code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from maths.prime_check import is_prime def snake_case_ ( lowerCAmelCase_ : int ): if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : Any = F"Input value of [number={number}] must be an integer" raise TypeError(lowerCAmelCase_ ) if is_prime(lowerCAmelCase_ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
649
from torch import nn class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , __a : int , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" super().__init__() __lowercase : int = class_size __lowercase : int = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) __lowercase : str = nn.Linear(__a , __a ) def lowerCAmelCase ( self : Tuple , __a : int ) -> Tuple: """simple docstring""" __lowercase : str = self.mlp(__a ) return logits
649
1
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position lowerCamelCase : Union[str, Any] = '''2.13.1''' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('''3.7'''): raise ImportWarning( '''To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.''' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( '''To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n''' '''If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.''' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip lowerCamelCase : Optional[Any] = concatenate_datasets lowerCamelCase : Any = DownloadConfig lowerCamelCase : int = DownloadManager lowerCamelCase : Optional[int] = DownloadMode lowerCamelCase : List[Any] = DownloadConfig lowerCamelCase : List[str] = DownloadMode lowerCamelCase : Optional[Any] = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
649
import fire from utils import calculate_rouge, save_json def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : str=None , **lowerCAmelCase_ : str ): __lowercase : Tuple = [x.strip() for x in open(lowerCAmelCase_ ).readlines()] __lowercase : Dict = [x.strip() for x in open(lowerCAmelCase_ ).readlines()][: len(lowerCAmelCase_ )] __lowercase : Tuple = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) if save_path is not None: save_json(lowerCAmelCase_ , lowerCAmelCase_ , indent=lowerCAmelCase_ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
649
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase : List[str] = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[Any] = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[Any] = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowerCamelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
649
from argparse import ArgumentParser from . import BaseTransformersCLICommand def snake_case_ ( lowerCAmelCase_ : Dict ): return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class lowerCAmelCase ( __a ): '''simple docstring''' @staticmethod def lowerCAmelCase ( __a : ArgumentParser ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = parser.add_parser("""download""" ) download_parser.add_argument( """--cache-dir""" , type=__a , default=__a , help="""Path to location to store the models""" ) download_parser.add_argument( """--force""" , action="""store_true""" , help="""Force the model to be download even if already in cache-dir""" ) download_parser.add_argument( """--trust-remote-code""" , action="""store_true""" , help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" , ) download_parser.add_argument("""model""" , type=__a , help="""Name of the model to download""" ) download_parser.set_defaults(func=__a ) def __init__( self : Dict , __a : str , __a : str , __a : bool , __a : bool ) -> Union[str, Any]: """simple docstring""" __lowercase : Dict = model __lowercase : List[Any] = cache __lowercase : Any = force __lowercase : Optional[int] = trust_remote_code def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
649
1
from queue import PriorityQueue from typing import Any import numpy as np def snake_case_ ( lowerCAmelCase_ : dict , lowerCAmelCase_ : str , lowerCAmelCase_ : set , lowerCAmelCase_ : set , lowerCAmelCase_ : dict , lowerCAmelCase_ : dict , lowerCAmelCase_ : PriorityQueue , lowerCAmelCase_ : dict , lowerCAmelCase_ : float | int , ): for nxt, d in graph[v]: if nxt in visited_forward: continue __lowercase : Tuple = cst_fwd.get(lowerCAmelCase_ , np.inf ) __lowercase : Any = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) __lowercase : int = new_cost_f __lowercase : Optional[int] = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: __lowercase : int = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : dict , lowerCAmelCase_ : dict ): __lowercase : str = -1 __lowercase : List[str] = set() __lowercase : Dict = set() __lowercase : Any = {source: 0} __lowercase : Tuple = {destination: 0} __lowercase : Optional[int] = {source: None} __lowercase : Dict = {destination: None} __lowercase : PriorityQueue[Any] = PriorityQueue() __lowercase : PriorityQueue[Any] = PriorityQueue() __lowercase : Optional[int] = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): __lowercase , __lowercase : Union[str, Any] = queue_forward.get() visited_forward.add(lowerCAmelCase_ ) __lowercase , __lowercase : Any = queue_backward.get() visited_backward.add(lowerCAmelCase_ ) __lowercase : int = pass_and_relaxation( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) __lowercase : str = pass_and_relaxation( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: __lowercase : Union[str, Any] = shortest_distance return shortest_path_distance lowerCamelCase : Any = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } lowerCamelCase : Any = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
649
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowerCamelCase : Union[str, Any] = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , __a : List[str] , __a : Optional[int]=16 , __a : Optional[Any]=13 , __a : str=7 , __a : List[str]=14 , __a : Any=10 , __a : str=19 , __a : int=5 , __a : Any=4 , __a : List[Any]=True , __a : Tuple=16 , __a : Dict=2 , __a : Tuple=4 , __a : int=4 , __a : List[Any]="gelu" , __a : Tuple=0.1 , __a : List[str]=0.1 , __a : int=[1, 2, 3, 4, 5] , __a : str=25 , __a : Any=5 , ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = d_model __lowercase : Dict = parent __lowercase : Tuple = batch_size __lowercase : Optional[int] = prediction_length __lowercase : List[str] = context_length __lowercase : Any = cardinality __lowercase : str = num_time_features __lowercase : Optional[int] = lags_sequence __lowercase : Optional[Any] = embedding_dimension __lowercase : List[Any] = is_training __lowercase : List[str] = hidden_size __lowercase : int = num_hidden_layers __lowercase : Any = num_attention_heads __lowercase : List[Any] = intermediate_size __lowercase : int = hidden_act __lowercase : str = hidden_dropout_prob __lowercase : List[Any] = attention_probs_dropout_prob __lowercase : str = context_length __lowercase : int = prediction_length + label_length __lowercase : Union[str, Any] = label_length __lowercase : Optional[int] = moving_average __lowercase : Optional[Any] = autocorrelation_factor def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def lowerCAmelCase ( self : Tuple , __a : str ) -> int: """simple docstring""" __lowercase : Any = config.context_length + max(config.lags_sequence ) __lowercase : Any = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __lowercase : Optional[int] = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __lowercase : List[str] = floats_tensor([self.batch_size, _past_length] ) __lowercase : List[str] = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __lowercase : Dict = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __lowercase : str = floats_tensor([self.batch_size, config.prediction_length] ) __lowercase : List[str] = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.get_config() __lowercase : Any = self.prepare_autoformer_inputs_dict(__a ) return config, inputs_dict def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase , __lowercase : List[str] = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase ( self : Optional[Any] , __a : Tuple , __a : Optional[int] ) -> Any: """simple docstring""" __lowercase : List[str] = AutoformerModel(config=__a ).to(__a ).eval() __lowercase : Optional[int] = model(**__a ) __lowercase : Dict = outputs.encoder_last_hidden_state __lowercase : Tuple = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : List[str] = model.get_encoder() encoder.save_pretrained(__a ) __lowercase : List[str] = AutoformerEncoder.from_pretrained(__a ).to(__a ) __lowercase , __lowercase , __lowercase , __lowercase , __lowercase : Any = model.create_network_inputs(**__a ) __lowercase , __lowercase : Any = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __lowercase : Optional[Any] = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __lowercase : Union[str, Any] = encoder(inputs_embeds=__a )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) __lowercase : str = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __lowercase : Optional[int] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __lowercase : Any = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __lowercase : Dict = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : Optional[Any] = model.get_decoder() decoder.save_pretrained(__a ) __lowercase : Tuple = AutoformerDecoder.from_pretrained(__a ).to(__a ) __lowercase : str = decoder( trend=__a , inputs_embeds=__a , encoder_hidden_states=__a , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[str] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _A : List[Any] = (AutoformerForPrediction,) if is_torch_available() else () _A : Any = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} _A : Dict = False _A : Tuple = False _A : Optional[int] = False _A : Tuple = False _A : str = False _A : Union[str, Any] = False def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" __lowercase : List[str] = AutoformerModelTester(self ) __lowercase : Dict = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowercase : Dict = model_class(__a ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowercase , __lowercase : Tuple = model_class.from_pretrained(__a , output_loading_info=__a ) self.assertEqual(info["""missing_keys"""] , [] ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__a ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def lowerCAmelCase ( self : str ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : Any = inspect.signature(getattr(__a , """forward""" ) ) # The main input is the name of the argument after `self` __lowercase : Optional[int] = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , __a ) def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Dict = model_class(__a ) __lowercase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : Any = [*signature.parameters.keys()] __lowercase : int = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(__a )] , __a ) def lowerCAmelCase ( self : int ) -> int: """simple docstring""" __lowercase , __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : int = True __lowercase : Tuple = getattr(self.model_tester , """seq_length""" , __a ) __lowercase : Union[str, Any] = getattr(self.model_tester , """decoder_seq_length""" , __a ) __lowercase : List[str] = getattr(self.model_tester , """encoder_seq_length""" , __a ) __lowercase : List[Any] = getattr(self.model_tester , """d_model""" , __a ) __lowercase : Optional[int] = getattr(self.model_tester , """num_attention_heads""" , __a ) __lowercase : Any = d_model // num_attention_heads for model_class in self.all_model_classes: __lowercase : Dict = True __lowercase : List[str] = False __lowercase : Optional[int] = True __lowercase : str = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : int = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase : Optional[int] = True __lowercase : List[str] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Union[str, Any] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Dict = outputs.encoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __lowercase : Tuple = len(__a ) __lowercase : str = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__a , __a ) # decoder attentions __lowercase : List[Any] = outputs.decoder_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __lowercase : Optional[int] = outputs.cross_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __lowercase : Tuple = True __lowercase : Union[str, Any] = True __lowercase : Tuple = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Any = model(**self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + 2 , len(__a ) ) __lowercase : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def snake_case_ ( lowerCAmelCase_ : Optional[int]="train-batch.pt" ): __lowercase : Dict = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=lowerCAmelCase_ , repo_type="""dataset""" ) __lowercase : Optional[int] = torch.load(lowerCAmelCase_ , map_location=lowerCAmelCase_ ) return batch @require_torch @slow class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" __lowercase : List[str] = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : List[Any] = prepare_batch() with torch.no_grad(): __lowercase : Tuple = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] __lowercase : List[str] = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , __a ) __lowercase : Optional[int] = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" __lowercase : int = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : List[str] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowercase : Optional[Any] = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state __lowercase : List[str] = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , __a ) __lowercase : Optional[int] = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : Optional[int] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowercase : int = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) __lowercase : int = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , __a ) __lowercase : Optional[Any] = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=__a ) __lowercase : Dict = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __a , rtol=1E-1 ) )
649
1
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__a , """tf_padding""" ) ) self.parent.assertTrue(hasattr(__a , """depth_multiplier""" ) ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Tuple , __a : str=13 , __a : Dict=3 , __a : List[Any]=32 , __a : Any=0.25 , __a : Any=8 , __a : Optional[int]=8 , __a : Optional[int]=6 , __a : Dict=32 , __a : Tuple=True , __a : List[Any]=True , __a : Optional[int]=True , __a : Tuple="relu6" , __a : Optional[Any]=1280 , __a : str=0.1 , __a : str=0.02 , __a : Optional[Any]=True , __a : Tuple=True , __a : Dict=10 , __a : Optional[Any]=None , ) -> Any: """simple docstring""" __lowercase : List[str] = parent __lowercase : Tuple = batch_size __lowercase : Dict = num_channels __lowercase : Optional[int] = image_size __lowercase : int = depth_multiplier __lowercase : str = depth_divisible_by __lowercase : int = min_depth __lowercase : Tuple = expand_ratio __lowercase : Optional[int] = tf_padding __lowercase : Dict = output_stride __lowercase : Dict = first_layer_is_expansion __lowercase : Optional[Any] = finegrained_output __lowercase : str = hidden_act __lowercase : Union[str, Any] = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) __lowercase : Optional[int] = classifier_dropout_prob __lowercase : int = use_labels __lowercase : Optional[int] = is_training __lowercase : Dict = num_labels __lowercase : Tuple = initializer_range __lowercase : Optional[Any] = scope def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : List[Any] = None __lowercase : Optional[Any] = None if self.use_labels: __lowercase : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __lowercase : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowercase : List[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : Tuple , __a : Dict , __a : Tuple , __a : Optional[int] , __a : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[int] = MobileNetVaModel(config=__a ) model.to(__a ) model.eval() __lowercase : Tuple = model(__a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def lowerCAmelCase ( self : List[str] , __a : Optional[int] , __a : List[str] , __a : str , __a : Optional[int] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = self.num_labels __lowercase : Dict = MobileNetVaForImageClassification(__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : int , __a : List[str] , __a : Tuple , __a : Any , __a : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : int = self.num_labels __lowercase : List[Any] = MobileNetVaForSemanticSegmentation(__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __lowercase : str = model(__a , labels=__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase : List[str] = config_and_inputs __lowercase : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Tuple = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) _A : Optional[Any] = ( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) _A : Tuple = False _A : List[str] = False _A : List[str] = False _A : Optional[int] = False def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = MobileNetVaModelTester(self ) __lowercase : int = MobileNetVaConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV2 does not use inputs_embeds""" ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not support input and output embeddings""" ) def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not output attentions""" ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[Any] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : int = [*signature.parameters.keys()] __lowercase : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" def check_hidden_states_output(__a : List[Any] , __a : Tuple , __a : List[str] ): __lowercase : Optional[Any] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : List[Any] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Tuple = outputs.hidden_states __lowercase : str = 16 self.assertEqual(len(__a ) , __a ) __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Any = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase : Union[str, Any] = True check_hidden_states_output(__a , __a , __a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : Optional[int] = MobileNetVaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def snake_case_ ( ): __lowercase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v2_1.0_224""" ) if is_vision_available() else None ) @slow def lowerCAmelCase ( self : str ) -> int: """simple docstring""" __lowercase : Tuple = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v2_1.0_224""" ).to(__a ) __lowercase : str = self.default_image_processor __lowercase : Tuple = prepare_img() __lowercase : Tuple = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : str = model(**__a ) # verify the logits __lowercase : Union[str, Any] = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , __a ) __lowercase : str = torch.tensor([0.2445, -1.1993, 0.1905] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : int = MobileNetVaForSemanticSegmentation.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __lowercase : Dict = model.to(__a ) __lowercase : Tuple = MobileNetVaImageProcessor.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __lowercase : List[str] = prepare_img() __lowercase : Optional[int] = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : Union[str, Any] = model(**__a ) __lowercase : Any = outputs.logits # verify the logits __lowercase : Dict = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , __a ) __lowercase : str = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=__a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __a , atol=1E-4 ) )
649
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowerCAmelCase ( __a , __a ): '''simple docstring''' _A : str = 1 @register_to_config def __init__( self : Optional[int] , __a : Tuple=2000 , __a : List[str]=0.1 , __a : str=20 , __a : Optional[int]=1E-3 ) -> int: """simple docstring""" __lowercase : Tuple = None __lowercase : Union[str, Any] = None __lowercase : int = None def lowerCAmelCase ( self : List[Any] , __a : Any , __a : Union[str, torch.device] = None ) -> str: """simple docstring""" __lowercase : List[str] = torch.linspace(1 , self.config.sampling_eps , __a , device=__a ) def lowerCAmelCase ( self : Tuple , __a : List[Any] , __a : Tuple , __a : int , __a : Optional[int]=None ) -> str: """simple docstring""" if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __lowercase : Dict = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __lowercase : int = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __lowercase : Union[str, Any] = std.flatten() while len(std.shape ) < len(score.shape ): __lowercase : Optional[Any] = std.unsqueeze(-1 ) __lowercase : List[Any] = -score / std # compute __lowercase : Dict = -1.0 / len(self.timesteps ) __lowercase : int = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __lowercase : List[Any] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __lowercase : Union[str, Any] = beta_t.unsqueeze(-1 ) __lowercase : List[str] = -0.5 * beta_t * x __lowercase : int = torch.sqrt(__a ) __lowercase : Union[str, Any] = drift - diffusion**2 * score __lowercase : Optional[Any] = x + drift * dt # add noise __lowercase : List[str] = randn_tensor(x.shape , layout=x.layout , generator=__a , device=x.device , dtype=x.dtype ) __lowercase : str = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Tuple ) -> Optional[int]: """simple docstring""" return self.config.num_train_timesteps
649
1
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : Union[str, Any] = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def lowerCAmelCase ( self : int , __a : List[Any]=0 ) -> str: """simple docstring""" __lowercase : str = floats_tensor((1, 3, 128, 128) , rng=random.Random(__a ) ) __lowercase : int = np.random.RandomState(__a ) __lowercase : str = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """strength""": 0.75, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : Dict = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=__a ) __lowercase : List[str] = self.get_dummy_inputs() __lowercase : Optional[Any] = pipe(**__a ).images __lowercase : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) __lowercase : Optional[Any] = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase : Optional[Any] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__a ) pipe.set_progress_bar_config(disable=__a ) __lowercase : Optional[int] = self.get_dummy_inputs() __lowercase : Union[str, Any] = pipe(**__a ).images __lowercase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase : str = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Dict = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase : List[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__a ) # warmup pass to apply optimizations __lowercase : Optional[int] = pipe(**self.get_dummy_inputs() ) __lowercase : Dict = self.get_dummy_inputs() __lowercase : Any = pipe(**__a ).images __lowercase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase : Union[str, Any] = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase : Any = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__a ) __lowercase : Dict = self.get_dummy_inputs() __lowercase : str = pipe(**__a ).images __lowercase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase : List[Any] = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" __lowercase : Tuple = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase : int = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__a ) __lowercase : Optional[int] = self.get_dummy_inputs() __lowercase : Optional[int] = pipe(**__a ).images __lowercase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase : Optional[Any] = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__a ) __lowercase : str = self.get_dummy_inputs() __lowercase : Optional[Any] = pipe(**__a ).images __lowercase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase : List[Any] = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" __lowercase : List[Any] = ort.SessionOptions() __lowercase : Tuple = False return options def lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" __lowercase : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) __lowercase : Tuple = init_image.resize((768, 512) ) # using the PNDM scheduler by default __lowercase : List[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=__a , feature_extractor=__a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__a ) __lowercase : str = """A fantasy landscape, trending on artstation""" __lowercase : Tuple = np.random.RandomState(0 ) __lowercase : Any = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=__a , output_type="""np""" , ) __lowercase : int = output.images __lowercase : Tuple = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __lowercase : int = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" __lowercase : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) __lowercase : Optional[Any] = init_image.resize((768, 512) ) __lowercase : Dict = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __lowercase : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=__a , safety_checker=__a , feature_extractor=__a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__a ) __lowercase : Any = """A fantasy landscape, trending on artstation""" __lowercase : Dict = np.random.RandomState(0 ) __lowercase : Optional[int] = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=__a , output_type="""np""" , ) __lowercase : str = output.images __lowercase : Tuple = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __lowercase : str = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
649
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : str = LongformerTokenizer _A : int = True _A : Optional[int] = LongformerTokenizerFast _A : int = True def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __lowercase : Union[str, Any] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Any = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __lowercase : Optional[int] = {"""unk_token""": """<unk>"""} __lowercase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__a ) ) def lowerCAmelCase ( self : Optional[int] , **__a : Optional[Any] ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Tuple , **__a : Tuple ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : str , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = """lower newer""" __lowercase : int = """lower newer""" return input_text, output_text def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowercase : Dict = """lower newer""" __lowercase : Optional[Any] = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] __lowercase : str = tokenizer.tokenize(__a ) # , add_prefix_space=True) self.assertListEqual(__a , __a ) __lowercase : int = tokens + [tokenizer.unk_token] __lowercase : str = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=__a ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=__a ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : Any = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" ) __lowercase : Optional[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=__a ) __lowercase : List[str] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__a ) __lowercase : Optional[Any] = tokenizer.encode( """sequence builders""" , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Union[str, Any] = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : List[Any] = tokenizer.build_inputs_with_special_tokens(__a ) __lowercase : Any = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() __lowercase : Tuple = """Encode this sequence.""" __lowercase : Optional[Any] = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments __lowercase : Dict = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__a , __a ) __lowercase : List[str] = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__a , __a ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) __lowercase : str = tokenizer.encode(__a , add_special_tokens=__a ) __lowercase : Dict = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__a , __a ) # Testing spaces after special tokens __lowercase : List[Any] = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(__a , lstrip=__a , rstrip=__a )} ) # mask token has a left space __lowercase : Dict = tokenizer.convert_tokens_to_ids(__a ) __lowercase : List[str] = """Encode <mask> sequence""" __lowercase : List[str] = """Encode <mask>sequence""" __lowercase : Union[str, Any] = tokenizer.encode(__a ) __lowercase : Dict = encoded.index(__a ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__a , __a ) __lowercase : int = tokenizer.encode(__a ) __lowercase : Union[str, Any] = encoded.index(__a ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__a , __a ) def lowerCAmelCase ( self : int ) -> str: """simple docstring""" pass def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) __lowercase : List[Any] = self.tokenizer_class.from_pretrained(__a , **__a ) __lowercase : Optional[Any] = """A, <mask> AllenNLP sentence.""" __lowercase : Union[str, Any] = tokenizer_r.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) __lowercase : Optional[Any] = tokenizer_p.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) __lowercase : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __lowercase : str = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __lowercase : Dict = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __lowercase : Any = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""trim_offsets"""] , __a ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : List[str] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` __lowercase : int = F"{text_of_1_token} {text_of_1_token}" __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Any = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) __lowercase : str = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Tuple = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) __lowercase : Optional[int] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : str = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) __lowercase : str = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : int = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) __lowercase : Any = F" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : str = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ) + 1, 1 + len(__a ) + 1 + len(__a )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Dict = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Tuple = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , )
649
1
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Any , __a : Union[str, "sqlalchemy.sql.Selectable"] , __a : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , __a : Optional[Features] = None , __a : str = None , __a : bool = False , **__a : Optional[int] , ) -> Optional[Any]: """simple docstring""" super().__init__(features=__a , cache_dir=__a , keep_in_memory=__a , **__a ) __lowercase : Tuple = Sql( cache_dir=__a , features=__a , sql=__a , con=__a , **__a , ) def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" __lowercase : str = None __lowercase : Any = None __lowercase : List[Any] = None __lowercase : Union[str, Any] = None self.builder.download_and_prepare( download_config=__a , download_mode=__a , verification_mode=__a , base_path=__a , ) # Build dataset for splits __lowercase : Dict = self.builder.as_dataset( split="""train""" , verification_mode=__a , in_memory=self.keep_in_memory ) return dataset class lowerCAmelCase : '''simple docstring''' def __init__( self : List[Any] , __a : Dataset , __a : str , __a : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , __a : Optional[int] = None , __a : Optional[int] = None , **__a : Union[str, Any] , ) -> Tuple: """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(F"num_proc {num_proc} must be an integer > 0." ) __lowercase : List[str] = dataset __lowercase : Tuple = name __lowercase : Any = con __lowercase : int = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __lowercase : str = num_proc __lowercase : List[Any] = to_sql_kwargs def lowerCAmelCase ( self : int ) -> int: """simple docstring""" __lowercase : str = self.to_sql_kwargs.pop("""sql""" , __a ) __lowercase : Optional[Any] = self.to_sql_kwargs.pop("""con""" , __a ) __lowercase : int = self.to_sql_kwargs.pop("""index""" , __a ) __lowercase : List[Any] = self._write(index=__a , **self.to_sql_kwargs ) return written def lowerCAmelCase ( self : str , __a : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase , __lowercase : Optional[int] = args __lowercase : Tuple = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs __lowercase : Tuple = query_table( table=self.dataset.data , key=slice(__a , offset + self.batch_size ) , indices=self.dataset._indices , ) __lowercase : int = batch.to_pandas() __lowercase : str = df.to_sql(self.name , self.con , index=__a , **__a ) return num_rows or len(__a ) def lowerCAmelCase ( self : List[str] , __a : Optional[int] , **__a : Optional[int] ) -> int: """simple docstring""" __lowercase : List[Any] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: __lowercase , __lowercase : Optional[Any] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , __a , __a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
649
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Dict , __a : Union[str, Any]=13 , __a : Dict=7 , __a : Dict=True , __a : Dict=True , __a : Any=True , __a : List[str]=True , __a : int=99 , __a : Optional[int]=32 , __a : str=2 , __a : int=4 , __a : List[str]=37 , __a : Union[str, Any]="gelu" , __a : Union[str, Any]=0.1 , __a : Union[str, Any]=0.1 , __a : List[Any]=512 , __a : int=16 , __a : Union[str, Any]=2 , __a : Union[str, Any]=0.02 , __a : List[str]=3 , __a : Dict=4 , __a : Optional[Any]=None , ) -> Optional[Any]: """simple docstring""" __lowercase : Any = parent __lowercase : Tuple = 13 __lowercase : Dict = 7 __lowercase : List[Any] = True __lowercase : Tuple = True __lowercase : List[str] = True __lowercase : Any = True __lowercase : Optional[int] = 99 __lowercase : str = 384 __lowercase : Optional[Any] = 2 __lowercase : Dict = 4 __lowercase : str = 37 __lowercase : Optional[int] = """gelu""" __lowercase : int = 0.1 __lowercase : Union[str, Any] = 0.1 __lowercase : Tuple = 512 __lowercase : Tuple = 16 __lowercase : Optional[int] = 2 __lowercase : Optional[Any] = 0.02 __lowercase : Dict = 3 __lowercase : Union[str, Any] = 4 __lowercase : Tuple = 128 __lowercase : Optional[Any] = 2 __lowercase : int = 9 __lowercase : List[Any] = 1 __lowercase : Union[str, Any] = None def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" __lowercase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : Optional[Any] = None if self.use_input_mask: __lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : Dict = None if self.use_token_type_ids: __lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase : Optional[Any] = None __lowercase : str = None __lowercase : Tuple = None if self.use_labels: __lowercase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : str = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : Optional[int] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Dict , __a : List[Any] , __a : List[str] , __a : Union[str, Any] , __a : str , __a : Union[str, Any] , __a : Tuple , __a : Tuple ) -> Dict: """simple docstring""" __lowercase : Dict = TFConvBertModel(config=__a ) __lowercase : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowercase : Any = [input_ids, input_mask] __lowercase : Dict = model(__a ) __lowercase : str = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : Any , __a : Tuple , __a : Union[str, Any] , __a : str , __a : Dict , __a : str ) -> Dict: """simple docstring""" __lowercase : Optional[int] = TFConvBertForMaskedLM(config=__a ) __lowercase : List[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : Any = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[int] , __a : int , __a : Any , __a : Optional[int] , __a : int , __a : int , __a : List[Any] , __a : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase : str = self.num_labels __lowercase : List[Any] = TFConvBertForSequenceClassification(config=__a ) __lowercase : int = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : List[str] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Optional[int] , __a : Any , __a : Optional[Any] , __a : int , __a : Optional[int] , __a : Tuple , __a : int , __a : int ) -> Dict: """simple docstring""" __lowercase : Tuple = self.num_choices __lowercase : Dict = TFConvBertForMultipleChoice(config=__a ) __lowercase : List[str] = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : int = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : str = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : str = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __lowercase : Dict = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : List[str] , __a : str , __a : List[str] , __a : List[str] , __a : List[str] , __a : Any , __a : Tuple , __a : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = self.num_labels __lowercase : Tuple = TFConvBertForTokenClassification(config=__a ) __lowercase : Dict = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : str = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : List[Any] , __a : Optional[int] , __a : List[str] , __a : Optional[Any] , __a : int , __a : Tuple , __a : Any , __a : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Any = TFConvBertForQuestionAnswering(config=__a ) __lowercase : str = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : List[Any] = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : Tuple = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : int = config_and_inputs __lowercase : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Dict = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _A : str = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _A : Union[str, Any] = False _A : List[str] = False _A : Dict = False def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : int = TFConvBertModelTester(self ) __lowercase : Tuple = ConfigTester(self , config_class=__a , hidden_size=37 ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__a ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Union[str, Any] = True __lowercase : List[Any] = True if hasattr(__a , """use_cache""" ): __lowercase : Optional[Any] = True __lowercase : List[str] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) __lowercase : int = getattr(self.model_tester , """key_length""" , __a ) for model_class in self.all_model_classes: __lowercase : Optional[Any] = self._prepare_for_class(__a , __a ) __lowercase : Tuple = model_class(__a ) __lowercase : Tuple = len(model(__a ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a , saved_model=__a ) __lowercase : List[Any] = os.path.join(__a , """saved_model""" , """1""" ) __lowercase : str = tf.keras.models.load_model(__a ) __lowercase : Optional[int] = model(__a ) if self.is_encoder_decoder: __lowercase : Union[str, Any] = outputs["""encoder_hidden_states"""] __lowercase : Union[str, Any] = outputs["""encoder_attentions"""] else: __lowercase : Union[str, Any] = outputs["""hidden_states"""] __lowercase : List[str] = outputs["""attentions"""] self.assertEqual(len(__a ) , __a ) __lowercase : List[Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : str = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) self.assertIsNotNone(__a ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : List[str] = True __lowercase : List[Any] = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length ) __lowercase : Optional[int] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) __lowercase : List[str] = getattr(self.model_tester , """key_length""" , __a ) __lowercase : List[Any] = getattr(self.model_tester , """key_length""" , __a ) def check_decoder_attentions_output(__a : List[str] ): __lowercase : Union[str, Any] = len(__a ) self.assertEqual(out_len % 2 , 0 ) __lowercase : Any = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__a : str ): __lowercase : str = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __lowercase : int = True __lowercase : Any = False __lowercase : List[Any] = model_class(__a ) __lowercase : Tuple = model(self._prepare_for_class(__a , __a ) ) __lowercase : Dict = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: __lowercase : Any = model_class(__a ) __lowercase : List[str] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __lowercase : Dict = True __lowercase : Optional[Any] = model_class(__a ) __lowercase : Optional[int] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine __lowercase : List[str] = True __lowercase : List[Any] = True __lowercase : Any = model_class(__a ) __lowercase : Optional[int] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @require_tf class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) __lowercase : str = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowercase : Tuple = model(__a )[0] __lowercase : Any = [1, 6, 768] self.assertEqual(output.shape , __a ) __lowercase : Optional[Any] = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-4 )
649
1
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase : List[Any] = logging.get_logger(__name__) lowerCamelCase : Tuple = { '''vocab_file''': '''vocab.json''', '''tokenizer_config_file''': '''tokenizer_config.json''', '''merges_file''': '''merges.txt''', } lowerCamelCase : Any = { '''vocab_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json''' ), }, '''tokenizer_config_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json''' ), }, '''merges_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt''' ), }, } lowerCamelCase : Any = '''</w>''' lowerCamelCase : Optional[int] = '''@@ ''' def snake_case_ ( lowerCAmelCase_ : Dict ): __lowercase : Optional[Any] = set() __lowercase : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowercase : int = char return pairs # Speech2Text2 has no max input length lowerCamelCase : Optional[int] = {'''facebook/s2t-wav2vec2-large-en-de''': 10_24} class lowerCAmelCase ( __a ): '''simple docstring''' _A : Dict = VOCAB_FILES_NAMES _A : str = PRETRAINED_VOCAB_FILES_MAP _A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self : int , __a : Optional[Any] , __a : List[Any]="<s>" , __a : str="<pad>" , __a : List[Any]="</s>" , __a : Dict="<unk>" , __a : Any=False , __a : Union[str, Any]=None , **__a : List[Any] , ) -> Optional[Any]: """simple docstring""" super().__init__( unk_token=__a , bos_token=__a , eos_token=__a , pad_token=__a , do_lower_case=__a , **__a , ) __lowercase : int = do_lower_case with open(__a , encoding="""utf-8""" ) as vocab_handle: __lowercase : List[Any] = json.load(__a ) __lowercase : Union[str, Any] = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"No merges files provided. {self.__class__.__name__} can only be used for decoding." ) __lowercase : int = None __lowercase : Union[str, Any] = None else: with open(__a , encoding="""utf-8""" ) as merges_handle: __lowercase : List[str] = merges_handle.read().split("""\n""" )[:-1] __lowercase : Union[str, Any] = [tuple(merge.split()[:2] ) for merge in merges] __lowercase : List[str] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Union[str, Any] = {} @property def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" return len(self.decoder ) def lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase ( self : Tuple , __a : Any ) -> Dict: """simple docstring""" __lowercase : List[Any] = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] __lowercase : Dict = get_pairs(__a ) if not pairs: return token while True: __lowercase : Any = min(__a , key=lambda __a : self.bpe_ranks.get(__a , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __lowercase , __lowercase : Any = bigram __lowercase : Dict = [] __lowercase : List[str] = 0 while i < len(__a ): try: __lowercase : Tuple = word.index(__a , __a ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowercase : str = j if word[i] == first and i < len(__a ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowercase : Dict = tuple(__a ) __lowercase : List[str] = new_word if len(__a ) == 1: break else: __lowercase : str = get_pairs(__a ) __lowercase : List[str] = """ """.join(__a ) if word == "\n " + BPE_TOKEN_MERGES: __lowercase : Tuple = """\n""" + BPE_TOKEN_MERGES if word.endswith(__a ): __lowercase : List[Any] = word.replace(__a , """""" ) __lowercase : Union[str, Any] = word.replace(""" """ , __a ) __lowercase : Any = word return word def lowerCAmelCase ( self : Optional[Any] , __a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" if self.bpe_ranks is None: raise ValueError( """This tokenizer was instantiated without a `merges.txt` file, so""" """ that it can only be used for decoding, not for encoding.""" """Make sure to provide `merges.txt` file at instantiation to enable """ """encoding.""" ) if self.do_lower_case: __lowercase : Union[str, Any] = text.lower() __lowercase : Union[str, Any] = text.split() __lowercase : Optional[Any] = [] for token in text: if token: split_tokens.extend(list(self.bpe(__a ).split(""" """ ) ) ) return split_tokens def lowerCAmelCase ( self : Dict , __a : str ) -> int: """simple docstring""" return self.encoder.get(__a , self.encoder.get(self.unk_token ) ) def lowerCAmelCase ( self : Tuple , __a : int ) -> str: """simple docstring""" __lowercase : str = self.decoder.get(__a , self.unk_token ) return result def lowerCAmelCase ( self : Union[str, Any] , __a : List[str] ) -> str: """simple docstring""" __lowercase : Optional[Any] = """ """.join(__a ) # make sure @@ tokens are concatenated __lowercase : Union[str, Any] = """""".join(string.split(__a ) ) return string def lowerCAmelCase ( self : int , __a : str , __a : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__a ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __lowercase : Tuple = os.path.join( __a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : Optional[Any] = os.path.join( __a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(__a , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__a , ensure_ascii=__a ) + """\n""" ) __lowercase : Dict = 0 if self.bpe_ranks is None: return (vocab_file,) with open(__a , """w""" , encoding="""utf-8""" ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __a : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merges_file}: BPE merge indices are not consecutive." """ Please check that the tokenizer is not corrupted!""" ) __lowercase : str = token_index writer.write(""" """.join(__a ) + """\n""" ) index += 1 return (vocab_file, merges_file)
649
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : int , *__a : Dict , **__a : Optional[Any] ) -> None: """simple docstring""" warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , __a , ) super().__init__(*__a , **__a )
649
1
def snake_case_ ( lowerCAmelCase_ : int = 1000 ): __lowercase : List[Any] = 3 __lowercase : Tuple = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f'''{solution() = }''')
649
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Optional[int] = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() __lowercase : List[str] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Dict = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } __lowercase : List[str] = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 16000, """return_attention_mask""": False, """do_normalize""": True, } __lowercase : Tuple = tempfile.mkdtemp() __lowercase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : str = os.path.join(self.tmpdirname , __a ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) # load decoder from hub __lowercase : Optional[int] = """hf-internal-testing/ngram-beam-search-decoder""" def lowerCAmelCase ( self : Optional[Any] , **__a : Dict ) -> Tuple: """simple docstring""" __lowercase : Union[str, Any] = self.add_kwargs_tokens_map.copy() kwargs.update(__a ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : str , **__a : int ) -> Tuple: """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Union[str, Any] , **__a : Union[str, Any] ) -> List[Any]: """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__a ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() __lowercase : Any = self.get_feature_extractor() __lowercase : str = self.get_decoder() __lowercase : Tuple = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) processor.save_pretrained(self.tmpdirname ) __lowercase : Tuple = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __a ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __a ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __a ) def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Any = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __lowercase : str = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : List[str] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(__a , """include""" ): WavaVecaProcessorWithLM( tokenizer=__a , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : List[Any] = self.get_feature_extractor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : int = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Optional[int] = floats_list((3, 1000) ) __lowercase : List[Any] = feature_extractor(__a , return_tensors="""np""" ) __lowercase : List[str] = processor(__a , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : List[Any] = self.get_feature_extractor() __lowercase : int = self.get_tokenizer() __lowercase : Dict = self.get_decoder() __lowercase : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Dict = """This is a test string""" __lowercase : Any = processor(text=__a ) __lowercase : Dict = tokenizer(__a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase ( self : str , __a : Tuple=(2, 10, 16) , __a : int=77 ) -> Optional[Any]: """simple docstring""" np.random.seed(__a ) return np.random.rand(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : List[str] = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : str = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : List[str] = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __lowercase : Optional[Any] = processor.decode(__a ) __lowercase : Any = decoder.decode_beams(__a )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def lowerCAmelCase ( self : List[str] , __a : Dict ) -> List[Any]: """simple docstring""" __lowercase : str = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : Optional[int] = self.get_decoder() __lowercase : Any = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Optional[Any] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __lowercase : Union[str, Any] = processor.batch_decode(__a ) else: with get_context(__a ).Pool() as pool: __lowercase : Optional[Any] = processor.batch_decode(__a , __a ) __lowercase : Union[str, Any] = list(__a ) with get_context("""fork""" ).Pool() as p: __lowercase : Optional[Any] = decoder.decode_beams_batch(__a , __a ) __lowercase , __lowercase , __lowercase : Any = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__a , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(__a , decoded_processor.logit_score ) self.assertListEqual(__a , decoded_processor.lm_score ) def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase : int = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : List[str] = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Dict = self._get_dummy_logits() __lowercase : Tuple = 15 __lowercase : Tuple = -20.0 __lowercase : Dict = -4.0 __lowercase : Dict = processor.batch_decode( __a , beam_width=__a , beam_prune_logp=__a , token_min_logp=__a , ) __lowercase : Tuple = decoded_processor_out.text __lowercase : List[Any] = list(__a ) with get_context("""fork""" ).Pool() as pool: __lowercase : Any = decoder.decode_beams_batch( __a , __a , beam_width=__a , beam_prune_logp=__a , token_min_logp=__a , ) __lowercase : Optional[Any] = [d[0][0] for d in decoded_decoder_out] __lowercase : Optional[int] = [d[0][2] for d in decoded_decoder_out] __lowercase : Optional[int] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__a , __a ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , __a ) self.assertTrue(np.array_equal(__a , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , __a , atol=1E-3 ) ) self.assertTrue(np.array_equal(__a , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , __a , atol=1E-3 ) ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase : str = self.get_feature_extractor() __lowercase : List[Any] = self.get_tokenizer() __lowercase : List[Any] = self.get_decoder() __lowercase : Dict = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : List[Any] = self._get_dummy_logits() __lowercase : Optional[int] = 2.0 __lowercase : Tuple = 5.0 __lowercase : Optional[Any] = -20.0 __lowercase : Tuple = True __lowercase : Union[str, Any] = processor.batch_decode( __a , alpha=__a , beta=__a , unk_score_offset=__a , lm_score_boundary=__a , ) __lowercase : Any = decoded_processor_out.text __lowercase : List[Any] = list(__a ) decoder.reset_params( alpha=__a , beta=__a , unk_score_offset=__a , lm_score_boundary=__a , ) with get_context("""fork""" ).Pool() as pool: __lowercase : Tuple = decoder.decode_beams_batch( __a , __a , ) __lowercase : int = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__a , __a ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , __a ) __lowercase : str = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , __a ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] __lowercase : str = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __lowercase : int = os.listdir(__a ) __lowercase : Optional[Any] = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = snapshot_download("""hf-internal-testing/processor_with_lm""" ) __lowercase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(__a ) __lowercase : Dict = processor.decoder.model_container[processor.decoder._model_key] __lowercase : List[Any] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __lowercase : Dict = os.listdir(__a ) __lowercase : List[Any] = os.listdir(__a ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" __lowercase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Dict = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Any = floats_list((3, 1000) ) __lowercase : List[str] = processor_wavaveca(__a , return_tensors="""np""" ) __lowercase : List[Any] = processor_auto(__a , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) __lowercase : List[str] = self._get_dummy_logits() __lowercase : List[str] = processor_wavaveca.batch_decode(__a ) __lowercase : Optional[int] = processor_auto.batch_decode(__a ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Any = self.get_feature_extractor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : Dict = self.get_decoder() __lowercase : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def lowerCAmelCase ( __a : Union[str, Any] , __a : List[Any] ) -> Dict: """simple docstring""" __lowercase : Any = [d[key] for d in offsets] return retrieved_list def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" __lowercase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Optional[Any] = self._get_dummy_logits()[0] __lowercase : Dict = processor.decode(__a , output_word_offsets=__a ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__a , __a ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : List[str] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Any = self._get_dummy_logits() __lowercase : Dict = processor.batch_decode(__a , output_word_offsets=__a ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__a , __a ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(__a , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" import torch __lowercase : Any = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=__a ) __lowercase : str = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=16000 ) ) __lowercase : Tuple = iter(__a ) __lowercase : Union[str, Any] = next(__a ) __lowercase : int = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) __lowercase : int = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __lowercase : Union[str, Any] = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): __lowercase : List[Any] = model(__a ).logits.cpu().numpy() __lowercase : Tuple = processor.decode(logits[0] , output_word_offsets=__a ) __lowercase : int = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __lowercase : Optional[Any] = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] __lowercase : str = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(__a , """word""" ) ) , __a ) self.assertEqual(""" """.join(self.get_from_offsets(__a , """word""" ) ) , output.text ) # output times __lowercase : Tuple = torch.tensor(self.get_from_offsets(__a , """start_time""" ) ) __lowercase : Dict = torch.tensor(self.get_from_offsets(__a , """end_time""" ) ) # fmt: off __lowercase : List[Any] = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) __lowercase : Optional[int] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(__a , __a , atol=0.01 ) ) self.assertTrue(torch.allclose(__a , __a , atol=0.01 ) )
649
1
lowerCamelCase : List[str] = '''0.18.2''' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
649
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(0 ) == 0 ) def snake_case_ ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
649
1
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCamelCase : Optional[int] = 16 lowerCamelCase : Optional[int] = 32 def snake_case_ ( lowerCAmelCase_ : Accelerator , lowerCAmelCase_ : int = 16 ): __lowercase : Union[str, Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __lowercase : List[Any] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowerCAmelCase_ : Dict ): # max_length=None => use the model max length (it's actually the default) __lowercase : List[str] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowercase : Any = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowercase : int = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCAmelCase_ : int ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowercase : Union[str, Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowercase : Union[str, Any] = 16 elif accelerator.mixed_precision != "no": __lowercase : List[Any] = 8 else: __lowercase : List[str] = None return tokenizer.pad( lowerCAmelCase_ , padding="""longest""" , max_length=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_tensors="""pt""" , ) # Instantiate dataloaders. __lowercase : Any = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) __lowercase : int = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCamelCase : Union[str, Any] = mocked_dataloaders # noqa: F811 def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int ): # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , lowerCAmelCase_ ) == "1": __lowercase : int = 2 # Initialize accelerator __lowercase : Any = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowercase : Tuple = config["""lr"""] __lowercase : int = int(config["""num_epochs"""] ) __lowercase : int = int(config["""seed"""] ) __lowercase : Optional[int] = int(config["""batch_size"""] ) __lowercase : Union[str, Any] = evaluate.load("""glue""" , """mrpc""" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowerCAmelCase_ ) def inner_training_loop(lowerCAmelCase_ : List[str] ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowerCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowercase : Tuple = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowercase : Tuple = model.to(accelerator.device ) # Instantiate optimizer __lowercase : Optional[int] = AdamW(params=model.parameters() , lr=lowerCAmelCase_ ) __lowercase , __lowercase : Dict = get_dataloaders(lowerCAmelCase_ , lowerCAmelCase_ ) # Instantiate scheduler __lowercase : List[Any] = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowercase , __lowercase , __lowercase , __lowercase , __lowercase : int = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __lowercase : Dict = model(**lowerCAmelCase_ ) __lowercase : List[str] = outputs.loss accelerator.backward(lowerCAmelCase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowercase : str = model(**lowerCAmelCase_ ) __lowercase : int = outputs.logits.argmax(dim=-1 ) __lowercase , __lowercase : Optional[int] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowerCAmelCase_ , references=lowerCAmelCase_ , ) __lowercase : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , lowerCAmelCase_ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def snake_case_ ( ): __lowercase : List[Any] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) __lowercase : Any = parser.parse_args() __lowercase : List[str] = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
649
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCamelCase : int = '''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine''' def snake_case_ ( ): __lowercase : List[Any] = _ask_options( """In which compute environment are you running?""" , ["""This machine""", """AWS (Amazon SageMaker)"""] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __lowercase : Union[str, Any] = get_sagemaker_input() else: __lowercase : str = get_cluster_input() return config def snake_case_ ( lowerCAmelCase_ : List[str]=None ): if subparsers is not None: __lowercase : Optional[int] = subparsers.add_parser("""config""" , description=lowerCAmelCase_ ) else: __lowercase : List[str] = argparse.ArgumentParser("""Accelerate config command""" , description=lowerCAmelCase_ ) parser.add_argument( """--config_file""" , default=lowerCAmelCase_ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def snake_case_ ( lowerCAmelCase_ : Tuple ): __lowercase : Union[str, Any] = get_user_input() if args.config_file is not None: __lowercase : List[Any] = args.config_file else: if not os.path.isdir(lowerCAmelCase_ ): os.makedirs(lowerCAmelCase_ ) __lowercase : Any = default_yaml_config_file if config_file.endswith(""".json""" ): config.to_json_file(lowerCAmelCase_ ) else: config.to_yaml_file(lowerCAmelCase_ ) print(F"accelerate configuration saved at {config_file}" ) def snake_case_ ( ): __lowercase : str = config_command_parser() __lowercase : str = parser.parse_args() config_command(lowerCAmelCase_ ) if __name__ == "__main__": main()
649
1
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : Union[str, Any] = { '''microsoft/conditional-detr-resnet-50''': ( '''https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json''' ), } class lowerCAmelCase ( __a ): '''simple docstring''' _A : Tuple = '''conditional_detr''' _A : int = ['''past_key_values'''] _A : Any = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : Optional[int] , __a : Optional[int]=True , __a : Dict=None , __a : int=3 , __a : List[str]=300 , __a : Optional[Any]=6 , __a : Optional[Any]=2048 , __a : str=8 , __a : Tuple=6 , __a : Tuple=2048 , __a : List[str]=8 , __a : Optional[Any]=0.0 , __a : Tuple=0.0 , __a : Union[str, Any]=True , __a : Dict="relu" , __a : Union[str, Any]=256 , __a : Dict=0.1 , __a : Tuple=0.0 , __a : int=0.0 , __a : Union[str, Any]=0.02 , __a : Union[str, Any]=1.0 , __a : Any=False , __a : Any="sine" , __a : List[str]="resnet50" , __a : str=True , __a : Tuple=False , __a : str=2 , __a : Union[str, Any]=5 , __a : Dict=2 , __a : List[Any]=1 , __a : int=1 , __a : Dict=2 , __a : Dict=5 , __a : str=2 , __a : List[str]=0.25 , **__a : List[Any] , ) -> Dict: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) __lowercase : int = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(__a , __a ): __lowercase : Union[str, Any] = backbone_config.get("""model_type""" ) __lowercase : Tuple = CONFIG_MAPPING[backbone_model_type] __lowercase : Optional[int] = config_class.from_dict(__a ) __lowercase : Optional[Any] = use_timm_backbone __lowercase : List[str] = backbone_config __lowercase : List[str] = num_channels __lowercase : Any = num_queries __lowercase : Tuple = d_model __lowercase : Dict = encoder_ffn_dim __lowercase : Optional[int] = encoder_layers __lowercase : List[Any] = encoder_attention_heads __lowercase : str = decoder_ffn_dim __lowercase : Optional[int] = decoder_layers __lowercase : Optional[int] = decoder_attention_heads __lowercase : Optional[Any] = dropout __lowercase : Dict = attention_dropout __lowercase : int = activation_dropout __lowercase : Any = activation_function __lowercase : int = init_std __lowercase : int = init_xavier_std __lowercase : List[Any] = encoder_layerdrop __lowercase : Optional[Any] = decoder_layerdrop __lowercase : List[Any] = encoder_layers __lowercase : int = auxiliary_loss __lowercase : Optional[Any] = position_embedding_type __lowercase : List[Any] = backbone __lowercase : str = use_pretrained_backbone __lowercase : str = dilation # Hungarian matcher __lowercase : Union[str, Any] = class_cost __lowercase : List[Any] = bbox_cost __lowercase : Any = giou_cost # Loss coefficients __lowercase : Optional[int] = mask_loss_coefficient __lowercase : Any = dice_loss_coefficient __lowercase : str = cls_loss_coefficient __lowercase : Any = bbox_loss_coefficient __lowercase : str = giou_loss_coefficient __lowercase : List[Any] = focal_alpha super().__init__(is_encoder_decoder=__a , **__a ) @property def lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" return self.encoder_attention_heads @property def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" return self.d_model def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: __lowercase : Optional[Any] = self.backbone_config.to_dict() __lowercase : Optional[int] = self.__class__.model_type return output class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = version.parse('''1.11''' ) @property def lowerCAmelCase ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def lowerCAmelCase ( self : List[Any] ) -> float: """simple docstring""" return 1E-5 @property def lowerCAmelCase ( self : str ) -> int: """simple docstring""" return 12
649
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : list[str] | None = None ): __lowercase : Tuple = word_bank or [] # create a table __lowercase : int = len(lowerCAmelCase_ ) + 1 __lowercase : list[list[list[str]]] = [] for _ in range(lowerCAmelCase_ ): table.append([] ) # seed value __lowercase : Dict = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowerCAmelCase_ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowerCAmelCase_ )] == word: __lowercase : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowerCAmelCase_ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowerCAmelCase_ )]: combination.reverse() return table[len(lowerCAmelCase_ )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
649
1
