code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class lowercase ( _lowercase ): """simple docstring""" a__ = (CMStochasticIterativeScheduler,) a__ = 1_0 def A__ ( self , **__snake_case): _UpperCamelCase : str = { 'num_train_timesteps': 2_01, 'sigma_min': 0.0_0_2, 'sigma_max': 8_0.0, } config.update(**__snake_case) return config def A__ ( self): _UpperCamelCase : List[Any] = 10 _UpperCamelCase : Any = self.get_scheduler_config() _UpperCamelCase : str = self.scheduler_classes[0](**__snake_case) scheduler.set_timesteps(__snake_case) _UpperCamelCase : Optional[int] = scheduler.timesteps[0] _UpperCamelCase : Union[str, Any] = scheduler.timesteps[1] _UpperCamelCase : Union[str, Any] = self.dummy_sample _UpperCamelCase : Tuple = 0.1 * sample _UpperCamelCase : Any = scheduler.step(__snake_case , __snake_case , __snake_case).prev_sample _UpperCamelCase : Union[str, Any] = scheduler.step(__snake_case , __snake_case , __snake_case).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def A__ ( self): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__snake_case) def A__ ( self): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=__snake_case) def A__ ( self): _UpperCamelCase : Dict = self.scheduler_classes[0] _UpperCamelCase : Dict = self.get_scheduler_config() _UpperCamelCase : Union[str, Any] = scheduler_class(**__snake_case) _UpperCamelCase : Dict = 1 scheduler.set_timesteps(__snake_case) _UpperCamelCase : Union[str, Any] = scheduler.timesteps _UpperCamelCase : List[Any] = torch.manual_seed(0) _UpperCamelCase : str = self.dummy_model() _UpperCamelCase : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(__snake_case): # 1. scale model input _UpperCamelCase : Union[str, Any] = scheduler.scale_model_input(__snake_case , __snake_case) # 2. predict noise residual _UpperCamelCase : Optional[Any] = model(__snake_case , __snake_case) # 3. predict previous sample x_t-1 _UpperCamelCase : Tuple = scheduler.step(__snake_case , __snake_case , __snake_case , generator=__snake_case).prev_sample _UpperCamelCase : str = pred_prev_sample _UpperCamelCase : Any = torch.sum(torch.abs(__snake_case)) _UpperCamelCase : str = torch.mean(torch.abs(__snake_case)) assert abs(result_sum.item() - 1_9_2.7_6_1_4) < 1e-2 assert abs(result_mean.item() - 0.2_5_1_0) < 1e-3 def A__ ( self): _UpperCamelCase : Optional[Any] = self.scheduler_classes[0] _UpperCamelCase : Tuple = self.get_scheduler_config() _UpperCamelCase : Union[str, Any] = scheduler_class(**__snake_case) _UpperCamelCase : int = [1_06, 0] scheduler.set_timesteps(timesteps=__snake_case) _UpperCamelCase : str = scheduler.timesteps _UpperCamelCase : Tuple = torch.manual_seed(0) _UpperCamelCase : Tuple = self.dummy_model() _UpperCamelCase : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input _UpperCamelCase : Optional[Any] = scheduler.scale_model_input(__snake_case , __snake_case) # 2. predict noise residual _UpperCamelCase : Union[str, Any] = model(__snake_case , __snake_case) # 3. predict previous sample x_t-1 _UpperCamelCase : Optional[Any] = scheduler.step(__snake_case , __snake_case , __snake_case , generator=__snake_case).prev_sample _UpperCamelCase : Optional[int] = pred_prev_sample _UpperCamelCase : int = torch.sum(torch.abs(__snake_case)) _UpperCamelCase : str = torch.mean(torch.abs(__snake_case)) assert abs(result_sum.item() - 3_4_7.6_3_5_7) < 1e-2 assert abs(result_mean.item() - 0.4_5_2_7) < 1e-3 def A__ ( self): _UpperCamelCase : Dict = self.scheduler_classes[0] _UpperCamelCase : Optional[Any] = self.get_scheduler_config() _UpperCamelCase : Dict = scheduler_class(**__snake_case) _UpperCamelCase : List[str] = [39, 30, 12, 15, 0] with self.assertRaises(__snake_case , msg='`timesteps` must be in descending order.'): scheduler.set_timesteps(timesteps=__snake_case) def A__ ( self): _UpperCamelCase : Dict = self.scheduler_classes[0] _UpperCamelCase : Optional[int] = self.get_scheduler_config() _UpperCamelCase : Dict = scheduler_class(**__snake_case) _UpperCamelCase : Tuple = [39, 30, 12, 1, 0] _UpperCamelCase : Tuple = len(__snake_case) with self.assertRaises(__snake_case , msg='Can only pass one of `num_inference_steps` or `timesteps`.'): scheduler.set_timesteps(num_inference_steps=__snake_case , timesteps=__snake_case) def A__ ( self): _UpperCamelCase : List[Any] = self.scheduler_classes[0] _UpperCamelCase : Any = self.get_scheduler_config() _UpperCamelCase : Any = scheduler_class(**__snake_case) _UpperCamelCase : Optional[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( __snake_case , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=__snake_case)
648
from ...processing_utils import ProcessorMixin class lowercase ( _lowercase ): """simple docstring""" a__ = ["image_processor", "feature_extractor"] a__ = "TvltImageProcessor" a__ = "TvltFeatureExtractor" def __init__( self , __snake_case , __snake_case): super().__init__(image_processor=__snake_case , feature_extractor=__snake_case) _UpperCamelCase : List[str] = image_processor _UpperCamelCase : Dict = feature_extractor def __call__( self , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=False , __snake_case=False , *__snake_case , **__snake_case , ): if images is None and audio is None: raise ValueError('You need to specify either an `images` or `audio` input to process.') _UpperCamelCase : Union[str, Any] = None if images is not None: _UpperCamelCase : Tuple = self.image_processor(__snake_case , mask_pixel=__snake_case , *__snake_case , **__snake_case) if images_mixed is not None: _UpperCamelCase : Union[str, Any] = self.image_processor(__snake_case , is_mixed=__snake_case , *__snake_case , **__snake_case) if audio is not None: _UpperCamelCase : Tuple = self.feature_extractor( __snake_case , *__snake_case , sampling_rate=__snake_case , mask_audio=__snake_case , **__snake_case) _UpperCamelCase : Tuple = {} if audio is not None: output_dict.update(__snake_case) if images is not None: output_dict.update(__snake_case) if images_mixed_dict is not None: output_dict.update(__snake_case) return output_dict @property def A__ ( self): _UpperCamelCase : List[Any] = self.image_processor.model_input_names _UpperCamelCase : List[Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
648
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase__ = { """configuration_chinese_clip""": [ """CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ChineseCLIPConfig""", """ChineseCLIPOnnxConfig""", """ChineseCLIPTextConfig""", """ChineseCLIPVisionConfig""", ], """processing_chinese_clip""": ["""ChineseCLIPProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ["""ChineseCLIPFeatureExtractor"""] lowerCAmelCase__ = ["""ChineseCLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """ChineseCLIPModel""", """ChineseCLIPPreTrainedModel""", """ChineseCLIPTextModel""", """ChineseCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
648
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class lowercase ( _lowercase ): """simple docstring""" a__ = "rwkv" a__ = {"max_position_embeddings": "context_length"} def __init__( self , __snake_case=5_02_77 , __snake_case=10_24 , __snake_case=40_96 , __snake_case=32 , __snake_case=None , __snake_case=None , __snake_case=1e-5 , __snake_case=0 , __snake_case=0 , __snake_case=6 , __snake_case=False , __snake_case=True , **__snake_case , ): _UpperCamelCase : str = vocab_size _UpperCamelCase : int = context_length _UpperCamelCase : Tuple = hidden_size _UpperCamelCase : Tuple = num_hidden_layers _UpperCamelCase : Dict = attention_hidden_size if attention_hidden_size is not None else hidden_size _UpperCamelCase : Tuple = intermediate_size if intermediate_size is not None else 4 * hidden_size _UpperCamelCase : Union[str, Any] = layer_norm_epsilon _UpperCamelCase : Dict = rescale_every _UpperCamelCase : Optional[Any] = use_cache _UpperCamelCase : str = bos_token_id _UpperCamelCase : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case)
648
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase__ = { """configuration_mobilenet_v2""": [ """MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileNetV2Config""", """MobileNetV2OnnxConfig""", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ["""MobileNetV2FeatureExtractor"""] lowerCAmelCase__ = ["""MobileNetV2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileNetV2ForImageClassification""", """MobileNetV2ForSemanticSegmentation""", """MobileNetV2Model""", """MobileNetV2PreTrainedModel""", """load_tf_weights_in_mobilenet_v2""", ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
648
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class lowercase ( _lowercase ): """simple docstring""" a__ = "bert" def __init__( self , __snake_case=3_05_22 , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=0 , __snake_case="absolute" , __snake_case=True , __snake_case=None , **__snake_case , ): super().__init__(pad_token_id=__snake_case , **__snake_case) _UpperCamelCase : int = vocab_size _UpperCamelCase : Optional[Any] = hidden_size _UpperCamelCase : Optional[Any] = num_hidden_layers _UpperCamelCase : List[str] = num_attention_heads _UpperCamelCase : int = hidden_act _UpperCamelCase : Optional[Any] = intermediate_size _UpperCamelCase : Union[str, Any] = hidden_dropout_prob _UpperCamelCase : Tuple = attention_probs_dropout_prob _UpperCamelCase : Optional[int] = max_position_embeddings _UpperCamelCase : str = type_vocab_size _UpperCamelCase : Optional[Any] = initializer_range _UpperCamelCase : List[str] = layer_norm_eps _UpperCamelCase : Any = position_embedding_type _UpperCamelCase : Any = use_cache _UpperCamelCase : Any = classifier_dropout class lowercase ( _lowercase ): """simple docstring""" @property def A__ ( self): if self.task == "multiple-choice": _UpperCamelCase : Union[str, Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCamelCase : Optional[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ])
648
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/config.json""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/config.json""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json""" ), """distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json""", """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json""" ), """distilbert-base-uncased-finetuned-sst-2-english""": ( """https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json""" ), } class lowercase ( _lowercase ): """simple docstring""" a__ = "distilbert" a__ = { "hidden_size": "dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", } def __init__( self , __snake_case=3_05_22 , __snake_case=5_12 , __snake_case=False , __snake_case=6 , __snake_case=12 , __snake_case=7_68 , __snake_case=4 * 7_68 , __snake_case=0.1 , __snake_case=0.1 , __snake_case="gelu" , __snake_case=0.0_2 , __snake_case=0.1 , __snake_case=0.2 , __snake_case=0 , **__snake_case , ): _UpperCamelCase : Optional[Any] = vocab_size _UpperCamelCase : Union[str, Any] = max_position_embeddings _UpperCamelCase : Dict = sinusoidal_pos_embds _UpperCamelCase : Optional[int] = n_layers _UpperCamelCase : Union[str, Any] = n_heads _UpperCamelCase : Union[str, Any] = dim _UpperCamelCase : Union[str, Any] = hidden_dim _UpperCamelCase : Tuple = dropout _UpperCamelCase : Union[str, Any] = attention_dropout _UpperCamelCase : Optional[int] = activation _UpperCamelCase : Union[str, Any] = initializer_range _UpperCamelCase : Union[str, Any] = qa_dropout _UpperCamelCase : Union[str, Any] = seq_classif_dropout super().__init__(**__snake_case , pad_token_id=__snake_case) class lowercase ( _lowercase ): """simple docstring""" @property def A__ ( self): if self.task == "multiple-choice": _UpperCamelCase : Optional[int] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCamelCase : List[str] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ])
648
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowercase ( _lowercase ): """simple docstring""" a__ = "facebook/bart-large-mnli" a__ = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) a__ = "text_classifier" a__ = AutoTokenizer a__ = AutoModelForSequenceClassification a__ = ["text", ["text"]] a__ = ["text"] def A__ ( self): super().setup() _UpperCamelCase : List[Any] = self.model.config _UpperCamelCase : Optional[int] = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail'): _UpperCamelCase : Tuple = int(__snake_case) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.') def A__ ( self , __snake_case , __snake_case): _UpperCamelCase : List[Any] = labels return self.pre_processor( [text] * len(__snake_case) , [f'''This example is {label}''' for label in labels] , return_tensors='pt' , padding='max_length' , ) def A__ ( self , __snake_case): _UpperCamelCase : str = outputs.logits _UpperCamelCase : Optional[Any] = torch.argmax(logits[:, 2]).item() return self._labels[label_id]
648
1
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class lowercase : """simple docstring""" a__ = BlenderbotSmallConfig a__ = {} a__ = "gelu" def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=False , __snake_case=99 , __snake_case=32 , __snake_case=2 , __snake_case=4 , __snake_case=37 , __snake_case=0.1 , __snake_case=0.1 , __snake_case=20 , __snake_case=2 , __snake_case=1 , __snake_case=0 , ): _UpperCamelCase : List[str] = parent _UpperCamelCase : List[Any] = batch_size _UpperCamelCase : Any = seq_length _UpperCamelCase : Tuple = is_training _UpperCamelCase : List[str] = use_labels _UpperCamelCase : Dict = vocab_size _UpperCamelCase : Optional[Any] = hidden_size _UpperCamelCase : Any = num_hidden_layers _UpperCamelCase : Optional[Any] = num_attention_heads _UpperCamelCase : Union[str, Any] = intermediate_size _UpperCamelCase : List[str] = hidden_dropout_prob _UpperCamelCase : Union[str, Any] = attention_probs_dropout_prob _UpperCamelCase : int = max_position_embeddings _UpperCamelCase : Optional[int] = eos_token_id _UpperCamelCase : List[Any] = pad_token_id _UpperCamelCase : Optional[Any] = bos_token_id def A__ ( self): _UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) _UpperCamelCase : int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size) , 1) _UpperCamelCase : List[Any] = tf.concat([input_ids, eos_tensor] , axis=1) _UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase : int = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _UpperCamelCase : Any = prepare_blenderbot_small_inputs_dict(__snake_case , __snake_case , __snake_case) return config, inputs_dict def A__ ( self , __snake_case , __snake_case): _UpperCamelCase : Tuple = TFBlenderbotSmallModel(config=__snake_case).get_decoder() _UpperCamelCase : Dict = inputs_dict['input_ids'] _UpperCamelCase : Optional[int] = input_ids[:1, :] _UpperCamelCase : List[Any] = inputs_dict['attention_mask'][:1, :] _UpperCamelCase : Union[str, Any] = inputs_dict['head_mask'] _UpperCamelCase : Tuple = 1 # first forward pass _UpperCamelCase : Tuple = model(__snake_case , attention_mask=__snake_case , head_mask=__snake_case , use_cache=__snake_case) _UpperCamelCase , _UpperCamelCase : Optional[Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCamelCase : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size) _UpperCamelCase : Tuple = tf.cast(ids_tensor((self.batch_size, 3) , 2) , tf.inta) # append to next input_ids and _UpperCamelCase : Any = tf.concat([input_ids, next_tokens] , axis=-1) _UpperCamelCase : List[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1) _UpperCamelCase : Union[str, Any] = model(__snake_case , attention_mask=__snake_case)[0] _UpperCamelCase : Union[str, Any] = model(__snake_case , attention_mask=__snake_case , past_key_values=__snake_case)[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1]) # select random slice _UpperCamelCase : Optional[Any] = int(ids_tensor((1,) , output_from_past.shape[-1])) _UpperCamelCase : int = output_from_no_past[:, -3:, random_slice_idx] _UpperCamelCase : Optional[int] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__snake_case , __snake_case , rtol=1e-3) def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Dict=None , ) -> Any: '''simple docstring''' if attention_mask is None: _UpperCamelCase : Optional[int] = tf.cast(tf.math.not_equal(UpperCAmelCase_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _UpperCamelCase : List[Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _UpperCamelCase : Any = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _UpperCamelCase : str = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _UpperCamelCase : Optional[int] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) a__ = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () a__ = ( { "conversational": TFBlenderbotSmallForConditionalGeneration, "feature-extraction": TFBlenderbotSmallModel, "summarization": TFBlenderbotSmallForConditionalGeneration, "text2text-generation": TFBlenderbotSmallForConditionalGeneration, "translation": TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) a__ = True a__ = False a__ = False def A__ ( self): _UpperCamelCase : Tuple = TFBlenderbotSmallModelTester(self) _UpperCamelCase : Any = ConfigTester(self , config_class=__snake_case) def A__ ( self): self.config_tester.run_common_tests() def A__ ( self): _UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__snake_case) @require_tokenizers @require_tf class lowercase ( unittest.TestCase ): """simple docstring""" a__ = [ "Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like " " i'm going to throw up.\nand why is that?" ] a__ = "facebook/blenderbot_small-90M" @cached_property def A__ ( self): # use "old" tokenizer here because of bug when downloading new tokenizer return BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M') @cached_property def A__ ( self): _UpperCamelCase : str = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name) return model @slow def A__ ( self): _UpperCamelCase : Optional[int] = self.tokenizer(self.src_text , return_tensors='tf') _UpperCamelCase : List[str] = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__snake_case , ) _UpperCamelCase : Dict = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__snake_case)[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
648
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
648
1
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params lowerCAmelCase__ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["""memory_attention""", """encoder_attn"""], ["""attention""", """attn"""], ["""/""", """."""], [""".LayerNorm.gamma""", """_layer_norm.weight"""], [""".LayerNorm.beta""", """_layer_norm.bias"""], ["""r.layer_""", """r.layers."""], ["""output_proj""", """out_proj"""], ["""ffn.dense_1.""", """fc2."""], ["""ffn.dense.""", """fc1."""], ["""ffn_layer_norm""", """final_layer_norm"""], ["""kernel""", """weight"""], ["""encoder_layer_norm.""", """encoder.layer_norm."""], ["""decoder_layer_norm.""", """decoder.layer_norm."""], ["""embeddings.weights""", """shared.weight"""], ] def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' for pegasus_name, hf_name in PATTERNS: _UpperCamelCase : str = k.replace(UpperCAmelCase_ , UpperCAmelCase_ ) return k def lowerCamelCase_ ( UpperCAmelCase_ : dict , UpperCAmelCase_ : dict ) -> PegasusForConditionalGeneration: '''simple docstring''' _UpperCamelCase : List[str] = DEFAULTS.copy() cfg_kwargs.update(UpperCAmelCase_ ) _UpperCamelCase : int = PegasusConfig(**UpperCAmelCase_ ) _UpperCamelCase : int = PegasusForConditionalGeneration(UpperCAmelCase_ ) _UpperCamelCase : str = torch_model.model.state_dict() _UpperCamelCase : List[Any] = {} for k, v in tf_weights.items(): _UpperCamelCase : List[Any] = rename_state_dict_key(UpperCAmelCase_ ) if new_k not in sd: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: _UpperCamelCase : int = v.T _UpperCamelCase : Union[str, Any] = torch.tensor(UpperCAmelCase_ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected _UpperCamelCase : List[Any] = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) _UpperCamelCase : List[str] = mapping['shared.weight'] _UpperCamelCase : List[Any] = mapping['shared.weight'] _UpperCamelCase : Union[str, Any] = {k: torch.zeros_like(UpperCAmelCase_ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**UpperCAmelCase_ ) _UpperCamelCase , _UpperCamelCase : List[str] = torch_model.model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def lowerCamelCase_ ( UpperCAmelCase_ : Dict="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: '''simple docstring''' _UpperCamelCase : str = tf.train.list_variables(UpperCAmelCase_ ) _UpperCamelCase : Tuple = {} _UpperCamelCase : List[Any] = ['Adafactor', 'global_step'] for name, shape in tqdm(UpperCAmelCase_ , desc='converting tf checkpoint to dict' ): _UpperCamelCase : List[str] = any(pat in name for pat in ignore_name ) if skip_key: continue _UpperCamelCase : Tuple = tf.train.load_variable(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = array return tf_weights def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase : Optional[Any] = Path(UpperCAmelCase_ ).parent.name _UpperCamelCase : Tuple = task_specific_params[F'''summarization_{dataset}''']['max_position_embeddings'] _UpperCamelCase : List[Any] = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=UpperCAmelCase_ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(UpperCAmelCase_ ) # convert model _UpperCamelCase : Union[str, Any] = get_tf_weights_as_numpy(UpperCAmelCase_ ) _UpperCamelCase : str = task_specific_params[F'''summarization_{dataset}'''] if dataset == "large": _UpperCamelCase : Optional[Any] = task_specific_params _UpperCamelCase : List[str] = convert_pegasus(UpperCAmelCase_ , UpperCAmelCase_ ) torch_model.save_pretrained(UpperCAmelCase_ ) _UpperCamelCase : List[str] = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(UpperCAmelCase_ , Path(UpperCAmelCase_ ) / 'pytorch_model.bin' ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("""tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") lowerCAmelCase__ = parser.parse_args() if args.save_dir is None: lowerCAmelCase__ = Path(args.tf_ckpt_path).parent.name lowerCAmelCase__ = os.path.join("""pegasus""", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
648
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
648
1
from __future__ import annotations def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> list[str]: '''simple docstring''' if partitions <= 0: raise ValueError('partitions must be a positive number!' ) if partitions > number_of_bytes: raise ValueError('partitions can not > number_of_bytes!' ) _UpperCamelCase : List[Any] = number_of_bytes // partitions _UpperCamelCase : Optional[Any] = [] for i in range(UpperCAmelCase_ ): _UpperCamelCase : Any = i * bytes_per_partition + 1 _UpperCamelCase : Tuple = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(F'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
648
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_sentencepiece_available(): import sentencepiece as sp lowerCAmelCase__ = 5 lowerCAmelCase__ = 1_0 @require_sentencepiece @require_tokenizers class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" a__ = SpeechaTextTokenizer a__ = False a__ = True def A__ ( self): super().setUp() _UpperCamelCase : Any = sp.SentencePieceProcessor() spm_model.Load(__snake_case) _UpperCamelCase : List[str] = ['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_) for id_ in range(len(__snake_case))] _UpperCamelCase : Dict = dict(zip(__snake_case , range(len(__snake_case)))) _UpperCamelCase : Tuple = Path(self.tmpdirname) save_json(__snake_case , save_dir / VOCAB_FILES_NAMES['vocab_file']) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__snake_case , save_dir / VOCAB_FILES_NAMES['spm_file']) _UpperCamelCase : int = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def A__ ( self): _UpperCamelCase : str = '<pad>' _UpperCamelCase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case) , __snake_case) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case) , __snake_case) def A__ ( self): _UpperCamelCase : Optional[Any] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(vocab_keys[-1] , 'j') self.assertEqual(len(__snake_case) , 10_01) def A__ ( self): self.assertEqual(self.get_tokenizer().vocab_size , 10_01) def A__ ( self): _UpperCamelCase : Any = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) _UpperCamelCase : List[str] = tokenizer.tokenize('This is a test') self.assertListEqual(__snake_case , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case) , [2_89, 50, 14, 1_74, 3_86] , ) _UpperCamelCase : int = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( __snake_case , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) _UpperCamelCase : int = tokenizer.convert_tokens_to_ids(__snake_case) self.assertListEqual(__snake_case , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8]) _UpperCamelCase : Tuple = tokenizer.convert_ids_to_tokens(__snake_case) self.assertListEqual( __snake_case , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def A__ ( self): # fmt: off _UpperCamelCase : Optional[int] = {'input_ids': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , ) @require_sentencepiece class lowercase ( unittest.TestCase ): """simple docstring""" a__ = "valhalla/s2t_mustc_multilinguial_medium" a__ = "C'est trop cool" a__ = "Esto es genial" @classmethod def A__ ( cls): _UpperCamelCase : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name) return cls def A__ ( self): self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4) self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6) self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9) self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11) def A__ ( self): self.assertEqual(self.tokenizer.vocab_size , 1_00_00) def A__ ( self): self.assertIn(__snake_case , self.tokenizer.all_special_ids) _UpperCamelCase : Optional[int] = [ES_CODE, 4, 16_01, 47, 76_47, 2] _UpperCamelCase : Tuple = self.tokenizer.decode(__snake_case , skip_special_tokens=__snake_case) _UpperCamelCase : Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__snake_case) self.assertEqual(__snake_case , __snake_case) self.assertNotIn(self.tokenizer.eos_token , __snake_case) def A__ ( self): _UpperCamelCase : Any = 'fr' _UpperCamelCase : List[Any] = self.tokenizer(self.french_text).input_ids self.assertEqual(encoded[0] , __snake_case) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id) def A__ ( self): _UpperCamelCase : Union[str, Any] = 'fr' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE]) _UpperCamelCase : List[str] = 'es' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE])
648
1
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def lowerCamelCase_ ( UpperCAmelCase_ : Any ) -> List[Any]: '''simple docstring''' if not is_accelerate_available(): return method _UpperCamelCase : str = version.parse(accelerate.__version__ ).base_version if version.parse(UpperCAmelCase_ ) < version.parse('0.17.0' ): return method def wrapper(self : Tuple , *UpperCAmelCase_ : int , **UpperCAmelCase_ : str ): if hasattr(self , '_hf_hook' ) and hasattr(self._hf_hook , 'pre_forward' ): self._hf_hook.pre_forward(self ) return method(self , *UpperCAmelCase_ , **UpperCAmelCase_ ) return wrapper
648
import logging from transformers.configuration_utils import PretrainedConfig lowerCAmelCase__ = logging.getLogger(__name__) class lowercase ( _lowercase ): """simple docstring""" a__ = "masked_bert" def __init__( self , __snake_case=3_05_22 , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=0 , __snake_case="topK" , __snake_case="constant" , __snake_case=0.0 , **__snake_case , ): super().__init__(pad_token_id=__snake_case , **__snake_case) _UpperCamelCase : List[Any] = vocab_size _UpperCamelCase : Union[str, Any] = hidden_size _UpperCamelCase : Optional[int] = num_hidden_layers _UpperCamelCase : Any = num_attention_heads _UpperCamelCase : int = hidden_act _UpperCamelCase : str = intermediate_size _UpperCamelCase : str = hidden_dropout_prob _UpperCamelCase : Any = attention_probs_dropout_prob _UpperCamelCase : Tuple = max_position_embeddings _UpperCamelCase : Dict = type_vocab_size _UpperCamelCase : str = initializer_range _UpperCamelCase : List[Any] = layer_norm_eps _UpperCamelCase : Tuple = pruning_method _UpperCamelCase : Tuple = mask_init _UpperCamelCase : Dict = mask_scale
648
1
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case=13 , __snake_case=30 , __snake_case=2 , __snake_case=3 , __snake_case=True , __snake_case=True , __snake_case=32 , __snake_case=2 , __snake_case=4 , __snake_case=37 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=10 , __snake_case=0.0_2 , __snake_case=3 , __snake_case=None , ): _UpperCamelCase : Tuple = parent _UpperCamelCase : str = batch_size _UpperCamelCase : Tuple = image_size _UpperCamelCase : int = patch_size _UpperCamelCase : List[Any] = num_channels _UpperCamelCase : Dict = is_training _UpperCamelCase : Optional[Any] = use_labels _UpperCamelCase : int = hidden_size _UpperCamelCase : Dict = num_hidden_layers _UpperCamelCase : str = num_attention_heads _UpperCamelCase : Optional[int] = intermediate_size _UpperCamelCase : str = hidden_act _UpperCamelCase : str = hidden_dropout_prob _UpperCamelCase : Any = attention_probs_dropout_prob _UpperCamelCase : Tuple = type_sequence_label_size _UpperCamelCase : Dict = initializer_range _UpperCamelCase : Optional[Any] = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCamelCase : Optional[Any] = (image_size // patch_size) ** 2 _UpperCamelCase : Any = num_patches + 1 def A__ ( self): _UpperCamelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase : List[Any] = None if self.use_labels: _UpperCamelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase : Any = self.get_config() return config, pixel_values, labels def A__ ( self): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : List[str] = TFViTModel(config=__snake_case) _UpperCamelCase : int = model(__snake_case , training=__snake_case) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) # Test with an image with different size than the one specified in config. _UpperCamelCase : Any = self.image_size // 2 _UpperCamelCase : List[str] = pixel_values[:, :, :image_size, :image_size] _UpperCamelCase : Tuple = model(__snake_case , interpolate_pos_encoding=__snake_case , training=__snake_case) _UpperCamelCase : Any = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size)) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : int = self.type_sequence_label_size _UpperCamelCase : int = TFViTForImageClassification(__snake_case) _UpperCamelCase : Optional[Any] = model(__snake_case , labels=__snake_case , training=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # Test with an image with different size than the one specified in config. _UpperCamelCase : Dict = self.image_size // 2 _UpperCamelCase : List[str] = pixel_values[:, :, :image_size, :image_size] _UpperCamelCase : List[str] = model(__snake_case , interpolate_pos_encoding=__snake_case , training=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images _UpperCamelCase : Union[str, Any] = 1 _UpperCamelCase : List[str] = TFViTForImageClassification(__snake_case) _UpperCamelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _UpperCamelCase : List[Any] = model(__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def A__ ( self): _UpperCamelCase : Any = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[int] = config_and_inputs _UpperCamelCase : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () a__ = ( {"feature-extraction": TFViTModel, "image-classification": TFViTForImageClassification} if is_tf_available() else {} ) a__ = False a__ = False a__ = False def A__ ( self): _UpperCamelCase : List[str] = TFViTModelTester(self) _UpperCamelCase : Union[str, Any] = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=37) def A__ ( self): self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds') def A__ ( self): pass @unittest.skip(reason='ViT does not use inputs_embeds') def A__ ( self): pass def A__ ( self): _UpperCamelCase , _UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : int = model_class(__snake_case) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer)) _UpperCamelCase : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case , tf.keras.layers.Layer)) def A__ ( self): _UpperCamelCase , _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : List[Any] = model_class(__snake_case) _UpperCamelCase : Optional[int] = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : Union[str, Any] = [*signature.parameters.keys()] _UpperCamelCase : int = ['pixel_values'] self.assertListEqual(arg_names[:1] , __snake_case) def A__ ( self): _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case) def A__ ( self): _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case) @slow def A__ ( self): _UpperCamelCase : Optional[int] = TFViTModel.from_pretrained('google/vit-base-patch16-224') self.assertIsNotNone(__snake_case) def lowerCamelCase_ ( ) -> List[Any]: '''simple docstring''' _UpperCamelCase : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self): return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224') if is_vision_available() else None @slow def A__ ( self): _UpperCamelCase : Dict = TFViTForImageClassification.from_pretrained('google/vit-base-patch16-224') _UpperCamelCase : Dict = self.default_image_processor _UpperCamelCase : List[Any] = prepare_img() _UpperCamelCase : List[str] = image_processor(images=__snake_case , return_tensors='tf') # forward pass _UpperCamelCase : Optional[Any] = model(**__snake_case) # verify the logits _UpperCamelCase : int = tf.TensorShape((1, 10_00)) self.assertEqual(outputs.logits.shape , __snake_case) _UpperCamelCase : Dict = tf.constant([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6]) tf.debugging.assert_near(outputs.logits[0, :3] , __snake_case , atol=1e-4)
648
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow lowerCAmelCase__ = False class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self , __snake_case=32): set_seed(0) _UpperCamelCase : int = UNetaDModel(sample_size=__snake_case , in_channels=3 , out_channels=3) _UpperCamelCase : str = torch.optim.SGD(model.parameters() , lr=0.0_0_0_1) return model, optimizer @slow def A__ ( self): _UpperCamelCase : Tuple = 'cpu' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable _UpperCamelCase : List[Any] = DDPMScheduler( num_train_timesteps=10_00 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='linear' , clip_sample=__snake_case , ) _UpperCamelCase : List[Any] = DDIMScheduler( num_train_timesteps=10_00 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='linear' , clip_sample=__snake_case , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0) _UpperCamelCase : Optional[Any] = [torch.randn((4, 3, 32, 32)).clip(-1 , 1).to(__snake_case) for _ in range(4)] _UpperCamelCase : str = [torch.randn((4, 3, 32, 32)).to(__snake_case) for _ in range(4)] _UpperCamelCase : int = [torch.randint(0 , 10_00 , (4,)).long().to(__snake_case) for _ in range(4)] # train with a DDPM scheduler _UpperCamelCase , _UpperCamelCase : List[Any] = self.get_model_optimizer(resolution=32) model.train().to(__snake_case) for i in range(4): optimizer.zero_grad() _UpperCamelCase : int = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) _UpperCamelCase : Any = model(__snake_case , timesteps[i]).sample _UpperCamelCase : str = torch.nn.functional.mse_loss(__snake_case , noise[i]) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM _UpperCamelCase , _UpperCamelCase : Union[str, Any] = self.get_model_optimizer(resolution=32) model.train().to(__snake_case) for i in range(4): optimizer.zero_grad() _UpperCamelCase : Dict = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) _UpperCamelCase : Dict = model(__snake_case , timesteps[i]).sample _UpperCamelCase : Tuple = torch.nn.functional.mse_loss(__snake_case , noise[i]) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1e-5)) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1e-5))
648
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = """▁""" lowerCAmelCase__ = {"""vocab_file""": """sentencepiece.bpe.model"""} lowerCAmelCase__ = { """vocab_file""": { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model""" ), } } lowerCAmelCase__ = { """xlm-roberta-base""": 5_1_2, """xlm-roberta-large""": 5_1_2, """xlm-roberta-large-finetuned-conll02-dutch""": 5_1_2, """xlm-roberta-large-finetuned-conll02-spanish""": 5_1_2, """xlm-roberta-large-finetuned-conll03-english""": 5_1_2, """xlm-roberta-large-finetuned-conll03-german""": 5_1_2, } class lowercase ( _lowercase ): """simple docstring""" a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = ["input_ids", "attention_mask"] def __init__( self , __snake_case , __snake_case="<s>" , __snake_case="</s>" , __snake_case="</s>" , __snake_case="<s>" , __snake_case="<unk>" , __snake_case="<pad>" , __snake_case="<mask>" , __snake_case = None , **__snake_case , ): # Mask token behave like a normal word, i.e. include the space before it _UpperCamelCase : Dict = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case) if isinstance(__snake_case , __snake_case) else mask_token _UpperCamelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) _UpperCamelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(__snake_case)) _UpperCamelCase : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _UpperCamelCase : int = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _UpperCamelCase : List[Any] = 1 _UpperCamelCase : Any = len(self.sp_model) + self.fairseq_offset _UpperCamelCase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self): _UpperCamelCase : List[Any] = self.__dict__.copy() _UpperCamelCase : Optional[Any] = None _UpperCamelCase : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self , __snake_case): _UpperCamelCase : int = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): _UpperCamelCase : Tuple = {} _UpperCamelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) def A__ ( self , __snake_case , __snake_case = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCamelCase : Tuple = [self.cls_token_id] _UpperCamelCase : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self , __snake_case , __snake_case = None , __snake_case = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case) if token_ids_a is None: return [1] + ([0] * len(__snake_case)) + [1] return [1] + ([0] * len(__snake_case)) + [1, 1] + ([0] * len(__snake_case)) + [1] def A__ ( self , __snake_case , __snake_case = None): _UpperCamelCase : Optional[Any] = [self.sep_token_id] _UpperCamelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def A__ ( self): return len(self.sp_model) + self.fairseq_offset + 1 # Add the <mask> token def A__ ( self): _UpperCamelCase : List[str] = {self.convert_ids_to_tokens(__snake_case): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def A__ ( self , __snake_case): return self.sp_model.encode(__snake_case , out_type=__snake_case) def A__ ( self , __snake_case): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCamelCase : str = self.sp_model.PieceToId(__snake_case) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A__ ( self , __snake_case): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def A__ ( self , __snake_case): _UpperCamelCase : Optional[int] = ''.join(__snake_case).replace(__snake_case , ' ').strip() return out_string def A__ ( self , __snake_case , __snake_case = None): if not os.path.isdir(__snake_case): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return _UpperCamelCase : str = os.path.join( __snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(__snake_case) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , __snake_case) elif not os.path.isfile(self.vocab_file): with open(__snake_case , 'wb') as fi: _UpperCamelCase : Any = self.sp_model.serialized_model_proto() fi.write(__snake_case) return (out_vocab_file,)
648
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) lowerCAmelCase__ = { """sample_size""": 3_2, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 1_0_0_0, """block_out_channels""": [3_2, 6_4], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """sample_size""": 6_4, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 1_0_0_0, """block_out_channels""": [1_9_2, 1_9_2 * 2, 1_9_2 * 3, 1_9_2 * 4], """attention_head_dim""": 6_4, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """sample_size""": 2_5_6, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [2_5_6, 2_5_6, 2_5_6 * 2, 2_5_6 * 2, 2_5_6 * 4, 2_5_6 * 4], """attention_head_dim""": 6_4, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """num_train_timesteps""": 4_0, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } lowerCAmelCase__ = { """num_train_timesteps""": 2_0_1, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } lowerCAmelCase__ = { """num_train_timesteps""": 1_5_1, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> List[str]: '''simple docstring''' if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def lowerCamelCase_ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any]=False ) -> str: '''simple docstring''' _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.in_layers.0.weight'''] _UpperCamelCase : str = checkpoint[F'''{old_prefix}.in_layers.0.bias'''] _UpperCamelCase : str = checkpoint[F'''{old_prefix}.in_layers.2.weight'''] _UpperCamelCase : Union[str, Any] = checkpoint[F'''{old_prefix}.in_layers.2.bias'''] _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.emb_layers.1.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.emb_layers.1.bias'''] _UpperCamelCase : Tuple = checkpoint[F'''{old_prefix}.out_layers.0.weight'''] _UpperCamelCase : List[Any] = checkpoint[F'''{old_prefix}.out_layers.0.bias'''] _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.out_layers.3.weight'''] _UpperCamelCase : Union[str, Any] = checkpoint[F'''{old_prefix}.out_layers.3.bias'''] if has_skip: _UpperCamelCase : Tuple = checkpoint[F'''{old_prefix}.skip_connection.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any=None ) -> int: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 ) _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.norm.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.norm.bias'''] _UpperCamelCase : List[str] = weight_q.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Dict = bias_q.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Any = weight_k.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : List[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Dict = weight_v.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Tuple = bias_v.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Optional[Any] = ( checkpoint[F'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] ) -> Tuple: '''simple docstring''' _UpperCamelCase : Any = torch.load(UpperCAmelCase_ , map_location='cpu' ) _UpperCamelCase : Union[str, Any] = {} _UpperCamelCase : Optional[int] = checkpoint['time_embed.0.weight'] _UpperCamelCase : List[Any] = checkpoint['time_embed.0.bias'] _UpperCamelCase : Dict = checkpoint['time_embed.2.weight'] _UpperCamelCase : Optional[Any] = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: _UpperCamelCase : List[str] = checkpoint['label_emb.weight'] _UpperCamelCase : Optional[int] = checkpoint['input_blocks.0.0.weight'] _UpperCamelCase : Union[str, Any] = checkpoint['input_blocks.0.0.bias'] _UpperCamelCase : Optional[int] = unet_config['down_block_types'] _UpperCamelCase : Optional[Any] = unet_config['layers_per_block'] _UpperCamelCase : Dict = unet_config['attention_head_dim'] _UpperCamelCase : List[str] = unet_config['block_out_channels'] _UpperCamelCase : str = 1 _UpperCamelCase : Optional[int] = channels_list[0] for i, layer_type in enumerate(UpperCAmelCase_ ): _UpperCamelCase : List[str] = channels_list[i] _UpperCamelCase : str = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(UpperCAmelCase_ ): _UpperCamelCase : str = F'''down_blocks.{i}.resnets.{j}''' _UpperCamelCase : List[Any] = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : Any = True if j == 0 and downsample_block_has_skip else False _UpperCamelCase : str = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(UpperCAmelCase_ ): _UpperCamelCase : List[str] = F'''down_blocks.{i}.resnets.{j}''' _UpperCamelCase : str = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : int = True if j == 0 and downsample_block_has_skip else False _UpperCamelCase : Any = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) _UpperCamelCase : Dict = F'''down_blocks.{i}.attentions.{j}''' _UpperCamelCase : Optional[int] = F'''input_blocks.{current_layer}.1''' _UpperCamelCase : Dict = convert_attention( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : int = F'''down_blocks.{i}.downsamplers.0''' _UpperCamelCase : Optional[int] = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : List[Any] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 _UpperCamelCase : Tuple = current_channels # hardcoded the mid-block for now _UpperCamelCase : Any = 'mid_block.resnets.0' _UpperCamelCase : Optional[Any] = 'middle_block.0' _UpperCamelCase : Tuple = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = 'mid_block.attentions.0' _UpperCamelCase : Tuple = 'middle_block.1' _UpperCamelCase : Union[str, Any] = convert_attention(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Tuple = 'mid_block.resnets.1' _UpperCamelCase : str = 'middle_block.2' _UpperCamelCase : List[str] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : List[Any] = 0 _UpperCamelCase : Optional[int] = unet_config['up_block_types'] for i, layer_type in enumerate(UpperCAmelCase_ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _UpperCamelCase : Optional[Any] = F'''up_blocks.{i}.resnets.{j}''' _UpperCamelCase : Optional[int] = F'''output_blocks.{current_layer}.0''' _UpperCamelCase : str = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : List[Any] = F'''up_blocks.{i}.upsamplers.0''' _UpperCamelCase : Dict = F'''output_blocks.{current_layer-1}.1''' _UpperCamelCase : Optional[int] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _UpperCamelCase : str = F'''up_blocks.{i}.resnets.{j}''' _UpperCamelCase : Union[str, Any] = F'''output_blocks.{current_layer}.0''' _UpperCamelCase : Optional[int] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) _UpperCamelCase : int = F'''up_blocks.{i}.attentions.{j}''' _UpperCamelCase : List[Any] = F'''output_blocks.{current_layer}.1''' _UpperCamelCase : Optional[int] = convert_attention( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : List[Any] = F'''up_blocks.{i}.upsamplers.0''' _UpperCamelCase : Union[str, Any] = F'''output_blocks.{current_layer-1}.2''' _UpperCamelCase : List[str] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : List[Any] = checkpoint['out.0.weight'] _UpperCamelCase : str = checkpoint['out.0.bias'] _UpperCamelCase : int = checkpoint['out.2.weight'] _UpperCamelCase : List[Any] = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = strabool(args.class_cond) lowerCAmelCase__ = os.path.basename(args.unet_path) print(f'Checkpoint: {ckpt_name}') # Get U-Net config if "imagenet64" in ckpt_name: lowerCAmelCase__ = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCAmelCase__ = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: lowerCAmelCase__ = TEST_UNET_CONFIG else: raise ValueError(f'Checkpoint type {ckpt_name} is not currently supported.') if not args.class_cond: lowerCAmelCase__ = None lowerCAmelCase__ = con_pt_to_diffuser(args.unet_path, unet_config) lowerCAmelCase__ = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: lowerCAmelCase__ = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: lowerCAmelCase__ = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCAmelCase__ = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f'Checkpoint type {ckpt_name} is not currently supported.') lowerCAmelCase__ = CMStochasticIterativeScheduler(**scheduler_config) lowerCAmelCase__ = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
648
1
from typing import TYPE_CHECKING from ...utils import _LazyModule lowerCAmelCase__ = {"""tokenization_bertweet""": ["""BertweetTokenizer"""]} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
648
def lowerCamelCase_ ( UpperCAmelCase_ : list ) -> list: '''simple docstring''' if len(UpperCAmelCase_ ) <= 1: return [tuple(UpperCAmelCase_ )] _UpperCamelCase : List[Any] = [] def generate(UpperCAmelCase_ : int , UpperCAmelCase_ : list ): _UpperCamelCase : Optional[int] = [0] * n res.append(tuple(UpperCAmelCase_ ) ) _UpperCamelCase : List[Any] = 0 while i < n: if c[i] < i: if i % 2 == 0: _UpperCamelCase , _UpperCamelCase : List[str] = arr[i], arr[0] else: _UpperCamelCase , _UpperCamelCase : List[str] = arr[i], arr[c[i]] res.append(tuple(UpperCAmelCase_ ) ) c[i] += 1 _UpperCamelCase : Tuple = 0 else: _UpperCamelCase : Tuple = 0 i += 1 generate(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) return res if __name__ == "__main__": lowerCAmelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCAmelCase__ = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
648
1
import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) set_seed(7_7_0) lowerCAmelCase__ = { """c_attn""": """att_proj""", """c_proj""": """out_proj""", """c_fc""": """in_proj""", """transformer.""": """""", """h.""": """layers.""", """ln_1""": """layernorm_1""", """ln_2""": """layernorm_2""", """ln_f""": """layernorm_final""", """wpe""": """position_embeds_layer""", """wte""": """input_embeds_layer""", } lowerCAmelCase__ = { """text_small""": { """repo_id""": """suno/bark""", """file_name""": """text.pt""", }, """coarse_small""": { """repo_id""": """suno/bark""", """file_name""": """coarse.pt""", }, """fine_small""": { """repo_id""": """suno/bark""", """file_name""": """fine.pt""", }, """text""": { """repo_id""": """suno/bark""", """file_name""": """text_2.pt""", }, """coarse""": { """repo_id""": """suno/bark""", """file_name""": """coarse_2.pt""", }, """fine""": { """repo_id""": """suno/bark""", """file_name""": """fine_2.pt""", }, } lowerCAmelCase__ = os.path.dirname(os.path.abspath(__file__)) lowerCAmelCase__ = os.path.join(os.path.expanduser("""~"""), """.cache""") lowerCAmelCase__ = os.path.join(os.getenv("""XDG_CACHE_HOME""", default_cache_dir), """suno""", """bark_v0""") def lowerCamelCase_ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple=False ) -> Optional[int]: '''simple docstring''' _UpperCamelCase : List[Any] = model_type if use_small: key += "_small" return os.path.join(UpperCAmelCase_ , REMOTE_MODEL_PATHS[key]['file_name'] ) def lowerCamelCase_ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Any ) -> Any: '''simple docstring''' os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) hf_hub_download(repo_id=UpperCAmelCase_ , filename=UpperCAmelCase_ , local_dir=UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : Dict="text" ) -> Optional[int]: '''simple docstring''' if model_type == "text": _UpperCamelCase : Union[str, Any] = BarkSemanticModel _UpperCamelCase : int = BarkSemanticConfig _UpperCamelCase : str = BarkSemanticGenerationConfig elif model_type == "coarse": _UpperCamelCase : Union[str, Any] = BarkCoarseModel _UpperCamelCase : List[Any] = BarkCoarseConfig _UpperCamelCase : Optional[Any] = BarkCoarseGenerationConfig elif model_type == "fine": _UpperCamelCase : Dict = BarkFineModel _UpperCamelCase : Optional[int] = BarkFineConfig _UpperCamelCase : Optional[Any] = BarkFineGenerationConfig else: raise NotImplementedError() _UpperCamelCase : Optional[int] = F'''{model_type}_small''' if use_small else model_type _UpperCamelCase : List[Any] = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(UpperCAmelCase_ ): logger.info(F'''{model_type} model not found, downloading into `{CACHE_DIR}`.''' ) _download(model_info['repo_id'] , model_info['file_name'] ) _UpperCamelCase : Tuple = torch.load(UpperCAmelCase_ , map_location=UpperCAmelCase_ ) # this is a hack _UpperCamelCase : Dict = checkpoint['model_args'] if "input_vocab_size" not in model_args: _UpperCamelCase : List[str] = model_args['vocab_size'] _UpperCamelCase : Any = model_args['vocab_size'] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments _UpperCamelCase : Union[str, Any] = model_args.pop('n_head' ) _UpperCamelCase : Tuple = model_args.pop('n_embd' ) _UpperCamelCase : int = model_args.pop('n_layer' ) _UpperCamelCase : str = ConfigClass(**checkpoint['model_args'] ) _UpperCamelCase : str = ModelClass(config=UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = GenerationConfigClass() _UpperCamelCase : str = model_generation_config _UpperCamelCase : List[Any] = checkpoint['model'] # fixup checkpoint _UpperCamelCase : List[Any] = '_orig_mod.' for k, v in list(state_dict.items() ): if k.startswith(UpperCAmelCase_ ): # replace part of the key with corresponding layer name in HF implementation _UpperCamelCase : List[Any] = k[len(UpperCAmelCase_ ) :] for old_layer_name in new_layer_name_dict: _UpperCamelCase : List[Any] = new_k.replace(UpperCAmelCase_ , new_layer_name_dict[old_layer_name] ) _UpperCamelCase : Union[str, Any] = state_dict.pop(UpperCAmelCase_ ) _UpperCamelCase : int = set(state_dict.keys() ) - set(model.state_dict().keys() ) _UpperCamelCase : Tuple = {k for k in extra_keys if not k.endswith('.attn.bias' )} _UpperCamelCase : Optional[Any] = set(model.state_dict().keys() ) - set(state_dict.keys() ) _UpperCamelCase : str = {k for k in missing_keys if not k.endswith('.attn.bias' )} if len(UpperCAmelCase_ ) != 0: raise ValueError(F'''extra keys found: {extra_keys}''' ) if len(UpperCAmelCase_ ) != 0: raise ValueError(F'''missing keys: {missing_keys}''' ) model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) _UpperCamelCase : List[Any] = model.num_parameters(exclude_embeddings=UpperCAmelCase_ ) _UpperCamelCase : List[str] = checkpoint['best_val_loss'].item() logger.info(F'''model loaded: {round(n_params/1e6 , 1 )}M params, {round(UpperCAmelCase_ , 3 )} loss''' ) model.eval() model.to(UpperCAmelCase_ ) del checkpoint, state_dict return model def lowerCamelCase_ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : int="text" ) -> Dict: '''simple docstring''' if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() _UpperCamelCase : Tuple = 'cpu' # do conversion on cpu _UpperCamelCase : Dict = _get_ckpt_path(UpperCAmelCase_ , use_small=UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = _load_model(UpperCAmelCase_ , UpperCAmelCase_ , model_type=UpperCAmelCase_ , use_small=UpperCAmelCase_ ) # load bark initial model _UpperCamelCase : Tuple = _bark_load_model(UpperCAmelCase_ , 'cpu' , model_type=UpperCAmelCase_ , use_small=UpperCAmelCase_ ) if model_type == "text": _UpperCamelCase : Any = bark_model['model'] if model.num_parameters(exclude_embeddings=UpperCAmelCase_ ) != bark_model.get_num_params(): raise ValueError('initial and new models don\'t have the same number of parameters' ) # check if same output as the bark model _UpperCamelCase : Optional[int] = 5 _UpperCamelCase : Optional[int] = 1_0 if model_type in ["text", "coarse"]: _UpperCamelCase : Dict = torch.randint(2_5_6 , (batch_size, sequence_length) , dtype=torch.int ) _UpperCamelCase : Union[str, Any] = bark_model(UpperCAmelCase_ )[0] _UpperCamelCase : List[Any] = model(UpperCAmelCase_ ) # take last logits _UpperCamelCase : int = output_new_model_total.logits[:, [-1], :] else: _UpperCamelCase : List[str] = 3 _UpperCamelCase : List[str] = 8 _UpperCamelCase : Optional[int] = torch.randint(2_5_6 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) _UpperCamelCase : int = model(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : int = bark_model(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : List[Any] = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('initial and new outputs don\'t have the same shape' ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError('initial and new outputs are not equal' ) Path(UpperCAmelCase_ ).mkdir(exist_ok=UpperCAmelCase_ ) model.save_pretrained(UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] , ) -> List[Any]: '''simple docstring''' _UpperCamelCase : List[Any] = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Tuple = BarkSemanticConfig.from_pretrained(os.path.join(UpperCAmelCase_ , 'config.json' ) ) _UpperCamelCase : Tuple = BarkCoarseConfig.from_pretrained(os.path.join(UpperCAmelCase_ , 'config.json' ) ) _UpperCamelCase : int = BarkFineConfig.from_pretrained(os.path.join(UpperCAmelCase_ , 'config.json' ) ) _UpperCamelCase : Optional[Any] = EncodecConfig.from_pretrained('facebook/encodec_24khz' ) _UpperCamelCase : int = BarkSemanticModel.from_pretrained(UpperCAmelCase_ ) _UpperCamelCase : Dict = BarkCoarseModel.from_pretrained(UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = BarkFineModel.from_pretrained(UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = EncodecModel.from_pretrained('facebook/encodec_24khz' ) _UpperCamelCase : List[str] = BarkConfig.from_sub_model_configs( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Union[str, Any] = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) _UpperCamelCase : Tuple = BarkModel(UpperCAmelCase_ ) _UpperCamelCase : List[str] = semantic _UpperCamelCase : List[Any] = coarseAcoustic _UpperCamelCase : Union[str, Any] = fineAcoustic _UpperCamelCase : Tuple = codec _UpperCamelCase : Dict = bark_generation_config Path(UpperCAmelCase_ ).mkdir(exist_ok=UpperCAmelCase_ ) bark.save_pretrained(UpperCAmelCase_ , repo_id=UpperCAmelCase_ , push_to_hub=UpperCAmelCase_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("""model_type""", type=str, help="""text, coarse or fine.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--is_small""", action="""store_true""", help="""convert the small version instead of the large.""") lowerCAmelCase__ = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
648
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = [ ["""attention""", """attn"""], ["""encoder_attention""", """encoder_attn"""], ["""q_lin""", """q_proj"""], ["""k_lin""", """k_proj"""], ["""v_lin""", """v_proj"""], ["""out_lin""", """out_proj"""], ["""norm_embeddings""", """layernorm_embedding"""], ["""position_embeddings""", """embed_positions"""], ["""embeddings""", """embed_tokens"""], ["""ffn.lin""", """fc"""], ] def lowerCamelCase_ ( UpperCAmelCase_ : List[Any] ) -> Optional[int]: '''simple docstring''' if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: _UpperCamelCase : List[Any] = k.replace(UpperCAmelCase_ , UpperCAmelCase_ ) if k.startswith('encoder' ): _UpperCamelCase : Optional[Any] = k.replace('.attn' , '.self_attn' ) _UpperCamelCase : Optional[int] = k.replace('norm1' , 'self_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): _UpperCamelCase : Any = k.replace('norm1' , 'self_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm2' , 'encoder_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm3' , 'final_layer_norm' ) return k def lowerCamelCase_ ( UpperCAmelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Union[str, Any] = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: _UpperCamelCase : Optional[int] = sd.pop(UpperCAmelCase_ ) _UpperCamelCase : str = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd _UpperCamelCase : Tuple = v lowerCAmelCase__ = ["""START"""] @torch.no_grad() def lowerCamelCase_ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ) -> List[str]: '''simple docstring''' _UpperCamelCase : Optional[Any] = torch.load(UpperCAmelCase_ , map_location='cpu' ) _UpperCamelCase : int = model['model'] _UpperCamelCase : List[Any] = BlenderbotConfig.from_json_file(UpperCAmelCase_ ) _UpperCamelCase : Any = BlenderbotForConditionalGeneration(UpperCAmelCase_ ) _UpperCamelCase : int = m.model.state_dict().keys() _UpperCamelCase : Union[str, Any] = [] _UpperCamelCase : int = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue _UpperCamelCase : Optional[int] = rename_state_dict_key(UpperCAmelCase_ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: _UpperCamelCase : int = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(UpperCAmelCase_ ) m.model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) m.half() m.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("""--src_path""", type=str, help="""like blenderbot-model.bin""") parser.add_argument("""--save_dir""", default="""hf_blenderbot""", type=str, help="""Where to save converted model.""") parser.add_argument( """--hf_config_json""", default="""blenderbot-3b-config.json""", type=str, help="""Path to config to use""" ) lowerCAmelCase__ = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
648
1
import torch from diffusers import DiffusionPipeline class lowercase ( _lowercase ): """simple docstring""" def __init__( self , __snake_case , __snake_case): super().__init__() self.register_modules(unet=__snake_case , scheduler=__snake_case) def __call__( self): _UpperCamelCase : Optional[int] = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) _UpperCamelCase : Any = 1 _UpperCamelCase : Optional[Any] = self.unet(__snake_case , __snake_case).sample _UpperCamelCase : Tuple = self.scheduler.step(__snake_case , __snake_case , __snake_case).prev_sample _UpperCamelCase : List[str] = scheduler_output - scheduler_output + torch.ones_like(__snake_case) return result
648
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer lowerCAmelCase__ = ["""bert-base-uncased""", """bert-base-cased"""] lowerCAmelCase__ = """hf-internal-testing/tiny-bert-tf-only""" if is_tf_available(): class lowercase ( tf.keras.Model ): """simple docstring""" def __init__( self , __snake_case): super().__init__() _UpperCamelCase : List[Any] = tokenizer _UpperCamelCase : List[Any] = AutoConfig.from_pretrained(__snake_case) _UpperCamelCase : Dict = TFAutoModel.from_config(__snake_case) def A__ ( self , __snake_case): _UpperCamelCase : Any = self.tokenizer(__snake_case) _UpperCamelCase : Dict = self.bert(**__snake_case) return out["pooler_output"] @require_tf @require_tensorflow_text class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self): super().setUp() _UpperCamelCase : Optional[Any] = [ BertTokenizer.from_pretrained(__snake_case) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false _UpperCamelCase : Optional[Any] = [TFBertTokenizer.from_pretrained(__snake_case) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(__snake_case , use_fast_bert_tokenizer=__snake_case) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers) == len(self.tf_tokenizers) _UpperCamelCase : Optional[Any] = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] _UpperCamelCase : Dict = list(zip(self.test_sentences , self.test_sentences[::-1])) def A__ ( self): for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers): for test_inputs in (self.test_sentences, self.paired_sentences): _UpperCamelCase : List[str] = tokenizer(__snake_case , return_tensors='tf' , padding='longest') _UpperCamelCase : Tuple = tf_tokenizer(__snake_case) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape)) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa) == tf_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Tuple = tf_tokenizer(self.paired_sentences) _UpperCamelCase : Optional[Any] = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa) == separated_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Tuple = tf.function(__snake_case) for test_inputs in (self.test_sentences, self.paired_sentences): _UpperCamelCase : Optional[int] = tf.constant(__snake_case) _UpperCamelCase : Union[str, Any] = compiled_tokenizer(__snake_case) _UpperCamelCase : Tuple = tf_tokenizer(__snake_case) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Any = ModelToSave(tokenizer=__snake_case) _UpperCamelCase : Any = tf.convert_to_tensor(self.test_sentences) _UpperCamelCase : Union[str, Any] = model(__snake_case) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _UpperCamelCase : int = Path(__snake_case) / 'saved.model' model.save(__snake_case) _UpperCamelCase : Optional[int] = tf.keras.models.load_model(__snake_case) _UpperCamelCase : int = loaded_model(__snake_case) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output)) , 1e-5)
648
1
from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand lowerCAmelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name def lowerCamelCase_ ( UpperCAmelCase_ : str ) -> Union[str, Any]: '''simple docstring''' if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(UpperCAmelCase_ ): return ext raise Exception( F'''Unable to determine file format from file extension {path}. ''' F'''Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}''' ) def lowerCamelCase_ ( UpperCAmelCase_ : List[str] ) -> Dict: '''simple docstring''' _UpperCamelCase : Dict = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) _UpperCamelCase : List[str] = try_infer_format_from_ext(args.input ) if args.format == 'infer' else args.format _UpperCamelCase : Any = PipelineDataFormat.from_str( format=UpperCAmelCase_ , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(UpperCAmelCase_ , UpperCAmelCase_ ) class lowercase ( _lowercase ): """simple docstring""" def __init__( self , __snake_case , __snake_case): _UpperCamelCase : List[Any] = nlp _UpperCamelCase : Dict = reader @staticmethod def A__ ( __snake_case): _UpperCamelCase : str = parser.add_parser('run' , help='Run a pipeline through the CLI') run_parser.add_argument('--task' , choices=get_supported_tasks() , help='Task to run') run_parser.add_argument('--input' , type=__snake_case , help='Path to the file to use for inference') run_parser.add_argument('--output' , type=__snake_case , help='Path to the file that will be used post to write results.') run_parser.add_argument('--model' , type=__snake_case , help='Name or path to the model to instantiate.') run_parser.add_argument('--config' , type=__snake_case , help='Name or path to the model\'s config to instantiate.') run_parser.add_argument( '--tokenizer' , type=__snake_case , help='Name of the tokenizer to use. (default: same as the model name)') run_parser.add_argument( '--column' , type=__snake_case , help='Name of the column to use as input. (For multi columns input as QA use column1,columns2)' , ) run_parser.add_argument( '--format' , type=__snake_case , default='infer' , choices=PipelineDataFormat.SUPPORTED_FORMATS , help='Input format to read from' , ) run_parser.add_argument( '--device' , type=__snake_case , default=-1 , help='Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)' , ) run_parser.add_argument('--overwrite' , action='store_true' , help='Allow overwriting the output file.') run_parser.set_defaults(func=__snake_case) def A__ ( self): _UpperCamelCase , _UpperCamelCase : Union[str, Any] = self._nlp, [] for entry in self._reader: _UpperCamelCase : Optional[int] = nlp(**__snake_case) if self._reader.is_multi_columns else nlp(__snake_case) if isinstance(__snake_case , __snake_case): outputs.append(__snake_case) else: outputs += output # Saving data if self._nlp.binary_output: _UpperCamelCase : Any = self._reader.save_binary(__snake_case) logger.warning(f'''Current pipeline requires output to be in binary format, saving at {binary_path}''') else: self._reader.save(__snake_case)
648
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ = { """configuration_canine""": ["""CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CanineConfig"""], """tokenization_canine""": ["""CanineTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """CANINE_PRETRAINED_MODEL_ARCHIVE_LIST""", """CanineForMultipleChoice""", """CanineForQuestionAnswering""", """CanineForSequenceClassification""", """CanineForTokenClassification""", """CanineLayer""", """CanineModel""", """CaninePreTrainedModel""", """load_tf_weights_in_canine""", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
648
1
from typing import TYPE_CHECKING from ...utils import _LazyModule lowerCAmelCase__ = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
648
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case=3 , __snake_case=32 , __snake_case=3 , __snake_case=10 , __snake_case=[8, 16, 32, 64] , __snake_case=[1, 1, 2, 1] , __snake_case=True , __snake_case=True , __snake_case="relu" , __snake_case=3 , __snake_case=None , __snake_case=["stage2", "stage3", "stage4"] , __snake_case=[2, 3, 4] , __snake_case=1 , ): _UpperCamelCase : List[Any] = parent _UpperCamelCase : Dict = batch_size _UpperCamelCase : Optional[int] = image_size _UpperCamelCase : str = num_channels _UpperCamelCase : Optional[Any] = embeddings_size _UpperCamelCase : Tuple = hidden_sizes _UpperCamelCase : Dict = depths _UpperCamelCase : str = is_training _UpperCamelCase : Optional[int] = use_labels _UpperCamelCase : str = hidden_act _UpperCamelCase : Optional[int] = num_labels _UpperCamelCase : Optional[int] = scope _UpperCamelCase : Tuple = len(__snake_case) _UpperCamelCase : Dict = out_features _UpperCamelCase : Union[str, Any] = out_indices _UpperCamelCase : int = num_groups def A__ ( self): _UpperCamelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase : str = None if self.use_labels: _UpperCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels) _UpperCamelCase : str = self.get_config() return config, pixel_values, labels def A__ ( self): return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : str = BitModel(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[Any] = model(__snake_case) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Dict = self.num_labels _UpperCamelCase : Dict = BitForImageClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Dict = model(__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[Any] = BitBackbone(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = model(__snake_case) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:]) # verify backbone works with out_features=None _UpperCamelCase : Any = None _UpperCamelCase : str = BitBackbone(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Any = model(__snake_case) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , 1) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[-1], 1, 1]) # verify channels self.parent.assertEqual(len(model.channels) , 1) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]]) def A__ ( self): _UpperCamelCase : Optional[int] = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : int = config_and_inputs _UpperCamelCase : int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () a__ = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False a__ = False def A__ ( self): _UpperCamelCase : Dict = BitModelTester(self) _UpperCamelCase : Optional[Any] = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case) def A__ ( self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self): return @unittest.skip(reason='Bit does not output attentions') def A__ ( self): pass @unittest.skip(reason='Bit does not use inputs_embeds') def A__ ( self): pass @unittest.skip(reason='Bit does not support input and output embeddings') def A__ ( self): pass def A__ ( self): _UpperCamelCase , _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : int = model_class(__snake_case) _UpperCamelCase : List[Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : Optional[int] = [*signature.parameters.keys()] _UpperCamelCase : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __snake_case) def A__ ( self): _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case) def A__ ( self): _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__snake_case) def A__ ( self): _UpperCamelCase , _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Union[str, Any] = model_class(config=__snake_case) for name, module in model.named_modules(): if isinstance(__snake_case , (nn.BatchNormad, nn.GroupNorm)): self.assertTrue( torch.all(module.weight == 1) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def A__ ( self): def check_hidden_states_output(__snake_case , __snake_case , __snake_case): _UpperCamelCase : str = model_class(__snake_case) model.to(__snake_case) model.eval() with torch.no_grad(): _UpperCamelCase : Union[str, Any] = model(**self._prepare_for_class(__snake_case , __snake_case)) _UpperCamelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase : str = self.model_tester.num_stages self.assertEqual(len(__snake_case) , expected_num_stages + 1) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCamelCase , _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : List[str] = ['preactivation', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _UpperCamelCase : Any = layer_type _UpperCamelCase : Tuple = True check_hidden_states_output(__snake_case , __snake_case , __snake_case) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase : List[str] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case) @unittest.skip(reason='Bit does not use feedforward chunking') def A__ ( self): pass def A__ ( self): _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case) @slow def A__ ( self): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : Optional[Any] = BitModel.from_pretrained(__snake_case) self.assertIsNotNone(__snake_case) def lowerCamelCase_ ( ) -> Optional[int]: '''simple docstring''' _UpperCamelCase : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def A__ ( self): _UpperCamelCase : Optional[Any] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(__snake_case) _UpperCamelCase : str = self.default_image_processor _UpperCamelCase : List[str] = prepare_img() _UpperCamelCase : int = image_processor(images=__snake_case , return_tensors='pt').to(__snake_case) # forward pass with torch.no_grad(): _UpperCamelCase : Any = model(**__snake_case) # verify the logits _UpperCamelCase : Dict = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , __snake_case) _UpperCamelCase : Optional[int] = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]]).to(__snake_case) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1e-4)) @require_torch class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" a__ = (BitBackbone,) if is_torch_available() else () a__ = BitConfig a__ = False def A__ ( self): _UpperCamelCase : List[str] = BitModelTester(self)
