase , _UpperCamelCase : List[str] = arr[i], arr[c[i]] res.append(tuple(UpperCAmelCase_ ) ) c[i] += 1 _UpperCamelCase : Tuple = 0 else: _UpperCamelCase : Tuple = 0 i += 1 generate(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) return res if __name__ == "__main__": lowerCAmelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCAmelCase__ = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
648
1
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def lowerCamelCase_ ( UpperCAmelCase_ : Any ) -> Union[str, Any]: '''simple docstring''' return x + 2 class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self): _UpperCamelCase : int = 'x = 3' _UpperCamelCase : Union[str, Any] = {} _UpperCamelCase : List[Any] = evaluate(__snake_case , {} , state=__snake_case) assert result == 3 self.assertDictEqual(__snake_case , {'x': 3}) _UpperCamelCase : List[Any] = 'x = y' _UpperCamelCase : int = {'y': 5} _UpperCamelCase : Any = evaluate(__snake_case , {} , state=__snake_case) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__snake_case , {'x': 5, 'y': 5}) def A__ ( self): _UpperCamelCase : str = 'y = add_two(x)' _UpperCamelCase : str = {'x': 3} _UpperCamelCase : str = evaluate(__snake_case , {'add_two': add_two} , state=__snake_case) assert result == 5 self.assertDictEqual(__snake_case , {'x': 3, 'y': 5}) # Won't work without the tool with CaptureStdout() as out: _UpperCamelCase : List[str] = evaluate(__snake_case , {} , state=__snake_case) assert result is None assert "tried to execute add_two" in out.out def A__ ( self): _UpperCamelCase : Any = 'x = 3' _UpperCamelCase : List[Any] = {} _UpperCamelCase : Union[str, Any] = evaluate(__snake_case , {} , state=__snake_case) assert result == 3 self.assertDictEqual(__snake_case , {'x': 3}) def A__ ( self): _UpperCamelCase : List[str] = 'test_dict = {\'x\': x, \'y\': add_two(x)}' _UpperCamelCase : Tuple = {'x': 3} _UpperCamelCase : Optional[Any] = evaluate(__snake_case , {'add_two': add_two} , state=__snake_case) self.assertDictEqual(__snake_case , {'x': 3, 'y': 5}) self.assertDictEqual(__snake_case , {'x': 3, 'test_dict': {'x': 3, 'y': 5}}) def A__ ( self): _UpperCamelCase : Optional[int] = 'x = 3\ny = 5' _UpperCamelCase : Union[str, Any] = {} _UpperCamelCase : List[Any] = evaluate(__snake_case , {} , state=__snake_case) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__snake_case , {'x': 3, 'y': 5}) def A__ ( self): _UpperCamelCase : List[str] = 'text = f\'This is x: {x}.\'' _UpperCamelCase : Optional[int] = {'x': 3} _UpperCamelCase : List[str] = evaluate(__snake_case , {} , state=__snake_case) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(__snake_case , {'x': 3, 'text': 'This is x: 3.'}) def A__ ( self): _UpperCamelCase : Dict = 'if x <= 3:\n y = 2\nelse:\n y = 5' _UpperCamelCase : str = {'x': 3} _UpperCamelCase : Tuple = evaluate(__snake_case , {} , state=__snake_case) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(__snake_case , {'x': 3, 'y': 2}) _UpperCamelCase : Optional[int] = {'x': 8} _UpperCamelCase : Dict = evaluate(__snake_case , {} , state=__snake_case) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__snake_case , {'x': 8, 'y': 5}) def A__ ( self): _UpperCamelCase : List[Any] = 'test_list = [x, add_two(x)]' _UpperCamelCase : List[str] = {'x': 3} _UpperCamelCase : List[Any] = evaluate(__snake_case , {'add_two': add_two} , state=__snake_case) self.assertListEqual(__snake_case , [3, 5]) self.assertDictEqual(__snake_case , {'x': 3, 'test_list': [3, 5]}) def A__ ( self): _UpperCamelCase : str = 'y = x' _UpperCamelCase : List[str] = {'x': 3} _UpperCamelCase : Dict = evaluate(__snake_case , {} , state=__snake_case) assert result == 3 self.assertDictEqual(__snake_case , {'x': 3, 'y': 3}) def A__ ( self): _UpperCamelCase : str = 'test_list = [x, add_two(x)]\ntest_list[1]' _UpperCamelCase : Optional[int] = {'x': 3} _UpperCamelCase : str = evaluate(__snake_case , {'add_two': add_two} , state=__snake_case) assert result == 5 self.assertDictEqual(__snake_case , {'x': 3, 'test_list': [3, 5]}) _UpperCamelCase : Dict = 'test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']' _UpperCamelCase : Union[str, Any] = {'x': 3} _UpperCamelCase : Dict = evaluate(__snake_case , {'add_two': add_two} , state=__snake_case) assert result == 5 self.assertDictEqual(__snake_case , {'x': 3, 'test_dict': {'x': 3, 'y': 5}}) def A__ ( self): _UpperCamelCase : Union[str, Any] = 'x = 0\nfor i in range(3):\n x = i' _UpperCamelCase : str = {} _UpperCamelCase : List[str] = evaluate(__snake_case , {'range': range} , state=__snake_case) assert result == 2 self.assertDictEqual(__snake_case , {'x': 2, 'i': 2})
648
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = [ ["""attention""", """attn"""], ["""encoder_attention""", """encoder_attn"""], ["""q_lin""", """q_proj"""], ["""k_lin""", """k_proj"""], ["""v_lin""", """v_proj"""], ["""out_lin""", """out_proj"""], ["""norm_embeddings""", """layernorm_embedding"""], ["""position_embeddings""", """embed_positions"""], ["""embeddings""", """embed_tokens"""], ["""ffn.lin""", """fc"""], ] def lowerCamelCase_ ( UpperCAmelCase_ : List[Any] ) -> Optional[int]: '''simple docstring''' if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: _UpperCamelCase : List[Any] = k.replace(UpperCAmelCase_ , UpperCAmelCase_ ) if k.startswith('encoder' ): _UpperCamelCase : Optional[Any] = k.replace('.attn' , '.self_attn' ) _UpperCamelCase : Optional[int] = k.replace('norm1' , 'self_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): _UpperCamelCase : Any = k.replace('norm1' , 'self_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm2' , 'encoder_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm3' , 'final_layer_norm' ) return k def lowerCamelCase_ ( UpperCAmelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Union[str, Any] = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: _UpperCamelCase : Optional[int] = sd.pop(UpperCAmelCase_ ) _UpperCamelCase : str = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd _UpperCamelCase : Tuple = v lowerCAmelCase__ = ["""START"""] @torch.no_grad() def lowerCamelCase_ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ) -> List[str]: '''simple docstring''' _UpperCamelCase : Optional[Any] = torch.load(UpperCAmelCase_ , map_location='cpu' ) _UpperCamelCase : int = model['model'] _UpperCamelCase : List[Any] = BlenderbotConfig.from_json_file(UpperCAmelCase_ ) _UpperCamelCase : Any = BlenderbotForConditionalGeneration(UpperCAmelCase_ ) _UpperCamelCase : int = m.model.state_dict().keys() _UpperCamelCase : Union[str, Any] = [] _UpperCamelCase : int = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue _UpperCamelCase : Optional[int] = rename_state_dict_key(UpperCAmelCase_ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: _UpperCamelCase : int = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(UpperCAmelCase_ ) m.model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) m.half() m.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("""--src_path""", type=str, help="""like blenderbot-model.bin""") parser.add_argument("""--save_dir""", default="""hf_blenderbot""", type=str, help="""Where to save converted model.""") parser.add_argument( """--hf_config_json""", default="""blenderbot-3b-config.json""", type=str, help="""Path to config to use""" ) lowerCAmelCase__ = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
648
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowercase ( _lowercase ): """simple docstring""" a__ = "vit_mae" def __init__( self , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=2_24 , __snake_case=16 , __snake_case=3 , __snake_case=True , __snake_case=16 , __snake_case=5_12 , __snake_case=8 , __snake_case=20_48 , __snake_case=0.7_5 , __snake_case=False , **__snake_case , ): super().__init__(**__snake_case) _UpperCamelCase : Optional[int] = hidden_size _UpperCamelCase : Optional[int] = num_hidden_layers _UpperCamelCase : Tuple = num_attention_heads _UpperCamelCase : List[str] = intermediate_size _UpperCamelCase : str = hidden_act _UpperCamelCase : List[str] = hidden_dropout_prob _UpperCamelCase : List[Any] = attention_probs_dropout_prob _UpperCamelCase : str = initializer_range _UpperCamelCase : Any = layer_norm_eps _UpperCamelCase : int = image_size _UpperCamelCase : Any = patch_size _UpperCamelCase : List[Any] = num_channels _UpperCamelCase : Union[str, Any] = qkv_bias _UpperCamelCase : str = decoder_num_attention_heads _UpperCamelCase : Union[str, Any] = decoder_hidden_size _UpperCamelCase : Union[str, Any] = decoder_num_hidden_layers _UpperCamelCase : Any = decoder_intermediate_size _UpperCamelCase : int = mask_ratio _UpperCamelCase : List[Any] = norm_pix_loss
648
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer lowerCAmelCase__ = ["""bert-base-uncased""", """bert-base-cased"""] lowerCAmelCase__ = """hf-internal-testing/tiny-bert-tf-only""" if is_tf_available(): class lowercase ( tf.keras.Model ): """simple docstring""" def __init__( self , __snake_case): super().__init__() _UpperCamelCase : List[Any] = tokenizer _UpperCamelCase : List[Any] = AutoConfig.from_pretrained(__snake_case) _UpperCamelCase : Dict = TFAutoModel.from_config(__snake_case) def A__ ( self , __snake_case): _UpperCamelCase : Any = self.tokenizer(__snake_case) _UpperCamelCase : Dict = self.bert(**__snake_case) return out["pooler_output"] @require_tf @require_tensorflow_text class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self): super().setUp() _UpperCamelCase : Optional[Any] = [ BertTokenizer.from_pretrained(__snake_case) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false _UpperCamelCase : Optional[Any] = [TFBertTokenizer.from_pretrained(__snake_case) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(__snake_case , use_fast_bert_tokenizer=__snake_case) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers) == len(self.tf_tokenizers) _UpperCamelCase : Optional[Any] = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] _UpperCamelCase : Dict = list(zip(self.test_sentences , self.test_sentences[::-1])) def A__ ( self): for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers): for test_inputs in (self.test_sentences, self.paired_sentences): _UpperCamelCase : List[str] = tokenizer(__snake_case , return_tensors='tf' , padding='longest') _UpperCamelCase : Tuple = tf_tokenizer(__snake_case) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape)) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa) == tf_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Tuple = tf_tokenizer(self.paired_sentences) _UpperCamelCase : Optional[Any] = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa) == separated_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Tuple = tf.function(__snake_case) for test_inputs in (self.test_sentences, self.paired_sentences): _UpperCamelCase : Optional[int] = tf.constant(__snake_case) _UpperCamelCase : Union[str, Any] = compiled_tokenizer(__snake_case) _UpperCamelCase : Tuple = tf_tokenizer(__snake_case) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Any = ModelToSave(tokenizer=__snake_case) _UpperCamelCase : Any = tf.convert_to_tensor(self.test_sentences) _UpperCamelCase : Union[str, Any] = model(__snake_case) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _UpperCamelCase : int = Path(__snake_case) / 'saved.model' model.save(__snake_case) _UpperCamelCase : Optional[int] = tf.keras.models.load_model(__snake_case) _UpperCamelCase : int = loaded_model(__snake_case) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output)) , 1e-5)
648
1
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class lowercase ( _lowercase ): """simple docstring""" a__ = (IPNDMScheduler,) a__ = (("num_inference_steps", 5_0),) def A__ ( self , **__snake_case): _UpperCamelCase : Optional[int] = {'num_train_timesteps': 10_00} config.update(**__snake_case) return config def A__ ( self , __snake_case=0 , **__snake_case): _UpperCamelCase : Optional[int] = dict(self.forward_default_kwargs) _UpperCamelCase : Any = kwargs.pop('num_inference_steps' , __snake_case) _UpperCamelCase : Union[str, Any] = self.dummy_sample _UpperCamelCase : List[Any] = 0.1 * sample _UpperCamelCase : Union[str, Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: _UpperCamelCase : Any = self.get_scheduler_config(**__snake_case) _UpperCamelCase : Optional[int] = scheduler_class(**__snake_case) scheduler.set_timesteps(__snake_case) # copy over dummy past residuals _UpperCamelCase : List[Any] = dummy_past_residuals[:] if time_step is None: _UpperCamelCase : Tuple = scheduler.timesteps[len(scheduler.timesteps) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__snake_case) _UpperCamelCase : List[Any] = scheduler_class.from_pretrained(__snake_case) new_scheduler.set_timesteps(__snake_case) # copy over dummy past residuals _UpperCamelCase : Any = dummy_past_residuals[:] _UpperCamelCase : Any = scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case).prev_sample _UpperCamelCase : Any = new_scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" _UpperCamelCase : List[Any] = scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case).prev_sample _UpperCamelCase : Optional[int] = new_scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def A__ ( self): pass def A__ ( self , __snake_case=0 , **__snake_case): _UpperCamelCase : Optional[int] = dict(self.forward_default_kwargs) _UpperCamelCase : int = kwargs.pop('num_inference_steps' , __snake_case) _UpperCamelCase : List[Any] = self.dummy_sample _UpperCamelCase : Union[str, Any] = 0.1 * sample _UpperCamelCase : Any = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: _UpperCamelCase : Any = self.get_scheduler_config() _UpperCamelCase : str = scheduler_class(**__snake_case) scheduler.set_timesteps(__snake_case) # copy over dummy past residuals (must be after setting timesteps) _UpperCamelCase : int = dummy_past_residuals[:] if time_step is None: _UpperCamelCase : str = scheduler.timesteps[len(scheduler.timesteps) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__snake_case) _UpperCamelCase : Any = scheduler_class.from_pretrained(__snake_case) # copy over dummy past residuals new_scheduler.set_timesteps(__snake_case) # copy over dummy past residual (must be after setting timesteps) _UpperCamelCase : Tuple = dummy_past_residuals[:] _UpperCamelCase : Optional[Any] = scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case).prev_sample _UpperCamelCase : Dict = new_scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" _UpperCamelCase : Dict = scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case).prev_sample _UpperCamelCase : Any = new_scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def A__ ( self , **__snake_case): _UpperCamelCase : List[str] = self.scheduler_classes[0] _UpperCamelCase : Dict = self.get_scheduler_config(**__snake_case) _UpperCamelCase : str = scheduler_class(**__snake_case) _UpperCamelCase : Optional[int] = 10 _UpperCamelCase : List[str] = self.dummy_model() _UpperCamelCase : Tuple = self.dummy_sample_deter scheduler.set_timesteps(__snake_case) for i, t in enumerate(scheduler.timesteps): _UpperCamelCase : Union[str, Any] = model(__snake_case , __snake_case) _UpperCamelCase : int = scheduler.step(__snake_case , __snake_case , __snake_case).prev_sample for i, t in enumerate(scheduler.timesteps): _UpperCamelCase : Dict = model(__snake_case , __snake_case) _UpperCamelCase : List[Any] = scheduler.step(__snake_case , __snake_case , __snake_case).prev_sample return sample def A__ ( self): _UpperCamelCase : Dict = dict(self.forward_default_kwargs) _UpperCamelCase : Tuple = kwargs.pop('num_inference_steps' , __snake_case) for scheduler_class in self.scheduler_classes: _UpperCamelCase : List[Any] = self.get_scheduler_config() _UpperCamelCase : List[Any] = scheduler_class(**__snake_case) _UpperCamelCase : Any = self.dummy_sample _UpperCamelCase : Dict = 0.1 * sample if num_inference_steps is not None and hasattr(__snake_case , 'set_timesteps'): scheduler.set_timesteps(__snake_case) elif num_inference_steps is not None and not hasattr(__snake_case , 'set_timesteps'): _UpperCamelCase : Optional[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _UpperCamelCase : List[str] = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] _UpperCamelCase : List[Any] = dummy_past_residuals[:] _UpperCamelCase : Optional[int] = scheduler.timesteps[5] _UpperCamelCase : int = scheduler.timesteps[6] _UpperCamelCase : int = scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case).prev_sample _UpperCamelCase : List[Any] = scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) _UpperCamelCase : Optional[Any] = scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case).prev_sample _UpperCamelCase : List[Any] = scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def A__ ( self): for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=__snake_case , time_step=__snake_case) def A__ ( self): for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00]): self.check_over_forward(num_inference_steps=__snake_case , time_step=__snake_case) def A__ ( self): _UpperCamelCase : Optional[Any] = self.full_loop() _UpperCamelCase : List[Any] = torch.mean(torch.abs(__snake_case)) assert abs(result_mean.item() - 2_54_05_29) < 10
648
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ = { """configuration_canine""": ["""CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CanineConfig"""], """tokenization_canine""": ["""CanineTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """CANINE_PRETRAINED_MODEL_ARCHIVE_LIST""", """CanineForMultipleChoice""", """CanineForQuestionAnswering""", """CanineForSequenceClassification""", """CanineForTokenClassification""", """CanineLayer""", """CanineModel""", """CaninePreTrainedModel""", """load_tf_weights_in_canine""", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
648
1
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("""1.6"""): lowerCAmelCase__ = True from torch.cuda.amp import autocast lowerCAmelCase__ = logging.getLogger(__name__) def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Any=None ) -> List[str]: '''simple docstring''' return field(default_factory=lambda: default , metadata=UpperCAmelCase_ ) @dataclass class lowercase : """simple docstring""" a__ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) a__ = field( default=_lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) a__ = field( default=_lowercase , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) a__ = field( default=0.1 , metadata={"help": "The dropout ratio for the attention probabilities."} ) a__ = field( default=0.1 , metadata={"help": "The dropout ratio for activations inside the fully connected layer."} ) a__ = field( default=0.1 , metadata={ "help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler." } , ) a__ = field( default=0.1 , metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."} , ) a__ = field( default=0.05 , metadata={ "help": ( "Propability of each feature vector along the time axis to be chosen as the start of the vector" "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" "vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``." ) } , ) a__ = field(default=0.0 , metadata={"help": "The LayerDrop probability."} ) @dataclass class lowercase : """simple docstring""" a__ = field( default=_lowercase , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) a__ = field( default="train+validation" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) a__ = field( default=_lowercase , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) a__ = field( default=_lowercase , metadata={"help": "The number of processes to use for the preprocessing."} , ) a__ = field( default=_lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) a__ = field( default=_lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) } , ) a__ = list_field( default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "'", "\"", "�"] , metadata={"help": "A list of characters to remove from the transcripts."} , ) @dataclass class lowercase : """simple docstring""" a__ = 42 a__ = True a__ = None a__ = None a__ = None a__ = None def __call__( self , __snake_case): # split inputs and labels since they have to be of different lenghts and need # different padding methods _UpperCamelCase : Union[str, Any] = [{'input_values': feature['input_values']} for feature in features] _UpperCamelCase : Optional[int] = [{'input_ids': feature['labels']} for feature in features] _UpperCamelCase : int = self.processor.pad( __snake_case , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) _UpperCamelCase : Optional[int] = self.processor.pad( labels=__snake_case , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='pt' , ) # replace padding with -100 to ignore loss correctly _UpperCamelCase : Optional[int] = labels_batch['input_ids'].masked_fill(labels_batch.attention_mask.ne(1) , -1_00) _UpperCamelCase : Union[str, Any] = labels return batch class lowercase ( _lowercase ): """simple docstring""" def A__ ( self , __snake_case , __snake_case): model.train() _UpperCamelCase : Optional[int] = self._prepare_inputs(__snake_case) if self.use_amp: with autocast(): _UpperCamelCase : Optional[int] = self.compute_loss(__snake_case , __snake_case) else: _UpperCamelCase : Union[str, Any] = self.compute_loss(__snake_case , __snake_case) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": _UpperCamelCase : Any = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _UpperCamelCase : List[str] = loss.sum() / (inputs['labels'] >= 0).sum() else: raise ValueError(f'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''') if self.args.gradient_accumulation_steps > 1: _UpperCamelCase : Tuple = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__snake_case).backward() elif self.use_apex: with amp.scale_loss(__snake_case , self.optimizer) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__snake_case) else: loss.backward() return loss.detach() def lowerCamelCase_ ( ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Dict = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : List[str] = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCamelCase : Optional[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCamelCase : Optional[int] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s' , UpperCAmelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: _UpperCamelCase : Tuple = datasets.load_dataset( 'common_voice' , data_args.dataset_config_name , split=data_args.train_split_name ) _UpperCamelCase : List[Any] = datasets.load_dataset('common_voice' , data_args.dataset_config_name , split='test' ) # Create and save tokenizer _UpperCamelCase : List[Any] = F'''[{"".join(data_args.chars_to_ignore )}]''' def remove_special_characters(UpperCAmelCase_ : Dict ): _UpperCamelCase : Tuple = re.sub(UpperCAmelCase_ , '' , batch['sentence'] ).lower() + ' ' return batch _UpperCamelCase : List[Any] = train_dataset.map(UpperCAmelCase_ , remove_columns=['sentence'] ) _UpperCamelCase : List[str] = eval_dataset.map(UpperCAmelCase_ , remove_columns=['sentence'] ) def extract_all_chars(UpperCAmelCase_ : Any ): _UpperCamelCase : Any = ' '.join(batch['text'] ) _UpperCamelCase : int = list(set(UpperCAmelCase_ ) ) return {"vocab": [vocab], "all_text": [all_text]} _UpperCamelCase : Dict = train_dataset.map( UpperCAmelCase_ , batched=UpperCAmelCase_ , batch_size=-1 , keep_in_memory=UpperCAmelCase_ , remove_columns=train_dataset.column_names , ) _UpperCamelCase : Optional[Any] = train_dataset.map( UpperCAmelCase_ , batched=UpperCAmelCase_ , batch_size=-1 , keep_in_memory=UpperCAmelCase_ , remove_columns=eval_dataset.column_names , ) _UpperCamelCase : Optional[Any] = list(set(vocab_train['vocab'][0] ) | set(vocab_test['vocab'][0] ) ) _UpperCamelCase : Any = {v: k for k, v in enumerate(UpperCAmelCase_ )} _UpperCamelCase : Union[str, Any] = vocab_dict[' '] del vocab_dict[" "] _UpperCamelCase : Union[str, Any] = len(UpperCAmelCase_ ) _UpperCamelCase : Any = len(UpperCAmelCase_ ) with open('vocab.json' , 'w' ) as vocab_file: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase : Tuple = WavaVecaCTCTokenizer( 'vocab.json' , unk_token='[UNK]' , pad_token='[PAD]' , word_delimiter_token='|' , ) _UpperCamelCase : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0.0 , do_normalize=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ ) _UpperCamelCase : Tuple = WavaVecaProcessor(feature_extractor=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='mean' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: _UpperCamelCase : Dict = min(len(UpperCAmelCase_ ) , data_args.max_train_samples ) _UpperCamelCase : Optional[Any] = train_dataset.select(range(UpperCAmelCase_ ) ) if data_args.max_val_samples is not None: _UpperCamelCase : Any = eval_dataset.select(range(data_args.max_val_samples ) ) _UpperCamelCase : Any = torchaudio.transforms.Resample(4_8_0_0_0 , 1_6_0_0_0 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(UpperCAmelCase_ : List[str] ): _UpperCamelCase , _UpperCamelCase : List[str] = torchaudio.load(batch['path'] ) _UpperCamelCase : Union[str, Any] = resampler(UpperCAmelCase_ ).squeeze().numpy() _UpperCamelCase : Union[str, Any] = 1_6_0_0_0 _UpperCamelCase : Union[str, Any] = batch['text'] return batch _UpperCamelCase : int = train_dataset.map( UpperCAmelCase_ , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase : Union[str, Any] = eval_dataset.map( UpperCAmelCase_ , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(UpperCAmelCase_ : List[str] ): # check that all files have the correct sampling rate assert ( len(set(batch['sampling_rate'] ) ) == 1 ), F'''Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.''' _UpperCamelCase : int = processor( audio=batch['speech'] , text=batch['target_text'] , sampling_rate=batch['sampling_rate'][0] ) batch.update(UpperCAmelCase_ ) return batch _UpperCamelCase : Any = train_dataset.map( UpperCAmelCase_ , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=UpperCAmelCase_ , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase : List[Any] = eval_dataset.map( UpperCAmelCase_ , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=UpperCAmelCase_ , num_proc=data_args.preprocessing_num_workers , ) # Metric _UpperCamelCase : Union[str, Any] = datasets.load_metric('wer' ) def compute_metrics(UpperCAmelCase_ : Tuple ): _UpperCamelCase : Optional[Any] = pred.predictions _UpperCamelCase : List[Any] = np.argmax(UpperCAmelCase_ , axis=-1 ) _UpperCamelCase : Optional[Any] = processor.tokenizer.pad_token_id _UpperCamelCase : Any = processor.batch_decode(UpperCAmelCase_ ) # we do not want to group tokens when computing the metrics _UpperCamelCase : Tuple = processor.batch_decode(pred.label_ids , group_tokens=UpperCAmelCase_ ) _UpperCamelCase : List[Any] = wer_metric.compute(predictions=UpperCAmelCase_ , references=UpperCAmelCase_ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator _UpperCamelCase : Union[str, Any] = DataCollatorCTCWithPadding(processor=UpperCAmelCase_ , padding=UpperCAmelCase_ ) # Initialize our Trainer _UpperCamelCase : Any = CTCTrainer( model=UpperCAmelCase_ , data_collator=UpperCAmelCase_ , args=UpperCAmelCase_ , compute_metrics=UpperCAmelCase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCamelCase : Dict = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): _UpperCamelCase : Any = model_args.model_name_or_path else: _UpperCamelCase : Union[str, Any] = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) _UpperCamelCase : str = trainer.train(resume_from_checkpoint=UpperCAmelCase_ ) trainer.save_model() _UpperCamelCase : str = train_result.metrics _UpperCamelCase : Dict = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCAmelCase_ ) ) _UpperCamelCase : Tuple = min(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) trainer.log_metrics('train' , UpperCAmelCase_ ) trainer.save_metrics('train' , UpperCAmelCase_ ) trainer.save_state() # Evaluation _UpperCamelCase : Optional[Any] = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _UpperCamelCase : Optional[int] = trainer.evaluate() _UpperCamelCase : List[str] = data_args.max_val_samples if data_args.max_val_samples is not None else len(UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = min(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) trainer.log_metrics('eval' , UpperCAmelCase_ ) trainer.save_metrics('eval' , UpperCAmelCase_ ) return results if __name__ == "__main__": main()
648
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case=3 , __snake_case=32 , __snake_case=3 , __snake_case=10 , __snake_case=[8, 16, 32, 64] , __snake_case=[1, 1, 2, 1] , __snake_case=True , __snake_case=True , __snake_case="relu" , __snake_case=3 , __snake_case=None , __snake_case=["stage2", "stage3", "stage4"] , __snake_case=[2, 3, 4] , __snake_case=1 , ): _UpperCamelCase : List[Any] = parent _UpperCamelCase : Dict = batch_size _UpperCamelCase : Optional[int] = image_size _UpperCamelCase : str = num_channels _UpperCamelCase : Optional[Any] = embeddings_size _UpperCamelCase : Tuple = hidden_sizes _UpperCamelCase : Dict = depths _UpperCamelCase : str = is_training _UpperCamelCase : Optional[int] = use_labels _UpperCamelCase : str = hidden_act _UpperCamelCase : Optional[int] = num_labels _UpperCamelCase : Optional[int] = scope _UpperCamelCase : Tuple = len(__snake_case) _UpperCamelCase : Dict = out_features _UpperCamelCase : Union[str, Any] = out_indices _UpperCamelCase : int = num_groups def A__ ( self): _UpperCamelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase : str = None if self.use_labels: _UpperCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels) _UpperCamelCase : str = self.get_config() return config, pixel_values, labels def A__ ( self): return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : str = BitModel(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[Any] = model(__snake_case) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Dict = self.num_labels _UpperCamelCase : Dict = BitForImageClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Dict = model(__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[Any] = BitBackbone(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = model(__snake_case) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:]) # verify backbone works with out_features=None _UpperCamelCase : Any = None _UpperCamelCase : str = BitBackbone(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Any = model(__snake_case) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , 1) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[-1], 1, 1]) # verify channels self.parent.assertEqual(len(model.channels) , 1) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]]) def A__ ( self): _UpperCamelCase : Optional[int] = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : int = config_and_inputs _UpperCamelCase : int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () a__ = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False a__ = False def A__ ( self): _UpperCamelCase : Dict = BitModelTester(self) _UpperCamelCase : Optional[Any] = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case) def A__ ( self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self): return @unittest.skip(reason='Bit does not output attentions') def A__ ( self): pass @unittest.skip(reason='Bit does not use inputs_embeds') def A__ ( self): pass @unittest.skip(reason='Bit does not support input and output embeddings') def A__ ( self): pass def A__ ( self): _UpperCamelCase , _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : int = model_class(__snake_case) _UpperCamelCase : List[Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : Optional[int] = [*signature.parameters.keys()] _UpperCamelCase : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __snake_case) def A__ ( self): _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case) def A__ ( self): _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__snake_case) def A__ ( self): _UpperCamelCase , _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Union[str, Any] = model_class(config=__snake_case) for name, module in model.named_modules(): if isinstance(__snake_case , (nn.BatchNormad, nn.GroupNorm)): self.assertTrue( torch.all(module.weight == 1) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def A__ ( self): def check_hidden_states_output(__snake_case , __snake_case , __snake_case): _UpperCamelCase : str = model_class(__snake_case) model.to(__snake_case) model.eval() with torch.no_grad(): _UpperCamelCase : Union[str, Any] = model(**self._prepare_for_class(__snake_case , __snake_case)) _UpperCamelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase : str = self.model_tester.num_stages self.assertEqual(len(__snake_case) , expected_num_stages + 1) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCamelCase , _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : List[str] = ['preactivation', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _UpperCamelCase : Any = layer_type _UpperCamelCase : Tuple = True check_hidden_states_output(__snake_case , __snake_case , __snake_case) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase : List[str] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case) @unittest.skip(reason='Bit does not use feedforward chunking') def A__ ( self): pass def A__ ( self): _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case) @slow def A__ ( self): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : Optional[Any] = BitModel.from_pretrained(__snake_case) self.assertIsNotNone(__snake_case) def lowerCamelCase_ ( ) -> Optional[int]: '''simple docstring''' _UpperCamelCase : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def A__ ( self): _UpperCamelCase : Optional[Any] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(__snake_case) _UpperCamelCase : str = self.default_image_processor _UpperCamelCase : List[str] = prepare_img() _UpperCamelCase : int = image_processor(images=__snake_case , return_tensors='pt').to(__snake_case) # forward pass with torch.no_grad(): _UpperCamelCase : Any = model(**__snake_case) # verify the logits _UpperCamelCase : Dict = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , __snake_case) _UpperCamelCase : Optional[int] = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]]).to(__snake_case) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1e-4)) @require_torch class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" a__ = (BitBackbone,) if is_torch_available() else () a__ = BitConfig a__ = False def A__ ( self): _UpperCamelCase : List[str] = BitModelTester(self)
648
1
from math import loga def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> int: '''simple docstring''' if a < 0: raise ValueError('Input value must be a positive integer' ) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise TypeError('Input value must be a \'int\' type' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
648
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowerCAmelCase__ = numpy.array([0, 0]) lowerCAmelCase__ = numpy.array([0.5, 0.8_66_02_54]) lowerCAmelCase__ = numpy.array([1, 0]) lowerCAmelCase__ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] , UpperCAmelCase_ : int ) -> list[numpy.ndarray]: '''simple docstring''' _UpperCamelCase : Tuple = initial_vectors for _ in range(UpperCAmelCase_ ): _UpperCamelCase : str = iteration_step(UpperCAmelCase_ ) return vectors def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] ) -> list[numpy.ndarray]: '''simple docstring''' _UpperCamelCase : int = [] for i, start_vector in enumerate(vectors[:-1] ): _UpperCamelCase : Union[str, Any] = vectors[i + 1] new_vectors.append(UpperCAmelCase_ ) _UpperCamelCase : Tuple = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def lowerCamelCase_ ( UpperCAmelCase_ : numpy.ndarray , UpperCAmelCase_ : float ) -> numpy.ndarray: '''simple docstring''' _UpperCamelCase : str = numpy.radians(UpperCAmelCase_ ) _UpperCamelCase , _UpperCamelCase : Optional[Any] = numpy.cos(UpperCAmelCase_ ), numpy.sin(UpperCAmelCase_ ) _UpperCamelCase : Any = numpy.array(((c, -s), (s, c)) ) return numpy.dot(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] ) -> None: '''simple docstring''' _UpperCamelCase : str = plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _UpperCamelCase , _UpperCamelCase : Dict = zip(*UpperCAmelCase_ ) plt.plot(UpperCAmelCase_ , UpperCAmelCase_ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
648
1
import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py lowerCAmelCase__ = """src/transformers""" lowerCAmelCase__ = """docs/source/en""" lowerCAmelCase__ = """.""" def lowerCamelCase_ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] ) -> Dict: '''simple docstring''' with open(UpperCAmelCase_ , 'r' , encoding='utf-8' , newline='\n' ) as f: _UpperCamelCase : Optional[Any] = f.readlines() # Find the start prompt. _UpperCamelCase : Dict = 0 while not lines[start_index].startswith(UpperCAmelCase_ ): start_index += 1 start_index += 1 _UpperCamelCase : int = start_index while not lines[end_index].startswith(UpperCAmelCase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | lowerCAmelCase__ = """Model|Encoder|Decoder|ForConditionalGeneration""" # Regexes that match TF/Flax/PT model names. lowerCAmelCase__ = re.compile(R"""TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") lowerCAmelCase__ = re.compile(R"""Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowerCAmelCase__ = re.compile(R"""(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase__ = direct_transformers_import(TRANSFORMERS_PATH) def lowerCamelCase_ ( UpperCAmelCase_ : List[str] ) -> List[str]: '''simple docstring''' _UpperCamelCase : Tuple = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)' , UpperCAmelCase_ ) return [m.group(0 ) for m in matches] def lowerCamelCase_ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] ) -> str: '''simple docstring''' _UpperCamelCase : Union[str, Any] = 2 if text == '✅' or text == '❌' else len(UpperCAmelCase_ ) _UpperCamelCase : Any = (width - text_length) // 2 _UpperCamelCase : Any = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowerCamelCase_ ( ) -> List[Any]: '''simple docstring''' _UpperCamelCase : Dict = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _UpperCamelCase : List[Any] = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } _UpperCamelCase : Optional[int] = {name: config.replace('Config' , '' ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. _UpperCamelCase : Optional[Any] = collections.defaultdict(UpperCAmelCase_ ) _UpperCamelCase : List[str] = collections.defaultdict(UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = collections.defaultdict(UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = collections.defaultdict(UpperCAmelCase_ ) _UpperCamelCase : Union[str, Any] = collections.defaultdict(UpperCAmelCase_ ) # Let's lookup through all transformers object (once). for attr_name in dir(UpperCAmelCase_ ): _UpperCamelCase : int = None if attr_name.endswith('Tokenizer' ): _UpperCamelCase : Optional[int] = slow_tokenizers _UpperCamelCase : Any = attr_name[:-9] elif attr_name.endswith('TokenizerFast' ): _UpperCamelCase : int = fast_tokenizers _UpperCamelCase : Optional[Any] = attr_name[:-1_3] elif _re_tf_models.match(UpperCAmelCase_ ) is not None: _UpperCamelCase : Tuple = tf_models _UpperCamelCase : Union[str, Any] = _re_tf_models.match(UpperCAmelCase_ ).groups()[0] elif _re_flax_models.match(UpperCAmelCase_ ) is not None: _UpperCamelCase : List[Any] = flax_models _UpperCamelCase : Union[str, Any] = _re_flax_models.match(UpperCAmelCase_ ).groups()[0] elif _re_pt_models.match(UpperCAmelCase_ ) is not None: _UpperCamelCase : Any = pt_models _UpperCamelCase : Optional[int] = _re_pt_models.match(UpperCAmelCase_ ).groups()[0] if lookup_dict is not None: while len(UpperCAmelCase_ ) > 0: if attr_name in model_name_to_prefix.values(): _UpperCamelCase : Optional[Any] = True break # Try again after removing the last word in the name _UpperCamelCase : Any = ''.join(camel_case_split(UpperCAmelCase_ )[:-1] ) # Let's build that table! _UpperCamelCase : Optional[Any] = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) _UpperCamelCase : Any = ['Model', 'Tokenizer slow', 'Tokenizer fast', 'PyTorch support', 'TensorFlow support', 'Flax Support'] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). _UpperCamelCase : List[Any] = [len(UpperCAmelCase_ ) + 2 for c in columns] _UpperCamelCase : Optional[int] = max([len(UpperCAmelCase_ ) for name in model_names] ) + 2 # Build the table per se _UpperCamelCase : Optional[Any] = '|' + '|'.join([_center_text(UpperCAmelCase_ , UpperCAmelCase_ ) for c, w in zip(UpperCAmelCase_ , UpperCAmelCase_ )] ) + '|\n' # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([':' + '-' * (w - 2) + ':' for w in widths] ) + "|\n" _UpperCamelCase : str = {True: '✅', False: '❌'} for name in model_names: _UpperCamelCase : Tuple = model_name_to_prefix[name] _UpperCamelCase : int = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(UpperCAmelCase_ , UpperCAmelCase_ ) for l, w in zip(UpperCAmelCase_ , UpperCAmelCase_ )] ) + "|\n" return table def lowerCamelCase_ ( UpperCAmelCase_ : Optional[int]=False ) -> Tuple: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : str = _find_text_in_file( filename=os.path.join(UpperCAmelCase_ , 'index.md' ) , start_prompt='<!--This table is updated automatically from the auto modules' , end_prompt='<!-- End table-->' , ) _UpperCamelCase : Union[str, Any] = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(UpperCAmelCase_ , 'index.md' ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( 'The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.' ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") lowerCAmelCase__ = parser.parse_args() check_model_table(args.fix_and_overwrite)