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.17.0.dev0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''') lowerCamelCase : Optional[int] = logging.getLogger(__name__) @dataclass class lowerCAmelCase : '''simple docstring''' _A : Optional[str] = field( default='''tab_fact''' , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) _A : Optional[str] = field( default='''tab_fact''' , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} , ) _A : int = field( default=1024 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _A : bool = field( default=__a , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) _A : bool = field( default=__a , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) _A : Optional[int] = field( default=__a , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) _A : Optional[int] = field( default=__a , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) _A : Optional[int] = field( default=__a , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of prediction examples to this ''' '''value if set.''' ) } , ) _A : Optional[str] = field( default=__a , metadata={'''help''': '''A csv or a json file containing the training data.'''} ) _A : Optional[str] = field( default=__a , metadata={'''help''': '''A csv or a json file containing the validation data.'''} ) _A : Optional[str] = field(default=__a , metadata={'''help''': '''A csv or a json file containing the test data.'''} ) def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" ) else: __lowercase : Any = self.train_file.split(""".""" )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __lowercase : Optional[int] = self.validation_file.split(""".""" )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class lowerCAmelCase : '''simple docstring''' _A : str = field( default=__a , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _A : Optional[str] = field( default=__a , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _A : Optional[str] = field( default=__a , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _A : Optional[str] = field( default=__a , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) _A : bool = field( default=__a , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) _A : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) _A : bool = field( default=__a , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def snake_case_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowercase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowercase , __lowercase , __lowercase : Tuple = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowercase , __lowercase , __lowercase : Union[str, Any] = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) __lowercase : List[Any] = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase_ ) datasets.utils.logging.set_verbosity(lowerCAmelCase_ ) transformers.utils.logging.set_verbosity(lowerCAmelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. __lowercase : Optional[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowercase : Optional[int] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowercase : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __lowercase : int = {"""train""": data_args.train_file, """validation""": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __lowercase : List[str] = data_args.train_file.split(""".""" )[-1] __lowercase : List[str] = data_args.test_file.split(""".""" )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __lowercase : List[str] = data_args.test_file else: raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" ) for key in data_files.keys(): logger.info(F"load a local file for {key}: {data_files[key]}" ) if data_args.train_file.endswith(""".csv""" ): # Loading a dataset from local csv files __lowercase : Optional[int] = load_dataset("""csv""" , data_files=lowerCAmelCase_ , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __lowercase : Dict = load_dataset("""json""" , data_files=lowerCAmelCase_ , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __lowercase : Optional[int] = raw_datasets["""train"""].features["""label"""].names __lowercase : List[Any] = len(lowerCAmelCase_ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowercase : List[str] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __lowercase : Union[str, Any] = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=lowerCAmelCase_ , ) __lowercase : int = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __lowercase : str = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __lowercase : List[str] = False # Some models have set the order of the labels to use, so let's make sure we do use it. __lowercase : Tuple = {"""Refused""": 0, """Entailed""": 1} __lowercase : List[str] = {0: """Refused""", 1: """Entailed"""} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" F"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) __lowercase : Union[str, Any] = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(lowerCAmelCase_ : Union[str, Any] ): # Tokenize the texts def _convert_table_text_to_pandas(lowerCAmelCase_ : Union[str, Any] ): __lowercase : Optional[int] = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )] __lowercase : List[str] = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __lowercase : List[Any] = examples["""statement"""] __lowercase : Tuple = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) ) __lowercase : int = tokenizer(lowerCAmelCase_ , lowerCAmelCase_ , padding=lowerCAmelCase_ , max_length=lowerCAmelCase_ , truncation=lowerCAmelCase_ ) __lowercase : List[Any] = examples["""label"""] return result with training_args.main_process_first(desc="""dataset map pre-processing""" ): __lowercase : Tuple = raw_datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) __lowercase : List[str] = raw_datasets["""train"""] if data_args.max_train_samples is not None: __lowercase : Optional[Any] = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) __lowercase : Union[str, Any] = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: __lowercase : Any = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("""--do_predict requires a test dataset""" ) __lowercase : Tuple = raw_datasets["""test"""] if data_args.max_predict_samples is not None: __lowercase : Any = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowerCAmelCase_ ) ) , 3 ): logger.info(F"Sample {index} of the training set: {train_dataset[index]}." ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase_ : EvalPrediction ): __lowercase : List[Any] = p.predictions[0] if isinstance(p.predictions , lowerCAmelCase_ ) else p.predictions __lowercase : int = np.argmax(lowerCAmelCase_ , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __lowercase : str = default_data_collator elif training_args.fpaa: __lowercase : Optional[int] = DataCollatorWithPadding(lowerCAmelCase_ , pad_to_multiple_of=8 ) else: __lowercase : List[Any] = None # Initialize our Trainer __lowercase : List[str] = Trainer( model=lowerCAmelCase_ , args=lowerCAmelCase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , data_collator=lowerCAmelCase_ , ) # Training if training_args.do_train: __lowercase : Optional[int] = None if training_args.resume_from_checkpoint is not None: __lowercase : Tuple = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowercase : Any = last_checkpoint __lowercase : Tuple = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) __lowercase : Dict = train_result.metrics __lowercase : List[str] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase_ ) ) __lowercase : List[str] = min(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , lowerCAmelCase_ ) trainer.save_metrics("""train""" , lowerCAmelCase_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowercase : Union[str, Any] = trainer.evaluate(eval_dataset=lowerCAmelCase_ ) __lowercase : Dict = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase_ ) __lowercase : Dict = min(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) trainer.log_metrics("""eval""" , lowerCAmelCase_ ) trainer.save_metrics("""eval""" , lowerCAmelCase_ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __lowercase : Dict = predict_dataset.remove_columns("""label""" ) __lowercase : int = trainer.predict(lowerCAmelCase_ , metric_key_prefix="""predict""" ).predictions __lowercase : Union[str, Any] = np.argmax(lowerCAmelCase_ , axis=1 ) __lowercase : Dict = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_ , """w""" ) as writer: logger.info("""***** Predict Results *****""" ) writer.write("""index\tprediction\n""" ) for index, item in enumerate(lowerCAmelCase_ ): __lowercase : int = label_list[item] writer.write(F"{index}\t{item}\n" ) __lowercase : Dict = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""} if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase_ ) else: trainer.create_model_card(**lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : Tuple ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
649
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(1 ) != 0 ) def snake_case_ ( ): assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
649
1
from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__a , """embed_dim""" ) ) self.parent.assertTrue(hasattr(__a , """num_heads""" ) ) class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , __a : List[Any] , __a : Dict=13 , __a : Optional[Any]=64 , __a : Optional[int]=3 , __a : Dict=[16, 48, 96] , __a : Dict=[1, 3, 6] , __a : Dict=[1, 2, 10] , __a : Tuple=[7, 3, 3] , __a : List[str]=[4, 2, 2] , __a : Optional[int]=[2, 1, 1] , __a : List[Any]=[2, 2, 2] , __a : List[str]=[False, False, True] , __a : int=[0.0, 0.0, 0.0] , __a : Union[str, Any]=0.02 , __a : Any=1E-12 , __a : Union[str, Any]=True , __a : List[Any]=True , __a : List[Any]=2 , ) -> Union[str, Any]: """simple docstring""" __lowercase : Dict = parent __lowercase : Optional[Any] = batch_size __lowercase : int = image_size __lowercase : str = patch_sizes __lowercase : Dict = patch_stride __lowercase : Optional[Any] = patch_padding __lowercase : Dict = is_training __lowercase : Tuple = use_labels __lowercase : List[str] = num_labels __lowercase : Union[str, Any] = num_channels __lowercase : Any = embed_dim __lowercase : int = num_heads __lowercase : Dict = stride_kv __lowercase : Optional[Any] = depth __lowercase : int = cls_token __lowercase : Dict = attention_drop_rate __lowercase : Union[str, Any] = initializer_range __lowercase : List[str] = layer_norm_eps def lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" __lowercase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : str = None if self.use_labels: # create a random int32 tensor of given shape __lowercase : Dict = ids_tensor([self.batch_size] , self.num_labels ) __lowercase : Any = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : Dict , __a : Any , __a : List[str] , __a : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = TFCvtModel(config=__a ) __lowercase : str = model(__a , training=__a ) __lowercase : Dict = (self.image_size, self.image_size) __lowercase , __lowercase : Optional[int] = image_size[0], image_size[1] for i in range(len(self.depth ) ): __lowercase : Dict = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) __lowercase : Optional[Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def lowerCAmelCase ( self : int , __a : List[str] , __a : Optional[int] , __a : int ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = self.num_labels __lowercase : Optional[int] = TFCvtForImageClassification(__a ) __lowercase : Optional[Any] = model(__a , labels=__a , training=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" __lowercase : Any = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase : Optional[Any] = config_and_inputs __lowercase : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Dict = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () _A : Dict = ( {'''feature-extraction''': TFCvtModel, '''image-classification''': TFCvtForImageClassification} if is_tf_available() else {} ) _A : int = False _A : Any = False _A : List[str] = False _A : Optional[Any] = False _A : Tuple = False def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase : Optional[Any] = TFCvtModelTester(self ) __lowercase : str = TFCvtConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="""Cvt does not output attentions""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" pass @unittest.skip(reason="""Cvt does not use inputs_embeds""" ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""Cvt does not support input and output embeddings""" ) def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" super().test_keras_fit() @unittest.skip(reason="""Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8""" ) def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : List[str] = tf.keras.mixed_precision.Policy("""mixed_float16""" ) tf.keras.mixed_precision.set_global_policy(__a ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("""float32""" ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Tuple = model_class(__a ) __lowercase : Union[str, Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : Union[str, Any] = [*signature.parameters.keys()] __lowercase : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" def check_hidden_states_output(__a : Tuple , __a : int , __a : List[Any] ): __lowercase : Optional[Any] = model_class(__a ) __lowercase : str = model(**self._prepare_for_class(__a , __a ) ) __lowercase : str = outputs.hidden_states __lowercase : int = len(self.model_tester.depth ) self.assertEqual(len(__a ) , __a ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __lowercase , __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[str] = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase : List[Any] = True check_hidden_states_output(__a , __a , __a ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" __lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : List[str] = TFCvtModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def snake_case_ ( ): __lowercase : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase ( self : str ) -> int: """simple docstring""" return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase : int = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __lowercase : Any = self.default_image_processor __lowercase : Optional[int] = prepare_img() __lowercase : Optional[Any] = image_processor(images=__a , return_tensors="""tf""" ) # forward pass __lowercase : List[str] = model(**__a ) # verify the logits __lowercase : str = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , __a ) __lowercase : Dict = tf.constant([0.9285, 0.9015, -0.3150] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __a , atol=1E-4 ) )
649
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : int = { '''configuration_funnel''': ['''FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FunnelConfig'''], '''convert_funnel_original_tf_checkpoint_to_pytorch''': [], '''tokenization_funnel''': ['''FunnelTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = ['''FunnelTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = [ '''FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FunnelBaseModel''', '''FunnelForMaskedLM''', '''FunnelForMultipleChoice''', '''FunnelForPreTraining''', '''FunnelForQuestionAnswering''', '''FunnelForSequenceClassification''', '''FunnelForTokenClassification''', '''FunnelModel''', '''FunnelPreTrainedModel''', '''load_tf_weights_in_funnel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ '''TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFFunnelBaseModel''', '''TFFunnelForMaskedLM''', '''TFFunnelForMultipleChoice''', '''TFFunnelForPreTraining''', '''TFFunnelForQuestionAnswering''', '''TFFunnelForSequenceClassification''', '''TFFunnelForTokenClassification''', '''TFFunnelModel''', '''TFFunnelPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
649
1
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @parameterized.expand([(None,), ("""foo.json""",)] ) def lowerCAmelCase ( self : List[Any] , __a : int ) -> str: """simple docstring""" __lowercase : List[str] = GenerationConfig( do_sample=__a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__a , config_name=__a ) __lowercase : List[Any] = GenerationConfig.from_pretrained(__a , config_name=__a ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , __a ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , __a ) def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase : List[str] = AutoConfig.from_pretrained("""gpt2""" ) __lowercase : List[str] = GenerationConfig.from_model_config(__a ) __lowercase : List[str] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(__a , __a ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase : Any = GenerationConfig() __lowercase : Dict = { """max_new_tokens""": 1024, """foo""": """bar""", } __lowercase : Tuple = copy.deepcopy(__a ) __lowercase : Optional[Any] = generation_config.update(**__a ) # update_kwargs was not modified (no side effects) self.assertEqual(__a , __a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(__a , {"""foo""": """bar"""} ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = GenerationConfig() __lowercase : Any = """bar""" with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir: generation_config.save_pretrained(__a ) __lowercase : Optional[Any] = GenerationConfig.from_pretrained(__a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , """bar""" ) __lowercase : Any = GenerationConfig.from_model_config(__a ) assert not hasattr(__a , """foo""" ) # no new kwargs should be initialized if from config def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" __lowercase : Dict = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , __a ) self.assertEqual(default_config.num_beams , 1 ) __lowercase : Dict = GenerationConfig( do_sample=__a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , __a ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__a ) __lowercase : Any = GenerationConfig.from_pretrained(__a , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , __a ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def lowerCAmelCase ( cls : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : Any = TOKEN HfFolder.save_token(__a ) @classmethod def lowerCAmelCase ( cls : List[str] ) -> Optional[Any]: """simple docstring""" try: delete_repo(token=cls._token , repo_id="""test-generation-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" ) except HTTPError: pass def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" __lowercase : List[str] = GenerationConfig( do_sample=__a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""test-generation-config""" , use_auth_token=self._token ) __lowercase : Dict = GenerationConfig.from_pretrained(F"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-generation-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __a , repo_id="""test-generation-config""" , push_to_hub=__a , use_auth_token=self._token ) __lowercase : Optional[int] = GenerationConfig.from_pretrained(F"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a ) ) def lowerCAmelCase ( self : int ) -> List[Any]: """simple docstring""" __lowercase : Tuple = GenerationConfig( do_sample=__a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token ) __lowercase : Optional[Any] = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __a , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=__a , use_auth_token=self._token ) __lowercase : Dict = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a ) )
649
import logging import os import threading import time try: import warnings except ImportError: lowerCamelCase : Any = None try: import msvcrt except ImportError: lowerCamelCase : str = None try: import fcntl except ImportError: lowerCamelCase : Optional[Any] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: lowerCamelCase : Union[str, Any] = OSError # Data # ------------------------------------------------ lowerCamelCase : Tuple = [ '''Timeout''', '''BaseFileLock''', '''WindowsFileLock''', '''UnixFileLock''', '''SoftFileLock''', '''FileLock''', ] lowerCamelCase : Tuple = '''3.0.12''' lowerCamelCase : Any = None def snake_case_ ( ): global _logger __lowercase : List[str] = _logger or logging.getLogger(__name__ ) return _logger class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Any , __a : Any ) -> List[Any]: """simple docstring""" __lowercase : List[str] = lock_file return None def __str__( self : str ) -> Any: """simple docstring""" __lowercase : Any = F"The file lock '{self.lock_file}' could not be acquired." return temp class lowerCAmelCase : '''simple docstring''' def __init__( self : List[Any] , __a : Optional[int] ) -> int: """simple docstring""" __lowercase : Optional[Any] = lock return None def __enter__( self : Dict ) -> Dict: """simple docstring""" return self.lock def __exit__( self : Optional[int] , __a : Dict , __a : Any , __a : Tuple ) -> Optional[Any]: """simple docstring""" self.lock.release() return None class lowerCAmelCase : '''simple docstring''' def __init__( self : Tuple , __a : Any , __a : Dict=-1 , __a : Optional[Any]=None ) -> Any: """simple docstring""" __lowercase : Optional[int] = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long __lowercase : Dict = self.hash_filename_if_too_long(__a , __a ) # The path to the lock file. __lowercase : Optional[Any] = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __lowercase : int = None # The default timeout value. __lowercase : Optional[int] = timeout # We use this lock primarily for the lock counter. __lowercase : Optional[Any] = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __lowercase : Union[str, Any] = 0 return None @property def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return self._lock_file @property def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return self._timeout @timeout.setter def lowerCAmelCase ( self : Tuple , __a : Tuple ) -> Dict: """simple docstring""" __lowercase : Tuple = float(__a ) return None def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" raise NotImplementedError() def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" raise NotImplementedError() @property def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" return self._lock_file_fd is not None def lowerCAmelCase ( self : Any , __a : Optional[Any]=None , __a : Union[str, Any]=0.05 ) -> List[str]: """simple docstring""" if timeout is None: __lowercase : Union[str, Any] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __lowercase : int = id(self ) __lowercase : Optional[Any] = self._lock_file __lowercase : List[str] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"Attempting to acquire lock {lock_id} on {lock_filename}" ) self._acquire() if self.is_locked: logger().debug(F"Lock {lock_id} acquired on {lock_filename}" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"Timeout on acquiring lock {lock_id} on {lock_filename}" ) raise Timeout(self._lock_file ) else: logger().debug( F"Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ..." ) time.sleep(__a ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __lowercase : Optional[int] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def lowerCAmelCase ( self : Union[str, Any] , __a : Optional[Any]=False ) -> Optional[Any]: """simple docstring""" with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __lowercase : Optional[Any] = id(self ) __lowercase : str = self._lock_file logger().debug(F"Attempting to release lock {lock_id} on {lock_filename}" ) self._release() __lowercase : List[str] = 0 logger().debug(F"Lock {lock_id} released on {lock_filename}" ) return None def __enter__( self : Any ) -> Optional[Any]: """simple docstring""" self.acquire() return self def __exit__( self : List[str] , __a : str , __a : int , __a : List[Any] ) -> Tuple: """simple docstring""" self.release() return None def __del__( self : Optional[int] ) -> Optional[int]: """simple docstring""" self.release(force=__a ) return None def lowerCAmelCase ( self : Tuple , __a : str , __a : int ) -> str: """simple docstring""" __lowercase : List[Any] = os.path.basename(__a ) if len(__a ) > max_length and max_length > 0: __lowercase : int = os.path.dirname(__a ) __lowercase : List[str] = str(hash(__a ) ) __lowercase : Optional[Any] = filename[: max_length - len(__a ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(__a , __a ) else: return path class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Union[str, Any] , __a : List[Any] , __a : Optional[int]=-1 , __a : Tuple=None ) -> List[Any]: """simple docstring""" from .file_utils import relative_to_absolute_path super().__init__(__a , timeout=__a , max_filename_length=__a ) __lowercase : Tuple = """\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __lowercase : Tuple = os.open(self._lock_file , __a ) except OSError: pass else: try: msvcrt.locking(__a , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__a ) else: __lowercase : Union[str, Any] = fd return None def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = self._lock_file_fd __lowercase : int = None msvcrt.locking(__a , msvcrt.LK_UNLCK , 1 ) os.close(__a ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : List[str] , __a : Optional[Any] , __a : str=-1 , __a : List[str]=None ) -> Any: """simple docstring""" __lowercase : Dict = os.statvfs(os.path.dirname(__a ) ).f_namemax super().__init__(__a , timeout=__a , max_filename_length=__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase : List[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC __lowercase : List[str] = os.open(self._lock_file , __a ) try: fcntl.flock(__a , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__a ) else: __lowercase : str = fd return None def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Any = self._lock_file_fd __lowercase : List[str] = None fcntl.flock(__a , fcntl.LOCK_UN ) os.close(__a ) return None class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __lowercase : Union[str, Any] = os.open(self._lock_file , __a ) except OSError: pass else: __lowercase : Optional[int] = fd return None def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" os.close(self._lock_file_fd ) __lowercase : int = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None lowerCamelCase : Optional[Any] = None if msvcrt: lowerCamelCase : List[Any] = WindowsFileLock elif fcntl: lowerCamelCase : List[Any] = UnixFileLock else: lowerCamelCase : Union[str, Any] = SoftFileLock if warnings is not None: warnings.warn('''only soft file lock is available''')
649
1
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowerCamelCase : Any = TypeVar('''T''') class lowerCAmelCase ( Generic[T] ): '''simple docstring''' _A : deque[T] # Cache store of keys _A : set[T] # References of the keys in cache _A : int = 10 # Maximum capacity of cache def __init__( self : Optional[int] , __a : int ) -> None: """simple docstring""" __lowercase : List[Any] = deque() __lowercase : Any = set() if not n: __lowercase : Tuple = sys.maxsize elif n < 0: raise ValueError("""n should be an integer greater than 0.""" ) else: __lowercase : Dict = n def lowerCAmelCase ( self : Any , __a : T ) -> None: """simple docstring""" if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: __lowercase : Optional[Any] = self.dq_store.pop() self.key_reference.remove(__a ) else: self.dq_store.remove(__a ) self.dq_store.appendleft(__a ) self.key_reference.add(__a ) def lowerCAmelCase ( self : List[Any] ) -> None: """simple docstring""" for k in self.dq_store: print(__a ) def __repr__( self : Optional[Any] ) -> str: """simple docstring""" return F"LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}" if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : LRUCache[str | int] = LRUCache(4) lru_cache.refer('''A''') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('''A''') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
649
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : Tuple = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = '''layoutlmv3''' def __init__( self : Dict , __a : List[str]=50265 , __a : str=768 , __a : List[Any]=12 , __a : List[Any]=12 , __a : List[str]=3072 , __a : Optional[Any]="gelu" , __a : Optional[int]=0.1 , __a : List[Any]=0.1 , __a : Tuple=512 , __a : int=2 , __a : Any=0.02 , __a : Union[str, Any]=1E-5 , __a : List[str]=1 , __a : List[Any]=0 , __a : int=2 , __a : str=1024 , __a : str=128 , __a : List[Any]=128 , __a : Tuple=True , __a : Optional[int]=32 , __a : Any=128 , __a : List[Any]=64 , __a : Tuple=256 , __a : str=True , __a : int=True , __a : Optional[Any]=True , __a : Any=224 , __a : str=3 , __a : List[str]=16 , __a : Union[str, Any]=None , **__a : List[Any] , ) -> List[str]: """simple docstring""" super().__init__( vocab_size=__a , hidden_size=__a , num_hidden_layers=__a , num_attention_heads=__a , intermediate_size=__a , hidden_act=__a , hidden_dropout_prob=__a , attention_probs_dropout_prob=__a , max_position_embeddings=__a , type_vocab_size=__a , initializer_range=__a , layer_norm_eps=__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a , ) __lowercase : int = max_ad_position_embeddings __lowercase : Any = coordinate_size __lowercase : Optional[Any] = shape_size __lowercase : str = has_relative_attention_bias __lowercase : int = rel_pos_bins __lowercase : Union[str, Any] = max_rel_pos __lowercase : str = has_spatial_attention_bias __lowercase : str = rel_ad_pos_bins __lowercase : List[Any] = max_rel_ad_pos __lowercase : Tuple = text_embed __lowercase : int = visual_embed __lowercase : Tuple = input_size __lowercase : Dict = num_channels __lowercase : str = patch_size __lowercase : Optional[int] = classifier_dropout class lowerCAmelCase ( __a ): '''simple docstring''' _A : str = version.parse('''1.12''' ) @property def lowerCAmelCase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def lowerCAmelCase ( self : Union[str, Any] ) -> float: """simple docstring""" return 1E-5 @property def lowerCAmelCase ( self : str ) -> int: """simple docstring""" return 12 def lowerCAmelCase ( self : List[Any] , __a : "ProcessorMixin" , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional["TensorType"] = None , __a : int = 3 , __a : int = 40 , __a : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , """apply_ocr""" , __a ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase : Tuple = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase : Tuple = processor.tokenizer.num_special_tokens_to_add(__a ) __lowercase : Tuple = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__a ) # Generate dummy inputs according to compute batch and sequence __lowercase : Union[str, Any] = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowercase : Tuple = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowercase : Tuple = self._generate_dummy_images(__a , __a , __a , __a ) __lowercase : int = dict( processor( __a , text=__a , boxes=__a , return_tensors=__a , ) ) return inputs
649
1
def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any ): if height >= 1: move_tower(height - 1 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) move_disk(lowerCAmelCase_ , lowerCAmelCase_ ) move_tower(height - 1 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] ): print("""moving disk from""" , lowerCAmelCase_ , """to""" , lowerCAmelCase_ ) def snake_case_ ( ): __lowercase : int = int(input("""Height of hanoi: """ ).strip() ) move_tower(lowerCAmelCase_ , """A""" , """B""" , """C""" ) if __name__ == "__main__": main()
649
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowerCamelCase : List[Any] = logging.get_logger(__name__) class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , __a : str = None , __a : uuid.UUID = None , __a : Any=None , __a : List[Any]=None ) -> List[Any]: """simple docstring""" if not conversation_id: __lowercase : Any = uuid.uuida() if past_user_inputs is None: __lowercase : Dict = [] if generated_responses is None: __lowercase : Dict = [] __lowercase : uuid.UUID = conversation_id __lowercase : List[str] = past_user_inputs __lowercase : List[str] = generated_responses __lowercase : Optional[str] = text def __eq__( self : Dict , __a : Dict ) -> Any: """simple docstring""" if not isinstance(__a , __a ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCAmelCase ( self : List[str] , __a : str , __a : bool = False ) -> Dict: """simple docstring""" if self.new_user_input: if overwrite: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten " F"with: \"{text}\"." ) __lowercase : Optional[int] = text else: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" new input " F"ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input" ) else: __lowercase : Dict = text def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __lowercase : Dict = None def lowerCAmelCase ( self : Optional[int] , __a : str ) -> List[Any]: """simple docstring""" self.generated_responses.append(__a ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : int ) -> str: """simple docstring""" __lowercase : Optional[int] = F"Conversation id: {self.uuid} \n" for is_user, text in self.iter_texts(): __lowercase : Optional[Any] = """user""" if is_user else """bot""" output += F"{name} >> {text} \n" return output @add_end_docstrings( __a , r''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''' , ) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Any , *__a : int , **__a : str ) -> Union[str, Any]: """simple docstring""" super().__init__(*__a , **__a ) if self.tokenizer.pad_token_id is None: __lowercase : List[Any] = self.tokenizer.eos_token def lowerCAmelCase ( self : Union[str, Any] , __a : int=None , __a : Tuple=None , __a : Any=None , **__a : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = {} __lowercase : Tuple = {} __lowercase : List[str] = {} if min_length_for_response is not None: __lowercase : Dict = min_length_for_response if minimum_tokens is not None: __lowercase : Union[str, Any] = minimum_tokens if "max_length" in generate_kwargs: __lowercase : Union[str, Any] = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __lowercase : Union[str, Any] = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(__a ) return preprocess_params, forward_params, postprocess_params def __call__( self : Optional[int] , __a : Union[Conversation, List[Conversation]] , __a : Dict=0 , **__a : List[Any] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = super().__call__(__a , num_workers=__a , **__a ) if isinstance(__a , __a ) and len(__a ) == 1: return outputs[0] return outputs def lowerCAmelCase ( self : Union[str, Any] , __a : Conversation , __a : Tuple=32 ) -> Dict[str, Any]: """simple docstring""" if not isinstance(__a , __a ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( F"Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. " """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer , """_build_conversation_input_ids""" ): __lowercase : List[Any] = self.tokenizer._build_conversation_input_ids(__a ) else: # If the tokenizer cannot handle conversations, we default to only the old version __lowercase : Tuple = self._legacy_parse_and_tokenize(__a ) if self.framework == "pt": __lowercase : List[Any] = torch.LongTensor([input_ids] ) elif self.framework == "tf": __lowercase : List[str] = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCAmelCase ( self : Any , __a : Dict , __a : Any=10 , **__a : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = generate_kwargs.get("""max_length""" , self.model.config.max_length ) __lowercase : List[Any] = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(F"Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})" ) __lowercase : Any = max_length - minimum_tokens __lowercase : int = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: __lowercase : Dict = model_inputs["""attention_mask"""][:, -trim:] __lowercase : Union[str, Any] = model_inputs.pop("""conversation""" ) __lowercase : Tuple = max_length __lowercase : int = self.model.generate(**__a , **__a ) if self.model.config.is_encoder_decoder: __lowercase : Optional[int] = 1 else: __lowercase : str = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCAmelCase ( self : int , __a : Tuple , __a : List[Any]=True ) -> List[str]: """simple docstring""" __lowercase : int = model_outputs["""output_ids"""] __lowercase : Union[str, Any] = self.tokenizer.decode( output_ids[0] , skip_special_tokens=__a , clean_up_tokenization_spaces=__a , ) __lowercase : List[str] = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(__a ) return conversation def lowerCAmelCase ( self : int , __a : Conversation ) -> Dict: """simple docstring""" __lowercase : Optional[int] = self.tokenizer.eos_token_id __lowercase : Optional[Any] = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(__a , add_special_tokens=__a ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(__a , add_special_tokens=__a ) ) if len(__a ) > self.tokenizer.model_max_length: __lowercase : List[Any] = input_ids[-self.tokenizer.model_max_length :] return input_ids
649
1
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(1 ) != 0 ) def snake_case_ ( ): assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
649
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__a , """tf_padding""" ) ) self.parent.assertTrue(hasattr(__a , """depth_multiplier""" ) ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Tuple , __a : str=13 , __a : Dict=3 , __a : List[Any]=32 , __a : Any=0.25 , __a : Any=8 , __a : Optional[int]=8 , __a : Optional[int]=6 , __a : Dict=32 , __a : Tuple=True , __a : List[Any]=True , __a : Optional[int]=True , __a : Tuple="relu6" , __a : Optional[Any]=1280 , __a : str=0.1 , __a : str=0.02 , __a : Optional[Any]=True , __a : Tuple=True , __a : Dict=10 , __a : Optional[Any]=None , ) -> Any: """simple docstring""" __lowercase : List[str] = parent __lowercase : Tuple = batch_size __lowercase : Dict = num_channels __lowercase : Optional[int] = image_size __lowercase : int = depth_multiplier __lowercase : str = depth_divisible_by __lowercase : int = min_depth __lowercase : Tuple = expand_ratio __lowercase : Optional[int] = tf_padding __lowercase : Dict = output_stride __lowercase : Dict = first_layer_is_expansion __lowercase : Optional[Any] = finegrained_output __lowercase : str = hidden_act __lowercase : Union[str, Any] = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) __lowercase : Optional[int] = classifier_dropout_prob __lowercase : int = use_labels __lowercase : Optional[int] = is_training __lowercase : Dict = num_labels __lowercase : Tuple = initializer_range __lowercase : Optional[Any] = scope def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : List[Any] = None __lowercase : Optional[Any] = None if self.use_labels: __lowercase : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __lowercase : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowercase : List[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : Tuple , __a : Dict , __a : Tuple , __a : Optional[int] , __a : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[int] = MobileNetVaModel(config=__a ) model.to(__a ) model.eval() __lowercase : Tuple = model(__a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def lowerCAmelCase ( self : List[str] , __a : Optional[int] , __a : List[str] , __a : str , __a : Optional[int] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = self.num_labels __lowercase : Dict = MobileNetVaForImageClassification(__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : int , __a : List[str] , __a : Tuple , __a : Any , __a : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : int = self.num_labels __lowercase : List[Any] = MobileNetVaForSemanticSegmentation(__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __lowercase : str = model(__a , labels=__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase : List[str] = config_and_inputs __lowercase : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Tuple = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) _A : Optional[Any] = ( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) _A : Tuple = False _A : List[str] = False _A : List[str] = False _A : Optional[int] = False def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = MobileNetVaModelTester(self ) __lowercase : int = MobileNetVaConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV2 does not use inputs_embeds""" ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not support input and output embeddings""" ) def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not output attentions""" ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[Any] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : int = [*signature.parameters.keys()] __lowercase : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" def check_hidden_states_output(__a : List[Any] , __a : Tuple , __a : List[str] ): __lowercase : Optional[Any] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : List[Any] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Tuple = outputs.hidden_states __lowercase : str = 16 self.assertEqual(len(__a ) , __a ) __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Any = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase : Union[str, Any] = True check_hidden_states_output(__a , __a , __a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : Optional[int] = MobileNetVaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def snake_case_ ( ): __lowercase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v2_1.0_224""" ) if is_vision_available() else None ) @slow def lowerCAmelCase ( self : str ) -> int: """simple docstring""" __lowercase : Tuple = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v2_1.0_224""" ).to(__a ) __lowercase : str = self.default_image_processor __lowercase : Tuple = prepare_img() __lowercase : Tuple = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : str = model(**__a ) # verify the logits __lowercase : Union[str, Any] = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , __a ) __lowercase : str = torch.tensor([0.2445, -1.1993, 0.1905] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : int = MobileNetVaForSemanticSegmentation.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __lowercase : Dict = model.to(__a ) __lowercase : Tuple = MobileNetVaImageProcessor.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __lowercase : List[str] = prepare_img() __lowercase : Optional[int] = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : Union[str, Any] = model(**__a ) __lowercase : Any = outputs.logits # verify the logits __lowercase : Dict = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , __a ) __lowercase : str = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=__a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __a , atol=1E-4 ) )
649
1
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowerCAmelCase ( __a , __a ): '''simple docstring''' _A : str = 1 @register_to_config def __init__( self : Optional[int] , __a : Tuple=2000 , __a : List[str]=0.1 , __a : str=20 , __a : Optional[int]=1E-3 ) -> int: """simple docstring""" __lowercase : Tuple = None __lowercase : Union[str, Any] = None __lowercase : int = None def lowerCAmelCase ( self : List[Any] , __a : Any , __a : Union[str, torch.device] = None ) -> str: """simple docstring""" __lowercase : List[str] = torch.linspace(1 , self.config.sampling_eps , __a , device=__a ) def lowerCAmelCase ( self : Tuple , __a : List[Any] , __a : Tuple , __a : int , __a : Optional[int]=None ) -> str: """simple docstring""" if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __lowercase : Dict = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __lowercase : int = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __lowercase : Union[str, Any] = std.flatten() while len(std.shape ) < len(score.shape ): __lowercase : Optional[Any] = std.unsqueeze(-1 ) __lowercase : List[Any] = -score / std # compute __lowercase : Dict = -1.0 / len(self.timesteps ) __lowercase : int = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __lowercase : List[Any] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __lowercase : Union[str, Any] = beta_t.unsqueeze(-1 ) __lowercase : List[str] = -0.5 * beta_t * x __lowercase : int = torch.sqrt(__a ) __lowercase : Union[str, Any] = drift - diffusion**2 * score __lowercase : Optional[Any] = x + drift * dt # add noise __lowercase : List[str] = randn_tensor(x.shape , layout=x.layout , generator=__a , device=x.device , dtype=x.dtype ) __lowercase : str = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Tuple ) -> Optional[int]: """simple docstring""" return self.config.num_train_timesteps
649
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def snake_case_ ( lowerCAmelCase_ : bool = True , *lowerCAmelCase_ : int , **lowerCAmelCase_ : List[str] ): if not is_tqdm_available(): raise ImportError("""Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.""" ) __lowercase : List[str] = False if main_process_only: __lowercase : Optional[int] = PartialState().local_process_index == 0 return _tqdm(*lowerCAmelCase_ , **lowerCAmelCase_ , disable=lowerCAmelCase_ )
649
1
import os def snake_case_ ( ): with open(os.path.dirname(lowerCAmelCase_ ) + """/grid.txt""" ) as f: __lowercase : Dict = [] # noqa: E741 for _ in range(20 ): l.append([int(lowerCAmelCase_ ) for x in f.readline().split()] ) __lowercase : Optional[Any] = 0 # right for i in range(20 ): for j in range(17 ): __lowercase : Union[str, Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: __lowercase : Optional[int] = temp # down for i in range(17 ): for j in range(20 ): __lowercase : Optional[int] = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: __lowercase : List[Any] = temp # diagonal 1 for i in range(17 ): for j in range(17 ): __lowercase : Tuple = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: __lowercase : Optional[Any] = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): __lowercase : Tuple = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: __lowercase : int = temp return maximum if __name__ == "__main__": print(solution())
649
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : list[int] ): if not nums: return 0 __lowercase : Tuple = nums[0] __lowercase : Tuple = 0 for num in nums[1:]: __lowercase , __lowercase : List[str] = ( max_excluding + num, max(lowerCAmelCase_ , lowerCAmelCase_ ), ) return max(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
649
1
from datetime import datetime as dt import os from github import Github lowerCamelCase : Dict = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''feature request''', '''new model''', '''wip''', ] def snake_case_ ( ): __lowercase : str = Github(os.environ["""GITHUB_TOKEN"""] ) __lowercase : Optional[int] = g.get_repo("""huggingface/transformers""" ) __lowercase : Any = repo.get_issues(state="""open""" ) for issue in open_issues: __lowercase : int = sorted([comment for comment in issue.get_comments()] , key=lambda lowerCAmelCase_ : i.created_at , reverse=lowerCAmelCase_ ) __lowercase : List[Any] = comments[0] if len(lowerCAmelCase_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
649
lowerCamelCase : List[str] = '''0.18.2''' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
649
1
import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase : List[str] = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : Union[str, Any] = ReformerTokenizer _A : int = ReformerTokenizerFast _A : Any = True _A : Tuple = False _A : Union[str, Any] = True def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" super().setUp() __lowercase : str = ReformerTokenizer(__a , keep_accents=__a ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" __lowercase : Optional[Any] = """<s>""" __lowercase : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a ) def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(__a ) , 1000 ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" if not self.test_rust_tokenizer: return __lowercase : Any = self.get_tokenizer() __lowercase : Union[str, Any] = self.get_rust_tokenizer() __lowercase : Dict = """I was born in 92000, and this is falsé.""" __lowercase : Any = tokenizer.tokenize(__a ) __lowercase : Any = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) __lowercase : str = tokenizer.encode(__a , add_special_tokens=__a ) __lowercase : Optional[int] = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) __lowercase : str = self.get_rust_tokenizer() __lowercase : Optional[int] = tokenizer.encode(__a ) __lowercase : Optional[int] = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : List[str] , __a : Union[str, Any]=15 ) -> int: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : Dict = self.rust_tokenizer_class.from_pretrained(__a , **__a ) # Simple input __lowercase : Optional[Any] = """This is a simple input""" __lowercase : Optional[int] = ["""This is a simple input 1""", """This is a simple input 2"""] __lowercase : List[Any] = ("""This is a simple input""", """This is a pair""") __lowercase : Any = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding="""max_length""" ) # Simple input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding="""max_length""" ) # Simple input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding="""max_length""" , ) # Pair input self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding="""max_length""" ) # Pair input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding="""max_length""" ) # Pair input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding="""max_length""" , ) def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" pass def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = ReformerTokenizer(__a , keep_accents=__a ) __lowercase : Optional[Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__a , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [285, 46, 10, 170, 382] , ) __lowercase : Optional[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __lowercase : Any = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual( __a , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) __lowercase : Optional[Any] = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" return ReformerTokenizer.from_pretrained("""google/reformer-crime-and-punishment""" ) @slow def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" __lowercase : str = """Hello World!""" __lowercase : Optional[int] = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(__a , self.big_tokenizer.encode(__a ) ) @slow def lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) __lowercase : int = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(__a , self.big_tokenizer.encode(__a ) ) @require_torch @slow def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" import torch from transformers import ReformerConfig, ReformerModel # Build sequence __lowercase : Optional[Any] = list(self.big_tokenizer.get_vocab().keys() )[:10] __lowercase : int = """ """.join(__a ) __lowercase : int = self.big_tokenizer.encode_plus(__a , return_tensors="""pt""" ) __lowercase : List[Any] = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="""pt""" ) __lowercase : List[str] = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) __lowercase : str = encoded_sequence["""input_ids"""].shape __lowercase : Optional[Any] = ReformerModel(__a ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__a ) model(**__a ) @slow def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : int = {"""input_ids""": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 __lowercase : List[str] = [ """This is a very simple sentence.""", """The quick brown fox jumps over the lazy dog.""", ] self.tokenizer_integration_test_util( expected_encoding=__a , model_name="""google/reformer-crime-and-punishment""" , revision="""0e6c3decb8211d49bf881013425dc8b0448b3f5a""" , padding=__a , sequences=__a , )
649
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : List[Any] = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : str=False , lowerCAmelCase_ : Any=False ): __lowercase : Any = """backbone.""" if is_semantic else """""" __lowercase : Optional[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"{prefix}blocks.{i}.norm1.weight", F"beit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm1.bias", F"beit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.weight", F"beit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.bias", F"beit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.weight", F"beit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.bias", F"beit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.weight", F"beit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.bias", F"beit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.weight", F"beit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.bias", F"beit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ (F"{prefix}cls_token", """beit.embeddings.cls_token"""), (F"{prefix}patch_embed.proj.weight", """beit.embeddings.patch_embeddings.projection.weight"""), (F"{prefix}patch_embed.proj.bias", """beit.embeddings.patch_embeddings.projection.bias"""), (F"{prefix}pos_embed", """beit.embeddings.position_embeddings"""), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("""mask_token""", """beit.embeddings.mask_token"""), ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) else: # layernorm + classification head rename_keys.extend( [ ("""fc_norm.weight""", """beit.pooler.layernorm.weight"""), ("""fc_norm.bias""", """beit.pooler.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : List[Any]=False ): for i in range(config.num_hidden_layers ): __lowercase : Tuple = """backbone.""" if is_semantic else """""" # queries, keys and values __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.attn.qkv.weight" ) __lowercase : Dict = state_dict.pop(F"{prefix}blocks.{i}.attn.q_bias" ) __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.attn.v_bias" ) __lowercase : List[str] = in_proj_weight[ : config.hidden_size, : ] __lowercase : Union[str, Any] = q_bias __lowercase : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] __lowercase : str = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.gamma_1" ) __lowercase : str = state_dict.pop(F"{prefix}blocks.{i}.gamma_2" ) __lowercase : List[str] = gamma_a __lowercase : Optional[int] = gamma_a def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : int ): __lowercase : Tuple = dct.pop(lowerCAmelCase_ ) __lowercase : Tuple = val def snake_case_ ( ): __lowercase : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase : Any = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]=False ): __lowercase : Dict = False if """rvlcdip""" in checkpoint_url else True __lowercase : Tuple = BeitConfig(use_absolute_position_embeddings=lowerCAmelCase_ , use_mask_token=lowerCAmelCase_ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: __lowercase : Union[str, Any] = 1024 __lowercase : Optional[int] = 4096 __lowercase : List[Any] = 24 __lowercase : Dict = 16 # labels if "rvlcdip" in checkpoint_url: __lowercase : Optional[int] = 16 __lowercase : Any = """huggingface/label-files""" __lowercase : Union[str, Any] = """rvlcdip-id2label.json""" __lowercase : List[str] = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) __lowercase : Optional[int] = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowercase : Union[str, Any] = idalabel __lowercase : Optional[Any] = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys __lowercase : Optional[int] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ , map_location="""cpu""" )["""model"""] __lowercase : Union[str, Any] = create_rename_keys(lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) # load HuggingFace model __lowercase : Dict = BeitForMaskedImageModeling(lowerCAmelCase_ ) if has_lm_head else BeitForImageClassification(lowerCAmelCase_ ) model.eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image __lowercase : List[str] = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=lowerCAmelCase_ ) __lowercase : List[str] = prepare_img() __lowercase : Optional[Any] = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""" ) __lowercase : Optional[int] = encoding["""pixel_values"""] __lowercase : str = model(lowerCAmelCase_ ) __lowercase : Tuple = outputs.logits # verify logits __lowercase : str = [1, 16] if """rvlcdip""" in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(lowerCAmelCase_ ), "Shape of logits not as expected" Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: if has_lm_head: __lowercase : Optional[Any] = """dit-base""" if """base""" in checkpoint_url else """dit-large""" else: __lowercase : Tuple = """dit-base-finetuned-rvlcdip""" if """dit-b""" in checkpoint_url else """dit-large-finetuned-rvlcdip""" image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=lowerCAmelCase_ , ) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=lowerCAmelCase_ , ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) lowerCamelCase : List[str] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
649
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : Tuple = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = '''unispeech''' def __init__( self : int , __a : Dict=32 , __a : Tuple=768 , __a : Optional[Any]=12 , __a : Tuple=12 , __a : List[str]=3072 , __a : str="gelu" , __a : Any=0.1 , __a : Dict=0.1 , __a : Any=0.1 , __a : Optional[Any]=0.0 , __a : int=0.0 , __a : List[str]=0.1 , __a : Tuple=0.1 , __a : Union[str, Any]=0.02 , __a : int=1E-5 , __a : Union[str, Any]="group" , __a : Union[str, Any]="gelu" , __a : int=(512, 512, 512, 512, 512, 512, 512) , __a : List[Any]=(5, 2, 2, 2, 2, 2, 2) , __a : int=(10, 3, 3, 3, 3, 2, 2) , __a : Any=False , __a : int=128 , __a : int=16 , __a : Optional[int]=False , __a : Tuple=True , __a : List[str]=0.05 , __a : Optional[int]=10 , __a : List[Any]=2 , __a : List[Any]=0.0 , __a : Any=10 , __a : List[Any]=0 , __a : Optional[Any]=320 , __a : Tuple=2 , __a : Optional[int]=0.1 , __a : List[str]=100 , __a : int=256 , __a : Optional[Any]=256 , __a : Dict=0.1 , __a : Optional[int]="mean" , __a : str=False , __a : Optional[int]=False , __a : Union[str, Any]=256 , __a : Tuple=80 , __a : Union[str, Any]=0 , __a : Union[str, Any]=1 , __a : Any=2 , __a : int=0.5 , **__a : Tuple , ) -> List[Any]: """simple docstring""" super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a ) __lowercase : int = hidden_size __lowercase : Tuple = feat_extract_norm __lowercase : str = feat_extract_activation __lowercase : Optional[Any] = list(__a ) __lowercase : List[str] = list(__a ) __lowercase : List[str] = list(__a ) __lowercase : str = conv_bias __lowercase : Dict = num_conv_pos_embeddings __lowercase : List[str] = num_conv_pos_embedding_groups __lowercase : int = len(self.conv_dim ) __lowercase : Union[str, Any] = num_hidden_layers __lowercase : Union[str, Any] = intermediate_size __lowercase : Any = hidden_act __lowercase : str = num_attention_heads __lowercase : Optional[int] = hidden_dropout __lowercase : List[str] = attention_dropout __lowercase : Tuple = activation_dropout __lowercase : List[Any] = feat_proj_dropout __lowercase : int = final_dropout __lowercase : Any = layerdrop __lowercase : Dict = layer_norm_eps __lowercase : Optional[Any] = initializer_range __lowercase : Dict = num_ctc_classes __lowercase : Optional[Any] = vocab_size __lowercase : Optional[int] = do_stable_layer_norm __lowercase : Optional[Any] = use_weighted_layer_sum __lowercase : List[str] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowercase : int = apply_spec_augment __lowercase : Optional[int] = mask_time_prob __lowercase : Tuple = mask_time_length __lowercase : Dict = mask_time_min_masks __lowercase : Optional[int] = mask_feature_prob __lowercase : Dict = mask_feature_length __lowercase : Optional[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __lowercase : List[str] = num_codevectors_per_group __lowercase : Union[str, Any] = num_codevector_groups __lowercase : Optional[Any] = contrastive_logits_temperature __lowercase : Optional[int] = feat_quantizer_dropout __lowercase : List[Any] = num_negatives __lowercase : Union[str, Any] = codevector_dim __lowercase : str = proj_codevector_dim __lowercase : List[Any] = diversity_loss_weight # ctc loss __lowercase : Tuple = ctc_loss_reduction __lowercase : Optional[int] = ctc_zero_infinity # pretraining loss __lowercase : str = replace_prob @property def lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
649
from torch import nn class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , __a : int , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" super().__init__() __lowercase : int = class_size __lowercase : int = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) __lowercase : str = nn.Linear(__a , __a ) def lowerCAmelCase ( self : Tuple , __a : int ) -> Tuple: """simple docstring""" __lowercase : str = self.mlp(__a ) return logits
649
1
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : List[Any] = ProphetNetTokenizer _A : Optional[Any] = False def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" super().setUp() __lowercase : Any = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] __lowercase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def lowerCAmelCase ( self : List[Any] , __a : Tuple ) -> Tuple: """simple docstring""" __lowercase : List[Any] = """UNwant\u00E9d,running""" __lowercase : List[str] = """unwanted, running""" return input_text, output_text def lowerCAmelCase ( self : int ) -> int: """simple docstring""" __lowercase : List[Any] = self.tokenizer_class(self.vocab_file ) __lowercase : Any = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(__a , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [9, 6, 7, 12, 10, 11] ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : List[Any] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase : Union[str, Any] = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase : Dict = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Tuple = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase : Union[str, Any] = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" __lowercase : Dict = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Any = BasicTokenizer(do_lower_case=__a , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" __lowercase : Optional[Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] __lowercase : Optional[Any] = {} for i, token in enumerate(__a ): __lowercase : Any = i __lowercase : str = WordpieceTokenizer(vocab=__a , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) @require_torch def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" __lowercase : str = self.tokenizer_class.from_pretrained("""microsoft/prophetnet-large-uncased""" ) __lowercase : int = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] __lowercase : List[str] = [1037, 2146, 20423, 2005, 7680, 7849, 3989, 1012, 102] __lowercase : str = tokenizer(__a , padding=__a , return_tensors="""pt""" ) self.assertIsInstance(__a , __a ) __lowercase : str = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__a , __a ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) @slow def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase : str = self.tokenizer_class.from_pretrained("""microsoft/prophetnet-large-uncased""" ) __lowercase : List[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=__a ) __lowercase : int = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__a ) __lowercase : Tuple = tokenizer.build_inputs_with_special_tokens(__a ) __lowercase : Dict = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == text + [102] assert encoded_pair == text + [102] + text_a + [102]
649
import fire from utils import calculate_rouge, save_json def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : str=None , **lowerCAmelCase_ : str ): __lowercase : Tuple = [x.strip() for x in open(lowerCAmelCase_ ).readlines()] __lowercase : Dict = [x.strip() for x in open(lowerCAmelCase_ ).readlines()][: len(lowerCAmelCase_ )] __lowercase : Tuple = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) if save_path is not None: save_json(lowerCAmelCase_ , lowerCAmelCase_ , indent=lowerCAmelCase_ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
649
1
def snake_case_ ( lowerCAmelCase_ : int = 1000 ): return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
649
from argparse import ArgumentParser from . import BaseTransformersCLICommand def snake_case_ ( lowerCAmelCase_ : Dict ): return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class lowerCAmelCase ( __a ): '''simple docstring''' @staticmethod def lowerCAmelCase ( __a : ArgumentParser ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = parser.add_parser("""download""" ) download_parser.add_argument( """--cache-dir""" , type=__a , default=__a , help="""Path to location to store the models""" ) download_parser.add_argument( """--force""" , action="""store_true""" , help="""Force the model to be download even if already in cache-dir""" ) download_parser.add_argument( """--trust-remote-code""" , action="""store_true""" , help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" , ) download_parser.add_argument("""model""" , type=__a , help="""Name of the model to download""" ) download_parser.set_defaults(func=__a ) def __init__( self : Dict , __a : str , __a : str , __a : bool , __a : bool ) -> Union[str, Any]: """simple docstring""" __lowercase : Dict = model __lowercase : List[Any] = cache __lowercase : Any = force __lowercase : Optional[int] = trust_remote_code def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
649
1
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def snake_case_ ( lowerCAmelCase_ : bytes , lowerCAmelCase_ : int ): __lowercase : List[str] = F"{sampling_rate}" __lowercase : List[str] = """1""" __lowercase : Tuple = """f32le""" __lowercase : Tuple = [ """ffmpeg""", """-i""", """pipe:0""", """-ac""", ac, """-ar""", ar, """-f""", format_for_conversion, """-hide_banner""", """-loglevel""", """quiet""", """pipe:1""", ] try: with subprocess.Popen(lowerCAmelCase_ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: __lowercase : Union[str, Any] = ffmpeg_process.communicate(lowerCAmelCase_ ) except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to load audio files from filename""" ) from error __lowercase : str = output_stream[0] __lowercase : str = np.frombuffer(lowerCAmelCase_ , np.floataa ) if audio.shape[0] == 0: raise ValueError("""Malformed soundfile""" ) return audio def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : float , lowerCAmelCase_ : str = "f32le" , ): __lowercase : List[Any] = F"{sampling_rate}" __lowercase : Tuple = """1""" if format_for_conversion == "s16le": __lowercase : Optional[Any] = 2 elif format_for_conversion == "f32le": __lowercase : Tuple = 4 else: raise ValueError(F"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`" ) __lowercase : int = platform.system() if system == "Linux": __lowercase : Optional[Any] = """alsa""" __lowercase : Optional[Any] = """default""" elif system == "Darwin": __lowercase : str = """avfoundation""" __lowercase : Optional[int] = """:0""" elif system == "Windows": __lowercase : Tuple = """dshow""" __lowercase : int = """default""" __lowercase : str = [ """ffmpeg""", """-f""", format_, """-i""", input_, """-ac""", ac, """-ar""", ar, """-f""", format_for_conversion, """-fflags""", """nobuffer""", """-hide_banner""", """-loglevel""", """quiet""", """pipe:1""", ] __lowercase : int = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample __lowercase : Optional[int] = _ffmpeg_stream(lowerCAmelCase_ , lowerCAmelCase_ ) for item in iterator: yield item def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : float , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[Union[Tuple[float, float], float]] = None , lowerCAmelCase_ : str = "f32le" , ): if stream_chunk_s is not None: __lowercase : Optional[int] = stream_chunk_s else: __lowercase : List[str] = chunk_length_s __lowercase : List[str] = ffmpeg_microphone(lowerCAmelCase_ , lowerCAmelCase_ , format_for_conversion=lowerCAmelCase_ ) if format_for_conversion == "s16le": __lowercase : Any = np.intaa __lowercase : str = 2 elif format_for_conversion == "f32le": __lowercase : Any = np.floataa __lowercase : List[str] = 4 else: raise ValueError(F"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`" ) if stride_length_s is None: __lowercase : Union[str, Any] = chunk_length_s / 6 __lowercase : Any = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(lowerCAmelCase_ , (int, float) ): __lowercase : Dict = [stride_length_s, stride_length_s] __lowercase : Tuple = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample __lowercase : Optional[int] = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample __lowercase : Dict = datetime.datetime.now() __lowercase : int = datetime.timedelta(seconds=lowerCAmelCase_ ) for item in chunk_bytes_iter(lowerCAmelCase_ , lowerCAmelCase_ , stride=(stride_left, stride_right) , stream=lowerCAmelCase_ ): # Put everything back in numpy scale __lowercase : str = np.frombuffer(item["""raw"""] , dtype=lowerCAmelCase_ ) __lowercase : int = ( item["""stride"""][0] // size_of_sample, item["""stride"""][1] // size_of_sample, ) __lowercase : List[str] = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple[int, int] , lowerCAmelCase_ : bool = False ): __lowercase : Optional[Any] = b"""""" __lowercase , __lowercase : str = stride if stride_left + stride_right >= chunk_len: raise ValueError( F"Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}" ) __lowercase : Optional[int] = 0 for raw in iterator: acc += raw if stream and len(lowerCAmelCase_ ) < chunk_len: __lowercase : Any = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(lowerCAmelCase_ ) >= chunk_len: # We are flushing the accumulator __lowercase : Union[str, Any] = (_stride_left, stride_right) __lowercase : Optional[int] = {"""raw""": acc[:chunk_len], """stride""": stride} if stream: __lowercase : List[Any] = False yield item __lowercase : List[str] = stride_left __lowercase : Union[str, Any] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(lowerCAmelCase_ ) > stride_left: __lowercase : List[str] = {"""raw""": acc, """stride""": (_stride_left, 0)} if stream: __lowercase : List[Any] = False yield item def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : int ): __lowercase : Any = 2**24 # 16Mo try: with subprocess.Popen(lowerCAmelCase_ , stdout=subprocess.PIPE , bufsize=lowerCAmelCase_ ) as ffmpeg_process: while True: __lowercase : List[str] = ffmpeg_process.stdout.read(lowerCAmelCase_ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to stream audio files from filename""" ) from error
649