648
1
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def lowerCamelCase_ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Any = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' _UpperCamelCase : Tuple = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ).convert('RGB' ) _UpperCamelCase : Optional[Any] = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3) , (0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1) ), ] ) _UpperCamelCase : int = transform(UpperCAmelCase_ ).unsqueeze(0 ).to(UpperCAmelCase_ ) return image def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any] ) -> int: '''simple docstring''' if "visual_encoder" in key: _UpperCamelCase : Union[str, Any] = re.sub('visual_encoder*' , 'vision_model.encoder' , UpperCAmelCase_ ) if "blocks" in key: _UpperCamelCase : Optional[int] = re.sub(R'blocks' , 'layers' , UpperCAmelCase_ ) if "attn" in key: _UpperCamelCase : Dict = re.sub(R'attn' , 'self_attn' , UpperCAmelCase_ ) if "norm1" in key: _UpperCamelCase : Optional[Any] = re.sub(R'norm1' , 'layer_norm1' , UpperCAmelCase_ ) if "norm2" in key: _UpperCamelCase : Optional[int] = re.sub(R'norm2' , 'layer_norm2' , UpperCAmelCase_ ) if "encoder.norm" in key: _UpperCamelCase : Any = re.sub(R'encoder.norm' , 'post_layernorm' , UpperCAmelCase_ ) if "encoder.patch_embed.proj" in key: _UpperCamelCase : Any = re.sub(R'encoder.patch_embed.proj' , 'embeddings.patch_embedding' , UpperCAmelCase_ ) if "encoder.pos_embed" in key: _UpperCamelCase : Dict = re.sub(R'encoder.pos_embed' , 'embeddings.position_embedding' , UpperCAmelCase_ ) if "encoder.cls_token" in key: _UpperCamelCase : List[Any] = re.sub(R'encoder.cls_token' , 'embeddings.class_embedding' , UpperCAmelCase_ ) if "self_attn" in key: _UpperCamelCase : Tuple = re.sub(R'self_attn.proj' , 'self_attn.projection' , UpperCAmelCase_ ) return key @torch.no_grad() def lowerCamelCase_ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str]=None ) -> List[str]: '''simple docstring''' if config_path is not None: _UpperCamelCase : Optional[Any] = BlipConfig.from_pretrained(UpperCAmelCase_ ) else: _UpperCamelCase : Optional[int] = BlipConfig(projection_dim=5_1_2 , text_config={} , vision_config={} ) _UpperCamelCase : Dict = BlipForConditionalGeneration(UpperCAmelCase_ ).eval() _UpperCamelCase : Dict = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth' _UpperCamelCase : List[Any] = blip_decoder(pretrained=UpperCAmelCase_ , image_size=3_8_4 , vit='base' ) _UpperCamelCase : Optional[int] = pt_model.eval() _UpperCamelCase : List[Any] = pt_model.state_dict() for key in modified_state_dict.copy(): _UpperCamelCase : Optional[Any] = modified_state_dict.pop(UpperCAmelCase_ ) _UpperCamelCase : Dict = rename_key(UpperCAmelCase_ ) _UpperCamelCase : Union[str, Any] = value hf_model.load_state_dict(UpperCAmelCase_ ) _UpperCamelCase : List[str] = 3_8_4 _UpperCamelCase : Dict = load_demo_image(image_size=UpperCAmelCase_ , device='cpu' ) _UpperCamelCase : Tuple = BertTokenizer.from_pretrained('bert-base-uncased' ) _UpperCamelCase : Any = tokenizer(['a picture of'] ).input_ids _UpperCamelCase : Tuple = hf_model.generate(UpperCAmelCase_ , UpperCAmelCase_ ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 3_8_6_1, 1_9_9_7, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] _UpperCamelCase : Optional[int] = hf_model.generate(UpperCAmelCase_ ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(UpperCAmelCase_ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' _UpperCamelCase : Any = ( 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth' ) _UpperCamelCase : List[str] = blip_vqa(pretrained=UpperCAmelCase_ , image_size=UpperCAmelCase_ , vit='base' ) vqa_model.eval() _UpperCamelCase : Tuple = vqa_model.state_dict() for key in modified_state_dict.copy(): _UpperCamelCase : Dict = modified_state_dict.pop(UpperCAmelCase_ ) _UpperCamelCase : str = rename_key(UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = value _UpperCamelCase : Optional[int] = BlipForQuestionAnswering(UpperCAmelCase_ ) hf_vqa_model.load_state_dict(UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = ['How many dogs are in this image?'] _UpperCamelCase : List[Any] = tokenizer(UpperCAmelCase_ , return_tensors='pt' ).input_ids _UpperCamelCase : Any = hf_vqa_model.generate(UpperCAmelCase_ , UpperCAmelCase_ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '_vqa' ) _UpperCamelCase : List[str] = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth' _UpperCamelCase : Any = blip_itm(pretrained=UpperCAmelCase_ , image_size=UpperCAmelCase_ , vit='base' ) itm_model.eval() _UpperCamelCase : int = itm_model.state_dict() for key in modified_state_dict.copy(): _UpperCamelCase : Any = modified_state_dict.pop(UpperCAmelCase_ ) _UpperCamelCase : List[str] = rename_key(UpperCAmelCase_ ) _UpperCamelCase : Any = value _UpperCamelCase : Tuple = BlipForImageTextRetrieval(UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = ['A picture of a woman with a dog sitting in a beach'] _UpperCamelCase : List[Any] = tokenizer( UpperCAmelCase_ , return_tensors='pt' , padding='max_length' , truncation=UpperCAmelCase_ , max_length=3_5 , ).input_ids hf_itm_model.load_state_dict(UpperCAmelCase_ ) hf_itm_model.eval() _UpperCamelCase : Union[str, Any] = hf_itm_model(UpperCAmelCase_ , UpperCAmelCase_ , use_itm_head=UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = hf_itm_model(UpperCAmelCase_ , UpperCAmelCase_ , use_itm_head=UpperCAmelCase_ ) assert out[0].item() == 0.2_1_1_0_6_8_7_4_9_4_2_7_7_9_5_4 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_5_6_9_8_8_4_5_3_8_6_5_0_5_1_2_7 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '_itm' ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") lowerCAmelCase__ = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
648
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowerCAmelCase__ = numpy.array([0, 0]) lowerCAmelCase__ = numpy.array([0.5, 0.8_66_02_54]) lowerCAmelCase__ = numpy.array([1, 0]) lowerCAmelCase__ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] , UpperCAmelCase_ : int ) -> list[numpy.ndarray]: '''simple docstring''' _UpperCamelCase : Tuple = initial_vectors for _ in range(UpperCAmelCase_ ): _UpperCamelCase : str = iteration_step(UpperCAmelCase_ ) return vectors def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] ) -> list[numpy.ndarray]: '''simple docstring''' _UpperCamelCase : int = [] for i, start_vector in enumerate(vectors[:-1] ): _UpperCamelCase : Union[str, Any] = vectors[i + 1] new_vectors.append(UpperCAmelCase_ ) _UpperCamelCase : Tuple = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def lowerCamelCase_ ( UpperCAmelCase_ : numpy.ndarray , UpperCAmelCase_ : float ) -> numpy.ndarray: '''simple docstring''' _UpperCamelCase : str = numpy.radians(UpperCAmelCase_ ) _UpperCamelCase , _UpperCamelCase : Optional[Any] = numpy.cos(UpperCAmelCase_ ), numpy.sin(UpperCAmelCase_ ) _UpperCamelCase : Any = numpy.array(((c, -s), (s, c)) ) return numpy.dot(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] ) -> None: '''simple docstring''' _UpperCamelCase : str = plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _UpperCamelCase , _UpperCamelCase : Dict = zip(*UpperCAmelCase_ ) plt.plot(UpperCAmelCase_ , UpperCAmelCase_ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
648
1
def lowerCamelCase_ ( UpperCAmelCase_ : str ) -> str: '''simple docstring''' if not all(char in '01' for char in bin_string ): raise ValueError('Non-binary value was passed to the function' ) if not bin_string: raise ValueError('Empty string was passed to the function' ) _UpperCamelCase : Any = '' while len(UpperCAmelCase_ ) % 3 != 0: _UpperCamelCase : Optional[Any] = '0' + bin_string _UpperCamelCase : Optional[Any] = [ bin_string[index : index + 3] for index in range(len(UpperCAmelCase_ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: _UpperCamelCase : Dict = 0 for index, val in enumerate(UpperCAmelCase_ ): oct_val += int(2 ** (2 - index) * int(UpperCAmelCase_ ) ) oct_string += str(UpperCAmelCase_ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
648
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCAmelCase__ = abspath(join(dirname(__file__), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def lowerCamelCase_ ( UpperCAmelCase_ : Any ) -> Union[str, Any]: '''simple docstring''' config.addinivalue_line( 'markers' , 'is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested' ) config.addinivalue_line( 'markers' , 'is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested' ) config.addinivalue_line('markers' , 'is_pipeline_test: mark test to run only when pipelines are tested' ) config.addinivalue_line('markers' , 'is_staging_test: mark test to run only in the staging environment' ) config.addinivalue_line('markers' , 'accelerate_tests: mark test that require accelerate' ) config.addinivalue_line('markers' , 'tool_tests: mark the tool tests that are run on their specific schedule' ) def lowerCamelCase_ ( UpperCAmelCase_ : Optional[int] ) -> List[Any]: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : Any ) -> List[Any]: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main _UpperCamelCase : str = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(UpperCAmelCase_ , id=UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict ) -> Tuple: '''simple docstring''' if exitstatus == 5: _UpperCamelCase : List[Any] = 0 # Doctest custom flag to ignore output. lowerCAmelCase__ = doctest.register_optionflag("""IGNORE_RESULT""") lowerCAmelCase__ = doctest.OutputChecker class lowercase ( _lowercase ): """simple docstring""" def A__ ( self , __snake_case , __snake_case , __snake_case): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , __snake_case , __snake_case , __snake_case) lowerCAmelCase__ = CustomOutputChecker lowerCAmelCase__ = HfDoctestModule lowerCAmelCase__ = HfDocTestParser
648
1
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> Any: '''simple docstring''' if isinstance(UpperCAmelCase_ , collections.abc.Iterable ): return x return (x, x) @require_tf class lowercase : """simple docstring""" def A__ ( self , __snake_case , __snake_case): pass def A__ ( self): pass def A__ ( self): pass def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=None , **__snake_case): _UpperCamelCase : int = VisionTextDualEncoderConfig.from_vision_text_configs(__snake_case , __snake_case) _UpperCamelCase : int = TFVisionTextDualEncoderModel(__snake_case) _UpperCamelCase : str = model(input_ids=__snake_case , pixel_values=__snake_case , attention_mask=__snake_case) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim)) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=None , **__snake_case): _UpperCamelCase , _UpperCamelCase : Optional[Any] = self.get_vision_text_model(__snake_case , __snake_case) _UpperCamelCase : List[str] = TFVisionTextDualEncoderModel(vision_model=__snake_case , text_model=__snake_case) _UpperCamelCase : str = model(input_ids=__snake_case , pixel_values=__snake_case , attention_mask=__snake_case) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=None , **__snake_case): _UpperCamelCase , _UpperCamelCase : List[Any] = self.get_vision_text_model(__snake_case , __snake_case) _UpperCamelCase : List[str] = {'vision_model': vision_model, 'text_model': text_model} _UpperCamelCase : Dict = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**__snake_case) _UpperCamelCase : List[Any] = model(input_ids=__snake_case , pixel_values=__snake_case , attention_mask=__snake_case) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=None , **__snake_case): _UpperCamelCase , _UpperCamelCase : Union[str, Any] = self.get_vision_text_model(__snake_case , __snake_case) _UpperCamelCase : List[Any] = TFVisionTextDualEncoderModel(vision_model=__snake_case , text_model=__snake_case) _UpperCamelCase : Optional[Any] = model(input_ids=__snake_case , pixel_values=__snake_case , attention_mask=__snake_case) _UpperCamelCase : int = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__snake_case) _UpperCamelCase : Optional[int] = TFVisionTextDualEncoderModel.from_pretrained(__snake_case) _UpperCamelCase : Dict = model(input_ids=__snake_case , pixel_values=__snake_case , attention_mask=__snake_case) _UpperCamelCase : str = after_output[0].numpy() _UpperCamelCase : Optional[int] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(__snake_case , 1e-5) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=None , **__snake_case): _UpperCamelCase , _UpperCamelCase : List[Any] = self.get_vision_text_model(__snake_case , __snake_case) _UpperCamelCase : Tuple = TFVisionTextDualEncoderModel(vision_model=__snake_case , text_model=__snake_case) _UpperCamelCase : Tuple = model( input_ids=__snake_case , pixel_values=__snake_case , attention_mask=__snake_case , output_attentions=__snake_case) _UpperCamelCase : str = output.vision_model_output.attentions self.assertEqual(len(__snake_case) , vision_config.num_hidden_layers) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCamelCase : int = to_atuple(vision_model.config.image_size) _UpperCamelCase : int = to_atuple(vision_model.config.patch_size) _UpperCamelCase : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _UpperCamelCase : Union[str, Any] = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len)) _UpperCamelCase : List[Any] = output.text_model_output.attentions self.assertEqual(len(__snake_case) , text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[int] = np.abs((a - b)).max() self.assertLessEqual(__snake_case , __snake_case , f'''Difference between torch and flax is {diff} (>= {tol}).''') def A__ ( self): _UpperCamelCase : str = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**__snake_case) def A__ ( self): _UpperCamelCase : Optional[Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__snake_case) def A__ ( self): _UpperCamelCase : Optional[Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__snake_case) def A__ ( self): _UpperCamelCase : Dict = self.prepare_config_and_inputs() self.check_save_load(**__snake_case) def A__ ( self): _UpperCamelCase : Tuple = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__snake_case) @slow def A__ ( self): _UpperCamelCase , _UpperCamelCase : Optional[Any] = self.get_pretrained_model_and_inputs() _UpperCamelCase : Optional[Any] = model_a(**__snake_case) _UpperCamelCase : str = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__snake_case) _UpperCamelCase : Union[str, Any] = TFVisionTextDualEncoderModel.from_pretrained(__snake_case) _UpperCamelCase : str = model_a(**__snake_case) _UpperCamelCase : Optional[int] = after_outputs[0].numpy() _UpperCamelCase : Tuple = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(__snake_case , 1e-5) @require_tf class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" def A__ ( self): _UpperCamelCase : Union[str, Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-random-bert') _UpperCamelCase : List[Any] = 13 _UpperCamelCase : Any = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) _UpperCamelCase : Any = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size) _UpperCamelCase : str = random_attention_mask([batch_size, 4]) _UpperCamelCase : Any = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def A__ ( self , __snake_case , __snake_case): _UpperCamelCase : Tuple = TFViTModel(__snake_case , name='vision_model') _UpperCamelCase : Dict = TFBertModel(__snake_case , name='text_model') return vision_model, text_model def A__ ( self): _UpperCamelCase : Tuple = TFViTModelTester(self) _UpperCamelCase : int = TFBertModelTester(self) _UpperCamelCase : List[Any] = vit_model_tester.prepare_config_and_inputs() _UpperCamelCase : Dict = bert_model_tester.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Tuple = vision_config_and_inputs ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) : int = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" def A__ ( self): # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. _UpperCamelCase : Dict = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-deit-tf' , 'hf-internal-testing/tiny-random-roberta') _UpperCamelCase : Dict = 13 _UpperCamelCase : Tuple = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) _UpperCamelCase : Tuple = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size) _UpperCamelCase : Tuple = random_attention_mask([batch_size, 4]) _UpperCamelCase : str = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=None , **__snake_case): _UpperCamelCase , _UpperCamelCase : Optional[int] = self.get_vision_text_model(__snake_case , __snake_case) _UpperCamelCase : Tuple = TFVisionTextDualEncoderModel(vision_model=__snake_case , text_model=__snake_case) _UpperCamelCase : List[str] = model( input_ids=__snake_case , pixel_values=__snake_case , attention_mask=__snake_case , output_attentions=__snake_case) _UpperCamelCase : str = output.vision_model_output.attentions self.assertEqual(len(__snake_case) , vision_config.num_hidden_layers) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _UpperCamelCase : List[str] = to_atuple(vision_model.config.image_size) _UpperCamelCase : Union[str, Any] = to_atuple(vision_model.config.patch_size) _UpperCamelCase : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _UpperCamelCase : str = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len)) _UpperCamelCase : Tuple = output.text_model_output.attentions self.assertEqual(len(__snake_case) , text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def A__ ( self , __snake_case , __snake_case): _UpperCamelCase : str = TFDeiTModel(__snake_case , name='vision_model') _UpperCamelCase : Dict = TFRobertaModel(__snake_case , name='text_model') return vision_model, text_model def A__ ( self): _UpperCamelCase : List[str] = TFDeiTModelTester(self) _UpperCamelCase : int = TFRobertaModelTester(self) _UpperCamelCase : int = vit_model_tester.prepare_config_and_inputs() _UpperCamelCase : Optional[Any] = bert_model_tester.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : str = vision_config_and_inputs ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) : List[Any] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" def A__ ( self): _UpperCamelCase : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-clip-tf' , 'hf-internal-testing/tiny-random-bert') _UpperCamelCase : List[Any] = 13 _UpperCamelCase : Tuple = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) _UpperCamelCase : Optional[Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size) _UpperCamelCase : str = random_attention_mask([batch_size, 4]) _UpperCamelCase : Tuple = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def A__ ( self , __snake_case , __snake_case): _UpperCamelCase : Dict = TFCLIPVisionModel(__snake_case , name='vision_model') _UpperCamelCase : Tuple = TFBertModel(__snake_case , name='text_model') return vision_model, text_model def A__ ( self): _UpperCamelCase : int = TFCLIPVisionModelTester(self) _UpperCamelCase : str = TFBertModelTester(self) _UpperCamelCase : Union[str, Any] = clip_model_tester.prepare_config_and_inputs() _UpperCamelCase : Tuple = bert_model_tester.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase : List[str] = vision_config_and_inputs ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) : Optional[int] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class lowercase ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self): _UpperCamelCase : Tuple = TFVisionTextDualEncoderModel.from_pretrained( 'clip-italian/clip-italian' , logit_scale_init_value=1.0 , from_pt=__snake_case) _UpperCamelCase : str = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian') _UpperCamelCase : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _UpperCamelCase : str = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=__snake_case , padding=__snake_case , return_tensors='np') _UpperCamelCase : Union[str, Any] = model(**__snake_case) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0])) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _UpperCamelCase : List[Any] = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]]) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , __snake_case , atol=1e-3))
648
lowerCAmelCase__ = range(2, 2_0 + 1) lowerCAmelCase__ = [1_0**k for k in range(ks[-1] + 1)] lowerCAmelCase__ = {} def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int ) -> Tuple: '''simple docstring''' _UpperCamelCase : Dict = sum(a_i[j] for j in range(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) ) _UpperCamelCase : Optional[int] = sum(a_i[j] * base[j] for j in range(min(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) ) ) _UpperCamelCase , _UpperCamelCase : Dict = 0, 0 _UpperCamelCase : Optional[int] = n - i _UpperCamelCase : Union[str, Any] = memo.get(UpperCAmelCase_ ) if sub_memo is not None: _UpperCamelCase : str = sub_memo.get(UpperCAmelCase_ ) if jumps is not None and len(UpperCAmelCase_ ) > 0: # find and make the largest jump without going over _UpperCamelCase : str = -1 for _k in range(len(UpperCAmelCase_ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _UpperCamelCase : Optional[Any] = _k break if max_jump >= 0: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = jumps[max_jump] # since the difference between jumps is cached, add c _UpperCamelCase : Tuple = diff + c for j in range(min(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) ): _UpperCamelCase , _UpperCamelCase : Dict = divmod(UpperCAmelCase_ , 1_0 ) if new_c > 0: add(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) else: _UpperCamelCase : Union[str, Any] = [] else: _UpperCamelCase : List[Any] = {c: []} _UpperCamelCase : Optional[int] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _UpperCamelCase , _UpperCamelCase : Optional[Any] = next_term(UpperCAmelCase_ , k - 1 , i + dn , UpperCAmelCase_ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _UpperCamelCase , _UpperCamelCase : Any = compute(UpperCAmelCase_ , UpperCAmelCase_ , i + dn , UpperCAmelCase_ ) diff += _diff dn += terms_jumped _UpperCamelCase : List[str] = sub_memo[c] # keep jumps sorted by # of terms skipped _UpperCamelCase : Union[str, Any] = 0 while j < len(UpperCAmelCase_ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCAmelCase_ , (diff, dn, k) ) return (diff, dn) def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any ) -> Dict: '''simple docstring''' if i >= n: return 0, i if k > len(UpperCAmelCase_ ): a_i.extend([0 for _ in range(k - len(UpperCAmelCase_ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _UpperCamelCase : Any = i _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Any = 0, 0, 0 for j in range(len(UpperCAmelCase_ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _UpperCamelCase : Union[str, Any] = ds_c + ds_b diff += addend _UpperCamelCase : Union[str, Any] = 0 for j in range(UpperCAmelCase_ ): _UpperCamelCase : Union[str, Any] = a_i[j] + addend _UpperCamelCase , _UpperCamelCase : Any = divmod(UpperCAmelCase_ , 1_0 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return diff, i - start_i def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any ) -> Dict: '''simple docstring''' for j in range(UpperCAmelCase_ , len(UpperCAmelCase_ ) ): _UpperCamelCase : List[str] = digits[j] + addend if s >= 1_0: _UpperCamelCase , _UpperCamelCase : Any = divmod(UpperCAmelCase_ , 1_0 ) _UpperCamelCase : Union[str, Any] = addend // 1_0 + quotient else: _UpperCamelCase : Dict = s _UpperCamelCase : Optional[Any] = addend // 1_0 if addend == 0: break while addend > 0: _UpperCamelCase , _UpperCamelCase : Dict = divmod(UpperCAmelCase_ , 1_0 ) digits.append(UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : int = 1_0**1_5 ) -> int: '''simple docstring''' _UpperCamelCase : Optional[Any] = [1] _UpperCamelCase : Optional[int] = 1 _UpperCamelCase : int = 0 while True: _UpperCamelCase , _UpperCamelCase : List[Any] = next_term(UpperCAmelCase_ , 2_0 , i + dn , UpperCAmelCase_ ) dn += terms_jumped if dn == n - i: break _UpperCamelCase : str = 0 for j in range(len(UpperCAmelCase_ ) ): a_n += digits[j] * 1_0**j return a_n if __name__ == "__main__": print(f'{solution() = }')
648
1
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np lowerCAmelCase__ = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 lowerCAmelCase__ = typing.Union[np.floataa, int, float] # noqa: UP007 def lowerCamelCase_ ( UpperCAmelCase_ : Vector , UpperCAmelCase_ : Vector ) -> VectorOut: '''simple docstring''' return np.sqrt(np.sum((np.asarray(UpperCAmelCase_ ) - np.asarray(UpperCAmelCase_ )) ** 2 ) ) def lowerCamelCase_ ( UpperCAmelCase_ : Vector , UpperCAmelCase_ : Vector ) -> VectorOut: '''simple docstring''' return sum((va - va) ** 2 for va, va in zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) ** (1 / 2) if __name__ == "__main__": def lowerCamelCase_ ( ) -> None: '''simple docstring''' from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=1_0_0_0_0 , globals=globals() , ) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=1_0_0_0_0 , globals=globals() , ) ) benchmark()
648
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowercase ( _lowercase ): """simple docstring""" a__ = "vit_mae" def __init__( self , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=2_24 , __snake_case=16 , __snake_case=3 , __snake_case=True , __snake_case=16 , __snake_case=5_12 , __snake_case=8 , __snake_case=20_48 , __snake_case=0.7_5 , __snake_case=False , **__snake_case , ): super().__init__(**__snake_case) _UpperCamelCase : Optional[int] = hidden_size _UpperCamelCase : Optional[int] = num_hidden_layers _UpperCamelCase : Tuple = num_attention_heads _UpperCamelCase : List[str] = intermediate_size _UpperCamelCase : str = hidden_act _UpperCamelCase : List[str] = hidden_dropout_prob _UpperCamelCase : List[Any] = attention_probs_dropout_prob _UpperCamelCase : str = initializer_range _UpperCamelCase : Any = layer_norm_eps _UpperCamelCase : int = image_size _UpperCamelCase : Any = patch_size _UpperCamelCase : List[Any] = num_channels _UpperCamelCase : Union[str, Any] = qkv_bias _UpperCamelCase : str = decoder_num_attention_heads _UpperCamelCase : Union[str, Any] = decoder_hidden_size _UpperCamelCase : Union[str, Any] = decoder_num_hidden_layers _UpperCamelCase : Any = decoder_intermediate_size _UpperCamelCase : int = mask_ratio _UpperCamelCase : List[Any] = norm_pix_loss
648
1
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar lowerCAmelCase__ = TypeVar("""T""") class lowercase ( Generic[T] ): """simple docstring""" def __init__( self , __snake_case , __snake_case): _UpperCamelCase : Any | T = None _UpperCamelCase : int = len(__snake_case) _UpperCamelCase : list[T] = [any_type for _ in range(self.N)] + arr _UpperCamelCase : List[Any] = fnc self.build() def A__ ( self): for p in range(self.N - 1 , 0 , -1): _UpperCamelCase : List[Any] = self.fn(self.st[p * 2] , self.st[p * 2 + 1]) def A__ ( self , __snake_case , __snake_case): p += self.N _UpperCamelCase : Optional[int] = v while p > 1: _UpperCamelCase : List[Any] = p // 2 _UpperCamelCase : Optional[Any] = self.fn(self.st[p * 2] , self.st[p * 2 + 1]) def A__ ( self , __snake_case , __snake_case): # noqa: E741 _UpperCamelCase , _UpperCamelCase : Optional[int] = l + self.N, r + self.N _UpperCamelCase : T | None = None while l <= r: if l % 2 == 1: _UpperCamelCase : List[Any] = self.st[l] if res is None else self.fn(__snake_case , self.st[l]) if r % 2 == 0: _UpperCamelCase : Any = self.st[r] if res is None else self.fn(__snake_case , self.st[r]) _UpperCamelCase , _UpperCamelCase : Dict = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce lowerCAmelCase__ = [1, 1_0, -2, 9, -3, 8, 4, -7, 5, 6, 1_1, -1_2] lowerCAmelCase__ = { 0: 7, 1: 2, 2: 6, 3: -1_4, 4: 5, 5: 4, 6: 7, 7: -1_0, 8: 9, 9: 1_0, 1_0: 1_2, 1_1: 1, } lowerCAmelCase__ = SegmentTree(test_array, min) lowerCAmelCase__ = SegmentTree(test_array, max) lowerCAmelCase__ = SegmentTree(test_array, lambda a, b: a + b) def lowerCamelCase_ ( ) -> None: '''simple docstring''' for i in range(len(UpperCAmelCase_ ) ): for j in range(UpperCAmelCase_ , len(UpperCAmelCase_ ) ): _UpperCamelCase : int = reduce(UpperCAmelCase_ , test_array[i : j + 1] ) _UpperCamelCase : List[str] = reduce(UpperCAmelCase_ , test_array[i : j + 1] ) _UpperCamelCase : Optional[int] = reduce(lambda UpperCAmelCase_ , UpperCAmelCase_ : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(UpperCAmelCase_ , UpperCAmelCase_ ) assert max_range == max_segment_tree.query(UpperCAmelCase_ , UpperCAmelCase_ ) assert sum_range == sum_segment_tree.query(UpperCAmelCase_ , UpperCAmelCase_ ) test_all_segments() for index, value in test_updates.items(): lowerCAmelCase__ = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
648
import functools def lowerCamelCase_ ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int] ) -> int: '''simple docstring''' if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or not all(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(UpperCAmelCase_ ) != 3 or not all(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(UpperCAmelCase_ ) == 0: return 0 if min(UpperCAmelCase_ ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(UpperCAmelCase_ ) >= 3_6_6: raise ValueError('All days elements should be less than 366' ) _UpperCamelCase : Union[str, Any] = set(UpperCAmelCase_ ) @functools.cache def dynamic_programming(UpperCAmelCase_ : int ) -> int: if index > 3_6_5: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 3_0 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
648
1
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = [ ["""attention""", """attn"""], ["""encoder_attention""", """encoder_attn"""], ["""q_lin""", """q_proj"""], ["""k_lin""", """k_proj"""], ["""v_lin""", """v_proj"""], ["""out_lin""", """out_proj"""], ["""norm_embeddings""", """layernorm_embedding"""], ["""position_embeddings""", """embed_positions"""], ["""embeddings""", """embed_tokens"""], ["""ffn.lin""", """fc"""], ] def lowerCamelCase_ ( UpperCAmelCase_ : List[Any] ) -> Optional[int]: '''simple docstring''' if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: _UpperCamelCase : List[Any] = k.replace(UpperCAmelCase_ , UpperCAmelCase_ ) if k.startswith('encoder' ): _UpperCamelCase : Optional[Any] = k.replace('.attn' , '.self_attn' ) _UpperCamelCase : Optional[int] = k.replace('norm1' , 'self_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): _UpperCamelCase : Any = k.replace('norm1' , 'self_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm2' , 'encoder_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm3' , 'final_layer_norm' ) return k def lowerCamelCase_ ( UpperCAmelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Union[str, Any] = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: _UpperCamelCase : Optional[int] = sd.pop(UpperCAmelCase_ ) _UpperCamelCase : str = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd _UpperCamelCase : Tuple = v lowerCAmelCase__ = ["""START"""] @torch.no_grad() def lowerCamelCase_ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ) -> List[str]: '''simple docstring''' _UpperCamelCase : Optional[Any] = torch.load(UpperCAmelCase_ , map_location='cpu' ) _UpperCamelCase : int = model['model'] _UpperCamelCase : List[Any] = BlenderbotConfig.from_json_file(UpperCAmelCase_ ) _UpperCamelCase : Any = BlenderbotForConditionalGeneration(UpperCAmelCase_ ) _UpperCamelCase : int = m.model.state_dict().keys() _UpperCamelCase : Union[str, Any] = [] _UpperCamelCase : int = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue _UpperCamelCase : Optional[int] = rename_state_dict_key(UpperCAmelCase_ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: _UpperCamelCase : int = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(UpperCAmelCase_ ) m.model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) m.half() m.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("""--src_path""", type=str, help="""like blenderbot-model.bin""") parser.add_argument("""--save_dir""", default="""hf_blenderbot""", type=str, help="""Where to save converted model.""") parser.add_argument( """--hf_config_json""", default="""blenderbot-3b-config.json""", type=str, help="""Path to config to use""" ) lowerCAmelCase__ = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
648
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=99 , __snake_case=64 , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=37 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=16 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=3 , __snake_case=4 , __snake_case=None , ): _UpperCamelCase : List[Any] = parent _UpperCamelCase : Optional[Any] = batch_size _UpperCamelCase : int = seq_length _UpperCamelCase : str = is_training _UpperCamelCase : Tuple = use_input_mask _UpperCamelCase : Union[str, Any] = use_token_type_ids _UpperCamelCase : Union[str, Any] = use_labels _UpperCamelCase : Optional[Any] = vocab_size _UpperCamelCase : List[Any] = hidden_size _UpperCamelCase : Optional[Any] = embedding_size _UpperCamelCase : str = num_hidden_layers _UpperCamelCase : str = num_attention_heads _UpperCamelCase : int = intermediate_size _UpperCamelCase : int = hidden_act _UpperCamelCase : Tuple = hidden_dropout_prob _UpperCamelCase : int = attention_probs_dropout_prob _UpperCamelCase : Tuple = max_position_embeddings _UpperCamelCase : List[str] = type_vocab_size _UpperCamelCase : Dict = type_sequence_label_size _UpperCamelCase : List[str] = initializer_range _UpperCamelCase : Optional[Any] = num_labels _UpperCamelCase : Tuple = num_choices _UpperCamelCase : List[str] = scope def A__ ( self): _UpperCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase : Any = None if self.use_input_mask: _UpperCamelCase : int = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase : Optional[Any] = None if self.use_token_type_ids: _UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase : int = None _UpperCamelCase : List[str] = None _UpperCamelCase : Dict = None if self.use_labels: _UpperCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self): return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : List[str] = MegatronBertModel(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case) _UpperCamelCase : Dict = model(__snake_case , token_type_ids=__snake_case) _UpperCamelCase : Optional[Any] = model(__snake_case) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : int = MegatronBertForMaskedLM(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Dict = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : str = MegatronBertForCausalLM(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Tuple = MegatronBertForNextSentencePrediction(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[Any] = MegatronBertForPreTraining(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[str] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , next_sentence_label=__snake_case , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : int = MegatronBertForQuestionAnswering(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[int] = self.num_labels _UpperCamelCase : Union[str, Any] = MegatronBertForSequenceClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Any = self.num_labels _UpperCamelCase : Optional[int] = MegatronBertForTokenClassification(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Tuple = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : List[str] = self.num_choices _UpperCamelCase : Optional[int] = MegatronBertForMultipleChoice(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : List[Any] = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : Optional[Any] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : Union[str, Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def A__ ( self): _UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) : Optional[int] = config_and_inputs _UpperCamelCase : int = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) a__ = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) a__ = True # test_resize_embeddings = False a__ = False def A__ ( self , __snake_case , __snake_case , __snake_case=False): _UpperCamelCase : str = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case) if return_labels: if model_class in get_values(__snake_case): _UpperCamelCase : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__snake_case) _UpperCamelCase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case) return inputs_dict def A__ ( self): _UpperCamelCase : Any = MegatronBertModelTester(self) _UpperCamelCase : int = ConfigTester(self , config_class=__snake_case , hidden_size=37) def A__ ( self): self.config_tester.run_common_tests() def A__ ( self): _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__snake_case) def A__ ( self): _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__snake_case) def A__ ( self): _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__snake_case) def A__ ( self): _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__snake_case) def A__ ( self): _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__snake_case) def A__ ( self): _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__snake_case) def A__ ( self): _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__snake_case) def A__ ( self): _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__snake_case) def lowerCamelCase_ ( UpperCAmelCase_ : str ) -> Optional[Any]: '''simple docstring''' return torch.tensor( UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ , ) lowerCAmelCase__ = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip('Model is not available.') def A__ ( self): _UpperCamelCase : int = 'nvidia/megatron-bert-uncased-345m' if "MYDIR" in os.environ: _UpperCamelCase : int = os.path.join(os.environ['MYDIR'] , __snake_case) _UpperCamelCase : Optional[int] = MegatronBertModel.from_pretrained(__snake_case) model.to(__snake_case) model.half() _UpperCamelCase : Optional[Any] = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]]) with torch.no_grad(): _UpperCamelCase : str = model(__snake_case)[0] _UpperCamelCase : Optional[int] = torch.Size((1, 9, 10_24)) self.assertEqual(output.shape , __snake_case) _UpperCamelCase : Union[str, Any] = [-0.6_0_4_0, -0.2_5_1_7, -0.1_0_2_5, 0.3_4_2_0, -0.6_7_5_8, -0.0_0_1_7, -0.1_0_8_9, -0.1_9_9_0, 0.5_7_2_8] for ii in range(3): for jj in range(3): _UpperCamelCase : Optional[Any] = output[0, ii, jj] _UpperCamelCase : Dict = expected[3 * ii + jj] _UpperCamelCase : Optional[int] = 'ii={} jj={} a={} b={}'.format(__snake_case , __snake_case , __snake_case , __snake_case) self.assertTrue(math.isclose(__snake_case , __snake_case , rel_tol=__snake_case , abs_tol=__snake_case) , msg=__snake_case)
648
1
import torch from transformers import AutoModel class lowercase ( torch.nn.Module ): """simple docstring""" def __init__( self , __snake_case="sayef/fsner-bert-base-uncased"): super(__snake_case , self).__init__() _UpperCamelCase : Any = AutoModel.from_pretrained(__snake_case , return_dict=__snake_case) _UpperCamelCase : List[Any] = torch.nn.CosineSimilarity(3 , 1e-08) _UpperCamelCase : Tuple = torch.nn.Softmax(dim=1) def A__ ( self , **__snake_case): return self.bert(**__snake_case).last_hidden_state def A__ ( self , __snake_case): return token_embeddings.sum(2 , keepdim=__snake_case) def A__ ( self , __snake_case , __snake_case , __snake_case=1): return self.softmax(T * self.cos(__snake_case , __snake_case)) def A__ ( self , __snake_case , __snake_case): _UpperCamelCase : List[Any] = W_supports['sizes'].tolist() _UpperCamelCase : Dict = W_supports['start_token_id'].item() _UpperCamelCase : str = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] _UpperCamelCase : Optional[Any] = self.BERT(**__snake_case) _UpperCamelCase : List[str] = self.BERT(**__snake_case) _UpperCamelCase : Union[str, Any] = None _UpperCamelCase : Optional[Any] = None _UpperCamelCase : Any = W_supports['input_ids'] == start_token_id _UpperCamelCase : Optional[Any] = W_supports['input_ids'] == end_token_id for i, size in enumerate(__snake_case): if i == 0: _UpperCamelCase : str = 0 else: _UpperCamelCase : Dict = support_sizes[i - 1] _UpperCamelCase : Optional[Any] = S[s : s + size][start_token_masks[s : s + size]] _UpperCamelCase : Union[str, Any] = S[s : s + size][end_token_masks[s : s + size]] _UpperCamelCase : List[Any] = torch.matmul(q[i] , s_start.T).sum(1).softmax(0) _UpperCamelCase : List[str] = torch.matmul(q[i] , s_end.T).sum(1).softmax(0) if p_starts is not None: _UpperCamelCase : List[Any] = torch.vstack((p_starts, p_start)) _UpperCamelCase : Any = torch.vstack((p_ends, p_end)) else: _UpperCamelCase : int = p_start _UpperCamelCase : Tuple = p_end return p_starts, p_ends
648
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = """▁""" lowerCAmelCase__ = {"""vocab_file""": """sentencepiece.bpe.model"""} lowerCAmelCase__ = { """vocab_file""": { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model""" ), } } lowerCAmelCase__ = { """xlm-roberta-base""": 5_1_2, """xlm-roberta-large""": 5_1_2, """xlm-roberta-large-finetuned-conll02-dutch""": 5_1_2, """xlm-roberta-large-finetuned-conll02-spanish""": 5_1_2, """xlm-roberta-large-finetuned-conll03-english""": 5_1_2, """xlm-roberta-large-finetuned-conll03-german""": 5_1_2, } class lowercase ( _lowercase ): """simple docstring""" a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = ["input_ids", "attention_mask"] def __init__( self , __snake_case , __snake_case="<s>" , __snake_case="</s>" , __snake_case="</s>" , __snake_case="<s>" , __snake_case="<unk>" , __snake_case="<pad>" , __snake_case="<mask>" , __snake_case = None , **__snake_case , ): # Mask token behave like a normal word, i.e. include the space before it _UpperCamelCase : Dict = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case) if isinstance(__snake_case , __snake_case) else mask_token _UpperCamelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) _UpperCamelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(__snake_case)) _UpperCamelCase : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _UpperCamelCase : int = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _UpperCamelCase : List[Any] = 1 _UpperCamelCase : Any = len(self.sp_model) + self.fairseq_offset _UpperCamelCase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self): _UpperCamelCase : List[Any] = self.__dict__.copy() _UpperCamelCase : Optional[Any] = None _UpperCamelCase : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self , __snake_case): _UpperCamelCase : int = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): _UpperCamelCase : Tuple = {} _UpperCamelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) def A__ ( self , __snake_case , __snake_case = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCamelCase : Tuple = [self.cls_token_id] _UpperCamelCase : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self , __snake_case , __snake_case = None , __snake_case = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case) if token_ids_a is None: return [1] + ([0] * len(__snake_case)) + [1] return [1] + ([0] * len(__snake_case)) + [1, 1] + ([0] * len(__snake_case)) + [1] def A__ ( self , __snake_case , __snake_case = None): _UpperCamelCase : Optional[Any] = [self.sep_token_id] _UpperCamelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def A__ ( self): return len(self.sp_model) + self.fairseq_offset + 1 # Add the <mask> token def A__ ( self): _UpperCamelCase : List[str] = {self.convert_ids_to_tokens(__snake_case): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def A__ ( self , __snake_case): return self.sp_model.encode(__snake_case , out_type=__snake_case) def A__ ( self , __snake_case): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCamelCase : str = self.sp_model.PieceToId(__snake_case) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A__ ( self , __snake_case): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def A__ ( self , __snake_case): _UpperCamelCase : Optional[int] = ''.join(__snake_case).replace(__snake_case , ' ').strip() return out_string def A__ ( self , __snake_case , __snake_case = None): if not os.path.isdir(__snake_case): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return _UpperCamelCase : str = os.path.join( __snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(__snake_case) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , __snake_case) elif not os.path.isfile(self.vocab_file): with open(__snake_case , 'wb') as fi: _UpperCamelCase : Any = self.sp_model.serialized_model_proto() fi.write(__snake_case) return (out_vocab_file,)
648
1
import datasets lowerCAmelCase__ = """\ @InProceedings{conneau2018xnli, author = \"Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin\", title = \"XNLI: Evaluating Cross-lingual Sentence Representations\", booktitle = \"Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing\", year = \"2018\", publisher = \"Association for Computational Linguistics\", location = \"Brussels, Belgium\", } """ lowerCAmelCase__ = """\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). """ lowerCAmelCase__ = """ Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: 'accuracy': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric(\"xnli\") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} """ def lowerCamelCase_ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] ) -> Any: '''simple docstring''' return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): """simple docstring""" def A__ ( self): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32'), 'references': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32'), }) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def A__ ( self , __snake_case , __snake_case): return {"accuracy": simple_accuracy(__snake_case , __snake_case)}
648
from ...processing_utils import ProcessorMixin class lowercase ( _lowercase ): """simple docstring""" a__ = ["image_processor", "feature_extractor"] a__ = "TvltImageProcessor" a__ = "TvltFeatureExtractor" def __init__( self , __snake_case , __snake_case): super().__init__(image_processor=__snake_case , feature_extractor=__snake_case) _UpperCamelCase : List[str] = image_processor _UpperCamelCase : Dict = feature_extractor def __call__( self , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=False , __snake_case=False , *__snake_case , **__snake_case , ): if images is None and audio is None: raise ValueError('You need to specify either an `images` or `audio` input to process.') _UpperCamelCase : Union[str, Any] = None if images is not None: _UpperCamelCase : Tuple = self.image_processor(__snake_case , mask_pixel=__snake_case , *__snake_case , **__snake_case) if images_mixed is not None: _UpperCamelCase : Union[str, Any] = self.image_processor(__snake_case , is_mixed=__snake_case , *__snake_case , **__snake_case) if audio is not None: _UpperCamelCase : Tuple = self.feature_extractor( __snake_case , *__snake_case , sampling_rate=__snake_case , mask_audio=__snake_case , **__snake_case) _UpperCamelCase : Tuple = {} if audio is not None: output_dict.update(__snake_case) if images is not None: output_dict.update(__snake_case) if images_mixed_dict is not None: output_dict.update(__snake_case) return output_dict @property def A__ ( self): _UpperCamelCase : List[Any] = self.image_processor.model_input_names _UpperCamelCase : List[Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
648
1
import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : str = WavaVecaForSequenceClassification.from_pretrained(UpperCAmelCase_ , config=UpperCAmelCase_ ) _UpperCamelCase : Tuple = downstream_dict['projector.weight'] _UpperCamelCase : int = downstream_dict['projector.bias'] _UpperCamelCase : str = downstream_dict['model.post_net.linear.weight'] _UpperCamelCase : Any = downstream_dict['model.post_net.linear.bias'] return model def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : str ) -> List[Any]: '''simple docstring''' _UpperCamelCase : Optional[int] = WavaVecaForAudioFrameClassification.from_pretrained(UpperCAmelCase_ , config=UpperCAmelCase_ ) _UpperCamelCase : Dict = downstream_dict['model.linear.weight'] _UpperCamelCase : Optional[Any] = downstream_dict['model.linear.bias'] return model def lowerCamelCase_ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] ) -> str: '''simple docstring''' _UpperCamelCase : Optional[int] = WavaVecaForXVector.from_pretrained(UpperCAmelCase_ , config=UpperCAmelCase_ ) _UpperCamelCase : Any = downstream_dict['connector.weight'] _UpperCamelCase : Dict = downstream_dict['connector.bias'] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): _UpperCamelCase : Tuple = downstream_dict[ F'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] _UpperCamelCase : str = downstream_dict[F'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] _UpperCamelCase : str = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight'] _UpperCamelCase : Optional[int] = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias'] _UpperCamelCase : List[str] = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight'] _UpperCamelCase : Any = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias'] _UpperCamelCase : Dict = downstream_dict['objective.W'] return model @torch.no_grad() def lowerCamelCase_ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int ) -> List[Any]: '''simple docstring''' _UpperCamelCase : Union[str, Any] = torch.load(UpperCAmelCase_ , map_location='cpu' ) _UpperCamelCase : Tuple = checkpoint['Downstream'] _UpperCamelCase : Tuple = WavaVecaConfig.from_pretrained(UpperCAmelCase_ ) _UpperCamelCase : Dict = WavaVecaFeatureExtractor.from_pretrained( UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , do_normalize=UpperCAmelCase_ ) _UpperCamelCase : Dict = hf_config.architectures[0] if arch.endswith('ForSequenceClassification' ): _UpperCamelCase : Union[str, Any] = convert_classification(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) elif arch.endswith('ForAudioFrameClassification' ): _UpperCamelCase : List[Any] = convert_diarization(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) elif arch.endswith('ForXVector' ): _UpperCamelCase : Any = convert_xvector(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) else: raise NotImplementedError(F'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: _UpperCamelCase : Dict = checkpoint['Featurizer']['weights'] hf_feature_extractor.save_pretrained(UpperCAmelCase_ ) hf_model.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( """--base_model_name""", default=None, type=str, help="""Name of the huggingface pretrained base model.""" ) parser.add_argument("""--config_path""", default=None, type=str, help="""Path to the huggingface classifier config.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to the s3prl checkpoint.""") parser.add_argument("""--model_dump_path""", default=None, type=str, help="""Path to the final converted model.""") lowerCAmelCase__ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
648
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class lowercase ( _lowercase ): """simple docstring""" a__ = "rwkv" a__ = {"max_position_embeddings": "context_length"} def __init__( self , __snake_case=5_02_77 , __snake_case=10_24 , __snake_case=40_96 , __snake_case=32 , __snake_case=None , __snake_case=None , __snake_case=1e-5 , __snake_case=0 , __snake_case=0 , __snake_case=6 , __snake_case=False , __snake_case=True , **__snake_case , ): _UpperCamelCase : str = vocab_size _UpperCamelCase : int = context_length _UpperCamelCase : Tuple = hidden_size _UpperCamelCase : Tuple = num_hidden_layers _UpperCamelCase : Dict = attention_hidden_size if attention_hidden_size is not None else hidden_size _UpperCamelCase : Tuple = intermediate_size if intermediate_size is not None else 4 * hidden_size _UpperCamelCase : Union[str, Any] = layer_norm_epsilon _UpperCamelCase : Dict = rescale_every _UpperCamelCase : Optional[Any] = use_cache _UpperCamelCase : str = bos_token_id _UpperCamelCase : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case)
648
1
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase ( _lowercase ): """simple docstring""" a__ = ["image_processor", "tokenizer"] a__ = "FlavaImageProcessor" a__ = ("BertTokenizer", "BertTokenizerFast") def __init__( self , __snake_case=None , __snake_case=None , **__snake_case): _UpperCamelCase : Dict = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __snake_case , ) _UpperCamelCase : Tuple = kwargs.pop('feature_extractor') _UpperCamelCase : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') super().__init__(__snake_case , __snake_case) _UpperCamelCase : List[str] = self.image_processor def __call__( self , __snake_case = None , __snake_case = None , __snake_case = True , __snake_case = False , __snake_case = False , __snake_case = None , __snake_case = 0 , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = False , __snake_case = False , __snake_case = False , __snake_case = False , __snake_case = True , __snake_case = None , **__snake_case , ): if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.') if text is not None: _UpperCamelCase : Optional[int] = self.tokenizer( text=__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , stride=__snake_case , pad_to_multiple_of=__snake_case , return_token_type_ids=__snake_case , return_attention_mask=__snake_case , return_overflowing_tokens=__snake_case , return_special_tokens_mask=__snake_case , return_offsets_mapping=__snake_case , return_length=__snake_case , verbose=__snake_case , return_tensors=__snake_case , **__snake_case , ) if images is not None: _UpperCamelCase : Any = self.image_processor( __snake_case , return_image_mask=__snake_case , return_codebook_pixels=__snake_case , return_tensors=__snake_case , **__snake_case , ) if text is not None and images is not None: encoding.update(__snake_case) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__snake_case) , tensor_type=__snake_case) def A__ ( self , *__snake_case , **__snake_case): return self.tokenizer.batch_decode(*__snake_case , **__snake_case) def A__ ( self , *__snake_case , **__snake_case): return self.tokenizer.decode(*__snake_case , **__snake_case) @property def A__ ( self): _UpperCamelCase : Optional[Any] = self.tokenizer.model_input_names _UpperCamelCase : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) @property def A__ ( self): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __snake_case , ) return self.image_processor_class @property def A__ ( self): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __snake_case , ) return self.image_processor
648
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class lowercase ( _lowercase ): """simple docstring""" a__ = "bert" def __init__( self , __snake_case=3_05_22 , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=0 , __snake_case="absolute" , __snake_case=True , __snake_case=None , **__snake_case , ): super().__init__(pad_token_id=__snake_case , **__snake_case) _UpperCamelCase : int = vocab_size _UpperCamelCase : Optional[Any] = hidden_size _UpperCamelCase : Optional[Any] = num_hidden_layers _UpperCamelCase : List[str] = num_attention_heads _UpperCamelCase : int = hidden_act _UpperCamelCase : Optional[Any] = intermediate_size _UpperCamelCase : Union[str, Any] = hidden_dropout_prob _UpperCamelCase : Tuple = attention_probs_dropout_prob _UpperCamelCase : Optional[int] = max_position_embeddings _UpperCamelCase : str = type_vocab_size _UpperCamelCase : Optional[Any] = initializer_range _UpperCamelCase : List[str] = layer_norm_eps _UpperCamelCase : Any = position_embedding_type _UpperCamelCase : Any = use_cache _UpperCamelCase : Any = classifier_dropout class lowercase ( _lowercase ): """simple docstring""" @property def A__ ( self): if self.task == "multiple-choice": _UpperCamelCase : Union[str, Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCamelCase : Optional[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ])
648
1
import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase : Union[str, Any] = SwinConfig() _UpperCamelCase : Optional[int] = swin_name.split('_' ) _UpperCamelCase : str = name_split[1] _UpperCamelCase : str = int(name_split[4] ) _UpperCamelCase : Optional[Any] = int(name_split[3][-1] ) if model_size == "tiny": _UpperCamelCase : Union[str, Any] = 9_6 _UpperCamelCase : Optional[Any] = (2, 2, 6, 2) _UpperCamelCase : str = (3, 6, 1_2, 2_4) elif model_size == "small": _UpperCamelCase : List[str] = 9_6 _UpperCamelCase : Optional[Any] = (2, 2, 1_8, 2) _UpperCamelCase : List[Any] = (3, 6, 1_2, 2_4) elif model_size == "base": _UpperCamelCase : List[str] = 1_2_8 _UpperCamelCase : List[str] = (2, 2, 1_8, 2) _UpperCamelCase : List[str] = (4, 8, 1_6, 3_2) else: _UpperCamelCase : Dict = 1_9_2 _UpperCamelCase : List[str] = (2, 2, 1_8, 2) _UpperCamelCase : str = (6, 1_2, 2_4, 4_8) if "in22k" in swin_name: _UpperCamelCase : Any = 2_1_8_4_1 else: _UpperCamelCase : int = 1_0_0_0 _UpperCamelCase : List[Any] = 'huggingface/label-files' _UpperCamelCase : Any = 'imagenet-1k-id2label.json' _UpperCamelCase : Optional[Any] = json.load(open(hf_hub_download(UpperCAmelCase_ , UpperCAmelCase_ , repo_type='dataset' ) , 'r' ) ) _UpperCamelCase : Optional[int] = {int(UpperCAmelCase_ ): v for k, v in idalabel.items()} _UpperCamelCase : List[str] = idalabel _UpperCamelCase : int = {v: k for k, v in idalabel.items()} _UpperCamelCase : Dict = img_size _UpperCamelCase : int = num_classes _UpperCamelCase : Union[str, Any] = embed_dim _UpperCamelCase : List[Any] = depths _UpperCamelCase : Optional[Any] = num_heads _UpperCamelCase : Tuple = window_size return config def lowerCamelCase_ ( UpperCAmelCase_ : Optional[int] ) -> int: '''simple docstring''' if "patch_embed.proj" in name: _UpperCamelCase : Any = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _UpperCamelCase : List[Any] = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: _UpperCamelCase : Dict = 'encoder.' + name if "attn.proj" in name: _UpperCamelCase : int = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: _UpperCamelCase : Any = name.replace('attn' , 'attention.self' ) if "norm1" in name: _UpperCamelCase : Any = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: _UpperCamelCase : Any = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: _UpperCamelCase : Optional[Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _UpperCamelCase : Union[str, Any] = name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": _UpperCamelCase : Dict = 'layernorm.weight' if name == "norm.bias": _UpperCamelCase : int = 'layernorm.bias' if "head" in name: _UpperCamelCase : List[Any] = name.replace('head' , 'classifier' ) else: _UpperCamelCase : Union[str, Any] = 'swin.' + name return name def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str ) -> int: '''simple docstring''' for key in orig_state_dict.copy().keys(): _UpperCamelCase : Any = orig_state_dict.pop(UpperCAmelCase_ ) if "mask" in key: continue elif "qkv" in key: _UpperCamelCase : Dict = key.split('.' ) _UpperCamelCase : Any = int(key_split[1] ) _UpperCamelCase : Optional[Any] = int(key_split[3] ) _UpperCamelCase : List[str] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _UpperCamelCase : Tuple = val[:dim, :] _UpperCamelCase : str = val[ dim : dim * 2, : ] _UpperCamelCase : Any = val[-dim:, :] else: _UpperCamelCase : Optional[int] = val[ :dim ] _UpperCamelCase : Optional[int] = val[ dim : dim * 2 ] _UpperCamelCase : List[Any] = val[ -dim: ] else: _UpperCamelCase : str = val return orig_state_dict def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase : Optional[Any] = timm.create_model(UpperCAmelCase_ , pretrained=UpperCAmelCase_ ) timm_model.eval() _UpperCamelCase : Optional[Any] = get_swin_config(UpperCAmelCase_ ) _UpperCamelCase : Any = SwinForImageClassification(UpperCAmelCase_ ) model.eval() _UpperCamelCase : Any = convert_state_dict(timm_model.state_dict() , UpperCAmelCase_ ) model.load_state_dict(UpperCAmelCase_ ) _UpperCamelCase : str = 'http://images.cocodataset.org/val2017/000000039769.jpg' _UpperCamelCase : Optional[Any] = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) _UpperCamelCase : Any = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ) _UpperCamelCase : Optional[int] = image_processor(images=UpperCAmelCase_ , return_tensors='pt' ) _UpperCamelCase : Union[str, Any] = timm_model(inputs['pixel_values'] ) _UpperCamelCase : int = model(**UpperCAmelCase_ ).logits assert torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1e-3 ) print(F'''Saving model {swin_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowerCAmelCase__ = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
648
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowercase ( _lowercase ): """simple docstring""" a__ = "facebook/bart-large-mnli" a__ = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) a__ = "text_classifier" a__ = AutoTokenizer a__ = AutoModelForSequenceClassification a__ = ["text", ["text"]] a__ = ["text"] def A__ ( self): super().setup() _UpperCamelCase : List[Any] = self.model.config _UpperCamelCase : Optional[int] = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail'): _UpperCamelCase : Tuple = int(__snake_case) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.') def A__ ( self , __snake_case , __snake_case): _UpperCamelCase : List[Any] = labels return self.pre_processor( [text] * len(__snake_case) , [f'''This example is {label}''' for label in labels] , return_tensors='pt' , padding='max_length' , ) def A__ ( self , __snake_case): _UpperCamelCase : str = outputs.logits _UpperCamelCase : Optional[Any] = torch.argmax(logits[:, 2]).item() return self._labels[label_id]
648
1
from math import ceil def lowerCamelCase_ ( UpperCAmelCase_ : int = 1_0_0_1 ) -> int: '''simple docstring''' _UpperCamelCase : List[Any] = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): _UpperCamelCase : Any = 2 * i + 1 _UpperCamelCase : Dict = 2 * i _UpperCamelCase : Dict = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: lowerCAmelCase__ = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number""")
648
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
648
1
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowerCAmelCase__ = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase__ = direct_transformers_import(PATH_TO_TRANSFORMERS) lowerCAmelCase__ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowerCAmelCase__ = re.compile(R"""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") lowerCAmelCase__ = { """DecisionTransformerConfig""", """EncoderDecoderConfig""", """MusicgenConfig""", """RagConfig""", """SpeechEncoderDecoderConfig""", """TimmBackboneConfig""", """VisionEncoderDecoderConfig""", """VisionTextDualEncoderConfig""", """LlamaConfig""", } def lowerCamelCase_ ( UpperCAmelCase_ : List[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : List[str] = None # source code of `config_class` _UpperCamelCase : str = inspect.getsource(UpperCAmelCase_ ) _UpperCamelCase : List[Any] = _re_checkpoint.findall(UpperCAmelCase_ ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('/' ): _UpperCamelCase : List[str] = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link _UpperCamelCase : str = F'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: _UpperCamelCase : Dict = ckpt_name break return checkpoint def lowerCamelCase_ ( ) -> Dict: '''simple docstring''' _UpperCamelCase : int = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue _UpperCamelCase : Tuple = get_checkpoint_from_config_class(UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(UpperCAmelCase_ ) if len(UpperCAmelCase_ ) > 0: _UpperCamelCase : List[str] = '\n'.join(sorted(UpperCAmelCase_ ) ) raise ValueError(F'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
648
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
648
1
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowerCAmelCase__ = get_tests_dir("""fixtures""") lowerCAmelCase__ = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") lowerCAmelCase__ = get_tests_dir("""fixtures/dummy-config.json""") class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self): _UpperCamelCase : Union[str, Any] = 0 def A__ ( self): _UpperCamelCase : Any = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h') self.assertIsInstance(A__ , A__) def A__ ( self): _UpperCamelCase : List[Any] = AutoFeatureExtractor.from_pretrained(A__) self.assertIsInstance(A__ , A__) def A__ ( self): with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase : List[Any] = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally _UpperCamelCase : int = AutoFeatureExtractor.from_pretrained(A__).to_dict() config_dict.pop('feature_extractor_type') _UpperCamelCase : Optional[int] = WavaVecaFeatureExtractor(**A__) # save in new folder model_config.save_pretrained(A__) config.save_pretrained(A__) _UpperCamelCase : Tuple = AutoFeatureExtractor.from_pretrained(A__) # make sure private variable is not incorrectly saved _UpperCamelCase : Union[str, Any] = json.loads(config.to_json_string()) self.assertTrue('_processor_class' not in dict_as_saved) self.assertIsInstance(A__ , A__) def A__ ( self): _UpperCamelCase : Dict = AutoFeatureExtractor.from_pretrained(A__) self.assertIsInstance(A__ , A__) def A__ ( self): with self.assertRaisesRegex( A__ , 'bert-base is not a local folder and is not a valid model identifier'): _UpperCamelCase : Any = AutoFeatureExtractor.from_pretrained('bert-base') def A__ ( self): with self.assertRaisesRegex( A__ , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'): _UpperCamelCase : Tuple = AutoFeatureExtractor.from_pretrained(A__ , revision='aaaaaa') def A__ ( self): with self.assertRaisesRegex( A__ , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): _UpperCamelCase : Optional[Any] = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model') def A__ ( self): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(A__): _UpperCamelCase : int = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor') # If remote code is disabled, we can't load this config. with self.assertRaises(A__): _UpperCamelCase : str = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=A__) _UpperCamelCase : Any = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=A__) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor') # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(A__) _UpperCamelCase : str = AutoFeatureExtractor.from_pretrained(A__ , trust_remote_code=A__) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor') def A__ ( self): try: AutoConfig.register('custom' , A__) AutoFeatureExtractor.register(A__ , A__) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(A__): AutoFeatureExtractor.register(A__ , A__) # Now that the config is registered, it can be used as any other config with the auto-API _UpperCamelCase : Union[str, Any] = CustomFeatureExtractor.from_pretrained(A__) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(A__) _UpperCamelCase : Optional[Any] = AutoFeatureExtractor.from_pretrained(A__) self.assertIsInstance(A__ , A__) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def A__ ( self): class lowercase ( _lowerCamelCase ): """simple docstring""" a__ = True try: AutoConfig.register('custom' , A__) AutoFeatureExtractor.register(A__ , A__) # If remote code is not set, the default is to use local _UpperCamelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor') self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor') self.assertTrue(feature_extractor.is_local) # If remote code is disabled, we load the local one. _UpperCamelCase : int = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=A__) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor') self.assertTrue(feature_extractor.is_local) # If remote is enabled, we load from the Hub _UpperCamelCase : Tuple = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=A__) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor') self.assertTrue(not hasattr(A__ , 'is_local')) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
700
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_sentencepiece_available(): import sentencepiece as sp lowerCAmelCase__ = 5 lowerCAmelCase__ = 1_0 @require_sentencepiece @require_tokenizers class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" a__ = SpeechaTextTokenizer a__ = False a__ = True def A__ ( self): super().setUp() _UpperCamelCase : Any = sp.SentencePieceProcessor() spm_model.Load(__snake_case) _UpperCamelCase : List[str] = ['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_) for id_ in range(len(__snake_case))] _UpperCamelCase : Dict = dict(zip(__snake_case , range(len(__snake_case)))) _UpperCamelCase : Tuple = Path(self.tmpdirname) save_json(__snake_case , save_dir / VOCAB_FILES_NAMES['vocab_file']) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__snake_case , save_dir / VOCAB_FILES_NAMES['spm_file']) _UpperCamelCase : int = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def A__ ( self): _UpperCamelCase : str = '<pad>' _UpperCamelCase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case) , __snake_case) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case) , __snake_case) def A__ ( self): _UpperCamelCase : Optional[Any] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(vocab_keys[-1] , 'j') self.assertEqual(len(__snake_case) , 10_01) def A__ ( self): self.assertEqual(self.get_tokenizer().vocab_size , 10_01) def A__ ( self): _UpperCamelCase : Any = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) _UpperCamelCase : List[str] = tokenizer.tokenize('This is a test') self.assertListEqual(__snake_case , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case) , [2_89, 50, 14, 1_74, 3_86] , ) _UpperCamelCase : int = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( __snake_case , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) _UpperCamelCase : int = tokenizer.convert_tokens_to_ids(__snake_case) self.assertListEqual(__snake_case , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8]) _UpperCamelCase : Tuple = tokenizer.convert_ids_to_tokens(__snake_case) self.assertListEqual( __snake_case , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def A__ ( self): # fmt: off _UpperCamelCase : Optional[int] = {'input_ids': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , ) @require_sentencepiece class lowercase ( unittest.TestCase ): """simple docstring""" a__ = "valhalla/s2t_mustc_multilinguial_medium" a__ = "C'est trop cool" a__ = "Esto es genial" @classmethod def A__ ( cls): _UpperCamelCase : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name) return cls def A__ ( self): self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4) self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6) self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9) self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11) def A__ ( self): self.assertEqual(self.tokenizer.vocab_size , 1_00_00) def A__ ( self): self.assertIn(__snake_case , self.tokenizer.all_special_ids) _UpperCamelCase : Optional[int] = [ES_CODE, 4, 16_01, 47, 76_47, 2] _UpperCamelCase : Tuple = self.tokenizer.decode(__snake_case , skip_special_tokens=__snake_case) _UpperCamelCase : Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__snake_case) self.assertEqual(__snake_case , __snake_case) self.assertNotIn(self.tokenizer.eos_token , __snake_case) def A__ ( self): _UpperCamelCase : Any = 'fr' _UpperCamelCase : List[Any] = self.tokenizer(self.french_text).input_ids self.assertEqual(encoded[0] , __snake_case) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id) def A__ ( self): _UpperCamelCase : Union[str, Any] = 'fr' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE]) _UpperCamelCase : List[str] = 'es' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE])
648
0