648
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCAmelCase__ = abspath(join(dirname(__file__), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def lowerCamelCase_ ( UpperCAmelCase_ : Any ) -> Union[str, Any]: '''simple docstring''' config.addinivalue_line( 'markers' , 'is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested' ) config.addinivalue_line( 'markers' , 'is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested' ) config.addinivalue_line('markers' , 'is_pipeline_test: mark test to run only when pipelines are tested' ) config.addinivalue_line('markers' , 'is_staging_test: mark test to run only in the staging environment' ) config.addinivalue_line('markers' , 'accelerate_tests: mark test that require accelerate' ) config.addinivalue_line('markers' , 'tool_tests: mark the tool tests that are run on their specific schedule' ) def lowerCamelCase_ ( UpperCAmelCase_ : Optional[int] ) -> List[Any]: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : Any ) -> List[Any]: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main _UpperCamelCase : str = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(UpperCAmelCase_ , id=UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict ) -> Tuple: '''simple docstring''' if exitstatus == 5: _UpperCamelCase : List[Any] = 0 # Doctest custom flag to ignore output. lowerCAmelCase__ = doctest.register_optionflag("""IGNORE_RESULT""") lowerCAmelCase__ = doctest.OutputChecker class lowercase ( _lowercase ): """simple docstring""" def A__ ( self , __snake_case , __snake_case , __snake_case): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , __snake_case , __snake_case , __snake_case) lowerCAmelCase__ = CustomOutputChecker lowerCAmelCase__ = HfDoctestModule lowerCAmelCase__ = HfDocTestParser
648
1
import string from math import logaa def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ) -> int: '''simple docstring''' _UpperCamelCase : Union[str, Any] = document.translate( str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' ) _UpperCamelCase : Optional[Any] = document_without_punctuation.split(' ' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ) -> tuple[int, int]: '''simple docstring''' _UpperCamelCase : int = corpus.lower().translate( str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with '' _UpperCamelCase : Union[str, Any] = corpus_without_punctuation.split('\n' ) _UpperCamelCase : Dict = term.lower() return (len([doc for doc in docs if term in doc] ), len(UpperCAmelCase_ )) def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int]=False ) -> float: '''simple docstring''' if smoothing: if n == 0: raise ValueError('log10(0) is undefined.' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('df must be > 0' ) elif n == 0: raise ValueError('log10(0) is undefined.' ) return round(logaa(n / df ) , 3 ) def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> float: '''simple docstring''' return round(tf * idf , 3 )
648
lowerCAmelCase__ = range(2, 2_0 + 1) lowerCAmelCase__ = [1_0**k for k in range(ks[-1] + 1)] lowerCAmelCase__ = {} def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int ) -> Tuple: '''simple docstring''' _UpperCamelCase : Dict = sum(a_i[j] for j in range(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) ) _UpperCamelCase : Optional[int] = sum(a_i[j] * base[j] for j in range(min(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) ) ) _UpperCamelCase , _UpperCamelCase : Dict = 0, 0 _UpperCamelCase : Optional[int] = n - i _UpperCamelCase : Union[str, Any] = memo.get(UpperCAmelCase_ ) if sub_memo is not None: _UpperCamelCase : str = sub_memo.get(UpperCAmelCase_ ) if jumps is not None and len(UpperCAmelCase_ ) > 0: # find and make the largest jump without going over _UpperCamelCase : str = -1 for _k in range(len(UpperCAmelCase_ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _UpperCamelCase : Optional[Any] = _k break if max_jump >= 0: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = jumps[max_jump] # since the difference between jumps is cached, add c _UpperCamelCase : Tuple = diff + c for j in range(min(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) ): _UpperCamelCase , _UpperCamelCase : Dict = divmod(UpperCAmelCase_ , 1_0 ) if new_c > 0: add(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) else: _UpperCamelCase : Union[str, Any] = [] else: _UpperCamelCase : List[Any] = {c: []} _UpperCamelCase : Optional[int] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _UpperCamelCase , _UpperCamelCase : Optional[Any] = next_term(UpperCAmelCase_ , k - 1 , i + dn , UpperCAmelCase_ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _UpperCamelCase , _UpperCamelCase : Any = compute(UpperCAmelCase_ , UpperCAmelCase_ , i + dn , UpperCAmelCase_ ) diff += _diff dn += terms_jumped _UpperCamelCase : List[str] = sub_memo[c] # keep jumps sorted by # of terms skipped _UpperCamelCase : Union[str, Any] = 0 while j < len(UpperCAmelCase_ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCAmelCase_ , (diff, dn, k) ) return (diff, dn) def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any ) -> Dict: '''simple docstring''' if i >= n: return 0, i if k > len(UpperCAmelCase_ ): a_i.extend([0 for _ in range(k - len(UpperCAmelCase_ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _UpperCamelCase : Any = i _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Any = 0, 0, 0 for j in range(len(UpperCAmelCase_ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _UpperCamelCase : Union[str, Any] = ds_c + ds_b diff += addend _UpperCamelCase : Union[str, Any] = 0 for j in range(UpperCAmelCase_ ): _UpperCamelCase : Union[str, Any] = a_i[j] + addend _UpperCamelCase , _UpperCamelCase : Any = divmod(UpperCAmelCase_ , 1_0 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return diff, i - start_i def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any ) -> Dict: '''simple docstring''' for j in range(UpperCAmelCase_ , len(UpperCAmelCase_ ) ): _UpperCamelCase : List[str] = digits[j] + addend if s >= 1_0: _UpperCamelCase , _UpperCamelCase : Any = divmod(UpperCAmelCase_ , 1_0 ) _UpperCamelCase : Union[str, Any] = addend // 1_0 + quotient else: _UpperCamelCase : Dict = s _UpperCamelCase : Optional[Any] = addend // 1_0 if addend == 0: break while addend > 0: _UpperCamelCase , _UpperCamelCase : Dict = divmod(UpperCAmelCase_ , 1_0 ) digits.append(UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : int = 1_0**1_5 ) -> int: '''simple docstring''' _UpperCamelCase : Optional[Any] = [1] _UpperCamelCase : Optional[int] = 1 _UpperCamelCase : int = 0 while True: _UpperCamelCase , _UpperCamelCase : List[Any] = next_term(UpperCAmelCase_ , 2_0 , i + dn , UpperCAmelCase_ ) dn += terms_jumped if dn == n - i: break _UpperCamelCase : str = 0 for j in range(len(UpperCAmelCase_ ) ): a_n += digits[j] * 1_0**j return a_n if __name__ == "__main__": print(f'{solution() = }')
648
1
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") lowerCAmelCase__ = logging.getLogger(__name__) @dataclass class lowercase : """simple docstring""" a__ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) a__ = field( default=_lowercase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) a__ = field( default=_lowercase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) a__ = field( default=_lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) a__ = field( default=_lowercase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) a__ = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) a__ = field( default=_lowercase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class lowercase : """simple docstring""" a__ = field(default=_lowercase , metadata={"help": "The input training data file (a text file)."} ) a__ = field( default=_lowercase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) a__ = field( default=_lowercase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) a__ = field( default=_lowercase , metadata={"help": "The number of processes to use for the preprocessing."} , ) a__ = field( default=_lowercase , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) a__ = field( default=_lowercase , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) a__ = field( default=_lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) a__ = field( default=_lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def A__ ( self): if self.train_file is not None: _UpperCamelCase : Tuple = self.train_file.split('.')[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: _UpperCamelCase : str = self.validation_file.split('.')[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class lowercase : """simple docstring""" a__ = 42 a__ = True a__ = None a__ = None def __call__( self , __snake_case): _UpperCamelCase : str = 'label' if 'label' in features[0].keys() else 'labels' _UpperCamelCase : Tuple = [feature.pop(__snake_case) for feature in features] _UpperCamelCase : Dict = len(__snake_case) _UpperCamelCase : Tuple = len(features[0]['input_ids']) _UpperCamelCase : Tuple = [ [{k: v[i] for k, v in feature.items()} for i in range(__snake_case)] for feature in features ] _UpperCamelCase : List[str] = list(chain(*__snake_case)) _UpperCamelCase : Union[str, Any] = self.tokenizer.pad( __snake_case , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) # Un-flatten _UpperCamelCase : Tuple = {k: v.view(__snake_case , __snake_case , -1) for k, v in batch.items()} # Add back labels _UpperCamelCase : List[str] = torch.tensor(__snake_case , dtype=torch.intaa) return batch def lowerCamelCase_ ( ) -> str: '''simple docstring''' _UpperCamelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Tuple = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_swag' , UpperCAmelCase_ , UpperCAmelCase_ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCamelCase : Tuple = training_args.get_process_log_level() logger.setLevel(UpperCAmelCase_ ) datasets.utils.logging.set_verbosity(UpperCAmelCase_ ) transformers.utils.logging.set_verbosity(UpperCAmelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _UpperCamelCase : Tuple = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCamelCase : List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: _UpperCamelCase : str = {} if data_args.train_file is not None: _UpperCamelCase : Optional[Any] = data_args.train_file if data_args.validation_file is not None: _UpperCamelCase : List[str] = data_args.validation_file _UpperCamelCase : List[Any] = data_args.train_file.split('.' )[-1] _UpperCamelCase : Tuple = load_dataset( UpperCAmelCase_ , data_files=UpperCAmelCase_ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. _UpperCamelCase : Any = load_dataset( 'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCamelCase : str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCamelCase : List[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=UpperCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. _UpperCamelCase : str = [F'''ending{i}''' for i in range(4 )] _UpperCamelCase : int = 'sent1' _UpperCamelCase : Optional[int] = 'sent2' if data_args.max_seq_length is None: _UpperCamelCase : str = tokenizer.model_max_length if max_seq_length > 1_0_2_4: logger.warning( 'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value' ' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can' ' override this default with `--block_size xxx`.' ) _UpperCamelCase : Optional[int] = 1_0_2_4 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) _UpperCamelCase : Any = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(UpperCAmelCase_ : Any ): _UpperCamelCase : Any = [[context] * 4 for context in examples[context_name]] _UpperCamelCase : Union[str, Any] = examples[question_header_name] _UpperCamelCase : List[str] = [ [F'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(UpperCAmelCase_ ) ] # Flatten out _UpperCamelCase : Tuple = list(chain(*UpperCAmelCase_ ) ) _UpperCamelCase : List[Any] = list(chain(*UpperCAmelCase_ ) ) # Tokenize _UpperCamelCase : Any = tokenizer( UpperCAmelCase_ , UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(UpperCAmelCase_ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) _UpperCamelCase : Tuple = raw_datasets['train'] if data_args.max_train_samples is not None: _UpperCamelCase : List[Any] = min(len(UpperCAmelCase_ ) , data_args.max_train_samples ) _UpperCamelCase : Optional[Any] = train_dataset.select(range(UpperCAmelCase_ ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): _UpperCamelCase : Dict = train_dataset.map( UpperCAmelCase_ , batched=UpperCAmelCase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) _UpperCamelCase : Any = raw_datasets['validation'] if data_args.max_eval_samples is not None: _UpperCamelCase : Optional[Any] = min(len(UpperCAmelCase_ ) , data_args.max_eval_samples ) _UpperCamelCase : Any = eval_dataset.select(range(UpperCAmelCase_ ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): _UpperCamelCase : Dict = eval_dataset.map( UpperCAmelCase_ , batched=UpperCAmelCase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator _UpperCamelCase : List[Any] = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=UpperCAmelCase_ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(UpperCAmelCase_ : Any ): _UpperCamelCase , _UpperCamelCase : Dict = eval_predictions _UpperCamelCase : int = np.argmax(UpperCAmelCase_ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer _UpperCamelCase : Optional[int] = Trainer( model=UpperCAmelCase_ , args=UpperCAmelCase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=UpperCAmelCase_ , data_collator=UpperCAmelCase_ , compute_metrics=UpperCAmelCase_ , ) # Training if training_args.do_train: _UpperCamelCase : str = None if training_args.resume_from_checkpoint is not None: _UpperCamelCase : Optional[int] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCamelCase : List[Any] = last_checkpoint _UpperCamelCase : List[str] = trainer.train(resume_from_checkpoint=UpperCAmelCase_ ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCamelCase : Optional[Any] = train_result.metrics _UpperCamelCase : str = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCAmelCase_ ) ) _UpperCamelCase : List[Any] = min(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) trainer.log_metrics('train' , UpperCAmelCase_ ) trainer.save_metrics('train' , UpperCAmelCase_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) _UpperCamelCase : List[str] = trainer.evaluate() _UpperCamelCase : List[str] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = min(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) trainer.log_metrics('eval' , UpperCAmelCase_ ) trainer.save_metrics('eval' , UpperCAmelCase_ ) _UpperCamelCase : Dict = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'multiple-choice', 'dataset_tags': 'swag', 'dataset_args': 'regular', 'dataset': 'SWAG', 'language': 'en', } if training_args.push_to_hub: trainer.push_to_hub(**UpperCAmelCase_ ) else: trainer.create_model_card(**UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' main() if __name__ == "__main__": main()
648
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowercase ( _lowercase ): """simple docstring""" a__ = "vit_mae" def __init__( self , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=2_24 , __snake_case=16 , __snake_case=3 , __snake_case=True , __snake_case=16 , __snake_case=5_12 , __snake_case=8 , __snake_case=20_48 , __snake_case=0.7_5 , __snake_case=False , **__snake_case , ): super().__init__(**__snake_case) _UpperCamelCase : Optional[int] = hidden_size _UpperCamelCase : Optional[int] = num_hidden_layers _UpperCamelCase : Tuple = num_attention_heads _UpperCamelCase : List[str] = intermediate_size _UpperCamelCase : str = hidden_act _UpperCamelCase : List[str] = hidden_dropout_prob _UpperCamelCase : List[Any] = attention_probs_dropout_prob _UpperCamelCase : str = initializer_range _UpperCamelCase : Any = layer_norm_eps _UpperCamelCase : int = image_size _UpperCamelCase : Any = patch_size _UpperCamelCase : List[Any] = num_channels _UpperCamelCase : Union[str, Any] = qkv_bias _UpperCamelCase : str = decoder_num_attention_heads _UpperCamelCase : Union[str, Any] = decoder_hidden_size _UpperCamelCase : Union[str, Any] = decoder_num_hidden_layers _UpperCamelCase : Any = decoder_intermediate_size _UpperCamelCase : int = mask_ratio _UpperCamelCase : List[Any] = norm_pix_loss
648
1
from __future__ import annotations def lowerCamelCase_ ( UpperCAmelCase_ : list ) -> float: '''simple docstring''' if not nums: raise ValueError('List is empty' ) return sum(UpperCAmelCase_ ) / len(UpperCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
648
import functools def lowerCamelCase_ ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int] ) -> int: '''simple docstring''' if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or not all(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(UpperCAmelCase_ ) != 3 or not all(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(UpperCAmelCase_ ) == 0: return 0 if min(UpperCAmelCase_ ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(UpperCAmelCase_ ) >= 3_6_6: raise ValueError('All days elements should be less than 366' ) _UpperCamelCase : Union[str, Any] = set(UpperCAmelCase_ ) @functools.cache def dynamic_programming(UpperCAmelCase_ : int ) -> int: if index > 3_6_5: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 3_0 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
648
1
def lowerCamelCase_ ( UpperCAmelCase_ : list ) -> list: '''simple docstring''' _UpperCamelCase : List[Any] = False while is_sorted is False: # Until all the indices are traversed keep looping _UpperCamelCase : List[Any] = True for i in range(0 , len(UpperCAmelCase_ ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: _UpperCamelCase , _UpperCamelCase : List[str] = input_list[i + 1], input_list[i] # swapping if elements not in order _UpperCamelCase : Tuple = False for i in range(1 , len(UpperCAmelCase_ ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: _UpperCamelCase , _UpperCamelCase : List[str] = input_list[i + 1], input_list[i] # swapping if elements not in order _UpperCamelCase : Dict = False return input_list if __name__ == "__main__": print("""Enter list to be sorted""") lowerCAmelCase__ = [int(x) for x in input().split()] # inputing elements of the list in one line lowerCAmelCase__ = odd_even_sort(input_list) print("""The sorted list is""") print(sorted_list)
648
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=99 , __snake_case=64 , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=37 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=16 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=3 , __snake_case=4 , __snake_case=None , ): _UpperCamelCase : List[Any] = parent _UpperCamelCase : Optional[Any] = batch_size _UpperCamelCase : int = seq_length _UpperCamelCase : str = is_training _UpperCamelCase : Tuple = use_input_mask _UpperCamelCase : Union[str, Any] = use_token_type_ids _UpperCamelCase : Union[str, Any] = use_labels _UpperCamelCase : Optional[Any] = vocab_size _UpperCamelCase : List[Any] = hidden_size _UpperCamelCase : Optional[Any] = embedding_size _UpperCamelCase : str = num_hidden_layers _UpperCamelCase : str = num_attention_heads _UpperCamelCase : int = intermediate_size _UpperCamelCase : int = hidden_act _UpperCamelCase : Tuple = hidden_dropout_prob _UpperCamelCase : int = attention_probs_dropout_prob _UpperCamelCase : Tuple = max_position_embeddings _UpperCamelCase : List[str] = type_vocab_size _UpperCamelCase : Dict = type_sequence_label_size _UpperCamelCase : List[str] = initializer_range _UpperCamelCase : Optional[Any] = num_labels _UpperCamelCase : Tuple = num_choices _UpperCamelCase : List[str] = scope def A__ ( self): _UpperCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase : Any = None if self.use_input_mask: _UpperCamelCase : int = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase : Optional[Any] = None if self.use_token_type_ids: _UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase : int = None _UpperCamelCase : List[str] = None _UpperCamelCase : Dict = None if self.use_labels: _UpperCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self): return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : List[str] = MegatronBertModel(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case) _UpperCamelCase : Dict = model(__snake_case , token_type_ids=__snake_case) _UpperCamelCase : Optional[Any] = model(__snake_case) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : int = MegatronBertForMaskedLM(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Dict = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : str = MegatronBertForCausalLM(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Tuple = MegatronBertForNextSentencePrediction(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[Any] = MegatronBertForPreTraining(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[str] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , next_sentence_label=__snake_case , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : int = MegatronBertForQuestionAnswering(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[int] = self.num_labels _UpperCamelCase : Union[str, Any] = MegatronBertForSequenceClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Any = self.num_labels _UpperCamelCase : Optional[int] = MegatronBertForTokenClassification(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Tuple = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : List[str] = self.num_choices _UpperCamelCase : Optional[int] = MegatronBertForMultipleChoice(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : List[Any] = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : Optional[Any] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : Union[str, Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def A__ ( self): _UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) : Optional[int] = config_and_inputs _UpperCamelCase : int = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) a__ = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) a__ = True # test_resize_embeddings = False a__ = False def A__ ( self , __snake_case , __snake_case , __snake_case=False): _UpperCamelCase : str = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case) if return_labels: if model_class in get_values(__snake_case): _UpperCamelCase : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__snake_case) _UpperCamelCase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case) return inputs_dict def A__ ( self): _UpperCamelCase : Any = MegatronBertModelTester(self) _UpperCamelCase : int = ConfigTester(self , config_class=__snake_case , hidden_size=37) def A__ ( self): self.config_tester.run_common_tests() def A__ ( self): _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__snake_case) def A__ ( self): _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__snake_case) def A__ ( self): _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__snake_case) def A__ ( self): _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__snake_case) def A__ ( self): _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__snake_case) def A__ ( self): _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__snake_case) def A__ ( self): _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__snake_case) def A__ ( self): _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__snake_case) def lowerCamelCase_ ( UpperCAmelCase_ : str ) -> Optional[Any]: '''simple docstring''' return torch.tensor( UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ , ) lowerCAmelCase__ = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip('Model is not available.') def A__ ( self): _UpperCamelCase : int = 'nvidia/megatron-bert-uncased-345m' if "MYDIR" in os.environ: _UpperCamelCase : int = os.path.join(os.environ['MYDIR'] , __snake_case) _UpperCamelCase : Optional[int] = MegatronBertModel.from_pretrained(__snake_case) model.to(__snake_case) model.half() _UpperCamelCase : Optional[Any] = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]]) with torch.no_grad(): _UpperCamelCase : str = model(__snake_case)[0] _UpperCamelCase : Optional[int] = torch.Size((1, 9, 10_24)) self.assertEqual(output.shape , __snake_case) _UpperCamelCase : Union[str, Any] = [-0.6_0_4_0, -0.2_5_1_7, -0.1_0_2_5, 0.3_4_2_0, -0.6_7_5_8, -0.0_0_1_7, -0.1_0_8_9, -0.1_9_9_0, 0.5_7_2_8] for ii in range(3): for jj in range(3): _UpperCamelCase : Optional[Any] = output[0, ii, jj] _UpperCamelCase : Dict = expected[3 * ii + jj] _UpperCamelCase : Optional[int] = 'ii={} jj={} a={} b={}'.format(__snake_case , __snake_case , __snake_case , __snake_case) self.assertTrue(math.isclose(__snake_case , __snake_case , rel_tol=__snake_case , abs_tol=__snake_case) , msg=__snake_case)
648
1
from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def lowerCamelCase_ ( UpperCAmelCase_ : float , UpperCAmelCase_ : float , UpperCAmelCase_ : bool = False ) -> list[float]: '''simple docstring''' if radian_mode: return [magnitude * cos(UpperCAmelCase_ ), magnitude * sin(UpperCAmelCase_ )] return [magnitude * cos(radians(UpperCAmelCase_ ) ), magnitude * sin(radians(UpperCAmelCase_ ) )] def lowerCamelCase_ ( UpperCAmelCase_ : NDArray[floataa] , UpperCAmelCase_ : NDArray[floataa] , UpperCAmelCase_ : float = 1_0**-1 ) -> bool: '''simple docstring''' _UpperCamelCase : NDArray[floataa] = cross(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : float = sum(UpperCAmelCase_ ) return abs(UpperCAmelCase_ ) < eps if __name__ == "__main__": # Test to check if it works lowerCAmelCase__ = array( [ polar_force(7_18.4, 1_8_0 - 3_0), polar_force(8_79.54, 4_5), polar_force(1_0_0, -9_0), ] ) lowerCAmelCase__ = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg lowerCAmelCase__ = array( [ polar_force(3_0 * 9.81, 1_5), polar_force(2_1_5, 1_8_0 - 4_5), polar_force(2_6_4, 9_0 - 3_0), ] ) lowerCAmelCase__ = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg lowerCAmelCase__ = array([[0, -2_0_0_0], [0, -1_2_0_0], [0, 1_5_6_0_0], [0, -1_2_4_0_0]]) lowerCAmelCase__ = array([[0, 0], [6, 0], [1_0, 0], [1_2, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
648
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = """▁""" lowerCAmelCase__ = {"""vocab_file""": """sentencepiece.bpe.model"""} lowerCAmelCase__ = { """vocab_file""": { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model""" ), } } lowerCAmelCase__ = { """xlm-roberta-base""": 5_1_2, """xlm-roberta-large""": 5_1_2, """xlm-roberta-large-finetuned-conll02-dutch""": 5_1_2, """xlm-roberta-large-finetuned-conll02-spanish""": 5_1_2, """xlm-roberta-large-finetuned-conll03-english""": 5_1_2, """xlm-roberta-large-finetuned-conll03-german""": 5_1_2, } class lowercase ( _lowercase ): """simple docstring""" a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = ["input_ids", "attention_mask"] def __init__( self , __snake_case , __snake_case="<s>" , __snake_case="</s>" , __snake_case="</s>" , __snake_case="<s>" , __snake_case="<unk>" , __snake_case="<pad>" , __snake_case="<mask>" , __snake_case = None , **__snake_case , ): # Mask token behave like a normal word, i.e. include the space before it _UpperCamelCase : Dict = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case) if isinstance(__snake_case , __snake_case) else mask_token _UpperCamelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) _UpperCamelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(__snake_case)) _UpperCamelCase : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _UpperCamelCase : int = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _UpperCamelCase : List[Any] = 1 _UpperCamelCase : Any = len(self.sp_model) + self.fairseq_offset _UpperCamelCase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self): _UpperCamelCase : List[Any] = self.__dict__.copy() _UpperCamelCase : Optional[Any] = None _UpperCamelCase : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self , __snake_case): _UpperCamelCase : int = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): _UpperCamelCase : Tuple = {} _UpperCamelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) def A__ ( self , __snake_case , __snake_case = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCamelCase : Tuple = [self.cls_token_id] _UpperCamelCase : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self , __snake_case , __snake_case = None , __snake_case = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case) if token_ids_a is None: return [1] + ([0] * len(__snake_case)) + [1] return [1] + ([0] * len(__snake_case)) + [1, 1] + ([0] * len(__snake_case)) + [1] def A__ ( self , __snake_case , __snake_case = None): _UpperCamelCase : Optional[Any] = [self.sep_token_id] _UpperCamelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def A__ ( self): return len(self.sp_model) + self.fairseq_offset + 1 # Add the <mask> token def A__ ( self): _UpperCamelCase : List[str] = {self.convert_ids_to_tokens(__snake_case): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def A__ ( self , __snake_case): return self.sp_model.encode(__snake_case , out_type=__snake_case) def A__ ( self , __snake_case): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCamelCase : str = self.sp_model.PieceToId(__snake_case) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A__ ( self , __snake_case): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def A__ ( self , __snake_case): _UpperCamelCase : Optional[int] = ''.join(__snake_case).replace(__snake_case , ' ').strip() return out_string def A__ ( self , __snake_case , __snake_case = None): if not os.path.isdir(__snake_case): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return _UpperCamelCase : str = os.path.join( __snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(__snake_case) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , __snake_case) elif not os.path.isfile(self.vocab_file): with open(__snake_case , 'wb') as fi: _UpperCamelCase : Any = self.sp_model.serialized_model_proto() fi.write(__snake_case) return (out_vocab_file,)
648
1
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase_ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase : Tuple = MobileBertConfig.from_json_file(UpperCAmelCase_ ) print(F'''Building PyTorch model from configuration: {config}''' ) _UpperCamelCase : Any = MobileBertForPreTraining(UpperCAmelCase_ ) # Load weights from tf checkpoint _UpperCamelCase : Tuple = load_tf_weights_in_mobilebert(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , UpperCAmelCase_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--mobilebert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained MobileBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
648
from ...processing_utils import ProcessorMixin class lowercase ( _lowercase ): """simple docstring""" a__ = ["image_processor", "feature_extractor"] a__ = "TvltImageProcessor" a__ = "TvltFeatureExtractor" def __init__( self , __snake_case , __snake_case): super().__init__(image_processor=__snake_case , feature_extractor=__snake_case) _UpperCamelCase : List[str] = image_processor _UpperCamelCase : Dict = feature_extractor def __call__( self , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=False , __snake_case=False , *__snake_case , **__snake_case , ): if images is None and audio is None: raise ValueError('You need to specify either an `images` or `audio` input to process.') _UpperCamelCase : Union[str, Any] = None if images is not None: _UpperCamelCase : Tuple = self.image_processor(__snake_case , mask_pixel=__snake_case , *__snake_case , **__snake_case) if images_mixed is not None: _UpperCamelCase : Union[str, Any] = self.image_processor(__snake_case , is_mixed=__snake_case , *__snake_case , **__snake_case) if audio is not None: _UpperCamelCase : Tuple = self.feature_extractor( __snake_case , *__snake_case , sampling_rate=__snake_case , mask_audio=__snake_case , **__snake_case) _UpperCamelCase : Tuple = {} if audio is not None: output_dict.update(__snake_case) if images is not None: output_dict.update(__snake_case) if images_mixed_dict is not None: output_dict.update(__snake_case) return output_dict @property def A__ ( self): _UpperCamelCase : List[Any] = self.image_processor.model_input_names _UpperCamelCase : List[Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
648
1
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class lowercase ( ctypes.Structure ): """simple docstring""" a__ = [("size", ctypes.c_int), ("visible", ctypes.c_byte)] def lowerCamelCase_ ( ) -> Dict: '''simple docstring''' if os.name == "nt": _UpperCamelCase : Tuple = CursorInfo() _UpperCamelCase : Optional[int] = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase_ , ctypes.byref(UpperCAmelCase_ ) ) _UpperCamelCase : Optional[int] = False ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase_ , ctypes.byref(UpperCAmelCase_ ) ) elif os.name == "posix": sys.stdout.write('\033[?25l' ) sys.stdout.flush() def lowerCamelCase_ ( ) -> Any: '''simple docstring''' if os.name == "nt": _UpperCamelCase : int = CursorInfo() _UpperCamelCase : Union[str, Any] = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase_ , ctypes.byref(UpperCAmelCase_ ) ) _UpperCamelCase : Union[str, Any] = True ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase_ , ctypes.byref(UpperCAmelCase_ ) ) elif os.name == "posix": sys.stdout.write('\033[?25h' ) sys.stdout.flush() @contextmanager def lowerCamelCase_ ( ) -> Union[str, Any]: '''simple docstring''' try: hide_cursor() yield finally: show_cursor()
648
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class lowercase ( _lowercase ): """simple docstring""" a__ = "rwkv" a__ = {"max_position_embeddings": "context_length"} def __init__( self , __snake_case=5_02_77 , __snake_case=10_24 , __snake_case=40_96 , __snake_case=32 , __snake_case=None , __snake_case=None , __snake_case=1e-5 , __snake_case=0 , __snake_case=0 , __snake_case=6 , __snake_case=False , __snake_case=True , **__snake_case , ): _UpperCamelCase : str = vocab_size _UpperCamelCase : int = context_length _UpperCamelCase : Tuple = hidden_size _UpperCamelCase : Tuple = num_hidden_layers _UpperCamelCase : Dict = attention_hidden_size if attention_hidden_size is not None else hidden_size _UpperCamelCase : Tuple = intermediate_size if intermediate_size is not None else 4 * hidden_size _UpperCamelCase : Union[str, Any] = layer_norm_epsilon _UpperCamelCase : Dict = rescale_every _UpperCamelCase : Optional[Any] = use_cache _UpperCamelCase : str = bos_token_id _UpperCamelCase : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case)
648
1
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) lowerCAmelCase__ = { """sample_size""": 3_2, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 1_0_0_0, """block_out_channels""": [3_2, 6_4], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """sample_size""": 6_4, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 1_0_0_0, """block_out_channels""": [1_9_2, 1_9_2 * 2, 1_9_2 * 3, 1_9_2 * 4], """attention_head_dim""": 6_4, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """sample_size""": 2_5_6, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [2_5_6, 2_5_6, 2_5_6 * 2, 2_5_6 * 2, 2_5_6 * 4, 2_5_6 * 4], """attention_head_dim""": 6_4, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """num_train_timesteps""": 4_0, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } lowerCAmelCase__ = { """num_train_timesteps""": 2_0_1, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } lowerCAmelCase__ = { """num_train_timesteps""": 1_5_1, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> List[str]: '''simple docstring''' if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def lowerCamelCase_ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any]=False ) -> str: '''simple docstring''' _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.in_layers.0.weight'''] _UpperCamelCase : str = checkpoint[F'''{old_prefix}.in_layers.0.bias'''] _UpperCamelCase : str = checkpoint[F'''{old_prefix}.in_layers.2.weight'''] _UpperCamelCase : Union[str, Any] = checkpoint[F'''{old_prefix}.in_layers.2.bias'''] _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.emb_layers.1.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.emb_layers.1.bias'''] _UpperCamelCase : Tuple = checkpoint[F'''{old_prefix}.out_layers.0.weight'''] _UpperCamelCase : List[Any] = checkpoint[F'''{old_prefix}.out_layers.0.bias'''] _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.out_layers.3.weight'''] _UpperCamelCase : Union[str, Any] = checkpoint[F'''{old_prefix}.out_layers.3.bias'''] if has_skip: _UpperCamelCase : Tuple = checkpoint[F'''{old_prefix}.skip_connection.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any=None ) -> int: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 ) _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.norm.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.norm.bias'''] _UpperCamelCase : List[str] = weight_q.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Dict = bias_q.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Any = weight_k.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : List[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Dict = weight_v.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Tuple = bias_v.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Optional[Any] = ( checkpoint[F'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] ) -> Tuple: '''simple docstring''' _UpperCamelCase : Any = torch.load(UpperCAmelCase_ , map_location='cpu' ) _UpperCamelCase : Union[str, Any] = {} _UpperCamelCase : Optional[int] = checkpoint['time_embed.0.weight'] _UpperCamelCase : List[Any] = checkpoint['time_embed.0.bias'] _UpperCamelCase : Dict = checkpoint['time_embed.2.weight'] _UpperCamelCase : Optional[Any] = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: _UpperCamelCase : List[str] = checkpoint['label_emb.weight'] _UpperCamelCase : Optional[int] = checkpoint['input_blocks.0.0.weight'] _UpperCamelCase : Union[str, Any] = checkpoint['input_blocks.0.0.bias'] _UpperCamelCase : Optional[int] = unet_config['down_block_types'] _UpperCamelCase : Optional[Any] = unet_config['layers_per_block'] _UpperCamelCase : Dict = unet_config['attention_head_dim'] _UpperCamelCase : List[str] = unet_config['block_out_channels'] _UpperCamelCase : str = 1 _UpperCamelCase : Optional[int] = channels_list[0] for i, layer_type in enumerate(UpperCAmelCase_ ): _UpperCamelCase : List[str] = channels_list[i] _UpperCamelCase : str = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(UpperCAmelCase_ ): _UpperCamelCase : str = F'''down_blocks.{i}.resnets.{j}''' _UpperCamelCase : List[Any] = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : Any = True if j == 0 and downsample_block_has_skip else False _UpperCamelCase : str = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(UpperCAmelCase_ ): _UpperCamelCase : List[str] = F'''down_blocks.{i}.resnets.{j}''' _UpperCamelCase : str = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : int = True if j == 0 and downsample_block_has_skip else False _UpperCamelCase : Any = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) _UpperCamelCase : Dict = F'''down_blocks.{i}.attentions.{j}''' _UpperCamelCase : Optional[int] = F'''input_blocks.{current_layer}.1''' _UpperCamelCase : Dict = convert_attention( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : int = F'''down_blocks.{i}.downsamplers.0''' _UpperCamelCase : Optional[int] = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : List[Any] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 _UpperCamelCase : Tuple = current_channels # hardcoded the mid-block for now _UpperCamelCase : Any = 'mid_block.resnets.0' _UpperCamelCase : Optional[Any] = 'middle_block.0' _UpperCamelCase : Tuple = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = 'mid_block.attentions.0' _UpperCamelCase : Tuple = 'middle_block.1' _UpperCamelCase : Union[str, Any] = convert_attention(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Tuple = 'mid_block.resnets.1' _UpperCamelCase : str = 'middle_block.2' _UpperCamelCase : List[str] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : List[Any] = 0 _UpperCamelCase : Optional[int] = unet_config['up_block_types'] for i, layer_type in enumerate(UpperCAmelCase_ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _UpperCamelCase : Optional[Any] = F'''up_blocks.{i}.resnets.{j}''' _UpperCamelCase : Optional[int] = F'''output_blocks.{current_layer}.0''' _UpperCamelCase : str = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : List[Any] = F'''up_blocks.{i}.upsamplers.0''' _UpperCamelCase : Dict = F'''output_blocks.{current_layer-1}.1''' _UpperCamelCase : Optional[int] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _UpperCamelCase : str = F'''up_blocks.{i}.resnets.{j}''' _UpperCamelCase : Union[str, Any] = F'''output_blocks.{current_layer}.0''' _UpperCamelCase : Optional[int] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) _UpperCamelCase : int = F'''up_blocks.{i}.attentions.{j}''' _UpperCamelCase : List[Any] = F'''output_blocks.{current_layer}.1''' _UpperCamelCase : Optional[int] = convert_attention( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : List[Any] = F'''up_blocks.{i}.upsamplers.0''' _UpperCamelCase : Union[str, Any] = F'''output_blocks.{current_layer-1}.2''' _UpperCamelCase : List[str] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : List[Any] = checkpoint['out.0.weight'] _UpperCamelCase : str = checkpoint['out.0.bias'] _UpperCamelCase : int = checkpoint['out.2.weight'] _UpperCamelCase : List[Any] = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = strabool(args.class_cond) lowerCAmelCase__ = os.path.basename(args.unet_path) print(f'Checkpoint: {ckpt_name}') # Get U-Net config if "imagenet64" in ckpt_name: lowerCAmelCase__ = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCAmelCase__ = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: lowerCAmelCase__ = TEST_UNET_CONFIG else: raise ValueError(f'Checkpoint type {ckpt_name} is not currently supported.') if not args.class_cond: lowerCAmelCase__ = None lowerCAmelCase__ = con_pt_to_diffuser(args.unet_path, unet_config) lowerCAmelCase__ = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: lowerCAmelCase__ = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: lowerCAmelCase__ = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCAmelCase__ = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f'Checkpoint type {ckpt_name} is not currently supported.') lowerCAmelCase__ = CMStochasticIterativeScheduler(**scheduler_config) lowerCAmelCase__ = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