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowerCamelCase : Union[str, Any] = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , __a : List[str] , __a : Optional[int]=16 , __a : Optional[Any]=13 , __a : str=7 , __a : List[str]=14 , __a : Any=10 , __a : str=19 , __a : int=5 , __a : Any=4 , __a : List[Any]=True , __a : Tuple=16 , __a : Dict=2 , __a : Tuple=4 , __a : int=4 , __a : List[Any]="gelu" , __a : Tuple=0.1 , __a : List[str]=0.1 , __a : int=[1, 2, 3, 4, 5] , __a : str=25 , __a : Any=5 , ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = d_model __lowercase : Dict = parent __lowercase : Tuple = batch_size __lowercase : Optional[int] = prediction_length __lowercase : List[str] = context_length __lowercase : Any = cardinality __lowercase : str = num_time_features __lowercase : Optional[int] = lags_sequence __lowercase : Optional[Any] = embedding_dimension __lowercase : List[Any] = is_training __lowercase : List[str] = hidden_size __lowercase : int = num_hidden_layers __lowercase : Any = num_attention_heads __lowercase : List[Any] = intermediate_size __lowercase : int = hidden_act __lowercase : str = hidden_dropout_prob __lowercase : List[Any] = attention_probs_dropout_prob __lowercase : str = context_length __lowercase : int = prediction_length + label_length __lowercase : Union[str, Any] = label_length __lowercase : Optional[int] = moving_average __lowercase : Optional[Any] = autocorrelation_factor def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def lowerCAmelCase ( self : Tuple , __a : str ) -> int: """simple docstring""" __lowercase : Any = config.context_length + max(config.lags_sequence ) __lowercase : Any = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __lowercase : Optional[int] = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __lowercase : List[str] = floats_tensor([self.batch_size, _past_length] ) __lowercase : List[str] = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __lowercase : Dict = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __lowercase : str = floats_tensor([self.batch_size, config.prediction_length] ) __lowercase : List[str] = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.get_config() __lowercase : Any = self.prepare_autoformer_inputs_dict(__a ) return config, inputs_dict def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase , __lowercase : List[str] = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase ( self : Optional[Any] , __a : Tuple , __a : Optional[int] ) -> Any: """simple docstring""" __lowercase : List[str] = AutoformerModel(config=__a ).to(__a ).eval() __lowercase : Optional[int] = model(**__a ) __lowercase : Dict = outputs.encoder_last_hidden_state __lowercase : Tuple = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : List[str] = model.get_encoder() encoder.save_pretrained(__a ) __lowercase : List[str] = AutoformerEncoder.from_pretrained(__a ).to(__a ) __lowercase , __lowercase , __lowercase , __lowercase , __lowercase : Any = model.create_network_inputs(**__a ) __lowercase , __lowercase : Any = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __lowercase : Optional[Any] = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __lowercase : Union[str, Any] = encoder(inputs_embeds=__a )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) __lowercase : str = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __lowercase : Optional[int] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __lowercase : Any = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __lowercase : Dict = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : Optional[Any] = model.get_decoder() decoder.save_pretrained(__a ) __lowercase : Tuple = AutoformerDecoder.from_pretrained(__a ).to(__a ) __lowercase : str = decoder( trend=__a , inputs_embeds=__a , encoder_hidden_states=__a , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[str] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _A : List[Any] = (AutoformerForPrediction,) if is_torch_available() else () _A : Any = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} _A : Dict = False _A : Tuple = False _A : Optional[int] = False _A : Tuple = False _A : str = False _A : Union[str, Any] = False def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" __lowercase : List[str] = AutoformerModelTester(self ) __lowercase : Dict = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowercase : Dict = model_class(__a ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowercase , __lowercase : Tuple = model_class.from_pretrained(__a , output_loading_info=__a ) self.assertEqual(info["""missing_keys"""] , [] ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__a ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def lowerCAmelCase ( self : str ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : Any = inspect.signature(getattr(__a , """forward""" ) ) # The main input is the name of the argument after `self` __lowercase : Optional[int] = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , __a ) def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Dict = model_class(__a ) __lowercase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : Any = [*signature.parameters.keys()] __lowercase : int = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(__a )] , __a ) def lowerCAmelCase ( self : int ) -> int: """simple docstring""" __lowercase , __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : int = True __lowercase : Tuple = getattr(self.model_tester , """seq_length""" , __a ) __lowercase : Union[str, Any] = getattr(self.model_tester , """decoder_seq_length""" , __a ) __lowercase : List[str] = getattr(self.model_tester , """encoder_seq_length""" , __a ) __lowercase : List[Any] = getattr(self.model_tester , """d_model""" , __a ) __lowercase : Optional[int] = getattr(self.model_tester , """num_attention_heads""" , __a ) __lowercase : Any = d_model // num_attention_heads for model_class in self.all_model_classes: __lowercase : Dict = True __lowercase : List[str] = False __lowercase : Optional[int] = True __lowercase : str = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : int = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase : Optional[int] = True __lowercase : List[str] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Union[str, Any] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Dict = outputs.encoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __lowercase : Tuple = len(__a ) __lowercase : str = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__a , __a ) # decoder attentions __lowercase : List[Any] = outputs.decoder_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __lowercase : Optional[int] = outputs.cross_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __lowercase : Tuple = True __lowercase : Union[str, Any] = True __lowercase : Tuple = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Any = model(**self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + 2 , len(__a ) ) __lowercase : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def snake_case_ ( lowerCAmelCase_ : Optional[int]="train-batch.pt" ): __lowercase : Dict = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=lowerCAmelCase_ , repo_type="""dataset""" ) __lowercase : Optional[int] = torch.load(lowerCAmelCase_ , map_location=lowerCAmelCase_ ) return batch @require_torch @slow class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" __lowercase : List[str] = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : List[Any] = prepare_batch() with torch.no_grad(): __lowercase : Tuple = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] __lowercase : List[str] = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , __a ) __lowercase : Optional[int] = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" __lowercase : int = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : List[str] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowercase : Optional[Any] = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state __lowercase : List[str] = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , __a ) __lowercase : Optional[int] = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : Optional[int] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowercase : int = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) __lowercase : int = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , __a ) __lowercase : Optional[Any] = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=__a ) __lowercase : Dict = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __a , rtol=1E-1 ) )
649
1
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" __lowercase : List[str] = FlaxMTaForConditionalGeneration.from_pretrained("""google/mt5-small""" ) __lowercase : List[Any] = AutoTokenizer.from_pretrained("""google/mt5-small""" ) __lowercase : Any = tokenizer("""Hello there""" , return_tensors="""np""" ).input_ids __lowercase : int = tokenizer("""Hi I am""" , return_tensors="""np""" ).input_ids __lowercase : Optional[Any] = shift_tokens_right(__a , model.config.pad_token_id , model.config.decoder_start_token_id ) __lowercase : Dict = model(__a , decoder_input_ids=__a ).logits __lowercase : Union[str, Any] = optax.softmax_cross_entropy(__a , onehot(__a , logits.shape[-1] ) ).mean() __lowercase : Any = -(labels.shape[-1] * loss.item()) __lowercase : str = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
649
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowerCAmelCase ( __a , __a ): '''simple docstring''' _A : str = 1 @register_to_config def __init__( self : Optional[int] , __a : Tuple=2000 , __a : List[str]=0.1 , __a : str=20 , __a : Optional[int]=1E-3 ) -> int: """simple docstring""" __lowercase : Tuple = None __lowercase : Union[str, Any] = None __lowercase : int = None def lowerCAmelCase ( self : List[Any] , __a : Any , __a : Union[str, torch.device] = None ) -> str: """simple docstring""" __lowercase : List[str] = torch.linspace(1 , self.config.sampling_eps , __a , device=__a ) def lowerCAmelCase ( self : Tuple , __a : List[Any] , __a : Tuple , __a : int , __a : Optional[int]=None ) -> str: """simple docstring""" if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __lowercase : Dict = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __lowercase : int = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __lowercase : Union[str, Any] = std.flatten() while len(std.shape ) < len(score.shape ): __lowercase : Optional[Any] = std.unsqueeze(-1 ) __lowercase : List[Any] = -score / std # compute __lowercase : Dict = -1.0 / len(self.timesteps ) __lowercase : int = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __lowercase : List[Any] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __lowercase : Union[str, Any] = beta_t.unsqueeze(-1 ) __lowercase : List[str] = -0.5 * beta_t * x __lowercase : int = torch.sqrt(__a ) __lowercase : Union[str, Any] = drift - diffusion**2 * score __lowercase : Optional[Any] = x + drift * dt # add noise __lowercase : List[str] = randn_tensor(x.shape , layout=x.layout , generator=__a , device=x.device , dtype=x.dtype ) __lowercase : str = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Tuple ) -> Optional[int]: """simple docstring""" return self.config.num_train_timesteps
649
1
from sklearn.metrics import recall_score import datasets lowerCamelCase : Optional[Any] = ''' Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. ''' lowerCamelCase : Tuple = ''' Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric(\'recall\') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {\'recall\': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric(\'recall\') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {\'recall\': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric(\'recall\') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {\'recall\': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric(\'recall\') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'recall\': array([1., 0., 0.])} ''' lowerCamelCase : Dict = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , ) def lowerCAmelCase ( self : List[Any] , __a : Optional[int] , __a : int , __a : Dict=None , __a : List[Any]=1 , __a : Optional[Any]="binary" , __a : Optional[int]=None , __a : List[Any]="warn" , ) -> Union[str, Any]: """simple docstring""" __lowercase : str = recall_score( __a , __a , labels=__a , pos_label=__a , average=__a , sample_weight=__a , zero_division=__a , ) return {"recall": float(__a ) if score.size == 1 else score}
649
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : str = LongformerTokenizer _A : int = True _A : Optional[int] = LongformerTokenizerFast _A : int = True def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __lowercase : Union[str, Any] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Any = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __lowercase : Optional[int] = {"""unk_token""": """<unk>"""} __lowercase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__a ) ) def lowerCAmelCase ( self : Optional[int] , **__a : Optional[Any] ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Tuple , **__a : Tuple ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : str , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = """lower newer""" __lowercase : int = """lower newer""" return input_text, output_text def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowercase : Dict = """lower newer""" __lowercase : Optional[Any] = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] __lowercase : str = tokenizer.tokenize(__a ) # , add_prefix_space=True) self.assertListEqual(__a , __a ) __lowercase : int = tokens + [tokenizer.unk_token] __lowercase : str = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=__a ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=__a ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : Any = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" ) __lowercase : Optional[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=__a ) __lowercase : List[str] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__a ) __lowercase : Optional[Any] = tokenizer.encode( """sequence builders""" , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Union[str, Any] = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : List[Any] = tokenizer.build_inputs_with_special_tokens(__a ) __lowercase : Any = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() __lowercase : Tuple = """Encode this sequence.""" __lowercase : Optional[Any] = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments __lowercase : Dict = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__a , __a ) __lowercase : List[str] = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__a , __a ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) __lowercase : str = tokenizer.encode(__a , add_special_tokens=__a ) __lowercase : Dict = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__a , __a ) # Testing spaces after special tokens __lowercase : List[Any] = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(__a , lstrip=__a , rstrip=__a )} ) # mask token has a left space __lowercase : Dict = tokenizer.convert_tokens_to_ids(__a ) __lowercase : List[str] = """Encode <mask> sequence""" __lowercase : List[str] = """Encode <mask>sequence""" __lowercase : Union[str, Any] = tokenizer.encode(__a ) __lowercase : Dict = encoded.index(__a ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__a , __a ) __lowercase : int = tokenizer.encode(__a ) __lowercase : Union[str, Any] = encoded.index(__a ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__a , __a ) def lowerCAmelCase ( self : int ) -> str: """simple docstring""" pass def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) __lowercase : List[Any] = self.tokenizer_class.from_pretrained(__a , **__a ) __lowercase : Optional[Any] = """A, <mask> AllenNLP sentence.""" __lowercase : Union[str, Any] = tokenizer_r.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) __lowercase : Optional[Any] = tokenizer_p.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) __lowercase : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __lowercase : str = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __lowercase : Dict = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __lowercase : Any = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""trim_offsets"""] , __a ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : List[str] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` __lowercase : int = F"{text_of_1_token} {text_of_1_token}" __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Any = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) __lowercase : str = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Tuple = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) __lowercase : Optional[int] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : str = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) __lowercase : str = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : int = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) __lowercase : Any = F" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : str = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ) + 1, 1 + len(__a ) + 1 + len(__a )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Dict = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Tuple = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , )
649
1
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES lowerCamelCase : str = '''tiny-wmt19-en-ru''' # Build # borrowed from a test lowerCamelCase : str = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] lowerCamelCase : List[str] = dict(zip(vocab, range(len(vocab)))) lowerCamelCase : Union[str, Any] = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase : int = Path(tmpdirname) lowerCamelCase : Any = build_dir / VOCAB_FILES_NAMES['''src_vocab_file'''] lowerCamelCase : str = build_dir / VOCAB_FILES_NAMES['''tgt_vocab_file'''] lowerCamelCase : Union[str, Any] = build_dir / VOCAB_FILES_NAMES['''merges_file'''] with open(src_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, '''w''') as fp: fp.write('''\n'''.join(merges)) lowerCamelCase : Union[str, Any] = FSMTTokenizer( langs=['''en''', '''ru'''], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) lowerCamelCase : List[str] = FSMTConfig( langs=['''ru''', '''en'''], src_vocab_size=10_00, tgt_vocab_size=10_00, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) lowerCamelCase : int = FSMTForConditionalGeneration(config) print(f'''num of params {tiny_model.num_parameters()}''') # Test lowerCamelCase : int = tokenizer(['''Making tiny model'''], return_tensors='''pt''') lowerCamelCase : int = tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-ru
649
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Dict , __a : Union[str, Any]=13 , __a : Dict=7 , __a : Dict=True , __a : Dict=True , __a : Any=True , __a : List[str]=True , __a : int=99 , __a : Optional[int]=32 , __a : str=2 , __a : int=4 , __a : List[str]=37 , __a : Union[str, Any]="gelu" , __a : Union[str, Any]=0.1 , __a : Union[str, Any]=0.1 , __a : List[Any]=512 , __a : int=16 , __a : Union[str, Any]=2 , __a : Union[str, Any]=0.02 , __a : List[str]=3 , __a : Dict=4 , __a : Optional[Any]=None , ) -> Optional[Any]: """simple docstring""" __lowercase : Any = parent __lowercase : Tuple = 13 __lowercase : Dict = 7 __lowercase : List[Any] = True __lowercase : Tuple = True __lowercase : List[str] = True __lowercase : Any = True __lowercase : Optional[int] = 99 __lowercase : str = 384 __lowercase : Optional[Any] = 2 __lowercase : Dict = 4 __lowercase : str = 37 __lowercase : Optional[int] = """gelu""" __lowercase : int = 0.1 __lowercase : Union[str, Any] = 0.1 __lowercase : Tuple = 512 __lowercase : Tuple = 16 __lowercase : Optional[int] = 2 __lowercase : Optional[Any] = 0.02 __lowercase : Dict = 3 __lowercase : Union[str, Any] = 4 __lowercase : Tuple = 128 __lowercase : Optional[Any] = 2 __lowercase : int = 9 __lowercase : List[Any] = 1 __lowercase : Union[str, Any] = None def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" __lowercase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : Optional[Any] = None if self.use_input_mask: __lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : Dict = None if self.use_token_type_ids: __lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase : Optional[Any] = None __lowercase : str = None __lowercase : Tuple = None if self.use_labels: __lowercase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : str = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : Optional[int] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Dict , __a : List[Any] , __a : List[str] , __a : Union[str, Any] , __a : str , __a : Union[str, Any] , __a : Tuple , __a : Tuple ) -> Dict: """simple docstring""" __lowercase : Dict = TFConvBertModel(config=__a ) __lowercase : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowercase : Any = [input_ids, input_mask] __lowercase : Dict = model(__a ) __lowercase : str = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : Any , __a : Tuple , __a : Union[str, Any] , __a : str , __a : Dict , __a : str ) -> Dict: """simple docstring""" __lowercase : Optional[int] = TFConvBertForMaskedLM(config=__a ) __lowercase : List[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : Any = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[int] , __a : int , __a : Any , __a : Optional[int] , __a : int , __a : int , __a : List[Any] , __a : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase : str = self.num_labels __lowercase : List[Any] = TFConvBertForSequenceClassification(config=__a ) __lowercase : int = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : List[str] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Optional[int] , __a : Any , __a : Optional[Any] , __a : int , __a : Optional[int] , __a : Tuple , __a : int , __a : int ) -> Dict: """simple docstring""" __lowercase : Tuple = self.num_choices __lowercase : Dict = TFConvBertForMultipleChoice(config=__a ) __lowercase : List[str] = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : int = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : str = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : str = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __lowercase : Dict = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : List[str] , __a : str , __a : List[str] , __a : List[str] , __a : List[str] , __a : Any , __a : Tuple , __a : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = self.num_labels __lowercase : Tuple = TFConvBertForTokenClassification(config=__a ) __lowercase : Dict = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : str = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : List[Any] , __a : Optional[int] , __a : List[str] , __a : Optional[Any] , __a : int , __a : Tuple , __a : Any , __a : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Any = TFConvBertForQuestionAnswering(config=__a ) __lowercase : str = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : List[Any] = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : Tuple = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : int = config_and_inputs __lowercase : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Dict = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _A : str = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _A : Union[str, Any] = False _A : List[str] = False _A : Dict = False def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : int = TFConvBertModelTester(self ) __lowercase : Tuple = ConfigTester(self , config_class=__a , hidden_size=37 ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__a ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Union[str, Any] = True __lowercase : List[Any] = True if hasattr(__a , """use_cache""" ): __lowercase : Optional[Any] = True __lowercase : List[str] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) __lowercase : int = getattr(self.model_tester , """key_length""" , __a ) for model_class in self.all_model_classes: __lowercase : Optional[Any] = self._prepare_for_class(__a , __a ) __lowercase : Tuple = model_class(__a ) __lowercase : Tuple = len(model(__a ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a , saved_model=__a ) __lowercase : List[Any] = os.path.join(__a , """saved_model""" , """1""" ) __lowercase : str = tf.keras.models.load_model(__a ) __lowercase : Optional[int] = model(__a ) if self.is_encoder_decoder: __lowercase : Union[str, Any] = outputs["""encoder_hidden_states"""] __lowercase : Union[str, Any] = outputs["""encoder_attentions"""] else: __lowercase : Union[str, Any] = outputs["""hidden_states"""] __lowercase : List[str] = outputs["""attentions"""] self.assertEqual(len(__a ) , __a ) __lowercase : List[Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : str = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) self.assertIsNotNone(__a ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : List[str] = True __lowercase : List[Any] = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length ) __lowercase : Optional[int] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) __lowercase : List[str] = getattr(self.model_tester , """key_length""" , __a ) __lowercase : List[Any] = getattr(self.model_tester , """key_length""" , __a ) def check_decoder_attentions_output(__a : List[str] ): __lowercase : Union[str, Any] = len(__a ) self.assertEqual(out_len % 2 , 0 ) __lowercase : Any = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__a : str ): __lowercase : str = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __lowercase : int = True __lowercase : Any = False __lowercase : List[Any] = model_class(__a ) __lowercase : Tuple = model(self._prepare_for_class(__a , __a ) ) __lowercase : Dict = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: __lowercase : Any = model_class(__a ) __lowercase : List[str] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __lowercase : Dict = True __lowercase : Optional[Any] = model_class(__a ) __lowercase : Optional[int] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine __lowercase : List[str] = True __lowercase : List[Any] = True __lowercase : Any = model_class(__a ) __lowercase : Optional[int] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @require_tf class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) __lowercase : str = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowercase : Tuple = model(__a )[0] __lowercase : Any = [1, 6, 768] self.assertEqual(output.shape , __a ) __lowercase : Optional[Any] = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-4 )
649
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
649
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : int , *__a : Dict , **__a : Optional[Any] ) -> None: """simple docstring""" warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , __a , ) super().__init__(*__a , **__a )
649
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : Tuple = { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json''', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class lowerCAmelCase ( __a ): '''simple docstring''' _A : str = '''gpt_neox''' def __init__( self : Tuple , __a : str=50432 , __a : List[str]=6144 , __a : Dict=44 , __a : Optional[Any]=64 , __a : Optional[int]=24576 , __a : Optional[Any]="gelu" , __a : int=0.25 , __a : Any=10000 , __a : int=0.0 , __a : int=0.0 , __a : Union[str, Any]=0.1 , __a : str=2048 , __a : str=0.02 , __a : List[str]=1E-5 , __a : Union[str, Any]=True , __a : Any=0 , __a : Any=2 , __a : Optional[int]=False , __a : str=True , __a : Union[str, Any]=None , **__a : Dict , ) -> Any: """simple docstring""" super().__init__(bos_token_id=__a , eos_token_id=__a , **__a ) __lowercase : List[Any] = vocab_size __lowercase : Any = max_position_embeddings __lowercase : List[Any] = hidden_size __lowercase : Optional[int] = num_hidden_layers __lowercase : Tuple = num_attention_heads __lowercase : List[str] = intermediate_size __lowercase : List[Any] = hidden_act __lowercase : Any = rotary_pct __lowercase : Tuple = rotary_emb_base __lowercase : str = attention_dropout __lowercase : Any = hidden_dropout __lowercase : List[Any] = classifier_dropout __lowercase : List[Any] = initializer_range __lowercase : Tuple = layer_norm_eps __lowercase : Any = use_cache __lowercase : Dict = tie_word_embeddings __lowercase : Optional[int] = use_parallel_residual __lowercase : Any = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( """The hidden size is not divisble by the number of attention heads! Make sure to update them!""" ) def lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __a ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ F"got {self.rope_scaling}" ) __lowercase : Union[str, Any] = self.rope_scaling.get("""type""" , __a ) __lowercase : str = self.rope_scaling.get("""factor""" , __a ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(__a , __a ) or rope_scaling_factor <= 1.0: raise ValueError(F"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
649
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Optional[int] = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() __lowercase : List[str] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Dict = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } __lowercase : List[str] = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 16000, """return_attention_mask""": False, """do_normalize""": True, } __lowercase : Tuple = tempfile.mkdtemp() __lowercase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : str = os.path.join(self.tmpdirname , __a ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) # load decoder from hub __lowercase : Optional[int] = """hf-internal-testing/ngram-beam-search-decoder""" def lowerCAmelCase ( self : Optional[Any] , **__a : Dict ) -> Tuple: """simple docstring""" __lowercase : Union[str, Any] = self.add_kwargs_tokens_map.copy() kwargs.update(__a ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : str , **__a : int ) -> Tuple: """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Union[str, Any] , **__a : Union[str, Any] ) -> List[Any]: """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__a ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() __lowercase : Any = self.get_feature_extractor() __lowercase : str = self.get_decoder() __lowercase : Tuple = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) processor.save_pretrained(self.tmpdirname ) __lowercase : Tuple = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __a ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __a ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __a ) def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Any = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __lowercase : str = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : List[str] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(__a , """include""" ): WavaVecaProcessorWithLM( tokenizer=__a , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : List[Any] = self.get_feature_extractor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : int = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Optional[int] = floats_list((3, 1000) ) __lowercase : List[Any] = feature_extractor(__a , return_tensors="""np""" ) __lowercase : List[str] = processor(__a , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : List[Any] = self.get_feature_extractor() __lowercase : int = self.get_tokenizer() __lowercase : Dict = self.get_decoder() __lowercase : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Dict = """This is a test string""" __lowercase : Any = processor(text=__a ) __lowercase : Dict = tokenizer(__a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase ( self : str , __a : Tuple=(2, 10, 16) , __a : int=77 ) -> Optional[Any]: """simple docstring""" np.random.seed(__a ) return np.random.rand(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : List[str] = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : str = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : List[str] = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __lowercase : Optional[Any] = processor.decode(__a ) __lowercase : Any = decoder.decode_beams(__a )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def lowerCAmelCase ( self : List[str] , __a : Dict ) -> List[Any]: """simple docstring""" __lowercase : str = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : Optional[int] = self.get_decoder() __lowercase : Any = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Optional[Any] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __lowercase : Union[str, Any] = processor.batch_decode(__a ) else: with get_context(__a ).Pool() as pool: __lowercase : Optional[Any] = processor.batch_decode(__a , __a ) __lowercase : Union[str, Any] = list(__a ) with get_context("""fork""" ).Pool() as p: __lowercase : Optional[Any] = decoder.decode_beams_batch(__a , __a ) __lowercase , __lowercase , __lowercase : Any = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__a , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(__a , decoded_processor.logit_score ) self.assertListEqual(__a , decoded_processor.lm_score ) def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase : int = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : List[str] = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Dict = self._get_dummy_logits() __lowercase : Tuple = 15 __lowercase : Tuple = -20.0 __lowercase : Dict = -4.0 __lowercase : Dict = processor.batch_decode( __a , beam_width=__a , beam_prune_logp=__a , token_min_logp=__a , ) __lowercase : Tuple = decoded_processor_out.text __lowercase : List[Any] = list(__a ) with get_context("""fork""" ).Pool() as pool: __lowercase : Any = decoder.decode_beams_batch( __a , __a , beam_width=__a , beam_prune_logp=__a , token_min_logp=__a , ) __lowercase : Optional[Any] = [d[0][0] for d in decoded_decoder_out] __lowercase : Optional[int] = [d[0][2] for d in decoded_decoder_out] __lowercase : Optional[int] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__a , __a ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , __a ) self.assertTrue(np.array_equal(__a , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , __a , atol=1E-3 ) ) self.assertTrue(np.array_equal(__a , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , __a , atol=1E-3 ) ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase : str = self.get_feature_extractor() __lowercase : List[Any] = self.get_tokenizer() __lowercase : List[Any] = self.get_decoder() __lowercase : Dict = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : List[Any] = self._get_dummy_logits() __lowercase : Optional[int] = 2.0 __lowercase : Tuple = 5.0 __lowercase : Optional[Any] = -20.0 __lowercase : Tuple = True __lowercase : Union[str, Any] = processor.batch_decode( __a , alpha=__a , beta=__a , unk_score_offset=__a , lm_score_boundary=__a , ) __lowercase : Any = decoded_processor_out.text __lowercase : List[Any] = list(__a ) decoder.reset_params( alpha=__a , beta=__a , unk_score_offset=__a , lm_score_boundary=__a , ) with get_context("""fork""" ).Pool() as pool: __lowercase : Tuple = decoder.decode_beams_batch( __a , __a , ) __lowercase : int = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__a , __a ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , __a ) __lowercase : str = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , __a ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] __lowercase : str = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __lowercase : int = os.listdir(__a ) __lowercase : Optional[Any] = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = snapshot_download("""hf-internal-testing/processor_with_lm""" ) __lowercase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(__a ) __lowercase : Dict = processor.decoder.model_container[processor.decoder._model_key] __lowercase : List[Any] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __lowercase : Dict = os.listdir(__a ) __lowercase : List[Any] = os.listdir(__a ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" __lowercase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Dict = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Any = floats_list((3, 1000) ) __lowercase : List[str] = processor_wavaveca(__a , return_tensors="""np""" ) __lowercase : List[Any] = processor_auto(__a , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) __lowercase : List[str] = self._get_dummy_logits() __lowercase : List[str] = processor_wavaveca.batch_decode(__a ) __lowercase : Optional[int] = processor_auto.batch_decode(__a ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Any = self.get_feature_extractor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : Dict = self.get_decoder() __lowercase : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def lowerCAmelCase ( __a : Union[str, Any] , __a : List[Any] ) -> Dict: """simple docstring""" __lowercase : Any = [d[key] for d in offsets] return retrieved_list def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" __lowercase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Optional[Any] = self._get_dummy_logits()[0] __lowercase : Dict = processor.decode(__a , output_word_offsets=__a ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__a , __a ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : List[str] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Any = self._get_dummy_logits() __lowercase : Dict = processor.batch_decode(__a , output_word_offsets=__a ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__a , __a ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(__a , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" import torch __lowercase : Any = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=__a ) __lowercase : str = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=16000 ) ) __lowercase : Tuple = iter(__a ) __lowercase : Union[str, Any] = next(__a ) __lowercase : int = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) __lowercase : int = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __lowercase : Union[str, Any] = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): __lowercase : List[Any] = model(__a ).logits.cpu().numpy() __lowercase : Tuple = processor.decode(logits[0] , output_word_offsets=__a ) __lowercase : int = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __lowercase : Optional[Any] = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] __lowercase : str = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(__a , """word""" ) ) , __a ) self.assertEqual(""" """.join(self.get_from_offsets(__a , """word""" ) ) , output.text ) # output times __lowercase : Tuple = torch.tensor(self.get_from_offsets(__a , """start_time""" ) ) __lowercase : Dict = torch.tensor(self.get_from_offsets(__a , """end_time""" ) ) # fmt: off __lowercase : List[Any] = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) __lowercase : Optional[int] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(__a , __a , atol=0.01 ) ) self.assertTrue(torch.allclose(__a , __a , atol=0.01 ) )
649
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase : Dict = { '''configuration_nezha''': ['''NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NezhaConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ '''NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NezhaForNextSentencePrediction''', '''NezhaForMaskedLM''', '''NezhaForPreTraining''', '''NezhaForMultipleChoice''', '''NezhaForQuestionAnswering''', '''NezhaForSequenceClassification''', '''NezhaForTokenClassification''', '''NezhaModel''', '''NezhaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys lowerCamelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
649
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(0 ) == 0 ) def snake_case_ ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
649
1
def snake_case_ ( lowerCAmelCase_ : int ): if upper_limit < 0: raise ValueError("""Limit for the Catalan sequence must be ≥ 0""" ) __lowercase : List[str] = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 __lowercase : Tuple = 1 if upper_limit > 0: __lowercase : Dict = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(lowerCAmelCase_ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print('''\n********* Catalan Numbers Using Dynamic Programming ************\n''') print('''\n*** Enter -1 at any time to quit ***''') print('''\nEnter the upper limit (≥ 0) for the Catalan number sequence: ''', end='''''') try: while True: lowerCamelCase : Dict = int(input().strip()) if N < 0: print('''\n********* Goodbye!! ************''') break else: print(f'''The Catalan numbers from 0 through {N} are:''') print(catalan_numbers(N)) print('''Try another upper limit for the sequence: ''', end='''''') except (NameError, ValueError): print('''\n********* Invalid input, goodbye! ************\n''') import doctest doctest.testmod()
649
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCamelCase : int = '''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine''' def snake_case_ ( ): __lowercase : List[Any] = _ask_options( """In which compute environment are you running?""" , ["""This machine""", """AWS (Amazon SageMaker)"""] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __lowercase : Union[str, Any] = get_sagemaker_input() else: __lowercase : str = get_cluster_input() return config def snake_case_ ( lowerCAmelCase_ : List[str]=None ): if subparsers is not None: __lowercase : Optional[int] = subparsers.add_parser("""config""" , description=lowerCAmelCase_ ) else: __lowercase : List[str] = argparse.ArgumentParser("""Accelerate config command""" , description=lowerCAmelCase_ ) parser.add_argument( """--config_file""" , default=lowerCAmelCase_ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def snake_case_ ( lowerCAmelCase_ : Tuple ): __lowercase : Union[str, Any] = get_user_input() if args.config_file is not None: __lowercase : List[Any] = args.config_file else: if not os.path.isdir(lowerCAmelCase_ ): os.makedirs(lowerCAmelCase_ ) __lowercase : Any = default_yaml_config_file if config_file.endswith(""".json""" ): config.to_json_file(lowerCAmelCase_ ) else: config.to_yaml_file(lowerCAmelCase_ ) print(F"accelerate configuration saved at {config_file}" ) def snake_case_ ( ): __lowercase : str = config_command_parser() __lowercase : str = parser.parse_args() config_command(lowerCAmelCase_ ) if __name__ == "__main__": main()
649
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool lowerCamelCase : Union[str, Any] = { '''Acehnese Arabic''': '''ace_Arab''', '''Acehnese Latin''': '''ace_Latn''', '''Mesopotamian Arabic''': '''acm_Arab''', '''Ta\'izzi-Adeni Arabic''': '''acq_Arab''', '''Tunisian Arabic''': '''aeb_Arab''', '''Afrikaans''': '''afr_Latn''', '''South Levantine Arabic''': '''ajp_Arab''', '''Akan''': '''aka_Latn''', '''Amharic''': '''amh_Ethi''', '''North Levantine Arabic''': '''apc_Arab''', '''Modern Standard Arabic''': '''arb_Arab''', '''Modern Standard Arabic Romanized''': '''arb_Latn''', '''Najdi Arabic''': '''ars_Arab''', '''Moroccan Arabic''': '''ary_Arab''', '''Egyptian Arabic''': '''arz_Arab''', '''Assamese''': '''asm_Beng''', '''Asturian''': '''ast_Latn''', '''Awadhi''': '''awa_Deva''', '''Central Aymara''': '''ayr_Latn''', '''South Azerbaijani''': '''azb_Arab''', '''North Azerbaijani''': '''azj_Latn''', '''Bashkir''': '''bak_Cyrl''', '''Bambara''': '''bam_Latn''', '''Balinese''': '''ban_Latn''', '''Belarusian''': '''bel_Cyrl''', '''Bemba''': '''bem_Latn''', '''Bengali''': '''ben_Beng''', '''Bhojpuri''': '''bho_Deva''', '''Banjar Arabic''': '''bjn_Arab''', '''Banjar Latin''': '''bjn_Latn''', '''Standard Tibetan''': '''bod_Tibt''', '''Bosnian''': '''bos_Latn''', '''Buginese''': '''bug_Latn''', '''Bulgarian''': '''bul_Cyrl''', '''Catalan''': '''cat_Latn''', '''Cebuano''': '''ceb_Latn''', '''Czech''': '''ces_Latn''', '''Chokwe''': '''cjk_Latn''', '''Central Kurdish''': '''ckb_Arab''', '''Crimean Tatar''': '''crh_Latn''', '''Welsh''': '''cym_Latn''', '''Danish''': '''dan_Latn''', '''German''': '''deu_Latn''', '''Southwestern Dinka''': '''dik_Latn''', '''Dyula''': '''dyu_Latn''', '''Dzongkha''': '''dzo_Tibt''', '''Greek''': '''ell_Grek''', '''English''': '''eng_Latn''', '''Esperanto''': '''epo_Latn''', '''Estonian''': '''est_Latn''', '''Basque''': '''eus_Latn''', '''Ewe''': '''ewe_Latn''', '''Faroese''': '''fao_Latn''', '''Fijian''': '''fij_Latn''', '''Finnish''': '''fin_Latn''', '''Fon''': '''fon_Latn''', '''French''': '''fra_Latn''', '''Friulian''': '''fur_Latn''', '''Nigerian Fulfulde''': '''fuv_Latn''', '''Scottish Gaelic''': '''gla_Latn''', '''Irish''': '''gle_Latn''', '''Galician''': '''glg_Latn''', '''Guarani''': '''grn_Latn''', '''Gujarati''': '''guj_Gujr''', '''Haitian Creole''': '''hat_Latn''', '''Hausa''': '''hau_Latn''', '''Hebrew''': '''heb_Hebr''', '''Hindi''': '''hin_Deva''', '''Chhattisgarhi''': '''hne_Deva''', '''Croatian''': '''hrv_Latn''', '''Hungarian''': '''hun_Latn''', '''Armenian''': '''hye_Armn''', '''Igbo''': '''ibo_Latn''', '''Ilocano''': '''ilo_Latn''', '''Indonesian''': '''ind_Latn''', '''Icelandic''': '''isl_Latn''', '''Italian''': '''ita_Latn''', '''Javanese''': '''jav_Latn''', '''Japanese''': '''jpn_Jpan''', '''Kabyle''': '''kab_Latn''', '''Jingpho''': '''kac_Latn''', '''Kamba''': '''kam_Latn''', '''Kannada''': '''kan_Knda''', '''Kashmiri Arabic''': '''kas_Arab''', '''Kashmiri Devanagari''': '''kas_Deva''', '''Georgian''': '''kat_Geor''', '''Central Kanuri Arabic''': '''knc_Arab''', '''Central Kanuri Latin''': '''knc_Latn''', '''Kazakh''': '''kaz_Cyrl''', '''Kabiyè''': '''kbp_Latn''', '''Kabuverdianu''': '''kea_Latn''', '''Khmer''': '''khm_Khmr''', '''Kikuyu''': '''kik_Latn''', '''Kinyarwanda''': '''kin_Latn''', '''Kyrgyz''': '''kir_Cyrl''', '''Kimbundu''': '''kmb_Latn''', '''Northern Kurdish''': '''kmr_Latn''', '''Kikongo''': '''kon_Latn''', '''Korean''': '''kor_Hang''', '''Lao''': '''lao_Laoo''', '''Ligurian''': '''lij_Latn''', '''Limburgish''': '''lim_Latn''', '''Lingala''': '''lin_Latn''', '''Lithuanian''': '''lit_Latn''', '''Lombard''': '''lmo_Latn''', '''Latgalian''': '''ltg_Latn''', '''Luxembourgish''': '''ltz_Latn''', '''Luba-Kasai''': '''lua_Latn''', '''Ganda''': '''lug_Latn''', '''Luo''': '''luo_Latn''', '''Mizo''': '''lus_Latn''', '''Standard Latvian''': '''lvs_Latn''', '''Magahi''': '''mag_Deva''', '''Maithili''': '''mai_Deva''', '''Malayalam''': '''mal_Mlym''', '''Marathi''': '''mar_Deva''', '''Minangkabau Arabic ''': '''min_Arab''', '''Minangkabau Latin''': '''min_Latn''', '''Macedonian''': '''mkd_Cyrl''', '''Plateau Malagasy''': '''plt_Latn''', '''Maltese''': '''mlt_Latn''', '''Meitei Bengali''': '''mni_Beng''', '''Halh Mongolian''': '''khk_Cyrl''', '''Mossi''': '''mos_Latn''', '''Maori''': '''mri_Latn''', '''Burmese''': '''mya_Mymr''', '''Dutch''': '''nld_Latn''', '''Norwegian Nynorsk''': '''nno_Latn''', '''Norwegian Bokmål''': '''nob_Latn''', '''Nepali''': '''npi_Deva''', '''Northern Sotho''': '''nso_Latn''', '''Nuer''': '''nus_Latn''', '''Nyanja''': '''nya_Latn''', '''Occitan''': '''oci_Latn''', '''West Central Oromo''': '''gaz_Latn''', '''Odia''': '''ory_Orya''', '''Pangasinan''': '''pag_Latn''', '''Eastern Panjabi''': '''pan_Guru''', '''Papiamento''': '''pap_Latn''', '''Western Persian''': '''pes_Arab''', '''Polish''': '''pol_Latn''', '''Portuguese''': '''por_Latn''', '''Dari''': '''prs_Arab''', '''Southern Pashto''': '''pbt_Arab''', '''Ayacucho Quechua''': '''quy_Latn''', '''Romanian''': '''ron_Latn''', '''Rundi''': '''run_Latn''', '''Russian''': '''rus_Cyrl''', '''Sango''': '''sag_Latn''', '''Sanskrit''': '''san_Deva''', '''Santali''': '''sat_Olck''', '''Sicilian''': '''scn_Latn''', '''Shan''': '''shn_Mymr''', '''Sinhala''': '''sin_Sinh''', '''Slovak''': '''slk_Latn''', '''Slovenian''': '''slv_Latn''', '''Samoan''': '''smo_Latn''', '''Shona''': '''sna_Latn''', '''Sindhi''': '''snd_Arab''', '''Somali''': '''som_Latn''', '''Southern Sotho''': '''sot_Latn''', '''Spanish''': '''spa_Latn''', '''Tosk Albanian''': '''als_Latn''', '''Sardinian''': '''srd_Latn''', '''Serbian''': '''srp_Cyrl''', '''Swati''': '''ssw_Latn''', '''Sundanese''': '''sun_Latn''', '''Swedish''': '''swe_Latn''', '''Swahili''': '''swh_Latn''', '''Silesian''': '''szl_Latn''', '''Tamil''': '''tam_Taml''', '''Tatar''': '''tat_Cyrl''', '''Telugu''': '''tel_Telu''', '''Tajik''': '''tgk_Cyrl''', '''Tagalog''': '''tgl_Latn''', '''Thai''': '''tha_Thai''', '''Tigrinya''': '''tir_Ethi''', '''Tamasheq Latin''': '''taq_Latn''', '''Tamasheq Tifinagh''': '''taq_Tfng''', '''Tok Pisin''': '''tpi_Latn''', '''Tswana''': '''tsn_Latn''', '''Tsonga''': '''tso_Latn''', '''Turkmen''': '''tuk_Latn''', '''Tumbuka''': '''tum_Latn''', '''Turkish''': '''tur_Latn''', '''Twi''': '''twi_Latn''', '''Central Atlas Tamazight''': '''tzm_Tfng''', '''Uyghur''': '''uig_Arab''', '''Ukrainian''': '''ukr_Cyrl''', '''Umbundu''': '''umb_Latn''', '''Urdu''': '''urd_Arab''', '''Northern Uzbek''': '''uzn_Latn''', '''Venetian''': '''vec_Latn''', '''Vietnamese''': '''vie_Latn''', '''Waray''': '''war_Latn''', '''Wolof''': '''wol_Latn''', '''Xhosa''': '''xho_Latn''', '''Eastern Yiddish''': '''ydd_Hebr''', '''Yoruba''': '''yor_Latn''', '''Yue Chinese''': '''yue_Hant''', '''Chinese Simplified''': '''zho_Hans''', '''Chinese Traditional''': '''zho_Hant''', '''Standard Malay''': '''zsm_Latn''', '''Zulu''': '''zul_Latn''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : Tuple = '''facebook/nllb-200-distilled-600M''' _A : List[Any] = ( '''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ''' '''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ''' '''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ''' '''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.''' ) _A : Tuple = '''translator''' _A : str = AutoTokenizer _A : Tuple = AutoModelForSeqaSeqLM _A : Optional[int] = LANGUAGE_CODES _A : str = ['''text''', '''text''', '''text'''] _A : Any = ['''text'''] def lowerCAmelCase ( self : str , __a : str , __a : Union[str, Any] , __a : Dict ) -> Dict: """simple docstring""" if src_lang not in self.lang_to_code: raise ValueError(F"{src_lang} is not a supported language." ) if tgt_lang not in self.lang_to_code: raise ValueError(F"{tgt_lang} is not a supported language." ) __lowercase : List[str] = self.lang_to_code[src_lang] __lowercase : int = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( __a , return_tensors="""pt""" , src_lang=__a , tgt_lang=__a ) def lowerCAmelCase ( self : List[Any] , __a : List[Any] ) -> Dict: """simple docstring""" return self.model.generate(**__a ) def lowerCAmelCase ( self : Dict , __a : Optional[Any] ) -> Tuple: """simple docstring""" return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=__a )
649
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : list[str] | None = None ): __lowercase : Tuple = word_bank or [] # create a table __lowercase : int = len(lowerCAmelCase_ ) + 1 __lowercase : list[list[list[str]]] = [] for _ in range(lowerCAmelCase_ ): table.append([] ) # seed value __lowercase : Dict = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowerCAmelCase_ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowerCAmelCase_ )] == word: __lowercase : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowerCAmelCase_ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowerCAmelCase_ )]: combination.reverse() return table[len(lowerCAmelCase_ )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
649
1
class lowerCAmelCase ( __a ): '''simple docstring''' pass class lowerCAmelCase ( __a ): '''simple docstring''' pass class lowerCAmelCase : '''simple docstring''' def __init__( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : Dict = [ [], [], [], ] def lowerCAmelCase ( self : str , __a : int , __a : int ) -> None: """simple docstring""" try: if len(self.queues[priority] ) >= 100: raise OverflowError("""Maximum queue size is 100""" ) self.queues[priority].append(__a ) except IndexError: raise ValueError("""Valid priorities are 0, 1, and 2""" ) def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("""All queues are empty""" ) def __str__( self : Any ) -> str: """simple docstring""" return "\n".join(F"Priority {i}: {q}" for i, q in enumerate(self.queues ) ) class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] ) -> Dict: """simple docstring""" __lowercase : Dict = [] def lowerCAmelCase ( self : Optional[int] , __a : int ) -> None: """simple docstring""" if len(self.queue ) == 100: raise OverFlowError("""Maximum queue size is 100""" ) self.queue.append(__a ) def lowerCAmelCase ( self : int ) -> int: """simple docstring""" if not self.queue: raise UnderFlowError("""The queue is empty""" ) else: __lowercase : Optional[int] = min(self.queue ) self.queue.remove(__a ) return data def __str__( self : Any ) -> str: """simple docstring""" return str(self.queue ) def snake_case_ ( ): __lowercase : Any = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 100 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 128 ) print(lowerCAmelCase_ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(lowerCAmelCase_ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def snake_case_ ( ): __lowercase : Any = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(lowerCAmelCase_ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(lowerCAmelCase_ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
649
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(1 ) != 0 ) def snake_case_ ( ): assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
649
1
from argparse import ArgumentParser from . import BaseTransformersCLICommand def snake_case_ ( lowerCAmelCase_ : Dict ): return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class lowerCAmelCase ( __a ): '''simple docstring''' @staticmethod def lowerCAmelCase ( __a : ArgumentParser ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = parser.add_parser("""download""" ) download_parser.add_argument( """--cache-dir""" , type=__a , default=__a , help="""Path to location to store the models""" ) download_parser.add_argument( """--force""" , action="""store_true""" , help="""Force the model to be download even if already in cache-dir""" ) download_parser.add_argument( """--trust-remote-code""" , action="""store_true""" , help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" , ) download_parser.add_argument("""model""" , type=__a , help="""Name of the model to download""" ) download_parser.set_defaults(func=__a ) def __init__( self : Dict , __a : str , __a : str , __a : bool , __a : bool ) -> Union[str, Any]: """simple docstring""" __lowercase : Dict = model __lowercase : List[Any] = cache __lowercase : Any = force __lowercase : Optional[int] = trust_remote_code def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
649
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : int = { '''configuration_funnel''': ['''FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FunnelConfig'''], '''convert_funnel_original_tf_checkpoint_to_pytorch''': [], '''tokenization_funnel''': ['''FunnelTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = ['''FunnelTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = [ '''FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FunnelBaseModel''', '''FunnelForMaskedLM''', '''FunnelForMultipleChoice''', '''FunnelForPreTraining''', '''FunnelForQuestionAnswering''', '''FunnelForSequenceClassification''', '''FunnelForTokenClassification''', '''FunnelModel''', '''FunnelPreTrainedModel''', '''load_tf_weights_in_funnel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ '''TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFFunnelBaseModel''', '''TFFunnelForMaskedLM''', '''TFFunnelForMultipleChoice''', '''TFFunnelForPreTraining''', '''TFFunnelForQuestionAnswering''', '''TFFunnelForSequenceClassification''', '''TFFunnelForTokenClassification''', '''TFFunnelModel''', '''TFFunnelPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
649
1
from collections.abc import Generator from math import sin def snake_case_ ( lowerCAmelCase_ : bytes ): if len(lowerCAmelCase_ ) != 32: raise ValueError("""Input must be of length 32""" ) __lowercase : Union[str, Any] = b"""""" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def snake_case_ ( lowerCAmelCase_ : int ): if i < 0: raise ValueError("""Input must be non-negative""" ) __lowercase : List[str] = format(lowerCAmelCase_ , """08x""" )[-8:] __lowercase : Optional[int] = b"""""" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("""utf-8""" ) return little_endian_hex def snake_case_ ( lowerCAmelCase_ : bytes ): __lowercase : Any = b"""""" for char in message: bit_string += format(lowerCAmelCase_ , """08b""" ).encode("""utf-8""" ) __lowercase : int = format(len(lowerCAmelCase_ ) , """064b""" ).encode("""utf-8""" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(lowerCAmelCase_ ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def snake_case_ ( lowerCAmelCase_ : bytes ): if len(lowerCAmelCase_ ) % 512 != 0: raise ValueError("""Input must have length that's a multiple of 512""" ) for pos in range(0 , len(lowerCAmelCase_ ) , 512 ): __lowercase : List[str] = bit_string[pos : pos + 512] __lowercase : Dict = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def snake_case_ ( lowerCAmelCase_ : int ): if i < 0: raise ValueError("""Input must be non-negative""" ) __lowercase : Any = format(lowerCAmelCase_ , """032b""" ) __lowercase : Optional[Any] = """""" for c in i_str: new_str += "1" if c == "0" else "0" return int(lowerCAmelCase_ , 2 ) def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return (a + b) % 2**32 def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): if i < 0: raise ValueError("""Input must be non-negative""" ) if shift < 0: raise ValueError("""Shift must be non-negative""" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def snake_case_ ( lowerCAmelCase_ : bytes ): __lowercase : List[str] = preprocess(lowerCAmelCase_ ) __lowercase : int = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states __lowercase : int = 0x6745_2301 __lowercase : Dict = 0xefcd_ab89 __lowercase : str = 0x98ba_dcfe __lowercase : Dict = 0x1032_5476 __lowercase : Dict = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(lowerCAmelCase_ ): __lowercase : Union[str, Any] = aa __lowercase : int = ba __lowercase : Optional[Any] = ca __lowercase : Optional[Any] = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __lowercase : str = d ^ (b & (c ^ d)) __lowercase : Any = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __lowercase : str = c ^ (d & (b ^ c)) __lowercase : Dict = (5 * i + 1) % 16 elif i <= 47: __lowercase : List[Any] = b ^ c ^ d __lowercase : Tuple = (3 * i + 5) % 16 else: __lowercase : int = c ^ (b | not_aa(lowerCAmelCase_ )) __lowercase : List[Any] = (7 * i) % 16 __lowercase : Optional[int] = (f + a + added_consts[i] + block_words[g]) % 2**32 __lowercase : List[Any] = d __lowercase : str = c __lowercase : Dict = b __lowercase : int = sum_aa(lowerCAmelCase_ , left_rotate_aa(lowerCAmelCase_ , shift_amounts[i] ) ) # Add hashed chunk to running total __lowercase : List[str] = sum_aa(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Any = sum_aa(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Union[str, Any] = sum_aa(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : List[Any] = sum_aa(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Dict = reformat_hex(lowerCAmelCase_ ) + reformat_hex(lowerCAmelCase_ ) + reformat_hex(lowerCAmelCase_ ) + reformat_hex(lowerCAmelCase_ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
649
import logging import os import threading import time try: import warnings except ImportError: lowerCamelCase : Any = None try: import msvcrt except ImportError: lowerCamelCase : str = None try: import fcntl except ImportError: lowerCamelCase : Optional[Any] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: lowerCamelCase : Union[str, Any] = OSError # Data # ------------------------------------------------ lowerCamelCase : Tuple = [ '''Timeout''', '''BaseFileLock''', '''WindowsFileLock''', '''UnixFileLock''', '''SoftFileLock''', '''FileLock''', ] lowerCamelCase : Tuple = '''3.0.12''' lowerCamelCase : Any = None def snake_case_ ( ): global _logger __lowercase : List[str] = _logger or logging.getLogger(__name__ ) return _logger class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Any , __a : Any ) -> List[Any]: """simple docstring""" __lowercase : List[str] = lock_file return None def __str__( self : str ) -> Any: """simple docstring""" __lowercase : Any = F"The file lock '{self.lock_file}' could not be acquired." return temp class lowerCAmelCase : '''simple docstring''' def __init__( self : List[Any] , __a : Optional[int] ) -> int: """simple docstring""" __lowercase : Optional[Any] = lock return None def __enter__( self : Dict ) -> Dict: """simple docstring""" return self.lock def __exit__( self : Optional[int] , __a : Dict , __a : Any , __a : Tuple ) -> Optional[Any]: """simple docstring""" self.lock.release() return None class lowerCAmelCase : '''simple docstring''' def __init__( self : Tuple , __a : Any , __a : Dict=-1 , __a : Optional[Any]=None ) -> Any: """simple docstring""" __lowercase : Optional[int] = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long __lowercase : Dict = self.hash_filename_if_too_long(__a , __a ) # The path to the lock file. __lowercase : Optional[Any] = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __lowercase : int = None # The default timeout value. __lowercase : Optional[int] = timeout # We use this lock primarily for the lock counter. __lowercase : Optional[Any] = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __lowercase : Union[str, Any] = 0 return None @property def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return self._lock_file @property def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return self._timeout @timeout.setter def lowerCAmelCase ( self : Tuple , __a : Tuple ) -> Dict: """simple docstring""" __lowercase : Tuple = float(__a ) return None def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" raise NotImplementedError() def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" raise NotImplementedError() @property def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" return self._lock_file_fd is not None def lowerCAmelCase ( self : Any , __a : Optional[Any]=None , __a : Union[str, Any]=0.05 ) -> List[str]: """simple docstring""" if timeout is None: __lowercase : Union[str, Any] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __lowercase : int = id(self ) __lowercase : Optional[Any] = self._lock_file __lowercase : List[str] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"Attempting to acquire lock {lock_id} on {lock_filename}" ) self._acquire() if self.is_locked: logger().debug(F"Lock {lock_id} acquired on {lock_filename}" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"Timeout on acquiring lock {lock_id} on {lock_filename}" ) raise Timeout(self._lock_file ) else: logger().debug( F"Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ..." ) time.sleep(__a ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __lowercase : Optional[int] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def lowerCAmelCase ( self : Union[str, Any] , __a : Optional[Any]=False ) -> Optional[Any]: """simple docstring""" with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __lowercase : Optional[Any] = id(self ) __lowercase : str = self._lock_file logger().debug(F"Attempting to release lock {lock_id} on {lock_filename}" ) self._release() __lowercase : List[str] = 0 logger().debug(F"Lock {lock_id} released on {lock_filename}" ) return None def __enter__( self : Any ) -> Optional[Any]: """simple docstring""" self.acquire() return self def __exit__( self : List[str] , __a : str , __a : int , __a : List[Any] ) -> Tuple: """simple docstring""" self.release() return None def __del__( self : Optional[int] ) -> Optional[int]: """simple docstring""" self.release(force=__a ) return None def lowerCAmelCase ( self : Tuple , __a : str , __a : int ) -> str: """simple docstring""" __lowercase : List[Any] = os.path.basename(__a ) if len(__a ) > max_length and max_length > 0: __lowercase : int = os.path.dirname(__a ) __lowercase : List[str] = str(hash(__a ) ) __lowercase : Optional[Any] = filename[: max_length - len(__a ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(__a , __a ) else: return path class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Union[str, Any] , __a : List[Any] , __a : Optional[int]=-1 , __a : Tuple=None ) -> List[Any]: """simple docstring""" from .file_utils import relative_to_absolute_path super().__init__(__a , timeout=__a , max_filename_length=__a ) __lowercase : Tuple = """\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __lowercase : Tuple = os.open(self._lock_file , __a ) except OSError: pass else: try: msvcrt.locking(__a , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__a ) else: __lowercase : Union[str, Any] = fd return None def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = self._lock_file_fd __lowercase : int = None msvcrt.locking(__a , msvcrt.LK_UNLCK , 1 ) os.close(__a ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : List[str] , __a : Optional[Any] , __a : str=-1 , __a : List[str]=None ) -> Any: """simple docstring""" __lowercase : Dict = os.statvfs(os.path.dirname(__a ) ).f_namemax super().__init__(__a , timeout=__a , max_filename_length=__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase : List[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC __lowercase : List[str] = os.open(self._lock_file , __a ) try: fcntl.flock(__a , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__a ) else: __lowercase : str = fd return None def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Any = self._lock_file_fd __lowercase : List[str] = None fcntl.flock(__a , fcntl.LOCK_UN ) os.close(__a ) return None class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __lowercase : Union[str, Any] = os.open(self._lock_file , __a ) except OSError: pass else: __lowercase : Optional[int] = fd return None def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" os.close(self._lock_file_fd ) __lowercase : int = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None lowerCamelCase : Optional[Any] = None if msvcrt: lowerCamelCase : List[Any] = WindowsFileLock elif fcntl: lowerCamelCase : List[Any] = UnixFileLock else: lowerCamelCase : Union[str, Any] = SoftFileLock if warnings is not None: warnings.warn('''only soft file lock is available''')
649
1
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : Dict = [ ['''attention''', '''attn'''], ['''encoder_attention''', '''encoder_attn'''], ['''q_lin''', '''q_proj'''], ['''k_lin''', '''k_proj'''], ['''v_lin''', '''v_proj'''], ['''out_lin''', '''out_proj'''], ['''norm_embeddings''', '''layernorm_embedding'''], ['''position_embeddings''', '''embed_positions'''], ['''embeddings''', '''embed_tokens'''], ['''ffn.lin''', '''fc'''], ] def snake_case_ ( lowerCAmelCase_ : List[Any] ): if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __lowercase : Tuple = k.replace(lowerCAmelCase_ , lowerCAmelCase_ ) if k.startswith("""encoder""" ): __lowercase : int = k.replace(""".attn""" , """.self_attn""" ) __lowercase : Optional[Any] = k.replace("""norm1""" , """self_attn_layer_norm""" ) __lowercase : Union[str, Any] = k.replace("""norm2""" , """final_layer_norm""" ) elif k.startswith("""decoder""" ): __lowercase : Dict = k.replace("""norm1""" , """self_attn_layer_norm""" ) __lowercase : Dict = k.replace("""norm2""" , """encoder_attn_layer_norm""" ) __lowercase : str = k.replace("""norm3""" , """final_layer_norm""" ) return k def snake_case_ ( lowerCAmelCase_ : List[Any] ): __lowercase : Union[str, Any] = [ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: __lowercase : List[str] = sd.pop(lowerCAmelCase_ ) __lowercase : Optional[int] = k.replace("""layernorm_embedding""" , """layer_norm""" ) assert new_k not in sd __lowercase : Optional[Any] = v lowerCamelCase : Optional[int] = ['''START'''] @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any ): __lowercase : List[Any] = torch.load(lowerCAmelCase_ , map_location="""cpu""" ) __lowercase : Union[str, Any] = model["""model"""] __lowercase : Any = BlenderbotConfig.from_json_file(lowerCAmelCase_ ) __lowercase : Union[str, Any] = BlenderbotForConditionalGeneration(lowerCAmelCase_ ) __lowercase : Any = m.model.state_dict().keys() __lowercase : List[Any] = [] __lowercase : Tuple = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __lowercase : Optional[int] = rename_state_dict_key(lowerCAmelCase_ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __lowercase : int = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(lowerCAmelCase_ ) m.model.load_state_dict(lowerCAmelCase_ , strict=lowerCAmelCase_ ) m.half() m.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''') parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''') parser.add_argument( '''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use''' ) lowerCamelCase : int = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
649
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : Tuple = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = '''layoutlmv3''' def __init__( self : Dict , __a : List[str]=50265 , __a : str=768 , __a : List[Any]=12 , __a : List[Any]=12 , __a : List[str]=3072 , __a : Optional[Any]="gelu" , __a : Optional[int]=0.1 , __a : List[Any]=0.1 , __a : Tuple=512 , __a : int=2 , __a : Any=0.02 , __a : Union[str, Any]=1E-5 , __a : List[str]=1 , __a : List[Any]=0 , __a : int=2 , __a : str=1024 , __a : str=128 , __a : List[Any]=128 , __a : Tuple=True , __a : Optional[int]=32 , __a : Any=128 , __a : List[Any]=64 , __a : Tuple=256 , __a : str=True , __a : int=True , __a : Optional[Any]=True , __a : Any=224 , __a : str=3 , __a : List[str]=16 , __a : Union[str, Any]=None , **__a : List[Any] , ) -> List[str]: """simple docstring""" super().__init__( vocab_size=__a , hidden_size=__a , num_hidden_layers=__a , num_attention_heads=__a , intermediate_size=__a , hidden_act=__a , hidden_dropout_prob=__a , attention_probs_dropout_prob=__a , max_position_embeddings=__a , type_vocab_size=__a , initializer_range=__a , layer_norm_eps=__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a , ) __lowercase : int = max_ad_position_embeddings __lowercase : Any = coordinate_size __lowercase : Optional[Any] = shape_size __lowercase : str = has_relative_attention_bias __lowercase : int = rel_pos_bins __lowercase : Union[str, Any] = max_rel_pos __lowercase : str = has_spatial_attention_bias __lowercase : str = rel_ad_pos_bins __lowercase : List[Any] = max_rel_ad_pos __lowercase : Tuple = text_embed __lowercase : int = visual_embed __lowercase : Tuple = input_size __lowercase : Dict = num_channels __lowercase : str = patch_size __lowercase : Optional[int] = classifier_dropout class lowerCAmelCase ( __a ): '''simple docstring''' _A : str = version.parse('''1.12''' ) @property def lowerCAmelCase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def lowerCAmelCase ( self : Union[str, Any] ) -> float: """simple docstring""" return 1E-5 @property def lowerCAmelCase ( self : str ) -> int: """simple docstring""" return 12 def lowerCAmelCase ( self : List[Any] , __a : "ProcessorMixin" , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional["TensorType"] = None , __a : int = 3 , __a : int = 40 , __a : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , """apply_ocr""" , __a ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase : Tuple = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase : Tuple = processor.tokenizer.num_special_tokens_to_add(__a ) __lowercase : Tuple = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__a ) # Generate dummy inputs according to compute batch and sequence __lowercase : Union[str, Any] = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowercase : Tuple = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowercase : Tuple = self._generate_dummy_images(__a , __a , __a , __a ) __lowercase : int = dict( processor( __a , text=__a , boxes=__a , return_tensors=__a , ) ) return inputs