'''simple docstring''' import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput lowerCAmelCase__ = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowercase ( _snake_case ): """simple docstring""" def __init__( self , *__snake_case , __snake_case=None , __snake_case=None , __snake_case=None , **__snake_case): super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__) _UpperCamelCase : List[str] = eval_examples _UpperCamelCase : Dict = post_process_function _UpperCamelCase : Union[str, Any] = quant_trainer_args _UpperCamelCase : Any = 1_28 # default number of calibration samples def A__ ( self , __snake_case=None): if calib_dataset is None and self.calib_dataset is None: raise ValueError('Trainer: calibration requires an calib_dataset.') _UpperCamelCase : Optional[int] = calib_dataset if calib_dataset is not None else self.calib_dataset _UpperCamelCase : str = self._remove_unused_columns(lowerCAmelCase__ , description='Calibration') return DataLoader( lowerCAmelCase__ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=lowerCAmelCase__ , ) def A__ ( self , __snake_case=None): _UpperCamelCase : Optional[int] = self.train_dataset if calib_dataset is None else calib_dataset _UpperCamelCase : Optional[int] = self.get_calib_dataloader(lowerCAmelCase__) _UpperCamelCase : Tuple = self.model quant_trainer.configure_model(lowerCAmelCase__ , self.quant_trainer_args , calib=lowerCAmelCase__) model.eval() quant_trainer.enable_calibration(lowerCAmelCase__) logger.info('***** Running calibration *****') logger.info(f''' Num examples = {self.calib_num}''') logger.info(f''' Batch size = {calib_dataloader.batch_size}''') for step, inputs in enumerate(lowerCAmelCase__): # Prediction step _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : List[str] = self.prediction_step(lowerCAmelCase__ , lowerCAmelCase__ , prediction_loss_only=lowerCAmelCase__) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(lowerCAmelCase__ , self.quant_trainer_args) _UpperCamelCase : List[Any] = model def A__ ( self , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case = "eval"): _UpperCamelCase : str = self.eval_dataset if eval_dataset is None else eval_dataset _UpperCamelCase : str = self.get_eval_dataloader(lowerCAmelCase__) _UpperCamelCase : Dict = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _UpperCamelCase : Any = self.compute_metrics _UpperCamelCase : List[str] = None _UpperCamelCase : Dict = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _UpperCamelCase : List[Any] = eval_loop( lowerCAmelCase__ , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCAmelCase__ , ) finally: _UpperCamelCase : Tuple = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: _UpperCamelCase : Tuple = self.post_process_function(lowerCAmelCase__ , lowerCAmelCase__ , output.predictions) _UpperCamelCase : Dict = self.compute_metrics(lowerCAmelCase__) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f'''{metric_key_prefix}_'''): _UpperCamelCase : Optional[Any] = metrics.pop(lowerCAmelCase__) self.log(lowerCAmelCase__) else: _UpperCamelCase : Tuple = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) _UpperCamelCase : int = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowerCAmelCase__) return metrics def A__ ( self , __snake_case , __snake_case , __snake_case=None , __snake_case = "test"): _UpperCamelCase : Optional[int] = self.get_test_dataloader(lowerCAmelCase__) # Temporarily disable metric computation, we will do it in the loop here. _UpperCamelCase : str = self.compute_metrics _UpperCamelCase : str = None _UpperCamelCase : List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _UpperCamelCase : int = eval_loop( lowerCAmelCase__ , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCAmelCase__ , ) finally: _UpperCamelCase : Union[str, Any] = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output _UpperCamelCase : Union[str, Any] = self.post_process_function(lowerCAmelCase__ , lowerCAmelCase__ , output.predictions , 'predict') _UpperCamelCase : Optional[Any] = self.compute_metrics(lowerCAmelCase__) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f'''{metric_key_prefix}_'''): _UpperCamelCase : str = metrics.pop(lowerCAmelCase__) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowerCAmelCase__) def A__ ( self , __snake_case="./"): _UpperCamelCase : List[Any] = self.eval_dataset _UpperCamelCase : Optional[int] = self.get_eval_dataloader(lowerCAmelCase__) _UpperCamelCase : str = next(iter(lowerCAmelCase__)) # saving device - to make it consistent _UpperCamelCase : Dict = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # convert to tuple _UpperCamelCase : Optional[int] = tuple(v.to(lowerCAmelCase__) for k, v in batch.items()) logger.info('Converting model to be onnx compatible') from pytorch_quantization.nn import TensorQuantizer _UpperCamelCase : int = True _UpperCamelCase : Any = self.model.to(lowerCAmelCase__) model.eval() model.float() _UpperCamelCase : str = model.module if hasattr(lowerCAmelCase__ , 'module') else model quant_trainer.configure_model(lowerCAmelCase__ , self.quant_trainer_args) _UpperCamelCase : Optional[int] = os.path.join(lowerCAmelCase__ , 'model.onnx') logger.info(f'''exporting model to {output_model_file}''') _UpperCamelCase : Optional[int] = {0: 'batch_size', 1: 'seq_len'} torch.onnx.export( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , export_params=lowerCAmelCase__ , opset_version=13 , do_constant_folding=lowerCAmelCase__ , input_names=['input_ids', 'attention_mask', 'token_type_ids'] , output_names=['output_start_logits', 'output_end_logits'] , dynamic_axes={ 'input_ids': axes, 'attention_mask': axes, 'token_type_ids': axes, 'output_start_logits': axes, 'output_end_logits': axes, } , verbose=lowerCAmelCase__ , ) logger.info('onnx export finished')
701
import logging from transformers.configuration_utils import PretrainedConfig lowerCAmelCase__ = logging.getLogger(__name__) class lowercase ( _lowercase ): """simple docstring""" a__ = "masked_bert" def __init__( self , __snake_case=3_05_22 , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=0 , __snake_case="topK" , __snake_case="constant" , __snake_case=0.0 , **__snake_case , ): super().__init__(pad_token_id=__snake_case , **__snake_case) _UpperCamelCase : List[Any] = vocab_size _UpperCamelCase : Union[str, Any] = hidden_size _UpperCamelCase : Optional[int] = num_hidden_layers _UpperCamelCase : Any = num_attention_heads _UpperCamelCase : int = hidden_act _UpperCamelCase : str = intermediate_size _UpperCamelCase : str = hidden_dropout_prob _UpperCamelCase : Any = attention_probs_dropout_prob _UpperCamelCase : Tuple = max_position_embeddings _UpperCamelCase : Dict = type_vocab_size _UpperCamelCase : str = initializer_range _UpperCamelCase : List[Any] = layer_norm_eps _UpperCamelCase : Tuple = pruning_method _UpperCamelCase : Tuple = mask_init _UpperCamelCase : Dict = mask_scale
648
0
from __future__ import annotations from typing import Any class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case , __snake_case = 0): _UpperCamelCase , _UpperCamelCase : Optional[Any] = row, column _UpperCamelCase : Any = [[default_value for c in range(UpperCAmelCase_)] for r in range(UpperCAmelCase_)] def __str__( self): _UpperCamelCase : str = f'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier _UpperCamelCase : List[Any] = 0 for row_vector in self.array: for obj in row_vector: _UpperCamelCase : int = max(UpperCAmelCase_ , len(str(UpperCAmelCase_))) _UpperCamelCase : List[Any] = f'''%{max_element_length}s''' # Make string and return def single_line(__snake_case) -> str: nonlocal string_format_identifier _UpperCamelCase : List[Any] = '[' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector) line += "]" return line s += "\n".join(single_line(UpperCAmelCase_) for row_vector in self.array) return s def __repr__( self): return str(self) def A__ ( self , __snake_case): if not (isinstance(UpperCAmelCase_ , (list, tuple)) and len(UpperCAmelCase_) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self , __snake_case): assert self.validate_indicies(UpperCAmelCase_) return self.array[loc[0]][loc[1]] def __setitem__( self , __snake_case , __snake_case): assert self.validate_indicies(UpperCAmelCase_) _UpperCamelCase : Optional[Any] = value def __add__( self , __snake_case): assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) assert self.row == another.row and self.column == another.column # Add _UpperCamelCase : Optional[Any] = Matrix(self.row , self.column) for r in range(self.row): for c in range(self.column): _UpperCamelCase : Dict = self[r, c] + another[r, c] return result def __neg__( self): _UpperCamelCase : Union[str, Any] = Matrix(self.row , self.column) for r in range(self.row): for c in range(self.column): _UpperCamelCase : str = -self[r, c] return result def __sub__( self , __snake_case): return self + (-another) def __mul__( self , __snake_case): if isinstance(UpperCAmelCase_ , (int, float)): # Scalar multiplication _UpperCamelCase : Any = Matrix(self.row , self.column) for r in range(self.row): for c in range(self.column): _UpperCamelCase : Union[str, Any] = self[r, c] * another return result elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): # Matrix multiplication assert self.column == another.row _UpperCamelCase : List[Any] = Matrix(self.row , another.column) for r in range(self.row): for c in range(another.column): for i in range(self.column): result[r, c] += self[r, i] * another[i, c] return result else: _UpperCamelCase : Optional[int] = f'''Unsupported type given for another ({type(UpperCAmelCase_)})''' raise TypeError(UpperCAmelCase_) def A__ ( self): _UpperCamelCase : Any = Matrix(self.column , self.row) for r in range(self.row): for c in range(self.column): _UpperCamelCase : Dict = self[r, c] return result def A__ ( self , __snake_case , __snake_case): assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) and isinstance(UpperCAmelCase_ , UpperCAmelCase_) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate _UpperCamelCase : List[Any] = v.transpose() _UpperCamelCase : str = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def lowerCamelCase_ ( ) -> None: '''simple docstring''' _UpperCamelCase : List[Any] = Matrix(3 , 3 , 0 ) for i in range(3 ): _UpperCamelCase : str = 1 print(F'''a^(-1) is {ainv}''' ) # u, v _UpperCamelCase : Dict = Matrix(3 , 1 , 0 ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : int = 1, 2, -3 _UpperCamelCase : List[Any] = Matrix(3 , 1 , 0 ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Tuple = 4, -2, 5 print(F'''u is {u}''' ) print(F'''v is {v}''' ) print(F'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(F'''(a + uv^T)^(-1) is {ainv.sherman_morrison(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}''' ) def lowerCamelCase_ ( ) -> None: '''simple docstring''' import doctest doctest.testmod() testa()
702
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow lowerCAmelCase__ = False class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self , __snake_case=32): set_seed(0) _UpperCamelCase : int = UNetaDModel(sample_size=__snake_case , in_channels=3 , out_channels=3) _UpperCamelCase : str = torch.optim.SGD(model.parameters() , lr=0.0_0_0_1) return model, optimizer @slow def A__ ( self): _UpperCamelCase : Tuple = 'cpu' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable _UpperCamelCase : List[Any] = DDPMScheduler( num_train_timesteps=10_00 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='linear' , clip_sample=__snake_case , ) _UpperCamelCase : List[Any] = DDIMScheduler( num_train_timesteps=10_00 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='linear' , clip_sample=__snake_case , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0) _UpperCamelCase : Optional[Any] = [torch.randn((4, 3, 32, 32)).clip(-1 , 1).to(__snake_case) for _ in range(4)] _UpperCamelCase : str = [torch.randn((4, 3, 32, 32)).to(__snake_case) for _ in range(4)] _UpperCamelCase : int = [torch.randint(0 , 10_00 , (4,)).long().to(__snake_case) for _ in range(4)] # train with a DDPM scheduler _UpperCamelCase , _UpperCamelCase : List[Any] = self.get_model_optimizer(resolution=32) model.train().to(__snake_case) for i in range(4): optimizer.zero_grad() _UpperCamelCase : int = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) _UpperCamelCase : Any = model(__snake_case , timesteps[i]).sample _UpperCamelCase : str = torch.nn.functional.mse_loss(__snake_case , noise[i]) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM _UpperCamelCase , _UpperCamelCase : Union[str, Any] = self.get_model_optimizer(resolution=32) model.train().to(__snake_case) for i in range(4): optimizer.zero_grad() _UpperCamelCase : Dict = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) _UpperCamelCase : Dict = model(__snake_case , timesteps[i]).sample _UpperCamelCase : Tuple = torch.nn.functional.mse_loss(__snake_case , noise[i]) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1e-5)) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1e-5))
648
0
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def lowerCamelCase_ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] ) -> float: '''simple docstring''' return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) def lowerCamelCase_ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int ) -> list[list[list[float] | float]]: '''simple docstring''' if dataset.ndim != value_array.ndim: _UpperCamelCase : Optional[Any] = ( 'Wrong input data\'s dimensions... ' F'''dataset : {dataset.ndim}, value_array : {value_array.ndim}''' ) raise ValueError(UpperCAmelCase_ ) try: if dataset.shape[1] != value_array.shape[1]: _UpperCamelCase : str = ( 'Wrong input data\'s shape... ' F'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}''' ) raise ValueError(UpperCAmelCase_ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: _UpperCamelCase : Tuple = ( 'Input data have different datatype... ' F'''dataset : {dataset.dtype}, value_array : {value_array.dtype}''' ) raise TypeError(UpperCAmelCase_ ) _UpperCamelCase : int = [] for value in value_array: _UpperCamelCase : Optional[int] = euclidean(UpperCAmelCase_ , dataset[0] ) _UpperCamelCase : Dict = dataset[0].tolist() for dataset_value in dataset[1:]: _UpperCamelCase : List[Any] = euclidean(UpperCAmelCase_ , UpperCAmelCase_ ) if dist > temp_dist: _UpperCamelCase : List[str] = temp_dist _UpperCamelCase : Union[str, Any] = dataset_value.tolist() answer.append([vector, dist] ) return answer def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] ) -> float: '''simple docstring''' return np.dot(UpperCAmelCase_ , UpperCAmelCase_ ) / (norm(UpperCAmelCase_ ) * norm(UpperCAmelCase_ )) if __name__ == "__main__": import doctest doctest.testmod()
703
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) lowerCAmelCase__ = { """sample_size""": 3_2, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 1_0_0_0, """block_out_channels""": [3_2, 6_4], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """sample_size""": 6_4, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 1_0_0_0, """block_out_channels""": [1_9_2, 1_9_2 * 2, 1_9_2 * 3, 1_9_2 * 4], """attention_head_dim""": 6_4, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """sample_size""": 2_5_6, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [2_5_6, 2_5_6, 2_5_6 * 2, 2_5_6 * 2, 2_5_6 * 4, 2_5_6 * 4], """attention_head_dim""": 6_4, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """num_train_timesteps""": 4_0, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } lowerCAmelCase__ = { """num_train_timesteps""": 2_0_1, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } lowerCAmelCase__ = { """num_train_timesteps""": 1_5_1, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> List[str]: '''simple docstring''' if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def lowerCamelCase_ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any]=False ) -> str: '''simple docstring''' _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.in_layers.0.weight'''] _UpperCamelCase : str = checkpoint[F'''{old_prefix}.in_layers.0.bias'''] _UpperCamelCase : str = checkpoint[F'''{old_prefix}.in_layers.2.weight'''] _UpperCamelCase : Union[str, Any] = checkpoint[F'''{old_prefix}.in_layers.2.bias'''] _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.emb_layers.1.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.emb_layers.1.bias'''] _UpperCamelCase : Tuple = checkpoint[F'''{old_prefix}.out_layers.0.weight'''] _UpperCamelCase : List[Any] = checkpoint[F'''{old_prefix}.out_layers.0.bias'''] _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.out_layers.3.weight'''] _UpperCamelCase : Union[str, Any] = checkpoint[F'''{old_prefix}.out_layers.3.bias'''] if has_skip: _UpperCamelCase : Tuple = checkpoint[F'''{old_prefix}.skip_connection.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any=None ) -> int: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 ) _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.norm.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.norm.bias'''] _UpperCamelCase : List[str] = weight_q.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Dict = bias_q.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Any = weight_k.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : List[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Dict = weight_v.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Tuple = bias_v.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Optional[Any] = ( checkpoint[F'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] ) -> Tuple: '''simple docstring''' _UpperCamelCase : Any = torch.load(UpperCAmelCase_ , map_location='cpu' ) _UpperCamelCase : Union[str, Any] = {} _UpperCamelCase : Optional[int] = checkpoint['time_embed.0.weight'] _UpperCamelCase : List[Any] = checkpoint['time_embed.0.bias'] _UpperCamelCase : Dict = checkpoint['time_embed.2.weight'] _UpperCamelCase : Optional[Any] = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: _UpperCamelCase : List[str] = checkpoint['label_emb.weight'] _UpperCamelCase : Optional[int] = checkpoint['input_blocks.0.0.weight'] _UpperCamelCase : Union[str, Any] = checkpoint['input_blocks.0.0.bias'] _UpperCamelCase : Optional[int] = unet_config['down_block_types'] _UpperCamelCase : Optional[Any] = unet_config['layers_per_block'] _UpperCamelCase : Dict = unet_config['attention_head_dim'] _UpperCamelCase : List[str] = unet_config['block_out_channels'] _UpperCamelCase : str = 1 _UpperCamelCase : Optional[int] = channels_list[0] for i, layer_type in enumerate(UpperCAmelCase_ ): _UpperCamelCase : List[str] = channels_list[i] _UpperCamelCase : str = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(UpperCAmelCase_ ): _UpperCamelCase : str = F'''down_blocks.{i}.resnets.{j}''' _UpperCamelCase : List[Any] = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : Any = True if j == 0 and downsample_block_has_skip else False _UpperCamelCase : str = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(UpperCAmelCase_ ): _UpperCamelCase : List[str] = F'''down_blocks.{i}.resnets.{j}''' _UpperCamelCase : str = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : int = True if j == 0 and downsample_block_has_skip else False _UpperCamelCase : Any = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) _UpperCamelCase : Dict = F'''down_blocks.{i}.attentions.{j}''' _UpperCamelCase : Optional[int] = F'''input_blocks.{current_layer}.1''' _UpperCamelCase : Dict = convert_attention( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : int = F'''down_blocks.{i}.downsamplers.0''' _UpperCamelCase : Optional[int] = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : List[Any] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 _UpperCamelCase : Tuple = current_channels # hardcoded the mid-block for now _UpperCamelCase : Any = 'mid_block.resnets.0' _UpperCamelCase : Optional[Any] = 'middle_block.0' _UpperCamelCase : Tuple = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = 'mid_block.attentions.0' _UpperCamelCase : Tuple = 'middle_block.1' _UpperCamelCase : Union[str, Any] = convert_attention(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Tuple = 'mid_block.resnets.1' _UpperCamelCase : str = 'middle_block.2' _UpperCamelCase : List[str] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : List[Any] = 0 _UpperCamelCase : Optional[int] = unet_config['up_block_types'] for i, layer_type in enumerate(UpperCAmelCase_ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _UpperCamelCase : Optional[Any] = F'''up_blocks.{i}.resnets.{j}''' _UpperCamelCase : Optional[int] = F'''output_blocks.{current_layer}.0''' _UpperCamelCase : str = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : List[Any] = F'''up_blocks.{i}.upsamplers.0''' _UpperCamelCase : Dict = F'''output_blocks.{current_layer-1}.1''' _UpperCamelCase : Optional[int] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _UpperCamelCase : str = F'''up_blocks.{i}.resnets.{j}''' _UpperCamelCase : Union[str, Any] = F'''output_blocks.{current_layer}.0''' _UpperCamelCase : Optional[int] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) _UpperCamelCase : int = F'''up_blocks.{i}.attentions.{j}''' _UpperCamelCase : List[Any] = F'''output_blocks.{current_layer}.1''' _UpperCamelCase : Optional[int] = convert_attention( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : List[Any] = F'''up_blocks.{i}.upsamplers.0''' _UpperCamelCase : Union[str, Any] = F'''output_blocks.{current_layer-1}.2''' _UpperCamelCase : List[str] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : List[Any] = checkpoint['out.0.weight'] _UpperCamelCase : str = checkpoint['out.0.bias'] _UpperCamelCase : int = checkpoint['out.2.weight'] _UpperCamelCase : List[Any] = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = strabool(args.class_cond) lowerCAmelCase__ = os.path.basename(args.unet_path) print(f'Checkpoint: {ckpt_name}') # Get U-Net config if "imagenet64" in ckpt_name: lowerCAmelCase__ = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCAmelCase__ = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: lowerCAmelCase__ = TEST_UNET_CONFIG else: raise ValueError(f'Checkpoint type {ckpt_name} is not currently supported.') if not args.class_cond: lowerCAmelCase__ = None lowerCAmelCase__ = con_pt_to_diffuser(args.unet_path, unet_config) lowerCAmelCase__ = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: lowerCAmelCase__ = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: lowerCAmelCase__ = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCAmelCase__ = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f'Checkpoint type {ckpt_name} is not currently supported.') lowerCAmelCase__ = CMStochasticIterativeScheduler(**scheduler_config) lowerCAmelCase__ = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
648
0
from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES lowerCAmelCase__ = '''tiny-wmt19-en-ru''' # Build # borrowed from a test lowerCAmelCase__ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] lowerCAmelCase__ = dict(zip(vocab, range(len(vocab)))) lowerCAmelCase__ = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(tmpdirname) lowerCAmelCase__ = build_dir / VOCAB_FILES_NAMES['''src_vocab_file'''] lowerCAmelCase__ = build_dir / VOCAB_FILES_NAMES['''tgt_vocab_file'''] lowerCAmelCase__ = build_dir / VOCAB_FILES_NAMES['''merges_file'''] with open(src_vocab_file, """w""") as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, """w""") as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, """w""") as fp: fp.write("""\n""".join(merges)) lowerCAmelCase__ = FSMTTokenizer( langs=["""en""", """ru"""], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) lowerCAmelCase__ = FSMTConfig( langs=["""ru""", """en"""], src_vocab_size=1_0_0_0, tgt_vocab_size=1_0_0_0, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) lowerCAmelCase__ = FSMTForConditionalGeneration(config) print(f'num of params {tiny_model.num_parameters()}') # Test lowerCAmelCase__ = tokenizer(["""Making tiny model"""], return_tensors="""pt""") lowerCAmelCase__ = tiny_model(**batch) print("""test output:""", len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f'Generated {mname_tiny}') # Upload # transformers-cli upload tiny-wmt19-en-ru
704
def lowerCamelCase_ ( UpperCAmelCase_ : list ) -> list: '''simple docstring''' if len(UpperCAmelCase_ ) <= 1: return [tuple(UpperCAmelCase_ )] _UpperCamelCase : List[Any] = [] def generate(UpperCAmelCase_ : int , UpperCAmelCase_ : list ): _UpperCamelCase : Optional[int] = [0] * n res.append(tuple(UpperCAmelCase_ ) ) _UpperCamelCase : List[Any] = 0 while i < n: if c[i] < i: if i % 2 == 0: _UpperCamelCase , _UpperCamelCase : List[str] = arr[i], arr[0] else: _UpperCamelCase , _UpperCamelCase : List[str] = arr[i], arr[c[i]] res.append(tuple(UpperCAmelCase_ ) ) c[i] += 1 _UpperCamelCase : Tuple = 0 else: _UpperCamelCase : Tuple = 0 i += 1 generate(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) return res if __name__ == "__main__": lowerCAmelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCAmelCase__ = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
648
0
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { "snap-research/efficientformer-l1-300": ( "https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json" ), } class lowercase ( lowercase__ ): """simple docstring""" a__ = "efficientformer" def __init__( self , __snake_case = [3, 2, 6, 4] , __snake_case = [48, 96, 2_24, 4_48] , __snake_case = [True, True, True, True] , __snake_case = 4_48 , __snake_case = 32 , __snake_case = 4 , __snake_case = 7 , __snake_case = 5 , __snake_case = 8 , __snake_case = 4 , __snake_case = 0.0 , __snake_case = 16 , __snake_case = 3 , __snake_case = 3 , __snake_case = 3 , __snake_case = 2 , __snake_case = 1 , __snake_case = 0.0 , __snake_case = 1 , __snake_case = True , __snake_case = True , __snake_case = 1e-5 , __snake_case = "gelu" , __snake_case = 0.0_2 , __snake_case = 1e-12 , __snake_case = 2_24 , __snake_case = 1e-05 , **__snake_case , ): super().__init__(**__lowerCamelCase) _UpperCamelCase : Union[str, Any] = hidden_act _UpperCamelCase : List[Any] = hidden_dropout_prob _UpperCamelCase : str = hidden_sizes _UpperCamelCase : str = num_hidden_layers _UpperCamelCase : Optional[int] = num_attention_heads _UpperCamelCase : List[str] = initializer_range _UpperCamelCase : Optional[int] = layer_norm_eps _UpperCamelCase : Union[str, Any] = patch_size _UpperCamelCase : str = num_channels _UpperCamelCase : str = depths _UpperCamelCase : Tuple = mlp_expansion_ratio _UpperCamelCase : Dict = downsamples _UpperCamelCase : Union[str, Any] = dim _UpperCamelCase : List[Any] = key_dim _UpperCamelCase : Optional[Any] = attention_ratio _UpperCamelCase : int = resolution _UpperCamelCase : int = pool_size _UpperCamelCase : Optional[int] = downsample_patch_size _UpperCamelCase : List[Any] = downsample_stride _UpperCamelCase : Union[str, Any] = downsample_pad _UpperCamelCase : List[str] = drop_path_rate _UpperCamelCase : str = num_metaad_blocks _UpperCamelCase : str = distillation _UpperCamelCase : Dict = use_layer_scale _UpperCamelCase : Optional[Any] = layer_scale_init_value _UpperCamelCase : Optional[Any] = image_size _UpperCamelCase : int = batch_norm_eps
705
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = [ ["""attention""", """attn"""], ["""encoder_attention""", """encoder_attn"""], ["""q_lin""", """q_proj"""], ["""k_lin""", """k_proj"""], ["""v_lin""", """v_proj"""], ["""out_lin""", """out_proj"""], ["""norm_embeddings""", """layernorm_embedding"""], ["""position_embeddings""", """embed_positions"""], ["""embeddings""", """embed_tokens"""], ["""ffn.lin""", """fc"""], ] def lowerCamelCase_ ( UpperCAmelCase_ : List[Any] ) -> Optional[int]: '''simple docstring''' if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: _UpperCamelCase : List[Any] = k.replace(UpperCAmelCase_ , UpperCAmelCase_ ) if k.startswith('encoder' ): _UpperCamelCase : Optional[Any] = k.replace('.attn' , '.self_attn' ) _UpperCamelCase : Optional[int] = k.replace('norm1' , 'self_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): _UpperCamelCase : Any = k.replace('norm1' , 'self_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm2' , 'encoder_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm3' , 'final_layer_norm' ) return k def lowerCamelCase_ ( UpperCAmelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Union[str, Any] = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: _UpperCamelCase : Optional[int] = sd.pop(UpperCAmelCase_ ) _UpperCamelCase : str = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd _UpperCamelCase : Tuple = v lowerCAmelCase__ = ["""START"""] @torch.no_grad() def lowerCamelCase_ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ) -> List[str]: '''simple docstring''' _UpperCamelCase : Optional[Any] = torch.load(UpperCAmelCase_ , map_location='cpu' ) _UpperCamelCase : int = model['model'] _UpperCamelCase : List[Any] = BlenderbotConfig.from_json_file(UpperCAmelCase_ ) _UpperCamelCase : Any = BlenderbotForConditionalGeneration(UpperCAmelCase_ ) _UpperCamelCase : int = m.model.state_dict().keys() _UpperCamelCase : Union[str, Any] = [] _UpperCamelCase : int = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue _UpperCamelCase : Optional[int] = rename_state_dict_key(UpperCAmelCase_ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: _UpperCamelCase : int = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(UpperCAmelCase_ ) m.model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) m.half() m.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("""--src_path""", type=str, help="""like blenderbot-model.bin""") parser.add_argument("""--save_dir""", default="""hf_blenderbot""", type=str, help="""Where to save converted model.""") parser.add_argument( """--hf_config_json""", default="""blenderbot-3b-config.json""", type=str, help="""Path to config to use""" ) lowerCAmelCase__ = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
648
0
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowerCAmelCase__ = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def lowerCamelCase_ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any ) -> List[str]: '''simple docstring''' inspect_dataset(lowerCamelCase_ , lowerCamelCase_ ) _UpperCamelCase : str = path + '.py' assert script_name in os.listdir(lowerCamelCase_ ) assert "__pycache__" not in os.listdir(lowerCamelCase_ ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' inspect_metric(lowerCamelCase_ , lowerCamelCase_ ) _UpperCamelCase : int = path + '.py' assert script_name in os.listdir(lowerCamelCase_ ) assert "__pycache__" not in os.listdir(lowerCamelCase_ ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def lowerCamelCase_ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase : Optional[Any] = get_dataset_config_info(lowerCamelCase_ , config_name=lowerCamelCase_ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any ) -> Optional[int]: '''simple docstring''' with pytest.raises(lowerCamelCase_ ): get_dataset_config_info(lowerCamelCase_ , config_name=lowerCamelCase_ ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def lowerCamelCase_ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any ) -> Tuple: '''simple docstring''' _UpperCamelCase : Any = get_dataset_config_names(lowerCamelCase_ ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Union[str, Any] = get_dataset_infos(lowerCamelCase_ ) assert list(infos.keys() ) == expected_configs _UpperCamelCase : Tuple = expected_configs[0] assert expected_config in infos _UpperCamelCase : List[Any] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : str = get_dataset_infos(lowerCamelCase_ ) assert expected_config in infos _UpperCamelCase : Union[str, Any] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def lowerCamelCase_ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] ) -> Tuple: '''simple docstring''' with pytest.raises(lowerCamelCase_ ): get_dataset_split_names(lowerCamelCase_ , config_name=lowerCamelCase_ )
706
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer lowerCAmelCase__ = ["""bert-base-uncased""", """bert-base-cased"""] lowerCAmelCase__ = """hf-internal-testing/tiny-bert-tf-only""" if is_tf_available(): class lowercase ( tf.keras.Model ): """simple docstring""" def __init__( self , __snake_case): super().__init__() _UpperCamelCase : List[Any] = tokenizer _UpperCamelCase : List[Any] = AutoConfig.from_pretrained(__snake_case) _UpperCamelCase : Dict = TFAutoModel.from_config(__snake_case) def A__ ( self , __snake_case): _UpperCamelCase : Any = self.tokenizer(__snake_case) _UpperCamelCase : Dict = self.bert(**__snake_case) return out["pooler_output"] @require_tf @require_tensorflow_text class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self): super().setUp() _UpperCamelCase : Optional[Any] = [ BertTokenizer.from_pretrained(__snake_case) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false _UpperCamelCase : Optional[Any] = [TFBertTokenizer.from_pretrained(__snake_case) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(__snake_case , use_fast_bert_tokenizer=__snake_case) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers) == len(self.tf_tokenizers) _UpperCamelCase : Optional[Any] = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] _UpperCamelCase : Dict = list(zip(self.test_sentences , self.test_sentences[::-1])) def A__ ( self): for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers): for test_inputs in (self.test_sentences, self.paired_sentences): _UpperCamelCase : List[str] = tokenizer(__snake_case , return_tensors='tf' , padding='longest') _UpperCamelCase : Tuple = tf_tokenizer(__snake_case) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape)) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa) == tf_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Tuple = tf_tokenizer(self.paired_sentences) _UpperCamelCase : Optional[Any] = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa) == separated_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Tuple = tf.function(__snake_case) for test_inputs in (self.test_sentences, self.paired_sentences): _UpperCamelCase : Optional[int] = tf.constant(__snake_case) _UpperCamelCase : Union[str, Any] = compiled_tokenizer(__snake_case) _UpperCamelCase : Tuple = tf_tokenizer(__snake_case) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Any = ModelToSave(tokenizer=__snake_case) _UpperCamelCase : Any = tf.convert_to_tensor(self.test_sentences) _UpperCamelCase : Union[str, Any] = model(__snake_case) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _UpperCamelCase : int = Path(__snake_case) / 'saved.model' model.save(__snake_case) _UpperCamelCase : Optional[int] = tf.keras.models.load_model(__snake_case) _UpperCamelCase : int = loaded_model(__snake_case) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output)) , 1e-5)
648
0
from collections.abc import Callable def lowerCamelCase_ ( UpperCAmelCase_ : Callable[[float], float] , UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> float: '''simple docstring''' _UpperCamelCase : float = a _UpperCamelCase : float = b if function(UpperCAmelCase_ ) == 0: # one of the a or b is a root for the function return a elif function(UpperCAmelCase_ ) == 0: return b elif ( function(UpperCAmelCase_ ) * function(UpperCAmelCase_ ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: _UpperCamelCase : float = start + (end - start) / 2.0 while abs(start - mid ) > 1_0**-7: # until precisely equals to 10^-7 if function(UpperCAmelCase_ ) == 0: return mid elif function(UpperCAmelCase_ ) * function(UpperCAmelCase_ ) < 0: _UpperCamelCase : Dict = mid else: _UpperCamelCase : Optional[Any] = mid _UpperCamelCase : Any = start + (end - start) / 2.0 return mid def lowerCamelCase_ ( UpperCAmelCase_ : float ) -> float: '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_0_0_0)) import doctest doctest.testmod()
707
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ = { """configuration_canine""": ["""CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CanineConfig"""], """tokenization_canine""": ["""CanineTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """CANINE_PRETRAINED_MODEL_ARCHIVE_LIST""", """CanineForMultipleChoice""", """CanineForQuestionAnswering""", """CanineForSequenceClassification""", """CanineForTokenClassification""", """CanineLayer""", """CanineModel""", """CaninePreTrainedModel""", """load_tf_weights_in_canine""", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
648
0
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowerCAmelCase__ = getLogger(__name__) lowerCAmelCase__ = """cuda""" if torch.cuda.is_available() else """cpu""" def lowerCamelCase_ ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 8 , UpperCAmelCase_ : str = DEFAULT_DEVICE , UpperCAmelCase_ : str=False , UpperCAmelCase_ : Union[str, Any]="summarization" , UpperCAmelCase_ : Tuple=None , **UpperCAmelCase_ : Dict , ): '''simple docstring''' _UpperCamelCase : List[str] = Path(__A ).open('w' , encoding='utf-8' ) _UpperCamelCase : int = str(__A ) _UpperCamelCase : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained(__A ).to(__A ) if fpaa: _UpperCamelCase : List[str] = model.half() _UpperCamelCase : str = AutoTokenizer.from_pretrained(__A ) logger.info(F'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type. _UpperCamelCase : Optional[int] = time.time() # update config with task specific params use_task_specific_params(__A , __A ) if prefix is None: _UpperCamelCase : str = prefix or getattr(model.config , 'prefix' , '' ) or '''''' for examples_chunk in tqdm(list(chunks(__A , __A ) ) ): _UpperCamelCase : Any = [prefix + text for text in examples_chunk] _UpperCamelCase : Optional[int] = tokenizer(__A , return_tensors='pt' , truncation=__A , padding='longest' ).to(__A ) _UpperCamelCase : List[str] = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **__A , ) _UpperCamelCase : Dict = tokenizer.batch_decode(__A , skip_special_tokens=__A , clean_up_tokenization_spaces=__A ) for hypothesis in dec: fout.write(hypothesis + '\n' ) fout.flush() fout.close() _UpperCamelCase : Optional[int] = int(time.time() - start_time ) # seconds _UpperCamelCase : List[Any] = len(__A ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowerCamelCase_ ( ): '''simple docstring''' return datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' ) def lowerCamelCase_ ( UpperCAmelCase_ : Tuple=True ): '''simple docstring''' _UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('model_name' , type=__A , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('input_path' , type=__A , help='like cnn_dm/test.source' ) parser.add_argument('save_path' , type=__A , help='where to save summaries' ) parser.add_argument('--reference_path' , type=__A , required=__A , help='like cnn_dm/test.target' ) parser.add_argument('--score_path' , type=__A , required=__A , default='metrics.json' , help='where to save metrics' ) parser.add_argument('--device' , type=__A , required=__A , default=__A , help='cuda, cuda:1, cpu etc.' ) parser.add_argument( '--prefix' , type=__A , required=__A , default=__A , help='will be added to the begininng of src examples' ) parser.add_argument('--task' , type=__A , default='summarization' , help='used for task_specific_params + metrics' ) parser.add_argument('--bs' , type=__A , default=8 , required=__A , help='batch size' ) parser.add_argument( '--n_obs' , type=__A , default=-1 , required=__A , help='How many observations. Defaults to all.' ) parser.add_argument('--fp16' , action='store_true' ) parser.add_argument('--dump-args' , action='store_true' , help='print the custom hparams with the results' ) parser.add_argument( '--info' , nargs='?' , type=__A , const=datetime_now() , help=( 'use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.' ' lang=en-ru. If no value is passed, the current datetime string will be used.' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate _UpperCamelCase : Dict = parser.parse_known_args() _UpperCamelCase : Any = parse_numeric_n_bool_cl_kwargs(__A ) if parsed_args and verbose: print(F'''parsed the following generate kwargs: {parsed_args}''' ) _UpperCamelCase : Tuple = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: _UpperCamelCase : List[str] = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=__A ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F'''score_path {args.score_path} will be overwritten unless you type ctrl-c.''' ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('Can\'t mix --fp16 and --device cpu' ) _UpperCamelCase : Union[str, Any] = generate_summaries_or_translations( __A , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **__A , ) if args.reference_path is None: return {} # Compute scores _UpperCamelCase : int = calculate_bleu if '''translation''' in args.task else calculate_rouge _UpperCamelCase : List[str] = [x.rstrip() for x in open(args.save_path ).readlines()] _UpperCamelCase : List[Any] = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(__A )] _UpperCamelCase : dict = score_fn(__A , __A ) scores.update(__A ) if args.dump_args: scores.update(__A ) if args.info: _UpperCamelCase : Tuple = args.info if verbose: print(__A ) if args.score_path is not None: json.dump(__A , open(args.score_path , 'w' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
708
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case=3 , __snake_case=32 , __snake_case=3 , __snake_case=10 , __snake_case=[8, 16, 32, 64] , __snake_case=[1, 1, 2, 1] , __snake_case=True , __snake_case=True , __snake_case="relu" , __snake_case=3 , __snake_case=None , __snake_case=["stage2", "stage3", "stage4"] , __snake_case=[2, 3, 4] , __snake_case=1 , ): _UpperCamelCase : List[Any] = parent _UpperCamelCase : Dict = batch_size _UpperCamelCase : Optional[int] = image_size _UpperCamelCase : str = num_channels _UpperCamelCase : Optional[Any] = embeddings_size _UpperCamelCase : Tuple = hidden_sizes _UpperCamelCase : Dict = depths _UpperCamelCase : str = is_training _UpperCamelCase : Optional[int] = use_labels _UpperCamelCase : str = hidden_act _UpperCamelCase : Optional[int] = num_labels _UpperCamelCase : Optional[int] = scope _UpperCamelCase : Tuple = len(__snake_case) _UpperCamelCase : Dict = out_features _UpperCamelCase : Union[str, Any] = out_indices _UpperCamelCase : int = num_groups def A__ ( self): _UpperCamelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase : str = None if self.use_labels: _UpperCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels) _UpperCamelCase : str = self.get_config() return config, pixel_values, labels def A__ ( self): return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : str = BitModel(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[Any] = model(__snake_case) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Dict = self.num_labels _UpperCamelCase : Dict = BitForImageClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Dict = model(__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[Any] = BitBackbone(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = model(__snake_case) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:]) # verify backbone works with out_features=None _UpperCamelCase : Any = None _UpperCamelCase : str = BitBackbone(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Any = model(__snake_case) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , 1) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[-1], 1, 1]) # verify channels self.parent.assertEqual(len(model.channels) , 1) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]]) def A__ ( self): _UpperCamelCase : Optional[int] = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : int = config_and_inputs _UpperCamelCase : int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () a__ = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False a__ = False def A__ ( self): _UpperCamelCase : Dict = BitModelTester(self) _UpperCamelCase : Optional[Any] = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case) def A__ ( self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self): return @unittest.skip(reason='Bit does not output attentions') def A__ ( self): pass @unittest.skip(reason='Bit does not use inputs_embeds') def A__ ( self): pass @unittest.skip(reason='Bit does not support input and output embeddings') def A__ ( self): pass def A__ ( self): _UpperCamelCase , _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : int = model_class(__snake_case) _UpperCamelCase : List[Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : Optional[int] = [*signature.parameters.keys()] _UpperCamelCase : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __snake_case) def A__ ( self): _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case) def A__ ( self): _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__snake_case) def A__ ( self): _UpperCamelCase , _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Union[str, Any] = model_class(config=__snake_case) for name, module in model.named_modules(): if isinstance(__snake_case , (nn.BatchNormad, nn.GroupNorm)): self.assertTrue( torch.all(module.weight == 1) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def A__ ( self): def check_hidden_states_output(__snake_case , __snake_case , __snake_case): _UpperCamelCase : str = model_class(__snake_case) model.to(__snake_case) model.eval() with torch.no_grad(): _UpperCamelCase : Union[str, Any] = model(**self._prepare_for_class(__snake_case , __snake_case)) _UpperCamelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase : str = self.model_tester.num_stages self.assertEqual(len(__snake_case) , expected_num_stages + 1) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCamelCase , _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : List[str] = ['preactivation', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _UpperCamelCase : Any = layer_type _UpperCamelCase : Tuple = True check_hidden_states_output(__snake_case , __snake_case , __snake_case) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase : List[str] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case) @unittest.skip(reason='Bit does not use feedforward chunking') def A__ ( self): pass def A__ ( self): _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case) @slow def A__ ( self): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : Optional[Any] = BitModel.from_pretrained(__snake_case) self.assertIsNotNone(__snake_case) def lowerCamelCase_ ( ) -> Optional[int]: '''simple docstring''' _UpperCamelCase : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def A__ ( self): _UpperCamelCase : Optional[Any] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(__snake_case) _UpperCamelCase : str = self.default_image_processor _UpperCamelCase : List[str] = prepare_img() _UpperCamelCase : int = image_processor(images=__snake_case , return_tensors='pt').to(__snake_case) # forward pass with torch.no_grad(): _UpperCamelCase : Any = model(**__snake_case) # verify the logits _UpperCamelCase : Dict = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , __snake_case) _UpperCamelCase : Optional[int] = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]]).to(__snake_case) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1e-4)) @require_torch class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" a__ = (BitBackbone,) if is_torch_available() else () a__ = BitConfig a__ = False def A__ ( self): _UpperCamelCase : List[str] = BitModelTester(self)
648
0
'''simple docstring''' import math def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> List[Any]: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCamelCase_ ( UpperCAmelCase_ : int = 1_0_0_0_1 ) -> Optional[int]: '''simple docstring''' try: _UpperCamelCase : Dict = int(__lowerCAmelCase ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) _UpperCamelCase : Optional[Any] = [] _UpperCamelCase : Union[str, Any] = 2 while len(__lowerCAmelCase ) < nth: if is_prime(__lowerCAmelCase ): primes.append(__lowerCAmelCase ) num += 1 else: num += 1 return primes[len(__lowerCAmelCase ) - 1] if __name__ == "__main__": print(f'{solution() = }')
709
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowerCAmelCase__ = numpy.array([0, 0]) lowerCAmelCase__ = numpy.array([0.5, 0.8_66_02_54]) lowerCAmelCase__ = numpy.array([1, 0]) lowerCAmelCase__ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] , UpperCAmelCase_ : int ) -> list[numpy.ndarray]: '''simple docstring''' _UpperCamelCase : Tuple = initial_vectors for _ in range(UpperCAmelCase_ ): _UpperCamelCase : str = iteration_step(UpperCAmelCase_ ) return vectors def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] ) -> list[numpy.ndarray]: '''simple docstring''' _UpperCamelCase : int = [] for i, start_vector in enumerate(vectors[:-1] ): _UpperCamelCase : Union[str, Any] = vectors[i + 1] new_vectors.append(UpperCAmelCase_ ) _UpperCamelCase : Tuple = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def lowerCamelCase_ ( UpperCAmelCase_ : numpy.ndarray , UpperCAmelCase_ : float ) -> numpy.ndarray: '''simple docstring''' _UpperCamelCase : str = numpy.radians(UpperCAmelCase_ ) _UpperCamelCase , _UpperCamelCase : Optional[Any] = numpy.cos(UpperCAmelCase_ ), numpy.sin(UpperCAmelCase_ ) _UpperCamelCase : Any = numpy.array(((c, -s), (s, c)) ) return numpy.dot(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] ) -> None: '''simple docstring''' _UpperCamelCase : str = plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _UpperCamelCase , _UpperCamelCase : Dict = zip(*UpperCAmelCase_ ) plt.plot(UpperCAmelCase_ , UpperCAmelCase_ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
648
0
def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict ) -> str: '''simple docstring''' return "\n".join( F'''{number} * {i} = {number * i}''' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=1_0))
710
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCAmelCase__ = abspath(join(dirname(__file__), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def lowerCamelCase_ ( UpperCAmelCase_ : Any ) -> Union[str, Any]: '''simple docstring''' config.addinivalue_line( 'markers' , 'is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested' ) config.addinivalue_line( 'markers' , 'is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested' ) config.addinivalue_line('markers' , 'is_pipeline_test: mark test to run only when pipelines are tested' ) config.addinivalue_line('markers' , 'is_staging_test: mark test to run only in the staging environment' ) config.addinivalue_line('markers' , 'accelerate_tests: mark test that require accelerate' ) config.addinivalue_line('markers' , 'tool_tests: mark the tool tests that are run on their specific schedule' ) def lowerCamelCase_ ( UpperCAmelCase_ : Optional[int] ) -> List[Any]: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : Any ) -> List[Any]: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main _UpperCamelCase : str = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(UpperCAmelCase_ , id=UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict ) -> Tuple: '''simple docstring''' if exitstatus == 5: _UpperCamelCase : List[Any] = 0 # Doctest custom flag to ignore output. lowerCAmelCase__ = doctest.register_optionflag("""IGNORE_RESULT""") lowerCAmelCase__ = doctest.OutputChecker class lowercase ( _lowercase ): """simple docstring""" def A__ ( self , __snake_case , __snake_case , __snake_case): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , __snake_case , __snake_case , __snake_case) lowerCAmelCase__ = CustomOutputChecker lowerCAmelCase__ = HfDoctestModule lowerCAmelCase__ = HfDocTestParser
648
0
'''simple docstring''' def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: '''simple docstring''' return "\n".join( F'''{number} * {i} = {number * i}''' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=1_0))
711
lowerCAmelCase__ = range(2, 2_0 + 1) lowerCAmelCase__ = [1_0**k for k in range(ks[-1] + 1)] lowerCAmelCase__ = {} def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int ) -> Tuple: '''simple docstring''' _UpperCamelCase : Dict = sum(a_i[j] for j in range(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) ) _UpperCamelCase : Optional[int] = sum(a_i[j] * base[j] for j in range(min(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) ) ) _UpperCamelCase , _UpperCamelCase : Dict = 0, 0 _UpperCamelCase : Optional[int] = n - i _UpperCamelCase : Union[str, Any] = memo.get(UpperCAmelCase_ ) if sub_memo is not None: _UpperCamelCase : str = sub_memo.get(UpperCAmelCase_ ) if jumps is not None and len(UpperCAmelCase_ ) > 0: # find and make the largest jump without going over _UpperCamelCase : str = -1 for _k in range(len(UpperCAmelCase_ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _UpperCamelCase : Optional[Any] = _k break if max_jump >= 0: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = jumps[max_jump] # since the difference between jumps is cached, add c _UpperCamelCase : Tuple = diff + c for j in range(min(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) ): _UpperCamelCase , _UpperCamelCase : Dict = divmod(UpperCAmelCase_ , 1_0 ) if new_c > 0: add(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) else: _UpperCamelCase : Union[str, Any] = [] else: _UpperCamelCase : List[Any] = {c: []} _UpperCamelCase : Optional[int] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _UpperCamelCase , _UpperCamelCase : Optional[Any] = next_term(UpperCAmelCase_ , k - 1 , i + dn , UpperCAmelCase_ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _UpperCamelCase , _UpperCamelCase : Any = compute(UpperCAmelCase_ , UpperCAmelCase_ , i + dn , UpperCAmelCase_ ) diff += _diff dn += terms_jumped _UpperCamelCase : List[str] = sub_memo[c] # keep jumps sorted by # of terms skipped _UpperCamelCase : Union[str, Any] = 0 while j < len(UpperCAmelCase_ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCAmelCase_ , (diff, dn, k) ) return (diff, dn) def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any ) -> Dict: '''simple docstring''' if i >= n: return 0, i if k > len(UpperCAmelCase_ ): a_i.extend([0 for _ in range(k - len(UpperCAmelCase_ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _UpperCamelCase : Any = i _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Any = 0, 0, 0 for j in range(len(UpperCAmelCase_ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _UpperCamelCase : Union[str, Any] = ds_c + ds_b diff += addend _UpperCamelCase : Union[str, Any] = 0 for j in range(UpperCAmelCase_ ): _UpperCamelCase : Union[str, Any] = a_i[j] + addend _UpperCamelCase , _UpperCamelCase : Any = divmod(UpperCAmelCase_ , 1_0 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return diff, i - start_i def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any ) -> Dict: '''simple docstring''' for j in range(UpperCAmelCase_ , len(UpperCAmelCase_ ) ): _UpperCamelCase : List[str] = digits[j] + addend if s >= 1_0: _UpperCamelCase , _UpperCamelCase : Any = divmod(UpperCAmelCase_ , 1_0 ) _UpperCamelCase : Union[str, Any] = addend // 1_0 + quotient else: _UpperCamelCase : Dict = s _UpperCamelCase : Optional[Any] = addend // 1_0 if addend == 0: break while addend > 0: _UpperCamelCase , _UpperCamelCase : Dict = divmod(UpperCAmelCase_ , 1_0 ) digits.append(UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : int = 1_0**1_5 ) -> int: '''simple docstring''' _UpperCamelCase : Optional[Any] = [1] _UpperCamelCase : Optional[int] = 1 _UpperCamelCase : int = 0 while True: _UpperCamelCase , _UpperCamelCase : List[Any] = next_term(UpperCAmelCase_ , 2_0 , i + dn , UpperCAmelCase_ ) dn += terms_jumped if dn == n - i: break _UpperCamelCase : str = 0 for j in range(len(UpperCAmelCase_ ) ): a_n += digits[j] * 1_0**j return a_n if __name__ == "__main__": print(f'{solution() = }')
648
0
from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter lowerCAmelCase__ = "Create a default config file for Accelerate with only a few flags set." def lowerCamelCase_ ( UpperCAmelCase_ : int="no" , UpperCAmelCase_ : Dict = default_json_config_file , UpperCAmelCase_ : Optional[Any] = False ) -> List[Any]: '''simple docstring''' _UpperCamelCase : int = Path(__lowerCAmelCase ) path.parent.mkdir(parents=__lowerCAmelCase , exist_ok=__lowerCAmelCase ) if path.exists(): print( F'''Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.''' ) return False _UpperCamelCase : Dict = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'''`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}''' ) _UpperCamelCase : Union[str, Any] = { """compute_environment""": """LOCAL_MACHINE""", """mixed_precision""": mixed_precision, } if torch.cuda.is_available(): _UpperCamelCase : str = torch.cuda.device_count() _UpperCamelCase : str = num_gpus _UpperCamelCase : str = False if num_gpus > 1: _UpperCamelCase : str = """MULTI_GPU""" else: _UpperCamelCase : int = """NO""" elif is_xpu_available() and use_xpu: _UpperCamelCase : Dict = torch.xpu.device_count() _UpperCamelCase : Optional[int] = num_xpus _UpperCamelCase : Optional[int] = False if num_xpus > 1: _UpperCamelCase : List[Any] = """MULTI_XPU""" else: _UpperCamelCase : Dict = """NO""" elif is_npu_available(): _UpperCamelCase : Union[str, Any] = torch.npu.device_count() _UpperCamelCase : Any = num_npus _UpperCamelCase : Optional[int] = False if num_npus > 1: _UpperCamelCase : Union[str, Any] = """MULTI_NPU""" else: _UpperCamelCase : int = """NO""" else: _UpperCamelCase : List[Any] = 0 _UpperCamelCase : int = True _UpperCamelCase : Any = 1 _UpperCamelCase : Optional[Any] = """NO""" _UpperCamelCase : Optional[int] = ClusterConfig(**__lowerCAmelCase ) config.to_json_file(__lowerCAmelCase ) return path def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : int ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Any = parser.add_parser('default' , parents=__lowerCAmelCase , help=__lowerCAmelCase , formatter_class=__lowerCAmelCase ) parser.add_argument( '--config_file' , default=__lowerCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=__lowerCAmelCase , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=__lowerCAmelCase ) return parser def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> str: '''simple docstring''' _UpperCamelCase : str = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F'''accelerate configuration saved at {config_file}''' )
712
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowercase ( _lowercase ): """simple docstring""" a__ = "vit_mae" def __init__( self , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=2_24 , __snake_case=16 , __snake_case=3 , __snake_case=True , __snake_case=16 , __snake_case=5_12 , __snake_case=8 , __snake_case=20_48 , __snake_case=0.7_5 , __snake_case=False , **__snake_case , ): super().__init__(**__snake_case) _UpperCamelCase : Optional[int] = hidden_size _UpperCamelCase : Optional[int] = num_hidden_layers _UpperCamelCase : Tuple = num_attention_heads _UpperCamelCase : List[str] = intermediate_size _UpperCamelCase : str = hidden_act _UpperCamelCase : List[str] = hidden_dropout_prob _UpperCamelCase : List[Any] = attention_probs_dropout_prob _UpperCamelCase : str = initializer_range _UpperCamelCase : Any = layer_norm_eps _UpperCamelCase : int = image_size _UpperCamelCase : Any = patch_size _UpperCamelCase : List[Any] = num_channels _UpperCamelCase : Union[str, Any] = qkv_bias _UpperCamelCase : str = decoder_num_attention_heads _UpperCamelCase : Union[str, Any] = decoder_hidden_size _UpperCamelCase : Union[str, Any] = decoder_num_hidden_layers _UpperCamelCase : Any = decoder_intermediate_size _UpperCamelCase : int = mask_ratio _UpperCamelCase : List[Any] = norm_pix_loss
648
0
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def lowerCamelCase_ ( UpperCAmelCase_ : Optional[int] ) -> Tuple: '''simple docstring''' def wrapper(*UpperCAmelCase_ : Any , **UpperCAmelCase_ : Optional[int] ): _UpperCamelCase : Optional[int] = timeit.default_timer() _UpperCamelCase : Union[str, Any] = func(*__UpperCAmelCase , **__UpperCAmelCase ) _UpperCamelCase : Optional[int] = timeit.default_timer() - starttime return delta _UpperCamelCase : Any = func.__name__ return wrapper def lowerCamelCase_ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple=1_0_0 , UpperCAmelCase_ : Union[str, Any]=None ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Dict = [] _UpperCamelCase : Dict = seq_shapes or {} for i in range(__UpperCAmelCase ): _UpperCamelCase : Dict = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(__UpperCAmelCase , _ArrayXD ): _UpperCamelCase : int = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(__UpperCAmelCase , datasets.Value ): if v.dtype == "string": _UpperCamelCase : List[str] = 'The small grey turtle was surprisingly fast when challenged.' else: _UpperCamelCase : Any = np.random.randint(1_0 , size=1 ).astype(v.dtype ).item() elif isinstance(__UpperCAmelCase , datasets.Sequence ): while isinstance(__UpperCAmelCase , datasets.Sequence ): _UpperCamelCase : Dict = v.feature _UpperCamelCase : Union[str, Any] = seq_shapes[k] _UpperCamelCase : Tuple = np.random.rand(*__UpperCAmelCase ).astype(v.dtype ) _UpperCamelCase : Any = data dummy_data.append((i, example) ) return dummy_data def lowerCamelCase_ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any]=1_0_0 , UpperCAmelCase_ : int=None ) -> str: '''simple docstring''' _UpperCamelCase : Optional[int] = generate_examples(__UpperCAmelCase , num_examples=__UpperCAmelCase , seq_shapes=__UpperCAmelCase ) with ArrowWriter(features=__UpperCAmelCase , path=__UpperCAmelCase ) as writer: for key, record in dummy_data: _UpperCamelCase : Dict = features.encode_example(__UpperCAmelCase ) writer.write(__UpperCAmelCase ) _UpperCamelCase , _UpperCamelCase : str = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F'''Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.''' ) _UpperCamelCase : Tuple = datasets.Dataset.from_file(filename=__UpperCAmelCase , info=datasets.DatasetInfo(features=__UpperCAmelCase ) ) return dataset
713
import functools def lowerCamelCase_ ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int] ) -> int: '''simple docstring''' if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or not all(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(UpperCAmelCase_ ) != 3 or not all(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(UpperCAmelCase_ ) == 0: return 0 if min(UpperCAmelCase_ ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(UpperCAmelCase_ ) >= 3_6_6: raise ValueError('All days elements should be less than 366' ) _UpperCamelCase : Union[str, Any] = set(UpperCAmelCase_ ) @functools.cache def dynamic_programming(UpperCAmelCase_ : int ) -> int: if index > 3_6_5: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 3_0 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
648
0
'''simple docstring''' import warnings from .generation import TFGenerationMixin class lowercase ( _lowercase ): """simple docstring""" warnings.warn( "Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will " "be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead." , _lowercase , )
714
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=99 , __snake_case=64 , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=37 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=16 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=3 , __snake_case=4 , __snake_case=None , ): _UpperCamelCase : List[Any] = parent _UpperCamelCase : Optional[Any] = batch_size _UpperCamelCase : int = seq_length _UpperCamelCase : str = is_training _UpperCamelCase : Tuple = use_input_mask _UpperCamelCase : Union[str, Any] = use_token_type_ids _UpperCamelCase : Union[str, Any] = use_labels _UpperCamelCase : Optional[Any] = vocab_size _UpperCamelCase : List[Any] = hidden_size _UpperCamelCase : Optional[Any] = embedding_size _UpperCamelCase : str = num_hidden_layers _UpperCamelCase : str = num_attention_heads _UpperCamelCase : int = intermediate_size _UpperCamelCase : int = hidden_act _UpperCamelCase : Tuple = hidden_dropout_prob _UpperCamelCase : int = attention_probs_dropout_prob _UpperCamelCase : Tuple = max_position_embeddings _UpperCamelCase : List[str] = type_vocab_size _UpperCamelCase : Dict = type_sequence_label_size _UpperCamelCase : List[str] = initializer_range _UpperCamelCase : Optional[Any] = num_labels _UpperCamelCase : Tuple = num_choices _UpperCamelCase : List[str] = scope def A__ ( self): _UpperCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase : Any = None if self.use_input_mask: _UpperCamelCase : int = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase : Optional[Any] = None if self.use_token_type_ids: _UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase : int = None _UpperCamelCase : List[str] = None _UpperCamelCase : Dict = None if self.use_labels: _UpperCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self): return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : List[str] = MegatronBertModel(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case) _UpperCamelCase : Dict = model(__snake_case , token_type_ids=__snake_case) _UpperCamelCase : Optional[Any] = model(__snake_case) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : int = MegatronBertForMaskedLM(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Dict = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : str = MegatronBertForCausalLM(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Tuple = MegatronBertForNextSentencePrediction(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[Any] = MegatronBertForPreTraining(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[str] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , next_sentence_label=__snake_case , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : int = MegatronBertForQuestionAnswering(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[int] = self.num_labels _UpperCamelCase : Union[str, Any] = MegatronBertForSequenceClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Any = self.num_labels _UpperCamelCase : Optional[int] = MegatronBertForTokenClassification(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Tuple = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : List[str] = self.num_choices _UpperCamelCase : Optional[int] = MegatronBertForMultipleChoice(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : List[Any] = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : Optional[Any] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : Union[str, Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def A__ ( self): _UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) : Optional[int] = config_and_inputs _UpperCamelCase : int = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) a__ = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) a__ = True # test_resize_embeddings = False a__ = False def A__ ( self , __snake_case , __snake_case , __snake_case=False): _UpperCamelCase : str = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case) if return_labels: if model_class in get_values(__snake_case): _UpperCamelCase : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__snake_case) _UpperCamelCase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case) return inputs_dict def A__ ( self): _UpperCamelCase : Any = MegatronBertModelTester(self) _UpperCamelCase : int = ConfigTester(self , config_class=__snake_case , hidden_size=37) def A__ ( self): self.config_tester.run_common_tests() def A__ ( self): _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__snake_case) def A__ ( self): _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__snake_case) def A__ ( self): _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__snake_case) def A__ ( self): _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__snake_case) def A__ ( self): _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__snake_case) def A__ ( self): _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__snake_case) def A__ ( self): _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__snake_case) def A__ ( self): _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__snake_case) def lowerCamelCase_ ( UpperCAmelCase_ : str ) -> Optional[Any]: '''simple docstring''' return torch.tensor( UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ , ) lowerCAmelCase__ = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip('Model is not available.') def A__ ( self): _UpperCamelCase : int = 'nvidia/megatron-bert-uncased-345m' if "MYDIR" in os.environ: _UpperCamelCase : int = os.path.join(os.environ['MYDIR'] , __snake_case) _UpperCamelCase : Optional[int] = MegatronBertModel.from_pretrained(__snake_case) model.to(__snake_case) model.half() _UpperCamelCase : Optional[Any] = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]]) with torch.no_grad(): _UpperCamelCase : str = model(__snake_case)[0] _UpperCamelCase : Optional[int] = torch.Size((1, 9, 10_24)) self.assertEqual(output.shape , __snake_case) _UpperCamelCase : Union[str, Any] = [-0.6_0_4_0, -0.2_5_1_7, -0.1_0_2_5, 0.3_4_2_0, -0.6_7_5_8, -0.0_0_1_7, -0.1_0_8_9, -0.1_9_9_0, 0.5_7_2_8] for ii in range(3): for jj in range(3): _UpperCamelCase : Optional[Any] = output[0, ii, jj] _UpperCamelCase : Dict = expected[3 * ii + jj] _UpperCamelCase : Optional[int] = 'ii={} jj={} a={} b={}'.format(__snake_case , __snake_case , __snake_case , __snake_case) self.assertTrue(math.isclose(__snake_case , __snake_case , rel_tol=__snake_case , abs_tol=__snake_case) , msg=__snake_case)
648
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowerCAmelCase__ = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } lowerCAmelCase__ = { "distilbert-base-uncased": 5_1_2, "distilbert-base-uncased-distilled-squad": 5_1_2, "distilbert-base-cased": 5_1_2, "distilbert-base-cased-distilled-squad": 5_1_2, "distilbert-base-german-cased": 5_1_2, "distilbert-base-multilingual-cased": 5_1_2, } lowerCAmelCase__ = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class lowercase ( __lowerCAmelCase ): """simple docstring""" a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = PRETRAINED_INIT_CONFIGURATION a__ = ["input_ids", "attention_mask"] a__ = DistilBertTokenizer def __init__( self , __snake_case=None , __snake_case=None , __snake_case=True , __snake_case="[UNK]" , __snake_case="[SEP]" , __snake_case="[PAD]" , __snake_case="[CLS]" , __snake_case="[MASK]" , __snake_case=True , __snake_case=None , **__snake_case , ): super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , do_lower_case=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , tokenize_chinese_chars=_UpperCamelCase , strip_accents=_UpperCamelCase , **_UpperCamelCase , ) _UpperCamelCase : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get('lowercase' , _UpperCamelCase) != do_lower_case or normalizer_state.get('strip_accents' , _UpperCamelCase) != strip_accents or normalizer_state.get('handle_chinese_chars' , _UpperCamelCase) != tokenize_chinese_chars ): _UpperCamelCase : Dict = getattr(_UpperCamelCase , normalizer_state.pop('type')) _UpperCamelCase : int = do_lower_case _UpperCamelCase : Optional[Any] = strip_accents _UpperCamelCase : Dict = tokenize_chinese_chars _UpperCamelCase : Optional[int] = normalizer_class(**_UpperCamelCase) _UpperCamelCase : List[str] = do_lower_case def A__ ( self , __snake_case , __snake_case=None): _UpperCamelCase : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , __snake_case , __snake_case = None): _UpperCamelCase : Union[str, Any] = [self.sep_token_id] _UpperCamelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def A__ ( self , __snake_case , __snake_case = None): _UpperCamelCase : Any = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase) return tuple(_UpperCamelCase)
715