648
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class lowercase ( _lowercase ): """simple docstring""" a__ = "bert" def __init__( self , __snake_case=3_05_22 , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=0 , __snake_case="absolute" , __snake_case=True , __snake_case=None , **__snake_case , ): super().__init__(pad_token_id=__snake_case , **__snake_case) _UpperCamelCase : int = vocab_size _UpperCamelCase : Optional[Any] = hidden_size _UpperCamelCase : Optional[Any] = num_hidden_layers _UpperCamelCase : List[str] = num_attention_heads _UpperCamelCase : int = hidden_act _UpperCamelCase : Optional[Any] = intermediate_size _UpperCamelCase : Union[str, Any] = hidden_dropout_prob _UpperCamelCase : Tuple = attention_probs_dropout_prob _UpperCamelCase : Optional[int] = max_position_embeddings _UpperCamelCase : str = type_vocab_size _UpperCamelCase : Optional[Any] = initializer_range _UpperCamelCase : List[str] = layer_norm_eps _UpperCamelCase : Any = position_embedding_type _UpperCamelCase : Any = use_cache _UpperCamelCase : Any = classifier_dropout class lowercase ( _lowercase ): """simple docstring""" @property def A__ ( self): if self.task == "multiple-choice": _UpperCamelCase : Union[str, Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCamelCase : Optional[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ])
648
1
from __future__ import annotations from random import random from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar("""KT""") lowerCAmelCase__ = TypeVar("""VT""") class lowercase ( Generic[KT, VT] ): """simple docstring""" def __init__( self , __snake_case = "root" , __snake_case = None): _UpperCamelCase : List[str] = key _UpperCamelCase : List[Any] = value _UpperCamelCase : list[Node[KT, VT]] = [] def __repr__( self): return f'''Node({self.key}: {self.value})''' @property def A__ ( self): return len(self.forward) class lowercase ( Generic[KT, VT] ): """simple docstring""" def __init__( self , __snake_case = 0.5 , __snake_case = 16): _UpperCamelCase : Node[KT, VT] = Node[KT, VT]() _UpperCamelCase : Any = 0 _UpperCamelCase : Optional[int] = p _UpperCamelCase : int = max_level def __str__( self): _UpperCamelCase : Tuple = list(self) if len(__snake_case) == 0: return f'''SkipList(level={self.level})''' _UpperCamelCase : str = max((len(str(__snake_case)) for item in items) , default=4) _UpperCamelCase : Optional[Any] = max(__snake_case , 4) + 4 _UpperCamelCase : List[Any] = self.head _UpperCamelCase : List[str] = [] _UpperCamelCase : Any = node.forward.copy() lines.append(f'''[{node.key}]'''.ljust(__snake_case , '-') + '* ' * len(__snake_case)) lines.append(' ' * label_size + '| ' * len(__snake_case)) while len(node.forward) != 0: _UpperCamelCase : Optional[int] = node.forward[0] lines.append( f'''[{node.key}]'''.ljust(__snake_case , '-') + ' '.join(str(n.key) if n.key == node.key else '|' for n in forwards)) lines.append(' ' * label_size + '| ' * len(__snake_case)) _UpperCamelCase : Any = node.forward lines.append('None'.ljust(__snake_case) + '* ' * len(__snake_case)) return f'''SkipList(level={self.level})\n''' + "\n".join(__snake_case) def __iter__( self): _UpperCamelCase : Dict = self.head while len(node.forward) != 0: yield node.forward[0].key _UpperCamelCase : Any = node.forward[0] def A__ ( self): _UpperCamelCase : List[Any] = 1 while random() < self.p and level < self.max_level: level += 1 return level def A__ ( self , __snake_case): _UpperCamelCase : Optional[Any] = [] _UpperCamelCase : Tuple = self.head for i in reversed(range(self.level)): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: _UpperCamelCase : Union[str, Any] = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(__snake_case) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def A__ ( self , __snake_case): _UpperCamelCase , _UpperCamelCase : Optional[int] = self._locate_node(__snake_case) if node is not None: for i, update_node in enumerate(__snake_case): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: _UpperCamelCase : Optional[int] = node.forward[i] else: _UpperCamelCase : List[str] = update_node.forward[:i] def A__ ( self , __snake_case , __snake_case): _UpperCamelCase , _UpperCamelCase : Optional[int] = self._locate_node(__snake_case) if node is not None: _UpperCamelCase : str = value else: _UpperCamelCase : str = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , __snake_case): update_vector.append(self.head) _UpperCamelCase : Union[str, Any] = level _UpperCamelCase : Optional[Any] = Node(__snake_case , __snake_case) for i, update_node in enumerate(update_vector[:level]): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i]) if update_node.level < i + 1: update_node.forward.append(__snake_case) else: _UpperCamelCase : int = new_node def A__ ( self , __snake_case): _UpperCamelCase , _UpperCamelCase : Union[str, Any] = self._locate_node(__snake_case) if node is not None: return node.value return None def lowerCamelCase_ ( ) -> str: '''simple docstring''' _UpperCamelCase : Tuple = SkipList() skip_list.insert('Key1' , 3 ) skip_list.insert('Key2' , 1_2 ) skip_list.insert('Key3' , 4_1 ) skip_list.insert('Key4' , -1_9 ) _UpperCamelCase : List[str] = skip_list.head _UpperCamelCase : Tuple = {} while node.level != 0: _UpperCamelCase : Any = node.forward[0] _UpperCamelCase : Dict = node.value assert len(UpperCAmelCase_ ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 1_2 assert all_values["Key3"] == 4_1 assert all_values["Key4"] == -1_9 def lowerCamelCase_ ( ) -> Optional[int]: '''simple docstring''' _UpperCamelCase : Optional[int] = SkipList() skip_list.insert('Key1' , 1_0 ) skip_list.insert('Key1' , 1_2 ) skip_list.insert('Key5' , 7 ) skip_list.insert('Key7' , 1_0 ) skip_list.insert('Key10' , 5 ) skip_list.insert('Key7' , 7 ) skip_list.insert('Key5' , 5 ) skip_list.insert('Key10' , 1_0 ) _UpperCamelCase : Tuple = skip_list.head _UpperCamelCase : Dict = {} while node.level != 0: _UpperCamelCase : str = node.forward[0] _UpperCamelCase : Union[str, Any] = node.value if len(UpperCAmelCase_ ) != 4: print() assert len(UpperCAmelCase_ ) == 4 assert all_values["Key1"] == 1_2 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 1_0 def lowerCamelCase_ ( ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase : str = SkipList() assert skip_list.find('Some key' ) is None def lowerCamelCase_ ( ) -> str: '''simple docstring''' _UpperCamelCase : int = SkipList() skip_list.insert('Key2' , 2_0 ) assert skip_list.find('Key2' ) == 2_0 skip_list.insert('Some Key' , 1_0 ) skip_list.insert('Key2' , 8 ) skip_list.insert('V' , 1_3 ) assert skip_list.find('Y' ) is None assert skip_list.find('Key2' ) == 8 assert skip_list.find('Some Key' ) == 1_0 assert skip_list.find('V' ) == 1_3 def lowerCamelCase_ ( ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase : Dict = SkipList() skip_list.delete('Some key' ) assert len(skip_list.head.forward ) == 0 def lowerCamelCase_ ( ) -> Tuple: '''simple docstring''' _UpperCamelCase : Tuple = SkipList() skip_list.insert('Key1' , 1_2 ) skip_list.insert('V' , 1_3 ) skip_list.insert('X' , 1_4 ) skip_list.insert('Key2' , 1_5 ) skip_list.delete('V' ) skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('Key2' ) is None def lowerCamelCase_ ( ) -> List[Any]: '''simple docstring''' _UpperCamelCase : Tuple = SkipList() skip_list.insert('Key1' , 1_2 ) skip_list.insert('V' , 1_3 ) skip_list.insert('X' , 1_4 ) skip_list.insert('Key2' , 1_5 ) skip_list.delete('V' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) == 1_4 assert skip_list.find('Key1' ) == 1_2 assert skip_list.find('Key2' ) == 1_5 skip_list.delete('X' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) == 1_2 assert skip_list.find('Key2' ) == 1_5 skip_list.delete('Key1' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) == 1_5 skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) is None def lowerCamelCase_ ( ) -> Tuple: '''simple docstring''' _UpperCamelCase : List[Any] = SkipList() skip_list.insert('Key1' , 1_2 ) skip_list.insert('V' , 1_3 ) skip_list.insert('X' , 1_4_2 ) skip_list.insert('Key2' , 1_5 ) skip_list.delete('X' ) def traverse_keys(UpperCAmelCase_ : Any ): yield node.key for forward_node in node.forward: yield from traverse_keys(UpperCAmelCase_ ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def lowerCamelCase_ ( ) -> Any: '''simple docstring''' def is_sorted(UpperCAmelCase_ : Dict ): return all(next_item >= item for item, next_item in zip(UpperCAmelCase_ , lst[1:] ) ) _UpperCamelCase : str = SkipList() for i in range(1_0 ): skip_list.insert(UpperCAmelCase_ , UpperCAmelCase_ ) assert is_sorted(list(UpperCAmelCase_ ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(UpperCAmelCase_ ) ) skip_list.insert(-1_2 , -1_2 ) skip_list.insert(7_7 , 7_7 ) assert is_sorted(list(UpperCAmelCase_ ) ) def lowerCamelCase_ ( ) -> Union[str, Any]: '''simple docstring''' for _ in range(1_0_0 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def lowerCamelCase_ ( ) -> Tuple: '''simple docstring''' _UpperCamelCase : Any = SkipList() skip_list.insert(2 , '2' ) skip_list.insert(4 , '4' ) skip_list.insert(6 , '4' ) skip_list.insert(4 , '5' ) skip_list.insert(8 , '4' ) skip_list.insert(9 , '4' ) skip_list.delete(4 ) print(UpperCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
648
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowercase ( _lowercase ): """simple docstring""" a__ = "facebook/bart-large-mnli" a__ = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) a__ = "text_classifier" a__ = AutoTokenizer a__ = AutoModelForSequenceClassification a__ = ["text", ["text"]] a__ = ["text"] def A__ ( self): super().setup() _UpperCamelCase : List[Any] = self.model.config _UpperCamelCase : Optional[int] = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail'): _UpperCamelCase : Tuple = int(__snake_case) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.') def A__ ( self , __snake_case , __snake_case): _UpperCamelCase : List[Any] = labels return self.pre_processor( [text] * len(__snake_case) , [f'''This example is {label}''' for label in labels] , return_tensors='pt' , padding='max_length' , ) def A__ ( self , __snake_case): _UpperCamelCase : str = outputs.logits _UpperCamelCase : Optional[Any] = torch.argmax(logits[:, 2]).item() return self._labels[label_id]
648
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def lowerCamelCase_ ( UpperCAmelCase_ : Optional[int] ) -> Tuple: '''simple docstring''' _UpperCamelCase : List[Any] = SwinConfig( embed_dim=1_9_2 , depths=(2, 2, 1_8, 2) , num_heads=(6, 1_2, 2_4, 4_8) , window_size=1_2 , out_features=['stage2', 'stage3', 'stage4'] , ) _UpperCamelCase : Optional[int] = DetaConfig( backbone_config=UpperCAmelCase_ , num_queries=9_0_0 , encoder_ffn_dim=2_0_4_8 , decoder_ffn_dim=2_0_4_8 , num_feature_levels=5 , assign_first_stage=UpperCAmelCase_ , with_box_refine=UpperCAmelCase_ , two_stage=UpperCAmelCase_ , ) # set labels _UpperCamelCase : Union[str, Any] = 'huggingface/label-files' if "o365" in model_name: _UpperCamelCase : Tuple = 3_6_6 _UpperCamelCase : int = 'object365-id2label.json' else: _UpperCamelCase : int = 9_1 _UpperCamelCase : Tuple = 'coco-detection-id2label.json' _UpperCamelCase : int = num_labels _UpperCamelCase : Dict = json.load(open(cached_download(hf_hub_url(UpperCAmelCase_ , UpperCAmelCase_ , repo_type='dataset' ) ) , 'r' ) ) _UpperCamelCase : Dict = {int(UpperCAmelCase_ ): v for k, v in idalabel.items()} _UpperCamelCase : Any = idalabel _UpperCamelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} return config def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] ) -> Tuple: '''simple docstring''' _UpperCamelCase : str = [] # stem # fmt: off rename_keys.append(('backbone.0.body.patch_embed.proj.weight', 'model.backbone.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.0.body.patch_embed.proj.bias', 'model.backbone.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.0.body.patch_embed.norm.weight', 'model.backbone.model.embeddings.norm.weight') ) rename_keys.append(('backbone.0.body.patch_embed.norm.bias', 'model.backbone.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.reduction.weight''', F'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.norm.weight''', F'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.norm.bias''', F'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(('backbone.0.body.norm1.weight', 'model.backbone.model.hidden_states_norms.stage2.weight') ) rename_keys.append(('backbone.0.body.norm1.bias', 'model.backbone.model.hidden_states_norms.stage2.bias') ) rename_keys.append(('backbone.0.body.norm2.weight', 'model.backbone.model.hidden_states_norms.stage3.weight') ) rename_keys.append(('backbone.0.body.norm2.bias', 'model.backbone.model.hidden_states_norms.stage3.bias') ) rename_keys.append(('backbone.0.body.norm3.weight', 'model.backbone.model.hidden_states_norms.stage4.weight') ) rename_keys.append(('backbone.0.body.norm3.bias', 'model.backbone.model.hidden_states_norms.stage4.bias') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', F'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', F'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', F'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', F'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', F'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', F'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', F'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', F'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.weight''', F'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', F'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', F'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', F'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', F'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', F'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', F'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', F'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', F'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.weight''', F'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm2.weight''', F'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm2.bias''', F'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict ) -> Optional[int]: '''simple docstring''' _UpperCamelCase : Optional[int] = dct.pop(UpperCAmelCase_ ) _UpperCamelCase : List[str] = val def lowerCamelCase_ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ) -> str: '''simple docstring''' _UpperCamelCase : str = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _UpperCamelCase : Union[str, Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _UpperCamelCase : Tuple = state_dict.pop(F'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) _UpperCamelCase : Optional[Any] = state_dict.pop(F'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase : List[str] = in_proj_weight[:dim, :] _UpperCamelCase : str = in_proj_bias[: dim] _UpperCamelCase : List[str] = in_proj_weight[ dim : dim * 2, : ] _UpperCamelCase : Union[str, Any] = in_proj_bias[ dim : dim * 2 ] _UpperCamelCase : Any = in_proj_weight[ -dim :, : ] _UpperCamelCase : Tuple = in_proj_bias[-dim :] # fmt: on def lowerCamelCase_ ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any ) -> int: '''simple docstring''' _UpperCamelCase : List[str] = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention _UpperCamelCase : Union[str, Any] = state_dict.pop(F'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) _UpperCamelCase : Optional[Any] = state_dict.pop(F'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase : Any = in_proj_weight[:hidden_size, :] _UpperCamelCase : str = in_proj_bias[:hidden_size] _UpperCamelCase : str = in_proj_weight[ hidden_size : hidden_size * 2, : ] _UpperCamelCase : List[str] = in_proj_bias[hidden_size : hidden_size * 2] _UpperCamelCase : str = in_proj_weight[-hidden_size:, :] _UpperCamelCase : Optional[int] = in_proj_bias[-hidden_size:] def lowerCamelCase_ ( ) -> str: '''simple docstring''' _UpperCamelCase : Dict = 'http://images.cocodataset.org/val2017/000000039769.jpg' _UpperCamelCase : str = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ) return im @torch.no_grad() def lowerCamelCase_ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase : int = get_deta_config(UpperCAmelCase_ ) # load original state dict if model_name == "deta-swin-large": _UpperCamelCase : int = hf_hub_download(repo_id='nielsr/deta-checkpoints' , filename='adet_swin_ft.pth' ) elif model_name == "deta-swin-large-o365": _UpperCamelCase : str = hf_hub_download(repo_id='jozhang97/deta-swin-l-o365' , filename='deta_swin_pt_o365.pth' ) else: raise ValueError(F'''Model name {model_name} not supported''' ) _UpperCamelCase : str = torch.load(UpperCAmelCase_ , map_location='cpu' )['model'] # original state dict for name, param in state_dict.items(): print(UpperCAmelCase_ , param.shape ) # rename keys _UpperCamelCase : Union[str, Any] = create_rename_keys(UpperCAmelCase_ ) for src, dest in rename_keys: rename_key(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) read_in_swin_q_k_v(UpperCAmelCase_ , config.backbone_config ) read_in_decoder_q_k_v(UpperCAmelCase_ , UpperCAmelCase_ ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: _UpperCamelCase : str = state_dict.pop(UpperCAmelCase_ ) _UpperCamelCase : List[str] = val if "input_proj" in key: _UpperCamelCase : int = state_dict.pop(UpperCAmelCase_ ) _UpperCamelCase : List[Any] = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: _UpperCamelCase : Union[str, Any] = state_dict.pop(UpperCAmelCase_ ) _UpperCamelCase : Any = val # finally, create HuggingFace model and load state dict _UpperCamelCase : Any = DetaForObjectDetection(UpperCAmelCase_ ) model.load_state_dict(UpperCAmelCase_ ) model.eval() _UpperCamelCase : List[str] = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(UpperCAmelCase_ ) # load image processor _UpperCamelCase : Any = DetaImageProcessor(format='coco_detection' ) # verify our conversion on image _UpperCamelCase : int = prepare_img() _UpperCamelCase : List[str] = processor(images=UpperCAmelCase_ , return_tensors='pt' ) _UpperCamelCase : List[str] = encoding['pixel_values'] _UpperCamelCase : Optional[Any] = model(pixel_values.to(UpperCAmelCase_ ) ) # verify logits print('Logits:' , outputs.logits[0, :3, :3] ) print('Boxes:' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": _UpperCamelCase : Union[str, Any] = torch.tensor( [[-7.6_3_0_8, -2.8_4_8_5, -5.3_7_3_7], [-7.2_0_3_7, -4.5_5_0_5, -4.8_0_2_7], [-7.2_9_4_3, -4.2_6_1_1, -4.6_6_1_7]] ) _UpperCamelCase : Optional[Any] = torch.tensor([[0.4_9_8_7, 0.4_9_6_9, 0.9_9_9_9], [0.2_5_4_9, 0.5_4_9_8, 0.4_8_0_5], [0.5_4_9_8, 0.2_7_5_7, 0.0_5_6_9]] ) elif model_name == "deta-swin-large-o365": _UpperCamelCase : Dict = torch.tensor( [[-8.0_1_2_2, -3.5_7_2_0, -4.9_7_1_7], [-8.1_5_4_7, -3.6_8_8_6, -4.6_3_8_9], [-7.6_6_1_0, -3.6_1_9_4, -5.0_1_3_4]] ) _UpperCamelCase : Optional[int] = torch.tensor([[0.2_5_2_3, 0.5_5_4_9, 0.4_8_8_1], [0.7_7_1_5, 0.4_1_4_9, 0.4_6_0_1], [0.5_5_0_3, 0.2_7_5_3, 0.0_5_7_5]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(UpperCAmelCase_ ) , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(UpperCAmelCase_ ) , atol=1e-4 ) print('Everything ok!' ) if pytorch_dump_folder_path: # Save model and processor logger.info(F'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(UpperCAmelCase_ ).mkdir(exist_ok=UpperCAmelCase_ ) model.save_pretrained(UpperCAmelCase_ ) processor.save_pretrained(UpperCAmelCase_ ) # Push to hub if push_to_hub: print('Pushing model and processor to hub...' ) model.push_to_hub(F'''jozhang97/{model_name}''' ) processor.push_to_hub(F'''jozhang97/{model_name}''' ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( """--model_name""", type=str, default="""deta-swin-large""", choices=["""deta-swin-large""", """deta-swin-large-o365"""], help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCAmelCase__ = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
648
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
648
1
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_sentencepiece_available(): import sentencepiece as sp lowerCAmelCase__ = 5 lowerCAmelCase__ = 1_0 @require_sentencepiece @require_tokenizers class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" a__ = SpeechaTextTokenizer a__ = False a__ = True def A__ ( self): super().setUp() _UpperCamelCase : Any = sp.SentencePieceProcessor() spm_model.Load(__snake_case) _UpperCamelCase : List[str] = ['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_) for id_ in range(len(__snake_case))] _UpperCamelCase : Dict = dict(zip(__snake_case , range(len(__snake_case)))) _UpperCamelCase : Tuple = Path(self.tmpdirname) save_json(__snake_case , save_dir / VOCAB_FILES_NAMES['vocab_file']) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__snake_case , save_dir / VOCAB_FILES_NAMES['spm_file']) _UpperCamelCase : int = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def A__ ( self): _UpperCamelCase : str = '<pad>' _UpperCamelCase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case) , __snake_case) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case) , __snake_case) def A__ ( self): _UpperCamelCase : Optional[Any] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(vocab_keys[-1] , 'j') self.assertEqual(len(__snake_case) , 10_01) def A__ ( self): self.assertEqual(self.get_tokenizer().vocab_size , 10_01) def A__ ( self): _UpperCamelCase : Any = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) _UpperCamelCase : List[str] = tokenizer.tokenize('This is a test') self.assertListEqual(__snake_case , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case) , [2_89, 50, 14, 1_74, 3_86] , ) _UpperCamelCase : int = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( __snake_case , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) _UpperCamelCase : int = tokenizer.convert_tokens_to_ids(__snake_case) self.assertListEqual(__snake_case , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8]) _UpperCamelCase : Tuple = tokenizer.convert_ids_to_tokens(__snake_case) self.assertListEqual( __snake_case , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def A__ ( self): # fmt: off _UpperCamelCase : Optional[int] = {'input_ids': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , ) @require_sentencepiece class lowercase ( unittest.TestCase ): """simple docstring""" a__ = "valhalla/s2t_mustc_multilinguial_medium" a__ = "C'est trop cool" a__ = "Esto es genial" @classmethod def A__ ( cls): _UpperCamelCase : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name) return cls def A__ ( self): self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4) self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6) self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9) self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11) def A__ ( self): self.assertEqual(self.tokenizer.vocab_size , 1_00_00) def A__ ( self): self.assertIn(__snake_case , self.tokenizer.all_special_ids) _UpperCamelCase : Optional[int] = [ES_CODE, 4, 16_01, 47, 76_47, 2] _UpperCamelCase : Tuple = self.tokenizer.decode(__snake_case , skip_special_tokens=__snake_case) _UpperCamelCase : Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__snake_case) self.assertEqual(__snake_case , __snake_case) self.assertNotIn(self.tokenizer.eos_token , __snake_case) def A__ ( self): _UpperCamelCase : Any = 'fr' _UpperCamelCase : List[Any] = self.tokenizer(self.french_text).input_ids self.assertEqual(encoded[0] , __snake_case) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id) def A__ ( self): _UpperCamelCase : Union[str, Any] = 'fr' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE]) _UpperCamelCase : List[str] = 'es' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE])
648
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
648
1
from collections import namedtuple lowerCAmelCase__ = namedtuple("""from_to""", """from_ to""") lowerCAmelCase__ = { """cubicmeter""": from_to(1, 1), """litre""": from_to(0.0_01, 1_0_0_0), """kilolitre""": from_to(1, 1), """gallon""": from_to(0.0_04_54, 2_64.1_72), """cubicyard""": from_to(0.7_64_55, 1.3_07_95), """cubicfoot""": from_to(0.0_28, 35.31_47), """cup""": from_to(0.0_00_23_65_88, 42_26.75), } def lowerCamelCase_ ( UpperCAmelCase_ : float , UpperCAmelCase_ : str , UpperCAmelCase_ : str ) -> float: '''simple docstring''' if from_type not in METRIC_CONVERSION: raise ValueError( F'''Invalid \'from_type\' value: {from_type!r} Supported values are:\n''' + ', '.join(UpperCAmelCase_ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F'''Invalid \'to_type\' value: {to_type!r}. Supported values are:\n''' + ', '.join(UpperCAmelCase_ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
648
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_sentencepiece_available(): import sentencepiece as sp lowerCAmelCase__ = 5 lowerCAmelCase__ = 1_0 @require_sentencepiece @require_tokenizers class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" a__ = SpeechaTextTokenizer a__ = False a__ = True def A__ ( self): super().setUp() _UpperCamelCase : Any = sp.SentencePieceProcessor() spm_model.Load(__snake_case) _UpperCamelCase : List[str] = ['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_) for id_ in range(len(__snake_case))] _UpperCamelCase : Dict = dict(zip(__snake_case , range(len(__snake_case)))) _UpperCamelCase : Tuple = Path(self.tmpdirname) save_json(__snake_case , save_dir / VOCAB_FILES_NAMES['vocab_file']) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__snake_case , save_dir / VOCAB_FILES_NAMES['spm_file']) _UpperCamelCase : int = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def A__ ( self): _UpperCamelCase : str = '<pad>' _UpperCamelCase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case) , __snake_case) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case) , __snake_case) def A__ ( self): _UpperCamelCase : Optional[Any] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(vocab_keys[-1] , 'j') self.assertEqual(len(__snake_case) , 10_01) def A__ ( self): self.assertEqual(self.get_tokenizer().vocab_size , 10_01) def A__ ( self): _UpperCamelCase : Any = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) _UpperCamelCase : List[str] = tokenizer.tokenize('This is a test') self.assertListEqual(__snake_case , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case) , [2_89, 50, 14, 1_74, 3_86] , ) _UpperCamelCase : int = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( __snake_case , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) _UpperCamelCase : int = tokenizer.convert_tokens_to_ids(__snake_case) self.assertListEqual(__snake_case , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8]) _UpperCamelCase : Tuple = tokenizer.convert_ids_to_tokens(__snake_case) self.assertListEqual( __snake_case , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def A__ ( self): # fmt: off _UpperCamelCase : Optional[int] = {'input_ids': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , ) @require_sentencepiece class lowercase ( unittest.TestCase ): """simple docstring""" a__ = "valhalla/s2t_mustc_multilinguial_medium" a__ = "C'est trop cool" a__ = "Esto es genial" @classmethod def A__ ( cls): _UpperCamelCase : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name) return cls def A__ ( self): self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4) self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6) self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9) self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11) def A__ ( self): self.assertEqual(self.tokenizer.vocab_size , 1_00_00) def A__ ( self): self.assertIn(__snake_case , self.tokenizer.all_special_ids) _UpperCamelCase : Optional[int] = [ES_CODE, 4, 16_01, 47, 76_47, 2] _UpperCamelCase : Tuple = self.tokenizer.decode(__snake_case , skip_special_tokens=__snake_case) _UpperCamelCase : Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__snake_case) self.assertEqual(__snake_case , __snake_case) self.assertNotIn(self.tokenizer.eos_token , __snake_case) def A__ ( self): _UpperCamelCase : Any = 'fr' _UpperCamelCase : List[Any] = self.tokenizer(self.french_text).input_ids self.assertEqual(encoded[0] , __snake_case) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id) def A__ ( self): _UpperCamelCase : Union[str, Any] = 'fr' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE]) _UpperCamelCase : List[str] = 'es' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE])
648
1
import numpy as np from PIL import Image def lowerCamelCase_ ( UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> np.ndarray: '''simple docstring''' _UpperCamelCase : Any = np.array(UpperCAmelCase_ ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) _UpperCamelCase : List[str] = 0 _UpperCamelCase : str = 0 _UpperCamelCase : int = 0 _UpperCamelCase : Tuple = 0 # compute the shape of the output matrix _UpperCamelCase : Optional[Any] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape _UpperCamelCase : List[Any] = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix _UpperCamelCase : Dict = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 _UpperCamelCase : int = 0 _UpperCamelCase : Optional[Any] = 0 return updated_arr def lowerCamelCase_ ( UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> np.ndarray: '''simple docstring''' _UpperCamelCase : Tuple = np.array(UpperCAmelCase_ ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) _UpperCamelCase : Any = 0 _UpperCamelCase : List[Any] = 0 _UpperCamelCase : Optional[int] = 0 _UpperCamelCase : Optional[Any] = 0 # compute the shape of the output matrix _UpperCamelCase : List[Any] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape _UpperCamelCase : List[str] = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix _UpperCamelCase : Any = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 _UpperCamelCase : Optional[int] = 0 _UpperCamelCase : Tuple = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="""avgpooling""", verbose=True) # Loading the image lowerCAmelCase__ = Image.open("""path_to_image""") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
648
import logging from transformers.configuration_utils import PretrainedConfig lowerCAmelCase__ = logging.getLogger(__name__) class lowercase ( _lowercase ): """simple docstring""" a__ = "masked_bert" def __init__( self , __snake_case=3_05_22 , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=0 , __snake_case="topK" , __snake_case="constant" , __snake_case=0.0 , **__snake_case , ): super().__init__(pad_token_id=__snake_case , **__snake_case) _UpperCamelCase : List[Any] = vocab_size _UpperCamelCase : Union[str, Any] = hidden_size _UpperCamelCase : Optional[int] = num_hidden_layers _UpperCamelCase : Any = num_attention_heads _UpperCamelCase : int = hidden_act _UpperCamelCase : str = intermediate_size _UpperCamelCase : str = hidden_dropout_prob _UpperCamelCase : Any = attention_probs_dropout_prob _UpperCamelCase : Tuple = max_position_embeddings _UpperCamelCase : Dict = type_vocab_size _UpperCamelCase : str = initializer_range _UpperCamelCase : List[Any] = layer_norm_eps _UpperCamelCase : Tuple = pruning_method _UpperCamelCase : Tuple = mask_init _UpperCamelCase : Dict = mask_scale
648
1
import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=99 , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=37 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=50 , __snake_case=0.0_2 , __snake_case=True , __snake_case=None , ): _UpperCamelCase : Tuple = parent _UpperCamelCase : Union[str, Any] = batch_size _UpperCamelCase : str = seq_length _UpperCamelCase : str = is_training _UpperCamelCase : Dict = use_input_mask _UpperCamelCase : Optional[int] = vocab_size _UpperCamelCase : Dict = hidden_size _UpperCamelCase : List[Any] = num_hidden_layers _UpperCamelCase : Optional[int] = num_attention_heads _UpperCamelCase : Union[str, Any] = intermediate_size _UpperCamelCase : List[str] = hidden_act _UpperCamelCase : str = hidden_dropout_prob _UpperCamelCase : str = attention_probs_dropout_prob _UpperCamelCase : Optional[int] = max_position_embeddings _UpperCamelCase : str = initializer_range _UpperCamelCase : Optional[int] = use_labels _UpperCamelCase : Optional[Any] = scope def A__ ( self): _UpperCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase : List[str] = None if self.use_input_mask: _UpperCamelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length]) if self.use_labels: _UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase : str = self.get_config() return config, input_ids, input_mask, token_labels def A__ ( self): return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def A__ ( self): ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) : Any = self.prepare_config_and_inputs() _UpperCamelCase : List[str] = True _UpperCamelCase : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) _UpperCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , **__snake_case , ): _UpperCamelCase : Dict = BertGenerationEncoder(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[str] = model(__snake_case , attention_mask=__snake_case) _UpperCamelCase : List[Any] = model(__snake_case) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , **__snake_case , ): _UpperCamelCase : List[str] = True _UpperCamelCase : Optional[int] = BertGenerationEncoder(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Dict = model( __snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , ) _UpperCamelCase : Any = model( __snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , **__snake_case , ): _UpperCamelCase : Tuple = True _UpperCamelCase : List[str] = True _UpperCamelCase : Dict = BertGenerationDecoder(config=__snake_case).to(__snake_case).eval() # first forward pass _UpperCamelCase : List[Any] = model( __snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , use_cache=__snake_case , ) _UpperCamelCase : Union[str, Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _UpperCamelCase : str = ids_tensor((self.batch_size, 3) , config.vocab_size) _UpperCamelCase : Any = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and _UpperCamelCase : int = torch.cat([input_ids, next_tokens] , dim=-1) _UpperCamelCase : List[Any] = torch.cat([input_mask, next_mask] , dim=-1) _UpperCamelCase : List[Any] = model( __snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , output_hidden_states=__snake_case , )['hidden_states'][0] _UpperCamelCase : Any = model( __snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , past_key_values=__snake_case , output_hidden_states=__snake_case , )['hidden_states'][0] # select random slice _UpperCamelCase : int = ids_tensor((1,) , output_from_past.shape[-1]).item() _UpperCamelCase : Tuple = output_from_no_past[:, -3:, random_slice_idx].detach() _UpperCamelCase : Optional[int] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1e-3)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , *__snake_case , ): _UpperCamelCase : Tuple = BertGenerationDecoder(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : str = model(__snake_case , attention_mask=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A__ ( self): _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Dict = self.prepare_config_and_inputs() _UpperCamelCase : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowercase ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () a__ = (BertGenerationDecoder,) if is_torch_available() else () a__ = ( {"feature-extraction": BertGenerationEncoder, "text-generation": BertGenerationDecoder} if is_torch_available() else {} ) def A__ ( self): _UpperCamelCase : Tuple = BertGenerationEncoderTester(self) _UpperCamelCase : Tuple = ConfigTester(self , config_class=__snake_case , hidden_size=37) def A__ ( self): self.config_tester.run_common_tests() def A__ ( self): _UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case) def A__ ( self): _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() _UpperCamelCase : Optional[Any] = 'bert' self.model_tester.create_and_check_model(__snake_case , __snake_case , __snake_case , __snake_case) def A__ ( self): _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__snake_case) def A__ ( self): _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__snake_case) def A__ ( self): # This regression test was failing with PyTorch < 1.3 ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() _UpperCamelCase : str = None self.model_tester.create_and_check_model_as_decoder( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) def A__ ( self): _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*__snake_case) @slow def A__ ( self): _UpperCamelCase : List[str] = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder') self.assertIsNotNone(__snake_case) @require_torch class lowercase ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self): _UpperCamelCase : int = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder') _UpperCamelCase : str = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]]) with torch.no_grad(): _UpperCamelCase : List[str] = model(__snake_case)[0] _UpperCamelCase : str = torch.Size([1, 8, 10_24]) self.assertEqual(output.shape , __snake_case) _UpperCamelCase : Dict = torch.tensor( [[[0.1_7_7_5, 0.0_0_8_3, -0.0_3_2_1], [1.6_0_0_2, 0.1_2_8_7, 0.3_9_1_2], [2.1_4_7_3, 0.5_7_9_1, 0.6_0_6_6]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1e-4)) @require_torch class lowercase ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self): _UpperCamelCase : Tuple = BertGenerationDecoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder') _UpperCamelCase : Tuple = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]]) with torch.no_grad(): _UpperCamelCase : str = model(__snake_case)[0] _UpperCamelCase : Optional[int] = torch.Size([1, 8, 5_03_58]) self.assertEqual(output.shape , __snake_case) _UpperCamelCase : List[Any] = torch.tensor( [[[-0.5_7_8_8, -2.5_9_9_4, -3.7_0_5_4], [0.0_4_3_8, 4.7_9_9_7, 1.8_7_9_5], [1.5_8_6_2, 6.6_4_0_9, 4.4_6_3_8]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1e-4))
648
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow lowerCAmelCase__ = False class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self , __snake_case=32): set_seed(0) _UpperCamelCase : int = UNetaDModel(sample_size=__snake_case , in_channels=3 , out_channels=3) _UpperCamelCase : str = torch.optim.SGD(model.parameters() , lr=0.0_0_0_1) return model, optimizer @slow def A__ ( self): _UpperCamelCase : Tuple = 'cpu' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable _UpperCamelCase : List[Any] = DDPMScheduler( num_train_timesteps=10_00 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='linear' , clip_sample=__snake_case , ) _UpperCamelCase : List[Any] = DDIMScheduler( num_train_timesteps=10_00 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='linear' , clip_sample=__snake_case , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0) _UpperCamelCase : Optional[Any] = [torch.randn((4, 3, 32, 32)).clip(-1 , 1).to(__snake_case) for _ in range(4)] _UpperCamelCase : str = [torch.randn((4, 3, 32, 32)).to(__snake_case) for _ in range(4)] _UpperCamelCase : int = [torch.randint(0 , 10_00 , (4,)).long().to(__snake_case) for _ in range(4)] # train with a DDPM scheduler _UpperCamelCase , _UpperCamelCase : List[Any] = self.get_model_optimizer(resolution=32) model.train().to(__snake_case) for i in range(4): optimizer.zero_grad() _UpperCamelCase : int = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) _UpperCamelCase : Any = model(__snake_case , timesteps[i]).sample _UpperCamelCase : str = torch.nn.functional.mse_loss(__snake_case , noise[i]) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM _UpperCamelCase , _UpperCamelCase : Union[str, Any] = self.get_model_optimizer(resolution=32) model.train().to(__snake_case) for i in range(4): optimizer.zero_grad() _UpperCamelCase : Dict = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) _UpperCamelCase : Dict = model(__snake_case , timesteps[i]).sample _UpperCamelCase : Tuple = torch.nn.functional.mse_loss(__snake_case , noise[i]) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1e-5)) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1e-5))