649
1
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , __a : Optional[int] , __a : Any=2 , __a : Any=3 , __a : List[str]=4 , __a : Optional[Any]=2 , __a : Optional[Any]=7 , __a : int=True , __a : Dict=True , __a : Dict=True , __a : List[Any]=True , __a : int=99 , __a : Optional[int]=36 , __a : Dict=3 , __a : Union[str, Any]=4 , __a : Dict=37 , __a : List[str]="gelu" , __a : List[str]=0.1 , __a : int=0.1 , __a : Union[str, Any]=512 , __a : Optional[Any]=16 , __a : Any=2 , __a : Optional[Any]=0.02 , __a : List[Any]=6 , __a : Optional[Any]=6 , __a : List[Any]=3 , __a : List[str]=4 , __a : Dict=None , __a : Dict=1000 , ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = parent __lowercase : Tuple = batch_size __lowercase : Tuple = num_channels __lowercase : Union[str, Any] = image_size __lowercase : Optional[Any] = patch_size __lowercase : Optional[Any] = text_seq_length __lowercase : Tuple = is_training __lowercase : Any = use_input_mask __lowercase : str = use_token_type_ids __lowercase : Union[str, Any] = use_labels __lowercase : str = vocab_size __lowercase : Tuple = hidden_size __lowercase : Union[str, Any] = num_hidden_layers __lowercase : List[Any] = num_attention_heads __lowercase : int = intermediate_size __lowercase : Union[str, Any] = hidden_act __lowercase : List[Any] = hidden_dropout_prob __lowercase : Any = attention_probs_dropout_prob __lowercase : Optional[Any] = max_position_embeddings __lowercase : Any = type_vocab_size __lowercase : Any = type_sequence_label_size __lowercase : Tuple = initializer_range __lowercase : Tuple = coordinate_size __lowercase : List[str] = shape_size __lowercase : Tuple = num_labels __lowercase : int = num_choices __lowercase : Dict = scope __lowercase : Optional[Any] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __lowercase : int = text_seq_length __lowercase : List[str] = (image_size // patch_size) ** 2 + 1 __lowercase : Any = self.text_seq_length + self.image_seq_length def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase : int = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __lowercase : str = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __lowercase : List[Any] = bbox[i, j, 3] __lowercase : str = bbox[i, j, 1] __lowercase : Union[str, Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: __lowercase : Union[str, Any] = bbox[i, j, 2] __lowercase : List[str] = bbox[i, j, 0] __lowercase : int = t __lowercase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : List[str] = None if self.use_input_mask: __lowercase : Optional[Any] = random_attention_mask([self.batch_size, self.text_seq_length] ) __lowercase : int = None if self.use_token_type_ids: __lowercase : int = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __lowercase : Optional[int] = None __lowercase : Any = None if self.use_labels: __lowercase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : Optional[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __lowercase : Optional[Any] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def lowerCAmelCase ( self : Optional[Any] , __a : List[Any] , __a : str , __a : Optional[Any] , __a : str , __a : List[str] , __a : Any , __a : Dict , __a : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase : List[str] = LayoutLMvaModel(config=__a ) model.to(__a ) model.eval() # text + image __lowercase : Dict = model(__a , pixel_values=__a ) __lowercase : int = model( __a , bbox=__a , pixel_values=__a , attention_mask=__a , token_type_ids=__a ) __lowercase : List[Any] = model(__a , bbox=__a , pixel_values=__a , token_type_ids=__a ) __lowercase : Union[str, Any] = model(__a , bbox=__a , pixel_values=__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __lowercase : Optional[Any] = model(__a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __lowercase : Tuple = model(pixel_values=__a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Optional[Any] , __a : List[Any] , __a : List[Any] , __a : Union[str, Any] , __a : List[str] , __a : List[str] , __a : Optional[int] , __a : List[str] , __a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Any = self.num_labels __lowercase : str = LayoutLMvaForSequenceClassification(__a ) model.to(__a ) model.eval() __lowercase : str = model( __a , bbox=__a , pixel_values=__a , attention_mask=__a , token_type_ids=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Dict , __a : Optional[Any] , __a : str , __a : List[str] , __a : str , __a : Optional[Any] , __a : Optional[Any] , __a : Optional[int] , __a : List[Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[int] = self.num_labels __lowercase : Optional[int] = LayoutLMvaForTokenClassification(config=__a ) model.to(__a ) model.eval() __lowercase : int = model( __a , bbox=__a , pixel_values=__a , attention_mask=__a , token_type_ids=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def lowerCAmelCase ( self : Tuple , __a : List[str] , __a : Dict , __a : int , __a : Tuple , __a : List[str] , __a : Union[str, Any] , __a : Union[str, Any] , __a : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : int = LayoutLMvaForQuestionAnswering(config=__a ) model.to(__a ) model.eval() __lowercase : Optional[Any] = model( __a , bbox=__a , pixel_values=__a , attention_mask=__a , token_type_ids=__a , start_positions=__a , end_positions=__a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : Any = config_and_inputs __lowercase : Optional[int] = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Optional[int] = False _A : List[Any] = False _A : Tuple = False _A : Union[str, Any] = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) _A : Union[str, Any] = ( {'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel} if is_torch_available() else {} ) def lowerCAmelCase ( self : List[Any] , __a : Any , __a : Optional[Any] , __a : List[Any] , __a : List[Any] , __a : str ) -> List[Any]: """simple docstring""" return True def lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" __lowercase : Optional[Any] = LayoutLMvaModelTester(self ) __lowercase : int = ConfigTester(self , config_class=__a , hidden_size=37 ) def lowerCAmelCase ( self : int , __a : List[str] , __a : int , __a : Optional[Any]=False ) -> str: """simple docstring""" __lowercase : Optional[int] = copy.deepcopy(__a ) if model_class in get_values(__a ): __lowercase : str = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(__a , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__a ): __lowercase : Any = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=__a ) elif model_class in get_values(__a ): __lowercase : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a ) __lowercase : Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a ) elif model_class in [ *get_values(__a ), ]: __lowercase : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a ) elif model_class in [ *get_values(__a ), ]: __lowercase : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=__a , ) return inputs_dict def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase : Optional[Any] = type self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) @slow def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : Optional[Any] = LayoutLMvaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def snake_case_ ( ): __lowercase : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=__a ) if is_vision_available() else None @slow def lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase : Dict = LayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ).to(__a ) __lowercase : Tuple = self.default_image_processor __lowercase : Tuple = prepare_img() __lowercase : Optional[Any] = image_processor(images=__a , return_tensors="""pt""" ).pixel_values.to(__a ) __lowercase : Optional[Any] = torch.tensor([[1, 2]] ) __lowercase : int = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass __lowercase : Tuple = model( input_ids=input_ids.to(__a ) , bbox=bbox.to(__a ) , pixel_values=pixel_values.to(__a ) , ) # verify the logits __lowercase : Union[str, Any] = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , __a ) __lowercase : Optional[Any] = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(__a ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __a , atol=1E-4 ) )
649
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowerCamelCase : List[Any] = logging.get_logger(__name__) class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , __a : str = None , __a : uuid.UUID = None , __a : Any=None , __a : List[Any]=None ) -> List[Any]: """simple docstring""" if not conversation_id: __lowercase : Any = uuid.uuida() if past_user_inputs is None: __lowercase : Dict = [] if generated_responses is None: __lowercase : Dict = [] __lowercase : uuid.UUID = conversation_id __lowercase : List[str] = past_user_inputs __lowercase : List[str] = generated_responses __lowercase : Optional[str] = text def __eq__( self : Dict , __a : Dict ) -> Any: """simple docstring""" if not isinstance(__a , __a ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCAmelCase ( self : List[str] , __a : str , __a : bool = False ) -> Dict: """simple docstring""" if self.new_user_input: if overwrite: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten " F"with: \"{text}\"." ) __lowercase : Optional[int] = text else: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" new input " F"ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input" ) else: __lowercase : Dict = text def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __lowercase : Dict = None def lowerCAmelCase ( self : Optional[int] , __a : str ) -> List[Any]: """simple docstring""" self.generated_responses.append(__a ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : int ) -> str: """simple docstring""" __lowercase : Optional[int] = F"Conversation id: {self.uuid} \n" for is_user, text in self.iter_texts(): __lowercase : Optional[Any] = """user""" if is_user else """bot""" output += F"{name} >> {text} \n" return output @add_end_docstrings( __a , r''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''' , ) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Any , *__a : int , **__a : str ) -> Union[str, Any]: """simple docstring""" super().__init__(*__a , **__a ) if self.tokenizer.pad_token_id is None: __lowercase : List[Any] = self.tokenizer.eos_token def lowerCAmelCase ( self : Union[str, Any] , __a : int=None , __a : Tuple=None , __a : Any=None , **__a : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = {} __lowercase : Tuple = {} __lowercase : List[str] = {} if min_length_for_response is not None: __lowercase : Dict = min_length_for_response if minimum_tokens is not None: __lowercase : Union[str, Any] = minimum_tokens if "max_length" in generate_kwargs: __lowercase : Union[str, Any] = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __lowercase : Union[str, Any] = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(__a ) return preprocess_params, forward_params, postprocess_params def __call__( self : Optional[int] , __a : Union[Conversation, List[Conversation]] , __a : Dict=0 , **__a : List[Any] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = super().__call__(__a , num_workers=__a , **__a ) if isinstance(__a , __a ) and len(__a ) == 1: return outputs[0] return outputs def lowerCAmelCase ( self : Union[str, Any] , __a : Conversation , __a : Tuple=32 ) -> Dict[str, Any]: """simple docstring""" if not isinstance(__a , __a ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( F"Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. " """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer , """_build_conversation_input_ids""" ): __lowercase : List[Any] = self.tokenizer._build_conversation_input_ids(__a ) else: # If the tokenizer cannot handle conversations, we default to only the old version __lowercase : Tuple = self._legacy_parse_and_tokenize(__a ) if self.framework == "pt": __lowercase : List[Any] = torch.LongTensor([input_ids] ) elif self.framework == "tf": __lowercase : List[str] = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCAmelCase ( self : Any , __a : Dict , __a : Any=10 , **__a : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = generate_kwargs.get("""max_length""" , self.model.config.max_length ) __lowercase : List[Any] = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(F"Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})" ) __lowercase : Any = max_length - minimum_tokens __lowercase : int = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: __lowercase : Dict = model_inputs["""attention_mask"""][:, -trim:] __lowercase : Union[str, Any] = model_inputs.pop("""conversation""" ) __lowercase : Tuple = max_length __lowercase : int = self.model.generate(**__a , **__a ) if self.model.config.is_encoder_decoder: __lowercase : Optional[int] = 1 else: __lowercase : str = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCAmelCase ( self : int , __a : Tuple , __a : List[Any]=True ) -> List[str]: """simple docstring""" __lowercase : int = model_outputs["""output_ids"""] __lowercase : Union[str, Any] = self.tokenizer.decode( output_ids[0] , skip_special_tokens=__a , clean_up_tokenization_spaces=__a , ) __lowercase : List[str] = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(__a ) return conversation def lowerCAmelCase ( self : int , __a : Conversation ) -> Dict: """simple docstring""" __lowercase : Optional[int] = self.tokenizer.eos_token_id __lowercase : Optional[Any] = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(__a , add_special_tokens=__a ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(__a , add_special_tokens=__a ) ) if len(__a ) > self.tokenizer.model_max_length: __lowercase : List[Any] = input_ids[-self.tokenizer.model_max_length :] return input_ids
649
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase : Dict = {'''configuration_sew''': ['''SEW_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SEWConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ '''SEW_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SEWForCTC''', '''SEWForSequenceClassification''', '''SEWModel''', '''SEWPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
649
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__a , """tf_padding""" ) ) self.parent.assertTrue(hasattr(__a , """depth_multiplier""" ) ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Tuple , __a : str=13 , __a : Dict=3 , __a : List[Any]=32 , __a : Any=0.25 , __a : Any=8 , __a : Optional[int]=8 , __a : Optional[int]=6 , __a : Dict=32 , __a : Tuple=True , __a : List[Any]=True , __a : Optional[int]=True , __a : Tuple="relu6" , __a : Optional[Any]=1280 , __a : str=0.1 , __a : str=0.02 , __a : Optional[Any]=True , __a : Tuple=True , __a : Dict=10 , __a : Optional[Any]=None , ) -> Any: """simple docstring""" __lowercase : List[str] = parent __lowercase : Tuple = batch_size __lowercase : Dict = num_channels __lowercase : Optional[int] = image_size __lowercase : int = depth_multiplier __lowercase : str = depth_divisible_by __lowercase : int = min_depth __lowercase : Tuple = expand_ratio __lowercase : Optional[int] = tf_padding __lowercase : Dict = output_stride __lowercase : Dict = first_layer_is_expansion __lowercase : Optional[Any] = finegrained_output __lowercase : str = hidden_act __lowercase : Union[str, Any] = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) __lowercase : Optional[int] = classifier_dropout_prob __lowercase : int = use_labels __lowercase : Optional[int] = is_training __lowercase : Dict = num_labels __lowercase : Tuple = initializer_range __lowercase : Optional[Any] = scope def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : List[Any] = None __lowercase : Optional[Any] = None if self.use_labels: __lowercase : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __lowercase : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowercase : List[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : Tuple , __a : Dict , __a : Tuple , __a : Optional[int] , __a : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[int] = MobileNetVaModel(config=__a ) model.to(__a ) model.eval() __lowercase : Tuple = model(__a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def lowerCAmelCase ( self : List[str] , __a : Optional[int] , __a : List[str] , __a : str , __a : Optional[int] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = self.num_labels __lowercase : Dict = MobileNetVaForImageClassification(__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : int , __a : List[str] , __a : Tuple , __a : Any , __a : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : int = self.num_labels __lowercase : List[Any] = MobileNetVaForSemanticSegmentation(__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __lowercase : str = model(__a , labels=__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase : List[str] = config_and_inputs __lowercase : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Tuple = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) _A : Optional[Any] = ( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) _A : Tuple = False _A : List[str] = False _A : List[str] = False _A : Optional[int] = False def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = MobileNetVaModelTester(self ) __lowercase : int = MobileNetVaConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV2 does not use inputs_embeds""" ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not support input and output embeddings""" ) def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not output attentions""" ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[Any] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : int = [*signature.parameters.keys()] __lowercase : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" def check_hidden_states_output(__a : List[Any] , __a : Tuple , __a : List[str] ): __lowercase : Optional[Any] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : List[Any] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Tuple = outputs.hidden_states __lowercase : str = 16 self.assertEqual(len(__a ) , __a ) __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Any = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase : Union[str, Any] = True check_hidden_states_output(__a , __a , __a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : Optional[int] = MobileNetVaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def snake_case_ ( ): __lowercase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v2_1.0_224""" ) if is_vision_available() else None ) @slow def lowerCAmelCase ( self : str ) -> int: """simple docstring""" __lowercase : Tuple = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v2_1.0_224""" ).to(__a ) __lowercase : str = self.default_image_processor __lowercase : Tuple = prepare_img() __lowercase : Tuple = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : str = model(**__a ) # verify the logits __lowercase : Union[str, Any] = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , __a ) __lowercase : str = torch.tensor([0.2445, -1.1993, 0.1905] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : int = MobileNetVaForSemanticSegmentation.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __lowercase : Dict = model.to(__a ) __lowercase : Tuple = MobileNetVaImageProcessor.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __lowercase : List[str] = prepare_img() __lowercase : Optional[int] = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : Union[str, Any] = model(**__a ) __lowercase : Any = outputs.logits # verify the logits __lowercase : Dict = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , __a ) __lowercase : str = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=__a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __a , atol=1E-4 ) )
649
1
import random def snake_case_ ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict ): __lowercase : Tuple = a[left_index] __lowercase : Union[str, Any] = left_index + 1 for j in range(left_index + 1 , lowerCAmelCase_ ): if a[j] < pivot: __lowercase , __lowercase : Optional[Any] = a[i], a[j] i += 1 __lowercase , __lowercase : Optional[int] = a[i - 1], a[left_index] return i - 1 def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str ): if left < right: __lowercase : List[str] = random.randint(lowerCAmelCase_ , right - 1 ) __lowercase , __lowercase : int = ( a[left], a[pivot], ) # switches the pivot with the left most bound __lowercase : Optional[int] = partition(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) quick_sort_random( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # recursive quicksort to the left of the pivot point quick_sort_random( lowerCAmelCase_ , pivot_index + 1 , lowerCAmelCase_ ) # recursive quicksort to the right of the pivot point def snake_case_ ( ): __lowercase : Any = input("""Enter numbers separated by a comma:\n""" ).strip() __lowercase : Tuple = [int(lowerCAmelCase_ ) for item in user_input.split(""",""" )] quick_sort_random(lowerCAmelCase_ , 0 , len(lowerCAmelCase_ ) ) print(lowerCAmelCase_ ) if __name__ == "__main__": main()
649
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def snake_case_ ( lowerCAmelCase_ : bool = True , *lowerCAmelCase_ : int , **lowerCAmelCase_ : List[str] ): if not is_tqdm_available(): raise ImportError("""Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.""" ) __lowercase : List[str] = False if main_process_only: __lowercase : Optional[int] = PartialState().local_process_index == 0 return _tqdm(*lowerCAmelCase_ , **lowerCAmelCase_ , disable=lowerCAmelCase_ )
649
1
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCamelCase : List[str] = logging.get_logger(__name__) lowerCamelCase : Union[str, Any] = { '''nielsr/canine-s''': 20_48, } # Unicode defines 1,114,112 total “codepoints” lowerCamelCase : str = 1_11_41_12 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py lowerCamelCase : Union[str, Any] = 0 lowerCamelCase : Union[str, Any] = 0xE_000 lowerCamelCase : List[Any] = 0xE_001 lowerCamelCase : Any = 0xE_002 lowerCamelCase : Dict = 0xE_003 lowerCamelCase : List[str] = 0xE_004 # Maps special codepoints to human-readable names. lowerCamelCase : Dict[int, str] = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. lowerCamelCase : Dict[str, int] = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : str , __a : Optional[int]=chr(__a ) , __a : List[Any]=chr(__a ) , __a : Dict=chr(__a ) , __a : List[str]=chr(__a ) , __a : List[str]=chr(__a ) , __a : Union[str, Any]=chr(__a ) , __a : List[str]=False , __a : Tuple=2048 , **__a : Dict , ) -> Optional[int]: """simple docstring""" __lowercase : List[Any] = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else bos_token __lowercase : Union[str, Any] = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else eos_token __lowercase : str = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else sep_token __lowercase : Tuple = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else cls_token __lowercase : Tuple = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowercase : Any = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token super().__init__( bos_token=__a , eos_token=__a , sep_token=__a , cls_token=__a , pad_token=__a , mask_token=__a , add_prefix_space=__a , model_max_length=__a , **__a , ) # Creates a mapping for looking up the IDs of special symbols. __lowercase : Dict[str, int] = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): __lowercase : List[Any] = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. __lowercase : Dict[int, str] = { codepoint: name for name, codepoint in self._special_codepoints.items() } __lowercase : Optional[Any] = UNICODE_VOCAB_SIZE __lowercase : Tuple = len(self._special_codepoints ) @property def lowerCAmelCase ( self : str ) -> int: """simple docstring""" return self._unicode_vocab_size def lowerCAmelCase ( self : Any , __a : str ) -> List[str]: """simple docstring""" return list(__a ) def lowerCAmelCase ( self : Dict , __a : str ) -> int: """simple docstring""" try: return ord(__a ) except TypeError: raise ValueError(F"invalid token: '{token}'" ) def lowerCAmelCase ( self : str , __a : int ) -> str: """simple docstring""" try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(__a ) except TypeError: raise ValueError(F"invalid id: {index}" ) def lowerCAmelCase ( self : Optional[int] , __a : Optional[Any] ) -> str: """simple docstring""" return "".join(__a ) def lowerCAmelCase ( self : List[Any] , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __lowercase : Tuple = [self.sep_token_id] __lowercase : Optional[int] = [self.cls_token_id] __lowercase : Optional[Any] = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def lowerCAmelCase ( self : List[Any] , __a : List[int] , __a : Optional[List[int]] = None , __a : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) __lowercase : str = [1] + ([0] * len(__a )) + [1] if token_ids_a is not None: result += ([0] * len(__a )) + [1] return result def lowerCAmelCase ( self : List[Any] , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __lowercase : Union[str, Any] = [self.sep_token_id] __lowercase : Any = [self.cls_token_id] __lowercase : Tuple = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def lowerCAmelCase ( self : Optional[int] , __a : str , __a : Optional[str] = None ) -> str: """simple docstring""" return ()
649
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : list[int] ): if not nums: return 0 __lowercase : Tuple = nums[0] __lowercase : Tuple = 0 for num in nums[1:]: __lowercase , __lowercase : List[str] = ( max_excluding + num, max(lowerCAmelCase_ , lowerCAmelCase_ ), ) return max(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
649
1
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def snake_case_ ( *lowerCAmelCase_ : Optional[Any] ): if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : Any = list(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) ): __lowercase : Tuple = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def snake_case_ ( lowerCAmelCase_ : Exception ): __lowercase : Dict = [ """CUDA out of memory.""", # CUDA OOM """cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.""", # CUDNN SNAFU """DefaultCPUAllocator: can't allocate memory""", # CPU OOM ] if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def snake_case_ ( lowerCAmelCase_ : callable = None , lowerCAmelCase_ : int = 128 ): if function is None: return functools.partial(lowerCAmelCase_ , starting_batch_size=lowerCAmelCase_ ) __lowercase : Optional[int] = starting_batch_size def decorator(*lowerCAmelCase_ : int , **lowerCAmelCase_ : Dict ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() __lowercase : List[str] = list(inspect.signature(lowerCAmelCase_ ).parameters.keys() ) # Guard against user error if len(lowerCAmelCase_ ) < (len(lowerCAmelCase_ ) + 1): __lowercase : Dict = """, """.join([F"{arg}={value}" for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( F"Batch size was passed into `{function.__name__}` as the first argument when called." F"Remove this as the decorator already does so: `{function.__name__}({arg_str})`" ) while True: if batch_size == 0: raise RuntimeError("""No executable batch size found, reached zero.""" ) try: return function(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) except Exception as e: if should_reduce_batch_size(lowerCAmelCase_ ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
649
lowerCamelCase : List[str] = '''0.18.2''' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
649
1
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : str = LongformerTokenizer _A : int = True _A : Optional[int] = LongformerTokenizerFast _A : int = True def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __lowercase : Union[str, Any] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Any = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __lowercase : Optional[int] = {"""unk_token""": """<unk>"""} __lowercase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__a ) ) def lowerCAmelCase ( self : Optional[int] , **__a : Optional[Any] ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Tuple , **__a : Tuple ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : str , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = """lower newer""" __lowercase : int = """lower newer""" return input_text, output_text def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowercase : Dict = """lower newer""" __lowercase : Optional[Any] = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] __lowercase : str = tokenizer.tokenize(__a ) # , add_prefix_space=True) self.assertListEqual(__a , __a ) __lowercase : int = tokens + [tokenizer.unk_token] __lowercase : str = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=__a ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=__a ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : Any = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" ) __lowercase : Optional[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=__a ) __lowercase : List[str] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__a ) __lowercase : Optional[Any] = tokenizer.encode( """sequence builders""" , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Union[str, Any] = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : List[Any] = tokenizer.build_inputs_with_special_tokens(__a ) __lowercase : Any = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() __lowercase : Tuple = """Encode this sequence.""" __lowercase : Optional[Any] = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments __lowercase : Dict = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__a , __a ) __lowercase : List[str] = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__a , __a ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) __lowercase : str = tokenizer.encode(__a , add_special_tokens=__a ) __lowercase : Dict = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__a , __a ) # Testing spaces after special tokens __lowercase : List[Any] = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(__a , lstrip=__a , rstrip=__a )} ) # mask token has a left space __lowercase : Dict = tokenizer.convert_tokens_to_ids(__a ) __lowercase : List[str] = """Encode <mask> sequence""" __lowercase : List[str] = """Encode <mask>sequence""" __lowercase : Union[str, Any] = tokenizer.encode(__a ) __lowercase : Dict = encoded.index(__a ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__a , __a ) __lowercase : int = tokenizer.encode(__a ) __lowercase : Union[str, Any] = encoded.index(__a ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__a , __a ) def lowerCAmelCase ( self : int ) -> str: """simple docstring""" pass def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) __lowercase : List[Any] = self.tokenizer_class.from_pretrained(__a , **__a ) __lowercase : Optional[Any] = """A, <mask> AllenNLP sentence.""" __lowercase : Union[str, Any] = tokenizer_r.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) __lowercase : Optional[Any] = tokenizer_p.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) __lowercase : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __lowercase : str = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __lowercase : Dict = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __lowercase : Any = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""trim_offsets"""] , __a ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : List[str] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` __lowercase : int = F"{text_of_1_token} {text_of_1_token}" __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Any = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) __lowercase : str = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Tuple = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) __lowercase : Optional[int] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : str = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) __lowercase : str = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : int = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) __lowercase : Any = F" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : str = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ) + 1, 1 + len(__a ) + 1 + len(__a )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Dict = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Tuple = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , )
649
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : List[Any] = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : str=False , lowerCAmelCase_ : Any=False ): __lowercase : Any = """backbone.""" if is_semantic else """""" __lowercase : Optional[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"{prefix}blocks.{i}.norm1.weight", F"beit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm1.bias", F"beit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.weight", F"beit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.bias", F"beit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.weight", F"beit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.bias", F"beit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.weight", F"beit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.bias", F"beit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.weight", F"beit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.bias", F"beit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ (F"{prefix}cls_token", """beit.embeddings.cls_token"""), (F"{prefix}patch_embed.proj.weight", """beit.embeddings.patch_embeddings.projection.weight"""), (F"{prefix}patch_embed.proj.bias", """beit.embeddings.patch_embeddings.projection.bias"""), (F"{prefix}pos_embed", """beit.embeddings.position_embeddings"""), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("""mask_token""", """beit.embeddings.mask_token"""), ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) else: # layernorm + classification head rename_keys.extend( [ ("""fc_norm.weight""", """beit.pooler.layernorm.weight"""), ("""fc_norm.bias""", """beit.pooler.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : List[Any]=False ): for i in range(config.num_hidden_layers ): __lowercase : Tuple = """backbone.""" if is_semantic else """""" # queries, keys and values __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.attn.qkv.weight" ) __lowercase : Dict = state_dict.pop(F"{prefix}blocks.{i}.attn.q_bias" ) __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.attn.v_bias" ) __lowercase : List[str] = in_proj_weight[ : config.hidden_size, : ] __lowercase : Union[str, Any] = q_bias __lowercase : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] __lowercase : str = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.gamma_1" ) __lowercase : str = state_dict.pop(F"{prefix}blocks.{i}.gamma_2" ) __lowercase : List[str] = gamma_a __lowercase : Optional[int] = gamma_a def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : int ): __lowercase : Tuple = dct.pop(lowerCAmelCase_ ) __lowercase : Tuple = val def snake_case_ ( ): __lowercase : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase : Any = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]=False ): __lowercase : Dict = False if """rvlcdip""" in checkpoint_url else True __lowercase : Tuple = BeitConfig(use_absolute_position_embeddings=lowerCAmelCase_ , use_mask_token=lowerCAmelCase_ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: __lowercase : Union[str, Any] = 1024 __lowercase : Optional[int] = 4096 __lowercase : List[Any] = 24 __lowercase : Dict = 16 # labels if "rvlcdip" in checkpoint_url: __lowercase : Optional[int] = 16 __lowercase : Any = """huggingface/label-files""" __lowercase : Union[str, Any] = """rvlcdip-id2label.json""" __lowercase : List[str] = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) __lowercase : Optional[int] = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowercase : Union[str, Any] = idalabel __lowercase : Optional[Any] = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys __lowercase : Optional[int] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ , map_location="""cpu""" )["""model"""] __lowercase : Union[str, Any] = create_rename_keys(lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) # load HuggingFace model __lowercase : Dict = BeitForMaskedImageModeling(lowerCAmelCase_ ) if has_lm_head else BeitForImageClassification(lowerCAmelCase_ ) model.eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image __lowercase : List[str] = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=lowerCAmelCase_ ) __lowercase : List[str] = prepare_img() __lowercase : Optional[Any] = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""" ) __lowercase : Optional[int] = encoding["""pixel_values"""] __lowercase : str = model(lowerCAmelCase_ ) __lowercase : Tuple = outputs.logits # verify logits __lowercase : str = [1, 16] if """rvlcdip""" in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(lowerCAmelCase_ ), "Shape of logits not as expected" Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: if has_lm_head: __lowercase : Optional[Any] = """dit-base""" if """base""" in checkpoint_url else """dit-large""" else: __lowercase : Tuple = """dit-base-finetuned-rvlcdip""" if """dit-b""" in checkpoint_url else """dit-large-finetuned-rvlcdip""" image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=lowerCAmelCase_ , ) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=lowerCAmelCase_ , ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) lowerCamelCase : List[str] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
649
1
import argparse import os import re import packaging.version lowerCamelCase : Tuple = '''examples/''' lowerCamelCase : Dict = { '''examples''': (re.compile(r'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(r'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(r'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), r'''\1version="VERSION",'''), '''doc''': (re.compile(r'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } lowerCamelCase : Dict = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } lowerCamelCase : List[str] = '''README.md''' def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any] ): with open(lowerCAmelCase_ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __lowercase : Union[str, Any] = f.read() __lowercase , __lowercase : Tuple = REPLACE_PATTERNS[pattern] __lowercase : List[str] = replace.replace("""VERSION""" , lowerCAmelCase_ ) __lowercase : Any = re_pattern.sub(lowerCAmelCase_ , lowerCAmelCase_ ) with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : Dict ): for folder, directories, fnames in os.walk(lowerCAmelCase_ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ , pattern="""examples""" ) def snake_case_ ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if not patch: update_version_in_examples(lowerCAmelCase_ ) def snake_case_ ( ): __lowercase : Dict = """🤗 Transformers currently provides the following architectures""" __lowercase : Optional[Any] = """1. Want to contribute a new model?""" with open(lowerCAmelCase_ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __lowercase : Tuple = f.readlines() # Find the start of the list. __lowercase : Dict = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __lowercase : str = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): __lowercase : Optional[Any] = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lowerCAmelCase_ ) def snake_case_ ( ): with open(REPLACE_FILES["""init"""] , """r""" ) as f: __lowercase : int = f.read() __lowercase : Dict = REPLACE_PATTERNS["""init"""][0].search(lowerCAmelCase_ ).groups()[0] return packaging.version.parse(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : Optional[int]=False ): __lowercase : Optional[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: __lowercase : str = default_version.base_version elif patch: __lowercase : str = F"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: __lowercase : Any = F"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. __lowercase : List[Any] = input(F"Which version are you releasing? [{default_version}]" ) if len(lowerCAmelCase_ ) == 0: __lowercase : Dict = default_version print(F"Updating version to {version}." ) global_version_update(lowerCAmelCase_ , patch=lowerCAmelCase_ ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def snake_case_ ( ): __lowercase : Tuple = get_version() __lowercase : Any = F"{current_version.major}.{current_version.minor + 1}.0.dev0" __lowercase : Optional[int] = current_version.base_version # Check with the user we got that right. __lowercase : List[str] = input(F"Which version are we developing now? [{dev_version}]" ) if len(lowerCAmelCase_ ) == 0: __lowercase : int = dev_version print(F"Updating version to {version}." ) global_version_update(lowerCAmelCase_ ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": lowerCamelCase : str = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') lowerCamelCase : Optional[Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
649
from torch import nn class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , __a : int , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" super().__init__() __lowercase : int = class_size __lowercase : int = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) __lowercase : str = nn.Linear(__a , __a ) def lowerCAmelCase ( self : Tuple , __a : int ) -> Tuple: """simple docstring""" __lowercase : str = self.mlp(__a ) return logits
649
1
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast lowerCamelCase : Tuple = datasets.utils.logging.get_logger(__name__) @dataclass class lowerCAmelCase ( datasets.BuilderConfig ): '''simple docstring''' _A : int = 10000 _A : Optional[List[str]] = None _A : Optional[datasets.Features] = None class lowerCAmelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' _A : Dict = ParquetConfig def lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def lowerCAmelCase ( self : Union[str, Any] , __a : Union[str, Any] ) -> str: """simple docstring""" if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) __lowercase : Optional[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__a , (str, list, tuple) ): __lowercase : Any = data_files if isinstance(__a , __a ): __lowercase : Optional[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __lowercase : Any = [dl_manager.iter_files(__a ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] __lowercase : Any = [] for split_name, files in data_files.items(): if isinstance(__a , __a ): __lowercase : str = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __lowercase : str = [dl_manager.iter_files(__a ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(__a ): with open(__a , """rb""" ) as f: __lowercase : Optional[int] = datasets.Features.from_arrow_schema(pq.read_schema(__a ) ) break splits.append(datasets.SplitGenerator(name=__a , gen_kwargs={"""files""": files} ) ) return splits def lowerCAmelCase ( self : Dict , __a : pa.Table ) -> pa.Table: """simple docstring""" if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __lowercase : Dict = table_cast(__a , self.info.features.arrow_schema ) return pa_table def lowerCAmelCase ( self : int , __a : Any ) -> int: """simple docstring""" __lowercase : Tuple = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F"Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'" ) for file_idx, file in enumerate(itertools.chain.from_iterable(__a ) ): with open(__a , """rb""" ) as f: __lowercase : str = pq.ParquetFile(__a ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __lowercase : Union[str, Any] = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F"{file_idx}_{batch_idx}", self._cast_table(__a ) except ValueError as e: logger.error(F"Failed to read file '{file}' with error {type(__a )}: {e}" ) raise
649
import fire from utils import calculate_rouge, save_json def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : str=None , **lowerCAmelCase_ : str ): __lowercase : Tuple = [x.strip() for x in open(lowerCAmelCase_ ).readlines()] __lowercase : Dict = [x.strip() for x in open(lowerCAmelCase_ ).readlines()][: len(lowerCAmelCase_ )] __lowercase : Tuple = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) if save_path is not None: save_json(lowerCAmelCase_ , lowerCAmelCase_ , indent=lowerCAmelCase_ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
649
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Any = { '''andreasmadsen/efficient_mlm_m0.40''': ( '''https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json''' ), } class lowerCAmelCase ( __a ): '''simple docstring''' _A : Union[str, Any] = '''roberta-prelayernorm''' def __init__( self : List[str] , __a : List[str]=50265 , __a : str=768 , __a : Optional[int]=12 , __a : List[Any]=12 , __a : Tuple=3072 , __a : int="gelu" , __a : List[str]=0.1 , __a : List[str]=0.1 , __a : Dict=512 , __a : Union[str, Any]=2 , __a : List[Any]=0.02 , __a : Optional[int]=1E-12 , __a : Union[str, Any]=1 , __a : List[str]=0 , __a : List[Any]=2 , __a : int="absolute" , __a : Tuple=True , __a : List[Any]=None , **__a : Optional[int] , ) -> Union[str, Any]: """simple docstring""" super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) __lowercase : str = vocab_size __lowercase : Optional[int] = hidden_size __lowercase : Optional[int] = num_hidden_layers __lowercase : Optional[int] = num_attention_heads __lowercase : List[str] = hidden_act __lowercase : Dict = intermediate_size __lowercase : Optional[int] = hidden_dropout_prob __lowercase : Optional[int] = attention_probs_dropout_prob __lowercase : Dict = max_position_embeddings __lowercase : Any = type_vocab_size __lowercase : List[Any] = initializer_range __lowercase : List[Any] = layer_norm_eps __lowercase : List[str] = position_embedding_type __lowercase : int = use_cache __lowercase : List[Any] = classifier_dropout class lowerCAmelCase ( __a ): '''simple docstring''' @property def lowerCAmelCase ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": __lowercase : Dict = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __lowercase : List[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
649
from argparse import ArgumentParser from . import BaseTransformersCLICommand def snake_case_ ( lowerCAmelCase_ : Dict ): return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class lowerCAmelCase ( __a ): '''simple docstring''' @staticmethod def lowerCAmelCase ( __a : ArgumentParser ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = parser.add_parser("""download""" ) download_parser.add_argument( """--cache-dir""" , type=__a , default=__a , help="""Path to location to store the models""" ) download_parser.add_argument( """--force""" , action="""store_true""" , help="""Force the model to be download even if already in cache-dir""" ) download_parser.add_argument( """--trust-remote-code""" , action="""store_true""" , help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" , ) download_parser.add_argument("""model""" , type=__a , help="""Name of the model to download""" ) download_parser.set_defaults(func=__a ) def __init__( self : Dict , __a : str , __a : str , __a : bool , __a : bool ) -> Union[str, Any]: """simple docstring""" __lowercase : Dict = model __lowercase : List[Any] = cache __lowercase : Any = force __lowercase : Optional[int] = trust_remote_code def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
649
1
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def snake_case_ ( lowerCAmelCase_ : bool = True , *lowerCAmelCase_ : int , **lowerCAmelCase_ : List[str] ): if not is_tqdm_available(): raise ImportError("""Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.""" ) __lowercase : List[str] = False if main_process_only: __lowercase : Optional[int] = PartialState().local_process_index == 0 return _tqdm(*lowerCAmelCase_ , **lowerCAmelCase_ , disable=lowerCAmelCase_ )
649
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowerCamelCase : Union[str, Any] = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , __a : List[str] , __a : Optional[int]=16 , __a : Optional[Any]=13 , __a : str=7 , __a : List[str]=14 , __a : Any=10 , __a : str=19 , __a : int=5 , __a : Any=4 , __a : List[Any]=True , __a : Tuple=16 , __a : Dict=2 , __a : Tuple=4 , __a : int=4 , __a : List[Any]="gelu" , __a : Tuple=0.1 , __a : List[str]=0.1 , __a : int=[1, 2, 3, 4, 5] , __a : str=25 , __a : Any=5 , ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = d_model __lowercase : Dict = parent __lowercase : Tuple = batch_size __lowercase : Optional[int] = prediction_length __lowercase : List[str] = context_length __lowercase : Any = cardinality __lowercase : str = num_time_features __lowercase : Optional[int] = lags_sequence __lowercase : Optional[Any] = embedding_dimension __lowercase : List[Any] = is_training __lowercase : List[str] = hidden_size __lowercase : int = num_hidden_layers __lowercase : Any = num_attention_heads __lowercase : List[Any] = intermediate_size __lowercase : int = hidden_act __lowercase : str = hidden_dropout_prob __lowercase : List[Any] = attention_probs_dropout_prob __lowercase : str = context_length __lowercase : int = prediction_length + label_length __lowercase : Union[str, Any] = label_length __lowercase : Optional[int] = moving_average __lowercase : Optional[Any] = autocorrelation_factor def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def lowerCAmelCase ( self : Tuple , __a : str ) -> int: """simple docstring""" __lowercase : Any = config.context_length + max(config.lags_sequence ) __lowercase : Any = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __lowercase : Optional[int] = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __lowercase : List[str] = floats_tensor([self.batch_size, _past_length] ) __lowercase : List[str] = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __lowercase : Dict = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __lowercase : str = floats_tensor([self.batch_size, config.prediction_length] ) __lowercase : List[str] = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.get_config() __lowercase : Any = self.prepare_autoformer_inputs_dict(__a ) return config, inputs_dict def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase , __lowercase : List[str] = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase ( self : Optional[Any] , __a : Tuple , __a : Optional[int] ) -> Any: """simple docstring""" __lowercase : List[str] = AutoformerModel(config=__a ).to(__a ).eval() __lowercase : Optional[int] = model(**__a ) __lowercase : Dict = outputs.encoder_last_hidden_state __lowercase : Tuple = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : List[str] = model.get_encoder() encoder.save_pretrained(__a ) __lowercase : List[str] = AutoformerEncoder.from_pretrained(__a ).to(__a ) __lowercase , __lowercase , __lowercase , __lowercase , __lowercase : Any = model.create_network_inputs(**__a ) __lowercase , __lowercase : Any = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __lowercase : Optional[Any] = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __lowercase : Union[str, Any] = encoder(inputs_embeds=__a )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) __lowercase : str = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __lowercase : Optional[int] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __lowercase : Any = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __lowercase : Dict = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : Optional[Any] = model.get_decoder() decoder.save_pretrained(__a ) __lowercase : Tuple = AutoformerDecoder.from_pretrained(__a ).to(__a ) __lowercase : str = decoder( trend=__a , inputs_embeds=__a , encoder_hidden_states=__a , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[str] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _A : List[Any] = (AutoformerForPrediction,) if is_torch_available() else () _A : Any = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} _A : Dict = False _A : Tuple = False _A : Optional[int] = False _A : Tuple = False _A : str = False _A : Union[str, Any] = False def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" __lowercase : List[str] = AutoformerModelTester(self ) __lowercase : Dict = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowercase : Dict = model_class(__a ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowercase , __lowercase : Tuple = model_class.from_pretrained(__a , output_loading_info=__a ) self.assertEqual(info["""missing_keys"""] , [] ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__a ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def lowerCAmelCase ( self : str ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : Any = inspect.signature(getattr(__a , """forward""" ) ) # The main input is the name of the argument after `self` __lowercase : Optional[int] = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , __a ) def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Dict = model_class(__a ) __lowercase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : Any = [*signature.parameters.keys()] __lowercase : int = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(__a )] , __a ) def lowerCAmelCase ( self : int ) -> int: """simple docstring""" __lowercase , __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : int = True __lowercase : Tuple = getattr(self.model_tester , """seq_length""" , __a ) __lowercase : Union[str, Any] = getattr(self.model_tester , """decoder_seq_length""" , __a ) __lowercase : List[str] = getattr(self.model_tester , """encoder_seq_length""" , __a ) __lowercase : List[Any] = getattr(self.model_tester , """d_model""" , __a ) __lowercase : Optional[int] = getattr(self.model_tester , """num_attention_heads""" , __a ) __lowercase : Any = d_model // num_attention_heads for model_class in self.all_model_classes: __lowercase : Dict = True __lowercase : List[str] = False __lowercase : Optional[int] = True __lowercase : str = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : int = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase : Optional[int] = True __lowercase : List[str] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Union[str, Any] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Dict = outputs.encoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __lowercase : Tuple = len(__a ) __lowercase : str = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__a , __a ) # decoder attentions __lowercase : List[Any] = outputs.decoder_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __lowercase : Optional[int] = outputs.cross_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __lowercase : Tuple = True __lowercase : Union[str, Any] = True __lowercase : Tuple = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Any = model(**self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + 2 , len(__a ) ) __lowercase : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def snake_case_ ( lowerCAmelCase_ : Optional[int]="train-batch.pt" ): __lowercase : Dict = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=lowerCAmelCase_ , repo_type="""dataset""" ) __lowercase : Optional[int] = torch.load(lowerCAmelCase_ , map_location=lowerCAmelCase_ ) return batch @require_torch @slow class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" __lowercase : List[str] = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : List[Any] = prepare_batch() with torch.no_grad(): __lowercase : Tuple = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] __lowercase : List[str] = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , __a ) __lowercase : Optional[int] = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" __lowercase : int = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : List[str] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowercase : Optional[Any] = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state __lowercase : List[str] = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , __a ) __lowercase : Optional[int] = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : Optional[int] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowercase : int = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) __lowercase : int = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , __a ) __lowercase : Optional[Any] = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=__a ) __lowercase : Dict = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __a , rtol=1E-1 ) )
649
1
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Any , __a : Optional[Any] , __a : List[str]=13 , __a : Dict=7 , __a : Optional[Any]=True , __a : Tuple=True , __a : Optional[Any]=True , __a : Dict=True , __a : Optional[int]=99 , __a : Tuple=64 , __a : Any=5 , __a : Dict=4 , __a : Union[str, Any]=37 , __a : List[str]="gelu" , __a : int=0.1 , __a : Any=0.1 , __a : int=512 , __a : Union[str, Any]=16 , __a : Optional[Any]=2 , __a : Optional[int]=0.02 , __a : Dict=3 , __a : List[str]=4 , __a : Any=None , ) -> int: """simple docstring""" __lowercase : str = parent __lowercase : Tuple = batch_size __lowercase : Union[str, Any] = seq_length __lowercase : Optional[Any] = is_training __lowercase : List[Any] = use_input_mask __lowercase : Union[str, Any] = use_token_type_ids __lowercase : List[str] = use_labels __lowercase : Optional[Any] = vocab_size __lowercase : Optional[int] = hidden_size __lowercase : List[str] = num_hidden_layers __lowercase : Optional[Any] = num_attention_heads __lowercase : Dict = intermediate_size __lowercase : List[Any] = hidden_act __lowercase : Dict = hidden_dropout_prob __lowercase : Optional[Any] = attention_probs_dropout_prob __lowercase : List[str] = max_position_embeddings __lowercase : int = type_vocab_size __lowercase : Dict = type_sequence_label_size __lowercase : int = initializer_range __lowercase : Dict = num_labels __lowercase : Dict = num_choices __lowercase : Optional[int] = scope __lowercase : Optional[Any] = vocab_size - 1 def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : Union[str, Any] = None if self.use_input_mask: __lowercase : Any = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : List[Any] = None if self.use_labels: __lowercase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : List[Any] = self.get_config() return config, input_ids, input_mask, token_labels def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" __lowercase , __lowercase , __lowercase , __lowercase : Union[str, Any] = self.prepare_config_and_inputs() __lowercase : Tuple = True return config, input_ids, input_mask, token_labels def lowerCAmelCase ( self : Optional[int] , __a : int , __a : List[Any] , __a : Dict ) -> int: """simple docstring""" __lowercase : Tuple = GPTNeoXModel(config=__a ) model.to(__a ) model.eval() __lowercase : Optional[Any] = model(__a , attention_mask=__a ) __lowercase : Any = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : int , __a : Any , __a : Optional[int] , __a : str ) -> int: """simple docstring""" __lowercase : List[str] = True __lowercase : List[str] = GPTNeoXModel(__a ) model.to(__a ) model.eval() __lowercase : Union[str, Any] = model(__a , attention_mask=__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Optional[int] , __a : str , __a : Tuple , __a : Any , __a : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Any = GPTNeoXForCausalLM(config=__a ) model.to(__a ) model.eval() __lowercase : List[Any] = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Any , __a : Optional[Any] , __a : List[str] , __a : str , __a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = self.num_labels __lowercase : List[str] = GPTNeoXForQuestionAnswering(__a ) model.to(__a ) model.eval() __lowercase : List[str] = model(__a , attention_mask=__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : List[str] , __a : Any , __a : List[Any] , __a : Union[str, Any] , __a : Dict ) -> Dict: """simple docstring""" __lowercase : Optional[Any] = self.num_labels __lowercase : Optional[Any] = GPTNeoXForSequenceClassification(__a ) model.to(__a ) model.eval() __lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : Dict = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : List[str] , __a : Union[str, Any] , __a : Any , __a : List[str] , __a : Any ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.num_labels __lowercase : Optional[int] = GPTNeoXForTokenClassification(__a ) model.to(__a ) model.eval() __lowercase : Union[str, Any] = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Tuple , __a : str , __a : Optional[int] , __a : Any ) -> Any: """simple docstring""" __lowercase : Any = True __lowercase : Tuple = GPTNeoXForCausalLM(config=__a ) model.to(__a ) model.eval() # first forward pass __lowercase : int = model(__a , attention_mask=__a , use_cache=__a ) __lowercase : int = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __lowercase : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowercase : Any = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __lowercase : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowercase : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) __lowercase : Union[str, Any] = model(__a , attention_mask=__a , output_hidden_states=__a ) __lowercase : Optional[int] = output_from_no_past["""hidden_states"""][0] __lowercase : List[str] = model( __a , attention_mask=__a , past_key_values=__a , output_hidden_states=__a , )["""hidden_states"""][0] # select random slice __lowercase : Union[str, Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowercase : Tuple = output_from_no_past[:, -3:, random_slice_idx].detach() __lowercase : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__a , __a , atol=1E-3 ) ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase : Dict = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase : Optional[Any] = config_and_inputs __lowercase : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , __a , unittest.TestCase ): '''simple docstring''' _A : Dict = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) _A : Union[str, Any] = (GPTNeoXForCausalLM,) if is_torch_available() else () _A : List[Any] = ( { '''feature-extraction''': GPTNeoXModel, '''question-answering''': GPTNeoXForQuestionAnswering, '''text-classification''': GPTNeoXForSequenceClassification, '''text-generation''': GPTNeoXForCausalLM, '''token-classification''': GPTNeoXForTokenClassification, '''zero-shot''': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) _A : Tuple = False _A : Any = False _A : Optional[Any] = False _A : List[str] = False def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : Optional[Any] = GPTNeoXModelTester(self ) __lowercase : int = ConfigTester(self , config_class=__a , hidden_size=64 , num_attention_heads=8 ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase , __lowercase , __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__a , __a , __a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase , __lowercase , __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(__a , __a , __a ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase , __lowercase , __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() __lowercase : Dict = None self.model_tester.create_and_check_model_as_decoder(__a , __a , __a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase , __lowercase , __lowercase , __lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(__a , __a , __a ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*__a ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @unittest.skip(reason="""Feed forward chunking is not implemented""" ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def lowerCAmelCase ( self : int , __a : int ) -> Any: """simple docstring""" __lowercase , __lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Tuple = ids_tensor([1, 10] , config.vocab_size ) __lowercase : Dict = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __lowercase : List[Any] = GPTNeoXModel(__a ) original_model.to(__a ) original_model.eval() __lowercase : Union[str, Any] = original_model(__a ).last_hidden_state __lowercase : Tuple = original_model(__a ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __lowercase : Optional[int] = {"""type""": scaling_type, """factor""": 10.0} __lowercase : str = GPTNeoXModel(__a ) scaled_model.to(__a ) scaled_model.eval() __lowercase : List[Any] = scaled_model(__a ).last_hidden_state __lowercase : List[str] = scaled_model(__a ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__a , __a , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__a , __a , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__a , __a , atol=1E-5 ) ) @require_torch class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" __lowercase : int = AutoTokenizer.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) for checkpointing in [True, False]: __lowercase : List[Any] = GPTNeoXForCausalLM.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(__a ) __lowercase : Union[str, Any] = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(__a ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 __lowercase : Any = """My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure""" __lowercase : Tuple = model.generate(**__a , do_sample=__a , max_new_tokens=20 ) __lowercase : List[Any] = tokenizer.batch_decode(__a )[0] self.assertEqual(__a , __a )
649
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowerCAmelCase ( __a , __a ): '''simple docstring''' _A : str = 1 @register_to_config def __init__( self : Optional[int] , __a : Tuple=2000 , __a : List[str]=0.1 , __a : str=20 , __a : Optional[int]=1E-3 ) -> int: """simple docstring""" __lowercase : Tuple = None __lowercase : Union[str, Any] = None __lowercase : int = None def lowerCAmelCase ( self : List[Any] , __a : Any , __a : Union[str, torch.device] = None ) -> str: """simple docstring""" __lowercase : List[str] = torch.linspace(1 , self.config.sampling_eps , __a , device=__a ) def lowerCAmelCase ( self : Tuple , __a : List[Any] , __a : Tuple , __a : int , __a : Optional[int]=None ) -> str: """simple docstring""" if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __lowercase : Dict = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __lowercase : int = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __lowercase : Union[str, Any] = std.flatten() while len(std.shape ) < len(score.shape ): __lowercase : Optional[Any] = std.unsqueeze(-1 ) __lowercase : List[Any] = -score / std # compute __lowercase : Dict = -1.0 / len(self.timesteps ) __lowercase : int = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __lowercase : List[Any] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __lowercase : Union[str, Any] = beta_t.unsqueeze(-1 ) __lowercase : List[str] = -0.5 * beta_t * x __lowercase : int = torch.sqrt(__a ) __lowercase : Union[str, Any] = drift - diffusion**2 * score __lowercase : Optional[Any] = x + drift * dt # add noise __lowercase : List[str] = randn_tensor(x.shape , layout=x.layout , generator=__a , device=x.device , dtype=x.dtype ) __lowercase : str = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Tuple ) -> Optional[int]: """simple docstring""" return self.config.num_train_timesteps
649
1
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def snake_case_ ( lowerCAmelCase_ : List[str] ): __lowercase : Union[str, Any] = args.pruning_method __lowercase : Any = args.threshold __lowercase : Tuple = args.model_name_or_path.rstrip("""/""" ) __lowercase : Any = args.target_model_path print(F"Load fine-pruned model from {model_name_or_path}" ) __lowercase : Optional[Any] = torch.load(os.path.join(lowerCAmelCase_ , """pytorch_model.bin""" ) ) __lowercase : str = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: __lowercase : Optional[int] = tensor print(F"Copied layer {name}" ) elif "classifier" in name or "qa_output" in name: __lowercase : List[Any] = tensor print(F"Copied layer {name}" ) elif "bias" in name: __lowercase : str = tensor print(F"Copied layer {name}" ) else: if pruning_method == "magnitude": __lowercase : Optional[int] = MagnitudeBinarizer.apply(inputs=lowerCAmelCase_ , threshold=lowerCAmelCase_ ) __lowercase : int = tensor * mask print(F"Pruned layer {name}" ) elif pruning_method == "topK": if "mask_scores" in name: continue __lowercase : List[str] = name[:-6] __lowercase : Tuple = model[F"{prefix_}mask_scores"] __lowercase : Any = TopKBinarizer.apply(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : int = tensor * mask print(F"Pruned layer {name}" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue __lowercase : str = name[:-6] __lowercase : Optional[int] = model[F"{prefix_}mask_scores"] __lowercase : Dict = ThresholdBinarizer.apply(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : str = tensor * mask print(F"Pruned layer {name}" ) elif pruning_method == "l0": if "mask_scores" in name: continue __lowercase : Optional[Any] = name[:-6] __lowercase : List[Any] = model[F"{prefix_}mask_scores"] __lowercase , __lowercase : Dict = -0.1, 1.1 __lowercase : Tuple = torch.sigmoid(lowerCAmelCase_ ) __lowercase : str = s * (r - l) + l __lowercase : int = s_bar.clamp(min=0.0 , max=1.0 ) __lowercase : Tuple = tensor * mask print(F"Pruned layer {name}" ) else: raise ValueError("""Unknown pruning method""" ) if target_model_path is None: __lowercase : str = os.path.join( os.path.dirname(lowerCAmelCase_ ) , F"bertarized_{os.path.basename(lowerCAmelCase_ )}" ) if not os.path.isdir(lowerCAmelCase_ ): shutil.copytree(lowerCAmelCase_ , lowerCAmelCase_ ) print(F"\nCreated folder {target_model_path}" ) torch.save(lowerCAmelCase_ , os.path.join(lowerCAmelCase_ , """pytorch_model.bin""" ) ) print("""\nPruned model saved! See you later!""" ) if __name__ == "__main__": lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( '''--pruning_method''', choices=['''l0''', '''magnitude''', '''topK''', '''sigmoied_threshold'''], type=str, required=True, help=( '''Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,''' ''' sigmoied_threshold = Soft movement pruning)''' ), ) parser.add_argument( '''--threshold''', type=float, required=False, help=( '''For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.''' '''For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.''' '''Not needed for `l0`''' ), ) parser.add_argument( '''--model_name_or_path''', type=str, required=True, help='''Folder containing the model that was previously fine-pruned''', ) parser.add_argument( '''--target_model_path''', default=None, type=str, required=False, help='''Folder containing the model that was previously fine-pruned''', ) lowerCamelCase : Dict = parser.parse_args() main(args)