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = """▁""" lowerCAmelCase__ = {"""vocab_file""": """sentencepiece.bpe.model"""} lowerCAmelCase__ = { """vocab_file""": { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model""" ), } } lowerCAmelCase__ = { """xlm-roberta-base""": 5_1_2, """xlm-roberta-large""": 5_1_2, """xlm-roberta-large-finetuned-conll02-dutch""": 5_1_2, """xlm-roberta-large-finetuned-conll02-spanish""": 5_1_2, """xlm-roberta-large-finetuned-conll03-english""": 5_1_2, """xlm-roberta-large-finetuned-conll03-german""": 5_1_2, } class lowercase ( _lowercase ): """simple docstring""" a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = ["input_ids", "attention_mask"] def __init__( self , __snake_case , __snake_case="<s>" , __snake_case="</s>" , __snake_case="</s>" , __snake_case="<s>" , __snake_case="<unk>" , __snake_case="<pad>" , __snake_case="<mask>" , __snake_case = None , **__snake_case , ): # Mask token behave like a normal word, i.e. include the space before it _UpperCamelCase : Dict = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case) if isinstance(__snake_case , __snake_case) else mask_token _UpperCamelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) _UpperCamelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(__snake_case)) _UpperCamelCase : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _UpperCamelCase : int = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _UpperCamelCase : List[Any] = 1 _UpperCamelCase : Any = len(self.sp_model) + self.fairseq_offset _UpperCamelCase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self): _UpperCamelCase : List[Any] = self.__dict__.copy() _UpperCamelCase : Optional[Any] = None _UpperCamelCase : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self , __snake_case): _UpperCamelCase : int = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): _UpperCamelCase : Tuple = {} _UpperCamelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) def A__ ( self , __snake_case , __snake_case = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCamelCase : Tuple = [self.cls_token_id] _UpperCamelCase : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self , __snake_case , __snake_case = None , __snake_case = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case) if token_ids_a is None: return [1] + ([0] * len(__snake_case)) + [1] return [1] + ([0] * len(__snake_case)) + [1, 1] + ([0] * len(__snake_case)) + [1] def A__ ( self , __snake_case , __snake_case = None): _UpperCamelCase : Optional[Any] = [self.sep_token_id] _UpperCamelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def A__ ( self): return len(self.sp_model) + self.fairseq_offset + 1 # Add the <mask> token def A__ ( self): _UpperCamelCase : List[str] = {self.convert_ids_to_tokens(__snake_case): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def A__ ( self , __snake_case): return self.sp_model.encode(__snake_case , out_type=__snake_case) def A__ ( self , __snake_case): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCamelCase : str = self.sp_model.PieceToId(__snake_case) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A__ ( self , __snake_case): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def A__ ( self , __snake_case): _UpperCamelCase : Optional[int] = ''.join(__snake_case).replace(__snake_case , ' ').strip() return out_string def A__ ( self , __snake_case , __snake_case = None): if not os.path.isdir(__snake_case): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return _UpperCamelCase : str = os.path.join( __snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(__snake_case) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , __snake_case) elif not os.path.isfile(self.vocab_file): with open(__snake_case , 'wb') as fi: _UpperCamelCase : Any = self.sp_model.serialized_model_proto() fi.write(__snake_case) return (out_vocab_file,)
648
0
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""") @require_sentencepiece @require_tokenizers class lowercase ( a__ , unittest.TestCase ): """simple docstring""" a__ = PegasusTokenizer a__ = PegasusTokenizerFast a__ = True a__ = True def A__ ( self): super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase : str = PegasusTokenizer(_A) tokenizer.save_pretrained(self.tmpdirname) @cached_property def A__ ( self): return PegasusTokenizer.from_pretrained('google/pegasus-large') def A__ ( self , **__snake_case): return PegasusTokenizer.from_pretrained(self.tmpdirname , **_A) def A__ ( self , __snake_case): return ("This is a test", "This is a test") def A__ ( self): _UpperCamelCase : Dict = '</s>' _UpperCamelCase : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A) , _A) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A) , _A) def A__ ( self): _UpperCamelCase : Optional[Any] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<pad>') self.assertEqual(vocab_keys[1] , '</s>') self.assertEqual(vocab_keys[-1] , 'v') self.assertEqual(len(_A) , 11_03) def A__ ( self): self.assertEqual(self.get_tokenizer().vocab_size , 11_03) def A__ ( self): _UpperCamelCase : str = self.rust_tokenizer_class.from_pretrained(self.tmpdirname) _UpperCamelCase : Any = self.tokenizer_class.from_pretrained(self.tmpdirname) _UpperCamelCase : int = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) _UpperCamelCase : str = rust_tokenizer([raw_input_str] , return_tensors=_A , add_special_tokens=_A).input_ids[0] _UpperCamelCase : List[Any] = py_tokenizer([raw_input_str] , return_tensors=_A , add_special_tokens=_A).input_ids[0] self.assertListEqual(_A , _A) def A__ ( self): _UpperCamelCase : str = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word _UpperCamelCase : Optional[Any] = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' _UpperCamelCase : str = [2, 4_13, 6_15, 1_14, 3, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] _UpperCamelCase : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=_A).input_ids[0] self.assertListEqual(_A , _A) def A__ ( self): _UpperCamelCase : Tuple = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_61_03 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_03 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_05 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 10_24 _UpperCamelCase : Dict = 'To ensure a smooth flow of bank resolutions.' _UpperCamelCase : Dict = [4_13, 6_15, 1_14, 22_91, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] _UpperCamelCase : str = tokenizer([raw_input_str] , return_tensors=_A).input_ids[0] self.assertListEqual(_A , _A) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3]) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def A__ ( self): _UpperCamelCase : List[Any] = ['This is going to be way too long.' * 1_50, 'short example'] _UpperCamelCase : List[Any] = ['not super long but more than 5 tokens', 'tiny'] _UpperCamelCase : List[Any] = self._large_tokenizer(_A , padding=_A , truncation=_A , return_tensors='pt') _UpperCamelCase : str = self._large_tokenizer( text_target=_A , max_length=5 , padding=_A , truncation=_A , return_tensors='pt') assert batch.input_ids.shape == (2, 10_24) assert batch.attention_mask.shape == (2, 10_24) assert targets["input_ids"].shape == (2, 5) assert len(_A) == 2 # input_ids, attention_mask. @slow def A__ ( self): _UpperCamelCase : Tuple = {'input_ids': [[3_89_79, 1_43, 1_84_85, 6_06, 1_30, 2_66_69, 8_76_86, 1_21, 5_41_89, 11_29, 1_11, 2_66_69, 8_76_86, 1_21, 91_14, 1_47_87, 1_21, 1_32_49, 1_58, 5_92, 9_56, 1_21, 1_46_21, 3_15_76, 1_43, 6_26_13, 1_08, 96_88, 9_30, 4_34_30, 1_15_62, 6_26_13, 3_04, 1_08, 1_14_43, 8_97, 1_08, 93_14, 1_74_15, 6_33_99, 1_08, 1_14_43, 76_14, 1_83_16, 1_18, 42_84, 71_48, 1_24_30, 1_43, 14_00, 2_57_03, 1_58, 1_11, 42_84, 71_48, 1_17_72, 1_43, 2_12_97, 10_64, 1_58, 1_22, 2_04, 35_06, 17_54, 11_33, 1_47_87, 15_81, 1_15, 3_32_24, 44_82, 1_11, 13_55, 1_10, 2_91_73, 3_17, 5_08_33, 1_08, 2_01_47, 9_46_65, 1_11, 7_71_98, 1_07, 1], [1_10, 6_26_13, 1_17, 6_38, 1_12, 11_33, 1_21, 2_00_98, 13_55, 7_90_50, 1_38_72, 1_35, 15_96, 5_35_41, 13_52, 1_41, 1_30_39, 55_42, 1_24, 3_02, 5_18, 1_11, 2_68, 29_56, 1_15, 1_49, 44_27, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_39, 12_35, 27_99, 1_82_89, 1_77_80, 2_04, 1_09, 94_74, 12_96, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class lowercase ( a__ , unittest.TestCase ): """simple docstring""" a__ = PegasusTokenizer a__ = PegasusTokenizerFast a__ = True a__ = True def A__ ( self): super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase : Optional[Any] = PegasusTokenizer(_A , offset=0 , mask_token_sent=_A , mask_token='[MASK]') tokenizer.save_pretrained(self.tmpdirname) @cached_property def A__ ( self): return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv') def A__ ( self , **__snake_case): return PegasusTokenizer.from_pretrained(self.tmpdirname , **_A) def A__ ( self , __snake_case): return ("This is a test", "This is a test") def A__ ( self): _UpperCamelCase : str = self.rust_tokenizer_class.from_pretrained(self.tmpdirname) _UpperCamelCase : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname) _UpperCamelCase : List[str] = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) _UpperCamelCase : List[str] = rust_tokenizer([raw_input_str] , return_tensors=_A , add_special_tokens=_A).input_ids[0] _UpperCamelCase : Tuple = py_tokenizer([raw_input_str] , return_tensors=_A , add_special_tokens=_A).input_ids[0] self.assertListEqual(_A , _A) @require_torch def A__ ( self): _UpperCamelCase : Optional[Any] = ['This is going to be way too long.' * 10_00, 'short example'] _UpperCamelCase : Dict = ['not super long but more than 5 tokens', 'tiny'] _UpperCamelCase : List[Any] = self._large_tokenizer(_A , padding=_A , truncation=_A , return_tensors='pt') _UpperCamelCase : int = self._large_tokenizer( text_target=_A , max_length=5 , padding=_A , truncation=_A , return_tensors='pt') assert batch.input_ids.shape == (2, 40_96) assert batch.attention_mask.shape == (2, 40_96) assert targets["input_ids"].shape == (2, 5) assert len(_A) == 2 # input_ids, attention_mask. def A__ ( self): _UpperCamelCase : Tuple = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) _UpperCamelCase : int = self._large_tokenizer(_A).input_ids self.assertListEqual( _A , [1_82, 1_17, 1_42, 5_87, 42_11, 1_20, 1_17, 2_63, 1_12, 8_04, 1_09, 8_56, 2_50_16, 31_37, 4_64, 1_09, 2_69_55, 31_37, 1] , )
716
from ...processing_utils import ProcessorMixin class lowercase ( _lowercase ): """simple docstring""" a__ = ["image_processor", "feature_extractor"] a__ = "TvltImageProcessor" a__ = "TvltFeatureExtractor" def __init__( self , __snake_case , __snake_case): super().__init__(image_processor=__snake_case , feature_extractor=__snake_case) _UpperCamelCase : List[str] = image_processor _UpperCamelCase : Dict = feature_extractor def __call__( self , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=False , __snake_case=False , *__snake_case , **__snake_case , ): if images is None and audio is None: raise ValueError('You need to specify either an `images` or `audio` input to process.') _UpperCamelCase : Union[str, Any] = None if images is not None: _UpperCamelCase : Tuple = self.image_processor(__snake_case , mask_pixel=__snake_case , *__snake_case , **__snake_case) if images_mixed is not None: _UpperCamelCase : Union[str, Any] = self.image_processor(__snake_case , is_mixed=__snake_case , *__snake_case , **__snake_case) if audio is not None: _UpperCamelCase : Tuple = self.feature_extractor( __snake_case , *__snake_case , sampling_rate=__snake_case , mask_audio=__snake_case , **__snake_case) _UpperCamelCase : Tuple = {} if audio is not None: output_dict.update(__snake_case) if images is not None: output_dict.update(__snake_case) if images_mixed_dict is not None: output_dict.update(__snake_case) return output_dict @property def A__ ( self): _UpperCamelCase : List[Any] = self.image_processor.model_input_names _UpperCamelCase : List[Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
648
0
def lowerCamelCase_ ( UpperCAmelCase_ : List[Any] ) -> Any: '''simple docstring''' if num <= 0: raise ValueError('Input must be a positive integer' ) _UpperCamelCase : Dict = [True] * (num + 1) _UpperCamelCase : Dict = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , _lowerCamelCase ): _UpperCamelCase : List[Any] = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = int(input("""Enter a positive integer: """).strip()) print(prime_sieve_eratosthenes(user_num))
717
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class lowercase ( _lowercase ): """simple docstring""" a__ = "rwkv" a__ = {"max_position_embeddings": "context_length"} def __init__( self , __snake_case=5_02_77 , __snake_case=10_24 , __snake_case=40_96 , __snake_case=32 , __snake_case=None , __snake_case=None , __snake_case=1e-5 , __snake_case=0 , __snake_case=0 , __snake_case=6 , __snake_case=False , __snake_case=True , **__snake_case , ): _UpperCamelCase : str = vocab_size _UpperCamelCase : int = context_length _UpperCamelCase : Tuple = hidden_size _UpperCamelCase : Tuple = num_hidden_layers _UpperCamelCase : Dict = attention_hidden_size if attention_hidden_size is not None else hidden_size _UpperCamelCase : Tuple = intermediate_size if intermediate_size is not None else 4 * hidden_size _UpperCamelCase : Union[str, Any] = layer_norm_epsilon _UpperCamelCase : Dict = rescale_every _UpperCamelCase : Optional[Any] = use_cache _UpperCamelCase : str = bos_token_id _UpperCamelCase : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case)
648
0
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self): _UpperCamelCase : List[str] = mock.Mock() _UpperCamelCase : Any = 5_00 _UpperCamelCase : int = {} _UpperCamelCase : Union[str, Any] = HTTPError _UpperCamelCase : int = {} # Download this model to make sure it's in the cache. _UpperCamelCase : Union[str, Any] = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert') # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=lowerCamelCase_) as mock_head: _UpperCamelCase : List[str] = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert') # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def A__ ( self): _UpperCamelCase : List[str] = mock.Mock() _UpperCamelCase : Any = 5_00 _UpperCamelCase : Any = {} _UpperCamelCase : Union[str, Any] = HTTPError _UpperCamelCase : Optional[Any] = {} # Download this model to make sure it's in the cache. _UpperCamelCase : Optional[Any] = GPTaTokenizerFast.from_pretrained('gpt2') # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=lowerCamelCase_) as mock_head: _UpperCamelCase : Optional[Any] = GPTaTokenizerFast.from_pretrained('gpt2') # This check we did call the fake head request mock_head.assert_called() def A__ ( self): try: _UpperCamelCase : Optional[int] = tempfile.mktemp() with open(lowerCamelCase_ , 'wb') as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' , lowerCamelCase_) _UpperCamelCase : List[str] = AlbertTokenizer.from_pretrained(lowerCamelCase_) finally: os.remove(lowerCamelCase_) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json'): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' , 'wb') as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' , lowerCamelCase_) _UpperCamelCase : str = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2') # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 10_00) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json') def A__ ( self): _UpperCamelCase : Optional[Any] = AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model') @is_staging_test class lowercase ( unittest.TestCase ): """simple docstring""" a__ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def A__ ( cls): _UpperCamelCase : str = TOKEN HfFolder.save_token(lowerCamelCase_) @classmethod def A__ ( cls): try: delete_repo(token=cls._token , repo_id='test-tokenizer') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-tokenizer-org') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-tokenizer') except HTTPError: pass def A__ ( self): with tempfile.TemporaryDirectory() as tmp_dir: _UpperCamelCase : Union[str, Any] = os.path.join(lowerCamelCase_ , 'vocab.txt') with open(lowerCamelCase_ , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens])) _UpperCamelCase : Tuple = BertTokenizer(lowerCamelCase_) tokenizer.push_to_hub('test-tokenizer' , use_auth_token=self._token) _UpperCamelCase : Optional[Any] = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''') self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab) # Reset repo delete_repo(token=self._token , repo_id='test-tokenizer') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCamelCase_ , repo_id='test-tokenizer' , push_to_hub=lowerCamelCase_ , use_auth_token=self._token) _UpperCamelCase : Optional[int] = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''') self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab) def A__ ( self): with tempfile.TemporaryDirectory() as tmp_dir: _UpperCamelCase : int = os.path.join(lowerCamelCase_ , 'vocab.txt') with open(lowerCamelCase_ , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens])) _UpperCamelCase : Union[str, Any] = BertTokenizer(lowerCamelCase_) tokenizer.push_to_hub('valid_org/test-tokenizer-org' , use_auth_token=self._token) _UpperCamelCase : Dict = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org') self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-tokenizer-org') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( lowerCamelCase_ , repo_id='valid_org/test-tokenizer-org' , push_to_hub=lowerCamelCase_ , use_auth_token=self._token) _UpperCamelCase : Union[str, Any] = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org') self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab) @require_tokenizers def A__ ( self): CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: _UpperCamelCase : List[Any] = os.path.join(lowerCamelCase_ , 'vocab.txt') with open(lowerCamelCase_ , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens])) _UpperCamelCase : Optional[Any] = CustomTokenizer(lowerCamelCase_) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token) _UpperCamelCase : Optional[Any] = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=lowerCamelCase_) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer') # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: _UpperCamelCase : Dict = os.path.join(lowerCamelCase_ , 'vocab.txt') with open(lowerCamelCase_ , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens])) _UpperCamelCase : Dict = BertTokenizerFast.from_pretrained(lowerCamelCase_) bert_tokenizer.save_pretrained(lowerCamelCase_) _UpperCamelCase : List[Any] = CustomTokenizerFast.from_pretrained(lowerCamelCase_) tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token) _UpperCamelCase : List[Any] = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=lowerCamelCase_) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizerFast') _UpperCamelCase : List[Any] = AutoTokenizer.from_pretrained( f'''{USER}/test-dynamic-tokenizer''' , use_fast=lowerCamelCase_ , trust_remote_code=lowerCamelCase_) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer') class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self): _UpperCamelCase : Union[str, Any] = Trie() trie.add('Hello 友達') self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}}) trie.add('Hello') trie.data self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}}) def A__ ( self): _UpperCamelCase : Union[str, Any] = Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100') , ['[CLS] This is a extra_id_100']) trie.add('[CLS]') trie.add('extra_id_1') trie.add('extra_id_100') self.assertEqual(trie.split('[CLS] This is a extra_id_100') , ['[CLS]', ' This is a ', 'extra_id_100']) def A__ ( self): _UpperCamelCase : List[Any] = Trie() trie.add('A') self.assertEqual(trie.split('ABC') , ['A', 'BC']) self.assertEqual(trie.split('BCA') , ['BC', 'A']) def A__ ( self): _UpperCamelCase : Optional[int] = Trie() trie.add('TOKEN]') trie.add('[SPECIAL_TOKEN]') self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]') , ['This is something ', '[SPECIAL_TOKEN]']) def A__ ( self): _UpperCamelCase : Optional[Any] = Trie() trie.add('A') trie.add('P') trie.add('[SPECIAL_TOKEN]') self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]') , ['This is something ', '[SPECIAL_TOKEN]']) def A__ ( self): _UpperCamelCase : List[Any] = Trie() trie.add('AB') trie.add('B') trie.add('C') self.assertEqual(trie.split('ABC') , ['AB', 'C']) def A__ ( self): _UpperCamelCase : List[Any] = Trie() trie.add('ABC') trie.add('B') trie.add('CD') self.assertEqual(trie.split('ABCD') , ['ABC', 'D']) def A__ ( self): _UpperCamelCase : int = Trie() _UpperCamelCase : Optional[int] = trie.cut_text('ABC' , [0, 0, 2, 1, 2, 3]) self.assertEqual(lowerCamelCase_ , ['AB', 'C'])
718
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class lowercase ( _lowercase ): """simple docstring""" a__ = "bert" def __init__( self , __snake_case=3_05_22 , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=0 , __snake_case="absolute" , __snake_case=True , __snake_case=None , **__snake_case , ): super().__init__(pad_token_id=__snake_case , **__snake_case) _UpperCamelCase : int = vocab_size _UpperCamelCase : Optional[Any] = hidden_size _UpperCamelCase : Optional[Any] = num_hidden_layers _UpperCamelCase : List[str] = num_attention_heads _UpperCamelCase : int = hidden_act _UpperCamelCase : Optional[Any] = intermediate_size _UpperCamelCase : Union[str, Any] = hidden_dropout_prob _UpperCamelCase : Tuple = attention_probs_dropout_prob _UpperCamelCase : Optional[int] = max_position_embeddings _UpperCamelCase : str = type_vocab_size _UpperCamelCase : Optional[Any] = initializer_range _UpperCamelCase : List[str] = layer_norm_eps _UpperCamelCase : Any = position_embedding_type _UpperCamelCase : Any = use_cache _UpperCamelCase : Any = classifier_dropout class lowercase ( _lowercase ): """simple docstring""" @property def A__ ( self): if self.task == "multiple-choice": _UpperCamelCase : Union[str, Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCamelCase : Optional[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ])
648
0
from collections.abc import Callable import numpy as np def lowerCamelCase_ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple ) -> np.array: '''simple docstring''' _UpperCamelCase : Optional[int] = int(np.ceil((x_end - xa) / step_size ) ) _UpperCamelCase : int = np.zeros((n + 1,) ) _UpperCamelCase : Any = ya _UpperCamelCase : List[Any] = xa for k in range(_A ): _UpperCamelCase : List[str] = y[k] + step_size * ode_func(_A , y[k] ) _UpperCamelCase : Dict = y[k] + ( (step_size / 2) * (ode_func(_A , y[k] ) + ode_func(x + step_size , _A )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
719
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowercase ( _lowercase ): """simple docstring""" a__ = "facebook/bart-large-mnli" a__ = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) a__ = "text_classifier" a__ = AutoTokenizer a__ = AutoModelForSequenceClassification a__ = ["text", ["text"]] a__ = ["text"] def A__ ( self): super().setup() _UpperCamelCase : List[Any] = self.model.config _UpperCamelCase : Optional[int] = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail'): _UpperCamelCase : Tuple = int(__snake_case) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.') def A__ ( self , __snake_case , __snake_case): _UpperCamelCase : List[Any] = labels return self.pre_processor( [text] * len(__snake_case) , [f'''This example is {label}''' for label in labels] , return_tensors='pt' , padding='max_length' , ) def A__ ( self , __snake_case): _UpperCamelCase : str = outputs.logits _UpperCamelCase : Optional[Any] = torch.argmax(logits[:, 2]).item() return self._labels[label_id]
648
0
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir("""fixtures/test_sentencepiece_bpe.model""") class lowercase ( _a , unittest.TestCase ): """simple docstring""" a__ = BartphoTokenizer a__ = False a__ = True def A__ ( self): super().setUp() _UpperCamelCase : List[Any] = ['▁This', '▁is', '▁a', '▁t', 'est'] _UpperCamelCase : Optional[Any] = dict(zip(snake_case_ , range(len(snake_case_)))) _UpperCamelCase : Tuple = {'unk_token': '<unk>'} _UpperCamelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['monolingual_vocab_file']) with open(self.monolingual_vocab_file , 'w' , encoding='utf-8') as fp: for token in vocab_tokens: fp.write(f'''{token} {vocab_tokens[token]}\n''') _UpperCamelCase : Optional[Any] = BartphoTokenizer(snake_case_ , self.monolingual_vocab_file , **self.special_tokens_map) tokenizer.save_pretrained(self.tmpdirname) def A__ ( self , **__snake_case): kwargs.update(self.special_tokens_map) return BartphoTokenizer.from_pretrained(self.tmpdirname , **snake_case_) def A__ ( self , __snake_case): _UpperCamelCase : Optional[Any] = 'This is a là test' _UpperCamelCase : Any = 'This is a<unk><unk> test' return input_text, output_text def A__ ( self): _UpperCamelCase : List[str] = BartphoTokenizer(snake_case_ , self.monolingual_vocab_file , **self.special_tokens_map) _UpperCamelCase : Any = 'This is a là test' _UpperCamelCase : Optional[int] = '▁This ▁is ▁a ▁l à ▁t est'.split() _UpperCamelCase : Tuple = tokenizer.tokenize(snake_case_) self.assertListEqual(snake_case_ , snake_case_) _UpperCamelCase : Union[str, Any] = tokens + [tokenizer.unk_token] _UpperCamelCase : List[str] = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_) , snake_case_)
720
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
648
0
import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py lowerCAmelCase__ = '''src/transformers''' lowerCAmelCase__ = '''docs/source/en''' lowerCAmelCase__ = '''.''' def lowerCamelCase_ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] ) -> Tuple: '''simple docstring''' with open(__UpperCamelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: _UpperCamelCase : int = f.readlines() # Find the start prompt. _UpperCamelCase : int = 0 while not lines[start_index].startswith(__UpperCamelCase ): start_index += 1 start_index += 1 _UpperCamelCase : Union[str, Any] = start_index while not lines[end_index].startswith(__UpperCamelCase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | lowerCAmelCase__ = '''Model|Encoder|Decoder|ForConditionalGeneration''' # Regexes that match TF/Flax/PT model names. lowerCAmelCase__ = re.compile(R"""TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") lowerCAmelCase__ = re.compile(R"""Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowerCAmelCase__ = re.compile(R"""(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase__ = direct_transformers_import(TRANSFORMERS_PATH) def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> str: '''simple docstring''' _UpperCamelCase : int = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)' , __UpperCamelCase ) return [m.group(0 ) for m in matches] def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Dict = 2 if text == """✅""" or text == """❌""" else len(__UpperCamelCase ) _UpperCamelCase : Tuple = (width - text_length) // 2 _UpperCamelCase : Any = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowerCamelCase_ ( ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : List[Any] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _UpperCamelCase : Optional[Any] = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } _UpperCamelCase : List[str] = {name: config.replace('Config' , '' ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. _UpperCamelCase : Dict = collections.defaultdict(__UpperCamelCase ) _UpperCamelCase : List[Any] = collections.defaultdict(__UpperCamelCase ) _UpperCamelCase : str = collections.defaultdict(__UpperCamelCase ) _UpperCamelCase : str = collections.defaultdict(__UpperCamelCase ) _UpperCamelCase : Dict = collections.defaultdict(__UpperCamelCase ) # Let's lookup through all transformers object (once). for attr_name in dir(__UpperCamelCase ): _UpperCamelCase : Union[str, Any] = None if attr_name.endswith('Tokenizer' ): _UpperCamelCase : Dict = slow_tokenizers _UpperCamelCase : Any = attr_name[:-9] elif attr_name.endswith('TokenizerFast' ): _UpperCamelCase : Optional[Any] = fast_tokenizers _UpperCamelCase : str = attr_name[:-1_3] elif _re_tf_models.match(__UpperCamelCase ) is not None: _UpperCamelCase : List[Any] = tf_models _UpperCamelCase : Tuple = _re_tf_models.match(__UpperCamelCase ).groups()[0] elif _re_flax_models.match(__UpperCamelCase ) is not None: _UpperCamelCase : Dict = flax_models _UpperCamelCase : Tuple = _re_flax_models.match(__UpperCamelCase ).groups()[0] elif _re_pt_models.match(__UpperCamelCase ) is not None: _UpperCamelCase : List[Any] = pt_models _UpperCamelCase : Any = _re_pt_models.match(__UpperCamelCase ).groups()[0] if lookup_dict is not None: while len(__UpperCamelCase ) > 0: if attr_name in model_name_to_prefix.values(): _UpperCamelCase : Any = True break # Try again after removing the last word in the name _UpperCamelCase : Tuple = """""".join(camel_case_split(__UpperCamelCase )[:-1] ) # Let's build that table! _UpperCamelCase : Dict = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) _UpperCamelCase : str = ["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). _UpperCamelCase : str = [len(__UpperCamelCase ) + 2 for c in columns] _UpperCamelCase : Dict = max([len(__UpperCamelCase ) for name in model_names] ) + 2 # Build the table per se _UpperCamelCase : List[Any] = """|""" + """|""".join([_center_text(__UpperCamelCase , __UpperCamelCase ) for c, w in zip(__UpperCamelCase , __UpperCamelCase )] ) + """|\n""" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([':' + '-' * (w - 2) + ':' for w in widths] ) + "|\n" _UpperCamelCase : List[Any] = {True: """✅""", False: """❌"""} for name in model_names: _UpperCamelCase : Union[str, Any] = model_name_to_prefix[name] _UpperCamelCase : Optional[int] = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(__UpperCamelCase , __UpperCamelCase ) for l, w in zip(__UpperCamelCase , __UpperCamelCase )] ) + "|\n" return table def lowerCamelCase_ ( UpperCAmelCase_ : Any=False ) -> Any: '''simple docstring''' _UpperCamelCase : Optional[int] = _find_text_in_file( filename=os.path.join(__UpperCamelCase , 'index.md' ) , start_prompt='<!--This table is updated automatically from the auto modules' , end_prompt='<!-- End table-->' , ) _UpperCamelCase : int = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(__UpperCamelCase , 'index.md' ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( 'The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.' ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") lowerCAmelCase__ = parser.parse_args() check_model_table(args.fix_and_overwrite)
721
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
648
0
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def lowerCamelCase_ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple ) -> Union[str, Any]: '''simple docstring''' if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _UpperCamelCase : str = flax_key_tuple[:-1] + ('weight',) _UpperCamelCase : str = torch.permute(snake_case__ , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(snake_case__ ): # linear layer _UpperCamelCase : Any = flax_key_tuple[:-1] + ('weight',) _UpperCamelCase : Optional[Any] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _UpperCamelCase : Any = flax_key_tuple[:-1] + ('weight',) return flax_key_tuple, flax_tensor def lowerCamelCase_ ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict ) -> List[Any]: '''simple docstring''' if "metadata" in layer: _UpperCamelCase : Optional[int] = layer.split('metadata' ) _UpperCamelCase : Optional[Any] = ''.join(split_layer[0] )[:-1] _UpperCamelCase : Optional[Any] = [tuple(('metadata' + split_layer[1]).split('/' ) )] elif "kvstore" in layer: _UpperCamelCase : int = layer.split('kvstore' ) _UpperCamelCase : List[Any] = ''.join(split_layer[0] )[:-1] _UpperCamelCase : List[str] = [tuple(('kvstore' + split_layer[1]).split('/' ) )] else: _UpperCamelCase : Tuple = layer.split('/' ) _UpperCamelCase : int = '/'.join(split_layer[:-1] ) _UpperCamelCase : Tuple = (split_layer[-1],) if "kvstore/path" in layer: _UpperCamelCase : Tuple = F'''{switch_checkpoint_path}/{checkpoint_info[layer]}''' elif "kvstore/driver" in layer: _UpperCamelCase : Dict = 'file' else: _UpperCamelCase : Tuple = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def lowerCamelCase_ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] ) -> List[str]: '''simple docstring''' _UpperCamelCase : Optional[int] = rename_keys(snake_case__ ) _UpperCamelCase : List[Any] = {} for k, v in current_block.items(): _UpperCamelCase : int = v _UpperCamelCase : int = new_current_block torch.save(snake_case__ , snake_case__ ) def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str = WEIGHTS_NAME ) -> Tuple: '''simple docstring''' _UpperCamelCase : Any = convert_file_size_to_int(snake_case__ ) _UpperCamelCase : Union[str, Any] = [] _UpperCamelCase : Union[str, Any] = {} _UpperCamelCase : List[str] = 0 _UpperCamelCase : List[Any] = 0 os.makedirs(snake_case__ , exist_ok=snake_case__ ) with gfile.GFile(switch_checkpoint_path + '/checkpoint' , 'rb' ) as fp: _UpperCamelCase : int = serialization.msgpack_restore(fp.read() )['optimizer']['target'] _UpperCamelCase : str = flatten_dict(snake_case__ , sep='/' ) _UpperCamelCase : Optional[int] = {} for layer in checkpoint_info.keys(): _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[int] = get_key_and_tensorstore_dict( snake_case__ , snake_case__ , snake_case__ ) if curr_real_layer_name in all_layers: _UpperCamelCase : Optional[Any] = content else: _UpperCamelCase : Any = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _UpperCamelCase : Dict = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _UpperCamelCase : Tuple = torch.tensor(snake_case__ ) _UpperCamelCase : List[str] = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _UpperCamelCase , _UpperCamelCase : Optional[Any] = rename_base_flax_keys(tuple(key.split('/' ) ) , snake_case__ ) _UpperCamelCase : Tuple = '/'.join(snake_case__ ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _UpperCamelCase : List[Any] = os.path.join( snake_case__ , weights_name.replace('.bin' , F'''-{len(snake_case__ )+1:05d}-of-???.bin''' ) ) rename_and_save_block(snake_case__ , snake_case__ ) sharded_state_dicts.append(current_block.keys() ) del current_block _UpperCamelCase : Optional[int] = {} _UpperCamelCase : Optional[Any] = 0 _UpperCamelCase : Dict = raw_weights.to(getattr(snake_case__ , snake_case__ ) ) current_block_size += weight_size total_size += weight_size # Add the last block _UpperCamelCase : List[Any] = os.path.join(snake_case__ , weights_name.replace('.bin' , F'''-{len(snake_case__ )+1:05d}-of-???.bin''' ) ) rename_and_save_block(snake_case__ , snake_case__ ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(snake_case__ ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _UpperCamelCase : Optional[Any] = {} _UpperCamelCase : Tuple = {} for idx, shard in enumerate(snake_case__ ): _UpperCamelCase : int = weights_name.replace( '.bin' , F'''-{idx+1:05d}-of-{len(snake_case__ ):05d}.bin''' ) # len(sharded_state_dicts):05d} _UpperCamelCase : Union[str, Any] = os.path.join(snake_case__ , weights_name.replace('.bin' , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(snake_case__ , os.path.join(snake_case__ , snake_case__ ) ) _UpperCamelCase : int = shard for key in shard: _UpperCamelCase : List[str] = shard_file # Add the metadata _UpperCamelCase : int = {'total_size': total_size} _UpperCamelCase : Dict = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(snake_case__ , snake_case__ ) , 'w' , encoding='utf-8' ) as f: _UpperCamelCase : str = json.dumps(snake_case__ , indent=2 , sort_keys=snake_case__ ) + '\n' f.write(snake_case__ ) return metadata, index if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--max_shard_size""", default="""10GB""", required=False, help="""Max shard size""") parser.add_argument("""--dtype""", default="""bfloat16""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted""", type=str, required=False, help="""Path to the output pytorch model.""", ) lowerCAmelCase__ = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def lowerCamelCase_ ( ) -> Dict: '''simple docstring''' from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _UpperCamelCase : Optional[Any] = SwitchTransformersConfig.from_pretrained('google/switch-base-8' ) config.save_pretrained('/home/arthur_huggingface_co/transformers/switch_converted' ) _UpperCamelCase : List[str] = SwitchTransformersForConditionalGeneration.from_pretrained( '/home/arthur_huggingface_co/transformers/switch_converted' , device_map='auto' ) _UpperCamelCase : List[str] = TaTokenizer.from_pretrained('t5-small' ) _UpperCamelCase : Any = 'A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.' _UpperCamelCase : Optional[Any] = tokenizer(snake_case__ , return_tensors='pt' ).input_ids _UpperCamelCase : Dict = model.generate(snake_case__ , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
700
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_sentencepiece_available(): import sentencepiece as sp lowerCAmelCase__ = 5 lowerCAmelCase__ = 1_0 @require_sentencepiece @require_tokenizers class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" a__ = SpeechaTextTokenizer a__ = False a__ = True def A__ ( self): super().setUp() _UpperCamelCase : Any = sp.SentencePieceProcessor() spm_model.Load(__snake_case) _UpperCamelCase : List[str] = ['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_) for id_ in range(len(__snake_case))] _UpperCamelCase : Dict = dict(zip(__snake_case , range(len(__snake_case)))) _UpperCamelCase : Tuple = Path(self.tmpdirname) save_json(__snake_case , save_dir / VOCAB_FILES_NAMES['vocab_file']) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__snake_case , save_dir / VOCAB_FILES_NAMES['spm_file']) _UpperCamelCase : int = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def A__ ( self): _UpperCamelCase : str = '<pad>' _UpperCamelCase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case) , __snake_case) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case) , __snake_case) def A__ ( self): _UpperCamelCase : Optional[Any] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(vocab_keys[-1] , 'j') self.assertEqual(len(__snake_case) , 10_01) def A__ ( self): self.assertEqual(self.get_tokenizer().vocab_size , 10_01) def A__ ( self): _UpperCamelCase : Any = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) _UpperCamelCase : List[str] = tokenizer.tokenize('This is a test') self.assertListEqual(__snake_case , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case) , [2_89, 50, 14, 1_74, 3_86] , ) _UpperCamelCase : int = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( __snake_case , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) _UpperCamelCase : int = tokenizer.convert_tokens_to_ids(__snake_case) self.assertListEqual(__snake_case , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8]) _UpperCamelCase : Tuple = tokenizer.convert_ids_to_tokens(__snake_case) self.assertListEqual( __snake_case , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def A__ ( self): # fmt: off _UpperCamelCase : Optional[int] = {'input_ids': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , ) @require_sentencepiece class lowercase ( unittest.TestCase ): """simple docstring""" a__ = "valhalla/s2t_mustc_multilinguial_medium" a__ = "C'est trop cool" a__ = "Esto es genial" @classmethod def A__ ( cls): _UpperCamelCase : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name) return cls def A__ ( self): self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4) self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6) self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9) self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11) def A__ ( self): self.assertEqual(self.tokenizer.vocab_size , 1_00_00) def A__ ( self): self.assertIn(__snake_case , self.tokenizer.all_special_ids) _UpperCamelCase : Optional[int] = [ES_CODE, 4, 16_01, 47, 76_47, 2] _UpperCamelCase : Tuple = self.tokenizer.decode(__snake_case , skip_special_tokens=__snake_case) _UpperCamelCase : Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__snake_case) self.assertEqual(__snake_case , __snake_case) self.assertNotIn(self.tokenizer.eos_token , __snake_case) def A__ ( self): _UpperCamelCase : Any = 'fr' _UpperCamelCase : List[Any] = self.tokenizer(self.french_text).input_ids self.assertEqual(encoded[0] , __snake_case) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id) def A__ ( self): _UpperCamelCase : Union[str, Any] = 'fr' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE]) _UpperCamelCase : List[str] = 'es' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE])
648
0
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger() @dataclass class lowercase : """simple docstring""" a__ = 42 a__ = field(default_factory=lowercase__ ) a__ = field(default_factory=lowercase__ ) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Tuple = len(list(m.modules())) == 1 or isinstance(__snake_case , nn.Convad) or isinstance(__snake_case , nn.BatchNormad) if has_not_submodules: self.traced.append(__snake_case) def __call__( self , __snake_case): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook)) self.module(__snake_case) [x.remove() for x in self.handles] return self @property def A__ ( self): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda __snake_case: len(list(x.state_dict().keys())) > 0 , self.traced)) @dataclass class lowercase : """simple docstring""" a__ = 42 a__ = 42 a__ = 1 a__ = field(default_factory=lowercase__ ) a__ = field(default_factory=lowercase__ ) a__ = True def __call__( self , __snake_case): _UpperCamelCase : str = Tracker(self.dest)(__snake_case).parametrized _UpperCamelCase : Dict = Tracker(self.src)(__snake_case).parametrized _UpperCamelCase : Tuple = list(filter(lambda __snake_case: type(__snake_case) not in self.src_skip , __snake_case)) _UpperCamelCase : str = list(filter(lambda __snake_case: type(__snake_case) not in self.dest_skip , __snake_case)) if len(__snake_case) != len(__snake_case) and self.raise_if_mismatch: raise Exception( f'''Numbers of operations are different. Source module has {len(__snake_case)} operations while''' f''' destination module has {len(__snake_case)}.''') for dest_m, src_m in zip(__snake_case , __snake_case): dest_m.load_state_dict(src_m.state_dict()) if self.verbose == 1: print(f'''Transfered from={src_m} to={dest_m}''') class lowercase ( nn.Module ): """simple docstring""" def __init__( self , __snake_case): super().__init__() _UpperCamelCase : List[Any] = [] # - get the stem feature_blocks.append(('conv1', model.stem)) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('block'), f'''Unexpected layer name {k}''' _UpperCamelCase : List[str] = len(__snake_case) + 1 feature_blocks.append((f'''res{block_index}''', v)) _UpperCamelCase : Tuple = nn.ModuleDict(__snake_case) def A__ ( self , __snake_case): return get_trunk_forward_outputs( __snake_case , out_feat_keys=__snake_case , feature_blocks=self._feature_blocks , ) class lowercase ( lowercase__ ): """simple docstring""" def A__ ( self , __snake_case): _UpperCamelCase : Union[str, Any] = x.split('-') return x_split[0] + x_split[1] + "_" + "".join(x_split[2:]) def __getitem__( self , __snake_case): # default to timm! if x not in self: _UpperCamelCase : Optional[int] = self.convert_name_to_timm(__snake_case) _UpperCamelCase : Tuple = partial(lambda: (timm.create_model(__snake_case , pretrained=__snake_case).eval(), None)) else: _UpperCamelCase : int = super().__getitem__(__snake_case) return val class lowercase ( lowercase__ ): """simple docstring""" def __getitem__( self , __snake_case): if "seer" in x and "in1k" not in x: _UpperCamelCase : List[str] = RegNetModel else: _UpperCamelCase : Optional[int] = RegNetForImageClassification return val def lowerCamelCase_ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] ) -> Tuple: '''simple docstring''' for from_key, to_key in keys: _UpperCamelCase : int = from_state_dict[from_key].clone() print(F'''Copied key={from_key} to={to_key}''' ) return to_state_dict def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict = True , ) -> Optional[Any]: '''simple docstring''' print(F'''Converting {name}...''' ) with torch.no_grad(): _UpperCamelCase , _UpperCamelCase : Dict = from_model_func() _UpperCamelCase : Tuple = our_model_func(__SCREAMING_SNAKE_CASE ).eval() _UpperCamelCase : str = ModuleTransfer(src=__SCREAMING_SNAKE_CASE , dest=__SCREAMING_SNAKE_CASE , raise_if_mismatch=__SCREAMING_SNAKE_CASE ) _UpperCamelCase : Any = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(__SCREAMING_SNAKE_CASE ) if from_state_dict is not None: _UpperCamelCase : Optional[int] = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: _UpperCamelCase : Any = [('0.clf.0.weight', 'classifier.1.weight'), ('0.clf.0.bias', 'classifier.1.bias')] _UpperCamelCase : List[str] = manually_copy_vissl_head(__SCREAMING_SNAKE_CASE , our_model.state_dict() , __SCREAMING_SNAKE_CASE ) our_model.load_state_dict(__SCREAMING_SNAKE_CASE ) _UpperCamelCase : Tuple = our_model(__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE ) _UpperCamelCase : Dict = ( our_outputs.logits if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else our_outputs.last_hidden_state ) _UpperCamelCase : Union[str, Any] = from_model(__SCREAMING_SNAKE_CASE ) _UpperCamelCase : List[str] = from_output[-1] if type(__SCREAMING_SNAKE_CASE ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: _UpperCamelCase : Any = our_outputs.hidden_states[-1] assert torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message='Add model' , use_temp_dir=__SCREAMING_SNAKE_CASE , ) _UpperCamelCase : Any = 2_2_4 if 'seer' not in name else 3_8_4 # we can use the convnext one _UpperCamelCase : int = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' , size=__SCREAMING_SNAKE_CASE ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message='Add image processor' , use_temp_dir=__SCREAMING_SNAKE_CASE , ) print(F'''Pushed {name}''' ) def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str = None , UpperCAmelCase_ : Tuple = True ) -> int: '''simple docstring''' _UpperCamelCase : Optional[int] = 'imagenet-1k-id2label.json' _UpperCamelCase : Any = 1_0_0_0 _UpperCamelCase : Tuple = (1, num_labels) _UpperCamelCase : Optional[Any] = 'huggingface/label-files' _UpperCamelCase : Optional[int] = num_labels _UpperCamelCase : Dict = json.load(open(cached_download(hf_hub_url(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='dataset' ) ) , 'r' ) ) _UpperCamelCase : str = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} _UpperCamelCase : Optional[int] = idalabel _UpperCamelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} _UpperCamelCase : Any = partial(__SCREAMING_SNAKE_CASE , num_labels=__SCREAMING_SNAKE_CASE , idalabel=__SCREAMING_SNAKE_CASE , labelaid=__SCREAMING_SNAKE_CASE ) _UpperCamelCase : Optional[Any] = { 'regnet-x-002': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[2_4, 5_6, 1_5_2, 3_6_8] , groups_width=8 , layer_type='x' ), 'regnet-x-004': ImageNetPreTrainedConfig( depths=[1, 2, 7, 1_2] , hidden_sizes=[3_2, 6_4, 1_6_0, 3_8_4] , groups_width=1_6 , layer_type='x' ), 'regnet-x-006': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[4_8, 9_6, 2_4_0, 5_2_8] , groups_width=2_4 , layer_type='x' ), 'regnet-x-008': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[6_4, 1_2_8, 2_8_8, 6_7_2] , groups_width=1_6 , layer_type='x' ), 'regnet-x-016': ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 2] , hidden_sizes=[7_2, 1_6_8, 4_0_8, 9_1_2] , groups_width=2_4 , layer_type='x' ), 'regnet-x-032': ImageNetPreTrainedConfig( depths=[2, 6, 1_5, 2] , hidden_sizes=[9_6, 1_9_2, 4_3_2, 1_0_0_8] , groups_width=4_8 , layer_type='x' ), 'regnet-x-040': ImageNetPreTrainedConfig( depths=[2, 5, 1_4, 2] , hidden_sizes=[8_0, 2_4_0, 5_6_0, 1_3_6_0] , groups_width=4_0 , layer_type='x' ), 'regnet-x-064': ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 1] , hidden_sizes=[1_6_8, 3_9_2, 7_8_4, 1_6_2_4] , groups_width=5_6 , layer_type='x' ), 'regnet-x-080': ImageNetPreTrainedConfig( depths=[2, 5, 1_5, 1] , hidden_sizes=[8_0, 2_4_0, 7_2_0, 1_9_2_0] , groups_width=1_2_0 , layer_type='x' ), 'regnet-x-120': ImageNetPreTrainedConfig( depths=[2, 5, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 8_9_6, 2_2_4_0] , groups_width=1_1_2 , layer_type='x' ), 'regnet-x-160': ImageNetPreTrainedConfig( depths=[2, 6, 1_3, 1] , hidden_sizes=[2_5_6, 5_1_2, 8_9_6, 2_0_4_8] , groups_width=1_2_8 , layer_type='x' ), 'regnet-x-320': ImageNetPreTrainedConfig( depths=[2, 7, 1_3, 1] , hidden_sizes=[3_3_6, 6_7_2, 1_3_4_4, 2_5_2_0] , groups_width=1_6_8 , layer_type='x' ), # y variant 'regnet-y-002': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[2_4, 5_6, 1_5_2, 3_6_8] , groups_width=8 ), 'regnet-y-004': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[4_8, 1_0_4, 2_0_8, 4_4_0] , groups_width=8 ), 'regnet-y-006': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[4_8, 1_1_2, 2_5_6, 6_0_8] , groups_width=1_6 ), 'regnet-y-008': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[6_4, 1_2_8, 3_2_0, 7_6_8] , groups_width=1_6 ), 'regnet-y-016': ImageNetPreTrainedConfig( depths=[2, 6, 1_7, 2] , hidden_sizes=[4_8, 1_2_0, 3_3_6, 8_8_8] , groups_width=2_4 ), 'regnet-y-032': ImageNetPreTrainedConfig( depths=[2, 5, 1_3, 1] , hidden_sizes=[7_2, 2_1_6, 5_7_6, 1_5_1_2] , groups_width=2_4 ), 'regnet-y-040': ImageNetPreTrainedConfig( depths=[2, 6, 1_2, 2] , hidden_sizes=[1_2_8, 1_9_2, 5_1_2, 1_0_8_8] , groups_width=6_4 ), 'regnet-y-064': ImageNetPreTrainedConfig( depths=[2, 7, 1_4, 2] , hidden_sizes=[1_4_4, 2_8_8, 5_7_6, 1_2_9_6] , groups_width=7_2 ), 'regnet-y-080': ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 1] , hidden_sizes=[1_6_8, 4_4_8, 8_9_6, 2_0_1_6] , groups_width=5_6 ), 'regnet-y-120': ImageNetPreTrainedConfig( depths=[2, 5, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 8_9_6, 2_2_4_0] , groups_width=1_1_2 ), 'regnet-y-160': ImageNetPreTrainedConfig( depths=[2, 4, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 1_2_3_2, 3_0_2_4] , groups_width=1_1_2 ), 'regnet-y-320': ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 'regnet-y-320-seer': RegNetConfig(depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), 'regnet-y-640-seer': RegNetConfig(depths=[2, 5, 1_2, 1] , hidden_sizes=[3_2_8, 9_8_4, 1_9_6_8, 4_9_2_0] , groups_width=3_2_8 ), 'regnet-y-1280-seer': RegNetConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[5_2_8, 1_0_5_6, 2_9_0_4, 7_3_9_2] , groups_width=2_6_4 ), 'regnet-y-2560-seer': RegNetConfig( depths=[3, 7, 1_6, 1] , hidden_sizes=[6_4_0, 1_6_9_6, 2_5_4_4, 5_0_8_8] , groups_width=6_4_0 ), 'regnet-y-10b-seer': ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[2_0_2_0, 4_0_4_0, 1_1_1_1_0, 2_8_2_8_0] , groups_width=1_0_1_0 ), # finetuned on imagenet 'regnet-y-320-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), 'regnet-y-640-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[3_2_8, 9_8_4, 1_9_6_8, 4_9_2_0] , groups_width=3_2_8 ), 'regnet-y-1280-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[5_2_8, 1_0_5_6, 2_9_0_4, 7_3_9_2] , groups_width=2_6_4 ), 'regnet-y-2560-seer-in1k': ImageNetPreTrainedConfig( depths=[3, 7, 1_6, 1] , hidden_sizes=[6_4_0, 1_6_9_6, 2_5_4_4, 5_0_8_8] , groups_width=6_4_0 ), 'regnet-y-10b-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[2_0_2_0, 4_0_4_0, 1_1_1_1_0, 2_8_2_8_0] , groups_width=1_0_1_0 ), } _UpperCamelCase : Dict = NameToOurModelFuncMap() _UpperCamelCase : Any = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple ) -> Tuple[nn.Module, Dict]: _UpperCamelCase : Optional[int] = torch.hub.load_state_dict_from_url(__SCREAMING_SNAKE_CASE , model_dir=str(__SCREAMING_SNAKE_CASE ) , map_location='cpu' ) _UpperCamelCase : Tuple = model_func() # check if we have a head, if yes add it _UpperCamelCase : List[Any] = files['classy_state_dict']['base_model']['model'] _UpperCamelCase : Union[str, Any] = model_state_dict['trunk'] model.load_state_dict(__SCREAMING_SNAKE_CASE ) return model.eval(), model_state_dict["heads"] # pretrained _UpperCamelCase : Dict = partial( __SCREAMING_SNAKE_CASE , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _UpperCamelCase : List[Any] = partial( __SCREAMING_SNAKE_CASE , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _UpperCamelCase : Optional[int] = partial( __SCREAMING_SNAKE_CASE , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) _UpperCamelCase : List[str] = partial( __SCREAMING_SNAKE_CASE , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=2_7 , group_width=1_0_1_0 , w_a=1_7_4_4 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , ) # IN1K finetuned _UpperCamelCase : Optional[int] = partial( __SCREAMING_SNAKE_CASE , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _UpperCamelCase : Dict = partial( __SCREAMING_SNAKE_CASE , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _UpperCamelCase : int = partial( __SCREAMING_SNAKE_CASE , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) _UpperCamelCase : Dict = partial( __SCREAMING_SNAKE_CASE , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=2_7 , group_width=1_0_1_0 , w_a=1_7_4_4 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , ) if model_name: convert_weight_and_push( __SCREAMING_SNAKE_CASE , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( __SCREAMING_SNAKE_CASE , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) return config, expected_shape if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported regnet* architecture,""" """ currently: regnetx-*, regnety-*. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
701
import logging from transformers.configuration_utils import PretrainedConfig lowerCAmelCase__ = logging.getLogger(__name__) class lowercase ( _lowercase ): """simple docstring""" a__ = "masked_bert" def __init__( self , __snake_case=3_05_22 , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=0 , __snake_case="topK" , __snake_case="constant" , __snake_case=0.0 , **__snake_case , ): super().__init__(pad_token_id=__snake_case , **__snake_case) _UpperCamelCase : List[Any] = vocab_size _UpperCamelCase : Union[str, Any] = hidden_size _UpperCamelCase : Optional[int] = num_hidden_layers _UpperCamelCase : Any = num_attention_heads _UpperCamelCase : int = hidden_act _UpperCamelCase : str = intermediate_size _UpperCamelCase : str = hidden_dropout_prob _UpperCamelCase : Any = attention_probs_dropout_prob _UpperCamelCase : Tuple = max_position_embeddings _UpperCamelCase : Dict = type_vocab_size _UpperCamelCase : str = initializer_range _UpperCamelCase : List[Any] = layer_norm_eps _UpperCamelCase : Tuple = pruning_method _UpperCamelCase : Tuple = mask_init _UpperCamelCase : Dict = mask_scale
648
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { """configuration_time_series_transformer""": [ """TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimeSeriesTransformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimeSeriesTransformerForPrediction""", """TimeSeriesTransformerModel""", """TimeSeriesTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
702
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow lowerCAmelCase__ = False class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self , __snake_case=32): set_seed(0) _UpperCamelCase : int = UNetaDModel(sample_size=__snake_case , in_channels=3 , out_channels=3) _UpperCamelCase : str = torch.optim.SGD(model.parameters() , lr=0.0_0_0_1) return model, optimizer @slow def A__ ( self): _UpperCamelCase : Tuple = 'cpu' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable _UpperCamelCase : List[Any] = DDPMScheduler( num_train_timesteps=10_00 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='linear' , clip_sample=__snake_case , ) _UpperCamelCase : List[Any] = DDIMScheduler( num_train_timesteps=10_00 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='linear' , clip_sample=__snake_case , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0) _UpperCamelCase : Optional[Any] = [torch.randn((4, 3, 32, 32)).clip(-1 , 1).to(__snake_case) for _ in range(4)] _UpperCamelCase : str = [torch.randn((4, 3, 32, 32)).to(__snake_case) for _ in range(4)] _UpperCamelCase : int = [torch.randint(0 , 10_00 , (4,)).long().to(__snake_case) for _ in range(4)] # train with a DDPM scheduler _UpperCamelCase , _UpperCamelCase : List[Any] = self.get_model_optimizer(resolution=32) model.train().to(__snake_case) for i in range(4): optimizer.zero_grad() _UpperCamelCase : int = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) _UpperCamelCase : Any = model(__snake_case , timesteps[i]).sample _UpperCamelCase : str = torch.nn.functional.mse_loss(__snake_case , noise[i]) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM _UpperCamelCase , _UpperCamelCase : Union[str, Any] = self.get_model_optimizer(resolution=32) model.train().to(__snake_case) for i in range(4): optimizer.zero_grad() _UpperCamelCase : Dict = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) _UpperCamelCase : Dict = model(__snake_case , timesteps[i]).sample _UpperCamelCase : Tuple = torch.nn.functional.mse_loss(__snake_case , noise[i]) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1e-5)) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1e-5))
648
0
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class lowercase : """simple docstring""" def __init__( self , __snake_case = None): if components is None: _UpperCamelCase : Dict = [] _UpperCamelCase : Dict = list(__A) def __len__( self): return len(self.__components) def __str__( self): return "(" + ",".join(map(__A , self.__components)) + ")" def __add__( self , __snake_case): _UpperCamelCase : Any = len(self) if size == len(__A): _UpperCamelCase : Dict = [self.__components[i] + other.component(__A) for i in range(__A)] return Vector(__A) else: raise Exception('must have the same size') def __sub__( self , __snake_case): _UpperCamelCase : Union[str, Any] = len(self) if size == len(__A): _UpperCamelCase : Optional[int] = [self.__components[i] - other.component(__A) for i in range(__A)] return Vector(__A) else: # error case raise Exception('must have the same size') @overload def __mul__( self , __snake_case): ... @overload def __mul__( self , __snake_case): ... def __mul__( self , __snake_case): if isinstance(__A , (float, int)): _UpperCamelCase : List[Any] = [c * other for c in self.__components] return Vector(__A) elif isinstance(__A , __A) and len(self) == len(__A): _UpperCamelCase : int = len(self) _UpperCamelCase : Tuple = [self.__components[i] * other.component(__A) for i in range(__A)] return sum(__A) else: # error case raise Exception('invalid operand!') def A__ ( self): return Vector(self.__components) def A__ ( self , __snake_case): if isinstance(__A , __A) and -len(self.__components) <= i < len(self.__components): return self.__components[i] else: raise Exception('index out of range') def A__ ( self , __snake_case , __snake_case): assert -len(self.__components) <= pos < len(self.__components) _UpperCamelCase : Optional[Any] = value def A__ ( self): if len(self.__components) == 0: raise Exception('Vector is empty') _UpperCamelCase : List[Any] = [c**2 for c in self.__components] return math.sqrt(sum(__A)) def A__ ( self , __snake_case , __snake_case = False): _UpperCamelCase : Union[str, Any] = self * other _UpperCamelCase : Union[str, Any] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den)) else: return math.acos(num / den) def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> Any: '''simple docstring''' assert isinstance(snake_case_ , snake_case_ ) return Vector([0] * dimension ) def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> Optional[Any]: '''simple docstring''' assert isinstance(snake_case_ , snake_case_ ) and (isinstance(snake_case_ , snake_case_ )) _UpperCamelCase : List[Any] = [0] * dimension _UpperCamelCase : List[Any] = 1 return Vector(snake_case_ ) def lowerCamelCase_ ( UpperCAmelCase_ : float , UpperCAmelCase_ : Vector , UpperCAmelCase_ : Vector ) -> int: '''simple docstring''' assert ( isinstance(snake_case_ , snake_case_ ) and isinstance(snake_case_ , snake_case_ ) and (isinstance(snake_case_ , (int, float) )) ) return x * scalar + y def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> List[str]: '''simple docstring''' random.seed(snake_case_ ) _UpperCamelCase : Union[str, Any] = [random.randint(snake_case_ , snake_case_ ) for _ in range(snake_case_ )] return Vector(snake_case_ ) class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : List[Any] = matrix _UpperCamelCase : Any = w _UpperCamelCase : Any = h def __str__( self): _UpperCamelCase : int = "" for i in range(self.__height): ans += "|" for j in range(self.__width): if j < self.__width - 1: ans += str(self.__matrix[i][j]) + "," else: ans += str(self.__matrix[i][j]) + "|\n" return ans def __add__( self , __snake_case): if self.__width == other.width() and self.__height == other.height(): _UpperCamelCase : Dict = [] for i in range(self.__height): _UpperCamelCase : Union[str, Any] = [ self.__matrix[i][j] + other.component(__A , __A) for j in range(self.__width) ] matrix.append(__A) return Matrix(__A , self.__width , self.__height) else: raise Exception('matrix must have the same dimension!') def __sub__( self , __snake_case): if self.__width == other.width() and self.__height == other.height(): _UpperCamelCase : List[str] = [] for i in range(self.__height): _UpperCamelCase : int = [ self.__matrix[i][j] - other.component(__A , __A) for j in range(self.__width) ] matrix.append(__A) return Matrix(__A , self.__width , self.__height) else: raise Exception('matrices must have the same dimension!') @overload def __mul__( self , __snake_case): ... @overload def __mul__( self , __snake_case): ... def __mul__( self , __snake_case): if isinstance(__A , __A): # matrix-vector if len(__A) == self.__width: _UpperCamelCase : Tuple = zero_vector(self.__height) for i in range(self.__height): _UpperCamelCase : List[str] = [ self.__matrix[i][j] * other.component(__A) for j in range(self.__width) ] ans.change_component(__A , sum(__A)) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!') elif isinstance(__A , (int, float)): # matrix-scalar _UpperCamelCase : Tuple = [ [self.__matrix[i][j] * other for j in range(self.__width)] for i in range(self.__height) ] return Matrix(__A , self.__width , self.__height) return None def A__ ( self): return self.__height def A__ ( self): return self.__width def A__ ( self , __snake_case , __snake_case): if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds') def A__ ( self , __snake_case , __snake_case , __snake_case): if 0 <= x < self.__height and 0 <= y < self.__width: _UpperCamelCase : Optional[int] = value else: raise Exception('change_component: indices out of bounds') def A__ ( self , __snake_case , __snake_case): if self.__height != self.__width: raise Exception('Matrix is not square') _UpperCamelCase : Tuple = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(__A)): _UpperCamelCase : Dict = minor[i][:y] + minor[i][y + 1 :] return Matrix(__A , self.__width - 1 , self.__height - 1).determinant() def A__ ( self , __snake_case , __snake_case): if self.__height != self.__width: raise Exception('Matrix is not square') if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(__A , __A) else: raise Exception('Indices out of bounds') def A__ ( self): if self.__height != self.__width: raise Exception('Matrix is not square') if self.__height < 1: raise Exception('Matrix has no element') elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: _UpperCamelCase : Dict = [ self.__matrix[0][y] * self.cofactor(0 , __A) for y in range(self.__width) ] return sum(__A) def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> Dict: '''simple docstring''' _UpperCamelCase : list[list[float]] = [[0] * n for _ in range(snake_case_ )] return Matrix(snake_case_ , snake_case_ , snake_case_ ) def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: '''simple docstring''' random.seed(snake_case_ ) _UpperCamelCase : list[list[float]] = [ [random.randint(snake_case_ , snake_case_ ) for _ in range(snake_case_ )] for _ in range(snake_case_ ) ] return Matrix(snake_case_ , snake_case_ , snake_case_ )
703
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) lowerCAmelCase__ = { """sample_size""": 3_2, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 1_0_0_0, """block_out_channels""": [3_2, 6_4], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """sample_size""": 6_4, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 1_0_0_0, """block_out_channels""": [1_9_2, 1_9_2 * 2, 1_9_2 * 3, 1_9_2 * 4], """attention_head_dim""": 6_4, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """sample_size""": 2_5_6, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [2_5_6, 2_5_6, 2_5_6 * 2, 2_5_6 * 2, 2_5_6 * 4, 2_5_6 * 4], """attention_head_dim""": 6_4, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """num_train_timesteps""": 4_0, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } lowerCAmelCase__ = { """num_train_timesteps""": 2_0_1, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } lowerCAmelCase__ = { """num_train_timesteps""": 1_5_1, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> List[str]: '''simple docstring''' if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def lowerCamelCase_ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any]=False ) -> str: '''simple docstring''' _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.in_layers.0.weight'''] _UpperCamelCase : str = checkpoint[F'''{old_prefix}.in_layers.0.bias'''] _UpperCamelCase : str = checkpoint[F'''{old_prefix}.in_layers.2.weight'''] _UpperCamelCase : Union[str, Any] = checkpoint[F'''{old_prefix}.in_layers.2.bias'''] _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.emb_layers.1.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.emb_layers.1.bias'''] _UpperCamelCase : Tuple = checkpoint[F'''{old_prefix}.out_layers.0.weight'''] _UpperCamelCase : List[Any] = checkpoint[F'''{old_prefix}.out_layers.0.bias'''] _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.out_layers.3.weight'''] _UpperCamelCase : Union[str, Any] = checkpoint[F'''{old_prefix}.out_layers.3.bias'''] if has_skip: _UpperCamelCase : Tuple = checkpoint[F'''{old_prefix}.skip_connection.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any=None ) -> int: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 ) _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.norm.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.norm.bias'''] _UpperCamelCase : List[str] = weight_q.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Dict = bias_q.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Any = weight_k.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : List[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Dict = weight_v.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Tuple = bias_v.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Optional[Any] = ( checkpoint[F'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] ) -> Tuple: '''simple docstring''' _UpperCamelCase : Any = torch.load(UpperCAmelCase_ , map_location='cpu' ) _UpperCamelCase : Union[str, Any] = {} _UpperCamelCase : Optional[int] = checkpoint['time_embed.0.weight'] _UpperCamelCase : List[Any] = checkpoint['time_embed.0.bias'] _UpperCamelCase : Dict = checkpoint['time_embed.2.weight'] _UpperCamelCase : Optional[Any] = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: _UpperCamelCase : List[str] = checkpoint['label_emb.weight'] _UpperCamelCase : Optional[int] = checkpoint['input_blocks.0.0.weight'] _UpperCamelCase : Union[str, Any] = checkpoint['input_blocks.0.0.bias'] _UpperCamelCase : Optional[int] = unet_config['down_block_types'] _UpperCamelCase : Optional[Any] = unet_config['layers_per_block'] _UpperCamelCase : Dict = unet_config['attention_head_dim'] _UpperCamelCase : List[str] = unet_config['block_out_channels'] _UpperCamelCase : str = 1 _UpperCamelCase : Optional[int] = channels_list[0] for i, layer_type in enumerate(UpperCAmelCase_ ): _UpperCamelCase : List[str] = channels_list[i] _UpperCamelCase : str = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(UpperCAmelCase_ ): _UpperCamelCase : str = F'''down_blocks.{i}.resnets.{j}''' _UpperCamelCase : List[Any] = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : Any = True if j == 0 and downsample_block_has_skip else False _UpperCamelCase : str = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(UpperCAmelCase_ ): _UpperCamelCase : List[str] = F'''down_blocks.{i}.resnets.{j}''' _UpperCamelCase : str = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : int = True if j == 0 and downsample_block_has_skip else False _UpperCamelCase : Any = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) _UpperCamelCase : Dict = F'''down_blocks.{i}.attentions.{j}''' _UpperCamelCase : Optional[int] = F'''input_blocks.{current_layer}.1''' _UpperCamelCase : Dict = convert_attention( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : int = F'''down_blocks.{i}.downsamplers.0''' _UpperCamelCase : Optional[int] = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : List[Any] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 _UpperCamelCase : Tuple = current_channels # hardcoded the mid-block for now _UpperCamelCase : Any = 'mid_block.resnets.0' _UpperCamelCase : Optional[Any] = 'middle_block.0' _UpperCamelCase : Tuple = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = 'mid_block.attentions.0' _UpperCamelCase : Tuple = 'middle_block.1' _UpperCamelCase : Union[str, Any] = convert_attention(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Tuple = 'mid_block.resnets.1' _UpperCamelCase : str = 'middle_block.2' _UpperCamelCase : List[str] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : List[Any] = 0 _UpperCamelCase : Optional[int] = unet_config['up_block_types'] for i, layer_type in enumerate(UpperCAmelCase_ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _UpperCamelCase : Optional[Any] = F'''up_blocks.{i}.resnets.{j}''' _UpperCamelCase : Optional[int] = F'''output_blocks.{current_layer}.0''' _UpperCamelCase : str = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : List[Any] = F'''up_blocks.{i}.upsamplers.0''' _UpperCamelCase : Dict = F'''output_blocks.{current_layer-1}.1''' _UpperCamelCase : Optional[int] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _UpperCamelCase : str = F'''up_blocks.{i}.resnets.{j}''' _UpperCamelCase : Union[str, Any] = F'''output_blocks.{current_layer}.0''' _UpperCamelCase : Optional[int] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) _UpperCamelCase : int = F'''up_blocks.{i}.attentions.{j}''' _UpperCamelCase : List[Any] = F'''output_blocks.{current_layer}.1''' _UpperCamelCase : Optional[int] = convert_attention( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : List[Any] = F'''up_blocks.{i}.upsamplers.0''' _UpperCamelCase : Union[str, Any] = F'''output_blocks.{current_layer-1}.2''' _UpperCamelCase : List[str] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : List[Any] = checkpoint['out.0.weight'] _UpperCamelCase : str = checkpoint['out.0.bias'] _UpperCamelCase : int = checkpoint['out.2.weight'] _UpperCamelCase : List[Any] = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = strabool(args.class_cond) lowerCAmelCase__ = os.path.basename(args.unet_path) print(f'Checkpoint: {ckpt_name}') # Get U-Net config if "imagenet64" in ckpt_name: lowerCAmelCase__ = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCAmelCase__ = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: lowerCAmelCase__ = TEST_UNET_CONFIG else: raise ValueError(f'Checkpoint type {ckpt_name} is not currently supported.') if not args.class_cond: lowerCAmelCase__ = None lowerCAmelCase__ = con_pt_to_diffuser(args.unet_path, unet_config) lowerCAmelCase__ = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: lowerCAmelCase__ = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: lowerCAmelCase__ = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCAmelCase__ = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f'Checkpoint type {ckpt_name} is not currently supported.') lowerCAmelCase__ = CMStochasticIterativeScheduler(**scheduler_config) lowerCAmelCase__ = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
648
0
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
704
def lowerCamelCase_ ( UpperCAmelCase_ : list ) -> list: '''simple docstring''' if len(UpperCAmelCase_ ) <= 1: return [tuple(UpperCAmelCase_ )] _UpperCamelCase : List[Any] = [] def generate(UpperCAmelCase_ : int , UpperCAmelCase_ : list ): _UpperCamelCase : Optional[int] = [0] * n res.append(tuple(UpperCAmelCase_ ) ) _UpperCamelCase : List[Any] = 0 while i < n: if c[i] < i: if i % 2 == 0: _UpperCamelCase , _UpperCamelCase : List[str] = arr[i], arr[0] else: _UpperCamelCase , _UpperCamelCase : List[str] = arr[i], arr[c[i]] res.append(tuple(UpperCAmelCase_ ) ) c[i] += 1 _UpperCamelCase : Tuple = 0 else: _UpperCamelCase : Tuple = 0 i += 1 generate(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) return res if __name__ == "__main__": lowerCAmelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCAmelCase__ = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
648
0
import os from collections.abc import Iterator def lowerCamelCase_ ( UpperCAmelCase_ : str = "." ) -> int: '''simple docstring''' for dir_path, dir_names, filenames in os.walk(UpperCAmelCase_ ): _UpperCamelCase : Dict = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(UpperCAmelCase_ )[1] in (".py", ".ipynb"): yield os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ).lstrip('./' ) def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any] ) -> Dict: '''simple docstring''' return F'''{i * " "}*''' if i else "\n##" def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : str = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(UpperCAmelCase_ ) or old_parts[i] != new_part) and new_part: print(F'''{md_prefix(UpperCAmelCase_ )} {new_part.replace("_" , " " ).title()}''' ) return new_path def lowerCamelCase_ ( UpperCAmelCase_ : str = "." ) -> str: '''simple docstring''' _UpperCamelCase : Dict = """""" for filepath in sorted(good_file_paths(UpperCAmelCase_ ) ): _UpperCamelCase : int = os.path.split(UpperCAmelCase_ ) if filepath != old_path: _UpperCamelCase : Optional[int] = print_path(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = (filepath.count(os.sep ) + 1) if filepath else 0 _UpperCamelCase : str = F'''{filepath}/{filename}'''.replace(' ' , '%20' ) _UpperCamelCase : Optional[Any] = os.path.splitext(filename.replace('_' , ' ' ).title() )[0] print(F'''{md_prefix(UpperCAmelCase_ )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md(""".""")