648
1
lowerCAmelCase__ = range(2, 2_0 + 1) lowerCAmelCase__ = [1_0**k for k in range(ks[-1] + 1)] lowerCAmelCase__ = {} def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int ) -> Tuple: '''simple docstring''' _UpperCamelCase : Dict = sum(a_i[j] for j in range(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) ) _UpperCamelCase : Optional[int] = sum(a_i[j] * base[j] for j in range(min(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) ) ) _UpperCamelCase , _UpperCamelCase : Dict = 0, 0 _UpperCamelCase : Optional[int] = n - i _UpperCamelCase : Union[str, Any] = memo.get(UpperCAmelCase_ ) if sub_memo is not None: _UpperCamelCase : str = sub_memo.get(UpperCAmelCase_ ) if jumps is not None and len(UpperCAmelCase_ ) > 0: # find and make the largest jump without going over _UpperCamelCase : str = -1 for _k in range(len(UpperCAmelCase_ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _UpperCamelCase : Optional[Any] = _k break if max_jump >= 0: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = jumps[max_jump] # since the difference between jumps is cached, add c _UpperCamelCase : Tuple = diff + c for j in range(min(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) ): _UpperCamelCase , _UpperCamelCase : Dict = divmod(UpperCAmelCase_ , 1_0 ) if new_c > 0: add(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) else: _UpperCamelCase : Union[str, Any] = [] else: _UpperCamelCase : List[Any] = {c: []} _UpperCamelCase : Optional[int] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _UpperCamelCase , _UpperCamelCase : Optional[Any] = next_term(UpperCAmelCase_ , k - 1 , i + dn , UpperCAmelCase_ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _UpperCamelCase , _UpperCamelCase : Any = compute(UpperCAmelCase_ , UpperCAmelCase_ , i + dn , UpperCAmelCase_ ) diff += _diff dn += terms_jumped _UpperCamelCase : List[str] = sub_memo[c] # keep jumps sorted by # of terms skipped _UpperCamelCase : Union[str, Any] = 0 while j < len(UpperCAmelCase_ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCAmelCase_ , (diff, dn, k) ) return (diff, dn) def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any ) -> Dict: '''simple docstring''' if i >= n: return 0, i if k > len(UpperCAmelCase_ ): a_i.extend([0 for _ in range(k - len(UpperCAmelCase_ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _UpperCamelCase : Any = i _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Any = 0, 0, 0 for j in range(len(UpperCAmelCase_ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _UpperCamelCase : Union[str, Any] = ds_c + ds_b diff += addend _UpperCamelCase : Union[str, Any] = 0 for j in range(UpperCAmelCase_ ): _UpperCamelCase : Union[str, Any] = a_i[j] + addend _UpperCamelCase , _UpperCamelCase : Any = divmod(UpperCAmelCase_ , 1_0 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return diff, i - start_i def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any ) -> Dict: '''simple docstring''' for j in range(UpperCAmelCase_ , len(UpperCAmelCase_ ) ): _UpperCamelCase : List[str] = digits[j] + addend if s >= 1_0: _UpperCamelCase , _UpperCamelCase : Any = divmod(UpperCAmelCase_ , 1_0 ) _UpperCamelCase : Union[str, Any] = addend // 1_0 + quotient else: _UpperCamelCase : Dict = s _UpperCamelCase : Optional[Any] = addend // 1_0 if addend == 0: break while addend > 0: _UpperCamelCase , _UpperCamelCase : Dict = divmod(UpperCAmelCase_ , 1_0 ) digits.append(UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : int = 1_0**1_5 ) -> int: '''simple docstring''' _UpperCamelCase : Optional[Any] = [1] _UpperCamelCase : Optional[int] = 1 _UpperCamelCase : int = 0 while True: _UpperCamelCase , _UpperCamelCase : List[Any] = next_term(UpperCAmelCase_ , 2_0 , i + dn , UpperCAmelCase_ ) dn += terms_jumped if dn == n - i: break _UpperCamelCase : str = 0 for j in range(len(UpperCAmelCase_ ) ): a_n += digits[j] * 1_0**j return a_n if __name__ == "__main__": print(f'{solution() = }')
648
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) lowerCAmelCase__ = { """sample_size""": 3_2, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 1_0_0_0, """block_out_channels""": [3_2, 6_4], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """sample_size""": 6_4, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 1_0_0_0, """block_out_channels""": [1_9_2, 1_9_2 * 2, 1_9_2 * 3, 1_9_2 * 4], """attention_head_dim""": 6_4, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """sample_size""": 2_5_6, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [2_5_6, 2_5_6, 2_5_6 * 2, 2_5_6 * 2, 2_5_6 * 4, 2_5_6 * 4], """attention_head_dim""": 6_4, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """num_train_timesteps""": 4_0, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } lowerCAmelCase__ = { """num_train_timesteps""": 2_0_1, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } lowerCAmelCase__ = { """num_train_timesteps""": 1_5_1, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> List[str]: '''simple docstring''' if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def lowerCamelCase_ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any]=False ) -> str: '''simple docstring''' _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.in_layers.0.weight'''] _UpperCamelCase : str = checkpoint[F'''{old_prefix}.in_layers.0.bias'''] _UpperCamelCase : str = checkpoint[F'''{old_prefix}.in_layers.2.weight'''] _UpperCamelCase : Union[str, Any] = checkpoint[F'''{old_prefix}.in_layers.2.bias'''] _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.emb_layers.1.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.emb_layers.1.bias'''] _UpperCamelCase : Tuple = checkpoint[F'''{old_prefix}.out_layers.0.weight'''] _UpperCamelCase : List[Any] = checkpoint[F'''{old_prefix}.out_layers.0.bias'''] _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.out_layers.3.weight'''] _UpperCamelCase : Union[str, Any] = checkpoint[F'''{old_prefix}.out_layers.3.bias'''] if has_skip: _UpperCamelCase : Tuple = checkpoint[F'''{old_prefix}.skip_connection.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any=None ) -> int: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 ) _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.norm.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.norm.bias'''] _UpperCamelCase : List[str] = weight_q.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Dict = bias_q.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Any = weight_k.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : List[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Dict = weight_v.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Tuple = bias_v.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Optional[Any] = ( checkpoint[F'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] ) -> Tuple: '''simple docstring''' _UpperCamelCase : Any = torch.load(UpperCAmelCase_ , map_location='cpu' ) _UpperCamelCase : Union[str, Any] = {} _UpperCamelCase : Optional[int] = checkpoint['time_embed.0.weight'] _UpperCamelCase : List[Any] = checkpoint['time_embed.0.bias'] _UpperCamelCase : Dict = checkpoint['time_embed.2.weight'] _UpperCamelCase : Optional[Any] = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: _UpperCamelCase : List[str] = checkpoint['label_emb.weight'] _UpperCamelCase : Optional[int] = checkpoint['input_blocks.0.0.weight'] _UpperCamelCase : Union[str, Any] = checkpoint['input_blocks.0.0.bias'] _UpperCamelCase : Optional[int] = unet_config['down_block_types'] _UpperCamelCase : Optional[Any] = unet_config['layers_per_block'] _UpperCamelCase : Dict = unet_config['attention_head_dim'] _UpperCamelCase : List[str] = unet_config['block_out_channels'] _UpperCamelCase : str = 1 _UpperCamelCase : Optional[int] = channels_list[0] for i, layer_type in enumerate(UpperCAmelCase_ ): _UpperCamelCase : List[str] = channels_list[i] _UpperCamelCase : str = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(UpperCAmelCase_ ): _UpperCamelCase : str = F'''down_blocks.{i}.resnets.{j}''' _UpperCamelCase : List[Any] = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : Any = True if j == 0 and downsample_block_has_skip else False _UpperCamelCase : str = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(UpperCAmelCase_ ): _UpperCamelCase : List[str] = F'''down_blocks.{i}.resnets.{j}''' _UpperCamelCase : str = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : int = True if j == 0 and downsample_block_has_skip else False _UpperCamelCase : Any = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) _UpperCamelCase : Dict = F'''down_blocks.{i}.attentions.{j}''' _UpperCamelCase : Optional[int] = F'''input_blocks.{current_layer}.1''' _UpperCamelCase : Dict = convert_attention( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : int = F'''down_blocks.{i}.downsamplers.0''' _UpperCamelCase : Optional[int] = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : List[Any] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 _UpperCamelCase : Tuple = current_channels # hardcoded the mid-block for now _UpperCamelCase : Any = 'mid_block.resnets.0' _UpperCamelCase : Optional[Any] = 'middle_block.0' _UpperCamelCase : Tuple = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = 'mid_block.attentions.0' _UpperCamelCase : Tuple = 'middle_block.1' _UpperCamelCase : Union[str, Any] = convert_attention(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Tuple = 'mid_block.resnets.1' _UpperCamelCase : str = 'middle_block.2' _UpperCamelCase : List[str] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : List[Any] = 0 _UpperCamelCase : Optional[int] = unet_config['up_block_types'] for i, layer_type in enumerate(UpperCAmelCase_ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _UpperCamelCase : Optional[Any] = F'''up_blocks.{i}.resnets.{j}''' _UpperCamelCase : Optional[int] = F'''output_blocks.{current_layer}.0''' _UpperCamelCase : str = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : List[Any] = F'''up_blocks.{i}.upsamplers.0''' _UpperCamelCase : Dict = F'''output_blocks.{current_layer-1}.1''' _UpperCamelCase : Optional[int] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _UpperCamelCase : str = F'''up_blocks.{i}.resnets.{j}''' _UpperCamelCase : Union[str, Any] = F'''output_blocks.{current_layer}.0''' _UpperCamelCase : Optional[int] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) _UpperCamelCase : int = F'''up_blocks.{i}.attentions.{j}''' _UpperCamelCase : List[Any] = F'''output_blocks.{current_layer}.1''' _UpperCamelCase : Optional[int] = convert_attention( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : List[Any] = F'''up_blocks.{i}.upsamplers.0''' _UpperCamelCase : Union[str, Any] = F'''output_blocks.{current_layer-1}.2''' _UpperCamelCase : List[str] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : List[Any] = checkpoint['out.0.weight'] _UpperCamelCase : str = checkpoint['out.0.bias'] _UpperCamelCase : int = checkpoint['out.2.weight'] _UpperCamelCase : List[Any] = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = strabool(args.class_cond) lowerCAmelCase__ = os.path.basename(args.unet_path) print(f'Checkpoint: {ckpt_name}') # Get U-Net config if "imagenet64" in ckpt_name: lowerCAmelCase__ = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCAmelCase__ = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: lowerCAmelCase__ = TEST_UNET_CONFIG else: raise ValueError(f'Checkpoint type {ckpt_name} is not currently supported.') if not args.class_cond: lowerCAmelCase__ = None lowerCAmelCase__ = con_pt_to_diffuser(args.unet_path, unet_config) lowerCAmelCase__ = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: lowerCAmelCase__ = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: lowerCAmelCase__ = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCAmelCase__ = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f'Checkpoint type {ckpt_name} is not currently supported.') lowerCAmelCase__ = CMStochasticIterativeScheduler(**scheduler_config) lowerCAmelCase__ = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
648
1
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType lowerCAmelCase__ = logging.get_logger(__name__) class lowercase ( _lowercase ): """simple docstring""" a__ = "vision-encoder-decoder" a__ = True def __init__( self , **__snake_case): super().__init__(**__snake_case) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f'''A configuraton of type {self.model_type} cannot be instantiated because ''' f'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''') _UpperCamelCase : Tuple = kwargs.pop('encoder') _UpperCamelCase : Optional[Any] = encoder_config.pop('model_type') _UpperCamelCase : List[str] = kwargs.pop('decoder') _UpperCamelCase : List[str] = decoder_config.pop('model_type') _UpperCamelCase : Optional[int] = AutoConfig.for_model(__snake_case , **__snake_case) _UpperCamelCase : Union[str, Any] = AutoConfig.for_model(__snake_case , **__snake_case) _UpperCamelCase : List[Any] = True @classmethod def A__ ( cls , __snake_case , __snake_case , **__snake_case): logger.info('Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config') _UpperCamelCase : Tuple = True _UpperCamelCase : int = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__snake_case) def A__ ( self): _UpperCamelCase : str = copy.deepcopy(self.__dict__) _UpperCamelCase : List[Any] = self.encoder.to_dict() _UpperCamelCase : Dict = self.decoder.to_dict() _UpperCamelCase : Dict = self.__class__.model_type return output class lowercase ( _lowercase ): """simple docstring""" a__ = version.parse("1.11" ) @property def A__ ( self): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def A__ ( self): return 1e-4 @property def A__ ( self): return OrderedDict({'last_hidden_state': {0: 'batch', 1: 'encoder_sequence'}}) class lowercase ( _lowercase ): """simple docstring""" @property def A__ ( self): _UpperCamelCase : str = OrderedDict() _UpperCamelCase : Dict = {0: 'batch', 1: 'past_decoder_sequence + sequence'} _UpperCamelCase : str = {0: 'batch', 1: 'past_decoder_sequence + sequence'} _UpperCamelCase : Optional[int] = {0: 'batch', 1: 'encoder_sequence'} return common_inputs def A__ ( self , __snake_case , __snake_case = -1 , __snake_case = -1 , __snake_case = False , __snake_case = None , ): import torch _UpperCamelCase : Tuple = OrderedDict() _UpperCamelCase : str = super().generate_dummy_inputs( __snake_case , batch_size=__snake_case , seq_length=__snake_case , is_pair=__snake_case , framework=__snake_case) _UpperCamelCase , _UpperCamelCase : List[Any] = dummy_input['input_ids'].shape _UpperCamelCase : str = (batch, encoder_sequence, self._config.encoder_hidden_size) _UpperCamelCase : Optional[int] = dummy_input.pop('input_ids') _UpperCamelCase : Optional[Any] = dummy_input.pop('attention_mask') _UpperCamelCase : Optional[int] = torch.zeros(__snake_case) return common_inputs class lowercase ( _lowercase ): """simple docstring""" @property def A__ ( self): pass def A__ ( self , __snake_case): return VisionEncoderDecoderEncoderOnnxConfig(__snake_case) def A__ ( self , __snake_case , __snake_case , __snake_case = "default"): _UpperCamelCase : int = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(__snake_case , __snake_case)
648
def lowerCamelCase_ ( UpperCAmelCase_ : list ) -> list: '''simple docstring''' if len(UpperCAmelCase_ ) <= 1: return [tuple(UpperCAmelCase_ )] _UpperCamelCase : List[Any] = [] def generate(UpperCAmelCase_ : int , UpperCAmelCase_ : list ): _UpperCamelCase : Optional[int] = [0] * n res.append(tuple(UpperCAmelCase_ ) ) _UpperCamelCase : List[Any] = 0 while i < n: if c[i] < i: if i % 2 == 0: _UpperCamelCase , _UpperCamelCase : List[str] = arr[i], arr[0] else: _UpperCamelCase , _UpperCamelCase : List[str] = arr[i], arr[c[i]] res.append(tuple(UpperCAmelCase_ ) ) c[i] += 1 _UpperCamelCase : Tuple = 0 else: _UpperCamelCase : Tuple = 0 i += 1 generate(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) return res if __name__ == "__main__": lowerCAmelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCAmelCase__ = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
648
1
import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup lowerCAmelCase__ = { """User-Agent""": """Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36""" """ (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582""" } def lowerCamelCase_ ( UpperCAmelCase_ : str = "dhaka" , UpperCAmelCase_ : int = 5 ) -> int: '''simple docstring''' _UpperCamelCase : str = min(UpperCAmelCase_ , 5_0 ) # Prevent abuse! _UpperCamelCase : int = { 'q': query, 'tbm': 'isch', 'hl': 'en', 'ijn': '0', } _UpperCamelCase : str = requests.get('https://www.google.com/search' , params=UpperCAmelCase_ , headers=UpperCAmelCase_ ) _UpperCamelCase : List[Any] = BeautifulSoup(html.text , 'html.parser' ) _UpperCamelCase : int = ''.join( re.findall(R'AF_initDataCallback\(([^<]+)\);' , str(soup.select('script' ) ) ) ) _UpperCamelCase : Optional[Any] = json.dumps(UpperCAmelCase_ ) _UpperCamelCase : List[str] = json.loads(UpperCAmelCase_ ) _UpperCamelCase : Dict = re.findall( R'\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",' , UpperCAmelCase_ , ) if not matched_google_image_data: return 0 _UpperCamelCase : Union[str, Any] = re.sub( R'\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]' , '' , str(UpperCAmelCase_ ) , ) _UpperCamelCase : int = re.findall( R'(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]' , UpperCAmelCase_ , ) for index, fixed_full_res_image in enumerate(UpperCAmelCase_ ): if index >= max_images: return index _UpperCamelCase : Optional[Any] = bytes(UpperCAmelCase_ , 'ascii' ).decode( 'unicode-escape' ) _UpperCamelCase : Union[str, Any] = bytes(UpperCAmelCase_ , 'ascii' ).decode( 'unicode-escape' ) _UpperCamelCase : List[str] = urllib.request.build_opener() _UpperCamelCase : Tuple = [ ( 'User-Agent', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582', ) ] urllib.request.install_opener(UpperCAmelCase_ ) _UpperCamelCase : Union[str, Any] = F'''query_{query.replace(" " , "_" )}''' if not os.path.exists(UpperCAmelCase_ ): os.makedirs(UpperCAmelCase_ ) urllib.request.urlretrieve( # noqa: S310 UpperCAmelCase_ , F'''{path_name}/original_size_img_{index}.jpg''' ) return index if __name__ == "__main__": try: lowerCAmelCase__ = download_images_from_google_query(sys.argv[1]) print(f'{image_count} images were downloaded to disk.') except IndexError: print("""Please provide a search term.""") raise
648
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = [ ["""attention""", """attn"""], ["""encoder_attention""", """encoder_attn"""], ["""q_lin""", """q_proj"""], ["""k_lin""", """k_proj"""], ["""v_lin""", """v_proj"""], ["""out_lin""", """out_proj"""], ["""norm_embeddings""", """layernorm_embedding"""], ["""position_embeddings""", """embed_positions"""], ["""embeddings""", """embed_tokens"""], ["""ffn.lin""", """fc"""], ] def lowerCamelCase_ ( UpperCAmelCase_ : List[Any] ) -> Optional[int]: '''simple docstring''' if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: _UpperCamelCase : List[Any] = k.replace(UpperCAmelCase_ , UpperCAmelCase_ ) if k.startswith('encoder' ): _UpperCamelCase : Optional[Any] = k.replace('.attn' , '.self_attn' ) _UpperCamelCase : Optional[int] = k.replace('norm1' , 'self_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): _UpperCamelCase : Any = k.replace('norm1' , 'self_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm2' , 'encoder_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm3' , 'final_layer_norm' ) return k def lowerCamelCase_ ( UpperCAmelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Union[str, Any] = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: _UpperCamelCase : Optional[int] = sd.pop(UpperCAmelCase_ ) _UpperCamelCase : str = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd _UpperCamelCase : Tuple = v lowerCAmelCase__ = ["""START"""] @torch.no_grad() def lowerCamelCase_ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ) -> List[str]: '''simple docstring''' _UpperCamelCase : Optional[Any] = torch.load(UpperCAmelCase_ , map_location='cpu' ) _UpperCamelCase : int = model['model'] _UpperCamelCase : List[Any] = BlenderbotConfig.from_json_file(UpperCAmelCase_ ) _UpperCamelCase : Any = BlenderbotForConditionalGeneration(UpperCAmelCase_ ) _UpperCamelCase : int = m.model.state_dict().keys() _UpperCamelCase : Union[str, Any] = [] _UpperCamelCase : int = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue _UpperCamelCase : Optional[int] = rename_state_dict_key(UpperCAmelCase_ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: _UpperCamelCase : int = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(UpperCAmelCase_ ) m.model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) m.half() m.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("""--src_path""", type=str, help="""like blenderbot-model.bin""") parser.add_argument("""--save_dir""", default="""hf_blenderbot""", type=str, help="""Where to save converted model.""") parser.add_argument( """--hf_config_json""", default="""blenderbot-3b-config.json""", type=str, help="""Path to config to use""" ) lowerCAmelCase__ = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
648
1
import logging import os import threading import time try: import warnings except ImportError: lowerCAmelCase__ = None try: import msvcrt except ImportError: lowerCAmelCase__ = None try: import fcntl except ImportError: lowerCAmelCase__ = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: lowerCAmelCase__ = OSError # Data # ------------------------------------------------ lowerCAmelCase__ = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] lowerCAmelCase__ = """3.0.12""" lowerCAmelCase__ = None def lowerCamelCase_ ( ) -> int: '''simple docstring''' global _logger _UpperCamelCase : Dict = _logger or logging.getLogger(__name__ ) return _logger class lowercase ( _lowercase ): """simple docstring""" def __init__( self , __snake_case): _UpperCamelCase : Dict = lock_file return None def __str__( self): _UpperCamelCase : Tuple = f'''The file lock \'{self.lock_file}\' could not be acquired.''' return temp class lowercase : """simple docstring""" def __init__( self , __snake_case): _UpperCamelCase : Union[str, Any] = lock return None def __enter__( self): return self.lock def __exit__( self , __snake_case , __snake_case , __snake_case): self.lock.release() return None class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case=-1 , __snake_case=None): _UpperCamelCase : Optional[int] = max_filename_length if max_filename_length is not None else 2_55 # Hash the filename if it's too long _UpperCamelCase : Dict = self.hash_filename_if_too_long(__snake_case , __snake_case) # The path to the lock file. _UpperCamelCase : Tuple = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. _UpperCamelCase : Dict = None # The default timeout value. _UpperCamelCase : str = timeout # We use this lock primarily for the lock counter. _UpperCamelCase : Any = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. _UpperCamelCase : Union[str, Any] = 0 return None @property def A__ ( self): return self._lock_file @property def A__ ( self): return self._timeout @timeout.setter def A__ ( self , __snake_case): _UpperCamelCase : Dict = float(__snake_case) return None def A__ ( self): raise NotImplementedError() def A__ ( self): raise NotImplementedError() @property def A__ ( self): return self._lock_file_fd is not None def A__ ( self , __snake_case=None , __snake_case=0.0_5): # Use the default timeout, if no timeout is provided. if timeout is None: _UpperCamelCase : Tuple = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 _UpperCamelCase : Optional[int] = id(self) _UpperCamelCase : Optional[int] = self._lock_file _UpperCamelCase : Optional[int] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f'''Attempting to acquire lock {lock_id} on {lock_filename}''') self._acquire() if self.is_locked: logger().debug(f'''Lock {lock_id} acquired on {lock_filename}''') break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f'''Timeout on acquiring lock {lock_id} on {lock_filename}''') raise Timeout(self._lock_file) else: logger().debug( f'''Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...''') time.sleep(__snake_case) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: _UpperCamelCase : Dict = max(0 , self._lock_counter - 1) raise return _Acquire_ReturnProxy(lock=self) def A__ ( self , __snake_case=False): with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: _UpperCamelCase : Optional[Any] = id(self) _UpperCamelCase : List[str] = self._lock_file logger().debug(f'''Attempting to release lock {lock_id} on {lock_filename}''') self._release() _UpperCamelCase : List[Any] = 0 logger().debug(f'''Lock {lock_id} released on {lock_filename}''') return None def __enter__( self): self.acquire() return self def __exit__( self , __snake_case , __snake_case , __snake_case): self.release() return None def __del__( self): self.release(force=__snake_case) return None def A__ ( self , __snake_case , __snake_case): _UpperCamelCase : Tuple = os.path.basename(__snake_case) if len(__snake_case) > max_length and max_length > 0: _UpperCamelCase : Optional[Any] = os.path.dirname(__snake_case) _UpperCamelCase : Union[str, Any] = str(hash(__snake_case)) _UpperCamelCase : List[str] = filename[: max_length - len(__snake_case) - 8] + '...' + hashed_filename + '.lock' return os.path.join(__snake_case , __snake_case) else: return path class lowercase ( _lowercase ): """simple docstring""" def __init__( self , __snake_case , __snake_case=-1 , __snake_case=None): from .file_utils import relative_to_absolute_path super().__init__(__snake_case , timeout=__snake_case , max_filename_length=__snake_case) _UpperCamelCase : Optional[int] = '\\\\?\\' + relative_to_absolute_path(self.lock_file) def A__ ( self): _UpperCamelCase : List[str] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: _UpperCamelCase : Dict = os.open(self._lock_file , __snake_case) except OSError: pass else: try: msvcrt.locking(__snake_case , msvcrt.LK_NBLCK , 1) except OSError: os.close(__snake_case) else: _UpperCamelCase : List[Any] = fd return None def A__ ( self): _UpperCamelCase : str = self._lock_file_fd _UpperCamelCase : int = None msvcrt.locking(__snake_case , msvcrt.LK_UNLCK , 1) os.close(__snake_case) try: os.remove(self._lock_file) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class lowercase ( _lowercase ): """simple docstring""" def __init__( self , __snake_case , __snake_case=-1 , __snake_case=None): _UpperCamelCase : Union[str, Any] = os.statvfs(os.path.dirname(__snake_case)).f_namemax super().__init__(__snake_case , timeout=__snake_case , max_filename_length=__snake_case) def A__ ( self): _UpperCamelCase : List[str] = os.O_RDWR | os.O_CREAT | os.O_TRUNC _UpperCamelCase : Dict = os.open(self._lock_file , __snake_case) try: fcntl.flock(__snake_case , fcntl.LOCK_EX | fcntl.LOCK_NB) except OSError: os.close(__snake_case) else: _UpperCamelCase : Union[str, Any] = fd return None def A__ ( self): # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition _UpperCamelCase : Dict = self._lock_file_fd _UpperCamelCase : Union[str, Any] = None fcntl.flock(__snake_case , fcntl.LOCK_UN) os.close(__snake_case) return None class lowercase ( _lowercase ): """simple docstring""" def A__ ( self): _UpperCamelCase : Tuple = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: _UpperCamelCase : Optional[int] = os.open(self._lock_file , __snake_case) except OSError: pass else: _UpperCamelCase : Dict = fd return None def A__ ( self): os.close(self._lock_file_fd) _UpperCamelCase : Optional[Any] = None try: os.remove(self._lock_file) # The file is already deleted and that's what we want. except OSError: pass return None lowerCAmelCase__ = None if msvcrt: lowerCAmelCase__ = WindowsFileLock elif fcntl: lowerCAmelCase__ = UnixFileLock else: lowerCAmelCase__ = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
648
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer lowerCAmelCase__ = ["""bert-base-uncased""", """bert-base-cased"""] lowerCAmelCase__ = """hf-internal-testing/tiny-bert-tf-only""" if is_tf_available(): class lowercase ( tf.keras.Model ): """simple docstring""" def __init__( self , __snake_case): super().__init__() _UpperCamelCase : List[Any] = tokenizer _UpperCamelCase : List[Any] = AutoConfig.from_pretrained(__snake_case) _UpperCamelCase : Dict = TFAutoModel.from_config(__snake_case) def A__ ( self , __snake_case): _UpperCamelCase : Any = self.tokenizer(__snake_case) _UpperCamelCase : Dict = self.bert(**__snake_case) return out["pooler_output"] @require_tf @require_tensorflow_text class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self): super().setUp() _UpperCamelCase : Optional[Any] = [ BertTokenizer.from_pretrained(__snake_case) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false _UpperCamelCase : Optional[Any] = [TFBertTokenizer.from_pretrained(__snake_case) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(__snake_case , use_fast_bert_tokenizer=__snake_case) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers) == len(self.tf_tokenizers) _UpperCamelCase : Optional[Any] = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] _UpperCamelCase : Dict = list(zip(self.test_sentences , self.test_sentences[::-1])) def A__ ( self): for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers): for test_inputs in (self.test_sentences, self.paired_sentences): _UpperCamelCase : List[str] = tokenizer(__snake_case , return_tensors='tf' , padding='longest') _UpperCamelCase : Tuple = tf_tokenizer(__snake_case) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape)) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa) == tf_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Tuple = tf_tokenizer(self.paired_sentences) _UpperCamelCase : Optional[Any] = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa) == separated_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Tuple = tf.function(__snake_case) for test_inputs in (self.test_sentences, self.paired_sentences): _UpperCamelCase : Optional[int] = tf.constant(__snake_case) _UpperCamelCase : Union[str, Any] = compiled_tokenizer(__snake_case) _UpperCamelCase : Tuple = tf_tokenizer(__snake_case) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Any = ModelToSave(tokenizer=__snake_case) _UpperCamelCase : Any = tf.convert_to_tensor(self.test_sentences) _UpperCamelCase : Union[str, Any] = model(__snake_case) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _UpperCamelCase : int = Path(__snake_case) / 'saved.model' model.save(__snake_case) _UpperCamelCase : Optional[int] = tf.keras.models.load_model(__snake_case) _UpperCamelCase : int = loaded_model(__snake_case) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output)) , 1e-5)
648
1
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def lowerCamelCase_ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict ) -> int: '''simple docstring''' _UpperCamelCase : Tuple = AutoConfig.from_pretrained(UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = FlaxAutoModelForSeqaSeqLM.from_config(config=UpperCAmelCase_ ) _UpperCamelCase : Any = checkpoints.load_tax_checkpoint(UpperCAmelCase_ ) _UpperCamelCase : int = 'wi_0' in tax_model['target']['encoder']['layers_0']['mlp'] if config.model_type == "t5": _UpperCamelCase : Optional[int] = 'SelfAttention' if config.model_type == "longt5" and config.encoder_attention_type == "local": _UpperCamelCase : Any = 'LocalSelfAttention' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _UpperCamelCase : Any = 'TransientGlobalSelfAttention' else: raise ValueError( 'Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`' ' attribute with a value from [\'local\', \'transient-global].' ) # Encoder for layer_index in range(config.num_layers ): _UpperCamelCase : str = F'''layers_{str(UpperCAmelCase_ )}''' # Self-Attention _UpperCamelCase : Tuple = tax_model['target']['encoder'][layer_name]['attention']['key']['kernel'] _UpperCamelCase : str = tax_model['target']['encoder'][layer_name]['attention']['out']['kernel'] _UpperCamelCase : int = tax_model['target']['encoder'][layer_name]['attention']['query']['kernel'] _UpperCamelCase : List[Any] = tax_model['target']['encoder'][layer_name]['attention']['value']['kernel'] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _UpperCamelCase : Optional[Any] = tax_model['target']['encoder'][layer_name]['attention']['T5LayerNorm_0']['scale'] # Layer Normalization _UpperCamelCase : Union[str, Any] = tax_model['target']['encoder'][layer_name]['pre_attention_layer_norm']['scale'] if split_mlp_wi: _UpperCamelCase : Dict = tax_model['target']['encoder'][layer_name]['mlp']['wi_0']['kernel'] _UpperCamelCase : str = tax_model['target']['encoder'][layer_name]['mlp']['wi_1']['kernel'] else: _UpperCamelCase : Dict = tax_model['target']['encoder'][layer_name]['mlp']['wi']['kernel'] _UpperCamelCase : List[str] = tax_model['target']['encoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization _UpperCamelCase : Optional[Any] = tax_model['target']['encoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning _UpperCamelCase : int = flax_model.params['encoder']['block'][str(UpperCAmelCase_ )]['layer'] _UpperCamelCase : Any = tax_attention_key _UpperCamelCase : Optional[Any] = tax_attention_out _UpperCamelCase : Optional[Any] = tax_attention_query _UpperCamelCase : Optional[int] = tax_attention_value _UpperCamelCase : Optional[Any] = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _UpperCamelCase : int = tax_global_layer_norm if split_mlp_wi: _UpperCamelCase : Optional[int] = tax_mlp_wi_a _UpperCamelCase : Tuple = tax_mlp_wi_a else: _UpperCamelCase : List[Any] = tax_mlp_wi _UpperCamelCase : List[str] = tax_mlp_wo _UpperCamelCase : Optional[Any] = tax_mlp_layer_norm _UpperCamelCase : Any = flax_model_encoder_layer_block # Only for layer 0: _UpperCamelCase : Tuple = tax_model['target']['encoder']['relpos_bias']['rel_embedding'].T _UpperCamelCase : Dict = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _UpperCamelCase : Dict = tax_model['target']['encoder']['side_relpos_bias']['rel_embedding'].T _UpperCamelCase : Any = tax_encoder_global_rel_embedding # Assigning _UpperCamelCase : Optional[int] = tax_model['target']['encoder']['encoder_norm']['scale'] _UpperCamelCase : Any = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): _UpperCamelCase : str = F'''layers_{str(UpperCAmelCase_ )}''' # Self-Attention _UpperCamelCase : Union[str, Any] = tax_model['target']['decoder'][layer_name]['self_attention']['key']['kernel'] _UpperCamelCase : Dict = tax_model['target']['decoder'][layer_name]['self_attention']['out']['kernel'] _UpperCamelCase : Optional[int] = tax_model['target']['decoder'][layer_name]['self_attention']['query']['kernel'] _UpperCamelCase : Optional[Any] = tax_model['target']['decoder'][layer_name]['self_attention']['value']['kernel'] # Layer Normalization _UpperCamelCase : List[str] = tax_model['target']['decoder'][layer_name]['pre_self_attention_layer_norm'][ 'scale' ] # Encoder-Decoder-Attention _UpperCamelCase : Any = tax_model['target']['decoder'][layer_name]['encoder_decoder_attention'] _UpperCamelCase : Optional[int] = tax_enc_dec_attention_module['key']['kernel'] _UpperCamelCase : Tuple = tax_enc_dec_attention_module['out']['kernel'] _UpperCamelCase : str = tax_enc_dec_attention_module['query']['kernel'] _UpperCamelCase : List[str] = tax_enc_dec_attention_module['value']['kernel'] # Layer Normalization _UpperCamelCase : Optional[int] = tax_model['target']['decoder'][layer_name]['pre_cross_attention_layer_norm']['scale'] # MLP if split_mlp_wi: _UpperCamelCase : str = tax_model['target']['decoder'][layer_name]['mlp']['wi_0']['kernel'] _UpperCamelCase : int = tax_model['target']['decoder'][layer_name]['mlp']['wi_1']['kernel'] else: _UpperCamelCase : Tuple = tax_model['target']['decoder'][layer_name]['mlp']['wi']['kernel'] _UpperCamelCase : Optional[int] = tax_model['target']['decoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization _UpperCamelCase : List[Any] = tax_model['target']['decoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning _UpperCamelCase : List[str] = flax_model.params['decoder']['block'][str(UpperCAmelCase_ )]['layer'] _UpperCamelCase : List[Any] = tax_attention_key _UpperCamelCase : Optional[int] = tax_attention_out _UpperCamelCase : Dict = tax_attention_query _UpperCamelCase : Dict = tax_attention_value _UpperCamelCase : Dict = tax_pre_attention_layer_norm _UpperCamelCase : Optional[Any] = tax_enc_dec_attention_key _UpperCamelCase : List[Any] = tax_enc_dec_attention_out _UpperCamelCase : int = tax_enc_dec_attention_query _UpperCamelCase : int = tax_enc_dec_attention_value _UpperCamelCase : Any = tax_cross_layer_norm if split_mlp_wi: _UpperCamelCase : int = tax_mlp_wi_a _UpperCamelCase : int = tax_mlp_wi_a else: _UpperCamelCase : Any = tax_mlp_wi _UpperCamelCase : Tuple = tax_mlp_wo _UpperCamelCase : List[Any] = txa_mlp_layer_norm _UpperCamelCase : str = flax_model_decoder_layer_block # Decoder Normalization _UpperCamelCase : Optional[Any] = tax_model['target']['decoder']['decoder_norm']['scale'] _UpperCamelCase : Dict = txa_decoder_norm # Only for layer 0: _UpperCamelCase : Optional[int] = tax_model['target']['decoder']['relpos_bias']['rel_embedding'].T _UpperCamelCase : str = tax_decoder_rel_embedding # Token Embeddings _UpperCamelCase : List[str] = tax_model['target']['token_embedder']['embedding'] _UpperCamelCase : Optional[int] = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: _UpperCamelCase : List[str] = tax_model['target']['decoder']['logits_dense']['kernel'] flax_model.save_pretrained(UpperCAmelCase_ ) print('T5X Model was sucessfully converted!' ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path the T5X checkpoint.""" ) parser.add_argument("""--config_name""", default=None, type=str, required=True, help="""Config name of LongT5/T5 model.""") parser.add_argument( """--flax_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output FLAX model.""" ) lowerCAmelCase__ = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
648
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ = { """configuration_canine""": ["""CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CanineConfig"""], """tokenization_canine""": ["""CanineTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """CANINE_PRETRAINED_MODEL_ARCHIVE_LIST""", """CanineForMultipleChoice""", """CanineForQuestionAnswering""", """CanineForSequenceClassification""", """CanineForTokenClassification""", """CanineLayer""", """CanineModel""", """CaninePreTrainedModel""", """load_tf_weights_in_canine""", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
648
1