649
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : str = LongformerTokenizer _A : int = True _A : Optional[int] = LongformerTokenizerFast _A : int = True def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __lowercase : Union[str, Any] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Any = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __lowercase : Optional[int] = {"""unk_token""": """<unk>"""} __lowercase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__a ) ) def lowerCAmelCase ( self : Optional[int] , **__a : Optional[Any] ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Tuple , **__a : Tuple ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : str , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = """lower newer""" __lowercase : int = """lower newer""" return input_text, output_text def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowercase : Dict = """lower newer""" __lowercase : Optional[Any] = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] __lowercase : str = tokenizer.tokenize(__a ) # , add_prefix_space=True) self.assertListEqual(__a , __a ) __lowercase : int = tokens + [tokenizer.unk_token] __lowercase : str = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=__a ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=__a ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : Any = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" ) __lowercase : Optional[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=__a ) __lowercase : List[str] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__a ) __lowercase : Optional[Any] = tokenizer.encode( """sequence builders""" , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Union[str, Any] = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : List[Any] = tokenizer.build_inputs_with_special_tokens(__a ) __lowercase : Any = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() __lowercase : Tuple = """Encode this sequence.""" __lowercase : Optional[Any] = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments __lowercase : Dict = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__a , __a ) __lowercase : List[str] = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__a , __a ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) __lowercase : str = tokenizer.encode(__a , add_special_tokens=__a ) __lowercase : Dict = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__a , __a ) # Testing spaces after special tokens __lowercase : List[Any] = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(__a , lstrip=__a , rstrip=__a )} ) # mask token has a left space __lowercase : Dict = tokenizer.convert_tokens_to_ids(__a ) __lowercase : List[str] = """Encode <mask> sequence""" __lowercase : List[str] = """Encode <mask>sequence""" __lowercase : Union[str, Any] = tokenizer.encode(__a ) __lowercase : Dict = encoded.index(__a ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__a , __a ) __lowercase : int = tokenizer.encode(__a ) __lowercase : Union[str, Any] = encoded.index(__a ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__a , __a ) def lowerCAmelCase ( self : int ) -> str: """simple docstring""" pass def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) __lowercase : List[Any] = self.tokenizer_class.from_pretrained(__a , **__a ) __lowercase : Optional[Any] = """A, <mask> AllenNLP sentence.""" __lowercase : Union[str, Any] = tokenizer_r.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) __lowercase : Optional[Any] = tokenizer_p.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) __lowercase : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __lowercase : str = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __lowercase : Dict = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __lowercase : Any = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""trim_offsets"""] , __a ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : List[str] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` __lowercase : int = F"{text_of_1_token} {text_of_1_token}" __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Any = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) __lowercase : str = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Tuple = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) __lowercase : Optional[int] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : str = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) __lowercase : str = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : int = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) __lowercase : Any = F" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : str = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ) + 1, 1 + len(__a ) + 1 + len(__a )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Dict = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Tuple = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , )
649
1
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[Any] , __a : List[Any] , __a : Optional[int]=13 , __a : Tuple=7 , __a : Any=True , __a : Dict=True , __a : str=True , __a : Union[str, Any]=True , __a : Dict=99 , __a : List[str]=32 , __a : int=5 , __a : Union[str, Any]=4 , __a : Tuple=37 , __a : List[str]="gelu" , __a : List[Any]=0.1 , __a : Optional[int]=0.1 , __a : Optional[Any]=512 , __a : Tuple=16 , __a : List[Any]=2 , __a : Optional[int]=0.02 , __a : Dict=4 , ) -> int: """simple docstring""" __lowercase : List[Any] = parent __lowercase : Optional[int] = batch_size __lowercase : Union[str, Any] = seq_length __lowercase : str = is_training __lowercase : List[str] = use_attention_mask __lowercase : Any = use_token_type_ids __lowercase : Optional[int] = use_labels __lowercase : Union[str, Any] = vocab_size __lowercase : str = hidden_size __lowercase : List[Any] = num_hidden_layers __lowercase : Optional[int] = num_attention_heads __lowercase : List[str] = intermediate_size __lowercase : Any = hidden_act __lowercase : Any = hidden_dropout_prob __lowercase : Tuple = attention_probs_dropout_prob __lowercase : Union[str, Any] = max_position_embeddings __lowercase : List[str] = type_vocab_size __lowercase : List[str] = type_sequence_label_size __lowercase : Optional[int] = initializer_range __lowercase : Optional[int] = num_choices def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" __lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : List[str] = None if self.use_attention_mask: __lowercase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : Dict = None if self.use_token_type_ids: __lowercase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase : Optional[int] = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase : int = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase : Tuple = config_and_inputs __lowercase : Any = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : Optional[int] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" __lowercase : Tuple = FlaxAlbertModelTester(self ) @slow def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" for model_class_name in self.all_model_classes: __lowercase : str = model_class_name.from_pretrained("""albert-base-v2""" ) __lowercase : Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(__a ) @require_flax class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" __lowercase : Dict = FlaxAlbertModel.from_pretrained("""albert-base-v2""" ) __lowercase : Any = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) __lowercase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __lowercase : int = model(__a , attention_mask=__a )[0] __lowercase : Dict = (1, 11, 768) self.assertEqual(output.shape , __a ) __lowercase : List[str] = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __a , atol=1E-4 ) )
649
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Dict , __a : Union[str, Any]=13 , __a : Dict=7 , __a : Dict=True , __a : Dict=True , __a : Any=True , __a : List[str]=True , __a : int=99 , __a : Optional[int]=32 , __a : str=2 , __a : int=4 , __a : List[str]=37 , __a : Union[str, Any]="gelu" , __a : Union[str, Any]=0.1 , __a : Union[str, Any]=0.1 , __a : List[Any]=512 , __a : int=16 , __a : Union[str, Any]=2 , __a : Union[str, Any]=0.02 , __a : List[str]=3 , __a : Dict=4 , __a : Optional[Any]=None , ) -> Optional[Any]: """simple docstring""" __lowercase : Any = parent __lowercase : Tuple = 13 __lowercase : Dict = 7 __lowercase : List[Any] = True __lowercase : Tuple = True __lowercase : List[str] = True __lowercase : Any = True __lowercase : Optional[int] = 99 __lowercase : str = 384 __lowercase : Optional[Any] = 2 __lowercase : Dict = 4 __lowercase : str = 37 __lowercase : Optional[int] = """gelu""" __lowercase : int = 0.1 __lowercase : Union[str, Any] = 0.1 __lowercase : Tuple = 512 __lowercase : Tuple = 16 __lowercase : Optional[int] = 2 __lowercase : Optional[Any] = 0.02 __lowercase : Dict = 3 __lowercase : Union[str, Any] = 4 __lowercase : Tuple = 128 __lowercase : Optional[Any] = 2 __lowercase : int = 9 __lowercase : List[Any] = 1 __lowercase : Union[str, Any] = None def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" __lowercase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : Optional[Any] = None if self.use_input_mask: __lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : Dict = None if self.use_token_type_ids: __lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase : Optional[Any] = None __lowercase : str = None __lowercase : Tuple = None if self.use_labels: __lowercase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : str = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : Optional[int] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Dict , __a : List[Any] , __a : List[str] , __a : Union[str, Any] , __a : str , __a : Union[str, Any] , __a : Tuple , __a : Tuple ) -> Dict: """simple docstring""" __lowercase : Dict = TFConvBertModel(config=__a ) __lowercase : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowercase : Any = [input_ids, input_mask] __lowercase : Dict = model(__a ) __lowercase : str = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : Any , __a : Tuple , __a : Union[str, Any] , __a : str , __a : Dict , __a : str ) -> Dict: """simple docstring""" __lowercase : Optional[int] = TFConvBertForMaskedLM(config=__a ) __lowercase : List[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : Any = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[int] , __a : int , __a : Any , __a : Optional[int] , __a : int , __a : int , __a : List[Any] , __a : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase : str = self.num_labels __lowercase : List[Any] = TFConvBertForSequenceClassification(config=__a ) __lowercase : int = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : List[str] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Optional[int] , __a : Any , __a : Optional[Any] , __a : int , __a : Optional[int] , __a : Tuple , __a : int , __a : int ) -> Dict: """simple docstring""" __lowercase : Tuple = self.num_choices __lowercase : Dict = TFConvBertForMultipleChoice(config=__a ) __lowercase : List[str] = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : int = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : str = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : str = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __lowercase : Dict = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : List[str] , __a : str , __a : List[str] , __a : List[str] , __a : List[str] , __a : Any , __a : Tuple , __a : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = self.num_labels __lowercase : Tuple = TFConvBertForTokenClassification(config=__a ) __lowercase : Dict = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : str = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : List[Any] , __a : Optional[int] , __a : List[str] , __a : Optional[Any] , __a : int , __a : Tuple , __a : Any , __a : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Any = TFConvBertForQuestionAnswering(config=__a ) __lowercase : str = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : List[Any] = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : Tuple = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : int = config_and_inputs __lowercase : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Dict = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _A : str = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _A : Union[str, Any] = False _A : List[str] = False _A : Dict = False def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : int = TFConvBertModelTester(self ) __lowercase : Tuple = ConfigTester(self , config_class=__a , hidden_size=37 ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__a ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Union[str, Any] = True __lowercase : List[Any] = True if hasattr(__a , """use_cache""" ): __lowercase : Optional[Any] = True __lowercase : List[str] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) __lowercase : int = getattr(self.model_tester , """key_length""" , __a ) for model_class in self.all_model_classes: __lowercase : Optional[Any] = self._prepare_for_class(__a , __a ) __lowercase : Tuple = model_class(__a ) __lowercase : Tuple = len(model(__a ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a , saved_model=__a ) __lowercase : List[Any] = os.path.join(__a , """saved_model""" , """1""" ) __lowercase : str = tf.keras.models.load_model(__a ) __lowercase : Optional[int] = model(__a ) if self.is_encoder_decoder: __lowercase : Union[str, Any] = outputs["""encoder_hidden_states"""] __lowercase : Union[str, Any] = outputs["""encoder_attentions"""] else: __lowercase : Union[str, Any] = outputs["""hidden_states"""] __lowercase : List[str] = outputs["""attentions"""] self.assertEqual(len(__a ) , __a ) __lowercase : List[Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : str = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) self.assertIsNotNone(__a ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : List[str] = True __lowercase : List[Any] = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length ) __lowercase : Optional[int] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) __lowercase : List[str] = getattr(self.model_tester , """key_length""" , __a ) __lowercase : List[Any] = getattr(self.model_tester , """key_length""" , __a ) def check_decoder_attentions_output(__a : List[str] ): __lowercase : Union[str, Any] = len(__a ) self.assertEqual(out_len % 2 , 0 ) __lowercase : Any = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__a : str ): __lowercase : str = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __lowercase : int = True __lowercase : Any = False __lowercase : List[Any] = model_class(__a ) __lowercase : Tuple = model(self._prepare_for_class(__a , __a ) ) __lowercase : Dict = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: __lowercase : Any = model_class(__a ) __lowercase : List[str] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __lowercase : Dict = True __lowercase : Optional[Any] = model_class(__a ) __lowercase : Optional[int] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine __lowercase : List[str] = True __lowercase : List[Any] = True __lowercase : Any = model_class(__a ) __lowercase : Optional[int] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @require_tf class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) __lowercase : str = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowercase : Tuple = model(__a )[0] __lowercase : Any = [1, 6, 768] self.assertEqual(output.shape , __a ) __lowercase : Optional[Any] = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-4 )
649
1
def snake_case_ ( lowerCAmelCase_ : list ): __lowercase : Union[str, Any] = False while is_sorted is False: # Until all the indices are traversed keep looping __lowercase : List[Any] = True for i in range(0 , len(lowerCAmelCase_ ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: __lowercase , __lowercase : int = input_list[i + 1], input_list[i] # swapping if elements not in order __lowercase : Any = False for i in range(1 , len(lowerCAmelCase_ ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: __lowercase , __lowercase : int = input_list[i + 1], input_list[i] # swapping if elements not in order __lowercase : Dict = False return input_list if __name__ == "__main__": print('''Enter list to be sorted''') lowerCamelCase : List[str] = [int(x) for x in input().split()] # inputing elements of the list in one line lowerCamelCase : List[Any] = odd_even_sort(input_list) print('''The sorted list is''') print(sorted_list)
649
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : int , *__a : Dict , **__a : Optional[Any] ) -> None: """simple docstring""" warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , __a , ) super().__init__(*__a , **__a )
649
1
from datetime import datetime import requests def snake_case_ ( lowerCAmelCase_ : str ): __lowercase : Any = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url=""" __lowercase : Dict = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""] return requests.get(lowerCAmelCase_ ).content if __name__ == "__main__": lowerCamelCase : List[Any] = input('''Enter Video/IGTV url: ''').strip() lowerCamelCase : Any = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, '''wb''') as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
649
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Optional[int] = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() __lowercase : List[str] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Dict = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } __lowercase : List[str] = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 16000, """return_attention_mask""": False, """do_normalize""": True, } __lowercase : Tuple = tempfile.mkdtemp() __lowercase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : str = os.path.join(self.tmpdirname , __a ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) # load decoder from hub __lowercase : Optional[int] = """hf-internal-testing/ngram-beam-search-decoder""" def lowerCAmelCase ( self : Optional[Any] , **__a : Dict ) -> Tuple: """simple docstring""" __lowercase : Union[str, Any] = self.add_kwargs_tokens_map.copy() kwargs.update(__a ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : str , **__a : int ) -> Tuple: """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Union[str, Any] , **__a : Union[str, Any] ) -> List[Any]: """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__a ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() __lowercase : Any = self.get_feature_extractor() __lowercase : str = self.get_decoder() __lowercase : Tuple = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) processor.save_pretrained(self.tmpdirname ) __lowercase : Tuple = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __a ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __a ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __a ) def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Any = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __lowercase : str = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : List[str] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(__a , """include""" ): WavaVecaProcessorWithLM( tokenizer=__a , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : List[Any] = self.get_feature_extractor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : int = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Optional[int] = floats_list((3, 1000) ) __lowercase : List[Any] = feature_extractor(__a , return_tensors="""np""" ) __lowercase : List[str] = processor(__a , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : List[Any] = self.get_feature_extractor() __lowercase : int = self.get_tokenizer() __lowercase : Dict = self.get_decoder() __lowercase : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Dict = """This is a test string""" __lowercase : Any = processor(text=__a ) __lowercase : Dict = tokenizer(__a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase ( self : str , __a : Tuple=(2, 10, 16) , __a : int=77 ) -> Optional[Any]: """simple docstring""" np.random.seed(__a ) return np.random.rand(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : List[str] = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : str = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : List[str] = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __lowercase : Optional[Any] = processor.decode(__a ) __lowercase : Any = decoder.decode_beams(__a )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def lowerCAmelCase ( self : List[str] , __a : Dict ) -> List[Any]: """simple docstring""" __lowercase : str = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : Optional[int] = self.get_decoder() __lowercase : Any = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Optional[Any] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __lowercase : Union[str, Any] = processor.batch_decode(__a ) else: with get_context(__a ).Pool() as pool: __lowercase : Optional[Any] = processor.batch_decode(__a , __a ) __lowercase : Union[str, Any] = list(__a ) with get_context("""fork""" ).Pool() as p: __lowercase : Optional[Any] = decoder.decode_beams_batch(__a , __a ) __lowercase , __lowercase , __lowercase : Any = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__a , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(__a , decoded_processor.logit_score ) self.assertListEqual(__a , decoded_processor.lm_score ) def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase : int = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : List[str] = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Dict = self._get_dummy_logits() __lowercase : Tuple = 15 __lowercase : Tuple = -20.0 __lowercase : Dict = -4.0 __lowercase : Dict = processor.batch_decode( __a , beam_width=__a , beam_prune_logp=__a , token_min_logp=__a , ) __lowercase : Tuple = decoded_processor_out.text __lowercase : List[Any] = list(__a ) with get_context("""fork""" ).Pool() as pool: __lowercase : Any = decoder.decode_beams_batch( __a , __a , beam_width=__a , beam_prune_logp=__a , token_min_logp=__a , ) __lowercase : Optional[Any] = [d[0][0] for d in decoded_decoder_out] __lowercase : Optional[int] = [d[0][2] for d in decoded_decoder_out] __lowercase : Optional[int] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__a , __a ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , __a ) self.assertTrue(np.array_equal(__a , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , __a , atol=1E-3 ) ) self.assertTrue(np.array_equal(__a , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , __a , atol=1E-3 ) ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase : str = self.get_feature_extractor() __lowercase : List[Any] = self.get_tokenizer() __lowercase : List[Any] = self.get_decoder() __lowercase : Dict = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : List[Any] = self._get_dummy_logits() __lowercase : Optional[int] = 2.0 __lowercase : Tuple = 5.0 __lowercase : Optional[Any] = -20.0 __lowercase : Tuple = True __lowercase : Union[str, Any] = processor.batch_decode( __a , alpha=__a , beta=__a , unk_score_offset=__a , lm_score_boundary=__a , ) __lowercase : Any = decoded_processor_out.text __lowercase : List[Any] = list(__a ) decoder.reset_params( alpha=__a , beta=__a , unk_score_offset=__a , lm_score_boundary=__a , ) with get_context("""fork""" ).Pool() as pool: __lowercase : Tuple = decoder.decode_beams_batch( __a , __a , ) __lowercase : int = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__a , __a ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , __a ) __lowercase : str = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , __a ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] __lowercase : str = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __lowercase : int = os.listdir(__a ) __lowercase : Optional[Any] = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = snapshot_download("""hf-internal-testing/processor_with_lm""" ) __lowercase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(__a ) __lowercase : Dict = processor.decoder.model_container[processor.decoder._model_key] __lowercase : List[Any] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __lowercase : Dict = os.listdir(__a ) __lowercase : List[Any] = os.listdir(__a ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" __lowercase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Dict = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Any = floats_list((3, 1000) ) __lowercase : List[str] = processor_wavaveca(__a , return_tensors="""np""" ) __lowercase : List[Any] = processor_auto(__a , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) __lowercase : List[str] = self._get_dummy_logits() __lowercase : List[str] = processor_wavaveca.batch_decode(__a ) __lowercase : Optional[int] = processor_auto.batch_decode(__a ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Any = self.get_feature_extractor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : Dict = self.get_decoder() __lowercase : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def lowerCAmelCase ( __a : Union[str, Any] , __a : List[Any] ) -> Dict: """simple docstring""" __lowercase : Any = [d[key] for d in offsets] return retrieved_list def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" __lowercase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Optional[Any] = self._get_dummy_logits()[0] __lowercase : Dict = processor.decode(__a , output_word_offsets=__a ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__a , __a ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : List[str] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Any = self._get_dummy_logits() __lowercase : Dict = processor.batch_decode(__a , output_word_offsets=__a ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__a , __a ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(__a , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" import torch __lowercase : Any = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=__a ) __lowercase : str = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=16000 ) ) __lowercase : Tuple = iter(__a ) __lowercase : Union[str, Any] = next(__a ) __lowercase : int = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) __lowercase : int = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __lowercase : Union[str, Any] = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): __lowercase : List[Any] = model(__a ).logits.cpu().numpy() __lowercase : Tuple = processor.decode(logits[0] , output_word_offsets=__a ) __lowercase : int = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __lowercase : Optional[Any] = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] __lowercase : str = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(__a , """word""" ) ) , __a ) self.assertEqual(""" """.join(self.get_from_offsets(__a , """word""" ) ) , output.text ) # output times __lowercase : Tuple = torch.tensor(self.get_from_offsets(__a , """start_time""" ) ) __lowercase : Dict = torch.tensor(self.get_from_offsets(__a , """end_time""" ) ) # fmt: off __lowercase : List[Any] = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) __lowercase : Optional[int] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(__a , __a , atol=0.01 ) ) self.assertTrue(torch.allclose(__a , __a , atol=0.01 ) )
649
1
from torch import nn class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , __a : int , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" super().__init__() __lowercase : int = class_size __lowercase : int = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) __lowercase : str = nn.Linear(__a , __a ) def lowerCAmelCase ( self : Tuple , __a : int ) -> Tuple: """simple docstring""" __lowercase : str = self.mlp(__a ) return logits
649
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(0 ) == 0 ) def snake_case_ ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
649
1
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging lowerCamelCase : List[Any] = ( '''https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py''' ) lowerCamelCase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name def snake_case_ ( ): __lowercase : List[Any] = """https://pypi.org/pypi/diffusers/json""" __lowercase : Tuple = json.loads(request.urlopen(lowerCAmelCase_ ).read() )["""releases"""].keys() return sorted(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : version.Version(lowerCAmelCase_ ) ) def snake_case_ ( ): # This function has already been executed if HF_MODULES_CACHE already is in the Python path. if HF_MODULES_CACHE in sys.path: return sys.path.append(lowerCAmelCase_ ) os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowercase : Any = Path(lowerCAmelCase_ ) / """__init__.py""" if not init_path.exists(): init_path.touch() def snake_case_ ( lowerCAmelCase_ : Union[str, os.PathLike] ): init_hf_modules() __lowercase : List[str] = Path(lowerCAmelCase_ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowercase : Union[str, Any] = dynamic_module_path / """__init__.py""" if not init_path.exists(): init_path.touch() def snake_case_ ( lowerCAmelCase_ : Union[str, Any] ): with open(lowerCAmelCase_ , """r""" , encoding="""utf-8""" ) as f: __lowercase : List[Any] = f.read() # Imports of the form `import .xxx` __lowercase : Tuple = re.findall("""^\s*import\s+\.(\S+)\s*$""" , lowerCAmelCase_ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("""^\s*from\s+\.(\S+)\s+import""" , lowerCAmelCase_ , flags=re.MULTILINE ) # Unique-ify return list(set(lowerCAmelCase_ ) ) def snake_case_ ( lowerCAmelCase_ : List[Any] ): __lowercase : List[str] = False __lowercase : Union[str, Any] = [module_file] __lowercase : int = [] # Let's recurse through all relative imports while not no_change: __lowercase : Any = [] for f in files_to_check: new_imports.extend(get_relative_imports(lowerCAmelCase_ ) ) __lowercase : List[Any] = Path(lowerCAmelCase_ ).parent __lowercase : Tuple = [str(module_path / m ) for m in new_imports] __lowercase : Union[str, Any] = [f for f in new_import_files if f not in all_relative_imports] __lowercase : str = [F"{f}.py" for f in new_import_files] __lowercase : Union[str, Any] = len(lowerCAmelCase_ ) == 0 all_relative_imports.extend(lowerCAmelCase_ ) return all_relative_imports def snake_case_ ( lowerCAmelCase_ : List[Any] ): with open(lowerCAmelCase_ , """r""" , encoding="""utf-8""" ) as f: __lowercase : List[Any] = f.read() # Imports of the form `import xxx` __lowercase : Dict = re.findall("""^\s*import\s+(\S+)\s*$""" , lowerCAmelCase_ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("""^\s*from\s+(\S+)\s+import""" , lowerCAmelCase_ , flags=re.MULTILINE ) # Only keep the top-level module __lowercase : Union[str, Any] = [imp.split(""".""" )[0] for imp in imports if not imp.startswith(""".""" )] # Unique-ify and test we got them all __lowercase : Optional[int] = list(set(lowerCAmelCase_ ) ) __lowercase : Tuple = [] for imp in imports: try: importlib.import_module(lowerCAmelCase_ ) except ImportError: missing_packages.append(lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 0: raise ImportError( """This modeling file requires the following packages that were not found in your environment: """ F"{', '.join(lowerCAmelCase_ )}. Run `pip install {' '.join(lowerCAmelCase_ )}`" ) return get_relative_imports(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] ): __lowercase : str = module_path.replace(os.path.sep , """.""" ) __lowercase : Optional[Any] = importlib.import_module(lowerCAmelCase_ ) if class_name is None: return find_pipeline_class(lowerCAmelCase_ ) return getattr(lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : Tuple ): from ..pipelines import DiffusionPipeline __lowercase : Optional[int] = dict(inspect.getmembers(lowerCAmelCase_ , inspect.isclass ) ) __lowercase : str = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , lowerCAmelCase_ ) and cls.__module__.split(""".""" )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F"Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:" F" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in" F" {loaded_module}." ) __lowercase : Tuple = cls return pipeline_class def snake_case_ ( lowerCAmelCase_ : Union[str, os.PathLike] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Union[str, os.PathLike]] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional[Dict[str, str]] = None , lowerCAmelCase_ : Optional[Union[bool, str]] = None , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : bool = False , ): __lowercase : Dict = str(lowerCAmelCase_ ) __lowercase : Any = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) if os.path.isfile(lowerCAmelCase_ ): __lowercase : Dict = module_file_or_url __lowercase : Union[str, Any] = """local""" elif pretrained_model_name_or_path.count("""/""" ) == 0: __lowercase : List[str] = get_diffusers_versions() # cut ".dev0" __lowercase : List[str] = """v""" + """.""".join(__version__.split(""".""" )[:3] ) # retrieve github version that matches if revision is None: __lowercase : Optional[int] = latest_version if latest_version[1:] in available_versions else """main""" logger.info(F"Defaulting to latest_version: {revision}." ) elif revision in available_versions: __lowercase : List[Any] = F"v{revision}" elif revision == "main": __lowercase : Tuple = revision else: raise ValueError( F"`custom_revision`: {revision} does not exist. Please make sure to choose one of" F" {', '.join(available_versions + ['main'] )}." ) # community pipeline on GitHub __lowercase : Optional[Any] = COMMUNITY_PIPELINES_URL.format(revision=lowerCAmelCase_ , pipeline=lowerCAmelCase_ ) try: __lowercase : Optional[int] = cached_download( lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , force_download=lowerCAmelCase_ , proxies=lowerCAmelCase_ , resume_download=lowerCAmelCase_ , local_files_only=lowerCAmelCase_ , use_auth_token=lowerCAmelCase_ , ) __lowercase : Any = """git""" __lowercase : Tuple = pretrained_model_name_or_path + """.py""" except EnvironmentError: logger.error(F"Could not locate the {module_file} inside {pretrained_model_name_or_path}." ) raise else: try: # Load from URL or cache if already cached __lowercase : Optional[int] = hf_hub_download( lowerCAmelCase_ , lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , force_download=lowerCAmelCase_ , proxies=lowerCAmelCase_ , resume_download=lowerCAmelCase_ , local_files_only=lowerCAmelCase_ , use_auth_token=lowerCAmelCase_ , ) __lowercase : List[str] = os.path.join("""local""" , """--""".join(pretrained_model_name_or_path.split("""/""" ) ) ) except EnvironmentError: logger.error(F"Could not locate the {module_file} inside {pretrained_model_name_or_path}." ) raise # Check we have all the requirements in our environment __lowercase : str = check_imports(lowerCAmelCase_ ) # Now we move the module inside our cached dynamic modules. __lowercase : Tuple = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(lowerCAmelCase_ ) __lowercase : List[Any] = Path(lowerCAmelCase_ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(lowerCAmelCase_ , submodule_path / module_file ) for module_needed in modules_needed: __lowercase : Any = F"{module_needed}.py" shutil.copy(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : int = use_auth_token elif use_auth_token is True: __lowercase : Optional[int] = HfFolder.get_token() else: __lowercase : Union[str, Any] = None __lowercase : Optional[Any] = model_info(lowerCAmelCase_ , revision=lowerCAmelCase_ , token=lowerCAmelCase_ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. __lowercase : Union[str, Any] = submodule_path / commit_hash __lowercase : int = full_submodule + os.path.sep + commit_hash create_dynamic_module(lowerCAmelCase_ ) if not (submodule_path / module_file).exists(): shutil.copy(lowerCAmelCase_ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( lowerCAmelCase_ , F"{module_needed}.py" , cache_dir=lowerCAmelCase_ , force_download=lowerCAmelCase_ , resume_download=lowerCAmelCase_ , proxies=lowerCAmelCase_ , use_auth_token=lowerCAmelCase_ , revision=lowerCAmelCase_ , local_files_only=lowerCAmelCase_ , ) return os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : Union[str, os.PathLike] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : Optional[Union[str, os.PathLike]] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional[Dict[str, str]] = None , lowerCAmelCase_ : Optional[Union[bool, str]] = None , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : bool = False , **lowerCAmelCase_ : str , ): __lowercase : Tuple = get_cached_module_file( lowerCAmelCase_ , lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , force_download=lowerCAmelCase_ , resume_download=lowerCAmelCase_ , proxies=lowerCAmelCase_ , use_auth_token=lowerCAmelCase_ , revision=lowerCAmelCase_ , local_files_only=lowerCAmelCase_ , ) return get_class_in_module(lowerCAmelCase_ , final_module.replace(""".py""" , """""" ) )
649
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCamelCase : int = '''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine''' def snake_case_ ( ): __lowercase : List[Any] = _ask_options( """In which compute environment are you running?""" , ["""This machine""", """AWS (Amazon SageMaker)"""] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __lowercase : Union[str, Any] = get_sagemaker_input() else: __lowercase : str = get_cluster_input() return config def snake_case_ ( lowerCAmelCase_ : List[str]=None ): if subparsers is not None: __lowercase : Optional[int] = subparsers.add_parser("""config""" , description=lowerCAmelCase_ ) else: __lowercase : List[str] = argparse.ArgumentParser("""Accelerate config command""" , description=lowerCAmelCase_ ) parser.add_argument( """--config_file""" , default=lowerCAmelCase_ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def snake_case_ ( lowerCAmelCase_ : Tuple ): __lowercase : Union[str, Any] = get_user_input() if args.config_file is not None: __lowercase : List[Any] = args.config_file else: if not os.path.isdir(lowerCAmelCase_ ): os.makedirs(lowerCAmelCase_ ) __lowercase : Any = default_yaml_config_file if config_file.endswith(""".json""" ): config.to_json_file(lowerCAmelCase_ ) else: config.to_yaml_file(lowerCAmelCase_ ) print(F"accelerate configuration saved at {config_file}" ) def snake_case_ ( ): __lowercase : str = config_command_parser() __lowercase : str = parser.parse_args() config_command(lowerCAmelCase_ ) if __name__ == "__main__": main()
649
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase : int = { '''configuration_clip''': [ '''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPConfig''', '''CLIPOnnxConfig''', '''CLIPTextConfig''', '''CLIPVisionConfig''', ], '''processing_clip''': ['''CLIPProcessor'''], '''tokenization_clip''': ['''CLIPTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = ['''CLIPTokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = ['''CLIPFeatureExtractor'''] lowerCamelCase : List[Any] = ['''CLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ '''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPModel''', '''CLIPPreTrainedModel''', '''CLIPTextModel''', '''CLIPTextModelWithProjection''', '''CLIPVisionModel''', '''CLIPVisionModelWithProjection''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[Any] = [ '''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCLIPModel''', '''TFCLIPPreTrainedModel''', '''TFCLIPTextModel''', '''TFCLIPVisionModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = [ '''FlaxCLIPModel''', '''FlaxCLIPPreTrainedModel''', '''FlaxCLIPTextModel''', '''FlaxCLIPTextPreTrainedModel''', '''FlaxCLIPVisionModel''', '''FlaxCLIPVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys lowerCamelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
649
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : list[str] | None = None ): __lowercase : Tuple = word_bank or [] # create a table __lowercase : int = len(lowerCAmelCase_ ) + 1 __lowercase : list[list[list[str]]] = [] for _ in range(lowerCAmelCase_ ): table.append([] ) # seed value __lowercase : Dict = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowerCAmelCase_ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowerCAmelCase_ )] == word: __lowercase : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowerCAmelCase_ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowerCAmelCase_ )]: combination.reverse() return table[len(lowerCAmelCase_ )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
649
1
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase : Any = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__a , """width_multiplier""" ) ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Any , __a : List[Any] , __a : Tuple=13 , __a : List[str]=64 , __a : List[str]=2 , __a : str=3 , __a : Union[str, Any]="swish" , __a : List[str]=3 , __a : str=32 , __a : List[str]=0.1 , __a : List[str]=0.02 , __a : Any=True , __a : Optional[Any]=True , __a : List[Any]=10 , __a : Any=None , __a : Optional[Any]=0.25 , __a : Optional[int]=0.0 , __a : Dict=0.0 , ) -> List[str]: """simple docstring""" __lowercase : int = parent __lowercase : Union[str, Any] = batch_size __lowercase : str = image_size __lowercase : Optional[Any] = patch_size __lowercase : Any = num_channels __lowercase : int = make_divisible(512 * width_multiplier , divisor=8 ) __lowercase : Union[str, Any] = hidden_act __lowercase : Optional[Any] = conv_kernel_size __lowercase : Optional[int] = output_stride __lowercase : List[Any] = classifier_dropout_prob __lowercase : Tuple = use_labels __lowercase : List[Any] = is_training __lowercase : Dict = num_labels __lowercase : Optional[int] = initializer_range __lowercase : int = scope __lowercase : Optional[int] = width_multiplier __lowercase : Any = ffn_dropout __lowercase : Optional[int] = attn_dropout def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" __lowercase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : List[Any] = None __lowercase : Any = None if self.use_labels: __lowercase : List[str] = ids_tensor([self.batch_size] , self.num_labels ) __lowercase : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowercase : Optional[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def lowerCAmelCase ( self : Optional[int] , __a : Tuple , __a : Tuple , __a : Any , __a : Dict ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = MobileViTVaModel(config=__a ) model.to(__a ) model.eval() __lowercase : Tuple = model(__a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase ( self : Optional[Any] , __a : Optional[Any] , __a : str , __a : Optional[Any] , __a : int ) -> str: """simple docstring""" __lowercase : Any = self.num_labels __lowercase : Dict = MobileViTVaForImageClassification(__a ) model.to(__a ) model.eval() __lowercase : Union[str, Any] = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Optional[Any] , __a : Dict , __a : Optional[Any] , __a : Optional[Any] , __a : Tuple ) -> Any: """simple docstring""" __lowercase : Dict = self.num_labels __lowercase : Union[str, Any] = MobileViTVaForSemanticSegmentation(__a ) model.to(__a ) model.eval() __lowercase : Optional[int] = model(__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __lowercase : List[str] = model(__a , labels=__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase : Dict = config_and_inputs __lowercase : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[str] = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) _A : Optional[Any] = ( { '''feature-extraction''': MobileViTVaModel, '''image-classification''': MobileViTVaForImageClassification, '''image-segmentation''': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) _A : Tuple = False _A : str = False _A : List[str] = False _A : Any = False def lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase : int = MobileViTVaModelTester(self ) __lowercase : List[str] = MobileViTVaConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViTV2 does not use inputs_embeds""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""MobileViTV2 does not support input and output embeddings""" ) def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""MobileViTV2 does not output attentions""" ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason="""Got `CUDA error: misaligned address` for tests after this one being run.""" ) def lowerCAmelCase ( self : int ) -> str: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" pass def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[Any] = model_class(__a ) __lowercase : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : Optional[Any] = [*signature.parameters.keys()] __lowercase : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" def check_hidden_states_output(__a : Tuple , __a : Any , __a : List[str] ): __lowercase : List[str] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : List[Any] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Optional[int] = outputs.hidden_states __lowercase : Optional[int] = 5 self.assertEqual(len(__a ) , __a ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __lowercase : List[str] = 2 for i in range(len(__a ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __lowercase , __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[Any] = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase : List[Any] = True check_hidden_states_output(__a , __a , __a ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) def lowerCAmelCase ( self : int ) -> str: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a ) @slow def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : Union[str, Any] = MobileViTVaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def snake_case_ ( ): __lowercase : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" return ( MobileViTImageProcessor.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ) if is_vision_available() else None ) @slow def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = MobileViTVaForImageClassification.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ).to( __a ) __lowercase : Optional[int] = self.default_image_processor __lowercase : List[Any] = prepare_img() __lowercase : Dict = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : List[Any] = model(**__a ) # verify the logits __lowercase : int = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __a ) __lowercase : Union[str, Any] = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" __lowercase : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __lowercase : Tuple = model.to(__a ) __lowercase : List[str] = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __lowercase : Union[str, Any] = prepare_img() __lowercase : Union[str, Any] = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : Union[str, Any] = model(**__a ) __lowercase : Union[str, Any] = outputs.logits # verify the logits __lowercase : str = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __a ) __lowercase : List[str] = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=__a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Any = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __lowercase : Dict = model.to(__a ) __lowercase : str = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __lowercase : Tuple = prepare_img() __lowercase : List[str] = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : List[str] = model(**__a ) __lowercase : Optional[Any] = outputs.logits.detach().cpu() __lowercase : Any = image_processor.post_process_semantic_segmentation(outputs=__a , target_sizes=[(50, 60)] ) __lowercase : Optional[Any] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __a ) __lowercase : Dict = image_processor.post_process_semantic_segmentation(outputs=__a ) __lowercase : int = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __a )
649
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(1 ) != 0 ) def snake_case_ ( ): assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
649
1
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset lowerCamelCase : List[str] = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Dict , __a : Dict ) -> Union[str, Any]: """simple docstring""" super().__init__() __lowercase : Tuple = torchvision.models.resnetaaa(pretrained=__a ) __lowercase : int = list(model.children() )[:-2] __lowercase : Tuple = nn.Sequential(*__a ) __lowercase : Optional[Any] = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def lowerCAmelCase ( self : str , __a : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase : List[Any] = self.pool(self.model(__a ) ) __lowercase : Optional[Any] = torch.flatten(__a , start_dim=2 ) __lowercase : Dict = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Union[str, Any] , __a : Any , __a : Optional[Any] , __a : Optional[int] , __a : int , __a : int ) -> List[str]: """simple docstring""" __lowercase : str = [json.loads(__a ) for l in open(__a )] __lowercase : Optional[int] = os.path.dirname(__a ) __lowercase : Dict = tokenizer __lowercase : Optional[Any] = labels __lowercase : Dict = len(__a ) __lowercase : Optional[int] = max_seq_length __lowercase : Optional[int] = transforms def __len__( self : int ) -> Optional[Any]: """simple docstring""" return len(self.data ) def __getitem__( self : Tuple , __a : int ) -> List[Any]: """simple docstring""" __lowercase : int = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""] , add_special_tokens=__a ) ) __lowercase , __lowercase , __lowercase : Union[str, Any] = sentence[0], sentence[1:-1], sentence[-1] __lowercase : Any = sentence[: self.max_seq_length] __lowercase : str = torch.zeros(self.n_classes ) __lowercase : Optional[Any] = 1 __lowercase : int = Image.open(os.path.join(self.data_dir , self.data[index]["""img"""] ) ).convert("""RGB""" ) __lowercase : Optional[int] = self.transforms(__a ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = Counter() for row in self.data: label_freqs.update(row["""label"""] ) return label_freqs def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : List[Any] = [len(row["""sentence"""] ) for row in batch] __lowercase , __lowercase : Union[str, Any] = len(lowerCAmelCase_ ), max(lowerCAmelCase_ ) __lowercase : List[Any] = torch.zeros(lowerCAmelCase_ , lowerCAmelCase_ , dtype=torch.long ) __lowercase : Optional[Any] = torch.zeros(lowerCAmelCase_ , lowerCAmelCase_ , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(lowerCAmelCase_ , lowerCAmelCase_ ) ): __lowercase : Tuple = input_row["""sentence"""] __lowercase : Dict = 1 __lowercase : Dict = torch.stack([row["""image"""] for row in batch] ) __lowercase : Union[str, Any] = torch.stack([row["""label"""] for row in batch] ) __lowercase : List[Any] = torch.stack([row["""image_start_token"""] for row in batch] ) __lowercase : Union[str, Any] = torch.stack([row["""image_end_token"""] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def snake_case_ ( ): return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def snake_case_ ( ): return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ), ] )
649
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : int = { '''configuration_funnel''': ['''FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FunnelConfig'''], '''convert_funnel_original_tf_checkpoint_to_pytorch''': [], '''tokenization_funnel''': ['''FunnelTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = ['''FunnelTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = [ '''FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FunnelBaseModel''', '''FunnelForMaskedLM''', '''FunnelForMultipleChoice''', '''FunnelForPreTraining''', '''FunnelForQuestionAnswering''', '''FunnelForSequenceClassification''', '''FunnelForTokenClassification''', '''FunnelModel''', '''FunnelPreTrainedModel''', '''load_tf_weights_in_funnel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ '''TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFFunnelBaseModel''', '''TFFunnelForMaskedLM''', '''TFFunnelForMultipleChoice''', '''TFFunnelForPreTraining''', '''TFFunnelForQuestionAnswering''', '''TFFunnelForSequenceClassification''', '''TFFunnelForTokenClassification''', '''TFFunnelModel''', '''TFFunnelPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
649
1
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] ): # Load configuration defined in the metadata file with open(lowerCAmelCase_ ) as metadata_file: __lowercase : Tuple = json.load(lowerCAmelCase_ ) __lowercase : Dict = LukeConfig(use_entity_aware_attention=lowerCAmelCase_ , **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path __lowercase : str = torch.load(lowerCAmelCase_ , map_location="""cpu""" )["""module"""] # Load the entity vocab file __lowercase : str = load_original_entity_vocab(lowerCAmelCase_ ) # add an entry for [MASK2] __lowercase : List[str] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 __lowercase : Tuple = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks __lowercase : str = AddedToken("""<ent>""" , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) __lowercase : Any = AddedToken("""<ent2>""" , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"Saving tokenizer to {pytorch_dump_folder_path}" ) tokenizer.save_pretrained(lowerCAmelCase_ ) with open(os.path.join(lowerCAmelCase_ , """tokenizer_config.json""" ) , """r""" ) as f: __lowercase : Union[str, Any] = json.load(lowerCAmelCase_ ) __lowercase : List[str] = """MLukeTokenizer""" with open(os.path.join(lowerCAmelCase_ , """tokenizer_config.json""" ) , """w""" ) as f: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) with open(os.path.join(lowerCAmelCase_ , MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ) , """w""" ) as f: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Dict = MLukeTokenizer.from_pretrained(lowerCAmelCase_ ) # Initialize the embeddings of the special tokens __lowercase : List[Any] = tokenizer.convert_tokens_to_ids(["""@"""] )[0] __lowercase : Tuple = tokenizer.convert_tokens_to_ids(["""#"""] )[0] __lowercase : Any = state_dict["""embeddings.word_embeddings.weight"""] __lowercase : str = word_emb[ent_init_index].unsqueeze(0 ) __lowercase : List[str] = word_emb[enta_init_index].unsqueeze(0 ) __lowercase : List[str] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: __lowercase : Optional[Any] = state_dict[bias_name] __lowercase : Tuple = decoder_bias[ent_init_index].unsqueeze(0 ) __lowercase : int = decoder_bias[enta_init_index].unsqueeze(0 ) __lowercase : List[Any] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __lowercase : List[str] = F"encoder.layer.{layer_index}.attention.self." __lowercase : Optional[Any] = state_dict[prefix + matrix_name] __lowercase : Tuple = state_dict[prefix + matrix_name] __lowercase : Any = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __lowercase : List[str] = state_dict["""entity_embeddings.entity_embeddings.weight"""] __lowercase : List[str] = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) __lowercase : Optional[Any] = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' __lowercase : Optional[Any] = state_dict["""entity_predictions.bias"""] __lowercase : Optional[Any] = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) __lowercase : Tuple = torch.cat([entity_prediction_bias, entity_mask_bias] ) __lowercase : Any = LukeForMaskedLM(config=lowerCAmelCase_ ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) __lowercase : int = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): __lowercase : List[str] = state_dict[key] else: __lowercase : Union[str, Any] = state_dict[key] __lowercase , __lowercase : Union[str, Any] = model.load_state_dict(lowerCAmelCase_ , strict=lowerCAmelCase_ ) if set(lowerCAmelCase_ ) != {"luke.embeddings.position_ids"}: raise ValueError(F"Unexpected unexpected_keys: {unexpected_keys}" ) if set(lowerCAmelCase_ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"Unexpected missing_keys: {missing_keys}" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs __lowercase : List[str] = MLukeTokenizer.from_pretrained(lowerCAmelCase_ , task="""entity_classification""" ) __lowercase : Optional[Any] = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" __lowercase : Any = (0, 9) __lowercase : Dict = tokenizer(lowerCAmelCase_ , entity_spans=[span] , return_tensors="""pt""" ) __lowercase : int = model(**lowerCAmelCase_ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base __lowercase : List[str] = torch.Size((1, 33, 768) ) __lowercase : Dict = torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base __lowercase : Any = torch.Size((1, 1, 768) ) __lowercase : Optional[Any] = torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is" F" {expected_shape}" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction __lowercase : List[Any] = MLukeTokenizer.from_pretrained(lowerCAmelCase_ ) __lowercase : Optional[Any] = """Tokyo is the capital of <mask>.""" __lowercase : Optional[Any] = (24, 30) __lowercase : Dict = tokenizer(lowerCAmelCase_ , entity_spans=[span] , return_tensors="""pt""" ) __lowercase : Tuple = model(**lowerCAmelCase_ ) __lowercase : Any = encoding["""input_ids"""][0].tolist() __lowercase : Union[str, Any] = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) __lowercase : Dict = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowerCAmelCase_ ) __lowercase : List[Any] = outputs.entity_logits[0][0].argmax().item() __lowercase : List[str] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(lowerCAmelCase_ ) ) model.save_pretrained(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : List[str] ): __lowercase : Any = ["""[MASK]""", """[PAD]""", """[UNK]"""] __lowercase : Tuple = [json.loads(lowerCAmelCase_ ) for line in open(lowerCAmelCase_ )] __lowercase : Optional[int] = {} for entry in data: __lowercase : Tuple = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: __lowercase : List[Any] = entity_id break __lowercase : Optional[int] = F"{language}:{entity_name}" __lowercase : Any = entity_id return new_mapping if __name__ == "__main__": lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) lowerCamelCase : List[str] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
649
import logging import os import threading import time try: import warnings except ImportError: lowerCamelCase : Any = None try: import msvcrt except ImportError: lowerCamelCase : str = None try: import fcntl except ImportError: lowerCamelCase : Optional[Any] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: lowerCamelCase : Union[str, Any] = OSError # Data # ------------------------------------------------ lowerCamelCase : Tuple = [ '''Timeout''', '''BaseFileLock''', '''WindowsFileLock''', '''UnixFileLock''', '''SoftFileLock''', '''FileLock''', ] lowerCamelCase : Tuple = '''3.0.12''' lowerCamelCase : Any = None def snake_case_ ( ): global _logger __lowercase : List[str] = _logger or logging.getLogger(__name__ ) return _logger class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Any , __a : Any ) -> List[Any]: """simple docstring""" __lowercase : List[str] = lock_file return None def __str__( self : str ) -> Any: """simple docstring""" __lowercase : Any = F"The file lock '{self.lock_file}' could not be acquired." return temp class lowerCAmelCase : '''simple docstring''' def __init__( self : List[Any] , __a : Optional[int] ) -> int: """simple docstring""" __lowercase : Optional[Any] = lock return None def __enter__( self : Dict ) -> Dict: """simple docstring""" return self.lock def __exit__( self : Optional[int] , __a : Dict , __a : Any , __a : Tuple ) -> Optional[Any]: """simple docstring""" self.lock.release() return None class lowerCAmelCase : '''simple docstring''' def __init__( self : Tuple , __a : Any , __a : Dict=-1 , __a : Optional[Any]=None ) -> Any: """simple docstring""" __lowercase : Optional[int] = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long __lowercase : Dict = self.hash_filename_if_too_long(__a , __a ) # The path to the lock file. __lowercase : Optional[Any] = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __lowercase : int = None # The default timeout value. __lowercase : Optional[int] = timeout # We use this lock primarily for the lock counter. __lowercase : Optional[Any] = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __lowercase : Union[str, Any] = 0 return None @property def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return self._lock_file @property def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return self._timeout @timeout.setter def lowerCAmelCase ( self : Tuple , __a : Tuple ) -> Dict: """simple docstring""" __lowercase : Tuple = float(__a ) return None def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" raise NotImplementedError() def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" raise NotImplementedError() @property def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" return self._lock_file_fd is not None def lowerCAmelCase ( self : Any , __a : Optional[Any]=None , __a : Union[str, Any]=0.05 ) -> List[str]: """simple docstring""" if timeout is None: __lowercase : Union[str, Any] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __lowercase : int = id(self ) __lowercase : Optional[Any] = self._lock_file __lowercase : List[str] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"Attempting to acquire lock {lock_id} on {lock_filename}" ) self._acquire() if self.is_locked: logger().debug(F"Lock {lock_id} acquired on {lock_filename}" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"Timeout on acquiring lock {lock_id} on {lock_filename}" ) raise Timeout(self._lock_file ) else: logger().debug( F"Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ..." ) time.sleep(__a ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __lowercase : Optional[int] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def lowerCAmelCase ( self : Union[str, Any] , __a : Optional[Any]=False ) -> Optional[Any]: """simple docstring""" with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __lowercase : Optional[Any] = id(self ) __lowercase : str = self._lock_file logger().debug(F"Attempting to release lock {lock_id} on {lock_filename}" ) self._release() __lowercase : List[str] = 0 logger().debug(F"Lock {lock_id} released on {lock_filename}" ) return None def __enter__( self : Any ) -> Optional[Any]: """simple docstring""" self.acquire() return self def __exit__( self : List[str] , __a : str , __a : int , __a : List[Any] ) -> Tuple: """simple docstring""" self.release() return None def __del__( self : Optional[int] ) -> Optional[int]: """simple docstring""" self.release(force=__a ) return None def lowerCAmelCase ( self : Tuple , __a : str , __a : int ) -> str: """simple docstring""" __lowercase : List[Any] = os.path.basename(__a ) if len(__a ) > max_length and max_length > 0: __lowercase : int = os.path.dirname(__a ) __lowercase : List[str] = str(hash(__a ) ) __lowercase : Optional[Any] = filename[: max_length - len(__a ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(__a , __a ) else: return path class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Union[str, Any] , __a : List[Any] , __a : Optional[int]=-1 , __a : Tuple=None ) -> List[Any]: """simple docstring""" from .file_utils import relative_to_absolute_path super().__init__(__a , timeout=__a , max_filename_length=__a ) __lowercase : Tuple = """\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __lowercase : Tuple = os.open(self._lock_file , __a ) except OSError: pass else: try: msvcrt.locking(__a , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__a ) else: __lowercase : Union[str, Any] = fd return None def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = self._lock_file_fd __lowercase : int = None msvcrt.locking(__a , msvcrt.LK_UNLCK , 1 ) os.close(__a ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : List[str] , __a : Optional[Any] , __a : str=-1 , __a : List[str]=None ) -> Any: """simple docstring""" __lowercase : Dict = os.statvfs(os.path.dirname(__a ) ).f_namemax super().__init__(__a , timeout=__a , max_filename_length=__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase : List[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC __lowercase : List[str] = os.open(self._lock_file , __a ) try: fcntl.flock(__a , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__a ) else: __lowercase : str = fd return None def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Any = self._lock_file_fd __lowercase : List[str] = None fcntl.flock(__a , fcntl.LOCK_UN ) os.close(__a ) return None class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __lowercase : Union[str, Any] = os.open(self._lock_file , __a ) except OSError: pass else: __lowercase : Optional[int] = fd return None def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" os.close(self._lock_file_fd ) __lowercase : int = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None lowerCamelCase : Optional[Any] = None if msvcrt: lowerCamelCase : List[Any] = WindowsFileLock elif fcntl: lowerCamelCase : List[Any] = UnixFileLock else: lowerCamelCase : Union[str, Any] = SoftFileLock if warnings is not None: warnings.warn('''only soft file lock is available''')
649
1
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : list[str] | None = None ): __lowercase : Tuple = word_bank or [] # create a table __lowercase : int = len(lowerCAmelCase_ ) + 1 __lowercase : list[list[list[str]]] = [] for _ in range(lowerCAmelCase_ ): table.append([] ) # seed value __lowercase : Dict = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowerCAmelCase_ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowerCAmelCase_ )] == word: __lowercase : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowerCAmelCase_ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowerCAmelCase_ )]: combination.reverse() return table[len(lowerCAmelCase_ )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
649
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : Tuple = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = '''layoutlmv3''' def __init__( self : Dict , __a : List[str]=50265 , __a : str=768 , __a : List[Any]=12 , __a : List[Any]=12 , __a : List[str]=3072 , __a : Optional[Any]="gelu" , __a : Optional[int]=0.1 , __a : List[Any]=0.1 , __a : Tuple=512 , __a : int=2 , __a : Any=0.02 , __a : Union[str, Any]=1E-5 , __a : List[str]=1 , __a : List[Any]=0 , __a : int=2 , __a : str=1024 , __a : str=128 , __a : List[Any]=128 , __a : Tuple=True , __a : Optional[int]=32 , __a : Any=128 , __a : List[Any]=64 , __a : Tuple=256 , __a : str=True , __a : int=True , __a : Optional[Any]=True , __a : Any=224 , __a : str=3 , __a : List[str]=16 , __a : Union[str, Any]=None , **__a : List[Any] , ) -> List[str]: """simple docstring""" super().__init__( vocab_size=__a , hidden_size=__a , num_hidden_layers=__a , num_attention_heads=__a , intermediate_size=__a , hidden_act=__a , hidden_dropout_prob=__a , attention_probs_dropout_prob=__a , max_position_embeddings=__a , type_vocab_size=__a , initializer_range=__a , layer_norm_eps=__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a , ) __lowercase : int = max_ad_position_embeddings __lowercase : Any = coordinate_size __lowercase : Optional[Any] = shape_size __lowercase : str = has_relative_attention_bias __lowercase : int = rel_pos_bins __lowercase : Union[str, Any] = max_rel_pos __lowercase : str = has_spatial_attention_bias __lowercase : str = rel_ad_pos_bins __lowercase : List[Any] = max_rel_ad_pos __lowercase : Tuple = text_embed __lowercase : int = visual_embed __lowercase : Tuple = input_size __lowercase : Dict = num_channels __lowercase : str = patch_size __lowercase : Optional[int] = classifier_dropout class lowerCAmelCase ( __a ): '''simple docstring''' _A : str = version.parse('''1.12''' ) @property def lowerCAmelCase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def lowerCAmelCase ( self : Union[str, Any] ) -> float: """simple docstring""" return 1E-5 @property def lowerCAmelCase ( self : str ) -> int: """simple docstring""" return 12 def lowerCAmelCase ( self : List[Any] , __a : "ProcessorMixin" , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional["TensorType"] = None , __a : int = 3 , __a : int = 40 , __a : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , """apply_ocr""" , __a ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase : Tuple = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase : Tuple = processor.tokenizer.num_special_tokens_to_add(__a ) __lowercase : Tuple = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__a ) # Generate dummy inputs according to compute batch and sequence __lowercase : Union[str, Any] = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowercase : Tuple = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowercase : Tuple = self._generate_dummy_images(__a , __a , __a , __a ) __lowercase : int = dict( processor( __a , text=__a , boxes=__a , return_tensors=__a , ) ) return inputs