705
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = [ ["""attention""", """attn"""], ["""encoder_attention""", """encoder_attn"""], ["""q_lin""", """q_proj"""], ["""k_lin""", """k_proj"""], ["""v_lin""", """v_proj"""], ["""out_lin""", """out_proj"""], ["""norm_embeddings""", """layernorm_embedding"""], ["""position_embeddings""", """embed_positions"""], ["""embeddings""", """embed_tokens"""], ["""ffn.lin""", """fc"""], ] def lowerCamelCase_ ( UpperCAmelCase_ : List[Any] ) -> Optional[int]: '''simple docstring''' if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: _UpperCamelCase : List[Any] = k.replace(UpperCAmelCase_ , UpperCAmelCase_ ) if k.startswith('encoder' ): _UpperCamelCase : Optional[Any] = k.replace('.attn' , '.self_attn' ) _UpperCamelCase : Optional[int] = k.replace('norm1' , 'self_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): _UpperCamelCase : Any = k.replace('norm1' , 'self_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm2' , 'encoder_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm3' , 'final_layer_norm' ) return k def lowerCamelCase_ ( UpperCAmelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Union[str, Any] = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: _UpperCamelCase : Optional[int] = sd.pop(UpperCAmelCase_ ) _UpperCamelCase : str = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd _UpperCamelCase : Tuple = v lowerCAmelCase__ = ["""START"""] @torch.no_grad() def lowerCamelCase_ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ) -> List[str]: '''simple docstring''' _UpperCamelCase : Optional[Any] = torch.load(UpperCAmelCase_ , map_location='cpu' ) _UpperCamelCase : int = model['model'] _UpperCamelCase : List[Any] = BlenderbotConfig.from_json_file(UpperCAmelCase_ ) _UpperCamelCase : Any = BlenderbotForConditionalGeneration(UpperCAmelCase_ ) _UpperCamelCase : int = m.model.state_dict().keys() _UpperCamelCase : Union[str, Any] = [] _UpperCamelCase : int = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue _UpperCamelCase : Optional[int] = rename_state_dict_key(UpperCAmelCase_ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: _UpperCamelCase : int = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(UpperCAmelCase_ ) m.model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) m.half() m.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("""--src_path""", type=str, help="""like blenderbot-model.bin""") parser.add_argument("""--save_dir""", default="""hf_blenderbot""", type=str, help="""Where to save converted model.""") parser.add_argument( """--hf_config_json""", default="""blenderbot-3b-config.json""", type=str, help="""Path to config to use""" ) lowerCAmelCase__ = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
648
0
from dataclasses import dataclass, field from typing import Optional @dataclass class lowercase : """simple docstring""" a__ = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be trained."} ) a__ = field( default="./" , metadata={"help": "Save dir where model repo is cloned and models updates are saved to."} ) a__ = field( default="codeparrot/codeparrot-clean-train" , metadata={"help": "Name or path of training dataset."} ) a__ = field( default="codeparrot/codeparrot-clean-valid" , metadata={"help": "Name or path of validation dataset."} ) a__ = field(default=2 , metadata={"help": "Batch size for training."} ) a__ = field(default=2 , metadata={"help": "Batch size for evaluation."} ) a__ = field(default=0.1 , metadata={"help": "Value of weight decay."} ) a__ = field( default=1_0_0_0_0 , metadata={"help": "Size of buffer used to shuffle streaming dataset."} ) a__ = field(default=2e-4 , metadata={"help": "Learning rate fo training."} ) a__ = field(default="cosine" , metadata={"help": "Learning rate."} ) a__ = field( default=7_5_0 , metadata={"help": "Number of warmup steps in the learning rate schedule."} ) a__ = field( default=1_6 , metadata={"help": "Number of gradient accumulation steps."} ) a__ = field( default=__a , metadata={"help": "Use gradient checkpointing to reduce memory footprint."} ) a__ = field(default=5_0_0_0_0 , metadata={"help": "Maximum number of training steps."} ) a__ = field( default=-1 , metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) a__ = field(default=1_0_2_4 , metadata={"help": "Sequence lengths used for training."} ) a__ = field(default=1 , metadata={"help": "Training seed."} ) a__ = field( default=1_0_2_4 , metadata={"help": "Interval to save checkpoints. Measured as number of forward passes not training steps."} , ) a__ = field( default=__a , metadata={"help": "States path if the training should continue from a checkpoint folder."} ) a__ = field(default=__a , metadata={"help": "If True the data is pretokenized."} ) @dataclass class lowercase : """simple docstring""" a__ = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be evaluated."} ) a__ = field( default="codeparrot/codeparrot-clean-valid" , metadata={"help": "Name or path of validation dataset."} ) a__ = field(default=2 , metadata={"help": "Batch size used for evaluation."} ) a__ = field( default=-1 , metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) a__ = field(default=1_0_2_4 , metadata={"help": "Length of sequences to be evaluated."} ) a__ = field(default=1 , metadata={"help": "Random seed used for evaluation."} ) @dataclass class lowercase : """simple docstring""" a__ = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be evaluated."} ) a__ = field(default=__a , metadata={"help": "Number of workers used for code evaluation."} ) a__ = field( default=__a , metadata={"help": "The number of human-eval tasks to run. If not included all tasks are evaluated."} , ) a__ = field( default=__a , metadata={"help": "Sample from the language model's output distribution."} ) a__ = field(default=0.2 , metadata={"help": "Sampling temperature used for generation."} ) a__ = field(default=2_5_6 , metadata={"help": "Maximum number of newly generated tokens."} ) a__ = field(default=0 , metadata={"help": "Top-k parameter used for generation."} ) a__ = field(default=0.95 , metadata={"help": "Top-p parameter used for nucleus sampling."} ) a__ = field(default=1_0 , metadata={"help": "Number of generations to run in parallel."} ) a__ = field( default=2_0_0 , metadata={"help": "Number of completions to generate for each sample."} ) a__ = field(default=1 , metadata={"help": "Random seed used for evaluation."} ) a__ = field( default="eval_results.json" , metadata={"help": "Random seed used for evaluation."} ) a__ = field( default="0" , metadata={"help": "Allow `code_eval` to execute Python code on machine"} ) a__ = field( default=-1 , metadata={ "help": ( "Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive" " number corresponds to which GPU device id to run on." ) } , ) @dataclass class lowercase : """simple docstring""" a__ = field( default=__a , metadata={ "help": "The number of CPU cores to use for parallel preprocessing. Default uses the maximum available." } , ) a__ = field( default="transformersbook/codeparrot" , metadata={"help": "Folder or name of dataset to process."} ) a__ = field( default="codeparrot-clean" , metadata={"help": "Folder to save processed processed dataset."} ) a__ = field( default=1_0_0_0_0_0 , metadata={"help": "Number of files to save per JSON output file."} ) a__ = field(default="content" , metadata={"help": "Column containing text data to process."} ) a__ = field( default=1_0_0_0 , metadata={"help": "Maximum line length in file, otherwise file is filtered."} ) a__ = field( default=1_0_0 , metadata={"help": "Maximum mean line length in file, otherwise file is filtered."} ) a__ = field( default=0.25 , metadata={"help": "Maximum fraction of non-alphanumeric characters, otherwise file is filtered."} ) a__ = field( default=1.5 , metadata={"help": "Minimum character token ratio for the file, otherwise file is filtered."} ) a__ = field( default=0.7 , metadata={"help": "Probability for filtering config, test and uncommon files."} ) a__ = field( default="codeparrot/codeparrot" , metadata={"help": "Name or path to the tokenizer."} , ) a__ = field( default=__a , metadata={"help": "If True, near-duplicate samples are removed."} ) a__ = field( default=0.85 , metadata={"help": "Jaccard threshold for near-duplicate samples."} ) @dataclass class lowercase : """simple docstring""" a__ = field( default="gpt2" , metadata={"help": "Base tokenizer to build new tokenizer from."} ) a__ = field( default="transformersbook/codeparrot-train" , metadata={"help": "Dataset to train tokenizer on."} ) a__ = field(default="content" , metadata={"help": "Column containing text data to process."} ) a__ = field(default=2_0_0_0_0_0 , metadata={"help": "Number of examples to train tokenizer on."} ) a__ = field( default=3_2_7_6_8 , metadata={"help": "Number of examples to train the tokenizer on."} ) a__ = field(default="codeparrot" , metadata={"help": "Name of new tokenizer."} ) a__ = field(default=__a , metadata={"help": "Push saved tokenizer to the hub."} ) @dataclass class lowercase : """simple docstring""" a__ = field( default="codeparrot/codeparrot" , metadata={"help": "Name or path to the tokenizer."} ) a__ = field( default="codeparrot/codeparrot-clean-train" , metadata={"help": "Name or path to the dataset to pretokenize."} ) a__ = field( default="tokenized-codeparrot-train" , metadata={"help": "Repo name of the pretokenized data."} ) a__ = field(default=__a , metadata={"help": "Number of workers used for code evaluation."} ) @dataclass class lowercase : """simple docstring""" a__ = field( default="gpt2-large" , metadata={"help": "Configuration to use for model initialization."} ) a__ = field( default="codeparrot/codeparrot" , metadata={"help": "Tokenizer attached to model."} ) a__ = field(default="codeparrot" , metadata={"help": "Name of the created model."} ) a__ = field(default=__a , metadata={"help": "Push saved tokenizer to the hub."} )
706
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer lowerCAmelCase__ = ["""bert-base-uncased""", """bert-base-cased"""] lowerCAmelCase__ = """hf-internal-testing/tiny-bert-tf-only""" if is_tf_available(): class lowercase ( tf.keras.Model ): """simple docstring""" def __init__( self , __snake_case): super().__init__() _UpperCamelCase : List[Any] = tokenizer _UpperCamelCase : List[Any] = AutoConfig.from_pretrained(__snake_case) _UpperCamelCase : Dict = TFAutoModel.from_config(__snake_case) def A__ ( self , __snake_case): _UpperCamelCase : Any = self.tokenizer(__snake_case) _UpperCamelCase : Dict = self.bert(**__snake_case) return out["pooler_output"] @require_tf @require_tensorflow_text class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self): super().setUp() _UpperCamelCase : Optional[Any] = [ BertTokenizer.from_pretrained(__snake_case) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false _UpperCamelCase : Optional[Any] = [TFBertTokenizer.from_pretrained(__snake_case) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(__snake_case , use_fast_bert_tokenizer=__snake_case) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers) == len(self.tf_tokenizers) _UpperCamelCase : Optional[Any] = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] _UpperCamelCase : Dict = list(zip(self.test_sentences , self.test_sentences[::-1])) def A__ ( self): for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers): for test_inputs in (self.test_sentences, self.paired_sentences): _UpperCamelCase : List[str] = tokenizer(__snake_case , return_tensors='tf' , padding='longest') _UpperCamelCase : Tuple = tf_tokenizer(__snake_case) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape)) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa) == tf_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Tuple = tf_tokenizer(self.paired_sentences) _UpperCamelCase : Optional[Any] = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa) == separated_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Tuple = tf.function(__snake_case) for test_inputs in (self.test_sentences, self.paired_sentences): _UpperCamelCase : Optional[int] = tf.constant(__snake_case) _UpperCamelCase : Union[str, Any] = compiled_tokenizer(__snake_case) _UpperCamelCase : Tuple = tf_tokenizer(__snake_case) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Any = ModelToSave(tokenizer=__snake_case) _UpperCamelCase : Any = tf.convert_to_tensor(self.test_sentences) _UpperCamelCase : Union[str, Any] = model(__snake_case) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _UpperCamelCase : int = Path(__snake_case) / 'saved.model' model.save(__snake_case) _UpperCamelCase : Optional[int] = tf.keras.models.load_model(__snake_case) _UpperCamelCase : int = loaded_model(__snake_case) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output)) , 1e-5)
648
0
import os from distutils.util import strtobool def lowerCamelCase_ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] ) -> Optional[int]: '''simple docstring''' for e in env_keys: _UpperCamelCase : Tuple = int(os.environ.get(__snake_case , -1 ) ) if val >= 0: return val return default def lowerCamelCase_ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any]=False ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : int = os.environ.get(__snake_case , str(__snake_case ) ) return strtobool(__snake_case ) == 1 # As its name indicates `strtobool` actually returns an int... def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any]="no" ) -> List[str]: '''simple docstring''' _UpperCamelCase : Union[str, Any] = os.environ.get(__snake_case , str(__snake_case ) ) return value
707
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ = { """configuration_canine""": ["""CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CanineConfig"""], """tokenization_canine""": ["""CanineTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """CANINE_PRETRAINED_MODEL_ARCHIVE_LIST""", """CanineForMultipleChoice""", """CanineForQuestionAnswering""", """CanineForSequenceClassification""", """CanineForTokenClassification""", """CanineLayer""", """CanineModel""", """CaninePreTrainedModel""", """load_tf_weights_in_canine""", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
648
0
import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) set_seed(7_7_0) lowerCAmelCase__ = { "c_attn": "att_proj", "c_proj": "out_proj", "c_fc": "in_proj", "transformer.": "", "h.": "layers.", "ln_1": "layernorm_1", "ln_2": "layernorm_2", "ln_f": "layernorm_final", "wpe": "position_embeds_layer", "wte": "input_embeds_layer", } lowerCAmelCase__ = { "text_small": { "repo_id": "suno/bark", "file_name": "text.pt", }, "coarse_small": { "repo_id": "suno/bark", "file_name": "coarse.pt", }, "fine_small": { "repo_id": "suno/bark", "file_name": "fine.pt", }, "text": { "repo_id": "suno/bark", "file_name": "text_2.pt", }, "coarse": { "repo_id": "suno/bark", "file_name": "coarse_2.pt", }, "fine": { "repo_id": "suno/bark", "file_name": "fine_2.pt", }, } lowerCAmelCase__ = os.path.dirname(os.path.abspath(__file__)) lowerCAmelCase__ = os.path.join(os.path.expanduser("""~"""), """.cache""") lowerCAmelCase__ = os.path.join(os.getenv("""XDG_CACHE_HOME""", default_cache_dir), """suno""", """bark_v0""") def lowerCamelCase_ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Any=False ): '''simple docstring''' _UpperCamelCase : Tuple = model_type if use_small: key += "_small" return os.path.join(UpperCAmelCase__ , REMOTE_MODEL_PATHS[key]['file_name'] ) def lowerCamelCase_ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str ): '''simple docstring''' os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) hf_hub_download(repo_id=UpperCAmelCase__ , filename=UpperCAmelCase__ , local_dir=UpperCAmelCase__ ) def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Union[str, Any]="text" ): '''simple docstring''' if model_type == "text": _UpperCamelCase : List[Any] = BarkSemanticModel _UpperCamelCase : str = BarkSemanticConfig _UpperCamelCase : Union[str, Any] = BarkSemanticGenerationConfig elif model_type == "coarse": _UpperCamelCase : Union[str, Any] = BarkCoarseModel _UpperCamelCase : List[str] = BarkCoarseConfig _UpperCamelCase : int = BarkCoarseGenerationConfig elif model_type == "fine": _UpperCamelCase : Tuple = BarkFineModel _UpperCamelCase : int = BarkFineConfig _UpperCamelCase : Optional[int] = BarkFineGenerationConfig else: raise NotImplementedError() _UpperCamelCase : List[str] = F'''{model_type}_small''' if use_small else model_type _UpperCamelCase : Optional[int] = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(UpperCAmelCase__ ): logger.info(F'''{model_type} model not found, downloading into `{CACHE_DIR}`.''' ) _download(model_info['repo_id'] , model_info['file_name'] ) _UpperCamelCase : int = torch.load(UpperCAmelCase__ , map_location=UpperCAmelCase__ ) # this is a hack _UpperCamelCase : int = checkpoint["""model_args"""] if "input_vocab_size" not in model_args: _UpperCamelCase : Optional[Any] = model_args["""vocab_size"""] _UpperCamelCase : Dict = model_args["""vocab_size"""] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments _UpperCamelCase : Dict = model_args.pop('n_head' ) _UpperCamelCase : Optional[int] = model_args.pop('n_embd' ) _UpperCamelCase : Optional[Any] = model_args.pop('n_layer' ) _UpperCamelCase : Union[str, Any] = ConfigClass(**checkpoint['model_args'] ) _UpperCamelCase : List[str] = ModelClass(config=UpperCAmelCase__ ) _UpperCamelCase : int = GenerationConfigClass() _UpperCamelCase : List[Any] = model_generation_config _UpperCamelCase : str = checkpoint["""model"""] # fixup checkpoint _UpperCamelCase : Any = """_orig_mod.""" for k, v in list(state_dict.items() ): if k.startswith(UpperCAmelCase__ ): # replace part of the key with corresponding layer name in HF implementation _UpperCamelCase : str = k[len(UpperCAmelCase__ ) :] for old_layer_name in new_layer_name_dict: _UpperCamelCase : str = new_k.replace(UpperCAmelCase__ , new_layer_name_dict[old_layer_name] ) _UpperCamelCase : Dict = state_dict.pop(UpperCAmelCase__ ) _UpperCamelCase : str = set(state_dict.keys() ) - set(model.state_dict().keys() ) _UpperCamelCase : str = {k for k in extra_keys if not k.endswith('.attn.bias' )} _UpperCamelCase : List[Any] = set(model.state_dict().keys() ) - set(state_dict.keys() ) _UpperCamelCase : List[str] = {k for k in missing_keys if not k.endswith('.attn.bias' )} if len(UpperCAmelCase__ ) != 0: raise ValueError(F'''extra keys found: {extra_keys}''' ) if len(UpperCAmelCase__ ) != 0: raise ValueError(F'''missing keys: {missing_keys}''' ) model.load_state_dict(UpperCAmelCase__ , strict=UpperCAmelCase__ ) _UpperCamelCase : Dict = model.num_parameters(exclude_embeddings=UpperCAmelCase__ ) _UpperCamelCase : Union[str, Any] = checkpoint["""best_val_loss"""].item() logger.info(F'''model loaded: {round(n_params/1e6 , 1 )}M params, {round(UpperCAmelCase__ , 3 )} loss''' ) model.eval() model.to(UpperCAmelCase__ ) del checkpoint, state_dict return model def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Dict="text" ): '''simple docstring''' if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() _UpperCamelCase : str = """cpu""" # do conversion on cpu _UpperCamelCase : List[str] = _get_ckpt_path(UpperCAmelCase__ , use_small=UpperCAmelCase__ ) _UpperCamelCase : Union[str, Any] = _load_model(UpperCAmelCase__ , UpperCAmelCase__ , model_type=UpperCAmelCase__ , use_small=UpperCAmelCase__ ) # load bark initial model _UpperCamelCase : Union[str, Any] = _bark_load_model(UpperCAmelCase__ , 'cpu' , model_type=UpperCAmelCase__ , use_small=UpperCAmelCase__ ) if model_type == "text": _UpperCamelCase : List[Any] = bark_model["""model"""] if model.num_parameters(exclude_embeddings=UpperCAmelCase__ ) != bark_model.get_num_params(): raise ValueError('initial and new models don\'t have the same number of parameters' ) # check if same output as the bark model _UpperCamelCase : str = 5 _UpperCamelCase : Any = 1_0 if model_type in ["text", "coarse"]: _UpperCamelCase : List[Any] = torch.randint(2_5_6 , (batch_size, sequence_length) , dtype=torch.int ) _UpperCamelCase : Tuple = bark_model(UpperCAmelCase__ )[0] _UpperCamelCase : List[Any] = model(UpperCAmelCase__ ) # take last logits _UpperCamelCase : Dict = output_new_model_total.logits[:, [-1], :] else: _UpperCamelCase : Dict = 3 _UpperCamelCase : Dict = 8 _UpperCamelCase : Optional[Any] = torch.randint(2_5_6 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) _UpperCamelCase : int = model(UpperCAmelCase__ , UpperCAmelCase__ ) _UpperCamelCase : Tuple = bark_model(UpperCAmelCase__ , UpperCAmelCase__ ) _UpperCamelCase : Optional[int] = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('initial and new outputs don\'t have the same shape' ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError('initial and new outputs are not equal' ) Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) model.save_pretrained(UpperCAmelCase__ ) def lowerCamelCase_ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , ): '''simple docstring''' _UpperCamelCase : Dict = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) _UpperCamelCase : str = BarkSemanticConfig.from_pretrained(os.path.join(UpperCAmelCase__ , 'config.json' ) ) _UpperCamelCase : Optional[Any] = BarkCoarseConfig.from_pretrained(os.path.join(UpperCAmelCase__ , 'config.json' ) ) _UpperCamelCase : List[Any] = BarkFineConfig.from_pretrained(os.path.join(UpperCAmelCase__ , 'config.json' ) ) _UpperCamelCase : Any = EncodecConfig.from_pretrained('facebook/encodec_24khz' ) _UpperCamelCase : List[str] = BarkSemanticModel.from_pretrained(UpperCAmelCase__ ) _UpperCamelCase : str = BarkCoarseModel.from_pretrained(UpperCAmelCase__ ) _UpperCamelCase : List[Any] = BarkFineModel.from_pretrained(UpperCAmelCase__ ) _UpperCamelCase : Tuple = EncodecModel.from_pretrained('facebook/encodec_24khz' ) _UpperCamelCase : Union[str, Any] = BarkConfig.from_sub_model_configs( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) _UpperCamelCase : List[Any] = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) _UpperCamelCase : Union[str, Any] = BarkModel(UpperCAmelCase__ ) _UpperCamelCase : str = semantic _UpperCamelCase : Optional[int] = coarseAcoustic _UpperCamelCase : Tuple = fineAcoustic _UpperCamelCase : Union[str, Any] = codec _UpperCamelCase : Tuple = bark_generation_config Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) bark.save_pretrained(UpperCAmelCase__ , repo_id=UpperCAmelCase__ , push_to_hub=UpperCAmelCase__ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("""model_type""", type=str, help="""text, coarse or fine.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--is_small""", action="""store_true""", help="""convert the small version instead of the large.""") lowerCAmelCase__ = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
708
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case=3 , __snake_case=32 , __snake_case=3 , __snake_case=10 , __snake_case=[8, 16, 32, 64] , __snake_case=[1, 1, 2, 1] , __snake_case=True , __snake_case=True , __snake_case="relu" , __snake_case=3 , __snake_case=None , __snake_case=["stage2", "stage3", "stage4"] , __snake_case=[2, 3, 4] , __snake_case=1 , ): _UpperCamelCase : List[Any] = parent _UpperCamelCase : Dict = batch_size _UpperCamelCase : Optional[int] = image_size _UpperCamelCase : str = num_channels _UpperCamelCase : Optional[Any] = embeddings_size _UpperCamelCase : Tuple = hidden_sizes _UpperCamelCase : Dict = depths _UpperCamelCase : str = is_training _UpperCamelCase : Optional[int] = use_labels _UpperCamelCase : str = hidden_act _UpperCamelCase : Optional[int] = num_labels _UpperCamelCase : Optional[int] = scope _UpperCamelCase : Tuple = len(__snake_case) _UpperCamelCase : Dict = out_features _UpperCamelCase : Union[str, Any] = out_indices _UpperCamelCase : int = num_groups def A__ ( self): _UpperCamelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase : str = None if self.use_labels: _UpperCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels) _UpperCamelCase : str = self.get_config() return config, pixel_values, labels def A__ ( self): return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : str = BitModel(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[Any] = model(__snake_case) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Dict = self.num_labels _UpperCamelCase : Dict = BitForImageClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Dict = model(__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[Any] = BitBackbone(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = model(__snake_case) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:]) # verify backbone works with out_features=None _UpperCamelCase : Any = None _UpperCamelCase : str = BitBackbone(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Any = model(__snake_case) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , 1) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[-1], 1, 1]) # verify channels self.parent.assertEqual(len(model.channels) , 1) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]]) def A__ ( self): _UpperCamelCase : Optional[int] = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : int = config_and_inputs _UpperCamelCase : int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () a__ = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False a__ = False def A__ ( self): _UpperCamelCase : Dict = BitModelTester(self) _UpperCamelCase : Optional[Any] = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case) def A__ ( self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self): return @unittest.skip(reason='Bit does not output attentions') def A__ ( self): pass @unittest.skip(reason='Bit does not use inputs_embeds') def A__ ( self): pass @unittest.skip(reason='Bit does not support input and output embeddings') def A__ ( self): pass def A__ ( self): _UpperCamelCase , _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : int = model_class(__snake_case) _UpperCamelCase : List[Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : Optional[int] = [*signature.parameters.keys()] _UpperCamelCase : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __snake_case) def A__ ( self): _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case) def A__ ( self): _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__snake_case) def A__ ( self): _UpperCamelCase , _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Union[str, Any] = model_class(config=__snake_case) for name, module in model.named_modules(): if isinstance(__snake_case , (nn.BatchNormad, nn.GroupNorm)): self.assertTrue( torch.all(module.weight == 1) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def A__ ( self): def check_hidden_states_output(__snake_case , __snake_case , __snake_case): _UpperCamelCase : str = model_class(__snake_case) model.to(__snake_case) model.eval() with torch.no_grad(): _UpperCamelCase : Union[str, Any] = model(**self._prepare_for_class(__snake_case , __snake_case)) _UpperCamelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase : str = self.model_tester.num_stages self.assertEqual(len(__snake_case) , expected_num_stages + 1) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCamelCase , _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : List[str] = ['preactivation', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _UpperCamelCase : Any = layer_type _UpperCamelCase : Tuple = True check_hidden_states_output(__snake_case , __snake_case , __snake_case) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase : List[str] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case) @unittest.skip(reason='Bit does not use feedforward chunking') def A__ ( self): pass def A__ ( self): _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case) @slow def A__ ( self): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : Optional[Any] = BitModel.from_pretrained(__snake_case) self.assertIsNotNone(__snake_case) def lowerCamelCase_ ( ) -> Optional[int]: '''simple docstring''' _UpperCamelCase : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def A__ ( self): _UpperCamelCase : Optional[Any] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(__snake_case) _UpperCamelCase : str = self.default_image_processor _UpperCamelCase : List[str] = prepare_img() _UpperCamelCase : int = image_processor(images=__snake_case , return_tensors='pt').to(__snake_case) # forward pass with torch.no_grad(): _UpperCamelCase : Any = model(**__snake_case) # verify the logits _UpperCamelCase : Dict = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , __snake_case) _UpperCamelCase : Optional[int] = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]]).to(__snake_case) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1e-4)) @require_torch class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" a__ = (BitBackbone,) if is_torch_available() else () a__ = BitConfig a__ = False def A__ ( self): _UpperCamelCase : List[str] = BitModelTester(self)
648
0
'''simple docstring''' import os import time import numpy as np import onnxruntime as ort lowerCAmelCase__ = '''1''' lowerCAmelCase__ = '''0''' lowerCAmelCase__ = '''1''' lowerCAmelCase__ = ort.SessionOptions() lowerCAmelCase__ = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print("""Create inference session...""") lowerCAmelCase__ = ['''TensorrtExecutionProvider''', '''CUDAExecutionProvider'''] lowerCAmelCase__ = ort.InferenceSession("""model.onnx""", sess_options=sess_opt, providers=execution_provider) lowerCAmelCase__ = ort.RunOptions() lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = 1 lowerCAmelCase__ = np.ones((batch, sequence), dtype=np.intaa) lowerCAmelCase__ = np.ones((batch, sequence), dtype=np.intaa) lowerCAmelCase__ = np.ones((batch, sequence), dtype=np.intaa) print("""Warm up phase...""") sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("""Start inference...""") lowerCAmelCase__ = time.time() lowerCAmelCase__ = 2_0_0_0 lowerCAmelCase__ = {} for iter in range(max_iters): lowerCAmelCase__ = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("""Average Inference Time = {:.3f} ms""".format((time.time() - start_time) * 1_0_0_0 / max_iters))
709
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowerCAmelCase__ = numpy.array([0, 0]) lowerCAmelCase__ = numpy.array([0.5, 0.8_66_02_54]) lowerCAmelCase__ = numpy.array([1, 0]) lowerCAmelCase__ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] , UpperCAmelCase_ : int ) -> list[numpy.ndarray]: '''simple docstring''' _UpperCamelCase : Tuple = initial_vectors for _ in range(UpperCAmelCase_ ): _UpperCamelCase : str = iteration_step(UpperCAmelCase_ ) return vectors def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] ) -> list[numpy.ndarray]: '''simple docstring''' _UpperCamelCase : int = [] for i, start_vector in enumerate(vectors[:-1] ): _UpperCamelCase : Union[str, Any] = vectors[i + 1] new_vectors.append(UpperCAmelCase_ ) _UpperCamelCase : Tuple = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def lowerCamelCase_ ( UpperCAmelCase_ : numpy.ndarray , UpperCAmelCase_ : float ) -> numpy.ndarray: '''simple docstring''' _UpperCamelCase : str = numpy.radians(UpperCAmelCase_ ) _UpperCamelCase , _UpperCamelCase : Optional[Any] = numpy.cos(UpperCAmelCase_ ), numpy.sin(UpperCAmelCase_ ) _UpperCamelCase : Any = numpy.array(((c, -s), (s, c)) ) return numpy.dot(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] ) -> None: '''simple docstring''' _UpperCamelCase : str = plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _UpperCamelCase , _UpperCamelCase : Dict = zip(*UpperCAmelCase_ ) plt.plot(UpperCAmelCase_ , UpperCAmelCase_ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
648
0
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class lowercase ( UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" a__ = BarthezTokenizer a__ = BarthezTokenizerFast a__ = True a__ = True def A__ ( self): super().setUp() _UpperCamelCase : List[Any] = BarthezTokenizerFast.from_pretrained('moussaKam/mbarthez') tokenizer.save_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname , legacy_format=__lowerCAmelCase) _UpperCamelCase : str = tokenizer def A__ ( self): _UpperCamelCase : Optional[Any] = '<pad>' _UpperCamelCase : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase) , __lowerCAmelCase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase) , __lowerCAmelCase) def A__ ( self): _UpperCamelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(vocab_keys[-1] , '<mask>') self.assertEqual(len(__lowerCAmelCase) , 10_11_22) def A__ ( self): self.assertEqual(self.get_tokenizer().vocab_size , 10_11_22) @require_torch def A__ ( self): _UpperCamelCase : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _UpperCamelCase : int = [0, 57, 30_18, 7_03_07, 91, 2] _UpperCamelCase : str = self.tokenizer( __lowerCAmelCase , max_length=len(__lowerCAmelCase) , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , return_tensors='pt') self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase) self.assertEqual((2, 6) , batch.input_ids.shape) self.assertEqual((2, 6) , batch.attention_mask.shape) _UpperCamelCase : Tuple = batch.input_ids.tolist()[0] self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase) def A__ ( self): if not self.test_rust_tokenizer: return _UpperCamelCase : Union[str, Any] = self.get_tokenizer() _UpperCamelCase : Dict = self.get_rust_tokenizer() _UpperCamelCase : Optional[int] = 'I was born in 92000, and this is falsé.' _UpperCamelCase : Tuple = tokenizer.tokenize(__lowerCAmelCase) _UpperCamelCase : Dict = rust_tokenizer.tokenize(__lowerCAmelCase) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase) _UpperCamelCase : Optional[int] = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase) _UpperCamelCase : str = rust_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase) _UpperCamelCase : int = self.get_rust_tokenizer() _UpperCamelCase : int = tokenizer.encode(__lowerCAmelCase) _UpperCamelCase : List[str] = rust_tokenizer.encode(__lowerCAmelCase) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase) @slow def A__ ( self): _UpperCamelCase : Optional[Any] = {'input_ids': [[0, 4_90, 1_43_28, 45_07, 3_54, 47, 4_36_69, 95, 25, 7_81_17, 2_02_15, 1_97_79, 1_90, 22, 4_00, 4, 3_53_43, 8_03_10, 6_03, 86, 2_49_37, 1_05, 3_34_38, 9_47_62, 1_96, 3_96_42, 7, 15, 1_59_33, 1_73, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_05_34, 87, 25, 66, 33_58, 1_96, 5_52_89, 8, 8_29_61, 81, 22_04, 7_52_03, 7, 15, 7_63, 1_29_56, 2_16, 1_78, 1_43_28, 95_95, 13_77, 6_96_93, 7, 4_48, 7_10_21, 1_96, 1_81_06, 14_37, 1_39_74, 1_08, 90_83, 4, 4_93_15, 7, 39, 86, 13_26, 27_93, 4_63_33, 4, 4_48, 1_96, 7_45_88, 7, 4_93_15, 7, 39, 21, 8_22, 3_84_70, 74, 21, 6_67_23, 6_24_80, 8, 2_20_50, 5, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _UpperCamelCase : Dict = [ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=__lowerCAmelCase , model_name='moussaKam/mbarthez' , revision='c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6' , sequences=__lowerCAmelCase , )
710
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCAmelCase__ = abspath(join(dirname(__file__), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def lowerCamelCase_ ( UpperCAmelCase_ : Any ) -> Union[str, Any]: '''simple docstring''' config.addinivalue_line( 'markers' , 'is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested' ) config.addinivalue_line( 'markers' , 'is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested' ) config.addinivalue_line('markers' , 'is_pipeline_test: mark test to run only when pipelines are tested' ) config.addinivalue_line('markers' , 'is_staging_test: mark test to run only in the staging environment' ) config.addinivalue_line('markers' , 'accelerate_tests: mark test that require accelerate' ) config.addinivalue_line('markers' , 'tool_tests: mark the tool tests that are run on their specific schedule' ) def lowerCamelCase_ ( UpperCAmelCase_ : Optional[int] ) -> List[Any]: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : Any ) -> List[Any]: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main _UpperCamelCase : str = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(UpperCAmelCase_ , id=UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict ) -> Tuple: '''simple docstring''' if exitstatus == 5: _UpperCamelCase : List[Any] = 0 # Doctest custom flag to ignore output. lowerCAmelCase__ = doctest.register_optionflag("""IGNORE_RESULT""") lowerCAmelCase__ = doctest.OutputChecker class lowercase ( _lowercase ): """simple docstring""" def A__ ( self , __snake_case , __snake_case , __snake_case): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , __snake_case , __snake_case , __snake_case) lowerCAmelCase__ = CustomOutputChecker lowerCAmelCase__ = HfDoctestModule lowerCAmelCase__ = HfDocTestParser
648
0
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowercase ( __UpperCAmelCase ): """simple docstring""" a__ = (EulerDiscreteScheduler,) a__ = 1_0 def A__ ( self , **__snake_case): _UpperCamelCase : List[Any] = { 'num_train_timesteps': 11_00, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', } config.update(**UpperCAmelCase_) return config def A__ ( self): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_) def A__ ( self): for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2]): self.check_over_configs(beta_start=UpperCAmelCase_ , beta_end=UpperCAmelCase_) def A__ ( self): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=UpperCAmelCase_) def A__ ( self): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase_) def A__ ( self): _UpperCamelCase : Optional[int] = self.scheduler_classes[0] _UpperCamelCase : Dict = self.get_scheduler_config() _UpperCamelCase : Union[str, Any] = scheduler_class(**UpperCAmelCase_) scheduler.set_timesteps(self.num_inference_steps) _UpperCamelCase : Dict = torch.manual_seed(0) _UpperCamelCase : List[str] = self.dummy_model() _UpperCamelCase : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCamelCase : List[str] = sample.to(UpperCAmelCase_) for i, t in enumerate(scheduler.timesteps): _UpperCamelCase : int = scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_) _UpperCamelCase : Optional[Any] = model(UpperCAmelCase_ , UpperCAmelCase_) _UpperCamelCase : List[Any] = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_) _UpperCamelCase : List[Any] = output.prev_sample _UpperCamelCase : int = torch.sum(torch.abs(UpperCAmelCase_)) _UpperCamelCase : str = torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 1_0.0_8_0_7) < 1e-2 assert abs(result_mean.item() - 0.0_1_3_1) < 1e-3 def A__ ( self): _UpperCamelCase : Optional[int] = self.scheduler_classes[0] _UpperCamelCase : Tuple = self.get_scheduler_config(prediction_type='v_prediction') _UpperCamelCase : Union[str, Any] = scheduler_class(**UpperCAmelCase_) scheduler.set_timesteps(self.num_inference_steps) _UpperCamelCase : Optional[Any] = torch.manual_seed(0) _UpperCamelCase : str = self.dummy_model() _UpperCamelCase : int = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCamelCase : int = sample.to(UpperCAmelCase_) for i, t in enumerate(scheduler.timesteps): _UpperCamelCase : int = scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_) _UpperCamelCase : str = model(UpperCAmelCase_ , UpperCAmelCase_) _UpperCamelCase : List[Any] = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_) _UpperCamelCase : Tuple = output.prev_sample _UpperCamelCase : Optional[int] = torch.sum(torch.abs(UpperCAmelCase_)) _UpperCamelCase : Optional[Any] = torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 0.0_0_0_2) < 1e-2 assert abs(result_mean.item() - 2.2676e-06) < 1e-3 def A__ ( self): _UpperCamelCase : List[Any] = self.scheduler_classes[0] _UpperCamelCase : Tuple = self.get_scheduler_config() _UpperCamelCase : int = scheduler_class(**UpperCAmelCase_) scheduler.set_timesteps(self.num_inference_steps , device=UpperCAmelCase_) _UpperCamelCase : str = torch.manual_seed(0) _UpperCamelCase : List[str] = self.dummy_model() _UpperCamelCase : Tuple = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _UpperCamelCase : str = sample.to(UpperCAmelCase_) for t in scheduler.timesteps: _UpperCamelCase : List[Any] = scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_) _UpperCamelCase : Dict = model(UpperCAmelCase_ , UpperCAmelCase_) _UpperCamelCase : Optional[Any] = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_) _UpperCamelCase : Tuple = output.prev_sample _UpperCamelCase : List[Any] = torch.sum(torch.abs(UpperCAmelCase_)) _UpperCamelCase : Dict = torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 1_0.0_8_0_7) < 1e-2 assert abs(result_mean.item() - 0.0_1_3_1) < 1e-3 def A__ ( self): _UpperCamelCase : List[str] = self.scheduler_classes[0] _UpperCamelCase : List[Any] = self.get_scheduler_config() _UpperCamelCase : List[str] = scheduler_class(**UpperCAmelCase_ , use_karras_sigmas=UpperCAmelCase_) scheduler.set_timesteps(self.num_inference_steps , device=UpperCAmelCase_) _UpperCamelCase : int = torch.manual_seed(0) _UpperCamelCase : int = self.dummy_model() _UpperCamelCase : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _UpperCamelCase : str = sample.to(UpperCAmelCase_) for t in scheduler.timesteps: _UpperCamelCase : Union[str, Any] = scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_) _UpperCamelCase : int = model(UpperCAmelCase_ , UpperCAmelCase_) _UpperCamelCase : int = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_) _UpperCamelCase : Any = output.prev_sample _UpperCamelCase : int = torch.sum(torch.abs(UpperCAmelCase_)) _UpperCamelCase : Union[str, Any] = torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 1_2_4.5_2_2_9_9_4_9_9_5_1_1_7_1_9) < 1e-2 assert abs(result_mean.item() - 0.1_6_2_1_3_9_3_2_6_3_3_3_9_9_9_6_3) < 1e-3
711
lowerCAmelCase__ = range(2, 2_0 + 1) lowerCAmelCase__ = [1_0**k for k in range(ks[-1] + 1)] lowerCAmelCase__ = {} def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int ) -> Tuple: '''simple docstring''' _UpperCamelCase : Dict = sum(a_i[j] for j in range(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) ) _UpperCamelCase : Optional[int] = sum(a_i[j] * base[j] for j in range(min(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) ) ) _UpperCamelCase , _UpperCamelCase : Dict = 0, 0 _UpperCamelCase : Optional[int] = n - i _UpperCamelCase : Union[str, Any] = memo.get(UpperCAmelCase_ ) if sub_memo is not None: _UpperCamelCase : str = sub_memo.get(UpperCAmelCase_ ) if jumps is not None and len(UpperCAmelCase_ ) > 0: # find and make the largest jump without going over _UpperCamelCase : str = -1 for _k in range(len(UpperCAmelCase_ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _UpperCamelCase : Optional[Any] = _k break if max_jump >= 0: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = jumps[max_jump] # since the difference between jumps is cached, add c _UpperCamelCase : Tuple = diff + c for j in range(min(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) ): _UpperCamelCase , _UpperCamelCase : Dict = divmod(UpperCAmelCase_ , 1_0 ) if new_c > 0: add(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) else: _UpperCamelCase : Union[str, Any] = [] else: _UpperCamelCase : List[Any] = {c: []} _UpperCamelCase : Optional[int] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _UpperCamelCase , _UpperCamelCase : Optional[Any] = next_term(UpperCAmelCase_ , k - 1 , i + dn , UpperCAmelCase_ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _UpperCamelCase , _UpperCamelCase : Any = compute(UpperCAmelCase_ , UpperCAmelCase_ , i + dn , UpperCAmelCase_ ) diff += _diff dn += terms_jumped _UpperCamelCase : List[str] = sub_memo[c] # keep jumps sorted by # of terms skipped _UpperCamelCase : Union[str, Any] = 0 while j < len(UpperCAmelCase_ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCAmelCase_ , (diff, dn, k) ) return (diff, dn) def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any ) -> Dict: '''simple docstring''' if i >= n: return 0, i if k > len(UpperCAmelCase_ ): a_i.extend([0 for _ in range(k - len(UpperCAmelCase_ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _UpperCamelCase : Any = i _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Any = 0, 0, 0 for j in range(len(UpperCAmelCase_ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _UpperCamelCase : Union[str, Any] = ds_c + ds_b diff += addend _UpperCamelCase : Union[str, Any] = 0 for j in range(UpperCAmelCase_ ): _UpperCamelCase : Union[str, Any] = a_i[j] + addend _UpperCamelCase , _UpperCamelCase : Any = divmod(UpperCAmelCase_ , 1_0 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return diff, i - start_i def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any ) -> Dict: '''simple docstring''' for j in range(UpperCAmelCase_ , len(UpperCAmelCase_ ) ): _UpperCamelCase : List[str] = digits[j] + addend if s >= 1_0: _UpperCamelCase , _UpperCamelCase : Any = divmod(UpperCAmelCase_ , 1_0 ) _UpperCamelCase : Union[str, Any] = addend // 1_0 + quotient else: _UpperCamelCase : Dict = s _UpperCamelCase : Optional[Any] = addend // 1_0 if addend == 0: break while addend > 0: _UpperCamelCase , _UpperCamelCase : Dict = divmod(UpperCAmelCase_ , 1_0 ) digits.append(UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : int = 1_0**1_5 ) -> int: '''simple docstring''' _UpperCamelCase : Optional[Any] = [1] _UpperCamelCase : Optional[int] = 1 _UpperCamelCase : int = 0 while True: _UpperCamelCase , _UpperCamelCase : List[Any] = next_term(UpperCAmelCase_ , 2_0 , i + dn , UpperCAmelCase_ ) dn += terms_jumped if dn == n - i: break _UpperCamelCase : str = 0 for j in range(len(UpperCAmelCase_ ) ): a_n += digits[j] * 1_0**j return a_n if __name__ == "__main__": print(f'{solution() = }')
648
0
def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] ) -> int: '''simple docstring''' assert x is not None assert y is not None _UpperCamelCase : Union[str, Any] = len(_lowercase ) _UpperCamelCase : Optional[int] = len(_lowercase ) # declaring the array for storing the dp values _UpperCamelCase : List[Any] = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): _UpperCamelCase : List[str] = 1 if x[i - 1] == y[j - 1] else 0 _UpperCamelCase : List[str] = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) _UpperCamelCase : str = '''''' _UpperCamelCase : str = m, n while i > 0 and j > 0: _UpperCamelCase : Optional[int] = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: _UpperCamelCase : Optional[Any] = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": lowerCAmelCase__ = 'AGGTAB' lowerCAmelCase__ = 'GXTXAYB' lowerCAmelCase__ = 4 lowerCAmelCase__ = 'GTAB' lowerCAmelCase__ = longest_common_subsequence(a, b) print("""len =""", ln, """, sub-sequence =""", subseq) import doctest doctest.testmod()
712
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowercase ( _lowercase ): """simple docstring""" a__ = "vit_mae" def __init__( self , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=2_24 , __snake_case=16 , __snake_case=3 , __snake_case=True , __snake_case=16 , __snake_case=5_12 , __snake_case=8 , __snake_case=20_48 , __snake_case=0.7_5 , __snake_case=False , **__snake_case , ): super().__init__(**__snake_case) _UpperCamelCase : Optional[int] = hidden_size _UpperCamelCase : Optional[int] = num_hidden_layers _UpperCamelCase : Tuple = num_attention_heads _UpperCamelCase : List[str] = intermediate_size _UpperCamelCase : str = hidden_act _UpperCamelCase : List[str] = hidden_dropout_prob _UpperCamelCase : List[Any] = attention_probs_dropout_prob _UpperCamelCase : str = initializer_range _UpperCamelCase : Any = layer_norm_eps _UpperCamelCase : int = image_size _UpperCamelCase : Any = patch_size _UpperCamelCase : List[Any] = num_channels _UpperCamelCase : Union[str, Any] = qkv_bias _UpperCamelCase : str = decoder_num_attention_heads _UpperCamelCase : Union[str, Any] = decoder_hidden_size _UpperCamelCase : Union[str, Any] = decoder_num_hidden_layers _UpperCamelCase : Any = decoder_intermediate_size _UpperCamelCase : int = mask_ratio _UpperCamelCase : List[Any] = norm_pix_loss
648
0
def lowerCamelCase_ ( UpperCAmelCase_ : int = 1_0_0 ) -> int: '''simple docstring''' _UpperCamelCase : List[Any] = set() _UpperCamelCase : Union[str, Any] = 0 _UpperCamelCase : int = n + 1 # maximum limit for a in range(2 , __UpperCamelCase ): for b in range(2 , __UpperCamelCase ): _UpperCamelCase : Dict = a**b # calculates the current power collect_powers.add(__UpperCamelCase ) # adds the result to the set return len(__UpperCamelCase ) if __name__ == "__main__": print("""Number of terms """, solution(int(str(input()).strip())))
713
import functools def lowerCamelCase_ ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int] ) -> int: '''simple docstring''' if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or not all(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(UpperCAmelCase_ ) != 3 or not all(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(UpperCAmelCase_ ) == 0: return 0 if min(UpperCAmelCase_ ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(UpperCAmelCase_ ) >= 3_6_6: raise ValueError('All days elements should be less than 366' ) _UpperCamelCase : Union[str, Any] = set(UpperCAmelCase_ ) @functools.cache def dynamic_programming(UpperCAmelCase_ : int ) -> int: if index > 3_6_5: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 3_0 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
648
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ = { """configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""], """tokenization_roformer""": ["""RoFormerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ["""RoFormerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoFormerForCausalLM""", """RoFormerForMaskedLM""", """RoFormerForMultipleChoice""", """RoFormerForQuestionAnswering""", """RoFormerForSequenceClassification""", """RoFormerForTokenClassification""", """RoFormerLayer""", """RoFormerModel""", """RoFormerPreTrainedModel""", """load_tf_weights_in_roformer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRoFormerForCausalLM""", """TFRoFormerForMaskedLM""", """TFRoFormerForMultipleChoice""", """TFRoFormerForQuestionAnswering""", """TFRoFormerForSequenceClassification""", """TFRoFormerForTokenClassification""", """TFRoFormerLayer""", """TFRoFormerModel""", """TFRoFormerPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxRoFormerForMaskedLM""", """FlaxRoFormerForMultipleChoice""", """FlaxRoFormerForQuestionAnswering""", """FlaxRoFormerForSequenceClassification""", """FlaxRoFormerForTokenClassification""", """FlaxRoFormerModel""", """FlaxRoFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
714
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=99 , __snake_case=64 , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=37 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=16 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=3 , __snake_case=4 , __snake_case=None , ): _UpperCamelCase : List[Any] = parent _UpperCamelCase : Optional[Any] = batch_size _UpperCamelCase : int = seq_length _UpperCamelCase : str = is_training _UpperCamelCase : Tuple = use_input_mask _UpperCamelCase : Union[str, Any] = use_token_type_ids _UpperCamelCase : Union[str, Any] = use_labels _UpperCamelCase : Optional[Any] = vocab_size _UpperCamelCase : List[Any] = hidden_size _UpperCamelCase : Optional[Any] = embedding_size _UpperCamelCase : str = num_hidden_layers _UpperCamelCase : str = num_attention_heads _UpperCamelCase : int = intermediate_size _UpperCamelCase : int = hidden_act _UpperCamelCase : Tuple = hidden_dropout_prob _UpperCamelCase : int = attention_probs_dropout_prob _UpperCamelCase : Tuple = max_position_embeddings _UpperCamelCase : List[str] = type_vocab_size _UpperCamelCase : Dict = type_sequence_label_size _UpperCamelCase : List[str] = initializer_range _UpperCamelCase : Optional[Any] = num_labels _UpperCamelCase : Tuple = num_choices _UpperCamelCase : List[str] = scope def A__ ( self): _UpperCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase : Any = None if self.use_input_mask: _UpperCamelCase : int = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase : Optional[Any] = None if self.use_token_type_ids: _UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase : int = None _UpperCamelCase : List[str] = None _UpperCamelCase : Dict = None if self.use_labels: _UpperCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self): return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : List[str] = MegatronBertModel(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case) _UpperCamelCase : Dict = model(__snake_case , token_type_ids=__snake_case) _UpperCamelCase : Optional[Any] = model(__snake_case) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : int = MegatronBertForMaskedLM(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Dict = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : str = MegatronBertForCausalLM(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Tuple = MegatronBertForNextSentencePrediction(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[Any] = MegatronBertForPreTraining(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[str] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , next_sentence_label=__snake_case , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : int = MegatronBertForQuestionAnswering(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[int] = self.num_labels _UpperCamelCase : Union[str, Any] = MegatronBertForSequenceClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Any = self.num_labels _UpperCamelCase : Optional[int] = MegatronBertForTokenClassification(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Tuple = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : List[str] = self.num_choices _UpperCamelCase : Optional[int] = MegatronBertForMultipleChoice(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : List[Any] = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : Optional[Any] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : Union[str, Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def A__ ( self): _UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) : Optional[int] = config_and_inputs _UpperCamelCase : int = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) a__ = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) a__ = True # test_resize_embeddings = False a__ = False def A__ ( self , __snake_case , __snake_case , __snake_case=False): _UpperCamelCase : str = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case) if return_labels: if model_class in get_values(__snake_case): _UpperCamelCase : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__snake_case) _UpperCamelCase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case) return inputs_dict def A__ ( self): _UpperCamelCase : Any = MegatronBertModelTester(self) _UpperCamelCase : int = ConfigTester(self , config_class=__snake_case , hidden_size=37) def A__ ( self): self.config_tester.run_common_tests() def A__ ( self): _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__snake_case) def A__ ( self): _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__snake_case) def A__ ( self): _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__snake_case) def A__ ( self): _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__snake_case) def A__ ( self): _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__snake_case) def A__ ( self): _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__snake_case) def A__ ( self): _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__snake_case) def A__ ( self): _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__snake_case) def lowerCamelCase_ ( UpperCAmelCase_ : str ) -> Optional[Any]: '''simple docstring''' return torch.tensor( UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ , ) lowerCAmelCase__ = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip('Model is not available.') def A__ ( self): _UpperCamelCase : int = 'nvidia/megatron-bert-uncased-345m' if "MYDIR" in os.environ: _UpperCamelCase : int = os.path.join(os.environ['MYDIR'] , __snake_case) _UpperCamelCase : Optional[int] = MegatronBertModel.from_pretrained(__snake_case) model.to(__snake_case) model.half() _UpperCamelCase : Optional[Any] = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]]) with torch.no_grad(): _UpperCamelCase : str = model(__snake_case)[0] _UpperCamelCase : Optional[int] = torch.Size((1, 9, 10_24)) self.assertEqual(output.shape , __snake_case) _UpperCamelCase : Union[str, Any] = [-0.6_0_4_0, -0.2_5_1_7, -0.1_0_2_5, 0.3_4_2_0, -0.6_7_5_8, -0.0_0_1_7, -0.1_0_8_9, -0.1_9_9_0, 0.5_7_2_8] for ii in range(3): for jj in range(3): _UpperCamelCase : Optional[Any] = output[0, ii, jj] _UpperCamelCase : Dict = expected[3 * ii + jj] _UpperCamelCase : Optional[int] = 'ii={} jj={} a={} b={}'.format(__snake_case , __snake_case , __snake_case , __snake_case) self.assertTrue(math.isclose(__snake_case , __snake_case , rel_tol=__snake_case , abs_tol=__snake_case) , msg=__snake_case)
648
0
class lowercase : """simple docstring""" def __init__( self , __snake_case = "" , __snake_case = False): # Mapping from the first character of the prefix of the node _UpperCamelCase : Tuple = {} # A node will be a leaf if the tree contains its word _UpperCamelCase : int = is_leaf _UpperCamelCase : str = prefix def A__ ( self , __snake_case): _UpperCamelCase : Union[str, Any] = 0 for q, w in zip(self.prefix , __lowercase): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def A__ ( self , __snake_case): for word in words: self.insert(__lowercase) def A__ ( self , __snake_case): # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: _UpperCamelCase : Tuple = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: _UpperCamelCase : Any = RadixNode(prefix=__lowercase , is_leaf=__lowercase) else: _UpperCamelCase : Dict = self.nodes[word[0]] _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : List[Any] = incoming_node.match( __lowercase) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(__lowercase) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: _UpperCamelCase : str = remaining_prefix _UpperCamelCase : Dict = self.nodes[matching_string[0]] _UpperCamelCase : Tuple = RadixNode(__lowercase , __lowercase) _UpperCamelCase : Tuple = aux_node if remaining_word == "": _UpperCamelCase : Optional[Any] = True else: self.nodes[matching_string[0]].insert(__lowercase) def A__ ( self , __snake_case): _UpperCamelCase : Optional[int] = self.nodes.get(word[0] , __lowercase) if not incoming_node: return False else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : int = incoming_node.match( __lowercase) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(__lowercase) def A__ ( self , __snake_case): _UpperCamelCase : Tuple = self.nodes.get(word[0] , __lowercase) if not incoming_node: return False else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = incoming_node.match( __lowercase) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(__lowercase) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes) == 1 and not self.is_leaf: _UpperCamelCase : List[str] = list(self.nodes.values())[0] _UpperCamelCase : Dict = merging_node.is_leaf self.prefix += merging_node.prefix _UpperCamelCase : int = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes) > 1: _UpperCamelCase : str = False # If there is 1 edge, we merge it with its child else: _UpperCamelCase : Optional[Any] = list(incoming_node.nodes.values())[0] _UpperCamelCase : int = merging_node.is_leaf incoming_node.prefix += merging_node.prefix _UpperCamelCase : Any = merging_node.nodes return True def A__ ( self , __snake_case = 0): if self.prefix != "": print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '') for value in self.nodes.values(): value.print_tree(height + 1) def lowerCamelCase_ ( ) -> int: '''simple docstring''' _UpperCamelCase : Tuple = 'banana bananas bandana band apple all beast'.split() _UpperCamelCase : int = RadixNode() root.insert_many(SCREAMING_SNAKE_CASE_ ) assert all(root.find(SCREAMING_SNAKE_CASE_ ) for word in words ) assert not root.find('bandanas' ) assert not root.find('apps' ) root.delete('all' ) assert not root.find('all' ) root.delete('banana' ) assert not root.find('banana' ) assert root.find('bananas' ) return True def lowerCamelCase_ ( ) -> Tuple: '''simple docstring''' assert test_trie() def lowerCamelCase_ ( ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase : List[Any] = RadixNode() _UpperCamelCase : Tuple = 'banana bananas bandanas bandana band apple all beast'.split() root.insert_many(SCREAMING_SNAKE_CASE_ ) print('Words:' , SCREAMING_SNAKE_CASE_ ) print('Tree:' ) root.print_tree() if __name__ == "__main__": main()
715
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = """▁""" lowerCAmelCase__ = {"""vocab_file""": """sentencepiece.bpe.model"""} lowerCAmelCase__ = { """vocab_file""": { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model""" ), } } lowerCAmelCase__ = { """xlm-roberta-base""": 5_1_2, """xlm-roberta-large""": 5_1_2, """xlm-roberta-large-finetuned-conll02-dutch""": 5_1_2, """xlm-roberta-large-finetuned-conll02-spanish""": 5_1_2, """xlm-roberta-large-finetuned-conll03-english""": 5_1_2, """xlm-roberta-large-finetuned-conll03-german""": 5_1_2, } class lowercase ( _lowercase ): """simple docstring""" a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = ["input_ids", "attention_mask"] def __init__( self , __snake_case , __snake_case="<s>" , __snake_case="</s>" , __snake_case="</s>" , __snake_case="<s>" , __snake_case="<unk>" , __snake_case="<pad>" , __snake_case="<mask>" , __snake_case = None , **__snake_case , ): # Mask token behave like a normal word, i.e. include the space before it _UpperCamelCase : Dict = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case) if isinstance(__snake_case , __snake_case) else mask_token _UpperCamelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) _UpperCamelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(__snake_case)) _UpperCamelCase : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _UpperCamelCase : int = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _UpperCamelCase : List[Any] = 1 _UpperCamelCase : Any = len(self.sp_model) + self.fairseq_offset _UpperCamelCase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self): _UpperCamelCase : List[Any] = self.__dict__.copy() _UpperCamelCase : Optional[Any] = None _UpperCamelCase : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self , __snake_case): _UpperCamelCase : int = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): _UpperCamelCase : Tuple = {} _UpperCamelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) def A__ ( self , __snake_case , __snake_case = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCamelCase : Tuple = [self.cls_token_id] _UpperCamelCase : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self , __snake_case , __snake_case = None , __snake_case = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case) if token_ids_a is None: return [1] + ([0] * len(__snake_case)) + [1] return [1] + ([0] * len(__snake_case)) + [1, 1] + ([0] * len(__snake_case)) + [1] def A__ ( self , __snake_case , __snake_case = None): _UpperCamelCase : Optional[Any] = [self.sep_token_id] _UpperCamelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def A__ ( self): return len(self.sp_model) + self.fairseq_offset + 1 # Add the <mask> token def A__ ( self): _UpperCamelCase : List[str] = {self.convert_ids_to_tokens(__snake_case): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def A__ ( self , __snake_case): return self.sp_model.encode(__snake_case , out_type=__snake_case) def A__ ( self , __snake_case): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCamelCase : str = self.sp_model.PieceToId(__snake_case) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A__ ( self , __snake_case): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def A__ ( self , __snake_case): _UpperCamelCase : Optional[int] = ''.join(__snake_case).replace(__snake_case , ' ').strip() return out_string def A__ ( self , __snake_case , __snake_case = None): if not os.path.isdir(__snake_case): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return _UpperCamelCase : str = os.path.join( __snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(__snake_case) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , __snake_case) elif not os.path.isfile(self.vocab_file): with open(__snake_case , 'wb') as fi: _UpperCamelCase : Any = self.sp_model.serialized_model_proto() fi.write(__snake_case) return (out_vocab_file,)
648
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu lowerCAmelCase__ = False class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self): super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self): return 12 @property def A__ ( self): return 12 @property def A__ ( self): return 32 @property def A__ ( self): torch.manual_seed(0) _UpperCamelCase : List[str] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def A__ ( self): _UpperCamelCase : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def A__ ( self): torch.manual_seed(0) _UpperCamelCase : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(A_) @property def A__ ( self): torch.manual_seed(0) _UpperCamelCase : Optional[int] = 12 _UpperCamelCase : Optional[int] = 12 _UpperCamelCase : Dict = { "attention_bias": True, "cross_attention_dim": 32, "attention_head_dim": height * width, "num_attention_heads": 1, "num_vector_embeds": self.num_embed, "num_embeds_ada_norm": self.num_embeds_ada_norm, "norm_num_groups": 32, "sample_size": width, "activation_fn": "geglu-approximate", } _UpperCamelCase : Any = TransformeraDModel(**A_) return model def A__ ( self): _UpperCamelCase : Optional[Any] = "cpu" _UpperCamelCase : Union[str, Any] = self.dummy_vqvae _UpperCamelCase : Dict = self.dummy_text_encoder _UpperCamelCase : List[str] = self.dummy_tokenizer _UpperCamelCase : str = self.dummy_transformer _UpperCamelCase : Optional[int] = VQDiffusionScheduler(self.num_embed) _UpperCamelCase : Any = LearnedClassifierFreeSamplingEmbeddings(learnable=A_) _UpperCamelCase : Any = VQDiffusionPipeline( vqvae=A_ , text_encoder=A_ , tokenizer=A_ , transformer=A_ , scheduler=A_ , learned_classifier_free_sampling_embeddings=A_ , ) _UpperCamelCase : Any = pipe.to(A_) pipe.set_progress_bar_config(disable=A_) _UpperCamelCase : Union[str, Any] = "teddy bear playing in the pool" _UpperCamelCase : int = torch.Generator(device=A_).manual_seed(0) _UpperCamelCase : List[str] = pipe([prompt] , generator=A_ , num_inference_steps=2 , output_type='np') _UpperCamelCase : List[str] = output.images _UpperCamelCase : Union[str, Any] = torch.Generator(device=A_).manual_seed(0) _UpperCamelCase : str = pipe( [prompt] , generator=A_ , output_type='np' , return_dict=A_ , num_inference_steps=2)[0] _UpperCamelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCamelCase : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) _UpperCamelCase : Tuple = np.array([0.6_5_5_1, 0.6_1_6_8, 0.5_0_0_8, 0.5_6_7_6, 0.5_6_5_9, 0.4_2_9_5, 0.6_0_7_3, 0.5_5_9_9, 0.4_9_9_2]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def A__ ( self): _UpperCamelCase : str = "cpu" _UpperCamelCase : Tuple = self.dummy_vqvae _UpperCamelCase : Dict = self.dummy_text_encoder _UpperCamelCase : Union[str, Any] = self.dummy_tokenizer _UpperCamelCase : Dict = self.dummy_transformer _UpperCamelCase : List[Any] = VQDiffusionScheduler(self.num_embed) _UpperCamelCase : Tuple = LearnedClassifierFreeSamplingEmbeddings( learnable=A_ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length) _UpperCamelCase : List[str] = VQDiffusionPipeline( vqvae=A_ , text_encoder=A_ , tokenizer=A_ , transformer=A_ , scheduler=A_ , learned_classifier_free_sampling_embeddings=A_ , ) _UpperCamelCase : int = pipe.to(A_) pipe.set_progress_bar_config(disable=A_) _UpperCamelCase : List[str] = "teddy bear playing in the pool" _UpperCamelCase : List[str] = torch.Generator(device=A_).manual_seed(0) _UpperCamelCase : List[str] = pipe([prompt] , generator=A_ , num_inference_steps=2 , output_type='np') _UpperCamelCase : Any = output.images _UpperCamelCase : List[Any] = torch.Generator(device=A_).manual_seed(0) _UpperCamelCase : int = pipe( [prompt] , generator=A_ , output_type='np' , return_dict=A_ , num_inference_steps=2)[0] _UpperCamelCase : Any = image[0, -3:, -3:, -1] _UpperCamelCase : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) _UpperCamelCase : Optional[Any] = np.array([0.6_6_9_3, 0.6_0_7_5, 0.4_9_5_9, 0.5_7_0_1, 0.5_5_8_3, 0.4_3_3_3, 0.6_1_7_1, 0.5_6_8_4, 0.4_9_8_8]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self): super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self): _UpperCamelCase : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy') _UpperCamelCase : List[str] = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq') _UpperCamelCase : List[str] = pipeline.to(A_) pipeline.set_progress_bar_config(disable=A_) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though _UpperCamelCase : int = torch.Generator(device=A_).manual_seed(0) _UpperCamelCase : List[Any] = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=A_ , output_type='np' , ) _UpperCamelCase : List[Any] = output.images[0] assert image.shape == (2_56, 2_56, 3) assert np.abs(expected_image - image).max() < 2.0