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" a__ = KandinskyVaaInpaintPipeline a__ = ["image_embeds", "negative_image_embeds", "image", "mask_image"] a__ = [ "image_embeds", "negative_image_embeds", "image", "mask_image", ] a__ = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] a__ = False @property def A__ ( self): return 32 @property def A__ ( self): return 32 @property def A__ ( self): return self.time_input_dim @property def A__ ( self): return self.time_input_dim * 4 @property def A__ ( self): return 1_00 @property def A__ ( self): torch.manual_seed(0) _UpperCamelCase : Optional[Any] = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _UpperCamelCase : Tuple = UNetaDConditionModel(**__snake_case) return model @property def A__ ( self): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A__ ( self): torch.manual_seed(0) _UpperCamelCase : int = VQModel(**self.dummy_movq_kwargs) return model def A__ ( self): _UpperCamelCase : Optional[Any] = self.dummy_unet _UpperCamelCase : List[str] = self.dummy_movq _UpperCamelCase : List[Any] = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule='linear' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__snake_case , set_alpha_to_one=__snake_case , steps_offset=1 , prediction_type='epsilon' , thresholding=__snake_case , ) _UpperCamelCase : str = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def A__ ( self , __snake_case , __snake_case=0): _UpperCamelCase : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__snake_case)).to(__snake_case) _UpperCamelCase : Dict = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1)).to( __snake_case) # create init_image _UpperCamelCase : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case)).to(__snake_case) _UpperCamelCase : Tuple = image.cpu().permute(0 , 2 , 3 , 1)[0] _UpperCamelCase : Dict = Image.fromarray(np.uinta(__snake_case)).convert('RGB').resize((2_56, 2_56)) # create mask _UpperCamelCase : Tuple = np.ones((64, 64) , dtype=np.floataa) _UpperCamelCase : int = 0 if str(__snake_case).startswith('mps'): _UpperCamelCase : List[str] = torch.manual_seed(__snake_case) else: _UpperCamelCase : Tuple = torch.Generator(device=__snake_case).manual_seed(__snake_case) _UpperCamelCase : Optional[Any] = { 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def A__ ( self): _UpperCamelCase : List[str] = 'cpu' _UpperCamelCase : Union[str, Any] = self.get_dummy_components() _UpperCamelCase : str = self.pipeline_class(**__snake_case) _UpperCamelCase : int = pipe.to(__snake_case) pipe.set_progress_bar_config(disable=__snake_case) _UpperCamelCase : Optional[Any] = pipe(**self.get_dummy_inputs(__snake_case)) _UpperCamelCase : List[str] = output.images _UpperCamelCase : Union[str, Any] = pipe( **self.get_dummy_inputs(__snake_case) , return_dict=__snake_case , )[0] _UpperCamelCase : Union[str, Any] = image[0, -3:, -3:, -1] _UpperCamelCase : List[Any] = image_from_tuple[0, -3:, -3:, -1] print(f'''image.shape {image.shape}''') assert image.shape == (1, 64, 64, 3) _UpperCamelCase : List[Any] = np.array( [0.5_0_7_7_5_9_0_3, 0.4_9_5_2_7_1_9_5, 0.4_8_8_2_4_5_4_3, 0.5_0_1_9_2_2_3_7, 0.4_8_6_4_4_9_0_6, 0.4_9_3_7_3_8_1_4, 0.4_7_8_0_5_9_8, 0.4_7_2_3_4_8_2_7, 0.4_8_3_2_7_8_4_8]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def A__ ( self): super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self): _UpperCamelCase : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy') _UpperCamelCase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png') _UpperCamelCase : List[Any] = np.ones((7_68, 7_68) , dtype=np.floataa) _UpperCamelCase : Optional[int] = 0 _UpperCamelCase : List[str] = 'a hat' _UpperCamelCase : List[Any] = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa) pipe_prior.to(__snake_case) _UpperCamelCase : List[str] = KandinskyVaaInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder-inpaint' , torch_dtype=torch.floataa) _UpperCamelCase : Union[str, Any] = pipeline.to(__snake_case) pipeline.set_progress_bar_config(disable=__snake_case) _UpperCamelCase : int = torch.Generator(device='cpu').manual_seed(0) _UpperCamelCase , _UpperCamelCase : Union[str, Any] = pipe_prior( __snake_case , generator=__snake_case , num_inference_steps=5 , negative_prompt='' , ).to_tuple() _UpperCamelCase : List[Any] = pipeline( image=__snake_case , mask_image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type='np' , ) _UpperCamelCase : Union[str, Any] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__snake_case , __snake_case)
648
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case=3 , __snake_case=32 , __snake_case=3 , __snake_case=10 , __snake_case=[8, 16, 32, 64] , __snake_case=[1, 1, 2, 1] , __snake_case=True , __snake_case=True , __snake_case="relu" , __snake_case=3 , __snake_case=None , __snake_case=["stage2", "stage3", "stage4"] , __snake_case=[2, 3, 4] , __snake_case=1 , ): _UpperCamelCase : List[Any] = parent _UpperCamelCase : Dict = batch_size _UpperCamelCase : Optional[int] = image_size _UpperCamelCase : str = num_channels _UpperCamelCase : Optional[Any] = embeddings_size _UpperCamelCase : Tuple = hidden_sizes _UpperCamelCase : Dict = depths _UpperCamelCase : str = is_training _UpperCamelCase : Optional[int] = use_labels _UpperCamelCase : str = hidden_act _UpperCamelCase : Optional[int] = num_labels _UpperCamelCase : Optional[int] = scope _UpperCamelCase : Tuple = len(__snake_case) _UpperCamelCase : Dict = out_features _UpperCamelCase : Union[str, Any] = out_indices _UpperCamelCase : int = num_groups def A__ ( self): _UpperCamelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase : str = None if self.use_labels: _UpperCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels) _UpperCamelCase : str = self.get_config() return config, pixel_values, labels def A__ ( self): return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : str = BitModel(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[Any] = model(__snake_case) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Dict = self.num_labels _UpperCamelCase : Dict = BitForImageClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Dict = model(__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[Any] = BitBackbone(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = model(__snake_case) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:]) # verify backbone works with out_features=None _UpperCamelCase : Any = None _UpperCamelCase : str = BitBackbone(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Any = model(__snake_case) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , 1) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[-1], 1, 1]) # verify channels self.parent.assertEqual(len(model.channels) , 1) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]]) def A__ ( self): _UpperCamelCase : Optional[int] = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : int = config_and_inputs _UpperCamelCase : int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () a__ = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False a__ = False def A__ ( self): _UpperCamelCase : Dict = BitModelTester(self) _UpperCamelCase : Optional[Any] = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case) def A__ ( self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self): return @unittest.skip(reason='Bit does not output attentions') def A__ ( self): pass @unittest.skip(reason='Bit does not use inputs_embeds') def A__ ( self): pass @unittest.skip(reason='Bit does not support input and output embeddings') def A__ ( self): pass def A__ ( self): _UpperCamelCase , _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : int = model_class(__snake_case) _UpperCamelCase : List[Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : Optional[int] = [*signature.parameters.keys()] _UpperCamelCase : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __snake_case) def A__ ( self): _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case) def A__ ( self): _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__snake_case) def A__ ( self): _UpperCamelCase , _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Union[str, Any] = model_class(config=__snake_case) for name, module in model.named_modules(): if isinstance(__snake_case , (nn.BatchNormad, nn.GroupNorm)): self.assertTrue( torch.all(module.weight == 1) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def A__ ( self): def check_hidden_states_output(__snake_case , __snake_case , __snake_case): _UpperCamelCase : str = model_class(__snake_case) model.to(__snake_case) model.eval() with torch.no_grad(): _UpperCamelCase : Union[str, Any] = model(**self._prepare_for_class(__snake_case , __snake_case)) _UpperCamelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase : str = self.model_tester.num_stages self.assertEqual(len(__snake_case) , expected_num_stages + 1) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCamelCase , _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : List[str] = ['preactivation', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _UpperCamelCase : Any = layer_type _UpperCamelCase : Tuple = True check_hidden_states_output(__snake_case , __snake_case , __snake_case) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase : List[str] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case) @unittest.skip(reason='Bit does not use feedforward chunking') def A__ ( self): pass def A__ ( self): _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case) @slow def A__ ( self): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : Optional[Any] = BitModel.from_pretrained(__snake_case) self.assertIsNotNone(__snake_case) def lowerCamelCase_ ( ) -> Optional[int]: '''simple docstring''' _UpperCamelCase : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def A__ ( self): _UpperCamelCase : Optional[Any] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(__snake_case) _UpperCamelCase : str = self.default_image_processor _UpperCamelCase : List[str] = prepare_img() _UpperCamelCase : int = image_processor(images=__snake_case , return_tensors='pt').to(__snake_case) # forward pass with torch.no_grad(): _UpperCamelCase : Any = model(**__snake_case) # verify the logits _UpperCamelCase : Dict = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , __snake_case) _UpperCamelCase : Optional[int] = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]]).to(__snake_case) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1e-4)) @require_torch class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" a__ = (BitBackbone,) if is_torch_available() else () a__ = BitConfig a__ = False def A__ ( self): _UpperCamelCase : List[str] = BitModelTester(self)
648
1
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class lowercase ( _lowercase ): """simple docstring""" a__ = "gptj" a__ = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , __snake_case=5_04_00 , __snake_case=20_48 , __snake_case=40_96 , __snake_case=28 , __snake_case=16 , __snake_case=64 , __snake_case=None , __snake_case="gelu_new" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.0 , __snake_case=1e-5 , __snake_case=0.0_2 , __snake_case=True , __snake_case=5_02_56 , __snake_case=5_02_56 , __snake_case=False , **__snake_case , ): _UpperCamelCase : Any = vocab_size _UpperCamelCase : Optional[Any] = n_positions _UpperCamelCase : str = n_embd _UpperCamelCase : Dict = n_layer _UpperCamelCase : Any = n_head _UpperCamelCase : int = n_inner _UpperCamelCase : Optional[Any] = rotary_dim _UpperCamelCase : Any = activation_function _UpperCamelCase : Union[str, Any] = resid_pdrop _UpperCamelCase : Any = embd_pdrop _UpperCamelCase : Any = attn_pdrop _UpperCamelCase : Dict = layer_norm_epsilon _UpperCamelCase : str = initializer_range _UpperCamelCase : Optional[int] = use_cache _UpperCamelCase : int = bos_token_id _UpperCamelCase : Any = eos_token_id super().__init__( bos_token_id=__snake_case , eos_token_id=__snake_case , tie_word_embeddings=__snake_case , **__snake_case) class lowercase ( _lowercase ): """simple docstring""" def __init__( self , __snake_case , __snake_case = "default" , __snake_case = None , __snake_case = False , ): super().__init__(__snake_case , task=__snake_case , patching_specs=__snake_case , use_past=__snake_case) if not getattr(self._config , 'pad_token_id' , __snake_case): # TODO: how to do that better? _UpperCamelCase : Optional[int] = 0 @property def A__ ( self): _UpperCamelCase : Tuple = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}}) if self.use_past: self.fill_with_past_key_values_(__snake_case , direction='inputs') _UpperCamelCase : Union[str, Any] = {0: 'batch', 1: 'past_sequence + sequence'} else: _UpperCamelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return common_inputs @property def A__ ( self): return self._config.n_layer @property def A__ ( self): return self._config.n_head def A__ ( self , __snake_case , __snake_case = -1 , __snake_case = -1 , __snake_case = False , __snake_case = None , ): _UpperCamelCase : Dict = super(__snake_case , self).generate_dummy_inputs( __snake_case , batch_size=__snake_case , seq_length=__snake_case , is_pair=__snake_case , framework=__snake_case) # We need to order the input in the way they appears in the forward() _UpperCamelCase : Any = OrderedDict({'input_ids': common_inputs['input_ids']}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.') else: import torch _UpperCamelCase , _UpperCamelCase : Union[str, Any] = common_inputs['input_ids'].shape # Not using the same length for past_key_values _UpperCamelCase : int = seqlen + 2 _UpperCamelCase : List[Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _UpperCamelCase : Tuple = [ (torch.zeros(__snake_case), torch.zeros(__snake_case)) for _ in range(self.num_layers) ] _UpperCamelCase : Optional[Any] = common_inputs['attention_mask'] if self.use_past: _UpperCamelCase : Tuple = ordered_inputs['attention_mask'].dtype _UpperCamelCase : str = torch.cat( [ordered_inputs['attention_mask'], torch.ones(__snake_case , __snake_case , dtype=__snake_case)] , dim=1) return ordered_inputs @property def A__ ( self): return 13
648
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowerCAmelCase__ = numpy.array([0, 0]) lowerCAmelCase__ = numpy.array([0.5, 0.8_66_02_54]) lowerCAmelCase__ = numpy.array([1, 0]) lowerCAmelCase__ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] , UpperCAmelCase_ : int ) -> list[numpy.ndarray]: '''simple docstring''' _UpperCamelCase : Tuple = initial_vectors for _ in range(UpperCAmelCase_ ): _UpperCamelCase : str = iteration_step(UpperCAmelCase_ ) return vectors def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] ) -> list[numpy.ndarray]: '''simple docstring''' _UpperCamelCase : int = [] for i, start_vector in enumerate(vectors[:-1] ): _UpperCamelCase : Union[str, Any] = vectors[i + 1] new_vectors.append(UpperCAmelCase_ ) _UpperCamelCase : Tuple = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def lowerCamelCase_ ( UpperCAmelCase_ : numpy.ndarray , UpperCAmelCase_ : float ) -> numpy.ndarray: '''simple docstring''' _UpperCamelCase : str = numpy.radians(UpperCAmelCase_ ) _UpperCamelCase , _UpperCamelCase : Optional[Any] = numpy.cos(UpperCAmelCase_ ), numpy.sin(UpperCAmelCase_ ) _UpperCamelCase : Any = numpy.array(((c, -s), (s, c)) ) return numpy.dot(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] ) -> None: '''simple docstring''' _UpperCamelCase : str = plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _UpperCamelCase , _UpperCamelCase : Dict = zip(*UpperCAmelCase_ ) plt.plot(UpperCAmelCase_ , UpperCAmelCase_ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
648
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/resolve/main/config.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/config.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/config.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json""", } class lowercase ( _lowercase ): """simple docstring""" a__ = "bloom" a__ = ["past_key_values"] a__ = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self , __snake_case=25_08_80 , __snake_case=64 , __snake_case=2 , __snake_case=8 , __snake_case=1e-5 , __snake_case=0.0_2 , __snake_case=True , __snake_case=1 , __snake_case=2 , __snake_case=False , __snake_case=0.0 , __snake_case=0.0 , __snake_case=1 , __snake_case=False , **__snake_case , ): _UpperCamelCase : Dict = vocab_size # Backward compatibility with n_embed kwarg _UpperCamelCase : Dict = kwargs.pop('n_embed' , __snake_case) _UpperCamelCase : Optional[int] = hidden_size if n_embed is None else n_embed _UpperCamelCase : Optional[int] = n_layer _UpperCamelCase : Tuple = n_head _UpperCamelCase : Any = layer_norm_epsilon _UpperCamelCase : Tuple = initializer_range _UpperCamelCase : Tuple = use_cache _UpperCamelCase : Union[str, Any] = pretraining_tp _UpperCamelCase : List[str] = apply_residual_connection_post_layernorm _UpperCamelCase : Optional[int] = hidden_dropout _UpperCamelCase : str = attention_dropout _UpperCamelCase : List[str] = bos_token_id _UpperCamelCase : Dict = eos_token_id _UpperCamelCase : Optional[int] = slow_but_exact super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case) class lowercase ( _lowercase ): """simple docstring""" a__ = version.parse("1.12" ) def __init__( self , __snake_case , __snake_case = "default" , __snake_case = None , __snake_case = False , ): super().__init__(__snake_case , task=__snake_case , patching_specs=__snake_case , use_past=__snake_case) if not getattr(self._config , 'pad_token_id' , __snake_case): # TODO: how to do that better? _UpperCamelCase : int = 0 @property def A__ ( self): _UpperCamelCase : List[Any] = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}}) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(__snake_case , direction='inputs' , inverted_values_shape=__snake_case) _UpperCamelCase : int = {0: 'batch', 1: 'past_sequence + sequence'} else: _UpperCamelCase : Dict = {0: 'batch', 1: 'sequence'} return common_inputs @property def A__ ( self): return self._config.n_layer @property def A__ ( self): return self._config.n_head @property def A__ ( self): return 1e-3 def A__ ( self , __snake_case , __snake_case = -1 , __snake_case = -1 , __snake_case = False , __snake_case = None , ): _UpperCamelCase : int = super(__snake_case , self).generate_dummy_inputs( __snake_case , batch_size=__snake_case , seq_length=__snake_case , is_pair=__snake_case , framework=__snake_case) # We need to order the input in the way they appears in the forward() _UpperCamelCase : Tuple = OrderedDict({'input_ids': common_inputs['input_ids']}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.') else: import torch _UpperCamelCase , _UpperCamelCase : int = common_inputs['input_ids'].shape # Not using the same length for past_key_values _UpperCamelCase : List[str] = seqlen + 2 _UpperCamelCase : Union[str, Any] = self._config.hidden_size // self.num_attention_heads _UpperCamelCase : str = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) _UpperCamelCase : List[Any] = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) _UpperCamelCase : List[Any] = [ (torch.zeros(__snake_case), torch.zeros(__snake_case)) for _ in range(self.num_layers) ] _UpperCamelCase : Optional[Any] = common_inputs['attention_mask'] if self.use_past: _UpperCamelCase : List[Any] = ordered_inputs['attention_mask'].dtype _UpperCamelCase : Optional[int] = torch.cat( [ordered_inputs['attention_mask'], torch.ones(__snake_case , __snake_case , dtype=__snake_case)] , dim=1) return ordered_inputs @property def A__ ( self): return 13
648
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCAmelCase__ = abspath(join(dirname(__file__), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def lowerCamelCase_ ( UpperCAmelCase_ : Any ) -> Union[str, Any]: '''simple docstring''' config.addinivalue_line( 'markers' , 'is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested' ) config.addinivalue_line( 'markers' , 'is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested' ) config.addinivalue_line('markers' , 'is_pipeline_test: mark test to run only when pipelines are tested' ) config.addinivalue_line('markers' , 'is_staging_test: mark test to run only in the staging environment' ) config.addinivalue_line('markers' , 'accelerate_tests: mark test that require accelerate' ) config.addinivalue_line('markers' , 'tool_tests: mark the tool tests that are run on their specific schedule' ) def lowerCamelCase_ ( UpperCAmelCase_ : Optional[int] ) -> List[Any]: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : Any ) -> List[Any]: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main _UpperCamelCase : str = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(UpperCAmelCase_ , id=UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict ) -> Tuple: '''simple docstring''' if exitstatus == 5: _UpperCamelCase : List[Any] = 0 # Doctest custom flag to ignore output. lowerCAmelCase__ = doctest.register_optionflag("""IGNORE_RESULT""") lowerCAmelCase__ = doctest.OutputChecker class lowercase ( _lowercase ): """simple docstring""" def A__ ( self , __snake_case , __snake_case , __snake_case): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , __snake_case , __snake_case , __snake_case) lowerCAmelCase__ = CustomOutputChecker lowerCAmelCase__ = HfDoctestModule lowerCAmelCase__ = HfDocTestParser
648
1
def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: '''simple docstring''' while a != 0: _UpperCamelCase , _UpperCamelCase : List[str] = b % a, a return b def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: '''simple docstring''' if gcd(UpperCAmelCase_ , UpperCAmelCase_ ) != 1: _UpperCamelCase : Dict = F'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(UpperCAmelCase_ ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : List[str] = 1, 0, a _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : List[str] = 0, 1, m while va != 0: _UpperCamelCase : Any = ua // va _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : int = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
648
lowerCAmelCase__ = range(2, 2_0 + 1) lowerCAmelCase__ = [1_0**k for k in range(ks[-1] + 1)] lowerCAmelCase__ = {} def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int ) -> Tuple: '''simple docstring''' _UpperCamelCase : Dict = sum(a_i[j] for j in range(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) ) _UpperCamelCase : Optional[int] = sum(a_i[j] * base[j] for j in range(min(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) ) ) _UpperCamelCase , _UpperCamelCase : Dict = 0, 0 _UpperCamelCase : Optional[int] = n - i _UpperCamelCase : Union[str, Any] = memo.get(UpperCAmelCase_ ) if sub_memo is not None: _UpperCamelCase : str = sub_memo.get(UpperCAmelCase_ ) if jumps is not None and len(UpperCAmelCase_ ) > 0: # find and make the largest jump without going over _UpperCamelCase : str = -1 for _k in range(len(UpperCAmelCase_ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _UpperCamelCase : Optional[Any] = _k break if max_jump >= 0: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = jumps[max_jump] # since the difference between jumps is cached, add c _UpperCamelCase : Tuple = diff + c for j in range(min(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) ): _UpperCamelCase , _UpperCamelCase : Dict = divmod(UpperCAmelCase_ , 1_0 ) if new_c > 0: add(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) else: _UpperCamelCase : Union[str, Any] = [] else: _UpperCamelCase : List[Any] = {c: []} _UpperCamelCase : Optional[int] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _UpperCamelCase , _UpperCamelCase : Optional[Any] = next_term(UpperCAmelCase_ , k - 1 , i + dn , UpperCAmelCase_ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _UpperCamelCase , _UpperCamelCase : Any = compute(UpperCAmelCase_ , UpperCAmelCase_ , i + dn , UpperCAmelCase_ ) diff += _diff dn += terms_jumped _UpperCamelCase : List[str] = sub_memo[c] # keep jumps sorted by # of terms skipped _UpperCamelCase : Union[str, Any] = 0 while j < len(UpperCAmelCase_ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCAmelCase_ , (diff, dn, k) ) return (diff, dn) def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any ) -> Dict: '''simple docstring''' if i >= n: return 0, i if k > len(UpperCAmelCase_ ): a_i.extend([0 for _ in range(k - len(UpperCAmelCase_ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _UpperCamelCase : Any = i _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Any = 0, 0, 0 for j in range(len(UpperCAmelCase_ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _UpperCamelCase : Union[str, Any] = ds_c + ds_b diff += addend _UpperCamelCase : Union[str, Any] = 0 for j in range(UpperCAmelCase_ ): _UpperCamelCase : Union[str, Any] = a_i[j] + addend _UpperCamelCase , _UpperCamelCase : Any = divmod(UpperCAmelCase_ , 1_0 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return diff, i - start_i def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any ) -> Dict: '''simple docstring''' for j in range(UpperCAmelCase_ , len(UpperCAmelCase_ ) ): _UpperCamelCase : List[str] = digits[j] + addend if s >= 1_0: _UpperCamelCase , _UpperCamelCase : Any = divmod(UpperCAmelCase_ , 1_0 ) _UpperCamelCase : Union[str, Any] = addend // 1_0 + quotient else: _UpperCamelCase : Dict = s _UpperCamelCase : Optional[Any] = addend // 1_0 if addend == 0: break while addend > 0: _UpperCamelCase , _UpperCamelCase : Dict = divmod(UpperCAmelCase_ , 1_0 ) digits.append(UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : int = 1_0**1_5 ) -> int: '''simple docstring''' _UpperCamelCase : Optional[Any] = [1] _UpperCamelCase : Optional[int] = 1 _UpperCamelCase : int = 0 while True: _UpperCamelCase , _UpperCamelCase : List[Any] = next_term(UpperCAmelCase_ , 2_0 , i + dn , UpperCAmelCase_ ) dn += terms_jumped if dn == n - i: break _UpperCamelCase : str = 0 for j in range(len(UpperCAmelCase_ ) ): a_n += digits[j] * 1_0**j return a_n if __name__ == "__main__": print(f'{solution() = }')
648
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def lowerCamelCase_ ( UpperCAmelCase_ : Tuple ) -> List[str]: '''simple docstring''' if "resnet-50" in model_name: _UpperCamelCase : List[Any] = ResNetConfig.from_pretrained('microsoft/resnet-50' ) elif "resnet-101" in model_name: _UpperCamelCase : Any = ResNetConfig.from_pretrained('microsoft/resnet-101' ) else: raise ValueError('Model name should include either resnet50 or resnet101' ) _UpperCamelCase : List[str] = DetrConfig(use_timm_backbone=UpperCAmelCase_ , backbone_config=UpperCAmelCase_ ) # set label attributes _UpperCamelCase : int = 'panoptic' in model_name if is_panoptic: _UpperCamelCase : List[str] = 2_5_0 else: _UpperCamelCase : Tuple = 9_1 _UpperCamelCase : List[Any] = 'huggingface/label-files' _UpperCamelCase : Tuple = 'coco-detection-id2label.json' _UpperCamelCase : int = json.load(open(hf_hub_download(UpperCAmelCase_ , UpperCAmelCase_ , repo_type='dataset' ) , 'r' ) ) _UpperCamelCase : Dict = {int(UpperCAmelCase_ ): v for k, v in idalabel.items()} _UpperCamelCase : Any = idalabel _UpperCamelCase : List[str] = {v: k for k, v in idalabel.items()} return config, is_panoptic def lowerCamelCase_ ( UpperCAmelCase_ : List[Any] ) -> Dict: '''simple docstring''' _UpperCamelCase : int = [] # stem # fmt: off rename_keys.append(('backbone.0.body.conv1.weight', 'backbone.conv_encoder.model.embedder.embedder.convolution.weight') ) rename_keys.append(('backbone.0.body.bn1.weight', 'backbone.conv_encoder.model.embedder.embedder.normalization.weight') ) rename_keys.append(('backbone.0.body.bn1.bias', 'backbone.conv_encoder.model.embedder.embedder.normalization.bias') ) rename_keys.append(('backbone.0.body.bn1.running_mean', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_mean') ) rename_keys.append(('backbone.0.body.bn1.running_var', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_var') ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var''', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var''', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ] ) return rename_keys def lowerCamelCase_ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str ) -> str: '''simple docstring''' _UpperCamelCase : List[str] = state_dict.pop(UpperCAmelCase_ ) _UpperCamelCase : Dict = val def lowerCamelCase_ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any]=False ) -> Tuple: '''simple docstring''' _UpperCamelCase : str = '' if is_panoptic: _UpperCamelCase : Any = 'detr.' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _UpperCamelCase : Optional[int] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) _UpperCamelCase : Any = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase : str = in_proj_weight[:2_5_6, :] _UpperCamelCase : List[str] = in_proj_bias[:2_5_6] _UpperCamelCase : List[str] = in_proj_weight[2_5_6:5_1_2, :] _UpperCamelCase : List[Any] = in_proj_bias[2_5_6:5_1_2] _UpperCamelCase : str = in_proj_weight[-2_5_6:, :] _UpperCamelCase : str = in_proj_bias[-2_5_6:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention _UpperCamelCase : Optional[int] = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) _UpperCamelCase : Optional[Any] = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase : List[str] = in_proj_weight[:2_5_6, :] _UpperCamelCase : Tuple = in_proj_bias[:2_5_6] _UpperCamelCase : Union[str, Any] = in_proj_weight[2_5_6:5_1_2, :] _UpperCamelCase : List[Any] = in_proj_bias[2_5_6:5_1_2] _UpperCamelCase : List[Any] = in_proj_weight[-2_5_6:, :] _UpperCamelCase : List[Any] = in_proj_bias[-2_5_6:] # read in weights + bias of input projection layer of cross-attention _UpperCamelCase : List[str] = state_dict.pop( F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) _UpperCamelCase : Any = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict _UpperCamelCase : List[str] = in_proj_weight_cross_attn[:2_5_6, :] _UpperCamelCase : str = in_proj_bias_cross_attn[:2_5_6] _UpperCamelCase : Tuple = in_proj_weight_cross_attn[2_5_6:5_1_2, :] _UpperCamelCase : List[str] = in_proj_bias_cross_attn[2_5_6:5_1_2] _UpperCamelCase : Union[str, Any] = in_proj_weight_cross_attn[-2_5_6:, :] _UpperCamelCase : str = in_proj_bias_cross_attn[-2_5_6:] def lowerCamelCase_ ( ) -> Any: '''simple docstring''' _UpperCamelCase : Dict = 'http://images.cocodataset.org/val2017/000000039769.jpg' _UpperCamelCase : Union[str, Any] = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ) return im @torch.no_grad() def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Optional[Any]=False ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase : Union[str, Any] = get_detr_config(UpperCAmelCase_ ) # load original model from torch hub _UpperCamelCase : Dict = { 'detr-resnet-50': 'detr_resnet50', 'detr-resnet-101': 'detr_resnet101', } logger.info(F'''Converting model {model_name}...''' ) _UpperCamelCase : List[str] = torch.hub.load('facebookresearch/detr' , model_name_to_original_name[model_name] , pretrained=UpperCAmelCase_ ).eval() _UpperCamelCase : Optional[Any] = detr.state_dict() # rename keys for src, dest in create_rename_keys(UpperCAmelCase_ ): if is_panoptic: _UpperCamelCase : List[Any] = 'detr.' + src rename_key(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # query, key and value matrices need special treatment read_in_q_k_v(UpperCAmelCase_ , is_panoptic=UpperCAmelCase_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _UpperCamelCase : Dict = 'detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): _UpperCamelCase : Union[str, Any] = state_dict.pop(UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: _UpperCamelCase : List[Any] = state_dict.pop(UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: _UpperCamelCase : str = state_dict.pop(UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): _UpperCamelCase : Union[str, Any] = state_dict.pop(UpperCAmelCase_ ) _UpperCamelCase : Union[str, Any] = val # finally, create HuggingFace model and load state dict _UpperCamelCase : Tuple = DetrForSegmentation(UpperCAmelCase_ ) if is_panoptic else DetrForObjectDetection(UpperCAmelCase_ ) model.load_state_dict(UpperCAmelCase_ ) model.eval() # verify our conversion on an image _UpperCamelCase : int = 'coco_panoptic' if is_panoptic else 'coco_detection' _UpperCamelCase : Optional[Any] = DetrImageProcessor(format=UpperCAmelCase_ ) _UpperCamelCase : List[Any] = processor(images=prepare_img() , return_tensors='pt' ) _UpperCamelCase : str = encoding['pixel_values'] _UpperCamelCase : Optional[Any] = detr(UpperCAmelCase_ ) _UpperCamelCase : Union[str, Any] = model(UpperCAmelCase_ ) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1e-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1e-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(UpperCAmelCase_ ).mkdir(exist_ok=UpperCAmelCase_ ) model.save_pretrained(UpperCAmelCase_ ) processor.save_pretrained(UpperCAmelCase_ ) if push_to_hub: # Upload model and image processor to the hub logger.info('Uploading PyTorch model and image processor to the hub...' ) model.push_to_hub(F'''nielsr/{model_name}''' ) processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""detr-resnet-50""", type=str, choices=["""detr-resnet-50""", """detr-resnet-101"""], help="""Name of the DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub or not.""") lowerCAmelCase__ = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
648
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowercase ( _lowercase ): """simple docstring""" a__ = "vit_mae" def __init__( self , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=2_24 , __snake_case=16 , __snake_case=3 , __snake_case=True , __snake_case=16 , __snake_case=5_12 , __snake_case=8 , __snake_case=20_48 , __snake_case=0.7_5 , __snake_case=False , **__snake_case , ): super().__init__(**__snake_case) _UpperCamelCase : Optional[int] = hidden_size _UpperCamelCase : Optional[int] = num_hidden_layers _UpperCamelCase : Tuple = num_attention_heads _UpperCamelCase : List[str] = intermediate_size _UpperCamelCase : str = hidden_act _UpperCamelCase : List[str] = hidden_dropout_prob _UpperCamelCase : List[Any] = attention_probs_dropout_prob _UpperCamelCase : str = initializer_range _UpperCamelCase : Any = layer_norm_eps _UpperCamelCase : int = image_size _UpperCamelCase : Any = patch_size _UpperCamelCase : List[Any] = num_channels _UpperCamelCase : Union[str, Any] = qkv_bias _UpperCamelCase : str = decoder_num_attention_heads _UpperCamelCase : Union[str, Any] = decoder_hidden_size _UpperCamelCase : Union[str, Any] = decoder_num_hidden_layers _UpperCamelCase : Any = decoder_intermediate_size _UpperCamelCase : int = mask_ratio _UpperCamelCase : List[Any] = norm_pix_loss
648
1
import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase ( _lowercase ): """simple docstring""" def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=99 , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=37 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=16 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=False , __snake_case=True , __snake_case="None" , __snake_case=3 , __snake_case=4 , __snake_case=None , ): _UpperCamelCase : Optional[int] = parent _UpperCamelCase : List[str] = batch_size _UpperCamelCase : Optional[int] = seq_length _UpperCamelCase : Union[str, Any] = is_training _UpperCamelCase : Any = use_input_mask _UpperCamelCase : Dict = use_token_type_ids _UpperCamelCase : Any = use_labels _UpperCamelCase : Any = vocab_size _UpperCamelCase : Union[str, Any] = hidden_size _UpperCamelCase : int = num_hidden_layers _UpperCamelCase : Tuple = num_attention_heads _UpperCamelCase : Optional[Any] = intermediate_size _UpperCamelCase : List[str] = hidden_act _UpperCamelCase : List[str] = hidden_dropout_prob _UpperCamelCase : Optional[int] = attention_probs_dropout_prob _UpperCamelCase : Union[str, Any] = max_position_embeddings _UpperCamelCase : str = type_vocab_size _UpperCamelCase : Tuple = type_sequence_label_size _UpperCamelCase : Union[str, Any] = initializer_range _UpperCamelCase : str = num_labels _UpperCamelCase : str = num_choices _UpperCamelCase : Optional[Any] = relative_attention _UpperCamelCase : str = position_biased_input _UpperCamelCase : Any = pos_att_type _UpperCamelCase : Optional[Any] = scope def A__ ( self): _UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase : List[str] = None if self.use_input_mask: _UpperCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) _UpperCamelCase : List[str] = None if self.use_token_type_ids: _UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase : int = None _UpperCamelCase : List[Any] = None _UpperCamelCase : List[Any] = None if self.use_labels: _UpperCamelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self): return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def A__ ( self , __snake_case): self.parent.assertListEqual(list(result.loss.size()) , []) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Tuple = DebertaVaModel(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case)[0] _UpperCamelCase : Dict = model(__snake_case , token_type_ids=__snake_case)[0] _UpperCamelCase : List[Any] = model(__snake_case)[0] self.parent.assertListEqual(list(sequence_output.size()) , [self.batch_size, self.seq_length, self.hidden_size]) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : str = DebertaVaForMaskedLM(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Tuple = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[int] = self.num_labels _UpperCamelCase : Any = DebertaVaForSequenceClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Any = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertListEqual(list(result.logits.size()) , [self.batch_size, self.num_labels]) self.check_loss_output(__snake_case) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Tuple = self.num_labels _UpperCamelCase : Union[str, Any] = DebertaVaForTokenClassification(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[str] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Tuple = DebertaVaForQuestionAnswering(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Any = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : List[Any] = DebertaVaForMultipleChoice(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : int = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : List[Any] = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : Union[str, Any] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : List[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def A__ ( self): _UpperCamelCase : Tuple = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) : Union[str, Any] = config_and_inputs _UpperCamelCase : Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) a__ = ( { "feature-extraction": DebertaVaModel, "fill-mask": DebertaVaForMaskedLM, "question-answering": DebertaVaForQuestionAnswering, "text-classification": DebertaVaForSequenceClassification, "token-classification": DebertaVaForTokenClassification, "zero-shot": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) a__ = True a__ = False a__ = False a__ = False a__ = False def A__ ( self): _UpperCamelCase : Dict = DebertaVaModelTester(self) _UpperCamelCase : Optional[Any] = ConfigTester(self , config_class=__snake_case , hidden_size=37) def A__ ( self): self.config_tester.run_common_tests() def A__ ( self): _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__snake_case) def A__ ( self): _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__snake_case) def A__ ( self): _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__snake_case) def A__ ( self): _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__snake_case) def A__ ( self): _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__snake_case) def A__ ( self): _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*__snake_case) @slow def A__ ( self): for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : List[str] = DebertaVaModel.from_pretrained(__snake_case) self.assertIsNotNone(__snake_case) @require_torch @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason='Model not available yet') def A__ ( self): pass @slow def A__ ( self): _UpperCamelCase : Dict = DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge') _UpperCamelCase : List[str] = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]]) _UpperCamelCase : List[str] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): _UpperCamelCase : List[Any] = model(__snake_case , attention_mask=__snake_case)[0] # compare the actual values for a slice. _UpperCamelCase : int = torch.tensor( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __snake_case , atol=1e-4) , f'''{output[:, 1:4, 1:4]}''')
648
import functools def lowerCamelCase_ ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int] ) -> int: '''simple docstring''' if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or not all(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(UpperCAmelCase_ ) != 3 or not all(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(UpperCAmelCase_ ) == 0: return 0 if min(UpperCAmelCase_ ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(UpperCAmelCase_ ) >= 3_6_6: raise ValueError('All days elements should be less than 366' ) _UpperCamelCase : Union[str, Any] = set(UpperCAmelCase_ ) @functools.cache def dynamic_programming(UpperCAmelCase_ : int ) -> int: if index > 3_6_5: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 3_0 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
648
1
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": lowerCAmelCase__ = pd.read_csv("""sample_data.csv""", header=None) lowerCAmelCase__ = df.shape[:1][0] # If you're using some other dataset input the target column lowerCAmelCase__ = df.iloc[:, 1:2] lowerCAmelCase__ = actual_data.values.reshape(len_data, 1) lowerCAmelCase__ = MinMaxScaler().fit_transform(actual_data) lowerCAmelCase__ = 1_0 lowerCAmelCase__ = 5 lowerCAmelCase__ = 2_0 lowerCAmelCase__ = len_data - periods * look_back lowerCAmelCase__ = actual_data[:division] lowerCAmelCase__ = actual_data[division - look_back :] lowerCAmelCase__ , lowerCAmelCase__ = [], [] lowerCAmelCase__ , lowerCAmelCase__ = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) lowerCAmelCase__ = np.array(train_x) lowerCAmelCase__ = np.array(test_x) lowerCAmelCase__ = np.array([list(i.ravel()) for i in train_y]) lowerCAmelCase__ = np.array([list(i.ravel()) for i in test_y]) lowerCAmelCase__ = Sequential() model.add(LSTM(1_2_8, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(6_4, input_shape=(1_2_8, 1))) model.add(Dense(forward_days)) model.compile(loss="""mean_squared_error""", optimizer="""adam""") lowerCAmelCase__ = model.fit( x_train, y_train, epochs=1_5_0, verbose=1, shuffle=True, batch_size=4 ) lowerCAmelCase__ = model.predict(x_test)
648