649
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : str = { '''google/switch-base-8''': '''https://huggingface.co/google/switch-base-8/blob/main/config.json''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : Dict = '''switch_transformers''' _A : int = ['''past_key_values'''] _A : Optional[int] = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : str , __a : List[str]=32128 , __a : Optional[int]=768 , __a : Union[str, Any]=64 , __a : Union[str, Any]=2048 , __a : Dict=64 , __a : Optional[Any]=12 , __a : str=3 , __a : Dict=12 , __a : List[str]=3 , __a : str=12 , __a : str=8 , __a : Any=False , __a : str=0.01 , __a : Any="float32" , __a : Any=False , __a : Dict=32 , __a : Dict=128 , __a : List[str]=0.1 , __a : Any=1E-6 , __a : Any=0.001 , __a : Tuple=0.001 , __a : Dict=1.0 , __a : List[str]="relu" , __a : int=True , __a : Optional[int]=False , __a : List[str]=True , __a : str=0 , __a : Optional[Any]=1 , **__a : int , ) -> Dict: """simple docstring""" __lowercase : Tuple = vocab_size __lowercase : Tuple = d_model __lowercase : int = d_kv __lowercase : Tuple = d_ff __lowercase : int = num_sparse_encoder_layers __lowercase : int = num_layers __lowercase : List[Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __lowercase : int = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: __lowercase : Tuple = self.num_layers // self.num_sparse_encoder_layers else: __lowercase : List[Any] = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: __lowercase : List[Any] = self.num_decoder_layers // self.num_sparse_decoder_layers else: __lowercase : str = self.num_decoder_layers # HACK: this will create 0 sparse layers __lowercase : List[Any] = num_heads __lowercase : Any = num_experts __lowercase : Union[str, Any] = expert_capacity __lowercase : Optional[int] = router_bias __lowercase : Tuple = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) __lowercase : str = router_dtype __lowercase : List[str] = router_ignore_padding_tokens __lowercase : List[Any] = relative_attention_num_buckets __lowercase : Tuple = relative_attention_max_distance __lowercase : str = dropout_rate __lowercase : Tuple = layer_norm_epsilon __lowercase : str = initializer_factor __lowercase : Optional[Any] = feed_forward_proj __lowercase : Optional[int] = use_cache __lowercase : List[str] = add_router_probs __lowercase : int = router_z_loss_coef __lowercase : List[Any] = router_aux_loss_coef __lowercase : int = self.feed_forward_proj.split("""-""" ) __lowercase : Dict = act_info[-1] __lowercase : List[Any] = act_info[0] == """gated""" if len(__a ) > 1 and act_info[0] != "gated" or len(__a ) > 2: raise ValueError( F"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer." """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __lowercase : str = """gelu_new""" super().__init__( pad_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , **__a , )
649
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowerCamelCase : List[Any] = logging.get_logger(__name__) class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , __a : str = None , __a : uuid.UUID = None , __a : Any=None , __a : List[Any]=None ) -> List[Any]: """simple docstring""" if not conversation_id: __lowercase : Any = uuid.uuida() if past_user_inputs is None: __lowercase : Dict = [] if generated_responses is None: __lowercase : Dict = [] __lowercase : uuid.UUID = conversation_id __lowercase : List[str] = past_user_inputs __lowercase : List[str] = generated_responses __lowercase : Optional[str] = text def __eq__( self : Dict , __a : Dict ) -> Any: """simple docstring""" if not isinstance(__a , __a ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCAmelCase ( self : List[str] , __a : str , __a : bool = False ) -> Dict: """simple docstring""" if self.new_user_input: if overwrite: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten " F"with: \"{text}\"." ) __lowercase : Optional[int] = text else: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" new input " F"ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input" ) else: __lowercase : Dict = text def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __lowercase : Dict = None def lowerCAmelCase ( self : Optional[int] , __a : str ) -> List[Any]: """simple docstring""" self.generated_responses.append(__a ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : int ) -> str: """simple docstring""" __lowercase : Optional[int] = F"Conversation id: {self.uuid} \n" for is_user, text in self.iter_texts(): __lowercase : Optional[Any] = """user""" if is_user else """bot""" output += F"{name} >> {text} \n" return output @add_end_docstrings( __a , r''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''' , ) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Any , *__a : int , **__a : str ) -> Union[str, Any]: """simple docstring""" super().__init__(*__a , **__a ) if self.tokenizer.pad_token_id is None: __lowercase : List[Any] = self.tokenizer.eos_token def lowerCAmelCase ( self : Union[str, Any] , __a : int=None , __a : Tuple=None , __a : Any=None , **__a : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = {} __lowercase : Tuple = {} __lowercase : List[str] = {} if min_length_for_response is not None: __lowercase : Dict = min_length_for_response if minimum_tokens is not None: __lowercase : Union[str, Any] = minimum_tokens if "max_length" in generate_kwargs: __lowercase : Union[str, Any] = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __lowercase : Union[str, Any] = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(__a ) return preprocess_params, forward_params, postprocess_params def __call__( self : Optional[int] , __a : Union[Conversation, List[Conversation]] , __a : Dict=0 , **__a : List[Any] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = super().__call__(__a , num_workers=__a , **__a ) if isinstance(__a , __a ) and len(__a ) == 1: return outputs[0] return outputs def lowerCAmelCase ( self : Union[str, Any] , __a : Conversation , __a : Tuple=32 ) -> Dict[str, Any]: """simple docstring""" if not isinstance(__a , __a ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( F"Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. " """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer , """_build_conversation_input_ids""" ): __lowercase : List[Any] = self.tokenizer._build_conversation_input_ids(__a ) else: # If the tokenizer cannot handle conversations, we default to only the old version __lowercase : Tuple = self._legacy_parse_and_tokenize(__a ) if self.framework == "pt": __lowercase : List[Any] = torch.LongTensor([input_ids] ) elif self.framework == "tf": __lowercase : List[str] = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCAmelCase ( self : Any , __a : Dict , __a : Any=10 , **__a : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = generate_kwargs.get("""max_length""" , self.model.config.max_length ) __lowercase : List[Any] = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(F"Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})" ) __lowercase : Any = max_length - minimum_tokens __lowercase : int = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: __lowercase : Dict = model_inputs["""attention_mask"""][:, -trim:] __lowercase : Union[str, Any] = model_inputs.pop("""conversation""" ) __lowercase : Tuple = max_length __lowercase : int = self.model.generate(**__a , **__a ) if self.model.config.is_encoder_decoder: __lowercase : Optional[int] = 1 else: __lowercase : str = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCAmelCase ( self : int , __a : Tuple , __a : List[Any]=True ) -> List[str]: """simple docstring""" __lowercase : int = model_outputs["""output_ids"""] __lowercase : Union[str, Any] = self.tokenizer.decode( output_ids[0] , skip_special_tokens=__a , clean_up_tokenization_spaces=__a , ) __lowercase : List[str] = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(__a ) return conversation def lowerCAmelCase ( self : int , __a : Conversation ) -> Dict: """simple docstring""" __lowercase : Optional[int] = self.tokenizer.eos_token_id __lowercase : Optional[Any] = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(__a , add_special_tokens=__a ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(__a , add_special_tokens=__a ) ) if len(__a ) > self.tokenizer.model_max_length: __lowercase : List[Any] = input_ids[-self.tokenizer.model_max_length :] return input_ids
649
1
def snake_case_ ( lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 7 , lowerCAmelCase_ : int = 1000000 ): __lowercase : Dict = 0 __lowercase : Optional[Any] = 1 for current_denominator in range(1 , limit + 1 ): __lowercase : Optional[int] = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: __lowercase : Any = current_numerator __lowercase : str = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_00_00_00))
649
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__a , """tf_padding""" ) ) self.parent.assertTrue(hasattr(__a , """depth_multiplier""" ) ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Tuple , __a : str=13 , __a : Dict=3 , __a : List[Any]=32 , __a : Any=0.25 , __a : Any=8 , __a : Optional[int]=8 , __a : Optional[int]=6 , __a : Dict=32 , __a : Tuple=True , __a : List[Any]=True , __a : Optional[int]=True , __a : Tuple="relu6" , __a : Optional[Any]=1280 , __a : str=0.1 , __a : str=0.02 , __a : Optional[Any]=True , __a : Tuple=True , __a : Dict=10 , __a : Optional[Any]=None , ) -> Any: """simple docstring""" __lowercase : List[str] = parent __lowercase : Tuple = batch_size __lowercase : Dict = num_channels __lowercase : Optional[int] = image_size __lowercase : int = depth_multiplier __lowercase : str = depth_divisible_by __lowercase : int = min_depth __lowercase : Tuple = expand_ratio __lowercase : Optional[int] = tf_padding __lowercase : Dict = output_stride __lowercase : Dict = first_layer_is_expansion __lowercase : Optional[Any] = finegrained_output __lowercase : str = hidden_act __lowercase : Union[str, Any] = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) __lowercase : Optional[int] = classifier_dropout_prob __lowercase : int = use_labels __lowercase : Optional[int] = is_training __lowercase : Dict = num_labels __lowercase : Tuple = initializer_range __lowercase : Optional[Any] = scope def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : List[Any] = None __lowercase : Optional[Any] = None if self.use_labels: __lowercase : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __lowercase : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowercase : List[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : Tuple , __a : Dict , __a : Tuple , __a : Optional[int] , __a : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[int] = MobileNetVaModel(config=__a ) model.to(__a ) model.eval() __lowercase : Tuple = model(__a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def lowerCAmelCase ( self : List[str] , __a : Optional[int] , __a : List[str] , __a : str , __a : Optional[int] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = self.num_labels __lowercase : Dict = MobileNetVaForImageClassification(__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : int , __a : List[str] , __a : Tuple , __a : Any , __a : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : int = self.num_labels __lowercase : List[Any] = MobileNetVaForSemanticSegmentation(__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __lowercase : str = model(__a , labels=__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase : List[str] = config_and_inputs __lowercase : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Tuple = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) _A : Optional[Any] = ( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) _A : Tuple = False _A : List[str] = False _A : List[str] = False _A : Optional[int] = False def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = MobileNetVaModelTester(self ) __lowercase : int = MobileNetVaConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV2 does not use inputs_embeds""" ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not support input and output embeddings""" ) def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not output attentions""" ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[Any] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : int = [*signature.parameters.keys()] __lowercase : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" def check_hidden_states_output(__a : List[Any] , __a : Tuple , __a : List[str] ): __lowercase : Optional[Any] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : List[Any] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Tuple = outputs.hidden_states __lowercase : str = 16 self.assertEqual(len(__a ) , __a ) __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Any = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase : Union[str, Any] = True check_hidden_states_output(__a , __a , __a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : Optional[int] = MobileNetVaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def snake_case_ ( ): __lowercase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v2_1.0_224""" ) if is_vision_available() else None ) @slow def lowerCAmelCase ( self : str ) -> int: """simple docstring""" __lowercase : Tuple = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v2_1.0_224""" ).to(__a ) __lowercase : str = self.default_image_processor __lowercase : Tuple = prepare_img() __lowercase : Tuple = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : str = model(**__a ) # verify the logits __lowercase : Union[str, Any] = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , __a ) __lowercase : str = torch.tensor([0.2445, -1.1993, 0.1905] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : int = MobileNetVaForSemanticSegmentation.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __lowercase : Dict = model.to(__a ) __lowercase : Tuple = MobileNetVaImageProcessor.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __lowercase : List[str] = prepare_img() __lowercase : Optional[int] = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : Union[str, Any] = model(**__a ) __lowercase : Any = outputs.logits # verify the logits __lowercase : Dict = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , __a ) __lowercase : str = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=__a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __a , atol=1E-4 ) )
649
1
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : tuple[int, int] , lowerCAmelCase_ : int ): __lowercase , __lowercase : int = position __lowercase : Union[str, Any] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] __lowercase : Union[str, Any] = [] for position in positions: __lowercase , __lowercase : int = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(lowerCAmelCase_ ) return permissible_positions def snake_case_ ( lowerCAmelCase_ : list[list[int]] ): return not any(elem == 0 for row in board for elem in row ) def snake_case_ ( lowerCAmelCase_ : list[list[int]] , lowerCAmelCase_ : tuple[int, int] , lowerCAmelCase_ : int ): if is_complete(lowerCAmelCase_ ): return True for position in get_valid_pos(lowerCAmelCase_ , len(lowerCAmelCase_ ) ): __lowercase , __lowercase : Union[str, Any] = position if board[y][x] == 0: __lowercase : List[str] = curr + 1 if open_knight_tour_helper(lowerCAmelCase_ , lowerCAmelCase_ , curr + 1 ): return True __lowercase : List[str] = 0 return False def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : Optional[Any] = [[0 for i in range(lowerCAmelCase_ )] for j in range(lowerCAmelCase_ )] for i in range(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ ): __lowercase : Dict = 1 if open_knight_tour_helper(lowerCAmelCase_ , (i, j) , 1 ): return board __lowercase : Optional[int] = 0 __lowercase : List[Any] = F"Open Kight Tour cannot be performed on a board of size {n}" raise ValueError(lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
649
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def snake_case_ ( lowerCAmelCase_ : bool = True , *lowerCAmelCase_ : int , **lowerCAmelCase_ : List[str] ): if not is_tqdm_available(): raise ImportError("""Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.""" ) __lowercase : List[str] = False if main_process_only: __lowercase : Optional[int] = PartialState().local_process_index == 0 return _tqdm(*lowerCAmelCase_ , **lowerCAmelCase_ , disable=lowerCAmelCase_ )
649
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Tuple = logging.get_logger(__name__) class lowerCAmelCase ( __a ): '''simple docstring''' _A : Optional[Any] = '''encoder-decoder''' _A : Optional[Any] = True def __init__( self : List[str] , **__a : Optional[Any] ) -> Any: """simple docstring""" super().__init__(**__a ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" __lowercase : List[Any] = kwargs.pop("""encoder""" ) __lowercase : List[str] = encoder_config.pop("""model_type""" ) __lowercase : Optional[Any] = kwargs.pop("""decoder""" ) __lowercase : Optional[Any] = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig __lowercase : int = AutoConfig.for_model(__a , **__a ) __lowercase : Dict = AutoConfig.for_model(__a , **__a ) __lowercase : Union[str, Any] = True @classmethod def lowerCAmelCase ( cls : Optional[int] , __a : PretrainedConfig , __a : PretrainedConfig , **__a : Tuple ) -> PretrainedConfig: """simple docstring""" logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) __lowercase : Dict = True __lowercase : Tuple = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__a ) def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : int = copy.deepcopy(self.__dict__ ) __lowercase : Optional[Any] = self.encoder.to_dict() __lowercase : Optional[int] = self.decoder.to_dict() __lowercase : Tuple = self.__class__.model_type return output
649
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : list[int] ): if not nums: return 0 __lowercase : Tuple = nums[0] __lowercase : Tuple = 0 for num in nums[1:]: __lowercase , __lowercase : List[str] = ( max_excluding + num, max(lowerCAmelCase_ , lowerCAmelCase_ ), ) return max(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
649
1
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Dict = IFInpaintingSuperResolutionPipeline _A : Any = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} _A : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'''original_image'''} ) _A : Union[str, Any] = PipelineTesterMixin.required_optional_params - {'''latents'''} def lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" return self._get_superresolution_dummy_components() def lowerCAmelCase ( self : int , __a : Optional[int] , __a : Any=0 ) -> Optional[int]: """simple docstring""" if str(__a ).startswith("""mps""" ): __lowercase : Dict = torch.manual_seed(__a ) else: __lowercase : Any = torch.Generator(device=__a ).manual_seed(__a ) __lowercase : Optional[Any] = floats_tensor((1, 3, 16, 16) , rng=random.Random(__a ) ).to(__a ) __lowercase : List[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__a ) ).to(__a ) __lowercase : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(__a ) ).to(__a ) __lowercase : str = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" self._test_save_load_local() def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
649
lowerCamelCase : List[str] = '''0.18.2''' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
649
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Tuple = {'''vocab_file''': '''spiece.model'''} lowerCamelCase : str = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', } } lowerCamelCase : Any = { '''albert-base-v1''': 5_12, '''albert-large-v1''': 5_12, '''albert-xlarge-v1''': 5_12, '''albert-xxlarge-v1''': 5_12, '''albert-base-v2''': 5_12, '''albert-large-v2''': 5_12, '''albert-xlarge-v2''': 5_12, '''albert-xxlarge-v2''': 5_12, } lowerCamelCase : Optional[Any] = '''▁''' class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[Any] = VOCAB_FILES_NAMES _A : int = PRETRAINED_VOCAB_FILES_MAP _A : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Union[str, Any] , __a : str , __a : List[Any]=True , __a : List[Any]=True , __a : List[str]=False , __a : Any="[CLS]" , __a : Tuple="[SEP]" , __a : Tuple="<unk>" , __a : str="[SEP]" , __a : Tuple="<pad>" , __a : Tuple="[CLS]" , __a : Dict="[MASK]" , __a : Optional[Dict[str, Any]] = None , **__a : List[str] , ) -> None: """simple docstring""" __lowercase : Dict = ( AddedToken(__a , lstrip=__a , rstrip=__a , normalized=__a ) if isinstance(__a , __a ) else mask_token ) __lowercase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__a , remove_space=__a , keep_accents=__a , bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , ) __lowercase : List[Any] = do_lower_case __lowercase : str = remove_space __lowercase : Optional[Any] = keep_accents __lowercase : Any = vocab_file __lowercase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__a ) @property def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" return len(self.sp_model ) def lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = {self.convert_ids_to_tokens(__a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ) -> Dict: """simple docstring""" __lowercase : Any = self.__dict__.copy() __lowercase : Dict = None return state def __setstate__( self : Dict , __a : str ) -> Optional[int]: """simple docstring""" __lowercase : int = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __lowercase : List[str] = {} __lowercase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase ( self : int , __a : Optional[int] ) -> int: """simple docstring""" if self.remove_space: __lowercase : Union[str, Any] = """ """.join(inputs.strip().split() ) else: __lowercase : Any = inputs __lowercase : Optional[int] = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: __lowercase : Optional[int] = unicodedata.normalize("""NFKD""" , __a ) __lowercase : Optional[Any] = """""".join([c for c in outputs if not unicodedata.combining(__a )] ) if self.do_lower_case: __lowercase : str = outputs.lower() return outputs def lowerCAmelCase ( self : Tuple , __a : str ) -> List[str]: """simple docstring""" __lowercase : Union[str, Any] = self.preprocess_text(__a ) __lowercase : Optional[Any] = self.sp_model.encode(__a , out_type=__a ) __lowercase : Optional[Any] = [] for piece in pieces: if len(__a ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): __lowercase : int = self.sp_model.EncodeAsPieces(piece[:-1].replace(__a , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __lowercase : Optional[int] = cur_pieces[1:] else: __lowercase : str = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__a ) else: new_pieces.append(__a ) return new_pieces def lowerCAmelCase ( self : Tuple , __a : Dict ) -> Optional[Any]: """simple docstring""" return self.sp_model.PieceToId(__a ) def lowerCAmelCase ( self : Union[str, Any] , __a : Union[str, Any] ) -> List[str]: """simple docstring""" return self.sp_model.IdToPiece(__a ) def lowerCAmelCase ( self : Union[str, Any] , __a : List[Any] ) -> List[str]: """simple docstring""" __lowercase : Any = [] __lowercase : Dict = """""" __lowercase : str = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__a ) + token __lowercase : Optional[Any] = True __lowercase : List[str] = [] else: current_sub_tokens.append(__a ) __lowercase : Optional[Any] = False out_string += self.sp_model.decode(__a ) return out_string.strip() def lowerCAmelCase ( self : str , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __lowercase : Optional[int] = [self.sep_token_id] __lowercase : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase ( self : int , __a : List[int] , __a : Optional[List[int]] = None , __a : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) if token_ids_a is not None: return [1] + ([0] * len(__a )) + [1] + ([0] * len(__a )) + [1] return [1] + ([0] * len(__a )) + [1] def lowerCAmelCase ( self : Optional[int] , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __lowercase : List[str] = [self.sep_token_id] __lowercase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase ( self : Any , __a : str , __a : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__a ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __lowercase : Optional[Any] = os.path.join( __a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __a ) elif not os.path.isfile(self.vocab_file ): with open(__a , """wb""" ) as fi: __lowercase : Tuple = self.sp_model.serialized_model_proto() fi.write(__a ) return (out_vocab_file,)
649
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : List[Any] = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : str=False , lowerCAmelCase_ : Any=False ): __lowercase : Any = """backbone.""" if is_semantic else """""" __lowercase : Optional[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"{prefix}blocks.{i}.norm1.weight", F"beit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm1.bias", F"beit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.weight", F"beit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.bias", F"beit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.weight", F"beit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.bias", F"beit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.weight", F"beit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.bias", F"beit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.weight", F"beit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.bias", F"beit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ (F"{prefix}cls_token", """beit.embeddings.cls_token"""), (F"{prefix}patch_embed.proj.weight", """beit.embeddings.patch_embeddings.projection.weight"""), (F"{prefix}patch_embed.proj.bias", """beit.embeddings.patch_embeddings.projection.bias"""), (F"{prefix}pos_embed", """beit.embeddings.position_embeddings"""), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("""mask_token""", """beit.embeddings.mask_token"""), ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) else: # layernorm + classification head rename_keys.extend( [ ("""fc_norm.weight""", """beit.pooler.layernorm.weight"""), ("""fc_norm.bias""", """beit.pooler.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : List[Any]=False ): for i in range(config.num_hidden_layers ): __lowercase : Tuple = """backbone.""" if is_semantic else """""" # queries, keys and values __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.attn.qkv.weight" ) __lowercase : Dict = state_dict.pop(F"{prefix}blocks.{i}.attn.q_bias" ) __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.attn.v_bias" ) __lowercase : List[str] = in_proj_weight[ : config.hidden_size, : ] __lowercase : Union[str, Any] = q_bias __lowercase : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] __lowercase : str = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.gamma_1" ) __lowercase : str = state_dict.pop(F"{prefix}blocks.{i}.gamma_2" ) __lowercase : List[str] = gamma_a __lowercase : Optional[int] = gamma_a def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : int ): __lowercase : Tuple = dct.pop(lowerCAmelCase_ ) __lowercase : Tuple = val def snake_case_ ( ): __lowercase : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase : Any = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]=False ): __lowercase : Dict = False if """rvlcdip""" in checkpoint_url else True __lowercase : Tuple = BeitConfig(use_absolute_position_embeddings=lowerCAmelCase_ , use_mask_token=lowerCAmelCase_ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: __lowercase : Union[str, Any] = 1024 __lowercase : Optional[int] = 4096 __lowercase : List[Any] = 24 __lowercase : Dict = 16 # labels if "rvlcdip" in checkpoint_url: __lowercase : Optional[int] = 16 __lowercase : Any = """huggingface/label-files""" __lowercase : Union[str, Any] = """rvlcdip-id2label.json""" __lowercase : List[str] = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) __lowercase : Optional[int] = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowercase : Union[str, Any] = idalabel __lowercase : Optional[Any] = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys __lowercase : Optional[int] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ , map_location="""cpu""" )["""model"""] __lowercase : Union[str, Any] = create_rename_keys(lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) # load HuggingFace model __lowercase : Dict = BeitForMaskedImageModeling(lowerCAmelCase_ ) if has_lm_head else BeitForImageClassification(lowerCAmelCase_ ) model.eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image __lowercase : List[str] = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=lowerCAmelCase_ ) __lowercase : List[str] = prepare_img() __lowercase : Optional[Any] = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""" ) __lowercase : Optional[int] = encoding["""pixel_values"""] __lowercase : str = model(lowerCAmelCase_ ) __lowercase : Tuple = outputs.logits # verify logits __lowercase : str = [1, 16] if """rvlcdip""" in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(lowerCAmelCase_ ), "Shape of logits not as expected" Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: if has_lm_head: __lowercase : Optional[Any] = """dit-base""" if """base""" in checkpoint_url else """dit-large""" else: __lowercase : Tuple = """dit-base-finetuned-rvlcdip""" if """dit-b""" in checkpoint_url else """dit-large-finetuned-rvlcdip""" image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=lowerCAmelCase_ , ) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=lowerCAmelCase_ , ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) lowerCamelCase : List[str] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
649
1
import os lowerCamelCase : Dict = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 1_00, '''D''': 5_00, '''M''': 10_00} def snake_case_ ( lowerCAmelCase_ : str ): __lowercase : List[Any] = 0 __lowercase : str = 0 while index < len(lowerCAmelCase_ ) - 1: __lowercase : List[Any] = SYMBOLS[numerals[index]] __lowercase : str = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : Tuple = """""" __lowercase : List[str] = num // 1000 numerals += m_count * "M" num %= 1000 __lowercase : List[Any] = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 __lowercase : List[str] = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def snake_case_ ( lowerCAmelCase_ : str = "/p089_roman.txt" ): __lowercase : Optional[Any] = 0 with open(os.path.dirname(lowerCAmelCase_ ) + roman_numerals_filename ) as filea: __lowercase : Any = filea.readlines() for line in lines: __lowercase : Optional[int] = line.strip() __lowercase : str = parse_roman_numerals(lowerCAmelCase_ ) __lowercase : List[str] = generate_roman_numerals(lowerCAmelCase_ ) savings += len(lowerCAmelCase_ ) - len(lowerCAmelCase_ ) return savings if __name__ == "__main__": print(f'''{solution() = }''')
649
from torch import nn class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , __a : int , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" super().__init__() __lowercase : int = class_size __lowercase : int = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) __lowercase : str = nn.Linear(__a , __a ) def lowerCAmelCase ( self : Tuple , __a : int ) -> Tuple: """simple docstring""" __lowercase : str = self.mlp(__a ) return logits
649
1
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , __a : List[Any] , __a : List[str]=13 , __a : Union[str, Any]=7 , __a : Optional[int]=True , __a : str=True , __a : Dict=True , __a : Dict=True , __a : List[Any]=99 , __a : Optional[int]=32 , __a : Tuple=5 , __a : Any=4 , __a : List[str]=37 , __a : List[str]="gelu" , __a : int=0.1 , __a : int=0.1 , __a : Any=512 , __a : List[str]=16 , __a : Tuple=2 , __a : Dict=0.02 , __a : List[str]=4 , ) -> Union[str, Any]: """simple docstring""" __lowercase : Any = parent __lowercase : Optional[int] = batch_size __lowercase : Optional[Any] = seq_length __lowercase : Any = is_training __lowercase : Optional[Any] = use_attention_mask __lowercase : List[str] = use_token_type_ids __lowercase : List[Any] = use_labels __lowercase : int = vocab_size __lowercase : Optional[Any] = hidden_size __lowercase : List[str] = num_hidden_layers __lowercase : Any = num_attention_heads __lowercase : List[str] = intermediate_size __lowercase : Optional[Any] = hidden_act __lowercase : Dict = hidden_dropout_prob __lowercase : Dict = attention_probs_dropout_prob __lowercase : List[str] = max_position_embeddings __lowercase : Tuple = type_vocab_size __lowercase : Optional[int] = type_sequence_label_size __lowercase : List[str] = initializer_range __lowercase : Optional[Any] = num_choices def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : Optional[Any] = None if self.use_attention_mask: __lowercase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : Any = None if self.use_token_type_ids: __lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase : Union[str, Any] = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" __lowercase : List[Any] = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase : Dict = config_and_inputs __lowercase : Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : List[Any] = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase : List[Any] = config_and_inputs __lowercase : Union[str, Any] = True __lowercase : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : str = True _A : Optional[int] = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : str = FlaxRobertaModelTester(self ) @slow def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" for model_class_name in self.all_model_classes: __lowercase : Optional[int] = model_class_name.from_pretrained("""roberta-base""" , from_pt=__a ) __lowercase : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__a )
649
import fire from utils import calculate_rouge, save_json def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : str=None , **lowerCAmelCase_ : str ): __lowercase : Tuple = [x.strip() for x in open(lowerCAmelCase_ ).readlines()] __lowercase : Dict = [x.strip() for x in open(lowerCAmelCase_ ).readlines()][: len(lowerCAmelCase_ )] __lowercase : Tuple = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) if save_path is not None: save_json(lowerCAmelCase_ , lowerCAmelCase_ , indent=lowerCAmelCase_ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
649
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase : Optional[Any] = {"configuration_mmbt": ["MMBTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys lowerCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
700
from argparse import ArgumentParser from . import BaseTransformersCLICommand def snake_case_ ( lowerCAmelCase_ : Dict ): return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class lowerCAmelCase ( __a ): '''simple docstring''' @staticmethod def lowerCAmelCase ( __a : ArgumentParser ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = parser.add_parser("""download""" ) download_parser.add_argument( """--cache-dir""" , type=__a , default=__a , help="""Path to location to store the models""" ) download_parser.add_argument( """--force""" , action="""store_true""" , help="""Force the model to be download even if already in cache-dir""" ) download_parser.add_argument( """--trust-remote-code""" , action="""store_true""" , help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" , ) download_parser.add_argument("""model""" , type=__a , help="""Name of the model to download""" ) download_parser.set_defaults(func=__a ) def __init__( self : Dict , __a : str , __a : str , __a : bool , __a : bool ) -> Union[str, Any]: """simple docstring""" __lowercase : Dict = model __lowercase : List[Any] = cache __lowercase : Any = force __lowercase : Optional[int] = trust_remote_code def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
649
0
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput lowerCamelCase : Tuple = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowerCAmelCase ( _snake_case ): '''simple docstring''' def __init__( self : str , *__a : Tuple , __a : List[Any]=None , __a : Optional[int]=None , __a : List[str]=None , **__a : List[str] ) -> Optional[Any]: """simple docstring""" super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ ) __lowercase : Optional[int] = eval_examples __lowercase : List[Any] = post_process_function __lowercase : int = quant_trainer_args __lowercase : Any = 128 # default number of calibration samples def lowerCAmelCase ( self : int , __a : Dict=None ) -> Optional[int]: """simple docstring""" if calib_dataset is None and self.calib_dataset is None: raise ValueError("""Trainer: calibration requires an calib_dataset.""" ) __lowercase : List[str] = calib_dataset if calib_dataset is not None else self.calib_dataset __lowercase : Optional[int] = self._remove_unused_columns(lowerCAmelCase__ , description="""Calibration""" ) return DataLoader( lowerCAmelCase__ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=lowerCAmelCase__ , ) def lowerCAmelCase ( self : Optional[int] , __a : Any=None ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.train_dataset if calib_dataset is None else calib_dataset __lowercase : Tuple = self.get_calib_dataloader(lowerCAmelCase__ ) __lowercase : List[Any] = self.model quant_trainer.configure_model(lowerCAmelCase__ , self.quant_trainer_args , calib=lowerCAmelCase__ ) model.eval() quant_trainer.enable_calibration(lowerCAmelCase__ ) logger.info("""***** Running calibration *****""" ) logger.info(F" Num examples = {self.calib_num}" ) logger.info(F" Batch size = {calib_dataloader.batch_size}" ) for step, inputs in enumerate(lowerCAmelCase__ ): # Prediction step __lowercase , __lowercase , __lowercase : Dict = self.prediction_step(lowerCAmelCase__ , lowerCAmelCase__ , prediction_loss_only=lowerCAmelCase__ ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(lowerCAmelCase__ , self.quant_trainer_args ) __lowercase : Dict = model def lowerCAmelCase ( self : List[str] , __a : Optional[Any]=None , __a : int=None , __a : Tuple=None , __a : str = "eval" ) -> List[Any]: """simple docstring""" __lowercase : Tuple = self.eval_dataset if eval_dataset is None else eval_dataset __lowercase : List[Any] = self.get_eval_dataloader(lowerCAmelCase__ ) __lowercase : Union[str, Any] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __lowercase : Any = self.compute_metrics __lowercase : List[Any] = None __lowercase : List[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __lowercase : Union[str, Any] = eval_loop( lowerCAmelCase__ , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCAmelCase__ , ) finally: __lowercase : List[Any] = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: __lowercase : Union[str, Any] = self.post_process_function(lowerCAmelCase__ , lowerCAmelCase__ , output.predictions ) __lowercase : List[Any] = self.compute_metrics(lowerCAmelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"{metric_key_prefix}_" ): __lowercase : Dict = metrics.pop(lowerCAmelCase__ ) self.log(lowerCAmelCase__ ) else: __lowercase : List[str] = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) __lowercase : Union[str, Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowerCAmelCase__ ) return metrics def lowerCAmelCase ( self : List[str] , __a : Any , __a : int , __a : str=None , __a : str = "test" ) -> Any: """simple docstring""" __lowercase : Tuple = self.get_test_dataloader(lowerCAmelCase__ ) # Temporarily disable metric computation, we will do it in the loop here. __lowercase : Optional[int] = self.compute_metrics __lowercase : Optional[int] = None __lowercase : Optional[int] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __lowercase : List[Any] = eval_loop( lowerCAmelCase__ , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCAmelCase__ , ) finally: __lowercase : Optional[int] = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output __lowercase : Tuple = self.post_process_function(lowerCAmelCase__ , lowerCAmelCase__ , output.predictions , """predict""" ) __lowercase : List[str] = self.compute_metrics(lowerCAmelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"{metric_key_prefix}_" ): __lowercase : Optional[int] = metrics.pop(lowerCAmelCase__ ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowerCAmelCase__ ) def lowerCAmelCase ( self : Optional[int] , __a : Optional[int]="./" ) -> Optional[int]: """simple docstring""" __lowercase : Dict = self.eval_dataset __lowercase : Any = self.get_eval_dataloader(lowerCAmelCase__ ) __lowercase : Union[str, Any] = next(iter(lowerCAmelCase__ ) ) # saving device - to make it consistent __lowercase : int = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) # convert to tuple __lowercase : List[Any] = tuple(v.to(lowerCAmelCase__ ) for k, v in batch.items() ) logger.info("""Converting model to be onnx compatible""" ) from pytorch_quantization.nn import TensorQuantizer __lowercase : str = True __lowercase : Tuple = self.model.to(lowerCAmelCase__ ) model.eval() model.float() __lowercase : Optional[Any] = model.module if hasattr(lowerCAmelCase__ , """module""" ) else model quant_trainer.configure_model(lowerCAmelCase__ , self.quant_trainer_args ) __lowercase : Optional[Any] = os.path.join(lowerCAmelCase__ , """model.onnx""" ) logger.info(F"exporting model to {output_model_file}" ) __lowercase : List[Any] = {0: """batch_size""", 1: """seq_len"""} torch.onnx.export( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , export_params=lowerCAmelCase__ , opset_version=13 , do_constant_folding=lowerCAmelCase__ , input_names=["""input_ids""", """attention_mask""", """token_type_ids"""] , output_names=["""output_start_logits""", """output_end_logits"""] , dynamic_axes={ """input_ids""": axes, """attention_mask""": axes, """token_type_ids""": axes, """output_start_logits""": axes, """output_end_logits""": axes, } , verbose=lowerCAmelCase__ , ) logger.info("""onnx export finished""" )
701
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowerCamelCase : Union[str, Any] = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , __a : List[str] , __a : Optional[int]=16 , __a : Optional[Any]=13 , __a : str=7 , __a : List[str]=14 , __a : Any=10 , __a : str=19 , __a : int=5 , __a : Any=4 , __a : List[Any]=True , __a : Tuple=16 , __a : Dict=2 , __a : Tuple=4 , __a : int=4 , __a : List[Any]="gelu" , __a : Tuple=0.1 , __a : List[str]=0.1 , __a : int=[1, 2, 3, 4, 5] , __a : str=25 , __a : Any=5 , ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = d_model __lowercase : Dict = parent __lowercase : Tuple = batch_size __lowercase : Optional[int] = prediction_length __lowercase : List[str] = context_length __lowercase : Any = cardinality __lowercase : str = num_time_features __lowercase : Optional[int] = lags_sequence __lowercase : Optional[Any] = embedding_dimension __lowercase : List[Any] = is_training __lowercase : List[str] = hidden_size __lowercase : int = num_hidden_layers __lowercase : Any = num_attention_heads __lowercase : List[Any] = intermediate_size __lowercase : int = hidden_act __lowercase : str = hidden_dropout_prob __lowercase : List[Any] = attention_probs_dropout_prob __lowercase : str = context_length __lowercase : int = prediction_length + label_length __lowercase : Union[str, Any] = label_length __lowercase : Optional[int] = moving_average __lowercase : Optional[Any] = autocorrelation_factor def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def lowerCAmelCase ( self : Tuple , __a : str ) -> int: """simple docstring""" __lowercase : Any = config.context_length + max(config.lags_sequence ) __lowercase : Any = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __lowercase : Optional[int] = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __lowercase : List[str] = floats_tensor([self.batch_size, _past_length] ) __lowercase : List[str] = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __lowercase : Dict = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __lowercase : str = floats_tensor([self.batch_size, config.prediction_length] ) __lowercase : List[str] = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.get_config() __lowercase : Any = self.prepare_autoformer_inputs_dict(__a ) return config, inputs_dict def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase , __lowercase : List[str] = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase ( self : Optional[Any] , __a : Tuple , __a : Optional[int] ) -> Any: """simple docstring""" __lowercase : List[str] = AutoformerModel(config=__a ).to(__a ).eval() __lowercase : Optional[int] = model(**__a ) __lowercase : Dict = outputs.encoder_last_hidden_state __lowercase : Tuple = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : List[str] = model.get_encoder() encoder.save_pretrained(__a ) __lowercase : List[str] = AutoformerEncoder.from_pretrained(__a ).to(__a ) __lowercase , __lowercase , __lowercase , __lowercase , __lowercase : Any = model.create_network_inputs(**__a ) __lowercase , __lowercase : Any = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __lowercase : Optional[Any] = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __lowercase : Union[str, Any] = encoder(inputs_embeds=__a )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) __lowercase : str = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __lowercase : Optional[int] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __lowercase : Any = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __lowercase : Dict = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : Optional[Any] = model.get_decoder() decoder.save_pretrained(__a ) __lowercase : Tuple = AutoformerDecoder.from_pretrained(__a ).to(__a ) __lowercase : str = decoder( trend=__a , inputs_embeds=__a , encoder_hidden_states=__a , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[str] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _A : List[Any] = (AutoformerForPrediction,) if is_torch_available() else () _A : Any = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} _A : Dict = False _A : Tuple = False _A : Optional[int] = False _A : Tuple = False _A : str = False _A : Union[str, Any] = False def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" __lowercase : List[str] = AutoformerModelTester(self ) __lowercase : Dict = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowercase : Dict = model_class(__a ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowercase , __lowercase : Tuple = model_class.from_pretrained(__a , output_loading_info=__a ) self.assertEqual(info["""missing_keys"""] , [] ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__a ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def lowerCAmelCase ( self : str ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : Any = inspect.signature(getattr(__a , """forward""" ) ) # The main input is the name of the argument after `self` __lowercase : Optional[int] = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , __a ) def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Dict = model_class(__a ) __lowercase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : Any = [*signature.parameters.keys()] __lowercase : int = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(__a )] , __a ) def lowerCAmelCase ( self : int ) -> int: """simple docstring""" __lowercase , __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : int = True __lowercase : Tuple = getattr(self.model_tester , """seq_length""" , __a ) __lowercase : Union[str, Any] = getattr(self.model_tester , """decoder_seq_length""" , __a ) __lowercase : List[str] = getattr(self.model_tester , """encoder_seq_length""" , __a ) __lowercase : List[Any] = getattr(self.model_tester , """d_model""" , __a ) __lowercase : Optional[int] = getattr(self.model_tester , """num_attention_heads""" , __a ) __lowercase : Any = d_model // num_attention_heads for model_class in self.all_model_classes: __lowercase : Dict = True __lowercase : List[str] = False __lowercase : Optional[int] = True __lowercase : str = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : int = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase : Optional[int] = True __lowercase : List[str] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Union[str, Any] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Dict = outputs.encoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __lowercase : Tuple = len(__a ) __lowercase : str = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__a , __a ) # decoder attentions __lowercase : List[Any] = outputs.decoder_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __lowercase : Optional[int] = outputs.cross_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __lowercase : Tuple = True __lowercase : Union[str, Any] = True __lowercase : Tuple = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Any = model(**self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + 2 , len(__a ) ) __lowercase : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def snake_case_ ( lowerCAmelCase_ : Optional[int]="train-batch.pt" ): __lowercase : Dict = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=lowerCAmelCase_ , repo_type="""dataset""" ) __lowercase : Optional[int] = torch.load(lowerCAmelCase_ , map_location=lowerCAmelCase_ ) return batch @require_torch @slow class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" __lowercase : List[str] = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : List[Any] = prepare_batch() with torch.no_grad(): __lowercase : Tuple = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] __lowercase : List[str] = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , __a ) __lowercase : Optional[int] = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" __lowercase : int = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : List[str] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowercase : Optional[Any] = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state __lowercase : List[str] = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , __a ) __lowercase : Optional[int] = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : Optional[int] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowercase : int = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) __lowercase : int = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , __a ) __lowercase : Optional[Any] = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=__a ) __lowercase : Dict = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __a , rtol=1E-1 ) )
649
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCamelCase : Dict = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCamelCase : str = TaTokenizerFast lowerCamelCase : List[str] = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCamelCase : List[str] = _LazyModule( __name__, globals()['''__file__'''], _import_structure, extra_objects={'''MT5Tokenizer''': MTaTokenizer, '''MT5TokenizerFast''': MTaTokenizerFast}, module_spec=__spec__, )
702
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowerCAmelCase ( __a , __a ): '''simple docstring''' _A : str = 1 @register_to_config def __init__( self : Optional[int] , __a : Tuple=2000 , __a : List[str]=0.1 , __a : str=20 , __a : Optional[int]=1E-3 ) -> int: """simple docstring""" __lowercase : Tuple = None __lowercase : Union[str, Any] = None __lowercase : int = None def lowerCAmelCase ( self : List[Any] , __a : Any , __a : Union[str, torch.device] = None ) -> str: """simple docstring""" __lowercase : List[str] = torch.linspace(1 , self.config.sampling_eps , __a , device=__a ) def lowerCAmelCase ( self : Tuple , __a : List[Any] , __a : Tuple , __a : int , __a : Optional[int]=None ) -> str: """simple docstring""" if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __lowercase : Dict = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __lowercase : int = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __lowercase : Union[str, Any] = std.flatten() while len(std.shape ) < len(score.shape ): __lowercase : Optional[Any] = std.unsqueeze(-1 ) __lowercase : List[Any] = -score / std # compute __lowercase : Dict = -1.0 / len(self.timesteps ) __lowercase : int = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __lowercase : List[Any] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __lowercase : Union[str, Any] = beta_t.unsqueeze(-1 ) __lowercase : List[str] = -0.5 * beta_t * x __lowercase : int = torch.sqrt(__a ) __lowercase : Union[str, Any] = drift - diffusion**2 * score __lowercase : Optional[Any] = x + drift * dt # add noise __lowercase : List[str] = randn_tensor(x.shape , layout=x.layout , generator=__a , device=x.device , dtype=x.dtype ) __lowercase : str = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Tuple ) -> Optional[int]: """simple docstring""" return self.config.num_train_timesteps
649
0
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('''Googling.....''') lowerCamelCase : Optional[Any] = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) lowerCamelCase : List[str] = requests.get(url, headers={'''UserAgent''': UserAgent().random}) # res.raise_for_status() with open('''project1a.html''', '''wb''') as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) lowerCamelCase : List[str] = BeautifulSoup(res.text, '''html.parser''') lowerCamelCase : List[str] = list(soup.select('''.eZt8xd'''))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('''href''')) else: webbrowser.open(f'''https://google.com{link.get("href")}''')
703
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : str = LongformerTokenizer _A : int = True _A : Optional[int] = LongformerTokenizerFast _A : int = True def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __lowercase : Union[str, Any] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Any = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __lowercase : Optional[int] = {"""unk_token""": """<unk>"""} __lowercase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__a ) ) def lowerCAmelCase ( self : Optional[int] , **__a : Optional[Any] ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Tuple , **__a : Tuple ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : str , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = """lower newer""" __lowercase : int = """lower newer""" return input_text, output_text def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowercase : Dict = """lower newer""" __lowercase : Optional[Any] = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] __lowercase : str = tokenizer.tokenize(__a ) # , add_prefix_space=True) self.assertListEqual(__a , __a ) __lowercase : int = tokens + [tokenizer.unk_token] __lowercase : str = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=__a ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=__a ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : Any = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" ) __lowercase : Optional[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=__a ) __lowercase : List[str] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__a ) __lowercase : Optional[Any] = tokenizer.encode( """sequence builders""" , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Union[str, Any] = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : List[Any] = tokenizer.build_inputs_with_special_tokens(__a ) __lowercase : Any = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() __lowercase : Tuple = """Encode this sequence.""" __lowercase : Optional[Any] = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments __lowercase : Dict = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__a , __a ) __lowercase : List[str] = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__a , __a ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) __lowercase : str = tokenizer.encode(__a , add_special_tokens=__a ) __lowercase : Dict = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__a , __a ) # Testing spaces after special tokens __lowercase : List[Any] = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(__a , lstrip=__a , rstrip=__a )} ) # mask token has a left space __lowercase : Dict = tokenizer.convert_tokens_to_ids(__a ) __lowercase : List[str] = """Encode <mask> sequence""" __lowercase : List[str] = """Encode <mask>sequence""" __lowercase : Union[str, Any] = tokenizer.encode(__a ) __lowercase : Dict = encoded.index(__a ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__a , __a ) __lowercase : int = tokenizer.encode(__a ) __lowercase : Union[str, Any] = encoded.index(__a ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__a , __a ) def lowerCAmelCase ( self : int ) -> str: """simple docstring""" pass def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) __lowercase : List[Any] = self.tokenizer_class.from_pretrained(__a , **__a ) __lowercase : Optional[Any] = """A, <mask> AllenNLP sentence.""" __lowercase : Union[str, Any] = tokenizer_r.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) __lowercase : Optional[Any] = tokenizer_p.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) __lowercase : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __lowercase : str = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __lowercase : Dict = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __lowercase : Any = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""trim_offsets"""] , __a ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : List[str] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` __lowercase : int = F"{text_of_1_token} {text_of_1_token}" __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Any = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) __lowercase : str = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Tuple = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) __lowercase : Optional[int] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : str = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) __lowercase : str = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : int = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) __lowercase : Any = F" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : str = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ) + 1, 1 + len(__a ) + 1 + len(__a )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Dict = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Tuple = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , )
649
0
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def snake_case_ ( lowerCAmelCase_ : List[str] ): __lowercase : List[Any] = analyze_text(_lowercase ) __lowercase : Any = list(""" """ + ascii_lowercase ) # what is our total sum of probabilities. __lowercase : Union[str, Any] = sum(single_char_strings.values() ) # one length string __lowercase : Union[str, Any] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: __lowercase : Any = single_char_strings[ch] __lowercase : int = my_str / all_sum my_fir_sum += prob * math.loga(_lowercase ) # entropy formula. # print entropy print(F"{round(-1 * my_fir_sum ):.1f}" ) # two len string __lowercase : str = sum(two_char_strings.values() ) __lowercase : str = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: __lowercase : Optional[Any] = cha + cha if sequence in two_char_strings: __lowercase : int = two_char_strings[sequence] __lowercase : Optional[int] = int(_lowercase ) / all_sum my_sec_sum += prob * math.loga(_lowercase ) # print second entropy print(F"{round(-1 * my_sec_sum ):.1f}" ) # print the difference between them print(F"{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}" ) def snake_case_ ( lowerCAmelCase_ : Any ): __lowercase : Optional[Any] = Counter() # type: ignore __lowercase : List[Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(_lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def snake_case_ ( ): import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
704
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Dict , __a : Union[str, Any]=13 , __a : Dict=7 , __a : Dict=True , __a : Dict=True , __a : Any=True , __a : List[str]=True , __a : int=99 , __a : Optional[int]=32 , __a : str=2 , __a : int=4 , __a : List[str]=37 , __a : Union[str, Any]="gelu" , __a : Union[str, Any]=0.1 , __a : Union[str, Any]=0.1 , __a : List[Any]=512 , __a : int=16 , __a : Union[str, Any]=2 , __a : Union[str, Any]=0.02 , __a : List[str]=3 , __a : Dict=4 , __a : Optional[Any]=None , ) -> Optional[Any]: """simple docstring""" __lowercase : Any = parent __lowercase : Tuple = 13 __lowercase : Dict = 7 __lowercase : List[Any] = True __lowercase : Tuple = True __lowercase : List[str] = True __lowercase : Any = True __lowercase : Optional[int] = 99 __lowercase : str = 384 __lowercase : Optional[Any] = 2 __lowercase : Dict = 4 __lowercase : str = 37 __lowercase : Optional[int] = """gelu""" __lowercase : int = 0.1 __lowercase : Union[str, Any] = 0.1 __lowercase : Tuple = 512 __lowercase : Tuple = 16 __lowercase : Optional[int] = 2 __lowercase : Optional[Any] = 0.02 __lowercase : Dict = 3 __lowercase : Union[str, Any] = 4 __lowercase : Tuple = 128 __lowercase : Optional[Any] = 2 __lowercase : int = 9 __lowercase : List[Any] = 1 __lowercase : Union[str, Any] = None def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" __lowercase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : Optional[Any] = None if self.use_input_mask: __lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : Dict = None if self.use_token_type_ids: __lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase : Optional[Any] = None __lowercase : str = None __lowercase : Tuple = None if self.use_labels: __lowercase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : str = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : Optional[int] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Dict , __a : List[Any] , __a : List[str] , __a : Union[str, Any] , __a : str , __a : Union[str, Any] , __a : Tuple , __a : Tuple ) -> Dict: """simple docstring""" __lowercase : Dict = TFConvBertModel(config=__a ) __lowercase : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowercase : Any = [input_ids, input_mask] __lowercase : Dict = model(__a ) __lowercase : str = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : Any , __a : Tuple , __a : Union[str, Any] , __a : str , __a : Dict , __a : str ) -> Dict: """simple docstring""" __lowercase : Optional[int] = TFConvBertForMaskedLM(config=__a ) __lowercase : List[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : Any = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[int] , __a : int , __a : Any , __a : Optional[int] , __a : int , __a : int , __a : List[Any] , __a : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase : str = self.num_labels __lowercase : List[Any] = TFConvBertForSequenceClassification(config=__a ) __lowercase : int = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : List[str] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Optional[int] , __a : Any , __a : Optional[Any] , __a : int , __a : Optional[int] , __a : Tuple , __a : int , __a : int ) -> Dict: """simple docstring""" __lowercase : Tuple = self.num_choices __lowercase : Dict = TFConvBertForMultipleChoice(config=__a ) __lowercase : List[str] = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : int = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : str = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : str = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __lowercase : Dict = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : List[str] , __a : str , __a : List[str] , __a : List[str] , __a : List[str] , __a : Any , __a : Tuple , __a : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = self.num_labels __lowercase : Tuple = TFConvBertForTokenClassification(config=__a ) __lowercase : Dict = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : str = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : List[Any] , __a : Optional[int] , __a : List[str] , __a : Optional[Any] , __a : int , __a : Tuple , __a : Any , __a : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Any = TFConvBertForQuestionAnswering(config=__a ) __lowercase : str = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : List[Any] = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : Tuple = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : int = config_and_inputs __lowercase : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Dict = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _A : str = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _A : Union[str, Any] = False _A : List[str] = False _A : Dict = False def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : int = TFConvBertModelTester(self ) __lowercase : Tuple = ConfigTester(self , config_class=__a , hidden_size=37 ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__a ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Union[str, Any] = True __lowercase : List[Any] = True if hasattr(__a , """use_cache""" ): __lowercase : Optional[Any] = True __lowercase : List[str] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) __lowercase : int = getattr(self.model_tester , """key_length""" , __a ) for model_class in self.all_model_classes: __lowercase : Optional[Any] = self._prepare_for_class(__a , __a ) __lowercase : Tuple = model_class(__a ) __lowercase : Tuple = len(model(__a ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a , saved_model=__a ) __lowercase : List[Any] = os.path.join(__a , """saved_model""" , """1""" ) __lowercase : str = tf.keras.models.load_model(__a ) __lowercase : Optional[int] = model(__a ) if self.is_encoder_decoder: __lowercase : Union[str, Any] = outputs["""encoder_hidden_states"""] __lowercase : Union[str, Any] = outputs["""encoder_attentions"""] else: __lowercase : Union[str, Any] = outputs["""hidden_states"""] __lowercase : List[str] = outputs["""attentions"""] self.assertEqual(len(__a ) , __a ) __lowercase : List[Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : str = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) self.assertIsNotNone(__a ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : List[str] = True __lowercase : List[Any] = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length ) __lowercase : Optional[int] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) __lowercase : List[str] = getattr(self.model_tester , """key_length""" , __a ) __lowercase : List[Any] = getattr(self.model_tester , """key_length""" , __a ) def check_decoder_attentions_output(__a : List[str] ): __lowercase : Union[str, Any] = len(__a ) self.assertEqual(out_len % 2 , 0 ) __lowercase : Any = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__a : str ): __lowercase : str = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __lowercase : int = True __lowercase : Any = False __lowercase : List[Any] = model_class(__a ) __lowercase : Tuple = model(self._prepare_for_class(__a , __a ) ) __lowercase : Dict = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: __lowercase : Any = model_class(__a ) __lowercase : List[str] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __lowercase : Dict = True __lowercase : Optional[Any] = model_class(__a ) __lowercase : Optional[int] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine __lowercase : List[str] = True __lowercase : List[Any] = True __lowercase : Any = model_class(__a ) __lowercase : Optional[int] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @require_tf class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) __lowercase : str = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowercase : Tuple = model(__a )[0] __lowercase : Any = [1, 6, 768] self.assertEqual(output.shape , __a ) __lowercase : Optional[Any] = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-4 )
649
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : Dict = { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json" ), } class lowerCAmelCase ( lowercase__ ): '''simple docstring''' _A : List[Any] = '''dpr''' def __init__( self : str , __a : List[str]=30522 , __a : Optional[Any]=768 , __a : int=12 , __a : Tuple=12 , __a : Any=3072 , __a : str="gelu" , __a : Dict=0.1 , __a : Tuple=0.1 , __a : int=512 , __a : Dict=2 , __a : Union[str, Any]=0.02 , __a : Any=1E-12 , __a : Optional[Any]=0 , __a : Tuple="absolute" , __a : int = 0 , **__a : Tuple , ) -> Union[str, Any]: """simple docstring""" super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase ) __lowercase : Dict = vocab_size __lowercase : List[str] = hidden_size __lowercase : str = num_hidden_layers __lowercase : List[Any] = num_attention_heads __lowercase : Tuple = hidden_act __lowercase : List[str] = intermediate_size __lowercase : str = hidden_dropout_prob __lowercase : str = attention_probs_dropout_prob __lowercase : int = max_position_embeddings __lowercase : int = type_vocab_size __lowercase : Union[str, Any] = initializer_range __lowercase : str = layer_norm_eps __lowercase : List[Any] = projection_dim __lowercase : Optional[Any] = position_embedding_type
705
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : int , *__a : Dict , **__a : Optional[Any] ) -> None: """simple docstring""" warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , __a , ) super().__init__(*__a , **__a )