716
from ...processing_utils import ProcessorMixin class lowercase ( _lowercase ): """simple docstring""" a__ = ["image_processor", "feature_extractor"] a__ = "TvltImageProcessor" a__ = "TvltFeatureExtractor" def __init__( self , __snake_case , __snake_case): super().__init__(image_processor=__snake_case , feature_extractor=__snake_case) _UpperCamelCase : List[str] = image_processor _UpperCamelCase : Dict = feature_extractor def __call__( self , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=False , __snake_case=False , *__snake_case , **__snake_case , ): if images is None and audio is None: raise ValueError('You need to specify either an `images` or `audio` input to process.') _UpperCamelCase : Union[str, Any] = None if images is not None: _UpperCamelCase : Tuple = self.image_processor(__snake_case , mask_pixel=__snake_case , *__snake_case , **__snake_case) if images_mixed is not None: _UpperCamelCase : Union[str, Any] = self.image_processor(__snake_case , is_mixed=__snake_case , *__snake_case , **__snake_case) if audio is not None: _UpperCamelCase : Tuple = self.feature_extractor( __snake_case , *__snake_case , sampling_rate=__snake_case , mask_audio=__snake_case , **__snake_case) _UpperCamelCase : Tuple = {} if audio is not None: output_dict.update(__snake_case) if images is not None: output_dict.update(__snake_case) if images_mixed_dict is not None: output_dict.update(__snake_case) return output_dict @property def A__ ( self): _UpperCamelCase : List[Any] = self.image_processor.model_input_names _UpperCamelCase : List[Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
648
0
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class lowercase ( UpperCamelCase__ ): """simple docstring""" a__ = None a__ = None @property def A__ ( self): return self.feat_extract_tester.prepare_feat_extract_dict() def A__ ( self): _UpperCamelCase : Any = self.feature_extraction_class(**self.feat_extract_dict) self.assertTrue(hasattr(__snake_case , 'feature_size')) self.assertTrue(hasattr(__snake_case , 'sampling_rate')) self.assertTrue(hasattr(__snake_case , 'padding_value')) def A__ ( self): _UpperCamelCase : str = self.feat_extract_tester.prepare_inputs_for_common() _UpperCamelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_dict) _UpperCamelCase : Any = feat_extract.model_input_names[0] _UpperCamelCase : Dict = BatchFeature({input_name: speech_inputs}) self.assertTrue(all(len(__snake_case) == len(__snake_case) for x, y in zip(__snake_case , processed_features[input_name]))) _UpperCamelCase : Any = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__snake_case) _UpperCamelCase : Optional[int] = BatchFeature({input_name: speech_inputs} , tensor_type='np') _UpperCamelCase : List[Any] = processed_features[input_name] if len(batch_features_input.shape) < 3: _UpperCamelCase : Tuple = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) @require_torch def A__ ( self): _UpperCamelCase : Optional[int] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__snake_case) _UpperCamelCase : Dict = self.feature_extraction_class(**self.feat_extract_dict) _UpperCamelCase : Optional[int] = feat_extract.model_input_names[0] _UpperCamelCase : Dict = BatchFeature({input_name: speech_inputs} , tensor_type='pt') _UpperCamelCase : List[Any] = processed_features[input_name] if len(batch_features_input.shape) < 3: _UpperCamelCase : int = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) @require_tf def A__ ( self): _UpperCamelCase : Dict = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__snake_case) _UpperCamelCase : List[str] = self.feature_extraction_class(**self.feat_extract_dict) _UpperCamelCase : str = feat_extract.model_input_names[0] _UpperCamelCase : str = BatchFeature({input_name: speech_inputs} , tensor_type='tf') _UpperCamelCase : Tuple = processed_features[input_name] if len(batch_features_input.shape) < 3: _UpperCamelCase : int = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) def A__ ( self , __snake_case=False): def _inputs_have_equal_length(__snake_case): _UpperCamelCase : Dict = len(input[0]) for input_slice in input[1:]: if len(__snake_case) != length: return False return True def _inputs_are_equal(__snake_case , __snake_case): if len(__snake_case) != len(__snake_case): return False for input_slice_a, input_slice_a in zip(__snake_case , __snake_case): if not np.allclose(np.asarray(__snake_case) , np.asarray(__snake_case) , atol=1e-3): return False return True _UpperCamelCase : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict) _UpperCamelCase : int = self.feat_extract_tester.prepare_inputs_for_common(numpify=__snake_case) _UpperCamelCase : Any = feat_extract.model_input_names[0] _UpperCamelCase : str = BatchFeature({input_name: speech_inputs}) _UpperCamelCase : Optional[int] = self.feat_extract_tester.seq_length_diff _UpperCamelCase : Union[str, Any] = self.feat_extract_tester.max_seq_length + pad_diff _UpperCamelCase : Union[str, Any] = self.feat_extract_tester.min_seq_length _UpperCamelCase : Dict = self.feat_extract_tester.batch_size _UpperCamelCase : Union[str, Any] = self.feat_extract_tester.feature_size # test padding for List[int] + numpy _UpperCamelCase : int = feat_extract.pad(__snake_case , padding=__snake_case) _UpperCamelCase : List[str] = input_a[input_name] _UpperCamelCase : Optional[int] = feat_extract.pad(__snake_case , padding='longest') _UpperCamelCase : List[Any] = input_a[input_name] _UpperCamelCase : List[Any] = feat_extract.pad(__snake_case , padding='max_length' , max_length=len(speech_inputs[-1])) _UpperCamelCase : int = input_a[input_name] _UpperCamelCase : str = feat_extract.pad(__snake_case , padding='longest' , return_tensors='np') _UpperCamelCase : Optional[int] = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(__snake_case): feat_extract.pad(__snake_case , padding='max_length')[input_name] _UpperCamelCase : int = feat_extract.pad( __snake_case , padding='max_length' , max_length=__snake_case , return_tensors='np') _UpperCamelCase : Dict = input_a[input_name] self.assertFalse(_inputs_have_equal_length(__snake_case)) self.assertTrue(_inputs_have_equal_length(__snake_case)) self.assertTrue(_inputs_have_equal_length(__snake_case)) self.assertTrue(_inputs_are_equal(__snake_case , __snake_case)) self.assertTrue(len(input_a[0]) == pad_min_length) self.assertTrue(len(input_a[1]) == pad_min_length + pad_diff) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0]))) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length)) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size) # test padding for `pad_to_multiple_of` for List[int] + numpy _UpperCamelCase : Dict = feat_extract.pad(__snake_case , pad_to_multiple_of=10) _UpperCamelCase : Dict = input_a[input_name] _UpperCamelCase : Optional[Any] = feat_extract.pad(__snake_case , padding='longest' , pad_to_multiple_of=10) _UpperCamelCase : Any = input_a[input_name] _UpperCamelCase : List[Any] = feat_extract.pad( __snake_case , padding='max_length' , pad_to_multiple_of=10 , max_length=__snake_case) _UpperCamelCase : int = input_a[input_name] _UpperCamelCase : int = feat_extract.pad( __snake_case , padding='max_length' , pad_to_multiple_of=10 , max_length=__snake_case , return_tensors='np' , ) _UpperCamelCase : List[str] = input_a[input_name] self.assertTrue(all(len(__snake_case) % 10 == 0 for x in input_a)) self.assertTrue(_inputs_are_equal(__snake_case , __snake_case)) _UpperCamelCase : Dict = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(__snake_case) == expected_mult_pad_length for x in input_a)) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length)) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size) # Check padding value is correct _UpperCamelCase : int = (np.ones(self.feat_extract_tester.feature_size) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0])[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1e-3) self.assertTrue( abs( np.asarray(input_a[1])[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff)) < 1e-3) self.assertTrue( abs( np.asarray(input_a[2])[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff)) < 1e-3) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1e-3) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length)) < 1e-3) def A__ ( self , __snake_case=False): def _inputs_have_equal_length(__snake_case): _UpperCamelCase : int = len(input[0]) for input_slice in input[1:]: if len(__snake_case) != length: return False return True def _inputs_are_equal(__snake_case , __snake_case): if len(__snake_case) != len(__snake_case): return False for input_slice_a, input_slice_a in zip(__snake_case , __snake_case): if not np.allclose(np.asarray(__snake_case) , np.asarray(__snake_case) , atol=1e-3): return False return True _UpperCamelCase : str = self.feature_extraction_class(**self.feat_extract_dict) _UpperCamelCase : Any = self.feat_extract_tester.prepare_inputs_for_common(numpify=__snake_case) _UpperCamelCase : Tuple = feat_extract.model_input_names[0] _UpperCamelCase : Dict = BatchFeature({input_name: speech_inputs}) # truncate to smallest _UpperCamelCase : str = feat_extract.pad( __snake_case , padding='max_length' , max_length=len(speech_inputs[0]) , truncation=__snake_case) _UpperCamelCase : int = input_a[input_name] _UpperCamelCase : Optional[int] = feat_extract.pad(__snake_case , padding='max_length' , max_length=len(speech_inputs[0])) _UpperCamelCase : Union[str, Any] = input_a[input_name] self.assertTrue(_inputs_have_equal_length(__snake_case)) self.assertFalse(_inputs_have_equal_length(__snake_case)) # truncate to smallest with np _UpperCamelCase : List[Any] = feat_extract.pad( __snake_case , padding='max_length' , max_length=len(speech_inputs[0]) , return_tensors='np' , truncation=__snake_case , ) _UpperCamelCase : Optional[int] = input_a[input_name] _UpperCamelCase : Union[str, Any] = feat_extract.pad( __snake_case , padding='max_length' , max_length=len(speech_inputs[0]) , return_tensors='np') _UpperCamelCase : str = input_a[input_name] self.assertTrue(_inputs_have_equal_length(__snake_case)) self.assertTrue(input_a.shape[1] == len(speech_inputs[0])) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(__snake_case)) # truncate to middle _UpperCamelCase : Union[str, Any] = feat_extract.pad( __snake_case , padding='max_length' , max_length=len(speech_inputs[1]) , truncation=__snake_case , return_tensors='np' , ) _UpperCamelCase : Tuple = input_a[input_name] _UpperCamelCase : Union[str, Any] = feat_extract.pad( __snake_case , padding='max_length' , max_length=len(speech_inputs[1]) , truncation=__snake_case) _UpperCamelCase : Dict = input_a[input_name] _UpperCamelCase : Optional[Any] = feat_extract.pad( __snake_case , padding='max_length' , max_length=len(speech_inputs[1]) , return_tensors='np') _UpperCamelCase : Tuple = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1])) self.assertTrue(_inputs_have_equal_length(__snake_case)) self.assertTrue(_inputs_have_equal_length(__snake_case)) self.assertTrue(_inputs_are_equal(__snake_case , __snake_case)) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(__snake_case)) self.assertTrue(len(input_a[-1]) == len(speech_inputs[-1])) # padding has to be max_length when setting `truncation=True` with self.assertRaises(__snake_case): feat_extract.pad(__snake_case , truncation=__snake_case)[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(__snake_case): feat_extract.pad(__snake_case , padding='longest' , truncation=__snake_case)[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(__snake_case): feat_extract.pad(__snake_case , padding='longest' , truncation=__snake_case)[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(__snake_case): feat_extract.pad(__snake_case , padding='max_length' , truncation=__snake_case)[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy _UpperCamelCase : Any = 12 _UpperCamelCase : Optional[int] = feat_extract.pad( __snake_case , padding='max_length' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=__snake_case , truncation=__snake_case , ) _UpperCamelCase : Optional[int] = input_a[input_name] _UpperCamelCase : Any = feat_extract.pad( __snake_case , padding='max_length' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=__snake_case , ) _UpperCamelCase : int = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of _UpperCamelCase : Union[str, Any] = len(speech_inputs[0]) if expected_length % pad_to_multiple_of != 0: _UpperCamelCase : Dict = ((len(speech_inputs[0]) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0]) == expected_length) self.assertTrue(_inputs_have_equal_length(__snake_case)) self.assertFalse(_inputs_have_equal_length(__snake_case)) def A__ ( self): self._check_padding(numpify=__snake_case) def A__ ( self): self._check_padding(numpify=__snake_case) def A__ ( self): self._check_truncation(numpify=__snake_case) def A__ ( self): self._check_truncation(numpify=__snake_case) @require_torch def A__ ( self): _UpperCamelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict) _UpperCamelCase : Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_common() _UpperCamelCase : List[Any] = feat_extract.model_input_names[0] _UpperCamelCase : Union[str, Any] = BatchFeature({input_name: speech_inputs}) _UpperCamelCase : str = feat_extract.pad(__snake_case , padding='longest' , return_tensors='np')[input_name] _UpperCamelCase : str = feat_extract.pad(__snake_case , padding='longest' , return_tensors='pt')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_pt.numpy().astype(np.floataa).sum()) < 1e-2) @require_tf def A__ ( self): _UpperCamelCase : str = self.feature_extraction_class(**self.feat_extract_dict) _UpperCamelCase : List[Any] = self.feat_extract_tester.prepare_inputs_for_common() _UpperCamelCase : List[Any] = feat_extract.model_input_names[0] _UpperCamelCase : str = BatchFeature({input_name: speech_inputs}) _UpperCamelCase : List[str] = feat_extract.pad(__snake_case , padding='longest' , return_tensors='np')[input_name] _UpperCamelCase : Any = feat_extract.pad(__snake_case , padding='longest' , return_tensors='tf')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_tf.numpy().astype(np.floataa).sum()) < 1e-2) def A__ ( self): _UpperCamelCase : int = self.feat_extract_dict _UpperCamelCase : str = True _UpperCamelCase : Optional[Any] = self.feature_extraction_class(**__snake_case) _UpperCamelCase : Any = self.feat_extract_tester.prepare_inputs_for_common() _UpperCamelCase : int = [len(__snake_case) for x in speech_inputs] _UpperCamelCase : Optional[int] = feat_extract.model_input_names[0] _UpperCamelCase : Optional[int] = BatchFeature({input_name: speech_inputs}) _UpperCamelCase : Any = feat_extract.pad(__snake_case , padding='longest' , return_tensors='np') self.assertIn('attention_mask' , __snake_case) self.assertListEqual(list(processed.attention_mask.shape) , list(processed[input_name].shape[:2])) self.assertListEqual(processed.attention_mask.sum(-1).tolist() , __snake_case) def A__ ( self): _UpperCamelCase : List[str] = self.feat_extract_dict _UpperCamelCase : Any = True _UpperCamelCase : Dict = self.feature_extraction_class(**__snake_case) _UpperCamelCase : List[Any] = self.feat_extract_tester.prepare_inputs_for_common() _UpperCamelCase : Union[str, Any] = [len(__snake_case) for x in speech_inputs] _UpperCamelCase : List[Any] = feat_extract.model_input_names[0] _UpperCamelCase : List[Any] = BatchFeature({input_name: speech_inputs}) _UpperCamelCase : Tuple = min(__snake_case) _UpperCamelCase : int = feat_extract.pad( __snake_case , padding='max_length' , max_length=__snake_case , truncation=__snake_case , return_tensors='np') self.assertIn('attention_mask' , __snake_case) self.assertListEqual( list(processed_pad.attention_mask.shape) , [processed_pad[input_name].shape[0], max_length]) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1).tolist() , [max_length for x in speech_inputs])
717
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class lowercase ( _lowercase ): """simple docstring""" a__ = "rwkv" a__ = {"max_position_embeddings": "context_length"} def __init__( self , __snake_case=5_02_77 , __snake_case=10_24 , __snake_case=40_96 , __snake_case=32 , __snake_case=None , __snake_case=None , __snake_case=1e-5 , __snake_case=0 , __snake_case=0 , __snake_case=6 , __snake_case=False , __snake_case=True , **__snake_case , ): _UpperCamelCase : str = vocab_size _UpperCamelCase : int = context_length _UpperCamelCase : Tuple = hidden_size _UpperCamelCase : Tuple = num_hidden_layers _UpperCamelCase : Dict = attention_hidden_size if attention_hidden_size is not None else hidden_size _UpperCamelCase : Tuple = intermediate_size if intermediate_size is not None else 4 * hidden_size _UpperCamelCase : Union[str, Any] = layer_norm_epsilon _UpperCamelCase : Dict = rescale_every _UpperCamelCase : Optional[Any] = use_cache _UpperCamelCase : str = bos_token_id _UpperCamelCase : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case)
648
0
def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> Any: '''simple docstring''' if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('Input value must be an \'int\' type' ) _UpperCamelCase : Tuple = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
718
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class lowercase ( _lowercase ): """simple docstring""" a__ = "bert" def __init__( self , __snake_case=3_05_22 , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=0 , __snake_case="absolute" , __snake_case=True , __snake_case=None , **__snake_case , ): super().__init__(pad_token_id=__snake_case , **__snake_case) _UpperCamelCase : int = vocab_size _UpperCamelCase : Optional[Any] = hidden_size _UpperCamelCase : Optional[Any] = num_hidden_layers _UpperCamelCase : List[str] = num_attention_heads _UpperCamelCase : int = hidden_act _UpperCamelCase : Optional[Any] = intermediate_size _UpperCamelCase : Union[str, Any] = hidden_dropout_prob _UpperCamelCase : Tuple = attention_probs_dropout_prob _UpperCamelCase : Optional[int] = max_position_embeddings _UpperCamelCase : str = type_vocab_size _UpperCamelCase : Optional[Any] = initializer_range _UpperCamelCase : List[str] = layer_norm_eps _UpperCamelCase : Any = position_embedding_type _UpperCamelCase : Any = use_cache _UpperCamelCase : Any = classifier_dropout class lowercase ( _lowercase ): """simple docstring""" @property def A__ ( self): if self.task == "multiple-choice": _UpperCamelCase : Union[str, Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCamelCase : Optional[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ])
648
0
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL lowerCAmelCase__ = logging.get_logger(__name__) def lowerCamelCase_ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Any ) -> List[Any]: '''simple docstring''' def constraint_to_multiple_of(UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int]=0 , UpperCAmelCase_ : str=None ): _UpperCamelCase : Optional[Any] = round(val / multiple ) * multiple if max_val is not None and x > max_val: _UpperCamelCase : Optional[Any] = math.floor(val / multiple ) * multiple if x < min_val: _UpperCamelCase : Tuple = math.ceil(val / multiple ) * multiple return x _UpperCamelCase : Tuple = (output_size, output_size) if isinstance(lowercase__ , lowercase__ ) else output_size _UpperCamelCase , _UpperCamelCase : Optional[int] = get_image_size(lowercase__ ) _UpperCamelCase , _UpperCamelCase : Optional[Any] = output_size # determine new height and width _UpperCamelCase : Any = output_height / input_height _UpperCamelCase : Optional[int] = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _UpperCamelCase : Any = scale_width else: # fit height _UpperCamelCase : Tuple = scale_height _UpperCamelCase : List[str] = constraint_to_multiple_of(scale_height * input_height , multiple=lowercase__ ) _UpperCamelCase : List[str] = constraint_to_multiple_of(scale_width * input_width , multiple=lowercase__ ) return (new_height, new_width) class lowercase ( __a ): """simple docstring""" a__ = ["pixel_values"] def __init__( self , __snake_case = True , __snake_case = None , __snake_case = PILImageResampling.BILINEAR , __snake_case = False , __snake_case = 1 , __snake_case = True , __snake_case = 1 / 2_55 , __snake_case = True , __snake_case = None , __snake_case = None , **__snake_case , ): super().__init__(**lowerCAmelCase_) _UpperCamelCase : List[str] = size if size is not None else {'height': 3_84, 'width': 3_84} _UpperCamelCase : Any = get_size_dict(lowerCAmelCase_) _UpperCamelCase : Optional[Any] = do_resize _UpperCamelCase : int = size _UpperCamelCase : List[Any] = keep_aspect_ratio _UpperCamelCase : Tuple = ensure_multiple_of _UpperCamelCase : int = resample _UpperCamelCase : Optional[int] = do_rescale _UpperCamelCase : List[Any] = rescale_factor _UpperCamelCase : Optional[int] = do_normalize _UpperCamelCase : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def A__ ( self , __snake_case , __snake_case , __snake_case = False , __snake_case = 1 , __snake_case = PILImageResampling.BICUBIC , __snake_case = None , **__snake_case , ): _UpperCamelCase : List[str] = get_size_dict(lowerCAmelCase_) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''') _UpperCamelCase : str = get_resize_output_image_size( lowerCAmelCase_ , output_size=(size['height'], size['width']) , keep_aspect_ratio=lowerCAmelCase_ , multiple=lowerCAmelCase_ , ) return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_) def A__ ( self , __snake_case , __snake_case , __snake_case = None , **__snake_case , ): return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case = None , **__snake_case , ): return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_) def A__ ( self , __snake_case , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = ChannelDimension.FIRST , **__snake_case , ): _UpperCamelCase : Any = do_resize if do_resize is not None else self.do_resize _UpperCamelCase : int = size if size is not None else self.size _UpperCamelCase : List[Any] = get_size_dict(lowerCAmelCase_) _UpperCamelCase : List[Any] = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _UpperCamelCase : List[Any] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _UpperCamelCase : Optional[Any] = resample if resample is not None else self.resample _UpperCamelCase : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase : Any = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase : Tuple = image_mean if image_mean is not None else self.image_mean _UpperCamelCase : str = image_std if image_std is not None else self.image_std _UpperCamelCase : Tuple = make_list_of_images(lowerCAmelCase_) if not valid_images(lowerCAmelCase_): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. _UpperCamelCase : Union[str, Any] = [to_numpy_array(lowerCAmelCase_) for image in images] if do_resize: _UpperCamelCase : Tuple = [self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_) for image in images] if do_rescale: _UpperCamelCase : Dict = [self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_) for image in images] if do_normalize: _UpperCamelCase : List[str] = [self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_) for image in images] _UpperCamelCase : Tuple = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_) for image in images] _UpperCamelCase : Tuple = {'pixel_values': images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_) def A__ ( self , __snake_case , __snake_case = None): _UpperCamelCase : int = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowerCAmelCase_) != len(lowerCAmelCase_): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits') if is_torch_tensor(lowerCAmelCase_): _UpperCamelCase : Tuple = target_sizes.numpy() _UpperCamelCase : str = [] for idx in range(len(lowerCAmelCase_)): _UpperCamelCase : List[str] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='bilinear' , align_corners=lowerCAmelCase_) _UpperCamelCase : int = resized_logits[0].argmax(dim=0) semantic_segmentation.append(lowerCAmelCase_) else: _UpperCamelCase : Optional[int] = logits.argmax(dim=1) _UpperCamelCase : Optional[int] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
719
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowercase ( _lowercase ): """simple docstring""" a__ = "facebook/bart-large-mnli" a__ = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) a__ = "text_classifier" a__ = AutoTokenizer a__ = AutoModelForSequenceClassification a__ = ["text", ["text"]] a__ = ["text"] def A__ ( self): super().setup() _UpperCamelCase : List[Any] = self.model.config _UpperCamelCase : Optional[int] = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail'): _UpperCamelCase : Tuple = int(__snake_case) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.') def A__ ( self , __snake_case , __snake_case): _UpperCamelCase : List[Any] = labels return self.pre_processor( [text] * len(__snake_case) , [f'''This example is {label}''' for label in labels] , return_tensors='pt' , padding='max_length' , ) def A__ ( self , __snake_case): _UpperCamelCase : str = outputs.logits _UpperCamelCase : Optional[Any] = torch.argmax(logits[:, 2]).item() return self._labels[label_id]
648
0
import fcntl import os import socket import torch import torch.distributed as dist def lowerCamelCase_ ( *UpperCAmelCase_ : Any ) -> Tuple: with open(UpperCamelCase__ , 'r' ) as fh: fcntl.flock(UpperCamelCase__ , fcntl.LOCK_EX ) try: print(*UpperCamelCase__ ) finally: fcntl.flock(UpperCamelCase__ , fcntl.LOCK_UN ) lowerCAmelCase__ = int(os.environ["""LOCAL_RANK"""]) torch.cuda.set_device(local_rank) lowerCAmelCase__ = torch.device("""cuda""", local_rank) lowerCAmelCase__ = socket.gethostname() lowerCAmelCase__ = f'[{hostname}-{local_rank}]' try: # test distributed dist.init_process_group("""nccl""") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank lowerCAmelCase__ = dist.get_rank() lowerCAmelCase__ = dist.get_world_size() printflock(f'{gpu} is OK (global rank: {rank}/{world_size})') dist.barrier() if rank == 0: printflock(f'pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}') except Exception: printflock(f'{gpu} is broken') raise
720
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
648
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class lowercase ( _lowercase ): """simple docstring""" a__ = "swinv2" a__ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , __snake_case=2_24 , __snake_case=4 , __snake_case=3 , __snake_case=96 , __snake_case=[2, 2, 6, 2] , __snake_case=[3, 6, 12, 24] , __snake_case=7 , __snake_case=4.0 , __snake_case=True , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.1 , __snake_case="gelu" , __snake_case=False , __snake_case=0.0_2 , __snake_case=1e-5 , __snake_case=32 , **__snake_case , ): super().__init__(**UpperCAmelCase__) _UpperCamelCase : Union[str, Any] = image_size _UpperCamelCase : int = patch_size _UpperCamelCase : List[Any] = num_channels _UpperCamelCase : int = embed_dim _UpperCamelCase : List[str] = depths _UpperCamelCase : Union[str, Any] = len(UpperCAmelCase__) _UpperCamelCase : Tuple = num_heads _UpperCamelCase : Any = window_size _UpperCamelCase : Dict = mlp_ratio _UpperCamelCase : Optional[Any] = qkv_bias _UpperCamelCase : List[str] = hidden_dropout_prob _UpperCamelCase : Tuple = attention_probs_dropout_prob _UpperCamelCase : Dict = drop_path_rate _UpperCamelCase : Optional[Any] = hidden_act _UpperCamelCase : List[str] = use_absolute_embeddings _UpperCamelCase : List[Any] = layer_norm_eps _UpperCamelCase : Dict = initializer_range _UpperCamelCase : int = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _UpperCamelCase : List[str] = int(embed_dim * 2 ** (len(UpperCAmelCase__) - 1)) _UpperCamelCase : Tuple = (0, 0, 0, 0)
721
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
648
0
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowercase ( __a , unittest.TestCase ): """simple docstring""" pass @nightly @require_onnxruntime @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" @property def A__ ( self): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def A__ ( self): _UpperCamelCase : Optional[int] = ort.SessionOptions() _UpperCamelCase : Union[str, Any] = False return options def A__ ( self): _UpperCamelCase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png') _UpperCamelCase : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png') _UpperCamelCase : Tuple = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' , revision='onnx' , safety_checker=A__ , feature_extractor=A__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=A__) _UpperCamelCase : List[Any] = 'A red cat sitting on a park bench' _UpperCamelCase : Tuple = np.random.RandomState(0) _UpperCamelCase : Optional[Any] = pipe( prompt=A__ , image=A__ , mask_image=A__ , guidance_scale=7.5 , num_inference_steps=10 , generator=A__ , output_type='np' , ) _UpperCamelCase : Tuple = output.images _UpperCamelCase : str = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) _UpperCamelCase : Optional[Any] = np.array([0.2_5_1_4, 0.3_0_0_7, 0.3_5_1_7, 0.1_7_9_0, 0.2_3_8_2, 0.3_1_6_7, 0.1_9_4_4, 0.2_2_7_3, 0.2_4_6_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def A__ ( self): _UpperCamelCase : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png') _UpperCamelCase : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png') _UpperCamelCase : List[str] = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-inpainting' , subfolder='scheduler' , revision='onnx') _UpperCamelCase : List[Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' , revision='onnx' , scheduler=A__ , safety_checker=A__ , feature_extractor=A__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=A__) _UpperCamelCase : Dict = 'A red cat sitting on a park bench' _UpperCamelCase : List[Any] = np.random.RandomState(0) _UpperCamelCase : Any = pipe( prompt=A__ , image=A__ , mask_image=A__ , guidance_scale=7.5 , num_inference_steps=20 , generator=A__ , output_type='np' , ) _UpperCamelCase : Optional[int] = output.images _UpperCamelCase : List[Any] = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) _UpperCamelCase : Optional[int] = np.array([0.0_0_8_6, 0.0_0_7_7, 0.0_0_8_3, 0.0_0_9_3, 0.0_1_0_7, 0.0_1_3_9, 0.0_0_9_4, 0.0_0_9_7, 0.0_1_2_5]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
700
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_sentencepiece_available(): import sentencepiece as sp lowerCAmelCase__ = 5 lowerCAmelCase__ = 1_0 @require_sentencepiece @require_tokenizers class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" a__ = SpeechaTextTokenizer a__ = False a__ = True def A__ ( self): super().setUp() _UpperCamelCase : Any = sp.SentencePieceProcessor() spm_model.Load(__snake_case) _UpperCamelCase : List[str] = ['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_) for id_ in range(len(__snake_case))] _UpperCamelCase : Dict = dict(zip(__snake_case , range(len(__snake_case)))) _UpperCamelCase : Tuple = Path(self.tmpdirname) save_json(__snake_case , save_dir / VOCAB_FILES_NAMES['vocab_file']) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__snake_case , save_dir / VOCAB_FILES_NAMES['spm_file']) _UpperCamelCase : int = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def A__ ( self): _UpperCamelCase : str = '<pad>' _UpperCamelCase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case) , __snake_case) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case) , __snake_case) def A__ ( self): _UpperCamelCase : Optional[Any] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(vocab_keys[-1] , 'j') self.assertEqual(len(__snake_case) , 10_01) def A__ ( self): self.assertEqual(self.get_tokenizer().vocab_size , 10_01) def A__ ( self): _UpperCamelCase : Any = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) _UpperCamelCase : List[str] = tokenizer.tokenize('This is a test') self.assertListEqual(__snake_case , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case) , [2_89, 50, 14, 1_74, 3_86] , ) _UpperCamelCase : int = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( __snake_case , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) _UpperCamelCase : int = tokenizer.convert_tokens_to_ids(__snake_case) self.assertListEqual(__snake_case , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8]) _UpperCamelCase : Tuple = tokenizer.convert_ids_to_tokens(__snake_case) self.assertListEqual( __snake_case , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def A__ ( self): # fmt: off _UpperCamelCase : Optional[int] = {'input_ids': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , ) @require_sentencepiece class lowercase ( unittest.TestCase ): """simple docstring""" a__ = "valhalla/s2t_mustc_multilinguial_medium" a__ = "C'est trop cool" a__ = "Esto es genial" @classmethod def A__ ( cls): _UpperCamelCase : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name) return cls def A__ ( self): self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4) self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6) self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9) self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11) def A__ ( self): self.assertEqual(self.tokenizer.vocab_size , 1_00_00) def A__ ( self): self.assertIn(__snake_case , self.tokenizer.all_special_ids) _UpperCamelCase : Optional[int] = [ES_CODE, 4, 16_01, 47, 76_47, 2] _UpperCamelCase : Tuple = self.tokenizer.decode(__snake_case , skip_special_tokens=__snake_case) _UpperCamelCase : Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__snake_case) self.assertEqual(__snake_case , __snake_case) self.assertNotIn(self.tokenizer.eos_token , __snake_case) def A__ ( self): _UpperCamelCase : Any = 'fr' _UpperCamelCase : List[Any] = self.tokenizer(self.french_text).input_ids self.assertEqual(encoded[0] , __snake_case) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id) def A__ ( self): _UpperCamelCase : Union[str, Any] = 'fr' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE]) _UpperCamelCase : List[str] = 'es' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE])
648
0
'''simple docstring''' import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase__ = 1_6 lowerCAmelCase__ = 3_2 def lowerCamelCase_ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str = 1_6 ) -> Optional[int]: '''simple docstring''' _UpperCamelCase : Any = AutoTokenizer.from_pretrained('bert-base-cased' ) _UpperCamelCase : Union[str, Any] = load_dataset('glue' , 'mrpc' ) def tokenize_function(UpperCAmelCase_ : Tuple ): # max_length=None => use the model max length (it's actually the default) _UpperCamelCase : Tuple = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCamelCase : List[Any] = datasets.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCamelCase : Any = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(UpperCAmelCase_ : int ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCamelCase : Dict = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCamelCase : Optional[Any] = 1_6 elif accelerator.mixed_precision != "no": _UpperCamelCase : Dict = 8 else: _UpperCamelCase : Any = None return tokenizer.pad( _SCREAMING_SNAKE_CASE , padding='longest' , max_length=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_tensors='pt' , ) # Instantiate dataloaders. _UpperCamelCase : Union[str, Any] = DataLoader( tokenized_datasets['train'] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) _UpperCamelCase : int = DataLoader( tokenized_datasets['validation'] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase__ = mocked_dataloaders # noqa: F811 def lowerCamelCase_ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] ) -> Dict: '''simple docstring''' if os.environ.get('TESTING_MOCKED_DATALOADERS' , _SCREAMING_SNAKE_CASE ) == "1": _UpperCamelCase : Any = 2 # Initialize accelerator _UpperCamelCase : Any = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCamelCase : str = config['lr'] _UpperCamelCase : List[str] = int(config['num_epochs'] ) _UpperCamelCase : str = int(config['seed'] ) _UpperCamelCase : List[Any] = int(config['batch_size'] ) _UpperCamelCase : int = evaluate.load('glue' , 'mrpc' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=_SCREAMING_SNAKE_CASE ) def inner_training_loop(UpperCAmelCase_ : Any ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(_SCREAMING_SNAKE_CASE ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCamelCase : Optional[Any] = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=_SCREAMING_SNAKE_CASE ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCamelCase : str = model.to(accelerator.device ) # Instantiate optimizer _UpperCamelCase : Tuple = AdamW(params=model.parameters() , lr=_SCREAMING_SNAKE_CASE ) _UpperCamelCase , _UpperCamelCase : List[Any] = get_dataloaders(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Instantiate scheduler _UpperCamelCase : str = get_linear_schedule_with_warmup( optimizer=_SCREAMING_SNAKE_CASE , num_warmup_steps=1_0_0 , num_training_steps=(len(_SCREAMING_SNAKE_CASE ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : str = accelerator.prepare( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Now we train the model for epoch in range(_SCREAMING_SNAKE_CASE ): model.train() for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _UpperCamelCase : Optional[Any] = model(**_SCREAMING_SNAKE_CASE ) _UpperCamelCase : str = outputs.loss accelerator.backward(_SCREAMING_SNAKE_CASE ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCamelCase : str = model(**_SCREAMING_SNAKE_CASE ) _UpperCamelCase : int = outputs.logits.argmax(dim=-1 ) _UpperCamelCase , _UpperCamelCase : List[str] = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE , ) _UpperCamelCase : Optional[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , _SCREAMING_SNAKE_CASE ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def lowerCamelCase_ ( ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : List[str] = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) _UpperCamelCase : Dict = parser.parse_args() _UpperCamelCase : Dict = {'lr': 2e-5, 'num_epochs': 3, 'seed': 4_2, 'batch_size': 1_6} training_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
701
import logging from transformers.configuration_utils import PretrainedConfig lowerCAmelCase__ = logging.getLogger(__name__) class lowercase ( _lowercase ): """simple docstring""" a__ = "masked_bert" def __init__( self , __snake_case=3_05_22 , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=0 , __snake_case="topK" , __snake_case="constant" , __snake_case=0.0 , **__snake_case , ): super().__init__(pad_token_id=__snake_case , **__snake_case) _UpperCamelCase : List[Any] = vocab_size _UpperCamelCase : Union[str, Any] = hidden_size _UpperCamelCase : Optional[int] = num_hidden_layers _UpperCamelCase : Any = num_attention_heads _UpperCamelCase : int = hidden_act _UpperCamelCase : str = intermediate_size _UpperCamelCase : str = hidden_dropout_prob _UpperCamelCase : Any = attention_probs_dropout_prob _UpperCamelCase : Tuple = max_position_embeddings _UpperCamelCase : Dict = type_vocab_size _UpperCamelCase : str = initializer_range _UpperCamelCase : List[Any] = layer_norm_eps _UpperCamelCase : Tuple = pruning_method _UpperCamelCase : Tuple = mask_init _UpperCamelCase : Dict = mask_scale
648
0
from __future__ import annotations def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> Optional[int]: '''simple docstring''' return len(set(lowercase__ ) ) == len(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
702
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow lowerCAmelCase__ = False class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self , __snake_case=32): set_seed(0) _UpperCamelCase : int = UNetaDModel(sample_size=__snake_case , in_channels=3 , out_channels=3) _UpperCamelCase : str = torch.optim.SGD(model.parameters() , lr=0.0_0_0_1) return model, optimizer @slow def A__ ( self): _UpperCamelCase : Tuple = 'cpu' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable _UpperCamelCase : List[Any] = DDPMScheduler( num_train_timesteps=10_00 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='linear' , clip_sample=__snake_case , ) _UpperCamelCase : List[Any] = DDIMScheduler( num_train_timesteps=10_00 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='linear' , clip_sample=__snake_case , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0) _UpperCamelCase : Optional[Any] = [torch.randn((4, 3, 32, 32)).clip(-1 , 1).to(__snake_case) for _ in range(4)] _UpperCamelCase : str = [torch.randn((4, 3, 32, 32)).to(__snake_case) for _ in range(4)] _UpperCamelCase : int = [torch.randint(0 , 10_00 , (4,)).long().to(__snake_case) for _ in range(4)] # train with a DDPM scheduler _UpperCamelCase , _UpperCamelCase : List[Any] = self.get_model_optimizer(resolution=32) model.train().to(__snake_case) for i in range(4): optimizer.zero_grad() _UpperCamelCase : int = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) _UpperCamelCase : Any = model(__snake_case , timesteps[i]).sample _UpperCamelCase : str = torch.nn.functional.mse_loss(__snake_case , noise[i]) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM _UpperCamelCase , _UpperCamelCase : Union[str, Any] = self.get_model_optimizer(resolution=32) model.train().to(__snake_case) for i in range(4): optimizer.zero_grad() _UpperCamelCase : Dict = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) _UpperCamelCase : Dict = model(__snake_case , timesteps[i]).sample _UpperCamelCase : Tuple = torch.nn.functional.mse_loss(__snake_case , noise[i]) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1e-5)) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1e-5))
648
0
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED lowerCAmelCase__ = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } lowerCAmelCase__ = { 'allenai/led-base-16384': 1_6_3_8_4, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowerCamelCase_ ( ) -> List[str]: '''simple docstring''' _UpperCamelCase : Dict = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) _UpperCamelCase : int = bs[:] _UpperCamelCase : Optional[Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCAmelCase_ ) cs.append(2**8 + n ) n += 1 _UpperCamelCase : int = [chr(lowerCAmelCase_ ) for n in cs] return dict(zip(lowerCAmelCase_ , lowerCAmelCase_ ) ) def lowerCamelCase_ ( UpperCAmelCase_ : str ) -> str: '''simple docstring''' _UpperCamelCase : Dict = set() _UpperCamelCase : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _UpperCamelCase : Tuple = char return pairs class lowercase ( a__ ): """simple docstring""" a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = ["""input_ids""", """attention_mask"""] def __init__( self , __snake_case , __snake_case , __snake_case="replace" , __snake_case="<s>" , __snake_case="</s>" , __snake_case="</s>" , __snake_case="<s>" , __snake_case="<unk>" , __snake_case="<pad>" , __snake_case="<mask>" , __snake_case=False , **__snake_case , ): _UpperCamelCase : Tuple = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__) if isinstance(lowercase__ , lowercase__) else bos_token _UpperCamelCase : Dict = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__) if isinstance(lowercase__ , lowercase__) else eos_token _UpperCamelCase : Union[str, Any] = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__) if isinstance(lowercase__ , lowercase__) else sep_token _UpperCamelCase : Optional[int] = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__) if isinstance(lowercase__ , lowercase__) else cls_token _UpperCamelCase : Tuple = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__) if isinstance(lowercase__ , lowercase__) else unk_token _UpperCamelCase : Any = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__) if isinstance(lowercase__ , lowercase__) else pad_token # Mask token behave like a normal word, i.e. include the space before it _UpperCamelCase : str = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__) if isinstance(lowercase__ , lowercase__) else mask_token super().__init__( errors=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , add_prefix_space=lowercase__ , **lowercase__ , ) with open(lowercase__ , encoding='utf-8') as vocab_handle: _UpperCamelCase : List[str] = json.load(lowercase__) _UpperCamelCase : Any = {v: k for k, v in self.encoder.items()} _UpperCamelCase : Dict = errors # how to handle errors in decoding _UpperCamelCase : Optional[int] = bytes_to_unicode() _UpperCamelCase : Tuple = {v: k for k, v in self.byte_encoder.items()} with open(lowercase__ , encoding='utf-8') as merges_handle: _UpperCamelCase : Tuple = merges_handle.read().split('\n')[1:-1] _UpperCamelCase : Tuple = [tuple(merge.split()) for merge in bpe_merges] _UpperCamelCase : int = dict(zip(lowercase__ , range(len(lowercase__)))) _UpperCamelCase : List[Any] = {} _UpperCamelCase : Tuple = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _UpperCamelCase : Optional[int] = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+') @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def A__ ( self): return len(self.encoder) def A__ ( self): return dict(self.encoder , **self.added_tokens_encoder) def A__ ( self , __snake_case): if token in self.cache: return self.cache[token] _UpperCamelCase : Optional[int] = tuple(lowercase__) _UpperCamelCase : List[str] = get_pairs(lowercase__) if not pairs: return token while True: _UpperCamelCase : Dict = min(lowercase__ , key=lambda __snake_case: self.bpe_ranks.get(lowercase__ , float('inf'))) if bigram not in self.bpe_ranks: break _UpperCamelCase : Any = bigram _UpperCamelCase : Union[str, Any] = [] _UpperCamelCase : Tuple = 0 while i < len(lowercase__): try: _UpperCamelCase : Union[str, Any] = word.index(lowercase__ , lowercase__) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) _UpperCamelCase : Union[str, Any] = j if word[i] == first and i < len(lowercase__) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 _UpperCamelCase : str = tuple(lowercase__) _UpperCamelCase : Any = new_word if len(lowercase__) == 1: break else: _UpperCamelCase : str = get_pairs(lowercase__) _UpperCamelCase : Union[str, Any] = ''' '''.join(lowercase__) _UpperCamelCase : Optional[int] = word return word def A__ ( self , __snake_case): _UpperCamelCase : List[str] = [] for token in re.findall(self.pat , lowercase__): _UpperCamelCase : Optional[int] = ''''''.join( self.byte_encoder[b] for b in token.encode('utf-8')) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowercase__).split(' ')) return bpe_tokens def A__ ( self , __snake_case): return self.encoder.get(lowercase__ , self.encoder.get(self.unk_token)) def A__ ( self , __snake_case): return self.decoder.get(lowercase__) def A__ ( self , __snake_case): _UpperCamelCase : Any = ''''''.join(lowercase__) _UpperCamelCase : List[Any] = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8' , errors=self.errors) return text def A__ ( self , __snake_case , __snake_case = None): if not os.path.isdir(lowercase__): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return _UpperCamelCase : Tuple = os.path.join( lowercase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) _UpperCamelCase : List[str] = os.path.join( lowercase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(lowercase__ , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowercase__ , ensure_ascii=lowercase__) + '\n') _UpperCamelCase : Dict = 0 with open(lowercase__ , 'w' , encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __snake_case: kv[1]): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!') _UpperCamelCase : Optional[Any] = token_index writer.write(' '.join(lowercase__) + '\n') index += 1 return vocab_file, merge_file def A__ ( self , __snake_case , __snake_case = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCamelCase : str = [self.cls_token_id] _UpperCamelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self , __snake_case , __snake_case = None , __snake_case = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase__ , token_ids_a=lowercase__ , already_has_special_tokens=lowercase__) if token_ids_a is None: return [1] + ([0] * len(lowercase__)) + [1] return [1] + ([0] * len(lowercase__)) + [1, 1] + ([0] * len(lowercase__)) + [1] def A__ ( self , __snake_case , __snake_case = None): _UpperCamelCase : Optional[Any] = [self.sep_token_id] _UpperCamelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def A__ ( self , __snake_case , __snake_case=False , **__snake_case): _UpperCamelCase : Union[str, Any] = kwargs.pop('add_prefix_space' , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(lowercase__) > 0 and not text[0].isspace()): _UpperCamelCase : Dict = ''' ''' + text return (text, kwargs) def A__ ( self , __snake_case , __snake_case = None , __snake_case = PaddingStrategy.DO_NOT_PAD , __snake_case = None , __snake_case = None , ): _UpperCamelCase : int = super()._pad( encoded_inputs=lowercase__ , max_length=lowercase__ , padding_strategy=lowercase__ , pad_to_multiple_of=lowercase__ , return_attention_mask=lowercase__ , ) # Load from model defaults if return_attention_mask is None: _UpperCamelCase : Optional[Any] = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _UpperCamelCase : Optional[Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _UpperCamelCase : Dict = len(encoded_inputs['global_attention_mask']) != len(lowercase__) if needs_to_be_padded: _UpperCamelCase : Any = len(lowercase__) - len(encoded_inputs['global_attention_mask']) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _UpperCamelCase : Any = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": _UpperCamelCase : Optional[Any] = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side)) return encoded_inputs
703
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) lowerCAmelCase__ = { """sample_size""": 3_2, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 1_0_0_0, """block_out_channels""": [3_2, 6_4], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """sample_size""": 6_4, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 1_0_0_0, """block_out_channels""": [1_9_2, 1_9_2 * 2, 1_9_2 * 3, 1_9_2 * 4], """attention_head_dim""": 6_4, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """sample_size""": 2_5_6, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [2_5_6, 2_5_6, 2_5_6 * 2, 2_5_6 * 2, 2_5_6 * 4, 2_5_6 * 4], """attention_head_dim""": 6_4, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """num_train_timesteps""": 4_0, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } lowerCAmelCase__ = { """num_train_timesteps""": 2_0_1, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } lowerCAmelCase__ = { """num_train_timesteps""": 1_5_1, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> List[str]: '''simple docstring''' if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def lowerCamelCase_ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any]=False ) -> str: '''simple docstring''' _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.in_layers.0.weight'''] _UpperCamelCase : str = checkpoint[F'''{old_prefix}.in_layers.0.bias'''] _UpperCamelCase : str = checkpoint[F'''{old_prefix}.in_layers.2.weight'''] _UpperCamelCase : Union[str, Any] = checkpoint[F'''{old_prefix}.in_layers.2.bias'''] _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.emb_layers.1.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.emb_layers.1.bias'''] _UpperCamelCase : Tuple = checkpoint[F'''{old_prefix}.out_layers.0.weight'''] _UpperCamelCase : List[Any] = checkpoint[F'''{old_prefix}.out_layers.0.bias'''] _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.out_layers.3.weight'''] _UpperCamelCase : Union[str, Any] = checkpoint[F'''{old_prefix}.out_layers.3.bias'''] if has_skip: _UpperCamelCase : Tuple = checkpoint[F'''{old_prefix}.skip_connection.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any=None ) -> int: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 ) _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.norm.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.norm.bias'''] _UpperCamelCase : List[str] = weight_q.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Dict = bias_q.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Any = weight_k.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : List[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Dict = weight_v.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Tuple = bias_v.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Optional[Any] = ( checkpoint[F'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] ) -> Tuple: '''simple docstring''' _UpperCamelCase : Any = torch.load(UpperCAmelCase_ , map_location='cpu' ) _UpperCamelCase : Union[str, Any] = {} _UpperCamelCase : Optional[int] = checkpoint['time_embed.0.weight'] _UpperCamelCase : List[Any] = checkpoint['time_embed.0.bias'] _UpperCamelCase : Dict = checkpoint['time_embed.2.weight'] _UpperCamelCase : Optional[Any] = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: _UpperCamelCase : List[str] = checkpoint['label_emb.weight'] _UpperCamelCase : Optional[int] = checkpoint['input_blocks.0.0.weight'] _UpperCamelCase : Union[str, Any] = checkpoint['input_blocks.0.0.bias'] _UpperCamelCase : Optional[int] = unet_config['down_block_types'] _UpperCamelCase : Optional[Any] = unet_config['layers_per_block'] _UpperCamelCase : Dict = unet_config['attention_head_dim'] _UpperCamelCase : List[str] = unet_config['block_out_channels'] _UpperCamelCase : str = 1 _UpperCamelCase : Optional[int] = channels_list[0] for i, layer_type in enumerate(UpperCAmelCase_ ): _UpperCamelCase : List[str] = channels_list[i] _UpperCamelCase : str = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(UpperCAmelCase_ ): _UpperCamelCase : str = F'''down_blocks.{i}.resnets.{j}''' _UpperCamelCase : List[Any] = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : Any = True if j == 0 and downsample_block_has_skip else False _UpperCamelCase : str = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(UpperCAmelCase_ ): _UpperCamelCase : List[str] = F'''down_blocks.{i}.resnets.{j}''' _UpperCamelCase : str = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : int = True if j == 0 and downsample_block_has_skip else False _UpperCamelCase : Any = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) _UpperCamelCase : Dict = F'''down_blocks.{i}.attentions.{j}''' _UpperCamelCase : Optional[int] = F'''input_blocks.{current_layer}.1''' _UpperCamelCase : Dict = convert_attention( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : int = F'''down_blocks.{i}.downsamplers.0''' _UpperCamelCase : Optional[int] = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : List[Any] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 _UpperCamelCase : Tuple = current_channels # hardcoded the mid-block for now _UpperCamelCase : Any = 'mid_block.resnets.0' _UpperCamelCase : Optional[Any] = 'middle_block.0' _UpperCamelCase : Tuple = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = 'mid_block.attentions.0' _UpperCamelCase : Tuple = 'middle_block.1' _UpperCamelCase : Union[str, Any] = convert_attention(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Tuple = 'mid_block.resnets.1' _UpperCamelCase : str = 'middle_block.2' _UpperCamelCase : List[str] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : List[Any] = 0 _UpperCamelCase : Optional[int] = unet_config['up_block_types'] for i, layer_type in enumerate(UpperCAmelCase_ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _UpperCamelCase : Optional[Any] = F'''up_blocks.{i}.resnets.{j}''' _UpperCamelCase : Optional[int] = F'''output_blocks.{current_layer}.0''' _UpperCamelCase : str = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : List[Any] = F'''up_blocks.{i}.upsamplers.0''' _UpperCamelCase : Dict = F'''output_blocks.{current_layer-1}.1''' _UpperCamelCase : Optional[int] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _UpperCamelCase : str = F'''up_blocks.{i}.resnets.{j}''' _UpperCamelCase : Union[str, Any] = F'''output_blocks.{current_layer}.0''' _UpperCamelCase : Optional[int] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) _UpperCamelCase : int = F'''up_blocks.{i}.attentions.{j}''' _UpperCamelCase : List[Any] = F'''output_blocks.{current_layer}.1''' _UpperCamelCase : Optional[int] = convert_attention( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : List[Any] = F'''up_blocks.{i}.upsamplers.0''' _UpperCamelCase : Union[str, Any] = F'''output_blocks.{current_layer-1}.2''' _UpperCamelCase : List[str] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : List[Any] = checkpoint['out.0.weight'] _UpperCamelCase : str = checkpoint['out.0.bias'] _UpperCamelCase : int = checkpoint['out.2.weight'] _UpperCamelCase : List[Any] = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = strabool(args.class_cond) lowerCAmelCase__ = os.path.basename(args.unet_path) print(f'Checkpoint: {ckpt_name}') # Get U-Net config if "imagenet64" in ckpt_name: lowerCAmelCase__ = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCAmelCase__ = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: lowerCAmelCase__ = TEST_UNET_CONFIG else: raise ValueError(f'Checkpoint type {ckpt_name} is not currently supported.') if not args.class_cond: lowerCAmelCase__ = None lowerCAmelCase__ = con_pt_to_diffuser(args.unet_path, unet_config) lowerCAmelCase__ = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: lowerCAmelCase__ = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: lowerCAmelCase__ = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCAmelCase__ = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f'Checkpoint type {ckpt_name} is not currently supported.') lowerCAmelCase__ = CMStochasticIterativeScheduler(**scheduler_config) lowerCAmelCase__ = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
648
0
def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> Union[str, Any]: '''simple docstring''' if number > 0: raise ValueError('input must be a negative integer' ) _UpperCamelCase : int = len(bin(SCREAMING_SNAKE_CASE__ )[3:] ) _UpperCamelCase : Union[str, Any] = bin(abs(SCREAMING_SNAKE_CASE__ ) - (1 << binary_number_length) )[3:] _UpperCamelCase : List[str] = ( ( """1""" + """0""" * (binary_number_length - len(SCREAMING_SNAKE_CASE__ )) + twos_complement_number ) if number < 0 else """0""" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
704
def lowerCamelCase_ ( UpperCAmelCase_ : list ) -> list: '''simple docstring''' if len(UpperCAmelCase_ ) <= 1: return [tuple(UpperCAmelCase_ )] _UpperCamelCase : List[Any] = [] def generate(UpperCAmelCase_ : int , UpperCAmelCase_ : list ): _UpperCamelCase : Optional[int] = [0] * n res.append(tuple(UpperCAmelCase_ ) ) _UpperCamelCase : List[Any] = 0 while i < n: if c[i] < i: if i % 2 == 0: _UpperCamelCase , _UpperCamelCase : List[str] = arr[i], arr[0] else: _UpperCamelCase , _UpperCamelCase : List[str] = arr[i], arr[c[i]] res.append(tuple(UpperCAmelCase_ ) ) c[i] += 1 _UpperCamelCase : Tuple = 0 else: _UpperCamelCase : Tuple = 0 i += 1 generate(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) return res if __name__ == "__main__": lowerCAmelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCAmelCase__ = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
648
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class lowercase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" a__ = field(default="summarization" , metadata={"include_in_asdict_even_if_is_default": True} ) a__ = Features({"text": Value("string" )} ) a__ = Features({"summary": Value("string" )} ) a__ = "text" a__ = "summary" @property def A__ ( self): return {self.text_column: "text", self.summary_column: "summary"}
705
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = [ ["""attention""", """attn"""], ["""encoder_attention""", """encoder_attn"""], ["""q_lin""", """q_proj"""], ["""k_lin""", """k_proj"""], ["""v_lin""", """v_proj"""], ["""out_lin""", """out_proj"""], ["""norm_embeddings""", """layernorm_embedding"""], ["""position_embeddings""", """embed_positions"""], ["""embeddings""", """embed_tokens"""], ["""ffn.lin""", """fc"""], ] def lowerCamelCase_ ( UpperCAmelCase_ : List[Any] ) -> Optional[int]: '''simple docstring''' if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: _UpperCamelCase : List[Any] = k.replace(UpperCAmelCase_ , UpperCAmelCase_ ) if k.startswith('encoder' ): _UpperCamelCase : Optional[Any] = k.replace('.attn' , '.self_attn' ) _UpperCamelCase : Optional[int] = k.replace('norm1' , 'self_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): _UpperCamelCase : Any = k.replace('norm1' , 'self_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm2' , 'encoder_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm3' , 'final_layer_norm' ) return k def lowerCamelCase_ ( UpperCAmelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Union[str, Any] = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: _UpperCamelCase : Optional[int] = sd.pop(UpperCAmelCase_ ) _UpperCamelCase : str = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd _UpperCamelCase : Tuple = v lowerCAmelCase__ = ["""START"""] @torch.no_grad() def lowerCamelCase_ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ) -> List[str]: '''simple docstring''' _UpperCamelCase : Optional[Any] = torch.load(UpperCAmelCase_ , map_location='cpu' ) _UpperCamelCase : int = model['model'] _UpperCamelCase : List[Any] = BlenderbotConfig.from_json_file(UpperCAmelCase_ ) _UpperCamelCase : Any = BlenderbotForConditionalGeneration(UpperCAmelCase_ ) _UpperCamelCase : int = m.model.state_dict().keys() _UpperCamelCase : Union[str, Any] = [] _UpperCamelCase : int = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue _UpperCamelCase : Optional[int] = rename_state_dict_key(UpperCAmelCase_ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: _UpperCamelCase : int = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(UpperCAmelCase_ ) m.model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) m.half() m.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("""--src_path""", type=str, help="""like blenderbot-model.bin""") parser.add_argument("""--save_dir""", default="""hf_blenderbot""", type=str, help="""Where to save converted model.""") parser.add_argument( """--hf_config_json""", default="""blenderbot-3b-config.json""", type=str, help="""Path to config to use""" ) lowerCAmelCase__ = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
648
0
from __future__ import annotations from scipy.special import comb # type: ignore class lowercase : """simple docstring""" def __init__( self , __snake_case): _UpperCamelCase : Optional[Any] = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. _UpperCamelCase : str = len(__snake_case) - 1 def A__ ( self , __snake_case): assert 0 <= t <= 1, "Time t must be between 0 and 1." _UpperCamelCase : Any = [] for i in range(len(self.list_of_points)): # basis function for each i output_values.append( comb(self.degree , __snake_case) * ((1 - t) ** (self.degree - i)) * (t**i)) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__snake_case) , 5) == 1 return output_values def A__ ( self , __snake_case): assert 0 <= t <= 1, "Time t must be between 0 and 1." _UpperCamelCase : List[str] = self.basis_function(__snake_case) _UpperCamelCase : Dict = 0.0 _UpperCamelCase : Optional[Any] = 0.0 for i in range(len(self.list_of_points)): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def A__ ( self , __snake_case = 0.0_1): from matplotlib import pyplot as plt # type: ignore _UpperCamelCase : int = [] # x coordinates of points to plot _UpperCamelCase : Optional[Any] = [] # y coordinates of points to plot _UpperCamelCase : List[Any] = 0.0 while t <= 1: _UpperCamelCase : Any = self.bezier_curve_function(__snake_case) to_plot_x.append(value[0]) to_plot_y.append(value[1]) t += step_size _UpperCamelCase : Dict = [i[0] for i in self.list_of_points] _UpperCamelCase : Union[str, Any] = [i[1] for i in self.list_of_points] plt.plot( __snake_case , __snake_case , color='blue' , label='Curve of Degree ' + str(self.degree) , ) plt.scatter(__snake_case , __snake_case , color='red' , label='Control Points') plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
706
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer lowerCAmelCase__ = ["""bert-base-uncased""", """bert-base-cased"""] lowerCAmelCase__ = """hf-internal-testing/tiny-bert-tf-only""" if is_tf_available(): class lowercase ( tf.keras.Model ): """simple docstring""" def __init__( self , __snake_case): super().__init__() _UpperCamelCase : List[Any] = tokenizer _UpperCamelCase : List[Any] = AutoConfig.from_pretrained(__snake_case) _UpperCamelCase : Dict = TFAutoModel.from_config(__snake_case) def A__ ( self , __snake_case): _UpperCamelCase : Any = self.tokenizer(__snake_case) _UpperCamelCase : Dict = self.bert(**__snake_case) return out["pooler_output"] @require_tf @require_tensorflow_text class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self): super().setUp() _UpperCamelCase : Optional[Any] = [ BertTokenizer.from_pretrained(__snake_case) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false _UpperCamelCase : Optional[Any] = [TFBertTokenizer.from_pretrained(__snake_case) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(__snake_case , use_fast_bert_tokenizer=__snake_case) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers) == len(self.tf_tokenizers) _UpperCamelCase : Optional[Any] = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] _UpperCamelCase : Dict = list(zip(self.test_sentences , self.test_sentences[::-1])) def A__ ( self): for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers): for test_inputs in (self.test_sentences, self.paired_sentences): _UpperCamelCase : List[str] = tokenizer(__snake_case , return_tensors='tf' , padding='longest') _UpperCamelCase : Tuple = tf_tokenizer(__snake_case) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape)) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa) == tf_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Tuple = tf_tokenizer(self.paired_sentences) _UpperCamelCase : Optional[Any] = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa) == separated_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Tuple = tf.function(__snake_case) for test_inputs in (self.test_sentences, self.paired_sentences): _UpperCamelCase : Optional[int] = tf.constant(__snake_case) _UpperCamelCase : Union[str, Any] = compiled_tokenizer(__snake_case) _UpperCamelCase : Tuple = tf_tokenizer(__snake_case) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Any = ModelToSave(tokenizer=__snake_case) _UpperCamelCase : Any = tf.convert_to_tensor(self.test_sentences) _UpperCamelCase : Union[str, Any] = model(__snake_case) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _UpperCamelCase : int = Path(__snake_case) / 'saved.model' model.save(__snake_case) _UpperCamelCase : Optional[int] = tf.keras.models.load_model(__snake_case) _UpperCamelCase : int = loaded_model(__snake_case) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output)) , 1e-5)
648
0
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class __A ( _UpperCamelCase ): """simple docstring""" def A__ ( self , __snake_case): with open(__a , encoding='utf-8') as input_file: _UpperCamelCase : Dict = re.compile(r'(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)') _UpperCamelCase : Dict = input_file.read() _UpperCamelCase : List[str] = regexp.search(__a) return match def A__ ( self , __snake_case): with open(__a , encoding='utf-8') as input_file: _UpperCamelCase : str = re.compile(r'#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()' , re.DOTALL) _UpperCamelCase : Optional[int] = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` _UpperCamelCase : int = regexp.finditer(__a) _UpperCamelCase : Tuple = [match for match in matches if match is not None and match.group(1) is not None] return matches[0] if matches else None def A__ ( self): _UpperCamelCase : Dict = Path('./datasets') _UpperCamelCase : List[str] = list(dataset_paths.absolute().glob('**/*.py')) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__a)): raise AssertionError(f'''open(...) must use utf-8 encoding in {dataset}''') def A__ ( self): _UpperCamelCase : List[str] = Path('./datasets') _UpperCamelCase : str = list(dataset_paths.absolute().glob('**/*.py')) for dataset in dataset_files: if self._no_print_statements(str(__a)): raise AssertionError(f'''print statement found in {dataset}. Use datasets.logger/logging instead.''')