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=99 , __snake_case=64 , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=37 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=16 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=3 , __snake_case=4 , __snake_case=None , ): _UpperCamelCase : List[Any] = parent _UpperCamelCase : Optional[Any] = batch_size _UpperCamelCase : int = seq_length _UpperCamelCase : str = is_training _UpperCamelCase : Tuple = use_input_mask _UpperCamelCase : Union[str, Any] = use_token_type_ids _UpperCamelCase : Union[str, Any] = use_labels _UpperCamelCase : Optional[Any] = vocab_size _UpperCamelCase : List[Any] = hidden_size _UpperCamelCase : Optional[Any] = embedding_size _UpperCamelCase : str = num_hidden_layers _UpperCamelCase : str = num_attention_heads _UpperCamelCase : int = intermediate_size _UpperCamelCase : int = hidden_act _UpperCamelCase : Tuple = hidden_dropout_prob _UpperCamelCase : int = attention_probs_dropout_prob _UpperCamelCase : Tuple = max_position_embeddings _UpperCamelCase : List[str] = type_vocab_size _UpperCamelCase : Dict = type_sequence_label_size _UpperCamelCase : List[str] = initializer_range _UpperCamelCase : Optional[Any] = num_labels _UpperCamelCase : Tuple = num_choices _UpperCamelCase : List[str] = scope def A__ ( self): _UpperCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase : Any = None if self.use_input_mask: _UpperCamelCase : int = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase : Optional[Any] = None if self.use_token_type_ids: _UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase : int = None _UpperCamelCase : List[str] = None _UpperCamelCase : Dict = None if self.use_labels: _UpperCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self): return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : List[str] = MegatronBertModel(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case) _UpperCamelCase : Dict = model(__snake_case , token_type_ids=__snake_case) _UpperCamelCase : Optional[Any] = model(__snake_case) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : int = MegatronBertForMaskedLM(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Dict = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : str = MegatronBertForCausalLM(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Tuple = MegatronBertForNextSentencePrediction(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[Any] = MegatronBertForPreTraining(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[str] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , next_sentence_label=__snake_case , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : int = MegatronBertForQuestionAnswering(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[int] = self.num_labels _UpperCamelCase : Union[str, Any] = MegatronBertForSequenceClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Any = self.num_labels _UpperCamelCase : Optional[int] = MegatronBertForTokenClassification(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Tuple = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : List[str] = self.num_choices _UpperCamelCase : Optional[int] = MegatronBertForMultipleChoice(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : List[Any] = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : Optional[Any] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : Union[str, Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def A__ ( self): _UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) : Optional[int] = config_and_inputs _UpperCamelCase : int = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) a__ = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) a__ = True # test_resize_embeddings = False a__ = False def A__ ( self , __snake_case , __snake_case , __snake_case=False): _UpperCamelCase : str = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case) if return_labels: if model_class in get_values(__snake_case): _UpperCamelCase : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__snake_case) _UpperCamelCase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case) return inputs_dict def A__ ( self): _UpperCamelCase : Any = MegatronBertModelTester(self) _UpperCamelCase : int = ConfigTester(self , config_class=__snake_case , hidden_size=37) def A__ ( self): self.config_tester.run_common_tests() def A__ ( self): _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__snake_case) def A__ ( self): _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__snake_case) def A__ ( self): _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__snake_case) def A__ ( self): _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__snake_case) def A__ ( self): _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__snake_case) def A__ ( self): _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__snake_case) def A__ ( self): _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__snake_case) def A__ ( self): _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__snake_case) def lowerCamelCase_ ( UpperCAmelCase_ : str ) -> Optional[Any]: '''simple docstring''' return torch.tensor( UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ , ) lowerCAmelCase__ = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip('Model is not available.') def A__ ( self): _UpperCamelCase : int = 'nvidia/megatron-bert-uncased-345m' if "MYDIR" in os.environ: _UpperCamelCase : int = os.path.join(os.environ['MYDIR'] , __snake_case) _UpperCamelCase : Optional[int] = MegatronBertModel.from_pretrained(__snake_case) model.to(__snake_case) model.half() _UpperCamelCase : Optional[Any] = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]]) with torch.no_grad(): _UpperCamelCase : str = model(__snake_case)[0] _UpperCamelCase : Optional[int] = torch.Size((1, 9, 10_24)) self.assertEqual(output.shape , __snake_case) _UpperCamelCase : Union[str, Any] = [-0.6_0_4_0, -0.2_5_1_7, -0.1_0_2_5, 0.3_4_2_0, -0.6_7_5_8, -0.0_0_1_7, -0.1_0_8_9, -0.1_9_9_0, 0.5_7_2_8] for ii in range(3): for jj in range(3): _UpperCamelCase : Optional[Any] = output[0, ii, jj] _UpperCamelCase : Dict = expected[3 * ii + jj] _UpperCamelCase : Optional[int] = 'ii={} jj={} a={} b={}'.format(__snake_case , __snake_case , __snake_case , __snake_case) self.assertTrue(math.isclose(__snake_case , __snake_case , rel_tol=__snake_case , abs_tol=__snake_case) , msg=__snake_case)
648
1
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" a__ = None a__ = BloomTokenizerFast a__ = BloomTokenizerFast a__ = True a__ = False a__ = "tokenizer_file" a__ = {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} def A__ ( self): super().setUp() _UpperCamelCase : int = BloomTokenizerFast.from_pretrained('bigscience/tokenizer') tokenizer.save_pretrained(self.tmpdirname) def A__ ( self , **__snake_case): kwargs.update(self.special_tokens_map) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **__snake_case) def A__ ( self): _UpperCamelCase : Optional[int] = self.get_rust_tokenizer() _UpperCamelCase : List[Any] = ['The quick brown fox</s>', 'jumps over the lazy dog</s>'] _UpperCamelCase : List[Any] = [[21_75, 2_37_14, 7_31_73, 14_42_52, 2], [77, 13_26_19, 34_78, 3_68, 10_95_86, 3_54_33, 2]] _UpperCamelCase : Optional[int] = tokenizer.batch_encode_plus(__snake_case)['input_ids'] self.assertListEqual(__snake_case , __snake_case) _UpperCamelCase : Dict = tokenizer.batch_decode(__snake_case) self.assertListEqual(__snake_case , __snake_case) def A__ ( self , __snake_case=6): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})'''): _UpperCamelCase : Dict = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input _UpperCamelCase : Union[str, Any] = 'This is a simple input' _UpperCamelCase : Tuple = ['This is a simple input 1', 'This is a simple input 2'] _UpperCamelCase : Dict = ('This is a simple input', 'This is a pair') _UpperCamelCase : int = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests try: tokenizer_r.encode(__snake_case , max_length=__snake_case) tokenizer_r.encode_plus(__snake_case , max_length=__snake_case) tokenizer_r.batch_encode_plus(__snake_case , max_length=__snake_case) tokenizer_r.encode(__snake_case , max_length=__snake_case) tokenizer_r.batch_encode_plus(__snake_case , max_length=__snake_case) except ValueError: self.fail('Bloom Tokenizer should be able to deal with padding') _UpperCamelCase : Tuple = None # Hotfixing padding = None self.assertRaises(__snake_case , tokenizer_r.encode , __snake_case , max_length=__snake_case , padding='max_length') # Simple input self.assertRaises(__snake_case , tokenizer_r.encode_plus , __snake_case , max_length=__snake_case , padding='max_length') # Simple input self.assertRaises( __snake_case , tokenizer_r.batch_encode_plus , __snake_case , max_length=__snake_case , padding='max_length' , ) # Pair input self.assertRaises(__snake_case , tokenizer_r.encode , __snake_case , max_length=__snake_case , padding='max_length') # Pair input self.assertRaises(__snake_case , tokenizer_r.encode_plus , __snake_case , max_length=__snake_case , padding='max_length') # Pair input self.assertRaises( __snake_case , tokenizer_r.batch_encode_plus , __snake_case , max_length=__snake_case , padding='max_length' , ) def A__ ( self): _UpperCamelCase : str = self.get_rust_tokenizer() _UpperCamelCase : List[str] = load_dataset('xnli' , 'all_languages' , split='test' , streaming=__snake_case) _UpperCamelCase : List[str] = next(iter(__snake_case))['premise'] # pick up one data _UpperCamelCase : List[Any] = list(sample_data.values()) _UpperCamelCase : int = list(map(tokenizer.encode , __snake_case)) _UpperCamelCase : Tuple = [tokenizer.decode(__snake_case , clean_up_tokenization_spaces=__snake_case) for x in output_tokens] self.assertListEqual(__snake_case , __snake_case) def A__ ( self): # The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have # any sequence length constraints. This test of the parent class will fail since it relies on the # maximum sequence length of the positoonal embeddings. self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map) , 1) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values())[0]) , 1)
648
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = """▁""" lowerCAmelCase__ = {"""vocab_file""": """sentencepiece.bpe.model"""} lowerCAmelCase__ = { """vocab_file""": { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model""" ), } } lowerCAmelCase__ = { """xlm-roberta-base""": 5_1_2, """xlm-roberta-large""": 5_1_2, """xlm-roberta-large-finetuned-conll02-dutch""": 5_1_2, """xlm-roberta-large-finetuned-conll02-spanish""": 5_1_2, """xlm-roberta-large-finetuned-conll03-english""": 5_1_2, """xlm-roberta-large-finetuned-conll03-german""": 5_1_2, } class lowercase ( _lowercase ): """simple docstring""" a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = ["input_ids", "attention_mask"] def __init__( self , __snake_case , __snake_case="<s>" , __snake_case="</s>" , __snake_case="</s>" , __snake_case="<s>" , __snake_case="<unk>" , __snake_case="<pad>" , __snake_case="<mask>" , __snake_case = None , **__snake_case , ): # Mask token behave like a normal word, i.e. include the space before it _UpperCamelCase : Dict = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case) if isinstance(__snake_case , __snake_case) else mask_token _UpperCamelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) _UpperCamelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(__snake_case)) _UpperCamelCase : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _UpperCamelCase : int = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _UpperCamelCase : List[Any] = 1 _UpperCamelCase : Any = len(self.sp_model) + self.fairseq_offset _UpperCamelCase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self): _UpperCamelCase : List[Any] = self.__dict__.copy() _UpperCamelCase : Optional[Any] = None _UpperCamelCase : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self , __snake_case): _UpperCamelCase : int = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): _UpperCamelCase : Tuple = {} _UpperCamelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) def A__ ( self , __snake_case , __snake_case = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCamelCase : Tuple = [self.cls_token_id] _UpperCamelCase : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self , __snake_case , __snake_case = None , __snake_case = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case) if token_ids_a is None: return [1] + ([0] * len(__snake_case)) + [1] return [1] + ([0] * len(__snake_case)) + [1, 1] + ([0] * len(__snake_case)) + [1] def A__ ( self , __snake_case , __snake_case = None): _UpperCamelCase : Optional[Any] = [self.sep_token_id] _UpperCamelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def A__ ( self): return len(self.sp_model) + self.fairseq_offset + 1 # Add the <mask> token def A__ ( self): _UpperCamelCase : List[str] = {self.convert_ids_to_tokens(__snake_case): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def A__ ( self , __snake_case): return self.sp_model.encode(__snake_case , out_type=__snake_case) def A__ ( self , __snake_case): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCamelCase : str = self.sp_model.PieceToId(__snake_case) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A__ ( self , __snake_case): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def A__ ( self , __snake_case): _UpperCamelCase : Optional[int] = ''.join(__snake_case).replace(__snake_case , ' ').strip() return out_string def A__ ( self , __snake_case , __snake_case = None): if not os.path.isdir(__snake_case): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return _UpperCamelCase : str = os.path.join( __snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(__snake_case) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , __snake_case) elif not os.path.isfile(self.vocab_file): with open(__snake_case , 'wb') as fi: _UpperCamelCase : Any = self.sp_model.serialized_model_proto() fi.write(__snake_case) return (out_vocab_file,)
648
1
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCAmelCase__ = 1_6 lowerCAmelCase__ = 3_2 def lowerCamelCase_ ( UpperCAmelCase_ : Accelerator , UpperCAmelCase_ : int = 1_6 , UpperCAmelCase_ : str = "bert-base-cased" ) -> str: '''simple docstring''' _UpperCamelCase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = load_dataset('glue' , 'mrpc' ) def tokenize_function(UpperCAmelCase_ : Any ): # max_length=None => use the model max length (it's actually the default) _UpperCamelCase : int = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _UpperCamelCase : Any = datasets.map( UpperCAmelCase_ , batched=UpperCAmelCase_ , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=UpperCAmelCase_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCamelCase : Union[str, Any] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(UpperCAmelCase_ : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCAmelCase_ , padding='max_length' , max_length=1_2_8 , return_tensors='pt' ) return tokenizer.pad(UpperCAmelCase_ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. _UpperCamelCase : Any = DataLoader( tokenized_datasets['train'] , shuffle=UpperCAmelCase_ , collate_fn=UpperCAmelCase_ , batch_size=UpperCAmelCase_ ) _UpperCamelCase : List[str] = DataLoader( tokenized_datasets['validation'] , shuffle=UpperCAmelCase_ , collate_fn=UpperCAmelCase_ , batch_size=UpperCAmelCase_ ) return train_dataloader, eval_dataloader def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Any ) -> List[Any]: '''simple docstring''' model.eval() _UpperCamelCase : int = 0 for step, batch in enumerate(UpperCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCamelCase : List[Any] = model(**UpperCAmelCase_ ) _UpperCamelCase : List[Any] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times _UpperCamelCase , _UpperCamelCase : int = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(UpperCAmelCase_ ) - 1: _UpperCamelCase : Optional[int] = predictions[: len(eval_dataloader.dataset ) - samples_seen] _UpperCamelCase : str = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=UpperCAmelCase_ , references=UpperCAmelCase_ , ) _UpperCamelCase : Optional[Any] = metric.compute() return eval_metric["accuracy"] def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any ) -> List[Any]: '''simple docstring''' _UpperCamelCase : Union[str, Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCamelCase : Any = config['lr'] _UpperCamelCase : List[str] = int(config['num_epochs'] ) _UpperCamelCase : Optional[int] = int(config['seed'] ) _UpperCamelCase : List[Any] = int(config['batch_size'] ) _UpperCamelCase : Optional[Any] = args.model_name_or_path set_seed(UpperCAmelCase_ ) _UpperCamelCase , _UpperCamelCase : List[str] = get_dataloaders(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCamelCase : Optional[Any] = AutoModelForSequenceClassification.from_pretrained(UpperCAmelCase_ , return_dict=UpperCAmelCase_ ) # Instantiate optimizer _UpperCamelCase : Tuple = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _UpperCamelCase : Dict = optimizer_cls(params=model.parameters() , lr=UpperCAmelCase_ ) if accelerator.state.deepspeed_plugin is not None: _UpperCamelCase : Any = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: _UpperCamelCase : Optional[Any] = 1 _UpperCamelCase : List[Any] = (len(UpperCAmelCase_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _UpperCamelCase : Optional[int] = get_linear_schedule_with_warmup( optimizer=UpperCAmelCase_ , num_warmup_steps=0 , num_training_steps=UpperCAmelCase_ , ) else: _UpperCamelCase : List[Any] = DummyScheduler(UpperCAmelCase_ , total_num_steps=UpperCAmelCase_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Any = accelerator.prepare( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # We need to keep track of how many total steps we have iterated over _UpperCamelCase : Optional[int] = 0 # We also need to keep track of the stating epoch so files are named properly _UpperCamelCase : List[str] = 0 _UpperCamelCase : Any = evaluate.load('glue' , 'mrpc' ) _UpperCamelCase : int = num_epochs if args.partial_train_epoch is not None: _UpperCamelCase : int = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) _UpperCamelCase : str = args.resume_from_checkpoint.split('epoch_' )[1] _UpperCamelCase : List[str] = '' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break _UpperCamelCase : Any = int(UpperCAmelCase_ ) + 1 _UpperCamelCase : Optional[Any] = evaluation_loop(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) accelerator.print('resumed checkpoint performance:' , UpperCAmelCase_ ) accelerator.print('resumed checkpoint\'s scheduler\'s lr:' , lr_scheduler.get_lr()[0] ) accelerator.print('resumed optimizers\'s lr:' , optimizer.param_groups[0]['lr'] ) with open(os.path.join(args.output_dir , F'''state_{starting_epoch-1}.json''' ) , 'r' ) as f: _UpperCamelCase : Dict = json.load(UpperCAmelCase_ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model _UpperCamelCase : int = {} for epoch in range(UpperCAmelCase_ , UpperCAmelCase_ ): model.train() for step, batch in enumerate(UpperCAmelCase_ ): _UpperCamelCase : Optional[Any] = model(**UpperCAmelCase_ ) _UpperCamelCase : int = outputs.loss _UpperCamelCase : List[str] = loss / gradient_accumulation_steps accelerator.backward(UpperCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 _UpperCamelCase : int = F'''epoch_{epoch}''' _UpperCamelCase : Tuple = os.path.join(args.output_dir , UpperCAmelCase_ ) accelerator.save_state(UpperCAmelCase_ ) _UpperCamelCase : Any = evaluation_loop(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : int = accuracy _UpperCamelCase : Tuple = lr_scheduler.get_lr()[0] _UpperCamelCase : int = optimizer.param_groups[0]['lr'] _UpperCamelCase : int = epoch _UpperCamelCase : List[Any] = overall_step accelerator.print(F'''epoch {epoch}:''' , UpperCAmelCase_ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F'''state_{epoch}.json''' ) , 'w' ) as f: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( ) -> Any: '''simple docstring''' _UpperCamelCase : Optional[int] = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=UpperCAmelCase_ , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=UpperCAmelCase_ , ) parser.add_argument( '--output_dir' , type=UpperCAmelCase_ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--partial_train_epoch' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , help='If passed, the training will stop after this number of epochs.' , ) parser.add_argument( '--num_epochs' , type=UpperCAmelCase_ , default=2 , help='Number of train epochs.' , ) _UpperCamelCase : Optional[int] = parser.parse_args() _UpperCamelCase : Union[str, Any] = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 4_2, 'batch_size': 1_6} training_function(UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": main()
648
from ...processing_utils import ProcessorMixin class lowercase ( _lowercase ): """simple docstring""" a__ = ["image_processor", "feature_extractor"] a__ = "TvltImageProcessor" a__ = "TvltFeatureExtractor" def __init__( self , __snake_case , __snake_case): super().__init__(image_processor=__snake_case , feature_extractor=__snake_case) _UpperCamelCase : List[str] = image_processor _UpperCamelCase : Dict = feature_extractor def __call__( self , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=False , __snake_case=False , *__snake_case , **__snake_case , ): if images is None and audio is None: raise ValueError('You need to specify either an `images` or `audio` input to process.') _UpperCamelCase : Union[str, Any] = None if images is not None: _UpperCamelCase : Tuple = self.image_processor(__snake_case , mask_pixel=__snake_case , *__snake_case , **__snake_case) if images_mixed is not None: _UpperCamelCase : Union[str, Any] = self.image_processor(__snake_case , is_mixed=__snake_case , *__snake_case , **__snake_case) if audio is not None: _UpperCamelCase : Tuple = self.feature_extractor( __snake_case , *__snake_case , sampling_rate=__snake_case , mask_audio=__snake_case , **__snake_case) _UpperCamelCase : Tuple = {} if audio is not None: output_dict.update(__snake_case) if images is not None: output_dict.update(__snake_case) if images_mixed_dict is not None: output_dict.update(__snake_case) return output_dict @property def A__ ( self): _UpperCamelCase : List[Any] = self.image_processor.model_input_names _UpperCamelCase : List[Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
648
1
def lowerCamelCase_ ( UpperCAmelCase_ : float , UpperCAmelCase_ : list[float] ) -> float: '''simple docstring''' if discount_rate < 0: raise ValueError('Discount rate cannot be negative' ) if not cash_flows: raise ValueError('Cash flows list cannot be empty' ) _UpperCamelCase : List[str] = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(UpperCAmelCase_ ) ) return round(UpperCAmelCase_ , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
648
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class lowercase ( _lowercase ): """simple docstring""" a__ = "rwkv" a__ = {"max_position_embeddings": "context_length"} def __init__( self , __snake_case=5_02_77 , __snake_case=10_24 , __snake_case=40_96 , __snake_case=32 , __snake_case=None , __snake_case=None , __snake_case=1e-5 , __snake_case=0 , __snake_case=0 , __snake_case=6 , __snake_case=False , __snake_case=True , **__snake_case , ): _UpperCamelCase : str = vocab_size _UpperCamelCase : int = context_length _UpperCamelCase : Tuple = hidden_size _UpperCamelCase : Tuple = num_hidden_layers _UpperCamelCase : Dict = attention_hidden_size if attention_hidden_size is not None else hidden_size _UpperCamelCase : Tuple = intermediate_size if intermediate_size is not None else 4 * hidden_size _UpperCamelCase : Union[str, Any] = layer_norm_epsilon _UpperCamelCase : Dict = rescale_every _UpperCamelCase : Optional[Any] = use_cache _UpperCamelCase : str = bos_token_id _UpperCamelCase : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case)
648
1
def lowerCamelCase_ ( UpperCAmelCase_ : int = 1_0 , UpperCAmelCase_ : int = 1_0_0_0 , UpperCAmelCase_ : bool = True ) -> int: '''simple docstring''' assert ( isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('Invalid value for min_val or max_val (min_value < max_value)' ) return min_val if option else max_val def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: '''simple docstring''' return int((number_a + number_a) / 2 ) def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> None: '''simple docstring''' assert ( isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('argument value for lower and higher must be(lower > higher)' ) if not lower < to_guess < higher: raise ValueError( 'guess value must be within the range of lower and higher value' ) def answer(UpperCAmelCase_ : int ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('started...' ) _UpperCamelCase : Optional[int] = lower _UpperCamelCase : int = higher _UpperCamelCase : List[str] = [] while True: _UpperCamelCase : int = get_avg(UpperCAmelCase_ , UpperCAmelCase_ ) last_numbers.append(UpperCAmelCase_ ) if answer(UpperCAmelCase_ ) == "low": _UpperCamelCase : List[str] = number elif answer(UpperCAmelCase_ ) == "high": _UpperCamelCase : int = number else: break print(F'''guess the number : {last_numbers[-1]}''' ) print(F'''details : {last_numbers!s}''' ) def lowerCamelCase_ ( ) -> None: '''simple docstring''' _UpperCamelCase : Dict = int(input('Enter lower value : ' ).strip() ) _UpperCamelCase : List[Any] = int(input('Enter high value : ' ).strip() ) _UpperCamelCase : Dict = int(input('Enter value to guess : ' ).strip() ) guess_the_number(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": main()
648
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class lowercase ( _lowercase ): """simple docstring""" a__ = "bert" def __init__( self , __snake_case=3_05_22 , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=0 , __snake_case="absolute" , __snake_case=True , __snake_case=None , **__snake_case , ): super().__init__(pad_token_id=__snake_case , **__snake_case) _UpperCamelCase : int = vocab_size _UpperCamelCase : Optional[Any] = hidden_size _UpperCamelCase : Optional[Any] = num_hidden_layers _UpperCamelCase : List[str] = num_attention_heads _UpperCamelCase : int = hidden_act _UpperCamelCase : Optional[Any] = intermediate_size _UpperCamelCase : Union[str, Any] = hidden_dropout_prob _UpperCamelCase : Tuple = attention_probs_dropout_prob _UpperCamelCase : Optional[int] = max_position_embeddings _UpperCamelCase : str = type_vocab_size _UpperCamelCase : Optional[Any] = initializer_range _UpperCamelCase : List[str] = layer_norm_eps _UpperCamelCase : Any = position_embedding_type _UpperCamelCase : Any = use_cache _UpperCamelCase : Any = classifier_dropout class lowercase ( _lowercase ): """simple docstring""" @property def A__ ( self): if self.task == "multiple-choice": _UpperCamelCase : Union[str, Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCamelCase : Optional[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ])
648
1
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def lowerCamelCase_ ( UpperCAmelCase_ : NDArray[floataa] , UpperCAmelCase_ : NDArray[floataa] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , ) -> list[float]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase : Union[str, Any] = coefficient_matrix.shape _UpperCamelCase , _UpperCamelCase : Optional[Any] = constant_matrix.shape if rowsa != colsa: _UpperCamelCase : Any = F'''Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}''' raise ValueError(UpperCAmelCase_ ) if colsa != 1: _UpperCamelCase : str = F'''Constant matrix must be nx1 but received {rowsa}x{colsa}''' raise ValueError(UpperCAmelCase_ ) if rowsa != rowsa: _UpperCamelCase : int = ( 'Coefficient and constant matrices dimensions must be nxn and nx1 but ' F'''received {rowsa}x{colsa} and {rowsa}x{colsa}''' ) raise ValueError(UpperCAmelCase_ ) if len(UpperCAmelCase_ ) != rowsa: _UpperCamelCase : Optional[int] = ( 'Number of initial values must be equal to number of rows in coefficient ' F'''matrix but received {len(UpperCAmelCase_ )} and {rowsa}''' ) raise ValueError(UpperCAmelCase_ ) if iterations <= 0: raise ValueError('Iterations must be at least 1' ) _UpperCamelCase : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) _UpperCamelCase , _UpperCamelCase : int = table.shape strictly_diagonally_dominant(UpperCAmelCase_ ) # Iterates the whole matrix for given number of times for _ in range(UpperCAmelCase_ ): _UpperCamelCase : str = [] for row in range(UpperCAmelCase_ ): _UpperCamelCase : List[Any] = 0 for col in range(UpperCAmelCase_ ): if col == row: _UpperCamelCase : Union[str, Any] = table[row][col] elif col == cols - 1: _UpperCamelCase : str = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] _UpperCamelCase : Dict = (temp + val) / denom new_val.append(UpperCAmelCase_ ) _UpperCamelCase : Tuple = new_val return [float(UpperCAmelCase_ ) for i in new_val] def lowerCamelCase_ ( UpperCAmelCase_ : NDArray[floataa] ) -> bool: '''simple docstring''' _UpperCamelCase , _UpperCamelCase : List[Any] = table.shape _UpperCamelCase : Any = True for i in range(0 , UpperCAmelCase_ ): _UpperCamelCase : Any = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('Coefficient matrix is not strictly diagonally dominant' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
648
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowercase ( _lowercase ): """simple docstring""" a__ = "facebook/bart-large-mnli" a__ = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) a__ = "text_classifier" a__ = AutoTokenizer a__ = AutoModelForSequenceClassification a__ = ["text", ["text"]] a__ = ["text"] def A__ ( self): super().setup() _UpperCamelCase : List[Any] = self.model.config _UpperCamelCase : Optional[int] = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail'): _UpperCamelCase : Tuple = int(__snake_case) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.') def A__ ( self , __snake_case , __snake_case): _UpperCamelCase : List[Any] = labels return self.pre_processor( [text] * len(__snake_case) , [f'''This example is {label}''' for label in labels] , return_tensors='pt' , padding='max_length' , ) def A__ ( self , __snake_case): _UpperCamelCase : str = outputs.logits _UpperCamelCase : Optional[Any] = torch.argmax(logits[:, 2]).item() return self._labels[label_id]
648
1
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case=13 , __snake_case=30 , __snake_case=2 , __snake_case=3 , __snake_case=True , __snake_case=True , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=37 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=10 , __snake_case=0.0_2 , __snake_case=None , __snake_case=2 , ): _UpperCamelCase : Dict = parent _UpperCamelCase : str = batch_size _UpperCamelCase : int = image_size _UpperCamelCase : Optional[Any] = patch_size _UpperCamelCase : List[Any] = num_channels _UpperCamelCase : List[str] = is_training _UpperCamelCase : List[str] = use_labels _UpperCamelCase : Union[str, Any] = hidden_size _UpperCamelCase : Optional[Any] = num_hidden_layers _UpperCamelCase : Union[str, Any] = num_attention_heads _UpperCamelCase : Optional[int] = intermediate_size _UpperCamelCase : Tuple = hidden_act _UpperCamelCase : Optional[Any] = hidden_dropout_prob _UpperCamelCase : Optional[int] = attention_probs_dropout_prob _UpperCamelCase : Union[str, Any] = type_sequence_label_size _UpperCamelCase : Optional[int] = initializer_range _UpperCamelCase : Dict = scope _UpperCamelCase : List[str] = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCamelCase : Dict = (image_size // patch_size) ** 2 _UpperCamelCase : Dict = num_patches + 1 def A__ ( self): _UpperCamelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase : int = None if self.use_labels: _UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def A__ ( self): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__snake_case , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : List[str] = ViTModel(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = model(__snake_case) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Dict = ViTForMaskedImageModeling(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Any = model(__snake_case) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images _UpperCamelCase : Dict = 1 _UpperCamelCase : Optional[Any] = ViTForMaskedImageModeling(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _UpperCamelCase : Union[str, Any] = model(__snake_case) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[Any] = self.type_sequence_label_size _UpperCamelCase : Optional[int] = ViTForImageClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Any = model(__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images _UpperCamelCase : Dict = 1 _UpperCamelCase : List[Any] = ViTForImageClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _UpperCamelCase : Union[str, Any] = model(__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def A__ ( self): _UpperCamelCase : Any = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) : Optional[Any] = config_and_inputs _UpperCamelCase : str = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) a__ = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) a__ = True a__ = False a__ = False a__ = False def A__ ( self): _UpperCamelCase : Any = ViTModelTester(self) _UpperCamelCase : Any = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=37) def A__ ( self): self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds') def A__ ( self): pass def A__ ( self): _UpperCamelCase , _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Any = model_class(__snake_case) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _UpperCamelCase : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case , nn.Linear)) def A__ ( self): _UpperCamelCase , _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Tuple = model_class(__snake_case) _UpperCamelCase : int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : List[str] = [*signature.parameters.keys()] _UpperCamelCase : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __snake_case) def A__ ( self): _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case) def A__ ( self): _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__snake_case) def A__ ( self): _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case) @slow def A__ ( self): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : Any = ViTModel.from_pretrained(__snake_case) self.assertIsNotNone(__snake_case) def lowerCamelCase_ ( ) -> List[str]: '''simple docstring''' _UpperCamelCase : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self): return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224') if is_vision_available() else None @slow def A__ ( self): _UpperCamelCase : List[str] = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224').to(__snake_case) _UpperCamelCase : Optional[int] = self.default_image_processor _UpperCamelCase : List[str] = prepare_img() _UpperCamelCase : Optional[Any] = image_processor(images=__snake_case , return_tensors='pt').to(__snake_case) # forward pass with torch.no_grad(): _UpperCamelCase : List[str] = model(**__snake_case) # verify the logits _UpperCamelCase : Optional[int] = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , __snake_case) _UpperCamelCase : int = torch.tensor([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6]).to(__snake_case) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1e-4)) @slow def A__ ( self): # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. _UpperCamelCase : Tuple = ViTModel.from_pretrained('facebook/dino-vits8').to(__snake_case) _UpperCamelCase : Optional[int] = ViTImageProcessor.from_pretrained('facebook/dino-vits8' , size=4_80) _UpperCamelCase : Tuple = prepare_img() _UpperCamelCase : Union[str, Any] = image_processor(images=__snake_case , return_tensors='pt') _UpperCamelCase : str = inputs.pixel_values.to(__snake_case) # forward pass with torch.no_grad(): _UpperCamelCase : Optional[Any] = model(__snake_case , interpolate_pos_encoding=__snake_case) # verify the logits _UpperCamelCase : Dict = torch.Size((1, 36_01, 3_84)) self.assertEqual(outputs.last_hidden_state.shape , __snake_case) _UpperCamelCase : Any = torch.tensor( [[4.2_3_4_0, 4.3_9_0_6, -6.6_6_9_2], [4.5_4_6_3, 1.8_9_2_8, -6.7_2_5_7], [4.4_4_2_9, 0.8_4_9_6, -5.8_5_8_5]]).to(__snake_case) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __snake_case , atol=1e-4)) @slow @require_accelerate @require_torch_gpu def A__ ( self): _UpperCamelCase : Any = ViTModel.from_pretrained('facebook/dino-vits8' , torch_dtype=torch.floataa , device_map='auto') _UpperCamelCase : Union[str, Any] = self.default_image_processor _UpperCamelCase : Union[str, Any] = prepare_img() _UpperCamelCase : Tuple = image_processor(images=__snake_case , return_tensors='pt') _UpperCamelCase : List[Any] = inputs.pixel_values.to(__snake_case) # forward pass to make sure inference works in fp16 with torch.no_grad(): _UpperCamelCase : str = model(__snake_case)
648
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
648
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """tiiuae/falcon-40b""": """https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json""", """tiiuae/falcon-7b""": """https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json""", } class lowercase ( _lowercase ): """simple docstring""" a__ = "falcon" a__ = ["past_key_values"] def __init__( self , __snake_case=6_50_24 , __snake_case=45_44 , __snake_case=32 , __snake_case=71 , __snake_case=1e-5 , __snake_case=0.0_2 , __snake_case=True , __snake_case=0.0 , __snake_case=0.0 , __snake_case=None , __snake_case=False , __snake_case=False , __snake_case=True , __snake_case=True , __snake_case=False , __snake_case=11 , __snake_case=11 , **__snake_case , ): _UpperCamelCase : List[Any] = vocab_size # Backward compatibility with n_embed kwarg _UpperCamelCase : Tuple = kwargs.pop('n_embed' , __snake_case) _UpperCamelCase : Union[str, Any] = hidden_size if n_embed is None else n_embed _UpperCamelCase : str = num_hidden_layers _UpperCamelCase : str = num_attention_heads _UpperCamelCase : Optional[Any] = layer_norm_epsilon _UpperCamelCase : str = initializer_range _UpperCamelCase : Optional[Any] = use_cache _UpperCamelCase : List[str] = hidden_dropout _UpperCamelCase : Optional[Any] = attention_dropout _UpperCamelCase : Optional[Any] = bos_token_id _UpperCamelCase : Union[str, Any] = eos_token_id _UpperCamelCase : str = num_attention_heads if num_kv_heads is None else num_kv_heads _UpperCamelCase : List[Any] = alibi _UpperCamelCase : Union[str, Any] = new_decoder_architecture _UpperCamelCase : str = multi_query # Ignored when new_decoder_architecture is True _UpperCamelCase : int = parallel_attn _UpperCamelCase : List[str] = bias super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case) @property def A__ ( self): return self.hidden_size // self.num_attention_heads @property def A__ ( self): return not self.alibi
648
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
648
1
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class lowercase : """simple docstring""" a__ = 42 # [batch_size x 3] a__ = 42 # [batch_size x 3] a__ = 42 # [batch_size x 3] a__ = 42 # [batch_size x 3] a__ = 42 a__ = 42 a__ = 42 a__ = 42 a__ = 42 def A__ ( self): assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape) == len(self.y.shape) == len(self.z.shape) == len(self.origin.shape) == 2 def A__ ( self): return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa)) def A__ ( self): return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa)) def A__ ( self): _UpperCamelCase : Optional[int] = torch.arange(self.height * self.width) _UpperCamelCase : Optional[Any] = torch.stack( [ pixel_indices % self.width, torch.div(__snake_case , self.width , rounding_mode='trunc'), ] , axis=1 , ) return coords @property def A__ ( self): _UpperCamelCase , *_UpperCamelCase : str = self.shape _UpperCamelCase : Any = int(np.prod(__snake_case)) _UpperCamelCase : Union[str, Any] = self.get_image_coords() _UpperCamelCase : str = torch.broadcast_to(coords.unsqueeze(0) , [batch_size * inner_batch_size, *coords.shape]) _UpperCamelCase : List[Any] = self.get_camera_rays(__snake_case) _UpperCamelCase : Tuple = rays.view(__snake_case , inner_batch_size * self.height * self.width , 2 , 3) return rays def A__ ( self , __snake_case): _UpperCamelCase , *_UpperCamelCase , _UpperCamelCase : Optional[Any] = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] _UpperCamelCase : str = coords.view(__snake_case , -1 , 2) _UpperCamelCase : Optional[Any] = self.resolution() _UpperCamelCase : str = self.fov() _UpperCamelCase : int = (flat.float() / (res - 1)) * 2 - 1 _UpperCamelCase : str = fracs * torch.tan(fov / 2) _UpperCamelCase : Optional[Any] = fracs.view(__snake_case , -1 , 2) _UpperCamelCase : Any = ( self.z.view(__snake_case , 1 , 3) + self.x.view(__snake_case , 1 , 3) * fracs[:, :, :1] + self.y.view(__snake_case , 1 , 3) * fracs[:, :, 1:] ) _UpperCamelCase : int = directions / directions.norm(dim=-1 , keepdim=__snake_case) _UpperCamelCase : Union[str, Any] = torch.stack( [ torch.broadcast_to(self.origin.view(__snake_case , 1 , 3) , [batch_size, directions.shape[1], 3]), directions, ] , dim=2 , ) return rays.view(__snake_case , *__snake_case , 2 , 3) def A__ ( self , __snake_case , __snake_case): assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=__snake_case , height=__snake_case , x_fov=self.x_fov , y_fov=self.y_fov , ) def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> DifferentiableProjectiveCamera: '''simple docstring''' _UpperCamelCase : Union[str, Any] = [] _UpperCamelCase : Optional[Any] = [] _UpperCamelCase : Tuple = [] _UpperCamelCase : Tuple = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): _UpperCamelCase : Optional[Any] = np.array([np.sin(UpperCAmelCase_ ), np.cos(UpperCAmelCase_ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) _UpperCamelCase : List[Any] = -z * 4 _UpperCamelCase : Dict = np.array([np.cos(UpperCAmelCase_ ), -np.sin(UpperCAmelCase_ ), 0.0] ) _UpperCamelCase : int = np.cross(UpperCAmelCase_ , UpperCAmelCase_ ) origins.append(UpperCAmelCase_ ) xs.append(UpperCAmelCase_ ) ys.append(UpperCAmelCase_ ) zs.append(UpperCAmelCase_ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(UpperCAmelCase_ , axis=0 ) ).float() , x=torch.from_numpy(np.stack(UpperCAmelCase_ , axis=0 ) ).float() , y=torch.from_numpy(np.stack(UpperCAmelCase_ , axis=0 ) ).float() , z=torch.from_numpy(np.stack(UpperCAmelCase_ , axis=0 ) ).float() , width=UpperCAmelCase_ , height=UpperCAmelCase_ , x_fov=0.7 , y_fov=0.7 , shape=(1, len(UpperCAmelCase_ )) , )