649
0
import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor lowerCamelCase : Dict = logging.get_logger(__name__) class lowerCAmelCase ( __lowerCamelCase ): '''simple docstring''' def __init__( self : List[str] , *__a : Optional[int] , **__a : str ) -> Tuple: """simple docstring""" warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , UpperCAmelCase_ , ) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ )
706
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Optional[int] = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() __lowercase : List[str] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Dict = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } __lowercase : List[str] = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 16000, """return_attention_mask""": False, """do_normalize""": True, } __lowercase : Tuple = tempfile.mkdtemp() __lowercase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : str = os.path.join(self.tmpdirname , __a ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) # load decoder from hub __lowercase : Optional[int] = """hf-internal-testing/ngram-beam-search-decoder""" def lowerCAmelCase ( self : Optional[Any] , **__a : Dict ) -> Tuple: """simple docstring""" __lowercase : Union[str, Any] = self.add_kwargs_tokens_map.copy() kwargs.update(__a ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : str , **__a : int ) -> Tuple: """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Union[str, Any] , **__a : Union[str, Any] ) -> List[Any]: """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__a ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() __lowercase : Any = self.get_feature_extractor() __lowercase : str = self.get_decoder() __lowercase : Tuple = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) processor.save_pretrained(self.tmpdirname ) __lowercase : Tuple = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __a ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __a ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __a ) def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Any = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __lowercase : str = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : List[str] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(__a , """include""" ): WavaVecaProcessorWithLM( tokenizer=__a , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : List[Any] = self.get_feature_extractor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : int = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Optional[int] = floats_list((3, 1000) ) __lowercase : List[Any] = feature_extractor(__a , return_tensors="""np""" ) __lowercase : List[str] = processor(__a , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : List[Any] = self.get_feature_extractor() __lowercase : int = self.get_tokenizer() __lowercase : Dict = self.get_decoder() __lowercase : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Dict = """This is a test string""" __lowercase : Any = processor(text=__a ) __lowercase : Dict = tokenizer(__a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase ( self : str , __a : Tuple=(2, 10, 16) , __a : int=77 ) -> Optional[Any]: """simple docstring""" np.random.seed(__a ) return np.random.rand(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : List[str] = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : str = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : List[str] = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __lowercase : Optional[Any] = processor.decode(__a ) __lowercase : Any = decoder.decode_beams(__a )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def lowerCAmelCase ( self : List[str] , __a : Dict ) -> List[Any]: """simple docstring""" __lowercase : str = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : Optional[int] = self.get_decoder() __lowercase : Any = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Optional[Any] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __lowercase : Union[str, Any] = processor.batch_decode(__a ) else: with get_context(__a ).Pool() as pool: __lowercase : Optional[Any] = processor.batch_decode(__a , __a ) __lowercase : Union[str, Any] = list(__a ) with get_context("""fork""" ).Pool() as p: __lowercase : Optional[Any] = decoder.decode_beams_batch(__a , __a ) __lowercase , __lowercase , __lowercase : Any = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__a , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(__a , decoded_processor.logit_score ) self.assertListEqual(__a , decoded_processor.lm_score ) def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase : int = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : List[str] = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Dict = self._get_dummy_logits() __lowercase : Tuple = 15 __lowercase : Tuple = -20.0 __lowercase : Dict = -4.0 __lowercase : Dict = processor.batch_decode( __a , beam_width=__a , beam_prune_logp=__a , token_min_logp=__a , ) __lowercase : Tuple = decoded_processor_out.text __lowercase : List[Any] = list(__a ) with get_context("""fork""" ).Pool() as pool: __lowercase : Any = decoder.decode_beams_batch( __a , __a , beam_width=__a , beam_prune_logp=__a , token_min_logp=__a , ) __lowercase : Optional[Any] = [d[0][0] for d in decoded_decoder_out] __lowercase : Optional[int] = [d[0][2] for d in decoded_decoder_out] __lowercase : Optional[int] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__a , __a ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , __a ) self.assertTrue(np.array_equal(__a , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , __a , atol=1E-3 ) ) self.assertTrue(np.array_equal(__a , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , __a , atol=1E-3 ) ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase : str = self.get_feature_extractor() __lowercase : List[Any] = self.get_tokenizer() __lowercase : List[Any] = self.get_decoder() __lowercase : Dict = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : List[Any] = self._get_dummy_logits() __lowercase : Optional[int] = 2.0 __lowercase : Tuple = 5.0 __lowercase : Optional[Any] = -20.0 __lowercase : Tuple = True __lowercase : Union[str, Any] = processor.batch_decode( __a , alpha=__a , beta=__a , unk_score_offset=__a , lm_score_boundary=__a , ) __lowercase : Any = decoded_processor_out.text __lowercase : List[Any] = list(__a ) decoder.reset_params( alpha=__a , beta=__a , unk_score_offset=__a , lm_score_boundary=__a , ) with get_context("""fork""" ).Pool() as pool: __lowercase : Tuple = decoder.decode_beams_batch( __a , __a , ) __lowercase : int = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__a , __a ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , __a ) __lowercase : str = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , __a ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] __lowercase : str = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __lowercase : int = os.listdir(__a ) __lowercase : Optional[Any] = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = snapshot_download("""hf-internal-testing/processor_with_lm""" ) __lowercase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(__a ) __lowercase : Dict = processor.decoder.model_container[processor.decoder._model_key] __lowercase : List[Any] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __lowercase : Dict = os.listdir(__a ) __lowercase : List[Any] = os.listdir(__a ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" __lowercase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Dict = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Any = floats_list((3, 1000) ) __lowercase : List[str] = processor_wavaveca(__a , return_tensors="""np""" ) __lowercase : List[Any] = processor_auto(__a , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) __lowercase : List[str] = self._get_dummy_logits() __lowercase : List[str] = processor_wavaveca.batch_decode(__a ) __lowercase : Optional[int] = processor_auto.batch_decode(__a ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Any = self.get_feature_extractor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : Dict = self.get_decoder() __lowercase : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def lowerCAmelCase ( __a : Union[str, Any] , __a : List[Any] ) -> Dict: """simple docstring""" __lowercase : Any = [d[key] for d in offsets] return retrieved_list def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" __lowercase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Optional[Any] = self._get_dummy_logits()[0] __lowercase : Dict = processor.decode(__a , output_word_offsets=__a ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__a , __a ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : List[str] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Any = self._get_dummy_logits() __lowercase : Dict = processor.batch_decode(__a , output_word_offsets=__a ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__a , __a ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(__a , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" import torch __lowercase : Any = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=__a ) __lowercase : str = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=16000 ) ) __lowercase : Tuple = iter(__a ) __lowercase : Union[str, Any] = next(__a ) __lowercase : int = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) __lowercase : int = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __lowercase : Union[str, Any] = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): __lowercase : List[Any] = model(__a ).logits.cpu().numpy() __lowercase : Tuple = processor.decode(logits[0] , output_word_offsets=__a ) __lowercase : int = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __lowercase : Optional[Any] = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] __lowercase : str = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(__a , """word""" ) ) , __a ) self.assertEqual(""" """.join(self.get_from_offsets(__a , """word""" ) ) , output.text ) # output times __lowercase : Tuple = torch.tensor(self.get_from_offsets(__a , """start_time""" ) ) __lowercase : Dict = torch.tensor(self.get_from_offsets(__a , """end_time""" ) ) # fmt: off __lowercase : List[Any] = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) __lowercase : Optional[int] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(__a , __a , atol=0.01 ) ) self.assertTrue(torch.allclose(__a , __a , atol=0.01 ) )
649
0
from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCamelCase : int = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { "CarlCochet/trajectory-transformer-halfcheetah-medium-v2": ( "https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' _A : Optional[int] = 'trajectory_transformer' _A : int = ['past_key_values'] _A : Optional[Any] = { 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Union[str, Any] , __a : List[Any]=100 , __a : List[str]=5 , __a : str=1 , __a : Optional[Any]=1 , __a : Tuple=249 , __a : List[Any]=6 , __a : int=17 , __a : int=25 , __a : str=4 , __a : Union[str, Any]=4 , __a : Optional[Any]=128 , __a : List[str]=0.1 , __a : Dict=0.1 , __a : str=0.1 , __a : int=0.0006 , __a : Optional[int]=512 , __a : Tuple=0.02 , __a : Tuple=1E-12 , __a : int=1 , __a : Any=True , __a : Any=1 , __a : str=50256 , __a : Optional[Any]=50256 , **__a : Dict , ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = vocab_size __lowercase : Union[str, Any] = action_weight __lowercase : Any = reward_weight __lowercase : str = value_weight __lowercase : List[str] = max_position_embeddings __lowercase : Dict = block_size __lowercase : Union[str, Any] = action_dim __lowercase : Tuple = observation_dim __lowercase : Any = transition_dim __lowercase : Optional[int] = learning_rate __lowercase : Optional[int] = n_layer __lowercase : Tuple = n_head __lowercase : int = n_embd __lowercase : List[str] = embd_pdrop __lowercase : Optional[Any] = attn_pdrop __lowercase : Tuple = resid_pdrop __lowercase : List[str] = initializer_range __lowercase : List[str] = layer_norm_eps __lowercase : int = kaiming_initializer_range __lowercase : int = use_cache super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
707
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(0 ) == 0 ) def snake_case_ ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
649
0
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCamelCase : Tuple = 16 lowerCamelCase : List[str] = 32 def snake_case_ ( lowerCAmelCase_ : Accelerator , lowerCAmelCase_ : int = 16 ): __lowercase : Optional[int] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __lowercase : str = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowerCAmelCase_ : str ): # max_length=None => use the model max length (it's actually the default) __lowercase : Tuple = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__A , max_length=__A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowercase : Union[str, Any] = datasets.map( __A , batched=__A , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowercase : Optional[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCAmelCase_ : int ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowercase : List[Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowercase : Optional[Any] = 16 elif accelerator.mixed_precision != "no": __lowercase : str = 8 else: __lowercase : Optional[Any] = None return tokenizer.pad( __A , padding="""longest""" , max_length=__A , pad_to_multiple_of=__A , return_tensors="""pt""" , ) # Instantiate dataloaders. __lowercase : Dict = DataLoader( tokenized_datasets["""train"""] , shuffle=__A , collate_fn=__A , batch_size=__A ) __lowercase : Optional[int] = DataLoader( tokenized_datasets["""validation"""] , shuffle=__A , collate_fn=__A , batch_size=__A ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCamelCase : Tuple = mocked_dataloaders # noqa: F811 def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __A ) == "1": __lowercase : Union[str, Any] = 2 # Initialize accelerator __lowercase : str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowercase : Dict = config['''lr'''] __lowercase : Tuple = int(config["""num_epochs"""] ) __lowercase : List[Any] = int(config["""seed"""] ) __lowercase : Tuple = int(config["""batch_size"""] ) __lowercase : Union[str, Any] = evaluate.load("""glue""" , """mrpc""" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__A ) def inner_training_loop(lowerCAmelCase_ : Tuple ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__A ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowercase : List[Any] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__A ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowercase : Optional[Any] = model.to(accelerator.device ) # Instantiate optimizer __lowercase : Any = AdamW(params=model.parameters() , lr=__A ) __lowercase : Tuple = get_dataloaders(__A , __A ) # Instantiate scheduler __lowercase : Any = get_linear_schedule_with_warmup( optimizer=__A , num_warmup_steps=100 , num_training_steps=(len(__A ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowercase : List[Any] = accelerator.prepare( __A , __A , __A , __A , __A ) # Now we train the model for epoch in range(__A ): model.train() for step, batch in enumerate(__A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __lowercase : List[str] = model(**__A ) __lowercase : int = outputs.loss accelerator.backward(__A ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowercase : List[Any] = model(**__A ) __lowercase : Optional[Any] = outputs.logits.argmax(dim=-1 ) __lowercase : List[Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__A , references=__A , ) __lowercase : Optional[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , __A ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def snake_case_ ( ): __lowercase : Any = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__A , default=__A , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) __lowercase : Tuple = parser.parse_args() __lowercase : Optional[Any] = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__A , __A ) if __name__ == "__main__": main()
708
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCamelCase : int = '''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine''' def snake_case_ ( ): __lowercase : List[Any] = _ask_options( """In which compute environment are you running?""" , ["""This machine""", """AWS (Amazon SageMaker)"""] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __lowercase : Union[str, Any] = get_sagemaker_input() else: __lowercase : str = get_cluster_input() return config def snake_case_ ( lowerCAmelCase_ : List[str]=None ): if subparsers is not None: __lowercase : Optional[int] = subparsers.add_parser("""config""" , description=lowerCAmelCase_ ) else: __lowercase : List[str] = argparse.ArgumentParser("""Accelerate config command""" , description=lowerCAmelCase_ ) parser.add_argument( """--config_file""" , default=lowerCAmelCase_ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def snake_case_ ( lowerCAmelCase_ : Tuple ): __lowercase : Union[str, Any] = get_user_input() if args.config_file is not None: __lowercase : List[Any] = args.config_file else: if not os.path.isdir(lowerCAmelCase_ ): os.makedirs(lowerCAmelCase_ ) __lowercase : Any = default_yaml_config_file if config_file.endswith(""".json""" ): config.to_json_file(lowerCAmelCase_ ) else: config.to_yaml_file(lowerCAmelCase_ ) print(F"accelerate configuration saved at {config_file}" ) def snake_case_ ( ): __lowercase : str = config_command_parser() __lowercase : str = parser.parse_args() config_command(lowerCAmelCase_ ) if __name__ == "__main__": main()
649
0
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING lowerCamelCase : List[str] = logging.get_logger(__name__) @add_end_docstrings(__a ) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Tuple , **__a : List[Any] ) -> List[Any]: """simple docstring""" super().__init__(**_lowerCAmelCase ) requires_backends(self , """vision""" ) requires_backends(self , """torch""" ) if self.framework != "pt": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) self.check_model_type(_lowerCAmelCase ) def lowerCAmelCase ( self : Optional[Any] , **__a : int ) -> List[str]: """simple docstring""" __lowercase : List[Any] = {} __lowercase : Tuple = {} __lowercase : Union[str, Any] = {} # preprocess args if "points_per_batch" in kwargs: __lowercase : str = kwargs["""points_per_batch"""] if "points_per_crop" in kwargs: __lowercase : Optional[int] = kwargs["""points_per_crop"""] if "crops_n_layers" in kwargs: __lowercase : List[Any] = kwargs["""crops_n_layers"""] if "crop_overlap_ratio" in kwargs: __lowercase : List[str] = kwargs["""crop_overlap_ratio"""] if "crop_n_points_downscale_factor" in kwargs: __lowercase : Optional[int] = kwargs["""crop_n_points_downscale_factor"""] # postprocess args if "pred_iou_thresh" in kwargs: __lowercase : List[str] = kwargs["""pred_iou_thresh"""] if "stability_score_offset" in kwargs: __lowercase : str = kwargs["""stability_score_offset"""] if "mask_threshold" in kwargs: __lowercase : List[Any] = kwargs["""mask_threshold"""] if "stability_score_thresh" in kwargs: __lowercase : Tuple = kwargs["""stability_score_thresh"""] if "crops_nms_thresh" in kwargs: __lowercase : Tuple = kwargs["""crops_nms_thresh"""] if "output_rle_mask" in kwargs: __lowercase : Any = kwargs["""output_rle_mask"""] if "output_bboxes_mask" in kwargs: __lowercase : Tuple = kwargs["""output_bboxes_mask"""] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : int , __a : Optional[int] , *__a : Tuple , __a : Optional[Any]=None , __a : int=None , **__a : int ) -> List[str]: """simple docstring""" return super().__call__(_lowerCAmelCase , *_lowerCAmelCase , num_workers=_lowerCAmelCase , batch_size=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase ( self : Union[str, Any] , __a : Dict , __a : Optional[Any]=64 , __a : Any = 0 , __a : List[str] = 512 / 1500 , __a : List[Any] = 32 , __a : Optional[Any] = 1 , ) -> Union[str, Any]: """simple docstring""" __lowercase : List[Any] = load_image(_lowerCAmelCase ) __lowercase : Optional[Any] = self.image_processor.size["""longest_edge"""] __lowercase , __lowercase , __lowercase , __lowercase : Tuple = self.image_processor.generate_crop_boxes( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __lowercase : Optional[int] = self.image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": __lowercase : Union[str, Any] = self.get_inference_context() with inference_context(): __lowercase : str = self._ensure_tensor_on_device(_lowerCAmelCase , device=self.device ) __lowercase : Optional[int] = self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) __lowercase : Dict = image_embeddings __lowercase : str = grid_points.shape[1] __lowercase : Any = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0 , _lowerCAmelCase , _lowerCAmelCase ): __lowercase : Optional[int] = grid_points[:, i : i + points_per_batch, :, :] __lowercase : int = input_labels[:, i : i + points_per_batch] __lowercase : Optional[int] = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def lowerCAmelCase ( self : Any , __a : Tuple , __a : Optional[Any]=0.88 , __a : List[str]=0.95 , __a : str=0 , __a : Dict=1 , ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = model_inputs.pop("""input_boxes""" ) __lowercase : Dict = model_inputs.pop("""is_last""" ) __lowercase : Any = model_inputs.pop("""original_sizes""" ).tolist() __lowercase : Union[str, Any] = model_inputs.pop("""reshaped_input_sizes""" ).tolist() __lowercase : Dict = self.model(**_lowerCAmelCase ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks __lowercase : Dict = model_outputs["""pred_masks"""] __lowercase : str = self.image_processor.post_process_masks( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , binarize=_lowerCAmelCase ) __lowercase : Any = model_outputs["""iou_scores"""] __lowercase , __lowercase , __lowercase : Any = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def lowerCAmelCase ( self : List[Any] , __a : str , __a : Optional[Any]=False , __a : Union[str, Any]=False , __a : Dict=0.7 , ) -> Tuple: """simple docstring""" __lowercase : Dict = [] __lowercase : Any = [] __lowercase : List[Any] = [] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) __lowercase : Any = torch.cat(_lowerCAmelCase ) __lowercase : List[Any] = torch.cat(_lowerCAmelCase ) __lowercase , __lowercase , __lowercase , __lowercase : int = self.image_processor.post_process_for_mask_generation( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __lowercase : Optional[int] = defaultdict(_lowerCAmelCase ) for output in model_outputs: for k, v in output.items(): extra[k].append(_lowerCAmelCase ) __lowercase : int = {} if output_rle_mask: __lowercase : str = rle_mask if output_bboxes_mask: __lowercase : str = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
709
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : list[str] | None = None ): __lowercase : Tuple = word_bank or [] # create a table __lowercase : int = len(lowerCAmelCase_ ) + 1 __lowercase : list[list[list[str]]] = [] for _ in range(lowerCAmelCase_ ): table.append([] ) # seed value __lowercase : Dict = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowerCAmelCase_ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowerCAmelCase_ )] == word: __lowercase : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowerCAmelCase_ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowerCAmelCase_ )]: combination.reverse() return table[len(lowerCAmelCase_ )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
649
0
import os def snake_case_ ( lowerCAmelCase_ : int = "input.txt" ): with open(os.path.join(os.path.dirname(lowerCamelCase__ ) , lowerCamelCase__ ) ) as input_file: __lowercase : str = [ [int(lowerCamelCase__ ) for element in line.split(""",""" )] for line in input_file.readlines() ] __lowercase : Dict = len(lowerCamelCase__ ) __lowercase : Optional[int] = len(matrix[0] ) __lowercase : int = [[-1 for _ in range(lowerCamelCase__ )] for _ in range(lowerCamelCase__ )] for i in range(lowerCamelCase__ ): __lowercase : List[str] = matrix[i][0] for j in range(1 , lowerCamelCase__ ): for i in range(lowerCamelCase__ ): __lowercase : Optional[Any] = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , lowerCamelCase__ ): __lowercase : str = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __lowercase : Dict = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
710
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(1 ) != 0 ) def snake_case_ ( ): assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
649
0
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : Tuple = DebertaTokenizer _A : Optional[Any] = True _A : str = DebertaTokenizerFast def lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase : int = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "[UNK]", ] __lowercase : str = dict(zip(__A , range(len(__A ) ) ) ) __lowercase : List[Any] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] __lowercase : List[Any] = {"unk_token": "[UNK]"} __lowercase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__A ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__A ) ) def lowerCAmelCase ( self : str , **__a : Union[str, Any] ) -> List[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__A ) def lowerCAmelCase ( self : str , __a : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = "lower newer" __lowercase : Any = "lower newer" return input_text, output_text def lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" __lowercase : Any = self.get_tokenizer() __lowercase : Any = "lower newer" __lowercase : Optional[Any] = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] __lowercase : List[Any] = tokenizer.tokenize(__A ) self.assertListEqual(__A , __A ) __lowercase : Dict = tokens + [tokenizer.unk_token] __lowercase : List[Any] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , __A ) def lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = self.get_tokenizer() __lowercase : List[Any] = tokenizer("""Hello""" , """World""" ) __lowercase : Union[str, Any] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["""token_type_ids"""] , __A ) @slow def lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" __lowercase : Optional[int] = self.tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) __lowercase : int = tokenizer.encode("""sequence builders""" , add_special_tokens=__A ) __lowercase : int = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__A ) __lowercase : Any = tokenizer.encode( """sequence builders""" , add_special_tokens=__A , add_prefix_space=__A ) __lowercase : Optional[int] = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=__A , add_prefix_space=__A ) __lowercase : str = tokenizer.build_inputs_with_special_tokens(__A ) __lowercase : Tuple = tokenizer.build_inputs_with_special_tokens(__A , __A ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" __lowercase : Optional[int] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: __lowercase : List[str] = tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) __lowercase : str = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] __lowercase : Dict = tokenizer(__A , padding=__A ) __lowercase : Optional[int] = [tokenizer.decode(__A , skip_special_tokens=__A ) for seq in encoding["input_ids"]] # fmt: off __lowercase : Tuple = { "input_ids": [ [1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] ], "token_type_ids": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on __lowercase : str = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] self.assertDictEqual(encoding.data , __A ) for expected, decoded in zip(__A , __A ): self.assertEqual(__A , __A )
711
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : int = { '''configuration_funnel''': ['''FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FunnelConfig'''], '''convert_funnel_original_tf_checkpoint_to_pytorch''': [], '''tokenization_funnel''': ['''FunnelTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = ['''FunnelTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = [ '''FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FunnelBaseModel''', '''FunnelForMaskedLM''', '''FunnelForMultipleChoice''', '''FunnelForPreTraining''', '''FunnelForQuestionAnswering''', '''FunnelForSequenceClassification''', '''FunnelForTokenClassification''', '''FunnelModel''', '''FunnelPreTrainedModel''', '''load_tf_weights_in_funnel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ '''TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFFunnelBaseModel''', '''TFFunnelForMaskedLM''', '''TFFunnelForMultipleChoice''', '''TFFunnelForPreTraining''', '''TFFunnelForQuestionAnswering''', '''TFFunnelForSequenceClassification''', '''TFFunnelForTokenClassification''', '''TFFunnelModel''', '''TFFunnelPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
649
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase ( UpperCamelCase_ , unittest.TestCase ): '''simple docstring''' _A : Union[str, Any] = ShapEImgaImgPipeline _A : Tuple = ["""image"""] _A : Any = ["""image"""] _A : int = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] _A : Tuple = False @property def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" return 32 @property def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" return 32 @property def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" return self.time_input_dim * 4 @property def lowerCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" return 8 @property def lowerCAmelCase ( self : int ) -> int: """simple docstring""" torch.manual_seed(0 ) __lowercase : Optional[int] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) __lowercase : Optional[int] = CLIPVisionModel(_a ) return model @property def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" __lowercase : Any = CLIPImageProcessor( crop_size=224 , do_center_crop=_a , do_normalize=_a , do_resize=_a , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor @property def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) __lowercase : List[str] = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } __lowercase : Optional[Any] = PriorTransformer(**_a ) return model @property def lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" torch.manual_seed(0 ) __lowercase : Tuple = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } __lowercase : List[str] = ShapERenderer(**_a ) return model def lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase : Any = self.dummy_prior __lowercase : Union[str, Any] = self.dummy_image_encoder __lowercase : List[str] = self.dummy_image_processor __lowercase : Dict = self.dummy_renderer __lowercase : Optional[int] = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=_a , clip_sample=_a , clip_sample_range=1.0 , ) __lowercase : List[str] = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCAmelCase ( self : Dict , __a : int , __a : Optional[Any]=0 ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_a ) ).to(_a ) if str(_a ).startswith("""mps""" ): __lowercase : Optional[int] = torch.manual_seed(_a ) else: __lowercase : Tuple = torch.Generator(device=_a ).manual_seed(_a ) __lowercase : Optional[int] = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCAmelCase ( self : str ) -> int: """simple docstring""" __lowercase : List[Any] = """cpu""" __lowercase : Optional[int] = self.get_dummy_components() __lowercase : int = self.pipeline_class(**_a ) __lowercase : Dict = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) __lowercase : List[str] = pipe(**self.get_dummy_inputs(_a ) ) __lowercase : Optional[int] = output.images[0] __lowercase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __lowercase : Optional[Any] = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : str = torch_device == """cpu""" __lowercase : Dict = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_a , relax_max_difference=_a , ) def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" __lowercase : Dict = self.get_dummy_components() __lowercase : Union[str, Any] = self.pipeline_class(**_a ) __lowercase : Optional[Any] = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) __lowercase : Optional[Any] = 1 __lowercase : Optional[Any] = 2 __lowercase : Any = self.get_dummy_inputs(_a ) for key in inputs.keys(): if key in self.batch_params: __lowercase : Dict = batch_size * [inputs[key]] __lowercase : Optional[int] = pipe(**_a , num_images_per_prompt=_a )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowercase : Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) __lowercase : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) __lowercase : Optional[int] = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) __lowercase : Any = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) __lowercase : Any = torch.Generator(device=_a ).manual_seed(0 ) __lowercase : Dict = pipe( _a , generator=_a , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_a , _a )
712
import logging import os import threading import time try: import warnings except ImportError: lowerCamelCase : Any = None try: import msvcrt except ImportError: lowerCamelCase : str = None try: import fcntl except ImportError: lowerCamelCase : Optional[Any] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: lowerCamelCase : Union[str, Any] = OSError # Data # ------------------------------------------------ lowerCamelCase : Tuple = [ '''Timeout''', '''BaseFileLock''', '''WindowsFileLock''', '''UnixFileLock''', '''SoftFileLock''', '''FileLock''', ] lowerCamelCase : Tuple = '''3.0.12''' lowerCamelCase : Any = None def snake_case_ ( ): global _logger __lowercase : List[str] = _logger or logging.getLogger(__name__ ) return _logger class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Any , __a : Any ) -> List[Any]: """simple docstring""" __lowercase : List[str] = lock_file return None def __str__( self : str ) -> Any: """simple docstring""" __lowercase : Any = F"The file lock '{self.lock_file}' could not be acquired." return temp class lowerCAmelCase : '''simple docstring''' def __init__( self : List[Any] , __a : Optional[int] ) -> int: """simple docstring""" __lowercase : Optional[Any] = lock return None def __enter__( self : Dict ) -> Dict: """simple docstring""" return self.lock def __exit__( self : Optional[int] , __a : Dict , __a : Any , __a : Tuple ) -> Optional[Any]: """simple docstring""" self.lock.release() return None class lowerCAmelCase : '''simple docstring''' def __init__( self : Tuple , __a : Any , __a : Dict=-1 , __a : Optional[Any]=None ) -> Any: """simple docstring""" __lowercase : Optional[int] = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long __lowercase : Dict = self.hash_filename_if_too_long(__a , __a ) # The path to the lock file. __lowercase : Optional[Any] = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __lowercase : int = None # The default timeout value. __lowercase : Optional[int] = timeout # We use this lock primarily for the lock counter. __lowercase : Optional[Any] = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __lowercase : Union[str, Any] = 0 return None @property def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return self._lock_file @property def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return self._timeout @timeout.setter def lowerCAmelCase ( self : Tuple , __a : Tuple ) -> Dict: """simple docstring""" __lowercase : Tuple = float(__a ) return None def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" raise NotImplementedError() def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" raise NotImplementedError() @property def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" return self._lock_file_fd is not None def lowerCAmelCase ( self : Any , __a : Optional[Any]=None , __a : Union[str, Any]=0.05 ) -> List[str]: """simple docstring""" if timeout is None: __lowercase : Union[str, Any] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __lowercase : int = id(self ) __lowercase : Optional[Any] = self._lock_file __lowercase : List[str] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"Attempting to acquire lock {lock_id} on {lock_filename}" ) self._acquire() if self.is_locked: logger().debug(F"Lock {lock_id} acquired on {lock_filename}" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"Timeout on acquiring lock {lock_id} on {lock_filename}" ) raise Timeout(self._lock_file ) else: logger().debug( F"Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ..." ) time.sleep(__a ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __lowercase : Optional[int] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def lowerCAmelCase ( self : Union[str, Any] , __a : Optional[Any]=False ) -> Optional[Any]: """simple docstring""" with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __lowercase : Optional[Any] = id(self ) __lowercase : str = self._lock_file logger().debug(F"Attempting to release lock {lock_id} on {lock_filename}" ) self._release() __lowercase : List[str] = 0 logger().debug(F"Lock {lock_id} released on {lock_filename}" ) return None def __enter__( self : Any ) -> Optional[Any]: """simple docstring""" self.acquire() return self def __exit__( self : List[str] , __a : str , __a : int , __a : List[Any] ) -> Tuple: """simple docstring""" self.release() return None def __del__( self : Optional[int] ) -> Optional[int]: """simple docstring""" self.release(force=__a ) return None def lowerCAmelCase ( self : Tuple , __a : str , __a : int ) -> str: """simple docstring""" __lowercase : List[Any] = os.path.basename(__a ) if len(__a ) > max_length and max_length > 0: __lowercase : int = os.path.dirname(__a ) __lowercase : List[str] = str(hash(__a ) ) __lowercase : Optional[Any] = filename[: max_length - len(__a ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(__a , __a ) else: return path class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Union[str, Any] , __a : List[Any] , __a : Optional[int]=-1 , __a : Tuple=None ) -> List[Any]: """simple docstring""" from .file_utils import relative_to_absolute_path super().__init__(__a , timeout=__a , max_filename_length=__a ) __lowercase : Tuple = """\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __lowercase : Tuple = os.open(self._lock_file , __a ) except OSError: pass else: try: msvcrt.locking(__a , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__a ) else: __lowercase : Union[str, Any] = fd return None def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = self._lock_file_fd __lowercase : int = None msvcrt.locking(__a , msvcrt.LK_UNLCK , 1 ) os.close(__a ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : List[str] , __a : Optional[Any] , __a : str=-1 , __a : List[str]=None ) -> Any: """simple docstring""" __lowercase : Dict = os.statvfs(os.path.dirname(__a ) ).f_namemax super().__init__(__a , timeout=__a , max_filename_length=__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase : List[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC __lowercase : List[str] = os.open(self._lock_file , __a ) try: fcntl.flock(__a , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__a ) else: __lowercase : str = fd return None def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Any = self._lock_file_fd __lowercase : List[str] = None fcntl.flock(__a , fcntl.LOCK_UN ) os.close(__a ) return None class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __lowercase : Union[str, Any] = os.open(self._lock_file , __a ) except OSError: pass else: __lowercase : Optional[int] = fd return None def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" os.close(self._lock_file_fd ) __lowercase : int = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None lowerCamelCase : Optional[Any] = None if msvcrt: lowerCamelCase : List[Any] = WindowsFileLock elif fcntl: lowerCamelCase : List[Any] = UnixFileLock else: lowerCamelCase : Union[str, Any] = SoftFileLock if warnings is not None: warnings.warn('''only soft file lock is available''')
649
0
import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version lowerCamelCase : Any = get_logger(__name__) class lowerCAmelCase : '''simple docstring''' _A : Tuple = 'dummy_data' _A : Dict = 'datasets' _A : int = False def __init__( self : List[str] , __a : str , __a : str , __a : Union[Version, str] , __a : Optional[str] = None , __a : bool = False , __a : bool = True , __a : Optional[List[Callable]] = None , ) -> Any: """simple docstring""" __lowercase : List[Any] = 0 __lowercase : str = dataset_name __lowercase : Optional[Any] = cache_dir __lowercase : Union[str, Any] = use_local_dummy_data __lowercase : Tuple = config # download_callbacks take a single url as input __lowercase : List[Any] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root __lowercase : List[Any] = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general __lowercase : str = str(__a ) # to be downloaded __lowercase : int = None __lowercase : str = None @property def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" if self._dummy_file is None: __lowercase : Union[str, Any] = self.download_dummy_data() return self._dummy_file @property def lowerCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("""dummy""" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("""dummy""" , self.version_name ) @property def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" return os.path.join(self.dummy_data_folder , """dummy_data.zip""" ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) __lowercase : int = cached_path( __a , cache_dir=self.cache_dir , extract_compressed_file=__a , force_extract=__a ) return os.path.join(__a , self.dummy_file_name ) @property def lowerCAmelCase ( self : int ) -> str: """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" if self._bucket_url is None: __lowercase : Optional[int] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , """/""" ) ) return self._bucket_url @property def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , """/""" ).split("""/""" )[:-1] ) def lowerCAmelCase ( self : Union[str, Any] , __a : Dict , *__a : Any ) -> int: """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested __lowercase : Dict = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned __lowercase : str = self.dummy_file_name # special case when data_url is a dict if isinstance(__a , __a ): return self.create_dummy_data_dict(__a , __a ) elif isinstance(__a , (list, tuple) ): return self.create_dummy_data_list(__a , __a ) else: return self.create_dummy_data_single(__a , __a ) def lowerCAmelCase ( self : Any , __a : str , *__a : Any ) -> Optional[Any]: """simple docstring""" return self.download_and_extract(__a ) def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return self.download_and_extract(__a ) def lowerCAmelCase ( self : Dict , __a : Union[str, Any] , *__a : Optional[int] , **__a : Any ) -> Optional[int]: """simple docstring""" return path def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" return {} def lowerCAmelCase ( self : str , __a : Optional[int] , __a : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : int = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(__a , __a ): for single_url in single_urls: download_callback(__a ) else: __lowercase : Tuple = single_urls download_callback(__a ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(__a , __a ): __lowercase : Optional[int] = [os.path.join(__a , urllib.parse.quote_plus(Path(__a ).name ) ) for x in single_urls] else: __lowercase : List[Any] = single_urls __lowercase : Any = os.path.join(__a , urllib.parse.quote_plus(Path(__a ).name ) ) __lowercase : Any = value # make sure that values are unique if all(isinstance(__a , __a ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique __lowercase : Optional[Any] = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def lowerCAmelCase ( self : Optional[Any] , __a : Any , __a : Union[str, Any] ) -> str: """simple docstring""" __lowercase : Union[str, Any] = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one __lowercase : str = all(bool(re.findall("""[0-9]{3,}-of-[0-9]{3,}""" , __a ) ) for url in data_url ) __lowercase : Union[str, Any] = all( url.startswith("""https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed""" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): __lowercase : Optional[int] = [data_url[0]] * len(__a ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(__a ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowercase : str = os.path.join(__a , urllib.parse.quote_plus(single_url.split("""/""" )[-1] ) ) dummy_data_list.append(__a ) return dummy_data_list def lowerCAmelCase ( self : str , __a : Union[str, Any] , __a : List[Any] ) -> Optional[Any]: """simple docstring""" for download_callback in self.download_callbacks: download_callback(__a ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowercase : Optional[int] = os.path.join(__a , urllib.parse.quote_plus(data_url.split("""/""" )[-1] ) ) if os.path.exists(__a ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def lowerCAmelCase ( self : int ) -> List[Any]: """simple docstring""" pass def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" pass def lowerCAmelCase ( self : int , __a : Tuple ) -> Any: """simple docstring""" def _iter_archive_members(__a : Union[str, Any] ): # this preserves the order of the members inside the ZIP archive __lowercase : List[Any] = Path(self.dummy_file ).parent __lowercase : Optional[Any] = path.relative_to(__a ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: __lowercase : List[str] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(__a ) __lowercase : int = Path(__a ) __lowercase : List[str] = _iter_archive_members(__a ) if self.use_local_dummy_data else path.rglob("""*""" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((""".""", """__""") ): yield file_path.relative_to(__a ).as_posix(), file_path.open("""rb""" ) def lowerCAmelCase ( self : Optional[int] , __a : Union[str, Any] ) -> Optional[int]: """simple docstring""" if not isinstance(__a , __a ): __lowercase : List[str] = [paths] for path in paths: if os.path.isfile(__a ): if os.path.basename(__a ).startswith((""".""", """__""") ): return yield path else: for dirpath, dirnames, filenames in os.walk(__a ): if os.path.basename(__a ).startswith((""".""", """__""") ): continue dirnames.sort() for filename in sorted(__a ): if filename.startswith((""".""", """__""") ): continue yield os.path.join(__a , __a )
713
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : Tuple = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = '''layoutlmv3''' def __init__( self : Dict , __a : List[str]=50265 , __a : str=768 , __a : List[Any]=12 , __a : List[Any]=12 , __a : List[str]=3072 , __a : Optional[Any]="gelu" , __a : Optional[int]=0.1 , __a : List[Any]=0.1 , __a : Tuple=512 , __a : int=2 , __a : Any=0.02 , __a : Union[str, Any]=1E-5 , __a : List[str]=1 , __a : List[Any]=0 , __a : int=2 , __a : str=1024 , __a : str=128 , __a : List[Any]=128 , __a : Tuple=True , __a : Optional[int]=32 , __a : Any=128 , __a : List[Any]=64 , __a : Tuple=256 , __a : str=True , __a : int=True , __a : Optional[Any]=True , __a : Any=224 , __a : str=3 , __a : List[str]=16 , __a : Union[str, Any]=None , **__a : List[Any] , ) -> List[str]: """simple docstring""" super().__init__( vocab_size=__a , hidden_size=__a , num_hidden_layers=__a , num_attention_heads=__a , intermediate_size=__a , hidden_act=__a , hidden_dropout_prob=__a , attention_probs_dropout_prob=__a , max_position_embeddings=__a , type_vocab_size=__a , initializer_range=__a , layer_norm_eps=__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a , ) __lowercase : int = max_ad_position_embeddings __lowercase : Any = coordinate_size __lowercase : Optional[Any] = shape_size __lowercase : str = has_relative_attention_bias __lowercase : int = rel_pos_bins __lowercase : Union[str, Any] = max_rel_pos __lowercase : str = has_spatial_attention_bias __lowercase : str = rel_ad_pos_bins __lowercase : List[Any] = max_rel_ad_pos __lowercase : Tuple = text_embed __lowercase : int = visual_embed __lowercase : Tuple = input_size __lowercase : Dict = num_channels __lowercase : str = patch_size __lowercase : Optional[int] = classifier_dropout class lowerCAmelCase ( __a ): '''simple docstring''' _A : str = version.parse('''1.12''' ) @property def lowerCAmelCase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def lowerCAmelCase ( self : Union[str, Any] ) -> float: """simple docstring""" return 1E-5 @property def lowerCAmelCase ( self : str ) -> int: """simple docstring""" return 12 def lowerCAmelCase ( self : List[Any] , __a : "ProcessorMixin" , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional["TensorType"] = None , __a : int = 3 , __a : int = 40 , __a : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , """apply_ocr""" , __a ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase : Tuple = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase : Tuple = processor.tokenizer.num_special_tokens_to_add(__a ) __lowercase : Tuple = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__a ) # Generate dummy inputs according to compute batch and sequence __lowercase : Union[str, Any] = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowercase : Tuple = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowercase : Tuple = self._generate_dummy_images(__a , __a , __a , __a ) __lowercase : int = dict( processor( __a , text=__a , boxes=__a , return_tensors=__a , ) ) return inputs
649
0
import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('''ignore''', category=UserWarning, module='''torch.optim.lr_scheduler''') class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Union[str, Any] , __a : Tuple , __a : bool = True , __a : bool = False ) -> List[Any]: """simple docstring""" __lowercase : Tuple = scheduler __lowercase : Optional[int] = optimizers if isinstance(_UpperCAmelCase , (list, tuple) ) else [optimizers] __lowercase : Optional[int] = split_batches __lowercase : List[str] = step_with_optimizer __lowercase : Any = GradientState() def lowerCAmelCase ( self : int , *__a : str , **__a : int ) -> Optional[int]: """simple docstring""" if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step __lowercase : str = AcceleratorState().num_processes for _ in range(_UpperCAmelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , """total_steps""" ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) else: self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" return self.scheduler.get_last_lr() def lowerCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" return self.scheduler.state_dict() def lowerCAmelCase ( self : str , __a : str ) -> Optional[Any]: """simple docstring""" self.scheduler.load_state_dict(_UpperCAmelCase ) def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" return self.scheduler.get_lr() def lowerCAmelCase ( self : Optional[Any] , *__a : Any , **__a : Any ) -> Optional[int]: """simple docstring""" return self.scheduler.print_lr(*_UpperCAmelCase , **_UpperCAmelCase )
714
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowerCamelCase : List[Any] = logging.get_logger(__name__) class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , __a : str = None , __a : uuid.UUID = None , __a : Any=None , __a : List[Any]=None ) -> List[Any]: """simple docstring""" if not conversation_id: __lowercase : Any = uuid.uuida() if past_user_inputs is None: __lowercase : Dict = [] if generated_responses is None: __lowercase : Dict = [] __lowercase : uuid.UUID = conversation_id __lowercase : List[str] = past_user_inputs __lowercase : List[str] = generated_responses __lowercase : Optional[str] = text def __eq__( self : Dict , __a : Dict ) -> Any: """simple docstring""" if not isinstance(__a , __a ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCAmelCase ( self : List[str] , __a : str , __a : bool = False ) -> Dict: """simple docstring""" if self.new_user_input: if overwrite: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten " F"with: \"{text}\"." ) __lowercase : Optional[int] = text else: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" new input " F"ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input" ) else: __lowercase : Dict = text def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __lowercase : Dict = None def lowerCAmelCase ( self : Optional[int] , __a : str ) -> List[Any]: """simple docstring""" self.generated_responses.append(__a ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : int ) -> str: """simple docstring""" __lowercase : Optional[int] = F"Conversation id: {self.uuid} \n" for is_user, text in self.iter_texts(): __lowercase : Optional[Any] = """user""" if is_user else """bot""" output += F"{name} >> {text} \n" return output @add_end_docstrings( __a , r''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''' , ) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Any , *__a : int , **__a : str ) -> Union[str, Any]: """simple docstring""" super().__init__(*__a , **__a ) if self.tokenizer.pad_token_id is None: __lowercase : List[Any] = self.tokenizer.eos_token def lowerCAmelCase ( self : Union[str, Any] , __a : int=None , __a : Tuple=None , __a : Any=None , **__a : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = {} __lowercase : Tuple = {} __lowercase : List[str] = {} if min_length_for_response is not None: __lowercase : Dict = min_length_for_response if minimum_tokens is not None: __lowercase : Union[str, Any] = minimum_tokens if "max_length" in generate_kwargs: __lowercase : Union[str, Any] = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __lowercase : Union[str, Any] = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(__a ) return preprocess_params, forward_params, postprocess_params def __call__( self : Optional[int] , __a : Union[Conversation, List[Conversation]] , __a : Dict=0 , **__a : List[Any] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = super().__call__(__a , num_workers=__a , **__a ) if isinstance(__a , __a ) and len(__a ) == 1: return outputs[0] return outputs def lowerCAmelCase ( self : Union[str, Any] , __a : Conversation , __a : Tuple=32 ) -> Dict[str, Any]: """simple docstring""" if not isinstance(__a , __a ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( F"Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. " """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer , """_build_conversation_input_ids""" ): __lowercase : List[Any] = self.tokenizer._build_conversation_input_ids(__a ) else: # If the tokenizer cannot handle conversations, we default to only the old version __lowercase : Tuple = self._legacy_parse_and_tokenize(__a ) if self.framework == "pt": __lowercase : List[Any] = torch.LongTensor([input_ids] ) elif self.framework == "tf": __lowercase : List[str] = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCAmelCase ( self : Any , __a : Dict , __a : Any=10 , **__a : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = generate_kwargs.get("""max_length""" , self.model.config.max_length ) __lowercase : List[Any] = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(F"Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})" ) __lowercase : Any = max_length - minimum_tokens __lowercase : int = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: __lowercase : Dict = model_inputs["""attention_mask"""][:, -trim:] __lowercase : Union[str, Any] = model_inputs.pop("""conversation""" ) __lowercase : Tuple = max_length __lowercase : int = self.model.generate(**__a , **__a ) if self.model.config.is_encoder_decoder: __lowercase : Optional[int] = 1 else: __lowercase : str = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCAmelCase ( self : int , __a : Tuple , __a : List[Any]=True ) -> List[str]: """simple docstring""" __lowercase : int = model_outputs["""output_ids"""] __lowercase : Union[str, Any] = self.tokenizer.decode( output_ids[0] , skip_special_tokens=__a , clean_up_tokenization_spaces=__a , ) __lowercase : List[str] = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(__a ) return conversation def lowerCAmelCase ( self : int , __a : Conversation ) -> Dict: """simple docstring""" __lowercase : Optional[int] = self.tokenizer.eos_token_id __lowercase : Optional[Any] = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(__a , add_special_tokens=__a ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(__a , add_special_tokens=__a ) ) if len(__a ) > self.tokenizer.model_max_length: __lowercase : List[Any] = input_ids[-self.tokenizer.model_max_length :] return input_ids
649
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase : List[Any] = logging.get_logger(__name__) lowerCamelCase : str = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowerCamelCase : Optional[int] = { "vocab_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json", }, "merges_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt", }, "tokenizer_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json", }, } lowerCamelCase : Optional[Any] = { "gpt2": 10_24, "gpt2-medium": 10_24, "gpt2-large": 10_24, "gpt2-xl": 10_24, "distilgpt2": 10_24, } class lowerCAmelCase ( __lowerCAmelCase ): '''simple docstring''' _A : str = VOCAB_FILES_NAMES _A : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Union[str, Any] = ['''input_ids''', '''attention_mask'''] _A : int = GPTaTokenizer def __init__( self : Any , __a : Union[str, Any]=None , __a : Union[str, Any]=None , __a : int=None , __a : Tuple="<|endoftext|>" , __a : Optional[Any]="<|endoftext|>" , __a : List[str]="<|endoftext|>" , __a : Optional[int]=False , **__a : Dict , ) -> List[str]: """simple docstring""" super().__init__( _UpperCamelCase , _UpperCamelCase , tokenizer_file=_UpperCamelCase , unk_token=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , add_prefix_space=_UpperCamelCase , **_UpperCamelCase , ) __lowercase : Optional[Any] = kwargs.pop("""add_bos_token""" , _UpperCamelCase ) __lowercase : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , _UpperCamelCase ) != add_prefix_space: __lowercase : Optional[int] = getattr(_UpperCamelCase , pre_tok_state.pop("""type""" ) ) __lowercase : Dict = add_prefix_space __lowercase : List[Any] = pre_tok_class(**_UpperCamelCase ) __lowercase : Optional[Any] = add_prefix_space def lowerCAmelCase ( self : List[Any] , *__a : Optional[int] , **__a : Optional[int] ) -> BatchEncoding: """simple docstring""" __lowercase : int = kwargs.get("""is_split_into_words""" , _UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_UpperCamelCase , **_UpperCamelCase ) def lowerCAmelCase ( self : Dict , *__a : Dict , **__a : Dict ) -> BatchEncoding: """simple docstring""" __lowercase : List[Any] = kwargs.get("""is_split_into_words""" , _UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*_UpperCamelCase , **_UpperCamelCase ) def lowerCAmelCase ( self : Any , __a : str , __a : Optional[str] = None ) -> Tuple[str]: """simple docstring""" __lowercase : Any = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase ) def lowerCAmelCase ( self : Optional[int] , __a : "Conversation" ) -> List[int]: """simple docstring""" __lowercase : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) + [self.eos_token_id] ) if len(_UpperCamelCase ) > self.model_max_length: __lowercase : str = input_ids[-self.model_max_length :] return input_ids
715
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__a , """tf_padding""" ) ) self.parent.assertTrue(hasattr(__a , """depth_multiplier""" ) ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Tuple , __a : str=13 , __a : Dict=3 , __a : List[Any]=32 , __a : Any=0.25 , __a : Any=8 , __a : Optional[int]=8 , __a : Optional[int]=6 , __a : Dict=32 , __a : Tuple=True , __a : List[Any]=True , __a : Optional[int]=True , __a : Tuple="relu6" , __a : Optional[Any]=1280 , __a : str=0.1 , __a : str=0.02 , __a : Optional[Any]=True , __a : Tuple=True , __a : Dict=10 , __a : Optional[Any]=None , ) -> Any: """simple docstring""" __lowercase : List[str] = parent __lowercase : Tuple = batch_size __lowercase : Dict = num_channels __lowercase : Optional[int] = image_size __lowercase : int = depth_multiplier __lowercase : str = depth_divisible_by __lowercase : int = min_depth __lowercase : Tuple = expand_ratio __lowercase : Optional[int] = tf_padding __lowercase : Dict = output_stride __lowercase : Dict = first_layer_is_expansion __lowercase : Optional[Any] = finegrained_output __lowercase : str = hidden_act __lowercase : Union[str, Any] = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) __lowercase : Optional[int] = classifier_dropout_prob __lowercase : int = use_labels __lowercase : Optional[int] = is_training __lowercase : Dict = num_labels __lowercase : Tuple = initializer_range __lowercase : Optional[Any] = scope def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : List[Any] = None __lowercase : Optional[Any] = None if self.use_labels: __lowercase : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __lowercase : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowercase : List[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : Tuple , __a : Dict , __a : Tuple , __a : Optional[int] , __a : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[int] = MobileNetVaModel(config=__a ) model.to(__a ) model.eval() __lowercase : Tuple = model(__a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def lowerCAmelCase ( self : List[str] , __a : Optional[int] , __a : List[str] , __a : str , __a : Optional[int] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = self.num_labels __lowercase : Dict = MobileNetVaForImageClassification(__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : int , __a : List[str] , __a : Tuple , __a : Any , __a : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : int = self.num_labels __lowercase : List[Any] = MobileNetVaForSemanticSegmentation(__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __lowercase : str = model(__a , labels=__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase : List[str] = config_and_inputs __lowercase : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Tuple = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) _A : Optional[Any] = ( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) _A : Tuple = False _A : List[str] = False _A : List[str] = False _A : Optional[int] = False def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = MobileNetVaModelTester(self ) __lowercase : int = MobileNetVaConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV2 does not use inputs_embeds""" ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not support input and output embeddings""" ) def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not output attentions""" ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[Any] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : int = [*signature.parameters.keys()] __lowercase : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" def check_hidden_states_output(__a : List[Any] , __a : Tuple , __a : List[str] ): __lowercase : Optional[Any] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : List[Any] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Tuple = outputs.hidden_states __lowercase : str = 16 self.assertEqual(len(__a ) , __a ) __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Any = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase : Union[str, Any] = True check_hidden_states_output(__a , __a , __a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : Optional[int] = MobileNetVaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def snake_case_ ( ): __lowercase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v2_1.0_224""" ) if is_vision_available() else None ) @slow def lowerCAmelCase ( self : str ) -> int: """simple docstring""" __lowercase : Tuple = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v2_1.0_224""" ).to(__a ) __lowercase : str = self.default_image_processor __lowercase : Tuple = prepare_img() __lowercase : Tuple = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : str = model(**__a ) # verify the logits __lowercase : Union[str, Any] = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , __a ) __lowercase : str = torch.tensor([0.2445, -1.1993, 0.1905] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : int = MobileNetVaForSemanticSegmentation.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __lowercase : Dict = model.to(__a ) __lowercase : Tuple = MobileNetVaImageProcessor.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __lowercase : List[str] = prepare_img() __lowercase : Optional[int] = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : Union[str, Any] = model(**__a ) __lowercase : Any = outputs.logits # verify the logits __lowercase : Dict = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , __a ) __lowercase : str = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=__a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __a , atol=1E-4 ) )
649
0
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem lowerCamelCase : Dict = importlib.util.find_spec('''s3fs''') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 lowerCamelCase : Optional[Any] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f'''A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.''') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def snake_case_ ( lowerCAmelCase_ : Union[str, Any] ): if "://" in dataset_path: __lowercase : int = dataset_path.split("""://""" )[1] return dataset_path def snake_case_ ( lowerCAmelCase_ : Optional[int] ): if fs is not None and fs.protocol != "file": return True else: return False def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] ): __lowercase : List[Any] = not is_remote_filesystem(_lowerCamelCase ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(_lowerCamelCase ) , fs._strip_protocol(_lowerCamelCase ) ) else: fs.mv(_lowerCamelCase , _lowerCamelCase , recursive=_lowerCamelCase ) def snake_case_ ( ): if hasattr(fsspec.asyn , """reset_lock""" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: __lowercase : Optional[int] = None __lowercase : List[str] = None __lowercase : Optional[int] = threading.Lock()
716
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def snake_case_ ( lowerCAmelCase_ : bool = True , *lowerCAmelCase_ : int , **lowerCAmelCase_ : List[str] ): if not is_tqdm_available(): raise ImportError("""Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.""" ) __lowercase : List[str] = False if main_process_only: __lowercase : Optional[int] = PartialState().local_process_index == 0 return _tqdm(*lowerCAmelCase_ , **lowerCAmelCase_ , disable=lowerCAmelCase_ )
649
0
import datasets lowerCamelCase : int = '''\ @InProceedings{conneau2018xnli, author = \"Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin\", title = \"XNLI: Evaluating Cross-lingual Sentence Representations\", booktitle = \"Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing\", year = \"2018\", publisher = \"Association for Computational Linguistics\", location = \"Brussels, Belgium\", } ''' lowerCamelCase : Optional[Any] = '''\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). ''' lowerCamelCase : Tuple = ''' Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: \'accuracy\': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric(\"xnli\") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} ''' def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] ): return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int64""" if self.config_name != """sts-b""" else """float32""" ), """references""": datasets.Value("""int64""" if self.config_name != """sts-b""" else """float32""" ), } ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" , ) def lowerCAmelCase ( self : List[str] , __a : Dict , __a : List[str] ) -> Optional[Any]: """simple docstring""" return {"accuracy": simple_accuracy(__lowerCamelCase , __lowerCamelCase )}
717
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : list[int] ): if not nums: return 0 __lowercase : Tuple = nums[0] __lowercase : Tuple = 0 for num in nums[1:]: __lowercase , __lowercase : List[str] = ( max_excluding + num, max(lowerCAmelCase_ , lowerCAmelCase_ ), ) return max(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
649
0
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): __lowercase : Dict = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): __lowercase : Optional[Any] = n - k # Calculate C(n,k) for i in range(a_ ): result *= n - i result //= i + 1 return result def snake_case_ ( lowerCAmelCase_ : int ): return binomial_coefficient(2 * node_count , a_ ) // (node_count + 1) def snake_case_ ( lowerCAmelCase_ : int ): if n < 0: raise ValueError("""factorial() not defined for negative values""" ) __lowercase : Optional[int] = 1 for i in range(1 , n + 1 ): result *= i return result def snake_case_ ( lowerCAmelCase_ : int ): return catalan_number(a_ ) * factorial(a_ ) if __name__ == "__main__": lowerCamelCase : List[str] = int(input('''Enter the number of nodes: ''').strip() or 0) if node_count <= 0: raise ValueError('''We need some nodes to work with.''') print( f'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' f'''binary trees and {catalan_number(node_count)} binary search trees.''' )
718
lowerCamelCase : List[str] = '''0.18.2''' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
649
0