707
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ = { """configuration_canine""": ["""CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CanineConfig"""], """tokenization_canine""": ["""CanineTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """CANINE_PRETRAINED_MODEL_ARCHIVE_LIST""", """CanineForMultipleChoice""", """CanineForQuestionAnswering""", """CanineForSequenceClassification""", """CanineForTokenClassification""", """CanineLayer""", """CanineModel""", """CaninePreTrainedModel""", """load_tf_weights_in_canine""", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
648
0
import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger("""transformers.models.encodec""") lowerCAmelCase__ = { """quantizer.vq.layers.*._codebook.inited""": """quantizer.layers.*.codebook.inited""", """quantizer.vq.layers.*._codebook.cluster_size""": """quantizer.layers.*.codebook.cluster_size""", """quantizer.vq.layers.*._codebook.embed""": """quantizer.layers.*.codebook.embed""", """quantizer.vq.layers.*._codebook.embed_avg""": """quantizer.layers.*.codebook.embed_avg""", } lowerCAmelCase__ = { """encoder.model.0.conv.conv""": """encoder.layers.0.conv""", """encoder.model.1.block.1.conv.conv""": """encoder.layers.1.block.1.conv""", """encoder.model.1.block.3.conv.conv""": """encoder.layers.1.block.3.conv""", """encoder.model.1.shortcut.conv.conv""": """encoder.layers.1.shortcut.conv""", """encoder.model.3.conv.conv""": """encoder.layers.3.conv""", """encoder.model.4.block.1.conv.conv""": """encoder.layers.4.block.1.conv""", """encoder.model.4.block.3.conv.conv""": """encoder.layers.4.block.3.conv""", """encoder.model.4.shortcut.conv.conv""": """encoder.layers.4.shortcut.conv""", """encoder.model.6.conv.conv""": """encoder.layers.6.conv""", """encoder.model.7.block.1.conv.conv""": """encoder.layers.7.block.1.conv""", """encoder.model.7.block.3.conv.conv""": """encoder.layers.7.block.3.conv""", """encoder.model.7.shortcut.conv.conv""": """encoder.layers.7.shortcut.conv""", """encoder.model.9.conv.conv""": """encoder.layers.9.conv""", """encoder.model.10.block.1.conv.conv""": """encoder.layers.10.block.1.conv""", """encoder.model.10.block.3.conv.conv""": """encoder.layers.10.block.3.conv""", """encoder.model.10.shortcut.conv.conv""": """encoder.layers.10.shortcut.conv""", """encoder.model.12.conv.conv""": """encoder.layers.12.conv""", """encoder.model.13.lstm""": """encoder.layers.13.lstm""", """encoder.model.15.conv.conv""": """encoder.layers.15.conv""", } lowerCAmelCase__ = { """encoder.model.0.conv.norm""": """encoder.layers.0.norm""", """encoder.model.1.block.1.conv.norm""": """encoder.layers.1.block.1.norm""", """encoder.model.1.block.3.conv.norm""": """encoder.layers.1.block.3.norm""", """encoder.model.1.shortcut.conv.norm""": """encoder.layers.1.shortcut.norm""", """encoder.model.3.conv.norm""": """encoder.layers.3.norm""", """encoder.model.4.block.1.conv.norm""": """encoder.layers.4.block.1.norm""", """encoder.model.4.block.3.conv.norm""": """encoder.layers.4.block.3.norm""", """encoder.model.4.shortcut.conv.norm""": """encoder.layers.4.shortcut.norm""", """encoder.model.6.conv.norm""": """encoder.layers.6.norm""", """encoder.model.7.block.1.conv.norm""": """encoder.layers.7.block.1.norm""", """encoder.model.7.block.3.conv.norm""": """encoder.layers.7.block.3.norm""", """encoder.model.7.shortcut.conv.norm""": """encoder.layers.7.shortcut.norm""", """encoder.model.9.conv.norm""": """encoder.layers.9.norm""", """encoder.model.10.block.1.conv.norm""": """encoder.layers.10.block.1.norm""", """encoder.model.10.block.3.conv.norm""": """encoder.layers.10.block.3.norm""", """encoder.model.10.shortcut.conv.norm""": """encoder.layers.10.shortcut.norm""", """encoder.model.12.conv.norm""": """encoder.layers.12.norm""", """encoder.model.15.conv.norm""": """encoder.layers.15.norm""", } lowerCAmelCase__ = { """decoder.model.0.conv.conv""": """decoder.layers.0.conv""", """decoder.model.1.lstm""": """decoder.layers.1.lstm""", """decoder.model.3.convtr.convtr""": """decoder.layers.3.conv""", """decoder.model.4.block.1.conv.conv""": """decoder.layers.4.block.1.conv""", """decoder.model.4.block.3.conv.conv""": """decoder.layers.4.block.3.conv""", """decoder.model.4.shortcut.conv.conv""": """decoder.layers.4.shortcut.conv""", """decoder.model.6.convtr.convtr""": """decoder.layers.6.conv""", """decoder.model.7.block.1.conv.conv""": """decoder.layers.7.block.1.conv""", """decoder.model.7.block.3.conv.conv""": """decoder.layers.7.block.3.conv""", """decoder.model.7.shortcut.conv.conv""": """decoder.layers.7.shortcut.conv""", """decoder.model.9.convtr.convtr""": """decoder.layers.9.conv""", """decoder.model.10.block.1.conv.conv""": """decoder.layers.10.block.1.conv""", """decoder.model.10.block.3.conv.conv""": """decoder.layers.10.block.3.conv""", """decoder.model.10.shortcut.conv.conv""": """decoder.layers.10.shortcut.conv""", """decoder.model.12.convtr.convtr""": """decoder.layers.12.conv""", """decoder.model.13.block.1.conv.conv""": """decoder.layers.13.block.1.conv""", """decoder.model.13.block.3.conv.conv""": """decoder.layers.13.block.3.conv""", """decoder.model.13.shortcut.conv.conv""": """decoder.layers.13.shortcut.conv""", """decoder.model.15.conv.conv""": """decoder.layers.15.conv""", } lowerCAmelCase__ = { """decoder.model.0.conv.norm""": """decoder.layers.0.norm""", """decoder.model.3.convtr.norm""": """decoder.layers.3.norm""", """decoder.model.4.block.1.conv.norm""": """decoder.layers.4.block.1.norm""", """decoder.model.4.block.3.conv.norm""": """decoder.layers.4.block.3.norm""", """decoder.model.4.shortcut.conv.norm""": """decoder.layers.4.shortcut.norm""", """decoder.model.6.convtr.norm""": """decoder.layers.6.norm""", """decoder.model.7.block.1.conv.norm""": """decoder.layers.7.block.1.norm""", """decoder.model.7.block.3.conv.norm""": """decoder.layers.7.block.3.norm""", """decoder.model.7.shortcut.conv.norm""": """decoder.layers.7.shortcut.norm""", """decoder.model.9.convtr.norm""": """decoder.layers.9.norm""", """decoder.model.10.block.1.conv.norm""": """decoder.layers.10.block.1.norm""", """decoder.model.10.block.3.conv.norm""": """decoder.layers.10.block.3.norm""", """decoder.model.10.shortcut.conv.norm""": """decoder.layers.10.shortcut.norm""", """decoder.model.12.convtr.norm""": """decoder.layers.12.norm""", """decoder.model.13.block.1.conv.norm""": """decoder.layers.13.block.1.norm""", """decoder.model.13.block.3.conv.norm""": """decoder.layers.13.block.3.norm""", """decoder.model.13.shortcut.conv.norm""": """decoder.layers.13.shortcut.norm""", """decoder.model.15.conv.norm""": """decoder.layers.15.norm""", } lowerCAmelCase__ = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } lowerCAmelCase__ = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } lowerCAmelCase__ = [] lowerCAmelCase__ = [] def lowerCamelCase_ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] ): '''simple docstring''' for attribute in key.split('.' ): _UpperCamelCase : Optional[int] = getattr(__UpperCamelCase , __UpperCamelCase ) if weight_type is not None: _UpperCamelCase : List[Any] = getattr(__UpperCamelCase , __UpperCamelCase ).shape else: _UpperCamelCase : Tuple = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _UpperCamelCase : List[Any] = value elif weight_type == "weight_g": _UpperCamelCase : Dict = value elif weight_type == "weight_v": _UpperCamelCase : List[str] = value elif weight_type == "bias": _UpperCamelCase : Any = value elif weight_type == "running_mean": _UpperCamelCase : str = value elif weight_type == "running_var": _UpperCamelCase : Dict = value elif weight_type == "num_batches_tracked": _UpperCamelCase : Union[str, Any] = value elif weight_type == "weight_ih_l0": _UpperCamelCase : Any = value elif weight_type == "weight_hh_l0": _UpperCamelCase : List[Any] = value elif weight_type == "bias_ih_l0": _UpperCamelCase : Optional[Any] = value elif weight_type == "bias_hh_l0": _UpperCamelCase : Any = value elif weight_type == "weight_ih_l1": _UpperCamelCase : Any = value elif weight_type == "weight_hh_l1": _UpperCamelCase : Optional[Any] = value elif weight_type == "bias_ih_l1": _UpperCamelCase : int = value elif weight_type == "bias_hh_l1": _UpperCamelCase : Union[str, Any] = value else: _UpperCamelCase : Tuple = value logger.info(F'''{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.''' ) def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : Any ): '''simple docstring''' for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: _UpperCamelCase , _UpperCamelCase : Tuple = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowerCamelCase_ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple ): '''simple docstring''' _UpperCamelCase : Dict = [] if model_name == "encodec_24khz" or "encodec_32khz": _UpperCamelCase : str = MAPPING_24K elif model_name == "encodec_48khz": _UpperCamelCase : str = MAPPING_48K else: raise ValueError(F'''Unsupported model: {model_name}''' ) for name, value in orig_dict.items(): if should_ignore(__UpperCamelCase , __UpperCamelCase ): logger.info(F'''{name} was ignored''' ) continue _UpperCamelCase : List[str] = False for key, mapped_key in MAPPING.items(): if "*" in key: _UpperCamelCase , _UpperCamelCase : str = key.split('.*.' ) if prefix in name and suffix in name: _UpperCamelCase : Tuple = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('embed' ) and name.endswith('embed_avg' ): continue _UpperCamelCase : str = True if "*" in mapped_key: _UpperCamelCase : List[str] = name.split(__UpperCamelCase )[0].split('.' )[-2] _UpperCamelCase : Any = mapped_key.replace('*' , __UpperCamelCase ) if "weight_g" in name: _UpperCamelCase : Union[str, Any] = 'weight_g' elif "weight_v" in name: _UpperCamelCase : Dict = 'weight_v' elif "weight_ih_l0" in name: _UpperCamelCase : str = 'weight_ih_l0' elif "weight_hh_l0" in name: _UpperCamelCase : str = 'weight_hh_l0' elif "bias_ih_l0" in name: _UpperCamelCase : Tuple = 'bias_ih_l0' elif "bias_hh_l0" in name: _UpperCamelCase : Dict = 'bias_hh_l0' elif "weight_ih_l1" in name: _UpperCamelCase : Dict = 'weight_ih_l1' elif "weight_hh_l1" in name: _UpperCamelCase : Tuple = 'weight_hh_l1' elif "bias_ih_l1" in name: _UpperCamelCase : List[str] = 'bias_ih_l1' elif "bias_hh_l1" in name: _UpperCamelCase : Union[str, Any] = 'bias_hh_l1' elif "bias" in name: _UpperCamelCase : str = 'bias' elif "weight" in name: _UpperCamelCase : Union[str, Any] = 'weight' elif "running_mean" in name: _UpperCamelCase : Optional[Any] = 'running_mean' elif "running_var" in name: _UpperCamelCase : Optional[int] = 'running_var' elif "num_batches_tracked" in name: _UpperCamelCase : str = 'num_batches_tracked' else: _UpperCamelCase : Tuple = None set_recursively(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) continue if not is_used: unused_weights.append(__UpperCamelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) @torch.no_grad() def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[int]=None , ): '''simple docstring''' if config_path is not None: _UpperCamelCase : Union[str, Any] = EncodecConfig.from_pretrained(__UpperCamelCase ) else: _UpperCamelCase : Any = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": _UpperCamelCase : Optional[int] = [8, 5, 4, 4] _UpperCamelCase : List[Any] = [2.2] _UpperCamelCase : Any = 6_4 _UpperCamelCase : Optional[int] = 3_2_0_0_0 _UpperCamelCase : Union[str, Any] = 2_0_4_8 _UpperCamelCase : Dict = False _UpperCamelCase : List[Any] = False _UpperCamelCase : List[Any] = False elif model_name == "encodec_48khz": _UpperCamelCase : List[str] = [8, 5, 4, 2] _UpperCamelCase : List[str] = [3.0, 6.0, 1_2.0, 2_4.0] _UpperCamelCase : List[str] = 4_8_0_0_0 _UpperCamelCase : Any = 2 _UpperCamelCase : List[Any] = False _UpperCamelCase : Dict = 'time_group_norm' _UpperCamelCase : Any = True _UpperCamelCase : str = 1.0 _UpperCamelCase : List[str] = 0.0_1 else: raise ValueError(F'''Unknown model name: {model_name}''' ) _UpperCamelCase : Tuple = EncodecModel(__UpperCamelCase ) _UpperCamelCase : Tuple = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(__UpperCamelCase ) _UpperCamelCase : List[str] = torch.load(__UpperCamelCase ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights _UpperCamelCase : List[str] = original_checkpoint['best_state'] recursively_load_weights(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) if repo_id: print('Pushing to the hub...' ) feature_extractor.push_to_hub(__UpperCamelCase ) model.push_to_hub(__UpperCamelCase ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( """--model""", default="""encodec_24khz""", type=str, help="""The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) lowerCAmelCase__ = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
708
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case=3 , __snake_case=32 , __snake_case=3 , __snake_case=10 , __snake_case=[8, 16, 32, 64] , __snake_case=[1, 1, 2, 1] , __snake_case=True , __snake_case=True , __snake_case="relu" , __snake_case=3 , __snake_case=None , __snake_case=["stage2", "stage3", "stage4"] , __snake_case=[2, 3, 4] , __snake_case=1 , ): _UpperCamelCase : List[Any] = parent _UpperCamelCase : Dict = batch_size _UpperCamelCase : Optional[int] = image_size _UpperCamelCase : str = num_channels _UpperCamelCase : Optional[Any] = embeddings_size _UpperCamelCase : Tuple = hidden_sizes _UpperCamelCase : Dict = depths _UpperCamelCase : str = is_training _UpperCamelCase : Optional[int] = use_labels _UpperCamelCase : str = hidden_act _UpperCamelCase : Optional[int] = num_labels _UpperCamelCase : Optional[int] = scope _UpperCamelCase : Tuple = len(__snake_case) _UpperCamelCase : Dict = out_features _UpperCamelCase : Union[str, Any] = out_indices _UpperCamelCase : int = num_groups def A__ ( self): _UpperCamelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase : str = None if self.use_labels: _UpperCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels) _UpperCamelCase : str = self.get_config() return config, pixel_values, labels def A__ ( self): return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : str = BitModel(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[Any] = model(__snake_case) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Dict = self.num_labels _UpperCamelCase : Dict = BitForImageClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Dict = model(__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[Any] = BitBackbone(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = model(__snake_case) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:]) # verify backbone works with out_features=None _UpperCamelCase : Any = None _UpperCamelCase : str = BitBackbone(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Any = model(__snake_case) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , 1) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[-1], 1, 1]) # verify channels self.parent.assertEqual(len(model.channels) , 1) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]]) def A__ ( self): _UpperCamelCase : Optional[int] = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : int = config_and_inputs _UpperCamelCase : int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () a__ = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False a__ = False def A__ ( self): _UpperCamelCase : Dict = BitModelTester(self) _UpperCamelCase : Optional[Any] = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case) def A__ ( self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self): return @unittest.skip(reason='Bit does not output attentions') def A__ ( self): pass @unittest.skip(reason='Bit does not use inputs_embeds') def A__ ( self): pass @unittest.skip(reason='Bit does not support input and output embeddings') def A__ ( self): pass def A__ ( self): _UpperCamelCase , _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : int = model_class(__snake_case) _UpperCamelCase : List[Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : Optional[int] = [*signature.parameters.keys()] _UpperCamelCase : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __snake_case) def A__ ( self): _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case) def A__ ( self): _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__snake_case) def A__ ( self): _UpperCamelCase , _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Union[str, Any] = model_class(config=__snake_case) for name, module in model.named_modules(): if isinstance(__snake_case , (nn.BatchNormad, nn.GroupNorm)): self.assertTrue( torch.all(module.weight == 1) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def A__ ( self): def check_hidden_states_output(__snake_case , __snake_case , __snake_case): _UpperCamelCase : str = model_class(__snake_case) model.to(__snake_case) model.eval() with torch.no_grad(): _UpperCamelCase : Union[str, Any] = model(**self._prepare_for_class(__snake_case , __snake_case)) _UpperCamelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase : str = self.model_tester.num_stages self.assertEqual(len(__snake_case) , expected_num_stages + 1) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCamelCase , _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : List[str] = ['preactivation', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _UpperCamelCase : Any = layer_type _UpperCamelCase : Tuple = True check_hidden_states_output(__snake_case , __snake_case , __snake_case) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase : List[str] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case) @unittest.skip(reason='Bit does not use feedforward chunking') def A__ ( self): pass def A__ ( self): _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case) @slow def A__ ( self): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : Optional[Any] = BitModel.from_pretrained(__snake_case) self.assertIsNotNone(__snake_case) def lowerCamelCase_ ( ) -> Optional[int]: '''simple docstring''' _UpperCamelCase : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def A__ ( self): _UpperCamelCase : Optional[Any] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(__snake_case) _UpperCamelCase : str = self.default_image_processor _UpperCamelCase : List[str] = prepare_img() _UpperCamelCase : int = image_processor(images=__snake_case , return_tensors='pt').to(__snake_case) # forward pass with torch.no_grad(): _UpperCamelCase : Any = model(**__snake_case) # verify the logits _UpperCamelCase : Dict = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , __snake_case) _UpperCamelCase : Optional[int] = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]]).to(__snake_case) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1e-4)) @require_torch class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" a__ = (BitBackbone,) if is_torch_available() else () a__ = BitConfig a__ = False def A__ ( self): _UpperCamelCase : List[str] = BitModelTester(self)
648
0
'''simple docstring''' import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class lowercase ( unittest.TestCase ): """simple docstring""" def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=99 , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=37 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=16 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=4 , ): _UpperCamelCase : List[Any] = parent _UpperCamelCase : Optional[int] = batch_size _UpperCamelCase : List[str] = seq_length _UpperCamelCase : List[str] = is_training _UpperCamelCase : Optional[int] = use_attention_mask _UpperCamelCase : Union[str, Any] = use_token_type_ids _UpperCamelCase : List[str] = use_labels _UpperCamelCase : List[str] = vocab_size _UpperCamelCase : Optional[int] = hidden_size _UpperCamelCase : Optional[int] = num_hidden_layers _UpperCamelCase : Union[str, Any] = num_attention_heads _UpperCamelCase : Dict = intermediate_size _UpperCamelCase : List[str] = hidden_act _UpperCamelCase : Dict = hidden_dropout_prob _UpperCamelCase : Tuple = attention_probs_dropout_prob _UpperCamelCase : List[Any] = max_position_embeddings _UpperCamelCase : Optional[Any] = type_vocab_size _UpperCamelCase : int = type_sequence_label_size _UpperCamelCase : List[Any] = initializer_range _UpperCamelCase : Dict = num_choices def A__ ( self): _UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase : Dict = None if self.use_attention_mask: _UpperCamelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase : Dict = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=_lowerCAmelCase , ) return config, input_ids, attention_mask def A__ ( self): _UpperCamelCase : List[str] = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[int] = config_and_inputs _UpperCamelCase : Tuple = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class lowercase ( _lowerCAmelCase , unittest.TestCase ): """simple docstring""" a__ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def A__ ( self): _UpperCamelCase : Dict = FlaxDistilBertModelTester(self) @slow def A__ ( self): for model_class_name in self.all_model_classes: _UpperCamelCase : Any = model_class_name.from_pretrained('distilbert-base-uncased') _UpperCamelCase : Optional[int] = model(np.ones((1, 1))) self.assertIsNotNone(_lowerCAmelCase) @require_flax class lowercase ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self): _UpperCamelCase : List[Any] = FlaxDistilBertModel.from_pretrained('distilbert-base-uncased') _UpperCamelCase : str = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]]) _UpperCamelCase : str = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) _UpperCamelCase : List[str] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase)[0] _UpperCamelCase : Dict = (1, 11, 7_68) self.assertEqual(output.shape , _lowerCAmelCase) _UpperCamelCase : Dict = np.array([[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]]) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _lowerCAmelCase , atol=1e-4))
709
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowerCAmelCase__ = numpy.array([0, 0]) lowerCAmelCase__ = numpy.array([0.5, 0.8_66_02_54]) lowerCAmelCase__ = numpy.array([1, 0]) lowerCAmelCase__ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] , UpperCAmelCase_ : int ) -> list[numpy.ndarray]: '''simple docstring''' _UpperCamelCase : Tuple = initial_vectors for _ in range(UpperCAmelCase_ ): _UpperCamelCase : str = iteration_step(UpperCAmelCase_ ) return vectors def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] ) -> list[numpy.ndarray]: '''simple docstring''' _UpperCamelCase : int = [] for i, start_vector in enumerate(vectors[:-1] ): _UpperCamelCase : Union[str, Any] = vectors[i + 1] new_vectors.append(UpperCAmelCase_ ) _UpperCamelCase : Tuple = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def lowerCamelCase_ ( UpperCAmelCase_ : numpy.ndarray , UpperCAmelCase_ : float ) -> numpy.ndarray: '''simple docstring''' _UpperCamelCase : str = numpy.radians(UpperCAmelCase_ ) _UpperCamelCase , _UpperCamelCase : Optional[Any] = numpy.cos(UpperCAmelCase_ ), numpy.sin(UpperCAmelCase_ ) _UpperCamelCase : Any = numpy.array(((c, -s), (s, c)) ) return numpy.dot(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] ) -> None: '''simple docstring''' _UpperCamelCase : str = plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _UpperCamelCase , _UpperCamelCase : Dict = zip(*UpperCAmelCase_ ) plt.plot(UpperCAmelCase_ , UpperCAmelCase_ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
648
0
from __future__ import annotations from typing import Any def lowerCamelCase_ ( UpperCAmelCase_ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' if not postfix_notation: return 0 _UpperCamelCase : Any = {"""+""", """-""", """*""", """/"""} _UpperCamelCase : list[Any] = [] for token in postfix_notation: if token in operations: _UpperCamelCase : Optional[Any] = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(snake_case_ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
710
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCAmelCase__ = abspath(join(dirname(__file__), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def lowerCamelCase_ ( UpperCAmelCase_ : Any ) -> Union[str, Any]: '''simple docstring''' config.addinivalue_line( 'markers' , 'is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested' ) config.addinivalue_line( 'markers' , 'is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested' ) config.addinivalue_line('markers' , 'is_pipeline_test: mark test to run only when pipelines are tested' ) config.addinivalue_line('markers' , 'is_staging_test: mark test to run only in the staging environment' ) config.addinivalue_line('markers' , 'accelerate_tests: mark test that require accelerate' ) config.addinivalue_line('markers' , 'tool_tests: mark the tool tests that are run on their specific schedule' ) def lowerCamelCase_ ( UpperCAmelCase_ : Optional[int] ) -> List[Any]: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : Any ) -> List[Any]: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main _UpperCamelCase : str = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(UpperCAmelCase_ , id=UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict ) -> Tuple: '''simple docstring''' if exitstatus == 5: _UpperCamelCase : List[Any] = 0 # Doctest custom flag to ignore output. lowerCAmelCase__ = doctest.register_optionflag("""IGNORE_RESULT""") lowerCAmelCase__ = doctest.OutputChecker class lowercase ( _lowercase ): """simple docstring""" def A__ ( self , __snake_case , __snake_case , __snake_case): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , __snake_case , __snake_case , __snake_case) lowerCAmelCase__ = CustomOutputChecker lowerCAmelCase__ = HfDoctestModule lowerCAmelCase__ = HfDocTestParser
648
0
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig lowerCAmelCase__ = logging.get_logger(__name__) class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case): _UpperCamelCase : int = question_encoder _UpperCamelCase : int = generator _UpperCamelCase : Optional[int] = self.question_encoder def A__ ( self , __snake_case): if os.path.isfile(UpperCamelCase__): raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''') os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__) _UpperCamelCase : Optional[Any] = os.path.join(UpperCamelCase__ , 'question_encoder_tokenizer') _UpperCamelCase : List[Any] = os.path.join(UpperCamelCase__ , 'generator_tokenizer') self.question_encoder.save_pretrained(UpperCamelCase__) self.generator.save_pretrained(UpperCamelCase__) @classmethod def A__ ( cls , __snake_case , **__snake_case): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer _UpperCamelCase : int = kwargs.pop('config' , UpperCamelCase__) if config is None: _UpperCamelCase : Any = RagConfig.from_pretrained(UpperCamelCase__) _UpperCamelCase : Optional[int] = AutoTokenizer.from_pretrained( UpperCamelCase__ , config=config.question_encoder , subfolder='question_encoder_tokenizer') _UpperCamelCase : List[Any] = AutoTokenizer.from_pretrained( UpperCamelCase__ , config=config.generator , subfolder='generator_tokenizer') return cls(question_encoder=UpperCamelCase__ , generator=UpperCamelCase__) def __call__( self , *__snake_case , **__snake_case): return self.current_tokenizer(*UpperCamelCase__ , **UpperCamelCase__) def A__ ( self , *__snake_case , **__snake_case): return self.generator.batch_decode(*UpperCamelCase__ , **UpperCamelCase__) def A__ ( self , *__snake_case , **__snake_case): return self.generator.decode(*UpperCamelCase__ , **UpperCamelCase__) def A__ ( self): _UpperCamelCase : Dict = self.question_encoder def A__ ( self): _UpperCamelCase : Optional[int] = self.generator def A__ ( self , __snake_case , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = "longest" , __snake_case = None , __snake_case = True , **__snake_case , ): warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , UpperCamelCase__ , ) if max_length is None: _UpperCamelCase : str = self.current_tokenizer.model_max_length _UpperCamelCase : Any = self( UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_tensors=UpperCamelCase__ , max_length=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , **UpperCamelCase__ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: _UpperCamelCase : List[Any] = self.current_tokenizer.model_max_length _UpperCamelCase : Dict = self( text_target=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_tensors=UpperCamelCase__ , padding=UpperCamelCase__ , max_length=UpperCamelCase__ , truncation=UpperCamelCase__ , **UpperCamelCase__ , ) _UpperCamelCase : Any = labels['''input_ids'''] return model_inputs
711
lowerCAmelCase__ = range(2, 2_0 + 1) lowerCAmelCase__ = [1_0**k for k in range(ks[-1] + 1)] lowerCAmelCase__ = {} def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int ) -> Tuple: '''simple docstring''' _UpperCamelCase : Dict = sum(a_i[j] for j in range(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) ) _UpperCamelCase : Optional[int] = sum(a_i[j] * base[j] for j in range(min(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) ) ) _UpperCamelCase , _UpperCamelCase : Dict = 0, 0 _UpperCamelCase : Optional[int] = n - i _UpperCamelCase : Union[str, Any] = memo.get(UpperCAmelCase_ ) if sub_memo is not None: _UpperCamelCase : str = sub_memo.get(UpperCAmelCase_ ) if jumps is not None and len(UpperCAmelCase_ ) > 0: # find and make the largest jump without going over _UpperCamelCase : str = -1 for _k in range(len(UpperCAmelCase_ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _UpperCamelCase : Optional[Any] = _k break if max_jump >= 0: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = jumps[max_jump] # since the difference between jumps is cached, add c _UpperCamelCase : Tuple = diff + c for j in range(min(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) ): _UpperCamelCase , _UpperCamelCase : Dict = divmod(UpperCAmelCase_ , 1_0 ) if new_c > 0: add(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) else: _UpperCamelCase : Union[str, Any] = [] else: _UpperCamelCase : List[Any] = {c: []} _UpperCamelCase : Optional[int] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _UpperCamelCase , _UpperCamelCase : Optional[Any] = next_term(UpperCAmelCase_ , k - 1 , i + dn , UpperCAmelCase_ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _UpperCamelCase , _UpperCamelCase : Any = compute(UpperCAmelCase_ , UpperCAmelCase_ , i + dn , UpperCAmelCase_ ) diff += _diff dn += terms_jumped _UpperCamelCase : List[str] = sub_memo[c] # keep jumps sorted by # of terms skipped _UpperCamelCase : Union[str, Any] = 0 while j < len(UpperCAmelCase_ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCAmelCase_ , (diff, dn, k) ) return (diff, dn) def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any ) -> Dict: '''simple docstring''' if i >= n: return 0, i if k > len(UpperCAmelCase_ ): a_i.extend([0 for _ in range(k - len(UpperCAmelCase_ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _UpperCamelCase : Any = i _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Any = 0, 0, 0 for j in range(len(UpperCAmelCase_ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _UpperCamelCase : Union[str, Any] = ds_c + ds_b diff += addend _UpperCamelCase : Union[str, Any] = 0 for j in range(UpperCAmelCase_ ): _UpperCamelCase : Union[str, Any] = a_i[j] + addend _UpperCamelCase , _UpperCamelCase : Any = divmod(UpperCAmelCase_ , 1_0 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return diff, i - start_i def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any ) -> Dict: '''simple docstring''' for j in range(UpperCAmelCase_ , len(UpperCAmelCase_ ) ): _UpperCamelCase : List[str] = digits[j] + addend if s >= 1_0: _UpperCamelCase , _UpperCamelCase : Any = divmod(UpperCAmelCase_ , 1_0 ) _UpperCamelCase : Union[str, Any] = addend // 1_0 + quotient else: _UpperCamelCase : Dict = s _UpperCamelCase : Optional[Any] = addend // 1_0 if addend == 0: break while addend > 0: _UpperCamelCase , _UpperCamelCase : Dict = divmod(UpperCAmelCase_ , 1_0 ) digits.append(UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : int = 1_0**1_5 ) -> int: '''simple docstring''' _UpperCamelCase : Optional[Any] = [1] _UpperCamelCase : Optional[int] = 1 _UpperCamelCase : int = 0 while True: _UpperCamelCase , _UpperCamelCase : List[Any] = next_term(UpperCAmelCase_ , 2_0 , i + dn , UpperCAmelCase_ ) dn += terms_jumped if dn == n - i: break _UpperCamelCase : str = 0 for j in range(len(UpperCAmelCase_ ) ): a_n += digits[j] * 1_0**j return a_n if __name__ == "__main__": print(f'{solution() = }')
648
0
import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowerCamelCase_ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple ) -> Optional[Any]: '''simple docstring''' with open(lowerCamelCase_ ) as metadata_file: _UpperCamelCase : int = json.load(lowerCamelCase_ ) _UpperCamelCase : str = LukeConfig(use_entity_aware_attention=lowerCamelCase_ , **metadata['model_config'] ) # Load in the weights from the checkpoint_path _UpperCamelCase : List[Any] = torch.load(lowerCamelCase_ , map_location='cpu' ) # Load the entity vocab file _UpperCamelCase : Dict = load_entity_vocab(lowerCamelCase_ ) _UpperCamelCase : Tuple = RobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks _UpperCamelCase : int = AddedToken('<ent>' , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) _UpperCamelCase : List[str] = AddedToken('<ent2>' , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_ , LukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ ) _UpperCamelCase : Any = LukeTokenizer.from_pretrained(lowerCamelCase_ ) # Initialize the embeddings of the special tokens _UpperCamelCase : Tuple = state_dict['embeddings.word_embeddings.weight'] _UpperCamelCase : Optional[int] = word_emb[tokenizer.convert_tokens_to_ids(['@'] )[0]].unsqueeze(0 ) _UpperCamelCase : Optional[Any] = word_emb[tokenizer.convert_tokens_to_ids(['#'] )[0]].unsqueeze(0 ) _UpperCamelCase : Optional[Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _UpperCamelCase : Optional[int] = F'''encoder.layer.{layer_index}.attention.self.''' _UpperCamelCase : Tuple = state_dict[prefix + matrix_name] _UpperCamelCase : Optional[int] = state_dict[prefix + matrix_name] _UpperCamelCase : Any = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _UpperCamelCase : Union[str, Any] = state_dict['entity_embeddings.entity_embeddings.weight'] _UpperCamelCase : str = entity_emb[entity_vocab['[MASK]']] _UpperCamelCase : Any = LukeModel(config=lowerCamelCase_ ).eval() _UpperCamelCase , _UpperCamelCase : int = model.load_state_dict(lowerCamelCase_ , strict=lowerCamelCase_ ) if not (len(lowerCamelCase_ ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(F'''Missing keys {", ".join(lowerCamelCase_ )}. Expected only missing embeddings.position_ids''' ) if not (all(key.startswith('entity_predictions' ) or key.startswith('lm_head' ) for key in unexpected_keys )): raise ValueError( 'Unexpected keys' F''' {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}''' ) # Check outputs _UpperCamelCase : int = LukeTokenizer.from_pretrained(lowerCamelCase_ , task='entity_classification' ) _UpperCamelCase : Optional[int] = ( 'Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the' ' new world number one avoid a humiliating second- round exit at Wimbledon .' ) _UpperCamelCase : List[str] = (3_9, 4_2) _UpperCamelCase : Tuple = tokenizer(lowerCamelCase_ , entity_spans=[span] , add_prefix_space=lowerCamelCase_ , return_tensors='pt' ) _UpperCamelCase : Dict = model(**lowerCamelCase_ ) # Verify word hidden states if model_size == "large": _UpperCamelCase : Optional[Any] = torch.Size((1, 4_2, 1_0_2_4) ) _UpperCamelCase : Optional[Any] = torch.tensor( [[0.0_1_3_3, 0.0_8_6_5, 0.0_0_9_5], [0.3_0_9_3, -0.2_5_7_6, -0.7_4_1_8], [-0.1_7_2_0, -0.2_1_1_7, -0.2_8_6_9]] ) else: # base _UpperCamelCase : Tuple = torch.Size((1, 4_2, 7_6_8) ) _UpperCamelCase : List[str] = torch.tensor([[0.0_0_3_7, 0.1_3_6_8, -0.0_0_9_1], [0.1_0_9_9, 0.3_3_2_9, -0.1_0_9_5], [0.0_7_6_5, 0.5_3_3_5, 0.1_1_7_9]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCamelCase_ , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": _UpperCamelCase : str = torch.Size((1, 1, 1_0_2_4) ) _UpperCamelCase : Union[str, Any] = torch.tensor([[0.0_4_6_6, -0.0_1_0_6, -0.0_1_7_9]] ) else: # base _UpperCamelCase : Tuple = torch.Size((1, 1, 7_6_8) ) _UpperCamelCase : Tuple = torch.tensor([[0.1_4_5_7, 0.1_0_4_4, 0.0_1_7_4]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowerCamelCase_ , atol=1e-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(lowerCamelCase_ ) ) model.save_pretrained(lowerCamelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : Any ) -> Dict: '''simple docstring''' _UpperCamelCase : Dict = {} with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: for index, line in enumerate(lowerCamelCase_ ): _UpperCamelCase , _UpperCamelCase : Optional[Any] = line.rstrip().split('\t' ) _UpperCamelCase : Optional[int] = index return entity_vocab if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) lowerCAmelCase__ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
712
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowercase ( _lowercase ): """simple docstring""" a__ = "vit_mae" def __init__( self , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=2_24 , __snake_case=16 , __snake_case=3 , __snake_case=True , __snake_case=16 , __snake_case=5_12 , __snake_case=8 , __snake_case=20_48 , __snake_case=0.7_5 , __snake_case=False , **__snake_case , ): super().__init__(**__snake_case) _UpperCamelCase : Optional[int] = hidden_size _UpperCamelCase : Optional[int] = num_hidden_layers _UpperCamelCase : Tuple = num_attention_heads _UpperCamelCase : List[str] = intermediate_size _UpperCamelCase : str = hidden_act _UpperCamelCase : List[str] = hidden_dropout_prob _UpperCamelCase : List[Any] = attention_probs_dropout_prob _UpperCamelCase : str = initializer_range _UpperCamelCase : Any = layer_norm_eps _UpperCamelCase : int = image_size _UpperCamelCase : Any = patch_size _UpperCamelCase : List[Any] = num_channels _UpperCamelCase : Union[str, Any] = qkv_bias _UpperCamelCase : str = decoder_num_attention_heads _UpperCamelCase : Union[str, Any] = decoder_hidden_size _UpperCamelCase : Union[str, Any] = decoder_num_hidden_layers _UpperCamelCase : Any = decoder_intermediate_size _UpperCamelCase : int = mask_ratio _UpperCamelCase : List[Any] = norm_pix_loss
648
0
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=False , __snake_case=False , __snake_case=False , __snake_case=2 , __snake_case=99 , __snake_case=0 , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=2 , __snake_case=4 , __snake_case="last" , __snake_case=True , __snake_case=None , __snake_case=0 , ): _UpperCamelCase : int = parent _UpperCamelCase : Optional[Any] = batch_size _UpperCamelCase : Union[str, Any] = seq_length _UpperCamelCase : Optional[int] = is_training _UpperCamelCase : Any = use_input_lengths _UpperCamelCase : Any = use_token_type_ids _UpperCamelCase : List[Any] = use_labels _UpperCamelCase : List[Any] = gelu_activation _UpperCamelCase : Union[str, Any] = sinusoidal_embeddings _UpperCamelCase : List[str] = causal _UpperCamelCase : str = asm _UpperCamelCase : Union[str, Any] = n_langs _UpperCamelCase : Union[str, Any] = vocab_size _UpperCamelCase : Optional[Any] = n_special _UpperCamelCase : List[str] = hidden_size _UpperCamelCase : Dict = num_hidden_layers _UpperCamelCase : Tuple = num_attention_heads _UpperCamelCase : Dict = hidden_dropout_prob _UpperCamelCase : List[Any] = attention_probs_dropout_prob _UpperCamelCase : List[Any] = max_position_embeddings _UpperCamelCase : Optional[Any] = type_sequence_label_size _UpperCamelCase : Optional[int] = initializer_range _UpperCamelCase : List[str] = num_labels _UpperCamelCase : str = num_choices _UpperCamelCase : Optional[Any] = summary_type _UpperCamelCase : List[Any] = use_proj _UpperCamelCase : Optional[int] = scope _UpperCamelCase : Any = bos_token_id def A__ ( self): _UpperCamelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase : Dict = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase : str = None if self.use_input_lengths: _UpperCamelCase : Dict = ( ids_tensor([self.batch_size] , vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length _UpperCamelCase : Union[str, Any] = None if self.use_token_type_ids: _UpperCamelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.n_langs) _UpperCamelCase : Optional[int] = None _UpperCamelCase : Optional[Any] = None _UpperCamelCase : List[str] = None if self.use_labels: _UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase : Union[str, Any] = ids_tensor([self.batch_size] , 2).float() _UpperCamelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase : Tuple = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def A__ ( self): return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ): _UpperCamelCase : Dict = XLMModel(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[int] = model(__snake_case , lengths=__snake_case , langs=__snake_case) _UpperCamelCase : Any = model(__snake_case , langs=__snake_case) _UpperCamelCase : str = model(__snake_case) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ): _UpperCamelCase : Dict = XLMWithLMHeadModel(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = model(__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ): _UpperCamelCase : Any = XLMForQuestionAnsweringSimple(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = model(__snake_case) _UpperCamelCase : Any = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case) _UpperCamelCase : List[str] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ): _UpperCamelCase : List[str] = XLMForQuestionAnswering(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : str = model(__snake_case) _UpperCamelCase : Union[str, Any] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , p_mask=__snake_case , ) _UpperCamelCase : Any = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , ) (_UpperCamelCase ) : str = result_with_labels.to_tuple() _UpperCamelCase : Any = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case) (_UpperCamelCase ) : List[str] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , ()) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ): _UpperCamelCase : List[str] = XLMForSequenceClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : str = model(__snake_case) _UpperCamelCase : int = model(__snake_case , labels=__snake_case) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ): _UpperCamelCase : Optional[int] = self.num_labels _UpperCamelCase : List[str] = XLMForTokenClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : int = model(__snake_case , attention_mask=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ): _UpperCamelCase : str = self.num_choices _UpperCamelCase : Union[str, Any] = XLMForMultipleChoice(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : List[str] = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : List[str] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : Optional[int] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def A__ ( self): _UpperCamelCase : List[str] = self.prepare_config_and_inputs() ( _UpperCamelCase ) : int = config_and_inputs _UpperCamelCase : Any = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths} return config, inputs_dict @require_torch class lowercase ( _A , _A , _A , unittest.TestCase ): """simple docstring""" a__ = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) a__ = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable a__ = ( { "feature-extraction": XLMModel, "fill-mask": XLMWithLMHeadModel, "question-answering": XLMForQuestionAnsweringSimple, "text-classification": XLMForSequenceClassification, "text-generation": XLMWithLMHeadModel, "token-classification": XLMForTokenClassification, "zero-shot": XLMForSequenceClassification, } if is_torch_available() else {} ) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast') ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def A__ ( self , __snake_case , __snake_case , __snake_case=False): _UpperCamelCase : Tuple = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": _UpperCamelCase : Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case) _UpperCamelCase : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case) return inputs_dict def A__ ( self): _UpperCamelCase : Any = XLMModelTester(self) _UpperCamelCase : Union[str, Any] = ConfigTester(self , config_class=__snake_case , emb_dim=37) def A__ ( self): self.config_tester.run_common_tests() def A__ ( self): _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__snake_case) def A__ ( self): _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__snake_case) def A__ ( self): _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__snake_case) def A__ ( self): _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__snake_case) def A__ ( self): _UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__snake_case) def A__ ( self): _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__snake_case) def A__ ( self): _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__snake_case) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=False , __snake_case=1): self.assertIsInstance(__snake_case , __snake_case) self.assertListEqual( [isinstance(__snake_case , __snake_case) for iter_attentions in attentions] , [True] * len(__snake_case)) self.assertEqual(len(__snake_case) , (max_length - min_length) * num_beam_groups) for idx, iter_attentions in enumerate(__snake_case): # adds PAD dummy token _UpperCamelCase : List[str] = min_length + idx + 1 _UpperCamelCase : Dict = min_length + idx + 1 _UpperCamelCase : List[str] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__snake_case)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=False , __snake_case=1): self.assertIsInstance(__snake_case , __snake_case) self.assertListEqual( [isinstance(__snake_case , __snake_case) for iter_hidden_states in hidden_states] , [True] * len(__snake_case) , ) self.assertEqual(len(__snake_case) , (max_length - min_length) * num_beam_groups) for idx, iter_hidden_states in enumerate(__snake_case): # adds PAD dummy token _UpperCamelCase : Dict = min_length + idx + 1 _UpperCamelCase : str = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__snake_case) , ) pass @slow def A__ ( self): for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : str = XLMModel.from_pretrained(__snake_case) self.assertIsNotNone(__snake_case) @require_torch class lowercase ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self): _UpperCamelCase : Optional[int] = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048') model.to(__snake_case) _UpperCamelCase : Optional[int] = torch.tensor([[14, 4_47]] , dtype=torch.long , device=__snake_case) # the president _UpperCamelCase : str = [ 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference _UpperCamelCase : Optional[Any] = model.generate(__snake_case , do_sample=__snake_case) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __snake_case)
713
import functools def lowerCamelCase_ ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int] ) -> int: '''simple docstring''' if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or not all(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(UpperCAmelCase_ ) != 3 or not all(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(UpperCAmelCase_ ) == 0: return 0 if min(UpperCAmelCase_ ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(UpperCAmelCase_ ) >= 3_6_6: raise ValueError('All days elements should be less than 366' ) _UpperCamelCase : Union[str, Any] = set(UpperCAmelCase_ ) @functools.cache def dynamic_programming(UpperCAmelCase_ : int ) -> int: if index > 3_6_5: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 3_0 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
648
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """microsoft/deberta-v2-xlarge""": """https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json""", """microsoft/deberta-v2-xxlarge""": """https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json""", """microsoft/deberta-v2-xlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json""" ), """microsoft/deberta-v2-xxlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json""" ), } class lowercase ( __lowercase ): """simple docstring""" a__ = 'deberta-v2' def __init__( self , __snake_case=12_81_00 , __snake_case=15_36 , __snake_case=24 , __snake_case=24 , __snake_case=61_44 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=0 , __snake_case=0.0_2 , __snake_case=1e-7 , __snake_case=False , __snake_case=-1 , __snake_case=0 , __snake_case=True , __snake_case=None , __snake_case=0 , __snake_case="gelu" , **__snake_case , ): super().__init__(**__A) _UpperCamelCase : Tuple = hidden_size _UpperCamelCase : List[Any] = num_hidden_layers _UpperCamelCase : Optional[int] = num_attention_heads _UpperCamelCase : Union[str, Any] = intermediate_size _UpperCamelCase : int = hidden_act _UpperCamelCase : List[str] = hidden_dropout_prob _UpperCamelCase : Tuple = attention_probs_dropout_prob _UpperCamelCase : List[Any] = max_position_embeddings _UpperCamelCase : Optional[int] = type_vocab_size _UpperCamelCase : Tuple = initializer_range _UpperCamelCase : Any = relative_attention _UpperCamelCase : Union[str, Any] = max_relative_positions _UpperCamelCase : List[Any] = pad_token_id _UpperCamelCase : List[str] = position_biased_input # Backwards compatibility if type(__A) == str: _UpperCamelCase : List[Any] = [x.strip() for x in pos_att_type.lower().split('|')] _UpperCamelCase : Tuple = pos_att_type _UpperCamelCase : List[Any] = vocab_size _UpperCamelCase : int = layer_norm_eps _UpperCamelCase : Optional[int] = kwargs.get('pooler_hidden_size' , __A) _UpperCamelCase : List[Any] = pooler_dropout _UpperCamelCase : Optional[int] = pooler_hidden_act class lowercase ( __lowercase ): """simple docstring""" @property def A__ ( self): if self.task == "multiple-choice": _UpperCamelCase : Dict = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCamelCase : List[str] = {0: 'batch', 1: 'sequence'} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)]) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)]) @property def A__ ( self): return 12 def A__ ( self , __snake_case , __snake_case = -1 , __snake_case = -1 , __snake_case = -1 , __snake_case = False , __snake_case = None , __snake_case = 3 , __snake_case = 40 , __snake_case = 40 , __snake_case = None , ): _UpperCamelCase : List[str] = super().generate_dummy_inputs(preprocessor=__A , framework=__A) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
714
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=99 , __snake_case=64 , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=37 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=16 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=3 , __snake_case=4 , __snake_case=None , ): _UpperCamelCase : List[Any] = parent _UpperCamelCase : Optional[Any] = batch_size _UpperCamelCase : int = seq_length _UpperCamelCase : str = is_training _UpperCamelCase : Tuple = use_input_mask _UpperCamelCase : Union[str, Any] = use_token_type_ids _UpperCamelCase : Union[str, Any] = use_labels _UpperCamelCase : Optional[Any] = vocab_size _UpperCamelCase : List[Any] = hidden_size _UpperCamelCase : Optional[Any] = embedding_size _UpperCamelCase : str = num_hidden_layers _UpperCamelCase : str = num_attention_heads _UpperCamelCase : int = intermediate_size _UpperCamelCase : int = hidden_act _UpperCamelCase : Tuple = hidden_dropout_prob _UpperCamelCase : int = attention_probs_dropout_prob _UpperCamelCase : Tuple = max_position_embeddings _UpperCamelCase : List[str] = type_vocab_size _UpperCamelCase : Dict = type_sequence_label_size _UpperCamelCase : List[str] = initializer_range _UpperCamelCase : Optional[Any] = num_labels _UpperCamelCase : Tuple = num_choices _UpperCamelCase : List[str] = scope def A__ ( self): _UpperCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase : Any = None if self.use_input_mask: _UpperCamelCase : int = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase : Optional[Any] = None if self.use_token_type_ids: _UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase : int = None _UpperCamelCase : List[str] = None _UpperCamelCase : Dict = None if self.use_labels: _UpperCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self): return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : List[str] = MegatronBertModel(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case) _UpperCamelCase : Dict = model(__snake_case , token_type_ids=__snake_case) _UpperCamelCase : Optional[Any] = model(__snake_case) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : int = MegatronBertForMaskedLM(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Dict = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : str = MegatronBertForCausalLM(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Tuple = MegatronBertForNextSentencePrediction(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[Any] = MegatronBertForPreTraining(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[str] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , next_sentence_label=__snake_case , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : int = MegatronBertForQuestionAnswering(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[int] = self.num_labels _UpperCamelCase : Union[str, Any] = MegatronBertForSequenceClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Any = self.num_labels _UpperCamelCase : Optional[int] = MegatronBertForTokenClassification(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Tuple = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : List[str] = self.num_choices _UpperCamelCase : Optional[int] = MegatronBertForMultipleChoice(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : List[Any] = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : Optional[Any] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : Union[str, Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def A__ ( self): _UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) : Optional[int] = config_and_inputs _UpperCamelCase : int = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) a__ = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) a__ = True # test_resize_embeddings = False a__ = False def A__ ( self , __snake_case , __snake_case , __snake_case=False): _UpperCamelCase : str = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case) if return_labels: if model_class in get_values(__snake_case): _UpperCamelCase : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__snake_case) _UpperCamelCase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case) return inputs_dict def A__ ( self): _UpperCamelCase : Any = MegatronBertModelTester(self) _UpperCamelCase : int = ConfigTester(self , config_class=__snake_case , hidden_size=37) def A__ ( self): self.config_tester.run_common_tests() def A__ ( self): _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__snake_case) def A__ ( self): _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__snake_case) def A__ ( self): _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__snake_case) def A__ ( self): _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__snake_case) def A__ ( self): _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__snake_case) def A__ ( self): _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__snake_case) def A__ ( self): _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__snake_case) def A__ ( self): _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__snake_case) def lowerCamelCase_ ( UpperCAmelCase_ : str ) -> Optional[Any]: '''simple docstring''' return torch.tensor( UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ , ) lowerCAmelCase__ = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip('Model is not available.') def A__ ( self): _UpperCamelCase : int = 'nvidia/megatron-bert-uncased-345m' if "MYDIR" in os.environ: _UpperCamelCase : int = os.path.join(os.environ['MYDIR'] , __snake_case) _UpperCamelCase : Optional[int] = MegatronBertModel.from_pretrained(__snake_case) model.to(__snake_case) model.half() _UpperCamelCase : Optional[Any] = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]]) with torch.no_grad(): _UpperCamelCase : str = model(__snake_case)[0] _UpperCamelCase : Optional[int] = torch.Size((1, 9, 10_24)) self.assertEqual(output.shape , __snake_case) _UpperCamelCase : Union[str, Any] = [-0.6_0_4_0, -0.2_5_1_7, -0.1_0_2_5, 0.3_4_2_0, -0.6_7_5_8, -0.0_0_1_7, -0.1_0_8_9, -0.1_9_9_0, 0.5_7_2_8] for ii in range(3): for jj in range(3): _UpperCamelCase : Optional[Any] = output[0, ii, jj] _UpperCamelCase : Dict = expected[3 * ii + jj] _UpperCamelCase : Optional[int] = 'ii={} jj={} a={} b={}'.format(__snake_case , __snake_case , __snake_case , __snake_case) self.assertTrue(math.isclose(__snake_case , __snake_case , rel_tol=__snake_case , abs_tol=__snake_case) , msg=__snake_case)
648
0
from __future__ import annotations def lowerCamelCase_ ( UpperCAmelCase_ : list[int | float] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> Dict: '''simple docstring''' if len(UpperCamelCase__ ) == 0: raise ValueError('find_max() arg is an empty sequence' ) if ( left >= len(UpperCamelCase__ ) or left < -len(UpperCamelCase__ ) or right >= len(UpperCamelCase__ ) or right < -len(UpperCamelCase__ ) ): raise IndexError('list index out of range' ) if left == right: return nums[left] _UpperCamelCase : Dict = (left + right) >> 1 # the middle _UpperCamelCase : Tuple = find_max(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # find max in range[left, mid] _UpperCamelCase : Any = find_max(UpperCamelCase__ , mid + 1 , UpperCamelCase__ ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
715
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = """▁""" lowerCAmelCase__ = {"""vocab_file""": """sentencepiece.bpe.model"""} lowerCAmelCase__ = { """vocab_file""": { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model""" ), } } lowerCAmelCase__ = { """xlm-roberta-base""": 5_1_2, """xlm-roberta-large""": 5_1_2, """xlm-roberta-large-finetuned-conll02-dutch""": 5_1_2, """xlm-roberta-large-finetuned-conll02-spanish""": 5_1_2, """xlm-roberta-large-finetuned-conll03-english""": 5_1_2, """xlm-roberta-large-finetuned-conll03-german""": 5_1_2, } class lowercase ( _lowercase ): """simple docstring""" a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = ["input_ids", "attention_mask"] def __init__( self , __snake_case , __snake_case="<s>" , __snake_case="</s>" , __snake_case="</s>" , __snake_case="<s>" , __snake_case="<unk>" , __snake_case="<pad>" , __snake_case="<mask>" , __snake_case = None , **__snake_case , ): # Mask token behave like a normal word, i.e. include the space before it _UpperCamelCase : Dict = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case) if isinstance(__snake_case , __snake_case) else mask_token _UpperCamelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) _UpperCamelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(__snake_case)) _UpperCamelCase : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _UpperCamelCase : int = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _UpperCamelCase : List[Any] = 1 _UpperCamelCase : Any = len(self.sp_model) + self.fairseq_offset _UpperCamelCase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self): _UpperCamelCase : List[Any] = self.__dict__.copy() _UpperCamelCase : Optional[Any] = None _UpperCamelCase : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self , __snake_case): _UpperCamelCase : int = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): _UpperCamelCase : Tuple = {} _UpperCamelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) def A__ ( self , __snake_case , __snake_case = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCamelCase : Tuple = [self.cls_token_id] _UpperCamelCase : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self , __snake_case , __snake_case = None , __snake_case = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case) if token_ids_a is None: return [1] + ([0] * len(__snake_case)) + [1] return [1] + ([0] * len(__snake_case)) + [1, 1] + ([0] * len(__snake_case)) + [1] def A__ ( self , __snake_case , __snake_case = None): _UpperCamelCase : Optional[Any] = [self.sep_token_id] _UpperCamelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def A__ ( self): return len(self.sp_model) + self.fairseq_offset + 1 # Add the <mask> token def A__ ( self): _UpperCamelCase : List[str] = {self.convert_ids_to_tokens(__snake_case): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def A__ ( self , __snake_case): return self.sp_model.encode(__snake_case , out_type=__snake_case) def A__ ( self , __snake_case): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCamelCase : str = self.sp_model.PieceToId(__snake_case) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A__ ( self , __snake_case): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def A__ ( self , __snake_case): _UpperCamelCase : Optional[int] = ''.join(__snake_case).replace(__snake_case , ' ').strip() return out_string def A__ ( self , __snake_case , __snake_case = None): if not os.path.isdir(__snake_case): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return _UpperCamelCase : str = os.path.join( __snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(__snake_case) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , __snake_case) elif not os.path.isfile(self.vocab_file): with open(__snake_case , 'wb') as fi: _UpperCamelCase : Any = self.sp_model.serialized_model_proto() fi.write(__snake_case) return (out_vocab_file,)
648
0
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py lowerCAmelCase__ = '''src/diffusers''' # Matches is_xxx_available() lowerCAmelCase__ = re.compile(R"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla lowerCAmelCase__ = re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") lowerCAmelCase__ = ''' {0} = None ''' lowerCAmelCase__ = ''' class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) ''' lowerCAmelCase__ = ''' def {0}(*args, **kwargs): requires_backends({0}, {1}) ''' def lowerCamelCase_ ( UpperCAmelCase_ : str ) -> List[str]: '''simple docstring''' _UpperCamelCase : List[Any] = _re_backend.findall(_UpperCAmelCase ) if len(_UpperCAmelCase ) == 0: return None return "_and_".join(_UpperCAmelCase ) def lowerCamelCase_ ( ) -> List[str]: '''simple docstring''' with open(os.path.join(_UpperCAmelCase , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: _UpperCamelCase : Optional[Any] = f.readlines() # Get to the point we do the actual imports for type checking _UpperCamelCase : List[str] = 0 _UpperCamelCase : str = {} # Go through the end of the file while line_index < len(_UpperCAmelCase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block _UpperCamelCase : List[Any] = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('else:' ): line_index += 1 line_index += 1 _UpperCamelCase : Optional[Any] = [] # Until we unindent, add backend objects to the list while line_index < len(_UpperCAmelCase ) and len(lines[line_index] ) > 1: _UpperCamelCase : Tuple = lines[line_index] _UpperCamelCase : str = _re_single_line_import.search(_UpperCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(_UpperCAmelCase ) > 0: _UpperCamelCase : Tuple = objects else: line_index += 1 return backend_specific_objects def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple ) -> Tuple: '''simple docstring''' if name.isupper(): return DUMMY_CONSTANT.format(_UpperCAmelCase ) elif name.islower(): return DUMMY_FUNCTION.format(_UpperCAmelCase , _UpperCAmelCase ) else: return DUMMY_CLASS.format(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase_ ( UpperCAmelCase_ : int=None ) -> Union[str, Any]: '''simple docstring''' if backend_specific_objects is None: _UpperCamelCase : Union[str, Any] = read_init() # For special correspondence backend to module name as used in the function requires_modulename _UpperCamelCase : Dict = {} for backend, objects in backend_specific_objects.items(): _UpperCamelCase : int = '[' + ', '.join(F'''"{b}"''' for b in backend.split('_and_' ) ) + ']' _UpperCamelCase : Union[str, Any] = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(_UpperCAmelCase , _UpperCAmelCase ) for o in objects] ) _UpperCamelCase : Tuple = dummy_file return dummy_files def lowerCamelCase_ ( UpperCAmelCase_ : List[str]=False ) -> str: '''simple docstring''' _UpperCamelCase : List[str] = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py _UpperCamelCase : Any = {'torch': 'pt'} # Locate actual dummy modules and read their content. _UpperCamelCase : int = os.path.join(_UpperCAmelCase , 'utils' ) _UpperCamelCase : Any = { backend: os.path.join(_UpperCAmelCase , F'''dummy_{short_names.get(_UpperCAmelCase , _UpperCAmelCase )}_objects.py''' ) for backend in dummy_files.keys() } _UpperCamelCase : Optional[Any] = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(_UpperCAmelCase ): with open(_UpperCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: _UpperCamelCase : Dict = f.read() else: _UpperCamelCase : Optional[int] = '' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'''Updating diffusers.utils.dummy_{short_names.get(_UpperCAmelCase , _UpperCAmelCase )}_objects.py as the main ''' '__init__ has new objects.' ) with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( 'The main __init__ has objects that are not present in ' F'''diffusers.utils.dummy_{short_names.get(_UpperCAmelCase , _UpperCAmelCase )}_objects.py. Run `make fix-copies` ''' 'to fix this.' ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") lowerCAmelCase__ = parser.parse_args() check_dummies(args.fix_and_overwrite)