648
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_sentencepiece_available(): import sentencepiece as sp lowerCAmelCase__ = 5 lowerCAmelCase__ = 1_0 @require_sentencepiece @require_tokenizers class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" a__ = SpeechaTextTokenizer a__ = False a__ = True def A__ ( self): super().setUp() _UpperCamelCase : Any = sp.SentencePieceProcessor() spm_model.Load(__snake_case) _UpperCamelCase : List[str] = ['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_) for id_ in range(len(__snake_case))] _UpperCamelCase : Dict = dict(zip(__snake_case , range(len(__snake_case)))) _UpperCamelCase : Tuple = Path(self.tmpdirname) save_json(__snake_case , save_dir / VOCAB_FILES_NAMES['vocab_file']) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__snake_case , save_dir / VOCAB_FILES_NAMES['spm_file']) _UpperCamelCase : int = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def A__ ( self): _UpperCamelCase : str = '<pad>' _UpperCamelCase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case) , __snake_case) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case) , __snake_case) def A__ ( self): _UpperCamelCase : Optional[Any] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(vocab_keys[-1] , 'j') self.assertEqual(len(__snake_case) , 10_01) def A__ ( self): self.assertEqual(self.get_tokenizer().vocab_size , 10_01) def A__ ( self): _UpperCamelCase : Any = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) _UpperCamelCase : List[str] = tokenizer.tokenize('This is a test') self.assertListEqual(__snake_case , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case) , [2_89, 50, 14, 1_74, 3_86] , ) _UpperCamelCase : int = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( __snake_case , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) _UpperCamelCase : int = tokenizer.convert_tokens_to_ids(__snake_case) self.assertListEqual(__snake_case , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8]) _UpperCamelCase : Tuple = tokenizer.convert_ids_to_tokens(__snake_case) self.assertListEqual( __snake_case , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def A__ ( self): # fmt: off _UpperCamelCase : Optional[int] = {'input_ids': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , ) @require_sentencepiece class lowercase ( unittest.TestCase ): """simple docstring""" a__ = "valhalla/s2t_mustc_multilinguial_medium" a__ = "C'est trop cool" a__ = "Esto es genial" @classmethod def A__ ( cls): _UpperCamelCase : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name) return cls def A__ ( self): self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4) self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6) self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9) self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11) def A__ ( self): self.assertEqual(self.tokenizer.vocab_size , 1_00_00) def A__ ( self): self.assertIn(__snake_case , self.tokenizer.all_special_ids) _UpperCamelCase : Optional[int] = [ES_CODE, 4, 16_01, 47, 76_47, 2] _UpperCamelCase : Tuple = self.tokenizer.decode(__snake_case , skip_special_tokens=__snake_case) _UpperCamelCase : Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__snake_case) self.assertEqual(__snake_case , __snake_case) self.assertNotIn(self.tokenizer.eos_token , __snake_case) def A__ ( self): _UpperCamelCase : Any = 'fr' _UpperCamelCase : List[Any] = self.tokenizer(self.french_text).input_ids self.assertEqual(encoded[0] , __snake_case) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id) def A__ ( self): _UpperCamelCase : Union[str, Any] = 'fr' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE]) _UpperCamelCase : List[str] = 'es' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE])
648
1
from itertools import product def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> list[int]: '''simple docstring''' _UpperCamelCase : int = sides_number _UpperCamelCase : List[Any] = max_face_number * dice_number _UpperCamelCase : Any = [0] * (max_total + 1) _UpperCamelCase : Dict = 1 _UpperCamelCase : int = range(UpperCAmelCase_ , max_face_number + 1 ) for dice_numbers in product(UpperCAmelCase_ , repeat=UpperCAmelCase_ ): _UpperCamelCase : str = sum(UpperCAmelCase_ ) totals_frequencies[total] += 1 return totals_frequencies def lowerCamelCase_ ( ) -> float: '''simple docstring''' _UpperCamelCase : Optional[int] = total_frequency_distribution( sides_number=4 , dice_number=9 ) _UpperCamelCase : Optional[Any] = total_frequency_distribution( sides_number=6 , dice_number=6 ) _UpperCamelCase : Dict = 0 _UpperCamelCase : Tuple = 9 _UpperCamelCase : int = 4 * 9 _UpperCamelCase : Union[str, Any] = 6 for peter_total in range(UpperCAmelCase_ , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _UpperCamelCase : int = (4**9) * (6**6) _UpperCamelCase : Tuple = peter_wins_count / total_games_number _UpperCamelCase : str = round(UpperCAmelCase_ , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f'{solution() = }')
648
import logging from transformers.configuration_utils import PretrainedConfig lowerCAmelCase__ = logging.getLogger(__name__) class lowercase ( _lowercase ): """simple docstring""" a__ = "masked_bert" def __init__( self , __snake_case=3_05_22 , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=0 , __snake_case="topK" , __snake_case="constant" , __snake_case=0.0 , **__snake_case , ): super().__init__(pad_token_id=__snake_case , **__snake_case) _UpperCamelCase : List[Any] = vocab_size _UpperCamelCase : Union[str, Any] = hidden_size _UpperCamelCase : Optional[int] = num_hidden_layers _UpperCamelCase : Any = num_attention_heads _UpperCamelCase : int = hidden_act _UpperCamelCase : str = intermediate_size _UpperCamelCase : str = hidden_dropout_prob _UpperCamelCase : Any = attention_probs_dropout_prob _UpperCamelCase : Tuple = max_position_embeddings _UpperCamelCase : Dict = type_vocab_size _UpperCamelCase : str = initializer_range _UpperCamelCase : List[Any] = layer_norm_eps _UpperCamelCase : Tuple = pruning_method _UpperCamelCase : Tuple = mask_init _UpperCamelCase : Dict = mask_scale
648
1
from __future__ import annotations from collections.abc import Iterator class lowercase : """simple docstring""" def __init__( self , __snake_case): _UpperCamelCase : Tuple = value _UpperCamelCase : Node | None = None _UpperCamelCase : Node | None = None class lowercase : """simple docstring""" def __init__( self , __snake_case): _UpperCamelCase : Optional[Any] = tree def A__ ( self , __snake_case): if node is None: return 0 return node.value + ( self.depth_first_search(node.left) + self.depth_first_search(node.right) ) def __iter__( self): yield self.depth_first_search(self.tree) if __name__ == "__main__": import doctest doctest.testmod()
648
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow lowerCAmelCase__ = False class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self , __snake_case=32): set_seed(0) _UpperCamelCase : int = UNetaDModel(sample_size=__snake_case , in_channels=3 , out_channels=3) _UpperCamelCase : str = torch.optim.SGD(model.parameters() , lr=0.0_0_0_1) return model, optimizer @slow def A__ ( self): _UpperCamelCase : Tuple = 'cpu' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable _UpperCamelCase : List[Any] = DDPMScheduler( num_train_timesteps=10_00 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='linear' , clip_sample=__snake_case , ) _UpperCamelCase : List[Any] = DDIMScheduler( num_train_timesteps=10_00 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='linear' , clip_sample=__snake_case , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0) _UpperCamelCase : Optional[Any] = [torch.randn((4, 3, 32, 32)).clip(-1 , 1).to(__snake_case) for _ in range(4)] _UpperCamelCase : str = [torch.randn((4, 3, 32, 32)).to(__snake_case) for _ in range(4)] _UpperCamelCase : int = [torch.randint(0 , 10_00 , (4,)).long().to(__snake_case) for _ in range(4)] # train with a DDPM scheduler _UpperCamelCase , _UpperCamelCase : List[Any] = self.get_model_optimizer(resolution=32) model.train().to(__snake_case) for i in range(4): optimizer.zero_grad() _UpperCamelCase : int = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) _UpperCamelCase : Any = model(__snake_case , timesteps[i]).sample _UpperCamelCase : str = torch.nn.functional.mse_loss(__snake_case , noise[i]) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM _UpperCamelCase , _UpperCamelCase : Union[str, Any] = self.get_model_optimizer(resolution=32) model.train().to(__snake_case) for i in range(4): optimizer.zero_grad() _UpperCamelCase : Dict = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) _UpperCamelCase : Dict = model(__snake_case , timesteps[i]).sample _UpperCamelCase : Tuple = torch.nn.functional.mse_loss(__snake_case , noise[i]) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1e-5)) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1e-5))
648
1
from collections import namedtuple import requests from lxml import html # type: ignore lowerCAmelCase__ = namedtuple("""covid_data""", """cases deaths recovered""") def lowerCamelCase_ ( UpperCAmelCase_ : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data: '''simple docstring''' _UpperCamelCase : List[str] = '//div[@class = "maincounter-number"]/span/text()' return covid_data(*html.fromstring(requests.get(UpperCAmelCase_ ).content ).xpath(UpperCAmelCase_ ) ) lowerCAmelCase__ = """Total COVID-19 cases in the world: {} Total deaths due to COVID-19 in the world: {} Total COVID-19 patients recovered in the world: {}""" print(fmt.format(*covid_stats()))
648
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) lowerCAmelCase__ = { """sample_size""": 3_2, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 1_0_0_0, """block_out_channels""": [3_2, 6_4], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """sample_size""": 6_4, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 1_0_0_0, """block_out_channels""": [1_9_2, 1_9_2 * 2, 1_9_2 * 3, 1_9_2 * 4], """attention_head_dim""": 6_4, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """sample_size""": 2_5_6, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [2_5_6, 2_5_6, 2_5_6 * 2, 2_5_6 * 2, 2_5_6 * 4, 2_5_6 * 4], """attention_head_dim""": 6_4, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """num_train_timesteps""": 4_0, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } lowerCAmelCase__ = { """num_train_timesteps""": 2_0_1, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } lowerCAmelCase__ = { """num_train_timesteps""": 1_5_1, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> List[str]: '''simple docstring''' if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def lowerCamelCase_ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any]=False ) -> str: '''simple docstring''' _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.in_layers.0.weight'''] _UpperCamelCase : str = checkpoint[F'''{old_prefix}.in_layers.0.bias'''] _UpperCamelCase : str = checkpoint[F'''{old_prefix}.in_layers.2.weight'''] _UpperCamelCase : Union[str, Any] = checkpoint[F'''{old_prefix}.in_layers.2.bias'''] _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.emb_layers.1.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.emb_layers.1.bias'''] _UpperCamelCase : Tuple = checkpoint[F'''{old_prefix}.out_layers.0.weight'''] _UpperCamelCase : List[Any] = checkpoint[F'''{old_prefix}.out_layers.0.bias'''] _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.out_layers.3.weight'''] _UpperCamelCase : Union[str, Any] = checkpoint[F'''{old_prefix}.out_layers.3.bias'''] if has_skip: _UpperCamelCase : Tuple = checkpoint[F'''{old_prefix}.skip_connection.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any=None ) -> int: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 ) _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.norm.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.norm.bias'''] _UpperCamelCase : List[str] = weight_q.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Dict = bias_q.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Any = weight_k.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : List[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Dict = weight_v.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Tuple = bias_v.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Optional[Any] = ( checkpoint[F'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] ) -> Tuple: '''simple docstring''' _UpperCamelCase : Any = torch.load(UpperCAmelCase_ , map_location='cpu' ) _UpperCamelCase : Union[str, Any] = {} _UpperCamelCase : Optional[int] = checkpoint['time_embed.0.weight'] _UpperCamelCase : List[Any] = checkpoint['time_embed.0.bias'] _UpperCamelCase : Dict = checkpoint['time_embed.2.weight'] _UpperCamelCase : Optional[Any] = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: _UpperCamelCase : List[str] = checkpoint['label_emb.weight'] _UpperCamelCase : Optional[int] = checkpoint['input_blocks.0.0.weight'] _UpperCamelCase : Union[str, Any] = checkpoint['input_blocks.0.0.bias'] _UpperCamelCase : Optional[int] = unet_config['down_block_types'] _UpperCamelCase : Optional[Any] = unet_config['layers_per_block'] _UpperCamelCase : Dict = unet_config['attention_head_dim'] _UpperCamelCase : List[str] = unet_config['block_out_channels'] _UpperCamelCase : str = 1 _UpperCamelCase : Optional[int] = channels_list[0] for i, layer_type in enumerate(UpperCAmelCase_ ): _UpperCamelCase : List[str] = channels_list[i] _UpperCamelCase : str = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(UpperCAmelCase_ ): _UpperCamelCase : str = F'''down_blocks.{i}.resnets.{j}''' _UpperCamelCase : List[Any] = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : Any = True if j == 0 and downsample_block_has_skip else False _UpperCamelCase : str = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(UpperCAmelCase_ ): _UpperCamelCase : List[str] = F'''down_blocks.{i}.resnets.{j}''' _UpperCamelCase : str = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : int = True if j == 0 and downsample_block_has_skip else False _UpperCamelCase : Any = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) _UpperCamelCase : Dict = F'''down_blocks.{i}.attentions.{j}''' _UpperCamelCase : Optional[int] = F'''input_blocks.{current_layer}.1''' _UpperCamelCase : Dict = convert_attention( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : int = F'''down_blocks.{i}.downsamplers.0''' _UpperCamelCase : Optional[int] = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : List[Any] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 _UpperCamelCase : Tuple = current_channels # hardcoded the mid-block for now _UpperCamelCase : Any = 'mid_block.resnets.0' _UpperCamelCase : Optional[Any] = 'middle_block.0' _UpperCamelCase : Tuple = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = 'mid_block.attentions.0' _UpperCamelCase : Tuple = 'middle_block.1' _UpperCamelCase : Union[str, Any] = convert_attention(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Tuple = 'mid_block.resnets.1' _UpperCamelCase : str = 'middle_block.2' _UpperCamelCase : List[str] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : List[Any] = 0 _UpperCamelCase : Optional[int] = unet_config['up_block_types'] for i, layer_type in enumerate(UpperCAmelCase_ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _UpperCamelCase : Optional[Any] = F'''up_blocks.{i}.resnets.{j}''' _UpperCamelCase : Optional[int] = F'''output_blocks.{current_layer}.0''' _UpperCamelCase : str = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : List[Any] = F'''up_blocks.{i}.upsamplers.0''' _UpperCamelCase : Dict = F'''output_blocks.{current_layer-1}.1''' _UpperCamelCase : Optional[int] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _UpperCamelCase : str = F'''up_blocks.{i}.resnets.{j}''' _UpperCamelCase : Union[str, Any] = F'''output_blocks.{current_layer}.0''' _UpperCamelCase : Optional[int] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) _UpperCamelCase : int = F'''up_blocks.{i}.attentions.{j}''' _UpperCamelCase : List[Any] = F'''output_blocks.{current_layer}.1''' _UpperCamelCase : Optional[int] = convert_attention( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : List[Any] = F'''up_blocks.{i}.upsamplers.0''' _UpperCamelCase : Union[str, Any] = F'''output_blocks.{current_layer-1}.2''' _UpperCamelCase : List[str] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : List[Any] = checkpoint['out.0.weight'] _UpperCamelCase : str = checkpoint['out.0.bias'] _UpperCamelCase : int = checkpoint['out.2.weight'] _UpperCamelCase : List[Any] = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = strabool(args.class_cond) lowerCAmelCase__ = os.path.basename(args.unet_path) print(f'Checkpoint: {ckpt_name}') # Get U-Net config if "imagenet64" in ckpt_name: lowerCAmelCase__ = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCAmelCase__ = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: lowerCAmelCase__ = TEST_UNET_CONFIG else: raise ValueError(f'Checkpoint type {ckpt_name} is not currently supported.') if not args.class_cond: lowerCAmelCase__ = None lowerCAmelCase__ = con_pt_to_diffuser(args.unet_path, unet_config) lowerCAmelCase__ = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: lowerCAmelCase__ = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: lowerCAmelCase__ = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCAmelCase__ = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f'Checkpoint type {ckpt_name} is not currently supported.') lowerCAmelCase__ = CMStochasticIterativeScheduler(**scheduler_config) lowerCAmelCase__ = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
648
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase__ = { """configuration_transfo_xl""": ["""TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TransfoXLConfig"""], """tokenization_transfo_xl""": ["""TransfoXLCorpus""", """TransfoXLTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """AdaptiveEmbedding""", """TransfoXLForSequenceClassification""", """TransfoXLLMHeadModel""", """TransfoXLModel""", """TransfoXLPreTrainedModel""", """load_tf_weights_in_transfo_xl""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFAdaptiveEmbedding""", """TFTransfoXLForSequenceClassification""", """TFTransfoXLLMHeadModel""", """TFTransfoXLMainLayer""", """TFTransfoXLModel""", """TFTransfoXLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
648
def lowerCamelCase_ ( UpperCAmelCase_ : list ) -> list: '''simple docstring''' if len(UpperCAmelCase_ ) <= 1: return [tuple(UpperCAmelCase_ )] _UpperCamelCase : List[Any] = [] def generate(UpperCAmelCase_ : int , UpperCAmelCase_ : list ): _UpperCamelCase : Optional[int] = [0] * n res.append(tuple(UpperCAmelCase_ ) ) _UpperCamelCase : List[Any] = 0 while i < n: if c[i] < i: if i % 2 == 0: _UpperCamelCase , _UpperCamelCase : List[str] = arr[i], arr[0] else: _UpperCamelCase , _UpperCamelCase : List[str] = arr[i], arr[c[i]] res.append(tuple(UpperCAmelCase_ ) ) c[i] += 1 _UpperCamelCase : Tuple = 0 else: _UpperCamelCase : Tuple = 0 i += 1 generate(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) return res if __name__ == "__main__": lowerCAmelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCAmelCase__ = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
648
1
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests lowerCAmelCase__ = open # noqa: we just need to have a builtin inside this module to test it properly
648
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = [ ["""attention""", """attn"""], ["""encoder_attention""", """encoder_attn"""], ["""q_lin""", """q_proj"""], ["""k_lin""", """k_proj"""], ["""v_lin""", """v_proj"""], ["""out_lin""", """out_proj"""], ["""norm_embeddings""", """layernorm_embedding"""], ["""position_embeddings""", """embed_positions"""], ["""embeddings""", """embed_tokens"""], ["""ffn.lin""", """fc"""], ] def lowerCamelCase_ ( UpperCAmelCase_ : List[Any] ) -> Optional[int]: '''simple docstring''' if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: _UpperCamelCase : List[Any] = k.replace(UpperCAmelCase_ , UpperCAmelCase_ ) if k.startswith('encoder' ): _UpperCamelCase : Optional[Any] = k.replace('.attn' , '.self_attn' ) _UpperCamelCase : Optional[int] = k.replace('norm1' , 'self_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): _UpperCamelCase : Any = k.replace('norm1' , 'self_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm2' , 'encoder_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm3' , 'final_layer_norm' ) return k def lowerCamelCase_ ( UpperCAmelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Union[str, Any] = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: _UpperCamelCase : Optional[int] = sd.pop(UpperCAmelCase_ ) _UpperCamelCase : str = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd _UpperCamelCase : Tuple = v lowerCAmelCase__ = ["""START"""] @torch.no_grad() def lowerCamelCase_ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ) -> List[str]: '''simple docstring''' _UpperCamelCase : Optional[Any] = torch.load(UpperCAmelCase_ , map_location='cpu' ) _UpperCamelCase : int = model['model'] _UpperCamelCase : List[Any] = BlenderbotConfig.from_json_file(UpperCAmelCase_ ) _UpperCamelCase : Any = BlenderbotForConditionalGeneration(UpperCAmelCase_ ) _UpperCamelCase : int = m.model.state_dict().keys() _UpperCamelCase : Union[str, Any] = [] _UpperCamelCase : int = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue _UpperCamelCase : Optional[int] = rename_state_dict_key(UpperCAmelCase_ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: _UpperCamelCase : int = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(UpperCAmelCase_ ) m.model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) m.half() m.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("""--src_path""", type=str, help="""like blenderbot-model.bin""") parser.add_argument("""--save_dir""", default="""hf_blenderbot""", type=str, help="""Where to save converted model.""") parser.add_argument( """--hf_config_json""", default="""blenderbot-3b-config.json""", type=str, help="""Path to config to use""" ) lowerCAmelCase__ = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
648
1
def lowerCamelCase_ ( UpperCAmelCase_ : list ) -> list: '''simple docstring''' if len(UpperCAmelCase_ ) <= 1: return [tuple(UpperCAmelCase_ )] _UpperCamelCase : List[Any] = [] def generate(UpperCAmelCase_ : int , UpperCAmelCase_ : list ): _UpperCamelCase : Optional[int] = [0] * n res.append(tuple(UpperCAmelCase_ ) ) _UpperCamelCase : List[Any] = 0 while i < n: if c[i] < i: if i % 2 == 0: _UpperCamelCase , _UpperCamelCase : List[str] = arr[i], arr[0] else: _UpperCamelCase , _UpperCamelCase : List[str] = arr[i], arr[c[i]] res.append(tuple(UpperCAmelCase_ ) ) c[i] += 1 _UpperCamelCase : Tuple = 0 else: _UpperCamelCase : Tuple = 0 i += 1 generate(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) return res if __name__ == "__main__": lowerCAmelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCAmelCase__ = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
648
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer lowerCAmelCase__ = ["""bert-base-uncased""", """bert-base-cased"""] lowerCAmelCase__ = """hf-internal-testing/tiny-bert-tf-only""" if is_tf_available(): class lowercase ( tf.keras.Model ): """simple docstring""" def __init__( self , __snake_case): super().__init__() _UpperCamelCase : List[Any] = tokenizer _UpperCamelCase : List[Any] = AutoConfig.from_pretrained(__snake_case) _UpperCamelCase : Dict = TFAutoModel.from_config(__snake_case) def A__ ( self , __snake_case): _UpperCamelCase : Any = self.tokenizer(__snake_case) _UpperCamelCase : Dict = self.bert(**__snake_case) return out["pooler_output"] @require_tf @require_tensorflow_text class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self): super().setUp() _UpperCamelCase : Optional[Any] = [ BertTokenizer.from_pretrained(__snake_case) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false _UpperCamelCase : Optional[Any] = [TFBertTokenizer.from_pretrained(__snake_case) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(__snake_case , use_fast_bert_tokenizer=__snake_case) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers) == len(self.tf_tokenizers) _UpperCamelCase : Optional[Any] = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] _UpperCamelCase : Dict = list(zip(self.test_sentences , self.test_sentences[::-1])) def A__ ( self): for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers): for test_inputs in (self.test_sentences, self.paired_sentences): _UpperCamelCase : List[str] = tokenizer(__snake_case , return_tensors='tf' , padding='longest') _UpperCamelCase : Tuple = tf_tokenizer(__snake_case) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape)) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa) == tf_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Tuple = tf_tokenizer(self.paired_sentences) _UpperCamelCase : Optional[Any] = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa) == separated_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Tuple = tf.function(__snake_case) for test_inputs in (self.test_sentences, self.paired_sentences): _UpperCamelCase : Optional[int] = tf.constant(__snake_case) _UpperCamelCase : Union[str, Any] = compiled_tokenizer(__snake_case) _UpperCamelCase : Tuple = tf_tokenizer(__snake_case) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Any = ModelToSave(tokenizer=__snake_case) _UpperCamelCase : Any = tf.convert_to_tensor(self.test_sentences) _UpperCamelCase : Union[str, Any] = model(__snake_case) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _UpperCamelCase : int = Path(__snake_case) / 'saved.model' model.save(__snake_case) _UpperCamelCase : Optional[int] = tf.keras.models.load_model(__snake_case) _UpperCamelCase : int = loaded_model(__snake_case) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output)) , 1e-5)
648
1
def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : bool = False ) -> str: '''simple docstring''' if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Dict = F'''Expected string as input, found {type(UpperCAmelCase_ )}''' raise ValueError(UpperCAmelCase_ ) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Tuple = F'''Expected boolean as use_pascal parameter, found {type(UpperCAmelCase_ )}''' raise ValueError(UpperCAmelCase_ ) _UpperCamelCase : Any = input_str.split('_' ) _UpperCamelCase : Dict = 0 if use_pascal else 1 _UpperCamelCase : Union[str, Any] = words[start_index:] _UpperCamelCase : str = [word[0].upper() + word[1:] for word in words_to_capitalize] _UpperCamelCase : Optional[int] = '' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
648
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ = { """configuration_canine""": ["""CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CanineConfig"""], """tokenization_canine""": ["""CanineTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """CANINE_PRETRAINED_MODEL_ARCHIVE_LIST""", """CanineForMultipleChoice""", """CanineForQuestionAnswering""", """CanineForSequenceClassification""", """CanineForTokenClassification""", """CanineLayer""", """CanineModel""", """CaninePreTrainedModel""", """load_tf_weights_in_canine""", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
648
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
648
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case=3 , __snake_case=32 , __snake_case=3 , __snake_case=10 , __snake_case=[8, 16, 32, 64] , __snake_case=[1, 1, 2, 1] , __snake_case=True , __snake_case=True , __snake_case="relu" , __snake_case=3 , __snake_case=None , __snake_case=["stage2", "stage3", "stage4"] , __snake_case=[2, 3, 4] , __snake_case=1 , ): _UpperCamelCase : List[Any] = parent _UpperCamelCase : Dict = batch_size _UpperCamelCase : Optional[int] = image_size _UpperCamelCase : str = num_channels _UpperCamelCase : Optional[Any] = embeddings_size _UpperCamelCase : Tuple = hidden_sizes _UpperCamelCase : Dict = depths _UpperCamelCase : str = is_training _UpperCamelCase : Optional[int] = use_labels _UpperCamelCase : str = hidden_act _UpperCamelCase : Optional[int] = num_labels _UpperCamelCase : Optional[int] = scope _UpperCamelCase : Tuple = len(__snake_case) _UpperCamelCase : Dict = out_features _UpperCamelCase : Union[str, Any] = out_indices _UpperCamelCase : int = num_groups def A__ ( self): _UpperCamelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase : str = None if self.use_labels: _UpperCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels) _UpperCamelCase : str = self.get_config() return config, pixel_values, labels def A__ ( self): return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : str = BitModel(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[Any] = model(__snake_case) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Dict = self.num_labels _UpperCamelCase : Dict = BitForImageClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Dict = model(__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[Any] = BitBackbone(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = model(__snake_case) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:]) # verify backbone works with out_features=None _UpperCamelCase : Any = None _UpperCamelCase : str = BitBackbone(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Any = model(__snake_case) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , 1) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[-1], 1, 1]) # verify channels self.parent.assertEqual(len(model.channels) , 1) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]]) def A__ ( self): _UpperCamelCase : Optional[int] = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : int = config_and_inputs _UpperCamelCase : int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () a__ = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False a__ = False def A__ ( self): _UpperCamelCase : Dict = BitModelTester(self) _UpperCamelCase : Optional[Any] = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case) def A__ ( self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self): return @unittest.skip(reason='Bit does not output attentions') def A__ ( self): pass @unittest.skip(reason='Bit does not use inputs_embeds') def A__ ( self): pass @unittest.skip(reason='Bit does not support input and output embeddings') def A__ ( self): pass def A__ ( self): _UpperCamelCase , _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : int = model_class(__snake_case) _UpperCamelCase : List[Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : Optional[int] = [*signature.parameters.keys()] _UpperCamelCase : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __snake_case) def A__ ( self): _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case) def A__ ( self): _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__snake_case) def A__ ( self): _UpperCamelCase , _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Union[str, Any] = model_class(config=__snake_case) for name, module in model.named_modules(): if isinstance(__snake_case , (nn.BatchNormad, nn.GroupNorm)): self.assertTrue( torch.all(module.weight == 1) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def A__ ( self): def check_hidden_states_output(__snake_case , __snake_case , __snake_case): _UpperCamelCase : str = model_class(__snake_case) model.to(__snake_case) model.eval() with torch.no_grad(): _UpperCamelCase : Union[str, Any] = model(**self._prepare_for_class(__snake_case , __snake_case)) _UpperCamelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase : str = self.model_tester.num_stages self.assertEqual(len(__snake_case) , expected_num_stages + 1) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCamelCase , _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : List[str] = ['preactivation', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _UpperCamelCase : Any = layer_type _UpperCamelCase : Tuple = True check_hidden_states_output(__snake_case , __snake_case , __snake_case) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase : List[str] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case) @unittest.skip(reason='Bit does not use feedforward chunking') def A__ ( self): pass def A__ ( self): _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case) @slow def A__ ( self): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : Optional[Any] = BitModel.from_pretrained(__snake_case) self.assertIsNotNone(__snake_case) def lowerCamelCase_ ( ) -> Optional[int]: '''simple docstring''' _UpperCamelCase : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def A__ ( self): _UpperCamelCase : Optional[Any] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(__snake_case) _UpperCamelCase : str = self.default_image_processor _UpperCamelCase : List[str] = prepare_img() _UpperCamelCase : int = image_processor(images=__snake_case , return_tensors='pt').to(__snake_case) # forward pass with torch.no_grad(): _UpperCamelCase : Any = model(**__snake_case) # verify the logits _UpperCamelCase : Dict = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , __snake_case) _UpperCamelCase : Optional[int] = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]]).to(__snake_case) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1e-4)) @require_torch class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" a__ = (BitBackbone,) if is_torch_available() else () a__ = BitConfig a__ = False def A__ ( self): _UpperCamelCase : List[str] = BitModelTester(self)
648
1
from abc import ABC, abstractmethod from argparse import ArgumentParser class lowercase ( _lowercase ): """simple docstring""" @staticmethod @abstractmethod def A__ ( __snake_case): raise NotImplementedError() @abstractmethod def A__ ( self): raise NotImplementedError()
648
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowerCAmelCase__ = numpy.array([0, 0]) lowerCAmelCase__ = numpy.array([0.5, 0.8_66_02_54]) lowerCAmelCase__ = numpy.array([1, 0]) lowerCAmelCase__ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] , UpperCAmelCase_ : int ) -> list[numpy.ndarray]: '''simple docstring''' _UpperCamelCase : Tuple = initial_vectors for _ in range(UpperCAmelCase_ ): _UpperCamelCase : str = iteration_step(UpperCAmelCase_ ) return vectors def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] ) -> list[numpy.ndarray]: '''simple docstring''' _UpperCamelCase : int = [] for i, start_vector in enumerate(vectors[:-1] ): _UpperCamelCase : Union[str, Any] = vectors[i + 1] new_vectors.append(UpperCAmelCase_ ) _UpperCamelCase : Tuple = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def lowerCamelCase_ ( UpperCAmelCase_ : numpy.ndarray , UpperCAmelCase_ : float ) -> numpy.ndarray: '''simple docstring''' _UpperCamelCase : str = numpy.radians(UpperCAmelCase_ ) _UpperCamelCase , _UpperCamelCase : Optional[Any] = numpy.cos(UpperCAmelCase_ ), numpy.sin(UpperCAmelCase_ ) _UpperCamelCase : Any = numpy.array(((c, -s), (s, c)) ) return numpy.dot(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] ) -> None: '''simple docstring''' _UpperCamelCase : str = plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _UpperCamelCase , _UpperCamelCase : Dict = zip(*UpperCAmelCase_ ) plt.plot(UpperCAmelCase_ , UpperCAmelCase_ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
648
1
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {"""vocab_file""": """spiece.model"""} lowerCAmelCase__ = { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", } } # TODO(PVP) - this should be removed in Transformers v5 lowerCAmelCase__ = { """t5-small""": 5_1_2, """t5-base""": 5_1_2, """t5-large""": 5_1_2, """t5-3b""": 5_1_2, """t5-11b""": 5_1_2, } lowerCAmelCase__ = """▁""" class lowercase ( _lowercase ): """simple docstring""" a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = ["input_ids", "attention_mask"] def __init__( self , __snake_case , __snake_case="</s>" , __snake_case="<unk>" , __snake_case="<pad>" , __snake_case=1_00 , __snake_case=None , __snake_case = None , __snake_case=True , **__snake_case , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: _UpperCamelCase : Union[str, Any] = [f'''<extra_id_{i}>''' for i in range(__snake_case)] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens _UpperCamelCase : List[str] = len(set(filter(lambda __snake_case: bool('extra_id' in str(__snake_case)) , __snake_case))) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens') if legacy: logger.warning_once( f'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' ' read the related pull request available at https://github.com/huggingface/transformers/pull/24565') _UpperCamelCase : Any = legacy _UpperCamelCase : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , extra_ids=__snake_case , additional_special_tokens=__snake_case , sp_model_kwargs=self.sp_model_kwargs , legacy=__snake_case , **__snake_case , ) _UpperCamelCase : Tuple = vocab_file _UpperCamelCase : Any = extra_ids _UpperCamelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(__snake_case) @staticmethod def A__ ( __snake_case , __snake_case , __snake_case): if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: _UpperCamelCase : Dict = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , __snake_case , ) return max_model_length @property def A__ ( self): return self.sp_model.get_piece_size() + self._extra_ids def A__ ( self): _UpperCamelCase : int = {self.convert_ids_to_tokens(__snake_case): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def A__ ( self , __snake_case , __snake_case = None , __snake_case = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case) # normal case: some special tokens if token_ids_a is None: return ([0] * len(__snake_case)) + [1] return ([0] * len(__snake_case)) + [1] + ([0] * len(__snake_case)) + [1] def A__ ( self): return list( set(filter(lambda __snake_case: bool(re.search(r'<extra_id_\d+>' , __snake_case)) is not None , self.additional_special_tokens))) def A__ ( self): return [self._convert_token_to_id(__snake_case) for token in self.get_sentinel_tokens()] def A__ ( self , __snake_case): if len(__snake_case) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ' eos tokens being added.') return token_ids else: return token_ids + [self.eos_token_id] def A__ ( self , __snake_case , __snake_case = None): _UpperCamelCase : Any = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos) * [0] return len(token_ids_a + eos + token_ids_a + eos) * [0] def A__ ( self , __snake_case , __snake_case = None): _UpperCamelCase : Tuple = self._add_eos_if_not_present(__snake_case) if token_ids_a is None: return token_ids_a else: _UpperCamelCase : Tuple = self._add_eos_if_not_present(__snake_case) return token_ids_a + token_ids_a def __getstate__( self): _UpperCamelCase : Any = self.__dict__.copy() _UpperCamelCase : Optional[Any] = None return state def __setstate__( self , __snake_case): _UpperCamelCase : str = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): _UpperCamelCase : List[str] = {} _UpperCamelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def A__ ( self , __snake_case , **__snake_case): # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: _UpperCamelCase : Any = SPIECE_UNDERLINE + text.replace(__snake_case , ' ') return super().tokenize(__snake_case , **__snake_case) def A__ ( self , __snake_case , **__snake_case): if not self.legacy: _UpperCamelCase : int = text.startswith(__snake_case) if is_first: _UpperCamelCase : Union[str, Any] = text[1:] _UpperCamelCase : Optional[Any] = self.sp_model.encode(__snake_case , out_type=__snake_case) if not self.legacy and not is_first and not text.startswith(' ') and tokens[0].startswith(__snake_case): _UpperCamelCase : Union[str, Any] = ([tokens[0][1:]] if len(tokens[0]) > 1 else []) + tokens[1:] return tokens def A__ ( self , __snake_case): if token.startswith('<extra_id_'): _UpperCamelCase : int = re.match(r'<extra_id_(\d+)>' , __snake_case) _UpperCamelCase : Union[str, Any] = int(match.group(1)) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(__snake_case) def A__ ( self , __snake_case): if index < self.sp_model.get_piece_size(): _UpperCamelCase : Tuple = self.sp_model.IdToPiece(__snake_case) else: _UpperCamelCase : List[str] = f'''<extra_id_{self.vocab_size - 1 - index}>''' return token def A__ ( self , __snake_case): _UpperCamelCase : List[Any] = [] _UpperCamelCase : List[Any] = '' _UpperCamelCase : Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__snake_case) + token _UpperCamelCase : str = True _UpperCamelCase : Optional[Any] = [] else: current_sub_tokens.append(__snake_case) _UpperCamelCase : List[str] = False out_string += self.sp_model.decode(__snake_case) return out_string.strip() def A__ ( self , __snake_case , __snake_case = None): if not os.path.isdir(__snake_case): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return _UpperCamelCase : Tuple = os.path.join( __snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(__snake_case) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , __snake_case) elif not os.path.isfile(self.vocab_file): with open(__snake_case , 'wb') as fi: _UpperCamelCase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(__snake_case) return (out_vocab_file,)