716
from ...processing_utils import ProcessorMixin class lowercase ( _lowercase ): """simple docstring""" a__ = ["image_processor", "feature_extractor"] a__ = "TvltImageProcessor" a__ = "TvltFeatureExtractor" def __init__( self , __snake_case , __snake_case): super().__init__(image_processor=__snake_case , feature_extractor=__snake_case) _UpperCamelCase : List[str] = image_processor _UpperCamelCase : Dict = feature_extractor def __call__( self , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=False , __snake_case=False , *__snake_case , **__snake_case , ): if images is None and audio is None: raise ValueError('You need to specify either an `images` or `audio` input to process.') _UpperCamelCase : Union[str, Any] = None if images is not None: _UpperCamelCase : Tuple = self.image_processor(__snake_case , mask_pixel=__snake_case , *__snake_case , **__snake_case) if images_mixed is not None: _UpperCamelCase : Union[str, Any] = self.image_processor(__snake_case , is_mixed=__snake_case , *__snake_case , **__snake_case) if audio is not None: _UpperCamelCase : Tuple = self.feature_extractor( __snake_case , *__snake_case , sampling_rate=__snake_case , mask_audio=__snake_case , **__snake_case) _UpperCamelCase : Tuple = {} if audio is not None: output_dict.update(__snake_case) if images is not None: output_dict.update(__snake_case) if images_mixed_dict is not None: output_dict.update(__snake_case) return output_dict @property def A__ ( self): _UpperCamelCase : List[Any] = self.image_processor.model_input_names _UpperCamelCase : List[Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
648
0
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def lowerCamelCase_ ( UpperCAmelCase_ : str ) -> Tuple: '''simple docstring''' _UpperCamelCase : Dict = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> int: '''simple docstring''' _UpperCamelCase : Optional[int] = emb.weight.shape _UpperCamelCase : str = nn.Linear(UpperCAmelCase_ , UpperCAmelCase_ , bias=UpperCAmelCase_ ) _UpperCamelCase : int = emb.weight.data return lin_layer def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : Dict=None ) -> List[str]: '''simple docstring''' _UpperCamelCase : Optional[Any] = {} for old_key in state_dict.keys(): _UpperCamelCase : Optional[int] = old_key if "moe_layer.experts." in key: if expert_idx is not None: _UpperCamelCase : Any = key.replace('moe_layer.experts.0' , F'''ffn.experts.expert_{expert_idx}''' ) else: _UpperCamelCase : Union[str, Any] = key.replace('moe_layer.experts.' , 'ffn.experts.expert_' ) if "gate" in key: _UpperCamelCase : List[Any] = key.replace('.moe_layer.gate.wg' , '.ffn.router.classifier' ) if "fc2" and "experts" not in key: _UpperCamelCase : List[Any] = key.replace('.fc2.' , '.ffn.fc2.' ) if "fc1" and "experts" not in key: _UpperCamelCase : Dict = key.replace('.fc1.' , '.ffn.fc1.' ) if ".encoder_attn." in key: _UpperCamelCase : Union[str, Any] = key.replace('.encoder_attn.' , '.cross_attention.' ) if "encoder_attn_layer_norm" in key: _UpperCamelCase : Tuple = key.replace('encoder_attn_layer_norm' , 'cross_attention_layer_norm' ) if "final_layer_norm" in key: _UpperCamelCase : Tuple = key.replace('final_layer_norm' , 'ff_layer_norm' ) _UpperCamelCase : Tuple = state_dict[old_key] return new_dict def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : str = WEIGHTS_NAME ) -> Dict: '''simple docstring''' _UpperCamelCase : Any = [] _UpperCamelCase : Optional[int] = 0 os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) for expert in range(UpperCAmelCase_ ): _UpperCamelCase : int = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(UpperCAmelCase_ ): _UpperCamelCase : List[str] = torch.load(UpperCAmelCase_ )['model'] remove_ignore_keys_(UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = rename_fairseq_keys(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Union[str, Any] = os.path.join( UpperCAmelCase_ , weights_name.replace('.bin' , F'''-{len(UpperCAmelCase_ )+1:05d}-of-???.bin''' ) ) torch.save(UpperCAmelCase_ , UpperCAmelCase_ ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(UpperCAmelCase_ )[0]].dtype ) # Add the last block _UpperCamelCase : Dict = os.path.join(UpperCAmelCase_ , weights_name.replace('.bin' , F'''-{len(UpperCAmelCase_ )+1:05d}-of-???.bin''' ) ) _UpperCamelCase : List[str] = torch.load(switch_checkpoint_path + '-shared.pt' )['model'] remove_ignore_keys_(UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = rename_fairseq_keys(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = shared_weights['decoder.embed_tokens.weight'] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(UpperCAmelCase_ ) == 1: _UpperCamelCase : List[str] = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) torch.save(UpperCAmelCase_ , UpperCAmelCase_ ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(UpperCAmelCase_ , UpperCAmelCase_ ) # Otherwise, let's build the index _UpperCamelCase : Union[str, Any] = {} for idx, shard in enumerate(UpperCAmelCase_ ): _UpperCamelCase : Tuple = weights_name.replace('.bin' , F'''-{idx+1:05d}-of-{len(UpperCAmelCase_ ):05d}.bin''' ) _UpperCamelCase : Dict = os.path.join(UpperCAmelCase_ , weights_name.replace('.bin' , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(UpperCAmelCase_ , os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) ) for key in shard: _UpperCamelCase : Optional[Any] = shard_file # Add the metadata _UpperCamelCase : Tuple = {'total_size': total_size} _UpperCamelCase : Dict = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) , 'w' , encoding='utf-8' ) as f: _UpperCamelCase : int = json.dumps(UpperCAmelCase_ , indent=2 , sort_keys=UpperCAmelCase_ ) + '\n' f.write(UpperCAmelCase_ ) return metadata, index if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--nllb_moe_checkpoint_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--dtype""", default="""float32""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b""", type=str, required=False, help="""Path to the output pytorch model.""", ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ , lowerCAmelCase__ = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_2_8, args.dtype, ) lowerCAmelCase__ = NllbMoeConfig.from_pretrained( """facebook/nllb-200-3.3B""", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_2_8 ) config.save_pretrained(args.pytorch_dump_folder_path) lowerCAmelCase__ = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("""Done""") model.save_pretrained(args.pytorch_dump_folder_path)
717
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class lowercase ( _lowercase ): """simple docstring""" a__ = "rwkv" a__ = {"max_position_embeddings": "context_length"} def __init__( self , __snake_case=5_02_77 , __snake_case=10_24 , __snake_case=40_96 , __snake_case=32 , __snake_case=None , __snake_case=None , __snake_case=1e-5 , __snake_case=0 , __snake_case=0 , __snake_case=6 , __snake_case=False , __snake_case=True , **__snake_case , ): _UpperCamelCase : str = vocab_size _UpperCamelCase : int = context_length _UpperCamelCase : Tuple = hidden_size _UpperCamelCase : Tuple = num_hidden_layers _UpperCamelCase : Dict = attention_hidden_size if attention_hidden_size is not None else hidden_size _UpperCamelCase : Tuple = intermediate_size if intermediate_size is not None else 4 * hidden_size _UpperCamelCase : Union[str, Any] = layer_norm_epsilon _UpperCamelCase : Dict = rescale_every _UpperCamelCase : Optional[Any] = use_cache _UpperCamelCase : str = bos_token_id _UpperCamelCase : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case)
648
0
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa lowerCAmelCase__ = logging.getLogger(__name__) class lowercase ( _lowercase ): """simple docstring""" a__ = "summarization" a__ = ["loss"] a__ = ROUGE_KEYS a__ = "rouge2" def __init__( self , __snake_case , **__snake_case): if hparams.sortish_sampler and hparams.gpus > 1: _UpperCamelCase : str = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('Dynamic Batch size does not work for multi-gpu training') if hparams.sortish_sampler: raise ValueError('--sortish_sampler and --max_tokens_per_batch may not be used simultaneously') super().__init__(__A , num_labels=__A , mode=self.mode , **__A) use_task_specific_params(self.model , 'summarization') save_git_info(self.hparams.output_dir) _UpperCamelCase : Optional[int] = Path(self.output_dir) / 'metrics.json' _UpperCamelCase : Any = Path(self.output_dir) / 'hparams.pkl' pickle_save(self.hparams , self.hparams_save_path) _UpperCamelCase : List[str] = 0 _UpperCamelCase : Any = defaultdict(__A) _UpperCamelCase : int = self.config.model_type _UpperCamelCase : Optional[int] = self.config.tgt_vocab_size if self.model_type == 'fsmt' else self.config.vocab_size _UpperCamelCase : List[Any] = { 'data_dir': self.hparams.data_dir, 'max_source_length': self.hparams.max_source_length, 'prefix': self.model.config.prefix or '', } _UpperCamelCase : Dict = { 'train': self.hparams.n_train, 'val': self.hparams.n_val, 'test': self.hparams.n_test, } _UpperCamelCase : Union[str, Any] = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} _UpperCamelCase : Optional[int] = { 'train': self.hparams.max_target_length, 'val': self.hparams.val_max_target_length, 'test': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], f'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], f'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder()) assert_all_frozen(self.model.get_encoder()) _UpperCamelCase : int = get_git_info()['repo_sha'] _UpperCamelCase : Optional[int] = hparams.num_workers _UpperCamelCase : List[str] = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , __A): _UpperCamelCase : Union[str, Any] = self.tokenizer.lang_code_to_id[hparams.tgt_lang] _UpperCamelCase : Union[str, Any] = self.decoder_start_token_id _UpperCamelCase : Optional[int] = ( SeqaSeqDataset if hasattr(self.tokenizer , 'prepare_seq2seq_batch') else LegacySeqaSeqDataset ) _UpperCamelCase : Any = False _UpperCamelCase : Tuple = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: _UpperCamelCase : str = self.hparams.eval_max_gen_length else: _UpperCamelCase : int = self.model.config.max_length _UpperCamelCase : Dict = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def A__ ( self , __snake_case): _UpperCamelCase : Dict = { k: self.tokenizer.batch_decode(v.tolist()) if 'mask' not in k else v.shape for k, v in batch.items() } save_json(__A , Path(self.output_dir) / 'text_batch.json') save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir) / 'tok_batch.json') _UpperCamelCase : Dict = True return readable_batch def A__ ( self , __snake_case , **__snake_case): return self.model(__A , **__A) def A__ ( self , __snake_case): _UpperCamelCase : Any = self.tokenizer.batch_decode( __A , skip_special_tokens=__A , clean_up_tokenization_spaces=__A) return lmap(str.strip , __A) def A__ ( self , __snake_case): _UpperCamelCase : Optional[int] = self.tokenizer.pad_token_id _UpperCamelCase , _UpperCamelCase : Any = batch['input_ids'], batch['attention_mask'] _UpperCamelCase : Optional[int] = batch['labels'] if isinstance(self.model , __A): _UpperCamelCase : str = self.model._shift_right(__A) else: _UpperCamelCase : Optional[int] = shift_tokens_right(__A , __A) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero _UpperCamelCase : List[Any] = decoder_input_ids self.save_readable_batch(__A) _UpperCamelCase : Dict = self(__A , attention_mask=__A , decoder_input_ids=__A , use_cache=__A) _UpperCamelCase : Optional[Any] = outputs['logits'] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id _UpperCamelCase : str = nn.CrossEntropyLoss(ignore_index=__A) assert lm_logits.shape[-1] == self.vocab_size _UpperCamelCase : Tuple = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1]) , tgt_ids.view(-1)) else: _UpperCamelCase : List[Any] = nn.functional.log_softmax(__A , dim=-1) _UpperCamelCase , _UpperCamelCase : Optional[int] = label_smoothed_nll_loss( __A , __A , self.hparams.label_smoothing , ignore_index=__A) return (loss,) @property def A__ ( self): return self.tokenizer.pad_token_id def A__ ( self , __snake_case , __snake_case): _UpperCamelCase : Optional[Any] = self._step(__A) _UpperCamelCase : List[str] = dict(zip(self.loss_names , __A)) # tokens per batch _UpperCamelCase : int = batch['input_ids'].ne(self.pad).sum() + batch['labels'].ne(self.pad).sum() _UpperCamelCase : List[Any] = batch['input_ids'].shape[0] _UpperCamelCase : Union[str, Any] = batch['input_ids'].eq(self.pad).sum() _UpperCamelCase : Tuple = batch['input_ids'].eq(self.pad).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def A__ ( self , __snake_case , __snake_case): return self._generative_step(__A) def A__ ( self , __snake_case , __snake_case="val"): self.step_count += 1 _UpperCamelCase : List[Any] = {k: torch.stack([x[k] for x in outputs]).mean() for k in self.loss_names} _UpperCamelCase : Optional[int] = losses['loss'] _UpperCamelCase : Optional[int] = { k: np.array([x[k] for x in outputs]).mean() for k in self.metric_names + ['gen_time', 'gen_len'] } _UpperCamelCase : int = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) _UpperCamelCase : int = torch.tensor(__A).type_as(__A) generative_metrics.update({k: v.item() for k, v in losses.items()}) losses.update(__A) _UpperCamelCase : int = {f'''{prefix}_avg_{k}''': x for k, x in losses.items()} _UpperCamelCase : List[str] = self.step_count self.metrics[prefix].append(__A) # callback writes this to self.metrics_save_path _UpperCamelCase : Any = flatten_list([x['preds'] for x in outputs]) return { "log": all_metrics, "preds": preds, f'''{prefix}_loss''': loss, f'''{prefix}_{self.val_metric}''': metric_tensor, } def A__ ( self , __snake_case , __snake_case): return calculate_rouge(__A , __A) def A__ ( self , __snake_case): _UpperCamelCase : Dict = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') _UpperCamelCase : List[str] = self.model.generate( batch['input_ids'] , attention_mask=batch['attention_mask'] , use_cache=__A , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) _UpperCamelCase : List[Any] = (time.time() - ta) / batch['input_ids'].shape[0] _UpperCamelCase : List[Any] = self.ids_to_clean_text(__A) _UpperCamelCase : Union[str, Any] = self.ids_to_clean_text(batch['labels']) _UpperCamelCase : List[str] = self._step(__A) _UpperCamelCase : Union[str, Any] = dict(zip(self.loss_names , __A)) _UpperCamelCase : Optional[int] = self.calc_generative_metrics(__A , __A) _UpperCamelCase : List[Any] = np.mean(lmap(__A , __A)) base_metrics.update(gen_time=__A , gen_len=__A , preds=__A , target=__A , **__A) return base_metrics def A__ ( self , __snake_case , __snake_case): return self._generative_step(__A) def A__ ( self , __snake_case): return self.validation_epoch_end(__A , prefix='test') def A__ ( self , __snake_case): _UpperCamelCase : Union[str, Any] = self.n_obs[type_path] _UpperCamelCase : List[Any] = self.target_lens[type_path] _UpperCamelCase : str = self.dataset_class( self.tokenizer , type_path=__A , n_obs=__A , max_target_length=__A , **self.dataset_kwargs , ) return dataset def A__ ( self , __snake_case , __snake_case , __snake_case = False): _UpperCamelCase : Dict = self.get_dataset(__A) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": _UpperCamelCase : int = dataset.make_sortish_sampler(__A , distributed=self.hparams.gpus > 1) return DataLoader( __A , batch_size=__A , collate_fn=dataset.collate_fn , shuffle=__A , num_workers=self.num_workers , sampler=__A , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": _UpperCamelCase : Union[str, Any] = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1) return DataLoader( __A , batch_sampler=__A , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( __A , batch_size=__A , collate_fn=dataset.collate_fn , shuffle=__A , num_workers=self.num_workers , sampler=__A , ) def A__ ( self): _UpperCamelCase : Any = self.get_dataloader('train' , batch_size=self.hparams.train_batch_size , shuffle=__A) return dataloader def A__ ( self): return self.get_dataloader('val' , batch_size=self.hparams.eval_batch_size) def A__ ( self): return self.get_dataloader('test' , batch_size=self.hparams.eval_batch_size) @staticmethod def A__ ( __snake_case , __snake_case): BaseTransformer.add_model_specific_args(__A , __A) add_generic_args(__A , __A) parser.add_argument( '--max_source_length' , default=10_24 , type=__A , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--max_target_length' , default=56 , type=__A , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--val_max_target_length' , default=1_42 , type=__A , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--test_max_target_length' , default=1_42 , type=__A , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument('--freeze_encoder' , action='store_true') parser.add_argument('--freeze_embeds' , action='store_true') parser.add_argument('--sortish_sampler' , action='store_true' , default=__A) parser.add_argument('--overwrite_output_dir' , action='store_true' , default=__A) parser.add_argument('--max_tokens_per_batch' , type=__A , default=__A) parser.add_argument('--logger_name' , type=__A , choices=['default', 'wandb', 'wandb_shared'] , default='default') parser.add_argument('--n_train' , type=__A , default=-1 , required=__A , help='# examples. -1 means use all.') parser.add_argument('--n_val' , type=__A , default=5_00 , required=__A , help='# examples. -1 means use all.') parser.add_argument('--n_test' , type=__A , default=-1 , required=__A , help='# examples. -1 means use all.') parser.add_argument( '--task' , type=__A , default='summarization' , required=__A , help='# examples. -1 means use all.') parser.add_argument('--label_smoothing' , type=__A , default=0.0 , required=__A) parser.add_argument('--src_lang' , type=__A , default='' , required=__A) parser.add_argument('--tgt_lang' , type=__A , default='' , required=__A) parser.add_argument('--eval_beams' , type=__A , default=__A , required=__A) parser.add_argument( '--val_metric' , type=__A , default=__A , required=__A , choices=['bleu', 'rouge2', 'loss', None]) parser.add_argument('--eval_max_gen_length' , type=__A , default=__A , help='never generate more than n tokens') parser.add_argument('--save_top_k' , type=__A , default=1 , required=__A , help='How many checkpoints to save') parser.add_argument( '--early_stopping_patience' , type=__A , default=-1 , required=__A , help=( '-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So' ' val_check_interval will effect it.' ) , ) return parser class lowercase ( _lowercase ): """simple docstring""" a__ = "translation" a__ = ["loss"] a__ = ["bleu"] a__ = "bleu" def __init__( self , __snake_case , **__snake_case): super().__init__(__A , **__A) _UpperCamelCase : str = hparams.src_lang _UpperCamelCase : Dict = hparams.tgt_lang def A__ ( self , __snake_case , __snake_case): return calculate_bleu(__A , __A) def lowerCamelCase_ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=None ) -> str: '''simple docstring''' Path(args.output_dir ).mkdir(exist_ok=_lowercase ) check_output_dir(_lowercase , expected_items=3 ) if model is None: if "summarization" in args.task: _UpperCamelCase : Dict = SummarizationModule(_lowercase ) else: _UpperCamelCase : int = TranslationModule(_lowercase ) _UpperCamelCase : Optional[int] = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('/tmp' ) or str(args.output_dir ).startswith('/var' ) ): _UpperCamelCase : Tuple = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger _UpperCamelCase : Union[str, Any] = os.environ.get('WANDB_PROJECT' , _lowercase ) _UpperCamelCase : Any = WandbLogger(name=model.output_dir.name , project=_lowercase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger _UpperCamelCase : Dict = WandbLogger(name=model.output_dir.name , project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: _UpperCamelCase : str = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: _UpperCamelCase : int = False _UpperCamelCase : Dict = args.val_metric == 'loss' _UpperCamelCase : List[str] = generic_train( _lowercase , _lowercase , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , _lowercase ) , early_stopping_callback=_lowercase , logger=_lowercase , ) pickle_save(model.hparams , model.output_dir / 'hparams.pkl' ) if not args.do_predict: return model _UpperCamelCase : Optional[int] = '' _UpperCamelCase : List[Any] = sorted(glob.glob(os.path.join(args.output_dir , '*.ckpt' ) , recursive=_lowercase ) ) if checkpoints: _UpperCamelCase : Optional[Any] = checkpoints[-1] _UpperCamelCase : Tuple = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() lowerCAmelCase__ = pl.Trainer.add_argparse_args(parser) lowerCAmelCase__ = SummarizationModule.add_model_specific_args(parser, os.getcwd()) lowerCAmelCase__ = parser.parse_args() main(args)
718
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class lowercase ( _lowercase ): """simple docstring""" a__ = "bert" def __init__( self , __snake_case=3_05_22 , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=0 , __snake_case="absolute" , __snake_case=True , __snake_case=None , **__snake_case , ): super().__init__(pad_token_id=__snake_case , **__snake_case) _UpperCamelCase : int = vocab_size _UpperCamelCase : Optional[Any] = hidden_size _UpperCamelCase : Optional[Any] = num_hidden_layers _UpperCamelCase : List[str] = num_attention_heads _UpperCamelCase : int = hidden_act _UpperCamelCase : Optional[Any] = intermediate_size _UpperCamelCase : Union[str, Any] = hidden_dropout_prob _UpperCamelCase : Tuple = attention_probs_dropout_prob _UpperCamelCase : Optional[int] = max_position_embeddings _UpperCamelCase : str = type_vocab_size _UpperCamelCase : Optional[Any] = initializer_range _UpperCamelCase : List[str] = layer_norm_eps _UpperCamelCase : Any = position_embedding_type _UpperCamelCase : Any = use_cache _UpperCamelCase : Any = classifier_dropout class lowercase ( _lowercase ): """simple docstring""" @property def A__ ( self): if self.task == "multiple-choice": _UpperCamelCase : Union[str, Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCamelCase : Optional[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ])
648
0
import math import sys import cva import numpy as np def lowerCamelCase_ ( UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : float ) -> int: '''simple docstring''' _UpperCamelCase : int = math.sqrt(_lowerCamelCase ) _UpperCamelCase : Any = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def lowerCamelCase_ ( UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> Dict: '''simple docstring''' _UpperCamelCase : Any = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : float ) -> Dict: '''simple docstring''' _UpperCamelCase : int = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _lowerCamelCase ): for j in range(0 , _lowerCamelCase ): _UpperCamelCase : Any = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_ ( UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : float , UpperCAmelCase_ : float , UpperCAmelCase_ : int , ) -> Dict: '''simple docstring''' _UpperCamelCase : Tuple = np.zeros(img.shape ) _UpperCamelCase : Optional[int] = get_gauss_kernel(_lowerCamelCase , _lowerCamelCase ) _UpperCamelCase : int = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): _UpperCamelCase : List[str] = get_slice(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _UpperCamelCase : Any = img_s - img_s[kernel_size // 2, kernel_size // 2] _UpperCamelCase : Optional[Any] = vec_gaussian(_lowerCamelCase , _lowerCamelCase ) _UpperCamelCase : Optional[Any] = np.multiply(_lowerCamelCase , _lowerCamelCase ) _UpperCamelCase : Any = np.multiply(_lowerCamelCase , _lowerCamelCase ) _UpperCamelCase : Tuple = np.sum(_lowerCamelCase ) / np.sum(_lowerCamelCase ) _UpperCamelCase : Optional[Any] = val return imga def lowerCamelCase_ ( UpperCAmelCase_ : list ) -> List[str]: '''simple docstring''' _UpperCamelCase : Optional[Any] = args[1] if args[1:] else """../image_data/lena.jpg""" _UpperCamelCase : Union[str, Any] = float(args[2] ) if args[2:] else 1.0 _UpperCamelCase : Optional[int] = float(args[3] ) if args[3:] else 1.0 if args[4:]: _UpperCamelCase : Any = int(args[4] ) _UpperCamelCase : Any = kernel_size + abs(kernel_size % 2 - 1 ) else: _UpperCamelCase : Optional[int] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = parse_args(sys.argv) lowerCAmelCase__ = cva.imread(filename, 0) cva.imshow("""input image""", img) lowerCAmelCase__ = img / 2_5_5 lowerCAmelCase__ = out.astype("""float32""") lowerCAmelCase__ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) lowerCAmelCase__ = out * 2_5_5 lowerCAmelCase__ = np.uinta(out) cva.imshow("""output image""", out) cva.waitKey(0) cva.destroyAllWindows()
719
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowercase ( _lowercase ): """simple docstring""" a__ = "facebook/bart-large-mnli" a__ = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) a__ = "text_classifier" a__ = AutoTokenizer a__ = AutoModelForSequenceClassification a__ = ["text", ["text"]] a__ = ["text"] def A__ ( self): super().setup() _UpperCamelCase : List[Any] = self.model.config _UpperCamelCase : Optional[int] = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail'): _UpperCamelCase : Tuple = int(__snake_case) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.') def A__ ( self , __snake_case , __snake_case): _UpperCamelCase : List[Any] = labels return self.pre_processor( [text] * len(__snake_case) , [f'''This example is {label}''' for label in labels] , return_tensors='pt' , padding='max_length' , ) def A__ ( self , __snake_case): _UpperCamelCase : str = outputs.logits _UpperCamelCase : Optional[Any] = torch.argmax(logits[:, 2]).item() return self._labels[label_id]
648
0
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def lowerCamelCase_ ( UpperCAmelCase_ : Dataset , UpperCAmelCase_ : Dict[str, str] ) -> List[str]: _UpperCamelCase : int = args.log_outputs _UpperCamelCase : str = """_""".join(args.dataset.split('/' ) + [args.config, args.split] ) # load metric _UpperCamelCase : str = load_metric('wer' ) _UpperCamelCase : Optional[int] = load_metric('cer' ) # compute metrics _UpperCamelCase : Dict = wer.compute(references=result['target'] , predictions=result['prediction'] ) _UpperCamelCase : Union[str, Any] = cer.compute(references=result['target'] , predictions=result['prediction'] ) # print & log results _UpperCamelCase : Union[str, Any] = F'''WER: {wer_result}\nCER: {cer_result}''' print(lowercase_ ) with open(F'''{dataset_id}_eval_results.txt''' , 'w' ) as f: f.write(lowercase_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: _UpperCamelCase : int = F'''log_{dataset_id}_predictions.txt''' _UpperCamelCase : List[str] = F'''log_{dataset_id}_targets.txt''' with open(lowercase_ , 'w' ) as p, open(lowercase_ , 'w' ) as t: # mapping function to write output def write_to_file(UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] ): p.write(F'''{i}''' + '\n' ) p.write(batch['prediction'] + '\n' ) t.write(F'''{i}''' + '\n' ) t.write(batch['target'] + '\n' ) result.map(lowercase_ , with_indices=lowercase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : str ) -> str: _UpperCamelCase : Optional[int] = """[,?.!\-\;\:\"“%‘”�—’…–]""" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training _UpperCamelCase : int = re.sub(lowercase_ , '' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! _UpperCamelCase : Optional[Any] = ["""\n\n""", """\n""", """ """, """ """] for t in token_sequences_to_ignore: _UpperCamelCase : Optional[Any] = """ """.join(text.split(lowercase_ ) ) return text def lowerCamelCase_ ( UpperCAmelCase_ : Dict ) -> Any: # load dataset _UpperCamelCase : Any = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowercase_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor _UpperCamelCase : Tuple = AutoFeatureExtractor.from_pretrained(args.model_id ) _UpperCamelCase : List[Any] = feature_extractor.sampling_rate # resample audio _UpperCamelCase : List[str] = dataset.cast_column('audio' , Audio(sampling_rate=lowercase_ ) ) # load eval pipeline if args.device is None: _UpperCamelCase : List[Any] = 0 if torch.cuda.is_available() else -1 _UpperCamelCase : Optional[Any] = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(UpperCAmelCase_ : str ): _UpperCamelCase : Optional[Any] = asr( batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) _UpperCamelCase : str = prediction["""text"""] _UpperCamelCase : Dict = normalize_text(batch['sentence'] ) return batch # run inference on all examples _UpperCamelCase : int = dataset.map(lowercase_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(lowercase_ , lowercase_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `\'en\'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `\'test\'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) lowerCAmelCase__ = parser.parse_args() main(args)
720
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
648
0
import os def lowerCamelCase_ ( ) -> Optional[Any]: '''simple docstring''' with open(os.path.dirname(lowerCAmelCase__ ) + '/grid.txt' ) as f: _UpperCamelCase : Dict = [] # noqa: E741 for _ in range(2_0 ): l.append([int(lowerCAmelCase__ ) for x in f.readline().split()] ) _UpperCamelCase : Any = 0 # right for i in range(2_0 ): for j in range(1_7 ): _UpperCamelCase : Dict = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: _UpperCamelCase : Any = temp # down for i in range(1_7 ): for j in range(2_0 ): _UpperCamelCase : List[Any] = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: _UpperCamelCase : str = temp # diagonal 1 for i in range(1_7 ): for j in range(1_7 ): _UpperCamelCase : Union[str, Any] = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: _UpperCamelCase : Optional[Any] = temp # diagonal 2 for i in range(1_7 ): for j in range(3 , 2_0 ): _UpperCamelCase : Any = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: _UpperCamelCase : Optional[int] = temp return maximum if __name__ == "__main__": print(solution())
721
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
648
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase__ = { """configuration_efficientnet""": [ """EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientNetConfig""", """EfficientNetOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ["""EfficientNetImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientNetForImageClassification""", """EfficientNetModel""", """EfficientNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
700
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_sentencepiece_available(): import sentencepiece as sp lowerCAmelCase__ = 5 lowerCAmelCase__ = 1_0 @require_sentencepiece @require_tokenizers class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" a__ = SpeechaTextTokenizer a__ = False a__ = True def A__ ( self): super().setUp() _UpperCamelCase : Any = sp.SentencePieceProcessor() spm_model.Load(__snake_case) _UpperCamelCase : List[str] = ['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_) for id_ in range(len(__snake_case))] _UpperCamelCase : Dict = dict(zip(__snake_case , range(len(__snake_case)))) _UpperCamelCase : Tuple = Path(self.tmpdirname) save_json(__snake_case , save_dir / VOCAB_FILES_NAMES['vocab_file']) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__snake_case , save_dir / VOCAB_FILES_NAMES['spm_file']) _UpperCamelCase : int = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def A__ ( self): _UpperCamelCase : str = '<pad>' _UpperCamelCase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case) , __snake_case) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case) , __snake_case) def A__ ( self): _UpperCamelCase : Optional[Any] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(vocab_keys[-1] , 'j') self.assertEqual(len(__snake_case) , 10_01) def A__ ( self): self.assertEqual(self.get_tokenizer().vocab_size , 10_01) def A__ ( self): _UpperCamelCase : Any = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) _UpperCamelCase : List[str] = tokenizer.tokenize('This is a test') self.assertListEqual(__snake_case , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case) , [2_89, 50, 14, 1_74, 3_86] , ) _UpperCamelCase : int = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( __snake_case , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) _UpperCamelCase : int = tokenizer.convert_tokens_to_ids(__snake_case) self.assertListEqual(__snake_case , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8]) _UpperCamelCase : Tuple = tokenizer.convert_ids_to_tokens(__snake_case) self.assertListEqual( __snake_case , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def A__ ( self): # fmt: off _UpperCamelCase : Optional[int] = {'input_ids': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , ) @require_sentencepiece class lowercase ( unittest.TestCase ): """simple docstring""" a__ = "valhalla/s2t_mustc_multilinguial_medium" a__ = "C'est trop cool" a__ = "Esto es genial" @classmethod def A__ ( cls): _UpperCamelCase : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name) return cls def A__ ( self): self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4) self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6) self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9) self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11) def A__ ( self): self.assertEqual(self.tokenizer.vocab_size , 1_00_00) def A__ ( self): self.assertIn(__snake_case , self.tokenizer.all_special_ids) _UpperCamelCase : Optional[int] = [ES_CODE, 4, 16_01, 47, 76_47, 2] _UpperCamelCase : Tuple = self.tokenizer.decode(__snake_case , skip_special_tokens=__snake_case) _UpperCamelCase : Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__snake_case) self.assertEqual(__snake_case , __snake_case) self.assertNotIn(self.tokenizer.eos_token , __snake_case) def A__ ( self): _UpperCamelCase : Any = 'fr' _UpperCamelCase : List[Any] = self.tokenizer(self.french_text).input_ids self.assertEqual(encoded[0] , __snake_case) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id) def A__ ( self): _UpperCamelCase : Union[str, Any] = 'fr' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE]) _UpperCamelCase : List[str] = 'es' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE])
648
0
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase ( snake_case_ ): """simple docstring""" a__ = """ClapFeatureExtractor""" a__ = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self , __snake_case , __snake_case): super().__init__(__snake_case , __snake_case) def __call__( self , __snake_case=None , __snake_case=None , __snake_case=None , **__snake_case): _UpperCamelCase : Optional[Any] = kwargs.pop('sampling_rate' , __snake_case) if text is None and audios is None: raise ValueError('You have to specify either text or audios. Both cannot be none.') if text is not None: _UpperCamelCase : Union[str, Any] = self.tokenizer(__snake_case , return_tensors=__snake_case , **__snake_case) if audios is not None: _UpperCamelCase : Union[str, Any] = self.feature_extractor( __snake_case , sampling_rate=__snake_case , return_tensors=__snake_case , **__snake_case) if text is not None and audios is not None: _UpperCamelCase : Optional[int] = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__snake_case) , tensor_type=__snake_case) def A__ ( self , *__snake_case , **__snake_case): return self.tokenizer.batch_decode(*__snake_case , **__snake_case) def A__ ( self , *__snake_case , **__snake_case): return self.tokenizer.decode(*__snake_case , **__snake_case) @property def A__ ( self): _UpperCamelCase : Optional[Any] = self.tokenizer.model_input_names _UpperCamelCase : Tuple = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names))
701
import logging from transformers.configuration_utils import PretrainedConfig lowerCAmelCase__ = logging.getLogger(__name__) class lowercase ( _lowercase ): """simple docstring""" a__ = "masked_bert" def __init__( self , __snake_case=3_05_22 , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=0 , __snake_case="topK" , __snake_case="constant" , __snake_case=0.0 , **__snake_case , ): super().__init__(pad_token_id=__snake_case , **__snake_case) _UpperCamelCase : List[Any] = vocab_size _UpperCamelCase : Union[str, Any] = hidden_size _UpperCamelCase : Optional[int] = num_hidden_layers _UpperCamelCase : Any = num_attention_heads _UpperCamelCase : int = hidden_act _UpperCamelCase : str = intermediate_size _UpperCamelCase : str = hidden_dropout_prob _UpperCamelCase : Any = attention_probs_dropout_prob _UpperCamelCase : Tuple = max_position_embeddings _UpperCamelCase : Dict = type_vocab_size _UpperCamelCase : str = initializer_range _UpperCamelCase : List[Any] = layer_norm_eps _UpperCamelCase : Tuple = pruning_method _UpperCamelCase : Tuple = mask_init _UpperCamelCase : Dict = mask_scale
648
0
lowerCAmelCase__ = 8.31_44_62 # Unit - J mol-1 K-1 def lowerCamelCase_ ( UpperCAmelCase_ : float , UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> float: '''simple docstring''' if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('Invalid inputs. Enter positive value.' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def lowerCamelCase_ ( UpperCAmelCase_ : float , UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> float: '''simple docstring''' if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('Invalid inputs. Enter positive value.' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
702
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow lowerCAmelCase__ = False class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self , __snake_case=32): set_seed(0) _UpperCamelCase : int = UNetaDModel(sample_size=__snake_case , in_channels=3 , out_channels=3) _UpperCamelCase : str = torch.optim.SGD(model.parameters() , lr=0.0_0_0_1) return model, optimizer @slow def A__ ( self): _UpperCamelCase : Tuple = 'cpu' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable _UpperCamelCase : List[Any] = DDPMScheduler( num_train_timesteps=10_00 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='linear' , clip_sample=__snake_case , ) _UpperCamelCase : List[Any] = DDIMScheduler( num_train_timesteps=10_00 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='linear' , clip_sample=__snake_case , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0) _UpperCamelCase : Optional[Any] = [torch.randn((4, 3, 32, 32)).clip(-1 , 1).to(__snake_case) for _ in range(4)] _UpperCamelCase : str = [torch.randn((4, 3, 32, 32)).to(__snake_case) for _ in range(4)] _UpperCamelCase : int = [torch.randint(0 , 10_00 , (4,)).long().to(__snake_case) for _ in range(4)] # train with a DDPM scheduler _UpperCamelCase , _UpperCamelCase : List[Any] = self.get_model_optimizer(resolution=32) model.train().to(__snake_case) for i in range(4): optimizer.zero_grad() _UpperCamelCase : int = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) _UpperCamelCase : Any = model(__snake_case , timesteps[i]).sample _UpperCamelCase : str = torch.nn.functional.mse_loss(__snake_case , noise[i]) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM _UpperCamelCase , _UpperCamelCase : Union[str, Any] = self.get_model_optimizer(resolution=32) model.train().to(__snake_case) for i in range(4): optimizer.zero_grad() _UpperCamelCase : Dict = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) _UpperCamelCase : Dict = model(__snake_case , timesteps[i]).sample _UpperCamelCase : Tuple = torch.nn.functional.mse_loss(__snake_case , noise[i]) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1e-5)) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1e-5))
648
0
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self): _UpperCamelCase : Dict = mock.Mock() _UpperCamelCase : List[str] = 5_00 _UpperCamelCase : List[str] = {} _UpperCamelCase : Union[str, Any] = HTTPError _UpperCamelCase : Any = {} # Download this model to make sure it's in the cache. _UpperCamelCase : int = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert') # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=__snake_case) as mock_head: _UpperCamelCase : Any = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert') # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def A__ ( self): _UpperCamelCase : Any = mock.Mock() _UpperCamelCase : Dict = 5_00 _UpperCamelCase : str = {} _UpperCamelCase : Tuple = HTTPError _UpperCamelCase : Optional[int] = {} # Download this model to make sure it's in the cache. _UpperCamelCase : int = GPTaTokenizerFast.from_pretrained('gpt2') # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=__snake_case) as mock_head: _UpperCamelCase : Union[str, Any] = GPTaTokenizerFast.from_pretrained('gpt2') # This check we did call the fake head request mock_head.assert_called() def A__ ( self): try: _UpperCamelCase : Dict = tempfile.mktemp() with open(__snake_case , 'wb') as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' , __snake_case) _UpperCamelCase : Any = AlbertTokenizer.from_pretrained(__snake_case) finally: os.remove(__snake_case) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json'): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' , 'wb') as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' , __snake_case) _UpperCamelCase : int = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2') # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 10_00) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json') def A__ ( self): _UpperCamelCase : Optional[int] = AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model') @is_staging_test class lowercase ( unittest.TestCase ): """simple docstring""" a__ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def A__ ( cls): _UpperCamelCase : str = TOKEN HfFolder.save_token(__snake_case) @classmethod def A__ ( cls): try: delete_repo(token=cls._token , repo_id='test-tokenizer') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-tokenizer-org') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-tokenizer') except HTTPError: pass def A__ ( self): with tempfile.TemporaryDirectory() as tmp_dir: _UpperCamelCase : str = os.path.join(__snake_case , 'vocab.txt') with open(__snake_case , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens])) _UpperCamelCase : List[Any] = BertTokenizer(__snake_case) tokenizer.push_to_hub('test-tokenizer' , use_auth_token=self._token) _UpperCamelCase : Optional[Any] = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''') self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab) # Reset repo delete_repo(token=self._token , repo_id='test-tokenizer') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__snake_case , repo_id='test-tokenizer' , push_to_hub=__snake_case , use_auth_token=self._token) _UpperCamelCase : List[Any] = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''') self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab) def A__ ( self): with tempfile.TemporaryDirectory() as tmp_dir: _UpperCamelCase : Union[str, Any] = os.path.join(__snake_case , 'vocab.txt') with open(__snake_case , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens])) _UpperCamelCase : Optional[Any] = BertTokenizer(__snake_case) tokenizer.push_to_hub('valid_org/test-tokenizer-org' , use_auth_token=self._token) _UpperCamelCase : Union[str, Any] = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org') self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-tokenizer-org') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( __snake_case , repo_id='valid_org/test-tokenizer-org' , push_to_hub=__snake_case , use_auth_token=self._token) _UpperCamelCase : Dict = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org') self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab) @require_tokenizers def A__ ( self): CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: _UpperCamelCase : Dict = os.path.join(__snake_case , 'vocab.txt') with open(__snake_case , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens])) _UpperCamelCase : List[str] = CustomTokenizer(__snake_case) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token) _UpperCamelCase : Any = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=__snake_case) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer') # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: _UpperCamelCase : int = os.path.join(__snake_case , 'vocab.txt') with open(__snake_case , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens])) _UpperCamelCase : str = BertTokenizerFast.from_pretrained(__snake_case) bert_tokenizer.save_pretrained(__snake_case) _UpperCamelCase : Union[str, Any] = CustomTokenizerFast.from_pretrained(__snake_case) tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token) _UpperCamelCase : Optional[int] = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=__snake_case) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizerFast') _UpperCamelCase : List[Any] = AutoTokenizer.from_pretrained( f'''{USER}/test-dynamic-tokenizer''' , use_fast=__snake_case , trust_remote_code=__snake_case) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer') class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self): _UpperCamelCase : Union[str, Any] = Trie() trie.add('Hello 友達') self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}}) trie.add('Hello') trie.data self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}}) def A__ ( self): _UpperCamelCase : Optional[Any] = Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100') , ['[CLS] This is a extra_id_100']) trie.add('[CLS]') trie.add('extra_id_1') trie.add('extra_id_100') self.assertEqual(trie.split('[CLS] This is a extra_id_100') , ['[CLS]', ' This is a ', 'extra_id_100']) def A__ ( self): _UpperCamelCase : Union[str, Any] = Trie() trie.add('A') self.assertEqual(trie.split('ABC') , ['A', 'BC']) self.assertEqual(trie.split('BCA') , ['BC', 'A']) def A__ ( self): _UpperCamelCase : int = Trie() trie.add('TOKEN]') trie.add('[SPECIAL_TOKEN]') self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]') , ['This is something ', '[SPECIAL_TOKEN]']) def A__ ( self): _UpperCamelCase : Any = Trie() trie.add('A') trie.add('P') trie.add('[SPECIAL_TOKEN]') self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]') , ['This is something ', '[SPECIAL_TOKEN]']) def A__ ( self): _UpperCamelCase : str = Trie() trie.add('AB') trie.add('B') trie.add('C') self.assertEqual(trie.split('ABC') , ['AB', 'C']) def A__ ( self): _UpperCamelCase : Any = Trie() trie.add('ABC') trie.add('B') trie.add('CD') self.assertEqual(trie.split('ABCD') , ['ABC', 'D']) def A__ ( self): _UpperCamelCase : Any = Trie() _UpperCamelCase : str = trie.cut_text('ABC' , [0, 0, 2, 1, 2, 3]) self.assertEqual(__snake_case , ['AB', 'C'])
703
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) lowerCAmelCase__ = { """sample_size""": 3_2, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 1_0_0_0, """block_out_channels""": [3_2, 6_4], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """sample_size""": 6_4, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 1_0_0_0, """block_out_channels""": [1_9_2, 1_9_2 * 2, 1_9_2 * 3, 1_9_2 * 4], """attention_head_dim""": 6_4, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """sample_size""": 2_5_6, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [2_5_6, 2_5_6, 2_5_6 * 2, 2_5_6 * 2, 2_5_6 * 4, 2_5_6 * 4], """attention_head_dim""": 6_4, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """num_train_timesteps""": 4_0, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } lowerCAmelCase__ = { """num_train_timesteps""": 2_0_1, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } lowerCAmelCase__ = { """num_train_timesteps""": 1_5_1, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> List[str]: '''simple docstring''' if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def lowerCamelCase_ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any]=False ) -> str: '''simple docstring''' _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.in_layers.0.weight'''] _UpperCamelCase : str = checkpoint[F'''{old_prefix}.in_layers.0.bias'''] _UpperCamelCase : str = checkpoint[F'''{old_prefix}.in_layers.2.weight'''] _UpperCamelCase : Union[str, Any] = checkpoint[F'''{old_prefix}.in_layers.2.bias'''] _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.emb_layers.1.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.emb_layers.1.bias'''] _UpperCamelCase : Tuple = checkpoint[F'''{old_prefix}.out_layers.0.weight'''] _UpperCamelCase : List[Any] = checkpoint[F'''{old_prefix}.out_layers.0.bias'''] _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.out_layers.3.weight'''] _UpperCamelCase : Union[str, Any] = checkpoint[F'''{old_prefix}.out_layers.3.bias'''] if has_skip: _UpperCamelCase : Tuple = checkpoint[F'''{old_prefix}.skip_connection.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any=None ) -> int: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 ) _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.norm.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.norm.bias'''] _UpperCamelCase : List[str] = weight_q.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Dict = bias_q.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Any = weight_k.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : List[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Dict = weight_v.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Tuple = bias_v.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Optional[Any] = ( checkpoint[F'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] ) -> Tuple: '''simple docstring''' _UpperCamelCase : Any = torch.load(UpperCAmelCase_ , map_location='cpu' ) _UpperCamelCase : Union[str, Any] = {} _UpperCamelCase : Optional[int] = checkpoint['time_embed.0.weight'] _UpperCamelCase : List[Any] = checkpoint['time_embed.0.bias'] _UpperCamelCase : Dict = checkpoint['time_embed.2.weight'] _UpperCamelCase : Optional[Any] = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: _UpperCamelCase : List[str] = checkpoint['label_emb.weight'] _UpperCamelCase : Optional[int] = checkpoint['input_blocks.0.0.weight'] _UpperCamelCase : Union[str, Any] = checkpoint['input_blocks.0.0.bias'] _UpperCamelCase : Optional[int] = unet_config['down_block_types'] _UpperCamelCase : Optional[Any] = unet_config['layers_per_block'] _UpperCamelCase : Dict = unet_config['attention_head_dim'] _UpperCamelCase : List[str] = unet_config['block_out_channels'] _UpperCamelCase : str = 1 _UpperCamelCase : Optional[int] = channels_list[0] for i, layer_type in enumerate(UpperCAmelCase_ ): _UpperCamelCase : List[str] = channels_list[i] _UpperCamelCase : str = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(UpperCAmelCase_ ): _UpperCamelCase : str = F'''down_blocks.{i}.resnets.{j}''' _UpperCamelCase : List[Any] = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : Any = True if j == 0 and downsample_block_has_skip else False _UpperCamelCase : str = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(UpperCAmelCase_ ): _UpperCamelCase : List[str] = F'''down_blocks.{i}.resnets.{j}''' _UpperCamelCase : str = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : int = True if j == 0 and downsample_block_has_skip else False _UpperCamelCase : Any = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) _UpperCamelCase : Dict = F'''down_blocks.{i}.attentions.{j}''' _UpperCamelCase : Optional[int] = F'''input_blocks.{current_layer}.1''' _UpperCamelCase : Dict = convert_attention( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : int = F'''down_blocks.{i}.downsamplers.0''' _UpperCamelCase : Optional[int] = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : List[Any] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 _UpperCamelCase : Tuple = current_channels # hardcoded the mid-block for now _UpperCamelCase : Any = 'mid_block.resnets.0' _UpperCamelCase : Optional[Any] = 'middle_block.0' _UpperCamelCase : Tuple = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = 'mid_block.attentions.0' _UpperCamelCase : Tuple = 'middle_block.1' _UpperCamelCase : Union[str, Any] = convert_attention(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Tuple = 'mid_block.resnets.1' _UpperCamelCase : str = 'middle_block.2' _UpperCamelCase : List[str] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : List[Any] = 0 _UpperCamelCase : Optional[int] = unet_config['up_block_types'] for i, layer_type in enumerate(UpperCAmelCase_ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _UpperCamelCase : Optional[Any] = F'''up_blocks.{i}.resnets.{j}''' _UpperCamelCase : Optional[int] = F'''output_blocks.{current_layer}.0''' _UpperCamelCase : str = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : List[Any] = F'''up_blocks.{i}.upsamplers.0''' _UpperCamelCase : Dict = F'''output_blocks.{current_layer-1}.1''' _UpperCamelCase : Optional[int] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _UpperCamelCase : str = F'''up_blocks.{i}.resnets.{j}''' _UpperCamelCase : Union[str, Any] = F'''output_blocks.{current_layer}.0''' _UpperCamelCase : Optional[int] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) _UpperCamelCase : int = F'''up_blocks.{i}.attentions.{j}''' _UpperCamelCase : List[Any] = F'''output_blocks.{current_layer}.1''' _UpperCamelCase : Optional[int] = convert_attention( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : List[Any] = F'''up_blocks.{i}.upsamplers.0''' _UpperCamelCase : Union[str, Any] = F'''output_blocks.{current_layer-1}.2''' _UpperCamelCase : List[str] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : List[Any] = checkpoint['out.0.weight'] _UpperCamelCase : str = checkpoint['out.0.bias'] _UpperCamelCase : int = checkpoint['out.2.weight'] _UpperCamelCase : List[Any] = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = strabool(args.class_cond) lowerCAmelCase__ = os.path.basename(args.unet_path) print(f'Checkpoint: {ckpt_name}') # Get U-Net config if "imagenet64" in ckpt_name: lowerCAmelCase__ = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCAmelCase__ = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: lowerCAmelCase__ = TEST_UNET_CONFIG else: raise ValueError(f'Checkpoint type {ckpt_name} is not currently supported.') if not args.class_cond: lowerCAmelCase__ = None lowerCAmelCase__ = con_pt_to_diffuser(args.unet_path, unet_config) lowerCAmelCase__ = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: lowerCAmelCase__ = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: lowerCAmelCase__ = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCAmelCase__ = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f'Checkpoint type {ckpt_name} is not currently supported.') lowerCAmelCase__ = CMStochasticIterativeScheduler(**scheduler_config) lowerCAmelCase__ = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
648
0
from random import randint, random def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : int = 5 , ) -> str: '''simple docstring''' _UpperCamelCase : List[Any] = [[-1] * number_of_cells] # Create a highway without any car _UpperCamelCase : Optional[Any] = 0 _UpperCamelCase : int = max(__lowercase , 0 ) while i < number_of_cells: _UpperCamelCase : Any = ( randint(0 , __lowercase ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def lowerCamelCase_ ( UpperCAmelCase_ : list , UpperCAmelCase_ : int ) -> List[Any]: '''simple docstring''' _UpperCamelCase : Union[str, Any] = 0 _UpperCamelCase : str = highway_now[car_index + 1 :] for cell in range(len(__lowercase ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(__lowercase , -1 ) def lowerCamelCase_ ( UpperCAmelCase_ : list , UpperCAmelCase_ : float , UpperCAmelCase_ : int ) -> int: '''simple docstring''' _UpperCamelCase : Any = len(__lowercase ) # Beforce calculations, the highway is empty _UpperCamelCase : Tuple = [-1] * number_of_cells for car_index in range(__lowercase ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed _UpperCamelCase : str = min(highway_now[car_index] + 1 , __lowercase ) # Number of empty cell before the next car _UpperCamelCase : Optional[Any] = get_distance(__lowercase , __lowercase ) - 1 # We can't have the car causing an accident _UpperCamelCase : Union[str, Any] = min(next_highway[car_index] , __lowercase ) if random() < probability: # Randomly, a driver will slow down _UpperCamelCase : int = max(next_highway[car_index] - 1 , 0 ) return next_highway def lowerCamelCase_ ( UpperCAmelCase_ : list , UpperCAmelCase_ : int , UpperCAmelCase_ : float , UpperCAmelCase_ : int ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase : Dict = len(highway[0] ) for i in range(__lowercase ): _UpperCamelCase : Any = update(highway[i] , __lowercase , __lowercase ) _UpperCamelCase : List[Any] = [-1] * number_of_cells for car_index in range(__lowercase ): _UpperCamelCase : List[Any] = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) _UpperCamelCase : Any = (car_index + speed) % number_of_cells # Commit the change of position _UpperCamelCase : Union[str, Any] = speed highway.append(__lowercase ) return highway if __name__ == "__main__": import doctest doctest.testmod()
704
def lowerCamelCase_ ( UpperCAmelCase_ : list ) -> list: '''simple docstring''' if len(UpperCAmelCase_ ) <= 1: return [tuple(UpperCAmelCase_ )] _UpperCamelCase : List[Any] = [] def generate(UpperCAmelCase_ : int , UpperCAmelCase_ : list ): _UpperCamelCase : Optional[int] = [0] * n res.append(tuple(UpperCAmelCase_ ) ) _UpperCamelCase : List[Any] = 0 while i < n: if c[i] < i: if i % 2 == 0: _UpperCamelCase , _UpperCamelCase : List[str] = arr[i], arr[0] else: _UpperCamelCase , _UpperCamelCase : List[str] = arr[i], arr[c[i]] res.append(tuple(UpperCAmelCase_ ) ) c[i] += 1 _UpperCamelCase : Tuple = 0 else: _UpperCamelCase : Tuple = 0 i += 1 generate(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) return res if __name__ == "__main__": lowerCAmelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCAmelCase__ = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
648
0
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowerCAmelCase__ = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def lowerCamelCase_ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : int ) -> Tuple: '''simple docstring''' inspect_dataset(__snake_case , __snake_case ) _UpperCamelCase : List[str] = path + '.py' assert script_name in os.listdir(__snake_case ) assert "__pycache__" not in os.listdir(__snake_case ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def lowerCamelCase_ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Any ) -> int: '''simple docstring''' inspect_metric(__snake_case , __snake_case ) _UpperCamelCase : Optional[Any] = path + '.py' assert script_name in os.listdir(__snake_case ) assert "__pycache__" not in os.listdir(__snake_case ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int ) -> List[str]: '''simple docstring''' _UpperCamelCase : str = get_dataset_config_info(__snake_case , config_name=__snake_case ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def lowerCamelCase_ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any ) -> List[str]: '''simple docstring''' with pytest.raises(__snake_case ): get_dataset_config_info(__snake_case , config_name=__snake_case ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def lowerCamelCase_ ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any ) -> str: '''simple docstring''' _UpperCamelCase : int = get_dataset_config_names(__snake_case ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict ) -> Optional[int]: '''simple docstring''' _UpperCamelCase : str = get_dataset_infos(__snake_case ) assert list(infos.keys() ) == expected_configs _UpperCamelCase : int = expected_configs[0] assert expected_config in infos _UpperCamelCase : Optional[int] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] ) -> int: '''simple docstring''' _UpperCamelCase : Union[str, Any] = get_dataset_infos(__snake_case ) assert expected_config in infos _UpperCamelCase : int = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def lowerCamelCase_ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] ) -> List[Any]: '''simple docstring''' with pytest.raises(__snake_case ): get_dataset_split_names(__snake_case , config_name=__snake_case )
705
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = [ ["""attention""", """attn"""], ["""encoder_attention""", """encoder_attn"""], ["""q_lin""", """q_proj"""], ["""k_lin""", """k_proj"""], ["""v_lin""", """v_proj"""], ["""out_lin""", """out_proj"""], ["""norm_embeddings""", """layernorm_embedding"""], ["""position_embeddings""", """embed_positions"""], ["""embeddings""", """embed_tokens"""], ["""ffn.lin""", """fc"""], ] def lowerCamelCase_ ( UpperCAmelCase_ : List[Any] ) -> Optional[int]: '''simple docstring''' if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: _UpperCamelCase : List[Any] = k.replace(UpperCAmelCase_ , UpperCAmelCase_ ) if k.startswith('encoder' ): _UpperCamelCase : Optional[Any] = k.replace('.attn' , '.self_attn' ) _UpperCamelCase : Optional[int] = k.replace('norm1' , 'self_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): _UpperCamelCase : Any = k.replace('norm1' , 'self_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm2' , 'encoder_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm3' , 'final_layer_norm' ) return k def lowerCamelCase_ ( UpperCAmelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Union[str, Any] = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: _UpperCamelCase : Optional[int] = sd.pop(UpperCAmelCase_ ) _UpperCamelCase : str = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd _UpperCamelCase : Tuple = v lowerCAmelCase__ = ["""START"""] @torch.no_grad() def lowerCamelCase_ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ) -> List[str]: '''simple docstring''' _UpperCamelCase : Optional[Any] = torch.load(UpperCAmelCase_ , map_location='cpu' ) _UpperCamelCase : int = model['model'] _UpperCamelCase : List[Any] = BlenderbotConfig.from_json_file(UpperCAmelCase_ ) _UpperCamelCase : Any = BlenderbotForConditionalGeneration(UpperCAmelCase_ ) _UpperCamelCase : int = m.model.state_dict().keys() _UpperCamelCase : Union[str, Any] = [] _UpperCamelCase : int = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue _UpperCamelCase : Optional[int] = rename_state_dict_key(UpperCAmelCase_ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: _UpperCamelCase : int = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(UpperCAmelCase_ ) m.model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) m.half() m.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("""--src_path""", type=str, help="""like blenderbot-model.bin""") parser.add_argument("""--save_dir""", default="""hf_blenderbot""", type=str, help="""Where to save converted model.""") parser.add_argument( """--hf_config_json""", default="""blenderbot-3b-config.json""", type=str, help="""Path to config to use""" ) lowerCAmelCase__ = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
648
0