648
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCAmelCase__ = abspath(join(dirname(__file__), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def lowerCamelCase_ ( UpperCAmelCase_ : Any ) -> Union[str, Any]: '''simple docstring''' config.addinivalue_line( 'markers' , 'is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested' ) config.addinivalue_line( 'markers' , 'is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested' ) config.addinivalue_line('markers' , 'is_pipeline_test: mark test to run only when pipelines are tested' ) config.addinivalue_line('markers' , 'is_staging_test: mark test to run only in the staging environment' ) config.addinivalue_line('markers' , 'accelerate_tests: mark test that require accelerate' ) config.addinivalue_line('markers' , 'tool_tests: mark the tool tests that are run on their specific schedule' ) def lowerCamelCase_ ( UpperCAmelCase_ : Optional[int] ) -> List[Any]: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : Any ) -> List[Any]: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main _UpperCamelCase : str = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(UpperCAmelCase_ , id=UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict ) -> Tuple: '''simple docstring''' if exitstatus == 5: _UpperCamelCase : List[Any] = 0 # Doctest custom flag to ignore output. lowerCAmelCase__ = doctest.register_optionflag("""IGNORE_RESULT""") lowerCAmelCase__ = doctest.OutputChecker class lowercase ( _lowercase ): """simple docstring""" def A__ ( self , __snake_case , __snake_case , __snake_case): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , __snake_case , __snake_case , __snake_case) lowerCAmelCase__ = CustomOutputChecker lowerCAmelCase__ = HfDoctestModule lowerCAmelCase__ = HfDocTestParser
648
1
def lowerCamelCase_ ( UpperCAmelCase_ : int = 1_0 , UpperCAmelCase_ : int = 2_2 ) -> int: '''simple docstring''' _UpperCamelCase : Any = range(1 , UpperCAmelCase_ ) _UpperCamelCase : Any = range(1 , UpperCAmelCase_ ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'{solution(1_0, 2_2) = }')
648
lowerCAmelCase__ = range(2, 2_0 + 1) lowerCAmelCase__ = [1_0**k for k in range(ks[-1] + 1)] lowerCAmelCase__ = {} def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int ) -> Tuple: '''simple docstring''' _UpperCamelCase : Dict = sum(a_i[j] for j in range(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) ) _UpperCamelCase : Optional[int] = sum(a_i[j] * base[j] for j in range(min(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) ) ) _UpperCamelCase , _UpperCamelCase : Dict = 0, 0 _UpperCamelCase : Optional[int] = n - i _UpperCamelCase : Union[str, Any] = memo.get(UpperCAmelCase_ ) if sub_memo is not None: _UpperCamelCase : str = sub_memo.get(UpperCAmelCase_ ) if jumps is not None and len(UpperCAmelCase_ ) > 0: # find and make the largest jump without going over _UpperCamelCase : str = -1 for _k in range(len(UpperCAmelCase_ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _UpperCamelCase : Optional[Any] = _k break if max_jump >= 0: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = jumps[max_jump] # since the difference between jumps is cached, add c _UpperCamelCase : Tuple = diff + c for j in range(min(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) ): _UpperCamelCase , _UpperCamelCase : Dict = divmod(UpperCAmelCase_ , 1_0 ) if new_c > 0: add(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) else: _UpperCamelCase : Union[str, Any] = [] else: _UpperCamelCase : List[Any] = {c: []} _UpperCamelCase : Optional[int] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _UpperCamelCase , _UpperCamelCase : Optional[Any] = next_term(UpperCAmelCase_ , k - 1 , i + dn , UpperCAmelCase_ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _UpperCamelCase , _UpperCamelCase : Any = compute(UpperCAmelCase_ , UpperCAmelCase_ , i + dn , UpperCAmelCase_ ) diff += _diff dn += terms_jumped _UpperCamelCase : List[str] = sub_memo[c] # keep jumps sorted by # of terms skipped _UpperCamelCase : Union[str, Any] = 0 while j < len(UpperCAmelCase_ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCAmelCase_ , (diff, dn, k) ) return (diff, dn) def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any ) -> Dict: '''simple docstring''' if i >= n: return 0, i if k > len(UpperCAmelCase_ ): a_i.extend([0 for _ in range(k - len(UpperCAmelCase_ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _UpperCamelCase : Any = i _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Any = 0, 0, 0 for j in range(len(UpperCAmelCase_ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _UpperCamelCase : Union[str, Any] = ds_c + ds_b diff += addend _UpperCamelCase : Union[str, Any] = 0 for j in range(UpperCAmelCase_ ): _UpperCamelCase : Union[str, Any] = a_i[j] + addend _UpperCamelCase , _UpperCamelCase : Any = divmod(UpperCAmelCase_ , 1_0 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return diff, i - start_i def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any ) -> Dict: '''simple docstring''' for j in range(UpperCAmelCase_ , len(UpperCAmelCase_ ) ): _UpperCamelCase : List[str] = digits[j] + addend if s >= 1_0: _UpperCamelCase , _UpperCamelCase : Any = divmod(UpperCAmelCase_ , 1_0 ) _UpperCamelCase : Union[str, Any] = addend // 1_0 + quotient else: _UpperCamelCase : Dict = s _UpperCamelCase : Optional[Any] = addend // 1_0 if addend == 0: break while addend > 0: _UpperCamelCase , _UpperCamelCase : Dict = divmod(UpperCAmelCase_ , 1_0 ) digits.append(UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : int = 1_0**1_5 ) -> int: '''simple docstring''' _UpperCamelCase : Optional[Any] = [1] _UpperCamelCase : Optional[int] = 1 _UpperCamelCase : int = 0 while True: _UpperCamelCase , _UpperCamelCase : List[Any] = next_term(UpperCAmelCase_ , 2_0 , i + dn , UpperCAmelCase_ ) dn += terms_jumped if dn == n - i: break _UpperCamelCase : str = 0 for j in range(len(UpperCAmelCase_ ) ): a_n += digits[j] * 1_0**j return a_n if __name__ == "__main__": print(f'{solution() = }')
648
1
import math def lowerCamelCase_ ( UpperCAmelCase_ : list , UpperCAmelCase_ : int ) -> int: '''simple docstring''' _UpperCamelCase : Dict = len(UpperCAmelCase_ ) _UpperCamelCase : List[Any] = int(math.floor(math.sqrt(UpperCAmelCase_ ) ) ) _UpperCamelCase : Union[str, Any] = 0 while arr[min(UpperCAmelCase_ , UpperCAmelCase_ ) - 1] < x: _UpperCamelCase : List[Any] = step step += int(math.floor(math.sqrt(UpperCAmelCase_ ) ) ) if prev >= n: return -1 while arr[prev] < x: _UpperCamelCase : int = prev + 1 if prev == min(UpperCAmelCase_ , UpperCAmelCase_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": lowerCAmelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCAmelCase__ = [int(item) for item in user_input.split(""",""")] lowerCAmelCase__ = int(input("""Enter the number to be searched:\n""")) lowerCAmelCase__ = jump_search(arr, x) if res == -1: print("""Number not found!""") else: print(f'Number {x} is at index {res}')
648
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowercase ( _lowercase ): """simple docstring""" a__ = "vit_mae" def __init__( self , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=2_24 , __snake_case=16 , __snake_case=3 , __snake_case=True , __snake_case=16 , __snake_case=5_12 , __snake_case=8 , __snake_case=20_48 , __snake_case=0.7_5 , __snake_case=False , **__snake_case , ): super().__init__(**__snake_case) _UpperCamelCase : Optional[int] = hidden_size _UpperCamelCase : Optional[int] = num_hidden_layers _UpperCamelCase : Tuple = num_attention_heads _UpperCamelCase : List[str] = intermediate_size _UpperCamelCase : str = hidden_act _UpperCamelCase : List[str] = hidden_dropout_prob _UpperCamelCase : List[Any] = attention_probs_dropout_prob _UpperCamelCase : str = initializer_range _UpperCamelCase : Any = layer_norm_eps _UpperCamelCase : int = image_size _UpperCamelCase : Any = patch_size _UpperCamelCase : List[Any] = num_channels _UpperCamelCase : Union[str, Any] = qkv_bias _UpperCamelCase : str = decoder_num_attention_heads _UpperCamelCase : Union[str, Any] = decoder_hidden_size _UpperCamelCase : Union[str, Any] = decoder_num_hidden_layers _UpperCamelCase : Any = decoder_intermediate_size _UpperCamelCase : int = mask_ratio _UpperCamelCase : List[Any] = norm_pix_loss
648
1
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case=13 , __snake_case=32 , __snake_case=2 , __snake_case=3 , __snake_case=16 , __snake_case=[1, 2, 1] , __snake_case=[2, 2, 4] , __snake_case=2 , __snake_case=2.0 , __snake_case=True , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.1 , __snake_case="gelu" , __snake_case=False , __snake_case=True , __snake_case=0.0_2 , __snake_case=1e-5 , __snake_case=True , __snake_case=None , __snake_case=True , __snake_case=10 , __snake_case=8 , ): _UpperCamelCase : int = parent _UpperCamelCase : Tuple = batch_size _UpperCamelCase : Optional[Any] = image_size _UpperCamelCase : List[str] = patch_size _UpperCamelCase : Tuple = num_channels _UpperCamelCase : Union[str, Any] = embed_dim _UpperCamelCase : Dict = depths _UpperCamelCase : Tuple = num_heads _UpperCamelCase : Dict = window_size _UpperCamelCase : List[Any] = mlp_ratio _UpperCamelCase : Optional[Any] = qkv_bias _UpperCamelCase : Tuple = hidden_dropout_prob _UpperCamelCase : str = attention_probs_dropout_prob _UpperCamelCase : Optional[Any] = drop_path_rate _UpperCamelCase : int = hidden_act _UpperCamelCase : List[Any] = use_absolute_embeddings _UpperCamelCase : Tuple = patch_norm _UpperCamelCase : str = layer_norm_eps _UpperCamelCase : Tuple = initializer_range _UpperCamelCase : Tuple = is_training _UpperCamelCase : List[str] = scope _UpperCamelCase : int = use_labels _UpperCamelCase : List[str] = type_sequence_label_size _UpperCamelCase : List[Any] = encoder_stride def A__ ( self): _UpperCamelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase : Optional[Any] = None if self.use_labels: _UpperCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase : List[str] = self.get_config() return config, pixel_values, labels def A__ ( self): return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : List[str] = SwinvaModel(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Any = model(__snake_case) _UpperCamelCase : List[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) _UpperCamelCase : Tuple = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim)) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Any = SwinvaForMaskedImageModeling(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Tuple = model(__snake_case) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images _UpperCamelCase : Tuple = 1 _UpperCamelCase : Tuple = SwinvaForMaskedImageModeling(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _UpperCamelCase : Dict = model(__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size)) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Union[str, Any] = self.type_sequence_label_size _UpperCamelCase : List[str] = SwinvaForImageClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Union[str, Any] = model(__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def A__ ( self): _UpperCamelCase : Optional[Any] = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : List[str] = config_and_inputs _UpperCamelCase : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) a__ = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False def A__ ( self): _UpperCamelCase : Optional[Any] = SwinvaModelTester(self) _UpperCamelCase : Dict = ConfigTester(self , config_class=__snake_case , embed_dim=37) def A__ ( self): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self): _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case) @unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.') def A__ ( self): pass @unittest.skip(reason='Swinv2 does not use inputs_embeds') def A__ ( self): pass def A__ ( self): _UpperCamelCase , _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Dict = model_class(__snake_case) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _UpperCamelCase : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case , nn.Linear)) def A__ ( self): _UpperCamelCase , _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Union[str, Any] = model_class(__snake_case) _UpperCamelCase : Optional[int] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : int = [*signature.parameters.keys()] _UpperCamelCase : Tuple = ['pixel_values'] self.assertListEqual(arg_names[:1] , __snake_case) def A__ ( self): _UpperCamelCase , _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : Optional[Any] = True for model_class in self.all_model_classes: _UpperCamelCase : Optional[Any] = True _UpperCamelCase : Optional[Any] = False _UpperCamelCase : str = True _UpperCamelCase : Optional[int] = model_class(__snake_case) model.to(__snake_case) model.eval() with torch.no_grad(): _UpperCamelCase : Optional[int] = model(**self._prepare_for_class(__snake_case , __snake_case)) _UpperCamelCase : List[Any] = outputs.attentions _UpperCamelCase : Tuple = len(self.model_tester.depths) self.assertEqual(len(__snake_case) , __snake_case) # check that output_attentions also work using config del inputs_dict["output_attentions"] _UpperCamelCase : str = True _UpperCamelCase : List[Any] = config.window_size**2 _UpperCamelCase : str = model_class(__snake_case) model.to(__snake_case) model.eval() with torch.no_grad(): _UpperCamelCase : int = model(**self._prepare_for_class(__snake_case , __snake_case)) _UpperCamelCase : str = outputs.attentions self.assertEqual(len(__snake_case) , __snake_case) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) _UpperCamelCase : Optional[int] = len(__snake_case) # Check attention is always last and order is fine _UpperCamelCase : int = True _UpperCamelCase : Any = True _UpperCamelCase : int = model_class(__snake_case) model.to(__snake_case) model.eval() with torch.no_grad(): _UpperCamelCase : Dict = model(**self._prepare_for_class(__snake_case , __snake_case)) if hasattr(self.model_tester , 'num_hidden_states_types'): _UpperCamelCase : Any = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states _UpperCamelCase : Optional[Any] = 2 self.assertEqual(out_len + added_hidden_states , len(__snake_case)) _UpperCamelCase : Tuple = outputs.attentions self.assertEqual(len(__snake_case) , __snake_case) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Dict = model_class(__snake_case) model.to(__snake_case) model.eval() with torch.no_grad(): _UpperCamelCase : Any = model(**self._prepare_for_class(__snake_case , __snake_case)) _UpperCamelCase : int = outputs.hidden_states _UpperCamelCase : List[str] = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths) + 1) self.assertEqual(len(__snake_case) , __snake_case) # Swinv2 has a different seq_length _UpperCamelCase : Tuple = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) _UpperCamelCase : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) _UpperCamelCase : Optional[int] = outputs.reshaped_hidden_states self.assertEqual(len(__snake_case) , __snake_case) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : List[Any] = reshaped_hidden_states[0].shape _UpperCamelCase : Tuple = ( reshaped_hidden_states[0].view(__snake_case , __snake_case , height * width).permute(0 , 2 , 1) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) def A__ ( self): _UpperCamelCase , _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _UpperCamelCase : List[Any] = True self.check_hidden_states_output(__snake_case , __snake_case , __snake_case , __snake_case) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase : Optional[Any] = True self.check_hidden_states_output(__snake_case , __snake_case , __snake_case , __snake_case) def A__ ( self): _UpperCamelCase , _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : List[str] = 3 _UpperCamelCase : Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) _UpperCamelCase : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) _UpperCamelCase : Tuple = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _UpperCamelCase : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _UpperCamelCase : List[Any] = True self.check_hidden_states_output(__snake_case , __snake_case , __snake_case , (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase : List[str] = True self.check_hidden_states_output(__snake_case , __snake_case , __snake_case , (padded_height, padded_width)) def A__ ( self): _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__snake_case) def A__ ( self): _UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case) @slow def A__ ( self): for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : Tuple = SwinvaModel.from_pretrained(__snake_case) self.assertIsNotNone(__snake_case) def A__ ( self): _UpperCamelCase , _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : str = _config_zero_init(__snake_case) for model_class in self.all_model_classes: _UpperCamelCase : List[str] = model_class(config=__snake_case) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @require_vision @require_torch class lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self): return ( AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256') if is_vision_available() else None ) @slow def A__ ( self): _UpperCamelCase : Dict = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256').to( __snake_case) _UpperCamelCase : Any = self.default_image_processor _UpperCamelCase : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCamelCase : Dict = image_processor(images=__snake_case , return_tensors='pt').to(__snake_case) # forward pass with torch.no_grad(): _UpperCamelCase : int = model(**__snake_case) # verify the logits _UpperCamelCase : int = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , __snake_case) _UpperCamelCase : Any = torch.tensor([-0.3_9_4_7, -0.4_3_0_6, 0.0_0_2_6]).to(__snake_case) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1e-4))
648
import functools def lowerCamelCase_ ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int] ) -> int: '''simple docstring''' if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or not all(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(UpperCAmelCase_ ) != 3 or not all(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(UpperCAmelCase_ ) == 0: return 0 if min(UpperCAmelCase_ ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(UpperCAmelCase_ ) >= 3_6_6: raise ValueError('All days elements should be less than 366' ) _UpperCamelCase : Union[str, Any] = set(UpperCAmelCase_ ) @functools.cache def dynamic_programming(UpperCAmelCase_ : int ) -> int: if index > 3_6_5: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 3_0 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
648
1
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node lowerCAmelCase__ = 4 lowerCAmelCase__ = 3 class lowercase ( _lowercase ): """simple docstring""" pass def lowerCamelCase_ ( UpperCAmelCase_ : List[str] ) -> Union[str, Any]: '''simple docstring''' for shard in shards: for i in range(UpperCAmelCase_ ): yield {"i": i, "shard": shard} def lowerCamelCase_ ( ) -> Tuple: '''simple docstring''' _UpperCamelCase : Optional[Any] = int(os.environ['RANK'] ) _UpperCamelCase : str = int(os.environ['WORLD_SIZE'] ) _UpperCamelCase : List[str] = ArgumentParser() parser.add_argument('--streaming' , type=UpperCAmelCase_ ) parser.add_argument('--local_rank' , type=UpperCAmelCase_ ) parser.add_argument('--num_workers' , type=UpperCAmelCase_ , default=0 ) _UpperCamelCase : Optional[Any] = parser.parse_args() _UpperCamelCase : Optional[int] = args.streaming _UpperCamelCase : int = args.num_workers _UpperCamelCase : List[str] = {'shards': [F'''shard_{shard_idx}''' for shard_idx in range(UpperCAmelCase_ )]} _UpperCamelCase : Tuple = IterableDataset.from_generator(UpperCAmelCase_ , gen_kwargs=UpperCAmelCase_ ) if not streaming: _UpperCamelCase : List[Any] = Dataset.from_list(list(UpperCAmelCase_ ) ) _UpperCamelCase : int = split_dataset_by_node(UpperCAmelCase_ , rank=UpperCAmelCase_ , world_size=UpperCAmelCase_ ) _UpperCamelCase : Any = torch.utils.data.DataLoader(UpperCAmelCase_ , num_workers=UpperCAmelCase_ ) _UpperCamelCase : Dict = NUM_SHARDS * NUM_ITEMS_PER_SHARD _UpperCamelCase : Union[str, Any] = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) _UpperCamelCase : int = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F'''local_size {local_size} != expected_local_size {expected_local_size}''' ) if __name__ == "__main__": main()
648
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=99 , __snake_case=64 , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=37 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=16 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=3 , __snake_case=4 , __snake_case=None , ): _UpperCamelCase : List[Any] = parent _UpperCamelCase : Optional[Any] = batch_size _UpperCamelCase : int = seq_length _UpperCamelCase : str = is_training _UpperCamelCase : Tuple = use_input_mask _UpperCamelCase : Union[str, Any] = use_token_type_ids _UpperCamelCase : Union[str, Any] = use_labels _UpperCamelCase : Optional[Any] = vocab_size _UpperCamelCase : List[Any] = hidden_size _UpperCamelCase : Optional[Any] = embedding_size _UpperCamelCase : str = num_hidden_layers _UpperCamelCase : str = num_attention_heads _UpperCamelCase : int = intermediate_size _UpperCamelCase : int = hidden_act _UpperCamelCase : Tuple = hidden_dropout_prob _UpperCamelCase : int = attention_probs_dropout_prob _UpperCamelCase : Tuple = max_position_embeddings _UpperCamelCase : List[str] = type_vocab_size _UpperCamelCase : Dict = type_sequence_label_size _UpperCamelCase : List[str] = initializer_range _UpperCamelCase : Optional[Any] = num_labels _UpperCamelCase : Tuple = num_choices _UpperCamelCase : List[str] = scope def A__ ( self): _UpperCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase : Any = None if self.use_input_mask: _UpperCamelCase : int = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase : Optional[Any] = None if self.use_token_type_ids: _UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase : int = None _UpperCamelCase : List[str] = None _UpperCamelCase : Dict = None if self.use_labels: _UpperCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self): return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : List[str] = MegatronBertModel(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case) _UpperCamelCase : Dict = model(__snake_case , token_type_ids=__snake_case) _UpperCamelCase : Optional[Any] = model(__snake_case) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : int = MegatronBertForMaskedLM(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Dict = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : str = MegatronBertForCausalLM(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Tuple = MegatronBertForNextSentencePrediction(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[Any] = MegatronBertForPreTraining(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[str] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , next_sentence_label=__snake_case , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : int = MegatronBertForQuestionAnswering(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[int] = self.num_labels _UpperCamelCase : Union[str, Any] = MegatronBertForSequenceClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Any = self.num_labels _UpperCamelCase : Optional[int] = MegatronBertForTokenClassification(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Tuple = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : List[str] = self.num_choices _UpperCamelCase : Optional[int] = MegatronBertForMultipleChoice(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : List[Any] = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : Optional[Any] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : Union[str, Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def A__ ( self): _UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) : Optional[int] = config_and_inputs _UpperCamelCase : int = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) a__ = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) a__ = True # test_resize_embeddings = False a__ = False def A__ ( self , __snake_case , __snake_case , __snake_case=False): _UpperCamelCase : str = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case) if return_labels: if model_class in get_values(__snake_case): _UpperCamelCase : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__snake_case) _UpperCamelCase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case) return inputs_dict def A__ ( self): _UpperCamelCase : Any = MegatronBertModelTester(self) _UpperCamelCase : int = ConfigTester(self , config_class=__snake_case , hidden_size=37) def A__ ( self): self.config_tester.run_common_tests() def A__ ( self): _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__snake_case) def A__ ( self): _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__snake_case) def A__ ( self): _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__snake_case) def A__ ( self): _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__snake_case) def A__ ( self): _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__snake_case) def A__ ( self): _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__snake_case) def A__ ( self): _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__snake_case) def A__ ( self): _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__snake_case) def lowerCamelCase_ ( UpperCAmelCase_ : str ) -> Optional[Any]: '''simple docstring''' return torch.tensor( UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ , ) lowerCAmelCase__ = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip('Model is not available.') def A__ ( self): _UpperCamelCase : int = 'nvidia/megatron-bert-uncased-345m' if "MYDIR" in os.environ: _UpperCamelCase : int = os.path.join(os.environ['MYDIR'] , __snake_case) _UpperCamelCase : Optional[int] = MegatronBertModel.from_pretrained(__snake_case) model.to(__snake_case) model.half() _UpperCamelCase : Optional[Any] = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]]) with torch.no_grad(): _UpperCamelCase : str = model(__snake_case)[0] _UpperCamelCase : Optional[int] = torch.Size((1, 9, 10_24)) self.assertEqual(output.shape , __snake_case) _UpperCamelCase : Union[str, Any] = [-0.6_0_4_0, -0.2_5_1_7, -0.1_0_2_5, 0.3_4_2_0, -0.6_7_5_8, -0.0_0_1_7, -0.1_0_8_9, -0.1_9_9_0, 0.5_7_2_8] for ii in range(3): for jj in range(3): _UpperCamelCase : Optional[Any] = output[0, ii, jj] _UpperCamelCase : Dict = expected[3 * ii + jj] _UpperCamelCase : Optional[int] = 'ii={} jj={} a={} b={}'.format(__snake_case , __snake_case , __snake_case , __snake_case) self.assertTrue(math.isclose(__snake_case , __snake_case , rel_tol=__snake_case , abs_tol=__snake_case) , msg=__snake_case)
648
1
import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ("""time_embed.0.weight""", """time_embedding.linear_1.weight"""), ("""time_embed.0.bias""", """time_embedding.linear_1.bias"""), ("""time_embed.2.weight""", """time_embedding.linear_2.weight"""), ("""time_embed.2.bias""", """time_embedding.linear_2.bias"""), ("""input_blocks.0.0.weight""", """conv_in.weight"""), ("""input_blocks.0.0.bias""", """conv_in.bias"""), ("""out.0.weight""", """conv_norm_out.weight"""), ("""out.0.bias""", """conv_norm_out.bias"""), ("""out.2.weight""", """conv_out.weight"""), ("""out.2.bias""", """conv_out.bias"""), ] lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ("""in_layers.0""", """norm1"""), ("""in_layers.2""", """conv1"""), ("""out_layers.0""", """norm2"""), ("""out_layers.3""", """conv2"""), ("""emb_layers.1""", """time_emb_proj"""), ("""skip_connection""", """conv_shortcut"""), ] lowerCAmelCase__ = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks lowerCAmelCase__ = f'down_blocks.{i}.resnets.{j}.' lowerCAmelCase__ = f'input_blocks.{3*i + j + 1}.0.' unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 lowerCAmelCase__ = f'down_blocks.{i}.attentions.{j}.' lowerCAmelCase__ = f'input_blocks.{3*i + j + 1}.1.' unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks lowerCAmelCase__ = f'up_blocks.{i}.resnets.{j}.' lowerCAmelCase__ = f'output_blocks.{3*i + j}.0.' unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 lowerCAmelCase__ = f'up_blocks.{i}.attentions.{j}.' lowerCAmelCase__ = f'output_blocks.{3*i + j}.1.' unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 lowerCAmelCase__ = f'down_blocks.{i}.downsamplers.0.conv.' lowerCAmelCase__ = f'input_blocks.{3*(i+1)}.0.op.' unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 lowerCAmelCase__ = f'up_blocks.{i}.upsamplers.0.' lowerCAmelCase__ = f'output_blocks.{3*i + 2}.{1 if i == 0 else 2}.' unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) lowerCAmelCase__ = """mid_block.attentions.0.""" lowerCAmelCase__ = """middle_block.1.""" unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): lowerCAmelCase__ = f'mid_block.resnets.{j}.' lowerCAmelCase__ = f'middle_block.{2*j}.' unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> int: '''simple docstring''' _UpperCamelCase : List[str] = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: _UpperCamelCase : Union[str, Any] = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: _UpperCamelCase : Tuple = v.replace(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : List[str] = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: _UpperCamelCase : Tuple = v.replace(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = v _UpperCamelCase : int = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ("""nin_shortcut""", """conv_shortcut"""), ("""norm_out""", """conv_norm_out"""), ("""mid.attn_1.""", """mid_block.attentions.0."""), ] for i in range(4): # down_blocks have two resnets for j in range(2): lowerCAmelCase__ = f'encoder.down_blocks.{i}.resnets.{j}.' lowerCAmelCase__ = f'encoder.down.{i}.block.{j}.' vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: lowerCAmelCase__ = f'down_blocks.{i}.downsamplers.0.' lowerCAmelCase__ = f'down.{i}.downsample.' vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) lowerCAmelCase__ = f'up_blocks.{i}.upsamplers.0.' lowerCAmelCase__ = f'up.{3-i}.upsample.' vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): lowerCAmelCase__ = f'decoder.up_blocks.{i}.resnets.{j}.' lowerCAmelCase__ = f'decoder.up.{3-i}.block.{j}.' vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): lowerCAmelCase__ = f'mid_block.resnets.{i}.' lowerCAmelCase__ = f'mid.block_{i+1}.' vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ("""norm.""", """group_norm."""), ("""q.""", """query."""), ("""k.""", """key."""), ("""v.""", """value."""), ("""proj_out.""", """proj_attn."""), ] def lowerCamelCase_ ( UpperCAmelCase_ : Tuple ) -> Any: '''simple docstring''' return w.reshape(*w.shape , 1 , 1 ) def lowerCamelCase_ ( UpperCAmelCase_ : Dict ) -> Tuple: '''simple docstring''' _UpperCamelCase : Union[str, Any] = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: _UpperCamelCase : List[str] = v.replace(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Any = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: _UpperCamelCase : Dict = v.replace(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = v _UpperCamelCase : List[str] = {v: vae_state_dict[k] for k, v in mapping.items()} _UpperCamelCase : int = ['q', 'k', 'v', 'proj_out'] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if F'''mid.attn_1.{weight_name}.weight''' in k: print(F'''Reshaping {k} for SD format''' ) _UpperCamelCase : Any = reshape_weight_for_sd(UpperCAmelCase_ ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ("""resblocks.""", """text_model.encoder.layers."""), ("""ln_1""", """layer_norm1"""), ("""ln_2""", """layer_norm2"""), (""".c_fc.""", """.fc1."""), (""".c_proj.""", """.fc2."""), (""".attn""", """.self_attn"""), ("""ln_final.""", """transformer.text_model.final_layer_norm."""), ("""token_embedding.weight""", """transformer.text_model.embeddings.token_embedding.weight"""), ("""positional_embedding""", """transformer.text_model.embeddings.position_embedding.weight"""), ] lowerCAmelCase__ = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} lowerCAmelCase__ = re.compile("""|""".join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp lowerCAmelCase__ = {"""q""": 0, """k""": 1, """v""": 2} def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> Optional[int]: '''simple docstring''' _UpperCamelCase : Tuple = {} _UpperCamelCase : Tuple = {} _UpperCamelCase : List[Any] = {} for k, v in text_enc_dict.items(): if ( k.endswith('.self_attn.q_proj.weight' ) or k.endswith('.self_attn.k_proj.weight' ) or k.endswith('.self_attn.v_proj.weight' ) ): _UpperCamelCase : Dict = k[: -len('.q_proj.weight' )] _UpperCamelCase : List[str] = k[-len('q_proj.weight' )] if k_pre not in capture_qkv_weight: _UpperCamelCase : Union[str, Any] = [None, None, None] _UpperCamelCase : str = v continue if ( k.endswith('.self_attn.q_proj.bias' ) or k.endswith('.self_attn.k_proj.bias' ) or k.endswith('.self_attn.v_proj.bias' ) ): _UpperCamelCase : Optional[int] = k[: -len('.q_proj.bias' )] _UpperCamelCase : Dict = k[-len('q_proj.bias' )] if k_pre not in capture_qkv_bias: _UpperCamelCase : Optional[Any] = [None, None, None] _UpperCamelCase : List[str] = v continue _UpperCamelCase : Union[str, Any] = textenc_pattern.sub(lambda UpperCAmelCase_ : protected[re.escape(m.group(0 ) )] , UpperCAmelCase_ ) _UpperCamelCase : int = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception('CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing' ) _UpperCamelCase : List[Any] = textenc_pattern.sub(lambda UpperCAmelCase_ : protected[re.escape(m.group(0 ) )] , UpperCAmelCase_ ) _UpperCamelCase : List[str] = torch.cat(UpperCAmelCase_ ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception('CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing' ) _UpperCamelCase : List[str] = textenc_pattern.sub(lambda UpperCAmelCase_ : protected[re.escape(m.group(0 ) )] , UpperCAmelCase_ ) _UpperCamelCase : Tuple = torch.cat(UpperCAmelCase_ ) return new_state_dict def lowerCamelCase_ ( UpperCAmelCase_ : Any ) -> List[str]: '''simple docstring''' return text_enc_dict if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--model_path""", default=None, type=str, required=True, help="""Path to the model to convert.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--use_safetensors""", action="""store_true""", help="""Save weights use safetensors, default is ckpt.""" ) lowerCAmelCase__ = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors lowerCAmelCase__ = osp.join(args.model_path, """unet""", """diffusion_pytorch_model.safetensors""") lowerCAmelCase__ = osp.join(args.model_path, """vae""", """diffusion_pytorch_model.safetensors""") lowerCAmelCase__ = osp.join(args.model_path, """text_encoder""", """model.safetensors""") # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): lowerCAmelCase__ = load_file(unet_path, device="""cpu""") else: lowerCAmelCase__ = osp.join(args.model_path, """unet""", """diffusion_pytorch_model.bin""") lowerCAmelCase__ = torch.load(unet_path, map_location="""cpu""") if osp.exists(vae_path): lowerCAmelCase__ = load_file(vae_path, device="""cpu""") else: lowerCAmelCase__ = osp.join(args.model_path, """vae""", """diffusion_pytorch_model.bin""") lowerCAmelCase__ = torch.load(vae_path, map_location="""cpu""") if osp.exists(text_enc_path): lowerCAmelCase__ = load_file(text_enc_path, device="""cpu""") else: lowerCAmelCase__ = osp.join(args.model_path, """text_encoder""", """pytorch_model.bin""") lowerCAmelCase__ = torch.load(text_enc_path, map_location="""cpu""") # Convert the UNet model lowerCAmelCase__ = convert_unet_state_dict(unet_state_dict) lowerCAmelCase__ = {"""model.diffusion_model.""" + k: v for k, v in unet_state_dict.items()} # Convert the VAE model lowerCAmelCase__ = convert_vae_state_dict(vae_state_dict) lowerCAmelCase__ = {"""first_stage_model.""" + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper lowerCAmelCase__ = """text_model.encoder.layers.22.layer_norm2.bias""" in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm lowerCAmelCase__ = {"""transformer.""" + k: v for k, v in text_enc_dict.items()} lowerCAmelCase__ = convert_text_enc_state_dict_vaa(text_enc_dict) lowerCAmelCase__ = {"""cond_stage_model.model.""" + k: v for k, v in text_enc_dict.items()} else: lowerCAmelCase__ = convert_text_enc_state_dict(text_enc_dict) lowerCAmelCase__ = {"""cond_stage_model.transformer.""" + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint lowerCAmelCase__ = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: lowerCAmelCase__ = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: lowerCAmelCase__ = {"""state_dict""": state_dict} torch.save(state_dict, args.checkpoint_path)
648
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = """▁""" lowerCAmelCase__ = {"""vocab_file""": """sentencepiece.bpe.model"""} lowerCAmelCase__ = { """vocab_file""": { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model""" ), } } lowerCAmelCase__ = { """xlm-roberta-base""": 5_1_2, """xlm-roberta-large""": 5_1_2, """xlm-roberta-large-finetuned-conll02-dutch""": 5_1_2, """xlm-roberta-large-finetuned-conll02-spanish""": 5_1_2, """xlm-roberta-large-finetuned-conll03-english""": 5_1_2, """xlm-roberta-large-finetuned-conll03-german""": 5_1_2, } class lowercase ( _lowercase ): """simple docstring""" a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = ["input_ids", "attention_mask"] def __init__( self , __snake_case , __snake_case="<s>" , __snake_case="</s>" , __snake_case="</s>" , __snake_case="<s>" , __snake_case="<unk>" , __snake_case="<pad>" , __snake_case="<mask>" , __snake_case = None , **__snake_case , ): # Mask token behave like a normal word, i.e. include the space before it _UpperCamelCase : Dict = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case) if isinstance(__snake_case , __snake_case) else mask_token _UpperCamelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) _UpperCamelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(__snake_case)) _UpperCamelCase : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _UpperCamelCase : int = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _UpperCamelCase : List[Any] = 1 _UpperCamelCase : Any = len(self.sp_model) + self.fairseq_offset _UpperCamelCase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self): _UpperCamelCase : List[Any] = self.__dict__.copy() _UpperCamelCase : Optional[Any] = None _UpperCamelCase : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self , __snake_case): _UpperCamelCase : int = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): _UpperCamelCase : Tuple = {} _UpperCamelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) def A__ ( self , __snake_case , __snake_case = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCamelCase : Tuple = [self.cls_token_id] _UpperCamelCase : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self , __snake_case , __snake_case = None , __snake_case = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case) if token_ids_a is None: return [1] + ([0] * len(__snake_case)) + [1] return [1] + ([0] * len(__snake_case)) + [1, 1] + ([0] * len(__snake_case)) + [1] def A__ ( self , __snake_case , __snake_case = None): _UpperCamelCase : Optional[Any] = [self.sep_token_id] _UpperCamelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def A__ ( self): return len(self.sp_model) + self.fairseq_offset + 1 # Add the <mask> token def A__ ( self): _UpperCamelCase : List[str] = {self.convert_ids_to_tokens(__snake_case): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def A__ ( self , __snake_case): return self.sp_model.encode(__snake_case , out_type=__snake_case) def A__ ( self , __snake_case): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCamelCase : str = self.sp_model.PieceToId(__snake_case) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A__ ( self , __snake_case): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def A__ ( self , __snake_case): _UpperCamelCase : Optional[int] = ''.join(__snake_case).replace(__snake_case , ' ').strip() return out_string def A__ ( self , __snake_case , __snake_case = None): if not os.path.isdir(__snake_case): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return _UpperCamelCase : str = os.path.join( __snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(__snake_case) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , __snake_case) elif not os.path.isfile(self.vocab_file): with open(__snake_case , 'wb') as fi: _UpperCamelCase : Any = self.sp_model.serialized_model_proto() fi.write(__snake_case) return (out_vocab_file,)
648
1