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , __a : Union[str, Any] , __a : Optional[int]=7 , __a : Optional[Any]=3 , __a : Optional[Any]=18 , __a : Any=30 , __a : int=400 , __a : str=True , __a : Optional[Any]=None , __a : Optional[Any]=True , ) -> Dict: """simple docstring""" __lowercase : Union[str, Any] = size if size is not None else {"""height""": 18, """width""": 18} __lowercase : Optional[int] = parent __lowercase : str = batch_size __lowercase : Dict = num_channels __lowercase : Any = image_size __lowercase : Optional[int] = min_resolution __lowercase : List[str] = max_resolution __lowercase : Union[str, Any] = do_resize __lowercase : Optional[int] = size __lowercase : Union[str, Any] = do_normalize def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8866443634033203, 0.6618829369544983, 0.3891746401786804], [-0.6042559146881104, -0.02295008860528469, 0.5423797369003296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCAmelCase ( _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' _A : Optional[Any] = ImageGPTImageProcessor if is_vision_available() else None def lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" __lowercase : Optional[Any] = ImageGPTImageProcessingTester(self ) @property def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" __lowercase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCamelCase , """clusters""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """size""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """do_normalize""" ) ) def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) __lowercase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase : str = self.image_processing_class(**self.image_processor_dict ) __lowercase : Any = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(__UpperCamelCase , obj[key] ) ) else: self.assertEqual(obj[key] , __UpperCamelCase ) def lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : Dict = os.path.join(__UpperCamelCase , """image_processor.json""" ) image_processor_first.to_json_file(__UpperCamelCase ) __lowercase : str = self.image_processing_class.from_json_file(__UpperCamelCase ).to_dict() __lowercase : Dict = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(__UpperCamelCase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , __UpperCamelCase ) def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase : Dict = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(__UpperCamelCase ) __lowercase : str = self.image_processing_class.from_pretrained(__UpperCamelCase ).to_dict() __lowercase : str = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(__UpperCamelCase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , __UpperCamelCase ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" pass def snake_case_ ( ): __lowercase : Union[str, Any] = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" ) __lowercase : Dict = Image.open(dataset[4]["""file"""] ) __lowercase : List[Any] = Image.open(dataset[5]["""file"""] ) __lowercase : Tuple = [imagea, imagea] return images @require_vision @require_torch class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : List[Any] = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) __lowercase : List[str] = prepare_images() # test non-batched __lowercase : Dict = image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1024) ) __lowercase : List[str] = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , __UpperCamelCase ) # test batched __lowercase : List[str] = image_processing(__UpperCamelCase , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1024) ) __lowercase : Optional[int] = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , __UpperCamelCase )
719
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : List[Any] = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : str=False , lowerCAmelCase_ : Any=False ): __lowercase : Any = """backbone.""" if is_semantic else """""" __lowercase : Optional[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"{prefix}blocks.{i}.norm1.weight", F"beit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm1.bias", F"beit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.weight", F"beit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.bias", F"beit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.weight", F"beit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.bias", F"beit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.weight", F"beit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.bias", F"beit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.weight", F"beit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.bias", F"beit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ (F"{prefix}cls_token", """beit.embeddings.cls_token"""), (F"{prefix}patch_embed.proj.weight", """beit.embeddings.patch_embeddings.projection.weight"""), (F"{prefix}patch_embed.proj.bias", """beit.embeddings.patch_embeddings.projection.bias"""), (F"{prefix}pos_embed", """beit.embeddings.position_embeddings"""), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("""mask_token""", """beit.embeddings.mask_token"""), ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) else: # layernorm + classification head rename_keys.extend( [ ("""fc_norm.weight""", """beit.pooler.layernorm.weight"""), ("""fc_norm.bias""", """beit.pooler.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : List[Any]=False ): for i in range(config.num_hidden_layers ): __lowercase : Tuple = """backbone.""" if is_semantic else """""" # queries, keys and values __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.attn.qkv.weight" ) __lowercase : Dict = state_dict.pop(F"{prefix}blocks.{i}.attn.q_bias" ) __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.attn.v_bias" ) __lowercase : List[str] = in_proj_weight[ : config.hidden_size, : ] __lowercase : Union[str, Any] = q_bias __lowercase : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] __lowercase : str = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.gamma_1" ) __lowercase : str = state_dict.pop(F"{prefix}blocks.{i}.gamma_2" ) __lowercase : List[str] = gamma_a __lowercase : Optional[int] = gamma_a def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : int ): __lowercase : Tuple = dct.pop(lowerCAmelCase_ ) __lowercase : Tuple = val def snake_case_ ( ): __lowercase : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase : Any = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]=False ): __lowercase : Dict = False if """rvlcdip""" in checkpoint_url else True __lowercase : Tuple = BeitConfig(use_absolute_position_embeddings=lowerCAmelCase_ , use_mask_token=lowerCAmelCase_ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: __lowercase : Union[str, Any] = 1024 __lowercase : Optional[int] = 4096 __lowercase : List[Any] = 24 __lowercase : Dict = 16 # labels if "rvlcdip" in checkpoint_url: __lowercase : Optional[int] = 16 __lowercase : Any = """huggingface/label-files""" __lowercase : Union[str, Any] = """rvlcdip-id2label.json""" __lowercase : List[str] = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) __lowercase : Optional[int] = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowercase : Union[str, Any] = idalabel __lowercase : Optional[Any] = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys __lowercase : Optional[int] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ , map_location="""cpu""" )["""model"""] __lowercase : Union[str, Any] = create_rename_keys(lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) # load HuggingFace model __lowercase : Dict = BeitForMaskedImageModeling(lowerCAmelCase_ ) if has_lm_head else BeitForImageClassification(lowerCAmelCase_ ) model.eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image __lowercase : List[str] = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=lowerCAmelCase_ ) __lowercase : List[str] = prepare_img() __lowercase : Optional[Any] = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""" ) __lowercase : Optional[int] = encoding["""pixel_values"""] __lowercase : str = model(lowerCAmelCase_ ) __lowercase : Tuple = outputs.logits # verify logits __lowercase : str = [1, 16] if """rvlcdip""" in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(lowerCAmelCase_ ), "Shape of logits not as expected" Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: if has_lm_head: __lowercase : Optional[Any] = """dit-base""" if """base""" in checkpoint_url else """dit-large""" else: __lowercase : Tuple = """dit-base-finetuned-rvlcdip""" if """dit-b""" in checkpoint_url else """dit-large-finetuned-rvlcdip""" image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=lowerCAmelCase_ , ) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=lowerCAmelCase_ , ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) lowerCamelCase : List[str] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
649
0
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase : Optional[int] = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( _a , unittest.TestCase ): '''simple docstring''' _A : Tuple = XLMRobertaTokenizer _A : Dict = XLMRobertaTokenizerFast _A : Tuple = True _A : Optional[int] = True def lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __lowercase : str = XLMRobertaTokenizer(snake_case_ , keep_accents=snake_case_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" __lowercase : int = """<pad>""" __lowercase : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(snake_case_ ) , 1002 ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1002 ) def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = XLMRobertaTokenizer(snake_case_ , keep_accents=snake_case_ ) __lowercase : str = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(snake_case_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __lowercase : Tuple = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( snake_case_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __lowercase : int = tokenizer.convert_tokens_to_ids(snake_case_ ) self.assertListEqual( snake_case_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) __lowercase : int = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual( snake_case_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __lowercase : List[str] = (self.rust_tokenizer_class, """hf-internal-testing/tiny-xlm-roberta""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : int = self.rust_tokenizer_class.from_pretrained(snake_case_ , **snake_case_ ) __lowercase : str = self.tokenizer_class.from_pretrained(snake_case_ , **snake_case_ ) __lowercase : Union[str, Any] = tempfile.mkdtemp() __lowercase : List[Any] = tokenizer_r.save_pretrained(snake_case_ ) __lowercase : Union[str, Any] = tokenizer_p.save_pretrained(snake_case_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) __lowercase : List[Any] = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(snake_case_ , snake_case_ ) # Checks everything loads correctly in the same way __lowercase : Dict = tokenizer_r.from_pretrained(snake_case_ ) __lowercase : Union[str, Any] = tokenizer_p.from_pretrained(snake_case_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case_ , snake_case_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(snake_case_ ) # Save tokenizer rust, legacy_format=True __lowercase : Union[str, Any] = tempfile.mkdtemp() __lowercase : str = tokenizer_r.save_pretrained(snake_case_ , legacy_format=snake_case_ ) __lowercase : Optional[Any] = tokenizer_p.save_pretrained(snake_case_ ) # Checks it save with the same files self.assertSequenceEqual(snake_case_ , snake_case_ ) # Checks everything loads correctly in the same way __lowercase : int = tokenizer_r.from_pretrained(snake_case_ ) __lowercase : Any = tokenizer_p.from_pretrained(snake_case_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case_ , snake_case_ ) ) shutil.rmtree(snake_case_ ) # Save tokenizer rust, legacy_format=False __lowercase : List[Any] = tempfile.mkdtemp() __lowercase : str = tokenizer_r.save_pretrained(snake_case_ , legacy_format=snake_case_ ) __lowercase : int = tokenizer_p.save_pretrained(snake_case_ ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __lowercase : str = tokenizer_r.from_pretrained(snake_case_ ) __lowercase : Tuple = tokenizer_p.from_pretrained(snake_case_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case_ , snake_case_ ) ) shutil.rmtree(snake_case_ ) @cached_property def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return XLMRobertaTokenizer.from_pretrained("""xlm-roberta-base""" ) def lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(snake_case_ , f.name ) __lowercase : Optional[Any] = XLMRobertaTokenizer(f.name , keep_accents=snake_case_ ) __lowercase : Union[str, Any] = pickle.dumps(snake_case_ ) pickle.loads(snake_case_ ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" if not self.test_rust_tokenizer: return __lowercase : str = self.get_tokenizer() __lowercase : Union[str, Any] = self.get_rust_tokenizer() __lowercase : Optional[Any] = """I was born in 92000, and this is falsé.""" __lowercase : str = tokenizer.tokenize(snake_case_ ) __lowercase : Optional[int] = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowercase : Union[str, Any] = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) __lowercase : str = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowercase : List[Any] = self.get_rust_tokenizer() __lowercase : Union[str, Any] = tokenizer.encode(snake_case_ ) __lowercase : Optional[int] = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) @slow def lowerCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase : List[str] = """Hello World!""" __lowercase : List[str] = [0, 35378, 6661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(snake_case_ , self.big_tokenizer.encode(snake_case_ ) ) @slow def lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Any = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) __lowercase : List[Any] = [ 0, 3293, 83, 10, 4552, 4989, 7986, 678, 10, 5915, 111, 179459, 124850, 4, 6044, 237, 12, 6, 5, 6, 4, 6780, 705, 15, 1388, 44, 378, 10114, 711, 152, 20, 6, 5, 22376, 642, 1221, 15190, 34153, 450, 5608, 959, 1119, 57702, 136, 186, 47, 1098, 29367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6044, 237, 6284, 50901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(snake_case_ , self.big_tokenizer.encode(snake_case_ ) ) @slow def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase : Optional[int] = {"""input_ids""": [[0, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [0, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""xlm-roberta-base""" , revision="""d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3""" , )
720
from torch import nn class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , __a : int , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" super().__init__() __lowercase : int = class_size __lowercase : int = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) __lowercase : str = nn.Linear(__a , __a ) def lowerCAmelCase ( self : Tuple , __a : int ) -> Tuple: """simple docstring""" __lowercase : str = self.mlp(__a ) return logits
649
0
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record lowerCamelCase : List[str] = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' lowerCamelCase : Optional[Any] = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' lowerCamelCase : str = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any ): return float((preds == labels).mean() ) def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str="binary" ): __lowercase : Optional[Any] = simple_accuracy(__UpperCamelCase , __UpperCamelCase ) __lowercase : Dict = float(fa_score(y_true=__UpperCamelCase , y_pred=__UpperCamelCase , average=__UpperCamelCase ) ) return { "accuracy": acc, "f1": fa, } def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : int ): __lowercase : List[Any] = {} for id_pred, label in zip(__UpperCamelCase , __UpperCamelCase ): __lowercase : Optional[int] = F"{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}" __lowercase : Union[str, Any] = id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: __lowercase : str = [(pred, label)] __lowercase : List[str] = [], [] for question, preds_labels in question_map.items(): __lowercase : Optional[Any] = zip(*__UpperCamelCase ) __lowercase : int = fa_score(y_true=__UpperCamelCase , y_pred=__UpperCamelCase , average="""macro""" ) fas.append(__UpperCamelCase ) __lowercase : Dict = int(sum(pred == label for pred, label in preds_labels ) == len(__UpperCamelCase ) ) ems.append(__UpperCamelCase ) __lowercase : Optional[int] = float(sum(__UpperCamelCase ) / len(__UpperCamelCase ) ) __lowercase : Any = sum(__UpperCamelCase ) / len(__UpperCamelCase ) __lowercase : int = float(fa_score(y_true=__UpperCamelCase , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None , ) def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "prediction_text": datasets.Value("""string""" ), }, "references": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "answers": datasets.Sequence(datasets.Value("""string""" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("""int64""" ), "paragraph": datasets.Value("""int64""" ), "question": datasets.Value("""int64""" ), }, "prediction": datasets.Value("""int64""" ), }, "references": datasets.Value("""int64""" ), } else: return { "predictions": datasets.Value("""int64""" ), "references": datasets.Value("""int64""" ), } def lowerCAmelCase ( self : List[str] , __a : Optional[int] , __a : Tuple ) -> List[str]: """simple docstring""" if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_lowercase , _lowercase )} elif self.config_name == "cb": return acc_and_fa(_lowercase , _lowercase , fa_avg="""macro""" ) elif self.config_name == "record": __lowercase : Optional[Any] = [ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] __lowercase : Dict = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(_lowercase , _lowercase )[0] elif self.config_name == "multirc": return evaluate_multirc(_lowercase , _lowercase ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_lowercase , _lowercase )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
721
import fire from utils import calculate_rouge, save_json def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : str=None , **lowerCAmelCase_ : str ): __lowercase : Tuple = [x.strip() for x in open(lowerCAmelCase_ ).readlines()] __lowercase : Dict = [x.strip() for x in open(lowerCAmelCase_ ).readlines()][: len(lowerCAmelCase_ )] __lowercase : Tuple = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) if save_path is not None: save_json(lowerCAmelCase_ , lowerCAmelCase_ , indent=lowerCAmelCase_ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
649
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : List[str] = logging.get_logger(__name__) lowerCamelCase : Union[str, Any] = { '''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''', '''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class lowerCAmelCase ( _lowercase ): '''simple docstring''' _A : List[str] = '''mobilenet_v1''' def __init__( self : str , __a : Optional[Any]=3 , __a : int=224 , __a : int=1.0 , __a : Optional[Any]=8 , __a : int="relu6" , __a : Any=True , __a : str=0.999 , __a : Union[str, Any]=0.02 , __a : List[Any]=0.001 , **__a : Tuple , ) -> int: """simple docstring""" super().__init__(**A_ ) if depth_multiplier <= 0: raise ValueError("""depth_multiplier must be greater than zero.""" ) __lowercase : Dict = num_channels __lowercase : Optional[int] = image_size __lowercase : List[str] = depth_multiplier __lowercase : str = min_depth __lowercase : Any = hidden_act __lowercase : Union[str, Any] = tf_padding __lowercase : Dict = classifier_dropout_prob __lowercase : Dict = initializer_range __lowercase : Any = layer_norm_eps class lowerCAmelCase ( _lowercase ): '''simple docstring''' _A : Any = version.parse('''1.11''' ) @property def lowerCAmelCase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict([("""pixel_values""", {0: """batch"""})] ) @property def lowerCAmelCase ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "image-classification": return OrderedDict([("""logits""", {0: """batch"""})] ) else: return OrderedDict([("""last_hidden_state""", {0: """batch"""}), ("""pooler_output""", {0: """batch"""})] ) @property def lowerCAmelCase ( self : Optional[Any] ) -> float: """simple docstring""" return 1E-4
700
from argparse import ArgumentParser from . import BaseTransformersCLICommand def snake_case_ ( lowerCAmelCase_ : Dict ): return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class lowerCAmelCase ( __a ): '''simple docstring''' @staticmethod def lowerCAmelCase ( __a : ArgumentParser ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = parser.add_parser("""download""" ) download_parser.add_argument( """--cache-dir""" , type=__a , default=__a , help="""Path to location to store the models""" ) download_parser.add_argument( """--force""" , action="""store_true""" , help="""Force the model to be download even if already in cache-dir""" ) download_parser.add_argument( """--trust-remote-code""" , action="""store_true""" , help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" , ) download_parser.add_argument("""model""" , type=__a , help="""Name of the model to download""" ) download_parser.set_defaults(func=__a ) def __init__( self : Dict , __a : str , __a : str , __a : bool , __a : bool ) -> Union[str, Any]: """simple docstring""" __lowercase : Dict = model __lowercase : List[Any] = cache __lowercase : Any = force __lowercase : Optional[int] = trust_remote_code def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
649
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : int = { '''uw-madison/mra-base-512-4''': '''https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json''', } class lowerCAmelCase ( lowercase__ ): '''simple docstring''' _A : Optional[int] = 'mra' def __init__( self : Optional[int] , __a : Any=50265 , __a : List[Any]=768 , __a : Optional[int]=12 , __a : List[str]=12 , __a : List[str]=3072 , __a : Optional[int]="gelu" , __a : Tuple=0.1 , __a : Dict=0.1 , __a : Tuple=512 , __a : str=1 , __a : int=0.02 , __a : Optional[int]=1E-5 , __a : List[Any]="absolute" , __a : Union[str, Any]=4 , __a : int="full" , __a : Optional[int]=0 , __a : Tuple=0 , __a : str=1 , __a : int=0 , __a : List[Any]=2 , **__a : List[str] , ) -> Tuple: """simple docstring""" super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) __lowercase : Optional[Any] = vocab_size __lowercase : List[str] = max_position_embeddings __lowercase : List[str] = hidden_size __lowercase : Optional[int] = num_hidden_layers __lowercase : List[Any] = num_attention_heads __lowercase : List[Any] = intermediate_size __lowercase : Optional[Any] = hidden_act __lowercase : Tuple = hidden_dropout_prob __lowercase : Tuple = attention_probs_dropout_prob __lowercase : Optional[Any] = initializer_range __lowercase : Optional[int] = type_vocab_size __lowercase : Optional[Any] = layer_norm_eps __lowercase : Optional[Any] = position_embedding_type __lowercase : Optional[int] = block_per_row __lowercase : int = approx_mode __lowercase : str = initial_prior_first_n_blocks __lowercase : List[Any] = initial_prior_diagonal_n_blocks
701
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowerCamelCase : Union[str, Any] = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , __a : List[str] , __a : Optional[int]=16 , __a : Optional[Any]=13 , __a : str=7 , __a : List[str]=14 , __a : Any=10 , __a : str=19 , __a : int=5 , __a : Any=4 , __a : List[Any]=True , __a : Tuple=16 , __a : Dict=2 , __a : Tuple=4 , __a : int=4 , __a : List[Any]="gelu" , __a : Tuple=0.1 , __a : List[str]=0.1 , __a : int=[1, 2, 3, 4, 5] , __a : str=25 , __a : Any=5 , ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = d_model __lowercase : Dict = parent __lowercase : Tuple = batch_size __lowercase : Optional[int] = prediction_length __lowercase : List[str] = context_length __lowercase : Any = cardinality __lowercase : str = num_time_features __lowercase : Optional[int] = lags_sequence __lowercase : Optional[Any] = embedding_dimension __lowercase : List[Any] = is_training __lowercase : List[str] = hidden_size __lowercase : int = num_hidden_layers __lowercase : Any = num_attention_heads __lowercase : List[Any] = intermediate_size __lowercase : int = hidden_act __lowercase : str = hidden_dropout_prob __lowercase : List[Any] = attention_probs_dropout_prob __lowercase : str = context_length __lowercase : int = prediction_length + label_length __lowercase : Union[str, Any] = label_length __lowercase : Optional[int] = moving_average __lowercase : Optional[Any] = autocorrelation_factor def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def lowerCAmelCase ( self : Tuple , __a : str ) -> int: """simple docstring""" __lowercase : Any = config.context_length + max(config.lags_sequence ) __lowercase : Any = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __lowercase : Optional[int] = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __lowercase : List[str] = floats_tensor([self.batch_size, _past_length] ) __lowercase : List[str] = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __lowercase : Dict = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __lowercase : str = floats_tensor([self.batch_size, config.prediction_length] ) __lowercase : List[str] = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.get_config() __lowercase : Any = self.prepare_autoformer_inputs_dict(__a ) return config, inputs_dict def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase , __lowercase : List[str] = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase ( self : Optional[Any] , __a : Tuple , __a : Optional[int] ) -> Any: """simple docstring""" __lowercase : List[str] = AutoformerModel(config=__a ).to(__a ).eval() __lowercase : Optional[int] = model(**__a ) __lowercase : Dict = outputs.encoder_last_hidden_state __lowercase : Tuple = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : List[str] = model.get_encoder() encoder.save_pretrained(__a ) __lowercase : List[str] = AutoformerEncoder.from_pretrained(__a ).to(__a ) __lowercase , __lowercase , __lowercase , __lowercase , __lowercase : Any = model.create_network_inputs(**__a ) __lowercase , __lowercase : Any = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __lowercase : Optional[Any] = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __lowercase : Union[str, Any] = encoder(inputs_embeds=__a )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) __lowercase : str = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __lowercase : Optional[int] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __lowercase : Any = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __lowercase : Dict = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : Optional[Any] = model.get_decoder() decoder.save_pretrained(__a ) __lowercase : Tuple = AutoformerDecoder.from_pretrained(__a ).to(__a ) __lowercase : str = decoder( trend=__a , inputs_embeds=__a , encoder_hidden_states=__a , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[str] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _A : List[Any] = (AutoformerForPrediction,) if is_torch_available() else () _A : Any = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} _A : Dict = False _A : Tuple = False _A : Optional[int] = False _A : Tuple = False _A : str = False _A : Union[str, Any] = False def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" __lowercase : List[str] = AutoformerModelTester(self ) __lowercase : Dict = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowercase : Dict = model_class(__a ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowercase , __lowercase : Tuple = model_class.from_pretrained(__a , output_loading_info=__a ) self.assertEqual(info["""missing_keys"""] , [] ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__a ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def lowerCAmelCase ( self : str ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : Any = inspect.signature(getattr(__a , """forward""" ) ) # The main input is the name of the argument after `self` __lowercase : Optional[int] = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , __a ) def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Dict = model_class(__a ) __lowercase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : Any = [*signature.parameters.keys()] __lowercase : int = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(__a )] , __a ) def lowerCAmelCase ( self : int ) -> int: """simple docstring""" __lowercase , __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : int = True __lowercase : Tuple = getattr(self.model_tester , """seq_length""" , __a ) __lowercase : Union[str, Any] = getattr(self.model_tester , """decoder_seq_length""" , __a ) __lowercase : List[str] = getattr(self.model_tester , """encoder_seq_length""" , __a ) __lowercase : List[Any] = getattr(self.model_tester , """d_model""" , __a ) __lowercase : Optional[int] = getattr(self.model_tester , """num_attention_heads""" , __a ) __lowercase : Any = d_model // num_attention_heads for model_class in self.all_model_classes: __lowercase : Dict = True __lowercase : List[str] = False __lowercase : Optional[int] = True __lowercase : str = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : int = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase : Optional[int] = True __lowercase : List[str] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Union[str, Any] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Dict = outputs.encoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __lowercase : Tuple = len(__a ) __lowercase : str = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__a , __a ) # decoder attentions __lowercase : List[Any] = outputs.decoder_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __lowercase : Optional[int] = outputs.cross_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __lowercase : Tuple = True __lowercase : Union[str, Any] = True __lowercase : Tuple = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Any = model(**self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + 2 , len(__a ) ) __lowercase : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def snake_case_ ( lowerCAmelCase_ : Optional[int]="train-batch.pt" ): __lowercase : Dict = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=lowerCAmelCase_ , repo_type="""dataset""" ) __lowercase : Optional[int] = torch.load(lowerCAmelCase_ , map_location=lowerCAmelCase_ ) return batch @require_torch @slow class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" __lowercase : List[str] = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : List[Any] = prepare_batch() with torch.no_grad(): __lowercase : Tuple = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] __lowercase : List[str] = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , __a ) __lowercase : Optional[int] = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" __lowercase : int = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : List[str] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowercase : Optional[Any] = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state __lowercase : List[str] = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , __a ) __lowercase : Optional[int] = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : Optional[int] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowercase : int = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) __lowercase : int = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , __a ) __lowercase : Optional[Any] = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=__a ) __lowercase : Dict = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __a , rtol=1E-1 ) )
649
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : int = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = { '''microsoft/cvt-13''': '''https://huggingface.co/microsoft/cvt-13/resolve/main/config.json''', # See all Cvt models at https://huggingface.co/models?filter=cvt } class lowerCAmelCase ( __a ): '''simple docstring''' _A : Any = '''cvt''' def __init__( self : Optional[Any] , __a : Optional[int]=3 , __a : Optional[Any]=[7, 3, 3] , __a : List[Any]=[4, 2, 2] , __a : Union[str, Any]=[2, 1, 1] , __a : Dict=[64, 192, 384] , __a : str=[1, 3, 6] , __a : List[str]=[1, 2, 10] , __a : Optional[int]=[4.0, 4.0, 4.0] , __a : List[str]=[0.0, 0.0, 0.0] , __a : Any=[0.0, 0.0, 0.0] , __a : Dict=[0.0, 0.0, 0.1] , __a : Union[str, Any]=[True, True, True] , __a : int=[False, False, True] , __a : Optional[int]=["dw_bn", "dw_bn", "dw_bn"] , __a : Optional[int]=[3, 3, 3] , __a : Dict=[1, 1, 1] , __a : Tuple=[2, 2, 2] , __a : List[str]=[1, 1, 1] , __a : Optional[Any]=[1, 1, 1] , __a : Any=0.02 , __a : List[str]=1E-12 , **__a : str , ) -> Optional[Any]: """simple docstring""" super().__init__(**__a ) __lowercase : Any = num_channels __lowercase : Union[str, Any] = patch_sizes __lowercase : int = patch_stride __lowercase : List[str] = patch_padding __lowercase : List[Any] = embed_dim __lowercase : Dict = num_heads __lowercase : Optional[int] = depth __lowercase : str = mlp_ratio __lowercase : Union[str, Any] = attention_drop_rate __lowercase : Optional[int] = drop_rate __lowercase : Any = drop_path_rate __lowercase : Optional[int] = qkv_bias __lowercase : Union[str, Any] = cls_token __lowercase : int = qkv_projection_method __lowercase : List[Any] = kernel_qkv __lowercase : Optional[int] = padding_kv __lowercase : str = stride_kv __lowercase : List[str] = padding_q __lowercase : List[str] = stride_q __lowercase : List[Any] = initializer_range __lowercase : int = layer_norm_eps
702
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowerCAmelCase ( __a , __a ): '''simple docstring''' _A : str = 1 @register_to_config def __init__( self : Optional[int] , __a : Tuple=2000 , __a : List[str]=0.1 , __a : str=20 , __a : Optional[int]=1E-3 ) -> int: """simple docstring""" __lowercase : Tuple = None __lowercase : Union[str, Any] = None __lowercase : int = None def lowerCAmelCase ( self : List[Any] , __a : Any , __a : Union[str, torch.device] = None ) -> str: """simple docstring""" __lowercase : List[str] = torch.linspace(1 , self.config.sampling_eps , __a , device=__a ) def lowerCAmelCase ( self : Tuple , __a : List[Any] , __a : Tuple , __a : int , __a : Optional[int]=None ) -> str: """simple docstring""" if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __lowercase : Dict = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __lowercase : int = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __lowercase : Union[str, Any] = std.flatten() while len(std.shape ) < len(score.shape ): __lowercase : Optional[Any] = std.unsqueeze(-1 ) __lowercase : List[Any] = -score / std # compute __lowercase : Dict = -1.0 / len(self.timesteps ) __lowercase : int = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __lowercase : List[Any] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __lowercase : Union[str, Any] = beta_t.unsqueeze(-1 ) __lowercase : List[str] = -0.5 * beta_t * x __lowercase : int = torch.sqrt(__a ) __lowercase : Union[str, Any] = drift - diffusion**2 * score __lowercase : Optional[Any] = x + drift * dt # add noise __lowercase : List[str] = randn_tensor(x.shape , layout=x.layout , generator=__a , device=x.device , dtype=x.dtype ) __lowercase : str = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Tuple ) -> Optional[int]: """simple docstring""" return self.config.num_train_timesteps
649
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : Dict = { """microsoft/deberta-v2-xlarge""": """https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json""", """microsoft/deberta-v2-xxlarge""": """https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json""", """microsoft/deberta-v2-xlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json""" ), """microsoft/deberta-v2-xxlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json""" ), } class lowerCAmelCase ( UpperCamelCase_ ): '''simple docstring''' _A : Union[str, Any] = '''deberta-v2''' def __init__( self : Dict , __a : Dict=128100 , __a : Any=1536 , __a : Union[str, Any]=24 , __a : Optional[int]=24 , __a : Any=6144 , __a : List[str]="gelu" , __a : List[str]=0.1 , __a : int=0.1 , __a : Dict=512 , __a : Optional[int]=0 , __a : Union[str, Any]=0.02 , __a : str=1E-7 , __a : Union[str, Any]=False , __a : str=-1 , __a : str=0 , __a : Optional[Any]=True , __a : Union[str, Any]=None , __a : Any=0 , __a : Any="gelu" , **__a : Optional[int] , ) -> Dict: """simple docstring""" super().__init__(**__A ) __lowercase : Optional[int] = hidden_size __lowercase : Union[str, Any] = num_hidden_layers __lowercase : Optional[int] = num_attention_heads __lowercase : Tuple = intermediate_size __lowercase : Union[str, Any] = hidden_act __lowercase : Any = hidden_dropout_prob __lowercase : Tuple = attention_probs_dropout_prob __lowercase : Tuple = max_position_embeddings __lowercase : List[Any] = type_vocab_size __lowercase : int = initializer_range __lowercase : List[Any] = relative_attention __lowercase : Dict = max_relative_positions __lowercase : Any = pad_token_id __lowercase : Any = position_biased_input # Backwards compatibility if type(__A ) == str: __lowercase : List[Any] = [x.strip() for x in pos_att_type.lower().split("""|""" )] __lowercase : List[str] = pos_att_type __lowercase : Tuple = vocab_size __lowercase : List[str] = layer_norm_eps __lowercase : List[str] = kwargs.get("""pooler_hidden_size""" , __A ) __lowercase : Tuple = pooler_dropout __lowercase : str = pooler_hidden_act class lowerCAmelCase ( UpperCamelCase_ ): '''simple docstring''' @property def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" if self.task == "multiple-choice": __lowercase : int = {0: "batch", 1: "choice", 2: "sequence"} else: __lowercase : List[Any] = {0: "batch", 1: "sequence"} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" return 12 def lowerCAmelCase ( self : List[Any] , __a : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , __a : int = -1 , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional["TensorType"] = None , __a : int = 3 , __a : int = 40 , __a : int = 40 , __a : "PreTrainedTokenizerBase" = None , ) -> Union[str, Any]: """simple docstring""" __lowercase : int = super().generate_dummy_inputs(preprocessor=__A , framework=__A ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
703
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : str = LongformerTokenizer _A : int = True _A : Optional[int] = LongformerTokenizerFast _A : int = True def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __lowercase : Union[str, Any] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Any = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __lowercase : Optional[int] = {"""unk_token""": """<unk>"""} __lowercase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__a ) ) def lowerCAmelCase ( self : Optional[int] , **__a : Optional[Any] ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Tuple , **__a : Tuple ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : str , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = """lower newer""" __lowercase : int = """lower newer""" return input_text, output_text def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowercase : Dict = """lower newer""" __lowercase : Optional[Any] = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] __lowercase : str = tokenizer.tokenize(__a ) # , add_prefix_space=True) self.assertListEqual(__a , __a ) __lowercase : int = tokens + [tokenizer.unk_token] __lowercase : str = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=__a ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=__a ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : Any = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" ) __lowercase : Optional[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=__a ) __lowercase : List[str] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__a ) __lowercase : Optional[Any] = tokenizer.encode( """sequence builders""" , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Union[str, Any] = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : List[Any] = tokenizer.build_inputs_with_special_tokens(__a ) __lowercase : Any = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() __lowercase : Tuple = """Encode this sequence.""" __lowercase : Optional[Any] = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments __lowercase : Dict = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__a , __a ) __lowercase : List[str] = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__a , __a ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) __lowercase : str = tokenizer.encode(__a , add_special_tokens=__a ) __lowercase : Dict = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__a , __a ) # Testing spaces after special tokens __lowercase : List[Any] = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(__a , lstrip=__a , rstrip=__a )} ) # mask token has a left space __lowercase : Dict = tokenizer.convert_tokens_to_ids(__a ) __lowercase : List[str] = """Encode <mask> sequence""" __lowercase : List[str] = """Encode <mask>sequence""" __lowercase : Union[str, Any] = tokenizer.encode(__a ) __lowercase : Dict = encoded.index(__a ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__a , __a ) __lowercase : int = tokenizer.encode(__a ) __lowercase : Union[str, Any] = encoded.index(__a ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__a , __a ) def lowerCAmelCase ( self : int ) -> str: """simple docstring""" pass def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) __lowercase : List[Any] = self.tokenizer_class.from_pretrained(__a , **__a ) __lowercase : Optional[Any] = """A, <mask> AllenNLP sentence.""" __lowercase : Union[str, Any] = tokenizer_r.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) __lowercase : Optional[Any] = tokenizer_p.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) __lowercase : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __lowercase : str = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __lowercase : Dict = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __lowercase : Any = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""trim_offsets"""] , __a ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : List[str] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` __lowercase : int = F"{text_of_1_token} {text_of_1_token}" __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Any = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) __lowercase : str = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Tuple = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) __lowercase : Optional[int] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : str = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) __lowercase : str = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : int = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) __lowercase : Any = F" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : str = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ) + 1, 1 + len(__a ) + 1 + len(__a )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Dict = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Tuple = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , )
649
0
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants lowerCamelCase : List[str] = Mapping[str, np.ndarray] lowerCamelCase : Any = Mapping[str, Any] # Is a nested dict. lowerCamelCase : List[Any] = 0.01 @dataclasses.dataclass(frozen=lowercase__ ) class lowerCAmelCase : '''simple docstring''' _A : int = 42 # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. _A : Dict = 42 # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. _A : int = 42 # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. _A : str = 42 # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. _A : Optional[Any] = 42 # [num_res, num_atom_type] # Chain indices for multi-chain predictions _A : List[Any] = None # Optional remark about the protein. Included as a comment in output PDB # files _A : List[str] = None # Templates used to generate this protein (prediction-only) _A : Optional[int] = None # Chain corresponding to each parent _A : Dict = None def snake_case_ ( lowerCAmelCase_ : str ): __lowercase : List[str] = r"(\[[A-Z]+\]\n)" __lowercase : List[str] = [tag.strip() for tag in re.split(_lowerCamelCase , _lowerCamelCase ) if len(_lowerCamelCase ) > 0] __lowercase : Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split("""\n""" ) for l in tags[1::2]] ) __lowercase : List[str] = ["N", "CA", "C"] __lowercase : Optional[int] = None __lowercase : Union[str, Any] = None __lowercase : List[str] = None for g in groups: if "[PRIMARY]" == g[0]: __lowercase : List[str] = g[1][0].strip() for i in range(len(_lowerCamelCase ) ): if seq[i] not in residue_constants.restypes: __lowercase : Dict = "X" # FIXME: strings are immutable __lowercase : Tuple = np.array( [residue_constants.restype_order.get(_lowerCamelCase , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: __lowercase : List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(_lowerCamelCase , g[1][axis].split() ) ) ) __lowercase : List[Any] = np.array(_lowerCamelCase ) __lowercase : str = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(_lowerCamelCase ): __lowercase : Tuple = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: __lowercase : str = np.array(list(map({"""-""": 0, """+""": 1}.get , g[1][0].strip() ) ) ) __lowercase : Optional[int] = np.zeros( ( len(_lowerCamelCase ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(_lowerCamelCase ): __lowercase : int = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=_lowerCamelCase , atom_mask=_lowerCamelCase , aatype=_lowerCamelCase , residue_index=np.arange(len(_lowerCamelCase ) ) , b_factors=_lowerCamelCase , ) def snake_case_ ( lowerCAmelCase_ : Protein , lowerCAmelCase_ : int = 0 ): __lowercase : List[str] = [] __lowercase : int = prot.remark if remark is not None: pdb_headers.append(F"REMARK {remark}" ) __lowercase : str = prot.parents __lowercase : int = prot.parents_chain_index if parents is not None and parents_chain_index is not None: __lowercase : Union[str, Any] = [p for i, p in zip(_lowerCamelCase , _lowerCamelCase ) if i == chain_id] if parents is None or len(_lowerCamelCase ) == 0: __lowercase : List[str] = ["N/A"] pdb_headers.append(F"PARENT {' '.join(_lowerCamelCase )}" ) return pdb_headers def snake_case_ ( lowerCAmelCase_ : Protein , lowerCAmelCase_ : str ): __lowercase : List[str] = [] __lowercase : List[str] = pdb_str.split("""\n""" ) __lowercase : Optional[Any] = prot.remark if remark is not None: out_pdb_lines.append(F"REMARK {remark}" ) __lowercase : List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: __lowercase : Any = [] if prot.parents_chain_index is not None: __lowercase : Dict[str, List[str]] = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(_lowerCamelCase ) , [] ) parent_dict[str(_lowerCamelCase )].append(_lowerCamelCase ) __lowercase : List[str] = max([int(_lowerCamelCase ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): __lowercase : Tuple = parent_dict.get(str(_lowerCamelCase ) , ["""N/A"""] ) parents_per_chain.append(_lowerCamelCase ) else: parents_per_chain.append(list(prot.parents ) ) else: __lowercase : List[Any] = [["N/A"]] def make_parent_line(lowerCAmelCase_ : Sequence[str] ) -> str: return F"PARENT {' '.join(_lowerCamelCase )}" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) __lowercase : List[Any] = 0 for i, l in enumerate(_lowerCamelCase ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(_lowerCamelCase ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(_lowerCamelCase ): __lowercase : Union[str, Any] = parents_per_chain[chain_counter] else: __lowercase : Dict = ["N/A"] out_pdb_lines.append(make_parent_line(_lowerCamelCase ) ) return "\n".join(_lowerCamelCase ) def snake_case_ ( lowerCAmelCase_ : Protein ): __lowercase : Union[str, Any] = residue_constants.restypes + ["X"] def res_atoa(lowerCAmelCase_ : int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , """UNK""" ) __lowercase : str = residue_constants.atom_types __lowercase : List[str] = [] __lowercase : Dict = prot.atom_mask __lowercase : Tuple = prot.aatype __lowercase : str = prot.atom_positions __lowercase : str = prot.residue_index.astype(np.intaa ) __lowercase : Tuple = prot.b_factors __lowercase : Dict = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("""Invalid aatypes.""" ) __lowercase : int = get_pdb_headers(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: pdb_lines.extend(_lowerCamelCase ) __lowercase : str = aatype.shape[0] __lowercase : Union[str, Any] = 1 __lowercase : Union[str, Any] = 0 __lowercase : Union[str, Any] = string.ascii_uppercase __lowercase : Dict = None # Add all atom sites. for i in range(_lowerCamelCase ): __lowercase : List[str] = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(_lowerCamelCase , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue __lowercase : Optional[Any] = "ATOM" __lowercase : List[Any] = atom_name if len(_lowerCamelCase ) == 4 else F" {atom_name}" __lowercase : Tuple = "" __lowercase : Tuple = "" __lowercase : Optional[Any] = 1.00 __lowercase : Optional[Any] = atom_name[0] # Protein supports only C, N, O, S, this works. __lowercase : List[str] = "" __lowercase : Any = "A" if chain_index is not None: __lowercase : int = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! __lowercase : Optional[int] = ( F"{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}" F"{res_name_a:>3} {chain_tag:>1}" F"{residue_index[i]:>4}{insertion_code:>1} " F"{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}" F"{occupancy:>6.2f}{b_factor:>6.2f} " F"{element:>2}{charge:>2}" ) pdb_lines.append(_lowerCamelCase ) atom_index += 1 __lowercase : Optional[int] = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: __lowercase : Optional[Any] = True __lowercase : Any = chain_index[i + 1] if should_terminate: # Close the chain. __lowercase : Tuple = "TER" __lowercase : List[Any] = ( F"{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}" ) pdb_lines.append(_lowerCamelCase ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(_lowerCamelCase , _lowerCamelCase ) ) pdb_lines.append("""END""" ) pdb_lines.append("""""" ) return "\n".join(_lowerCamelCase ) def snake_case_ ( lowerCAmelCase_ : Protein ): return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def snake_case_ ( lowerCAmelCase_ : FeatureDict , lowerCAmelCase_ : ModelOutput , lowerCAmelCase_ : Optional[np.ndarray] = None , lowerCAmelCase_ : Optional[np.ndarray] = None , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : Optional[Sequence[str]] = None , lowerCAmelCase_ : Optional[Sequence[int]] = None , ): return Protein( aatype=features["""aatype"""] , atom_positions=result["""final_atom_positions"""] , atom_mask=result["""final_atom_mask"""] , residue_index=features["""residue_index"""] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result["""final_atom_mask"""] ) , chain_index=_lowerCamelCase , remark=_lowerCamelCase , parents=_lowerCamelCase , parents_chain_index=_lowerCamelCase , )
704
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Dict , __a : Union[str, Any]=13 , __a : Dict=7 , __a : Dict=True , __a : Dict=True , __a : Any=True , __a : List[str]=True , __a : int=99 , __a : Optional[int]=32 , __a : str=2 , __a : int=4 , __a : List[str]=37 , __a : Union[str, Any]="gelu" , __a : Union[str, Any]=0.1 , __a : Union[str, Any]=0.1 , __a : List[Any]=512 , __a : int=16 , __a : Union[str, Any]=2 , __a : Union[str, Any]=0.02 , __a : List[str]=3 , __a : Dict=4 , __a : Optional[Any]=None , ) -> Optional[Any]: """simple docstring""" __lowercase : Any = parent __lowercase : Tuple = 13 __lowercase : Dict = 7 __lowercase : List[Any] = True __lowercase : Tuple = True __lowercase : List[str] = True __lowercase : Any = True __lowercase : Optional[int] = 99 __lowercase : str = 384 __lowercase : Optional[Any] = 2 __lowercase : Dict = 4 __lowercase : str = 37 __lowercase : Optional[int] = """gelu""" __lowercase : int = 0.1 __lowercase : Union[str, Any] = 0.1 __lowercase : Tuple = 512 __lowercase : Tuple = 16 __lowercase : Optional[int] = 2 __lowercase : Optional[Any] = 0.02 __lowercase : Dict = 3 __lowercase : Union[str, Any] = 4 __lowercase : Tuple = 128 __lowercase : Optional[Any] = 2 __lowercase : int = 9 __lowercase : List[Any] = 1 __lowercase : Union[str, Any] = None def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" __lowercase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : Optional[Any] = None if self.use_input_mask: __lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : Dict = None if self.use_token_type_ids: __lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase : Optional[Any] = None __lowercase : str = None __lowercase : Tuple = None if self.use_labels: __lowercase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : str = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : Optional[int] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Dict , __a : List[Any] , __a : List[str] , __a : Union[str, Any] , __a : str , __a : Union[str, Any] , __a : Tuple , __a : Tuple ) -> Dict: """simple docstring""" __lowercase : Dict = TFConvBertModel(config=__a ) __lowercase : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowercase : Any = [input_ids, input_mask] __lowercase : Dict = model(__a ) __lowercase : str = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : Any , __a : Tuple , __a : Union[str, Any] , __a : str , __a : Dict , __a : str ) -> Dict: """simple docstring""" __lowercase : Optional[int] = TFConvBertForMaskedLM(config=__a ) __lowercase : List[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : Any = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[int] , __a : int , __a : Any , __a : Optional[int] , __a : int , __a : int , __a : List[Any] , __a : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase : str = self.num_labels __lowercase : List[Any] = TFConvBertForSequenceClassification(config=__a ) __lowercase : int = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : List[str] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Optional[int] , __a : Any , __a : Optional[Any] , __a : int , __a : Optional[int] , __a : Tuple , __a : int , __a : int ) -> Dict: """simple docstring""" __lowercase : Tuple = self.num_choices __lowercase : Dict = TFConvBertForMultipleChoice(config=__a ) __lowercase : List[str] = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : int = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : str = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : str = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __lowercase : Dict = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : List[str] , __a : str , __a : List[str] , __a : List[str] , __a : List[str] , __a : Any , __a : Tuple , __a : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = self.num_labels __lowercase : Tuple = TFConvBertForTokenClassification(config=__a ) __lowercase : Dict = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : str = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : List[Any] , __a : Optional[int] , __a : List[str] , __a : Optional[Any] , __a : int , __a : Tuple , __a : Any , __a : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Any = TFConvBertForQuestionAnswering(config=__a ) __lowercase : str = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : List[Any] = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : Tuple = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : int = config_and_inputs __lowercase : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Dict = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _A : str = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _A : Union[str, Any] = False _A : List[str] = False _A : Dict = False def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : int = TFConvBertModelTester(self ) __lowercase : Tuple = ConfigTester(self , config_class=__a , hidden_size=37 ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__a ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Union[str, Any] = True __lowercase : List[Any] = True if hasattr(__a , """use_cache""" ): __lowercase : Optional[Any] = True __lowercase : List[str] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) __lowercase : int = getattr(self.model_tester , """key_length""" , __a ) for model_class in self.all_model_classes: __lowercase : Optional[Any] = self._prepare_for_class(__a , __a ) __lowercase : Tuple = model_class(__a ) __lowercase : Tuple = len(model(__a ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a , saved_model=__a ) __lowercase : List[Any] = os.path.join(__a , """saved_model""" , """1""" ) __lowercase : str = tf.keras.models.load_model(__a ) __lowercase : Optional[int] = model(__a ) if self.is_encoder_decoder: __lowercase : Union[str, Any] = outputs["""encoder_hidden_states"""] __lowercase : Union[str, Any] = outputs["""encoder_attentions"""] else: __lowercase : Union[str, Any] = outputs["""hidden_states"""] __lowercase : List[str] = outputs["""attentions"""] self.assertEqual(len(__a ) , __a ) __lowercase : List[Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : str = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) self.assertIsNotNone(__a ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : List[str] = True __lowercase : List[Any] = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length ) __lowercase : Optional[int] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) __lowercase : List[str] = getattr(self.model_tester , """key_length""" , __a ) __lowercase : List[Any] = getattr(self.model_tester , """key_length""" , __a ) def check_decoder_attentions_output(__a : List[str] ): __lowercase : Union[str, Any] = len(__a ) self.assertEqual(out_len % 2 , 0 ) __lowercase : Any = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__a : str ): __lowercase : str = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __lowercase : int = True __lowercase : Any = False __lowercase : List[Any] = model_class(__a ) __lowercase : Tuple = model(self._prepare_for_class(__a , __a ) ) __lowercase : Dict = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: __lowercase : Any = model_class(__a ) __lowercase : List[str] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __lowercase : Dict = True __lowercase : Optional[Any] = model_class(__a ) __lowercase : Optional[int] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine __lowercase : List[str] = True __lowercase : List[Any] = True __lowercase : Any = model_class(__a ) __lowercase : Optional[int] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @require_tf class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) __lowercase : str = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowercase : Tuple = model(__a )[0] __lowercase : Any = [1, 6, 768] self.assertEqual(output.shape , __a ) __lowercase : Optional[Any] = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-4 )
649
0
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' _A : Union[str, Any] = (CMStochasticIterativeScheduler,) _A : Union[str, Any] = 10 def lowerCAmelCase ( self : Dict , **__a : int ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = { """num_train_timesteps""": 201, """sigma_min""": 0.002, """sigma_max""": 80.0, } config.update(**_a ) return config def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Any = 10 __lowercase : Optional[Any] = self.get_scheduler_config() __lowercase : Union[str, Any] = self.scheduler_classes[0](**_a ) scheduler.set_timesteps(_a ) __lowercase : List[str] = scheduler.timesteps[0] __lowercase : Union[str, Any] = scheduler.timesteps[1] __lowercase : Optional[Any] = self.dummy_sample __lowercase : int = 0.1 * sample __lowercase : Optional[Any] = scheduler.step(_a , _a , _a ).prev_sample __lowercase : str = scheduler.step(_a , _a , _a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_a ) def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=_a ) def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase : int = self.scheduler_classes[0] __lowercase : Any = self.get_scheduler_config() __lowercase : List[Any] = scheduler_class(**_a ) __lowercase : Optional[int] = 1 scheduler.set_timesteps(_a ) __lowercase : List[str] = scheduler.timesteps __lowercase : Tuple = torch.manual_seed(0 ) __lowercase : Dict = self.dummy_model() __lowercase : Tuple = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(_a ): # 1. scale model input __lowercase : Union[str, Any] = scheduler.scale_model_input(_a , _a ) # 2. predict noise residual __lowercase : List[Any] = model(_a , _a ) # 3. predict previous sample x_t-1 __lowercase : Any = scheduler.step(_a , _a , _a , generator=_a ).prev_sample __lowercase : str = pred_prev_sample __lowercase : int = torch.sum(torch.abs(_a ) ) __lowercase : Optional[int] = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 192.7614 ) < 1E-2 assert abs(result_mean.item() - 0.2510 ) < 1E-3 def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" __lowercase : List[Any] = self.scheduler_classes[0] __lowercase : Tuple = self.get_scheduler_config() __lowercase : List[Any] = scheduler_class(**_a ) __lowercase : List[str] = [106, 0] scheduler.set_timesteps(timesteps=_a ) __lowercase : List[Any] = scheduler.timesteps __lowercase : Any = torch.manual_seed(0 ) __lowercase : Optional[int] = self.dummy_model() __lowercase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input __lowercase : Any = scheduler.scale_model_input(_a , _a ) # 2. predict noise residual __lowercase : Tuple = model(_a , _a ) # 3. predict previous sample x_t-1 __lowercase : Optional[Any] = scheduler.step(_a , _a , _a , generator=_a ).prev_sample __lowercase : Any = pred_prev_sample __lowercase : List[str] = torch.sum(torch.abs(_a ) ) __lowercase : List[Any] = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 347.6357 ) < 1E-2 assert abs(result_mean.item() - 0.4527 ) < 1E-3 def lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase : str = self.scheduler_classes[0] __lowercase : Union[str, Any] = self.get_scheduler_config() __lowercase : int = scheduler_class(**_a ) __lowercase : Tuple = [39, 30, 12, 15, 0] with self.assertRaises(_a , msg="""`timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=_a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase : Dict = self.scheduler_classes[0] __lowercase : str = self.get_scheduler_config() __lowercase : List[str] = scheduler_class(**_a ) __lowercase : Union[str, Any] = [39, 30, 12, 1, 0] __lowercase : int = len(_a ) with self.assertRaises(_a , msg="""Can only pass one of `num_inference_steps` or `timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=_a , timesteps=_a ) def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" __lowercase : Tuple = self.scheduler_classes[0] __lowercase : Optional[Any] = self.get_scheduler_config() __lowercase : Tuple = scheduler_class(**_a ) __lowercase : Any = [scheduler.config.num_train_timesteps] with self.assertRaises( _a , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=_a )
705
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : int , *__a : Dict , **__a : Optional[Any] ) -> None: """simple docstring""" warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , __a , ) super().__init__(*__a , **__a )
649
0
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Tuple = TypeVar('''DatasetType''', Dataset, IterableDataset) def snake_case_ ( lowerCAmelCase_ : List[DatasetType] , lowerCAmelCase_ : Optional[List[float]] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[DatasetInfo] = None , lowerCAmelCase_ : Optional[NamedSplit] = None , lowerCAmelCase_ : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ): from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("""Unable to interleave an empty list of datasets.""" ) for i, dataset in enumerate(snake_case__ ): if not isinstance(snake_case__ , (Dataset, IterableDataset) ): if isinstance(snake_case__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " """is an empty dataset dictionary.""" ) raise ValueError( F"Dataset at position {i} has at least one split: {list(snake_case__ )}\n" F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(snake_case__ ) )}']" ) raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(snake_case__ ).__name__}." ) if i == 0: __lowercase : int = ( (Dataset, IterableDataset) if isinstance(snake_case__ , snake_case__ ) else (IterableDataset, Dataset) ) elif not isinstance(snake_case__ , snake_case__ ): raise ValueError( F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." ) if dataset_type is Dataset: return _interleave_map_style_datasets( snake_case__ , snake_case__ , snake_case__ , info=snake_case__ , split=snake_case__ , stopping_strategy=snake_case__ ) else: return _interleave_iterable_datasets( snake_case__ , snake_case__ , snake_case__ , info=snake_case__ , split=snake_case__ , stopping_strategy=snake_case__ ) def snake_case_ ( lowerCAmelCase_ : List[DatasetType] , lowerCAmelCase_ : Optional[DatasetInfo] = None , lowerCAmelCase_ : Optional[NamedSplit] = None , lowerCAmelCase_ : int = 0 , ): if not dsets: raise ValueError("""Unable to concatenate an empty list of datasets.""" ) for i, dataset in enumerate(snake_case__ ): if not isinstance(snake_case__ , (Dataset, IterableDataset) ): if isinstance(snake_case__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " """is an empty dataset dictionary.""" ) raise ValueError( F"Dataset at position {i} has at least one split: {list(snake_case__ )}\n" F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(snake_case__ ) )}']" ) raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(snake_case__ ).__name__}." ) if i == 0: __lowercase : Dict = ( (Dataset, IterableDataset) if isinstance(snake_case__ , snake_case__ ) else (IterableDataset, Dataset) ) elif not isinstance(snake_case__ , snake_case__ ): raise ValueError( F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if dataset_type is Dataset: return _concatenate_map_style_datasets(snake_case__ , info=snake_case__ , split=snake_case__ , axis=snake_case__ ) else: return _concatenate_iterable_datasets(snake_case__ , info=snake_case__ , split=snake_case__ , axis=snake_case__ )
706
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Optional[int] = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() __lowercase : List[str] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Dict = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } __lowercase : List[str] = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 16000, """return_attention_mask""": False, """do_normalize""": True, } __lowercase : Tuple = tempfile.mkdtemp() __lowercase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : str = os.path.join(self.tmpdirname , __a ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) # load decoder from hub __lowercase : Optional[int] = """hf-internal-testing/ngram-beam-search-decoder""" def lowerCAmelCase ( self : Optional[Any] , **__a : Dict ) -> Tuple: """simple docstring""" __lowercase : Union[str, Any] = self.add_kwargs_tokens_map.copy() kwargs.update(__a ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : str , **__a : int ) -> Tuple: """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Union[str, Any] , **__a : Union[str, Any] ) -> List[Any]: """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__a ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() __lowercase : Any = self.get_feature_extractor() __lowercase : str = self.get_decoder() __lowercase : Tuple = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) processor.save_pretrained(self.tmpdirname ) __lowercase : Tuple = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __a ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __a ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __a ) def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Any = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __lowercase : str = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : List[str] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(__a , """include""" ): WavaVecaProcessorWithLM( tokenizer=__a , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : List[Any] = self.get_feature_extractor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : int = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Optional[int] = floats_list((3, 1000) ) __lowercase : List[Any] = feature_extractor(__a , return_tensors="""np""" ) __lowercase : List[str] = processor(__a , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : List[Any] = self.get_feature_extractor() __lowercase : int = self.get_tokenizer() __lowercase : Dict = self.get_decoder() __lowercase : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Dict = """This is a test string""" __lowercase : Any = processor(text=__a ) __lowercase : Dict = tokenizer(__a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase ( self : str , __a : Tuple=(2, 10, 16) , __a : int=77 ) -> Optional[Any]: """simple docstring""" np.random.seed(__a ) return np.random.rand(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : List[str] = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : str = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : List[str] = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __lowercase : Optional[Any] = processor.decode(__a ) __lowercase : Any = decoder.decode_beams(__a )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def lowerCAmelCase ( self : List[str] , __a : Dict ) -> List[Any]: """simple docstring""" __lowercase : str = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : Optional[int] = self.get_decoder() __lowercase : Any = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Optional[Any] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __lowercase : Union[str, Any] = processor.batch_decode(__a ) else: with get_context(__a ).Pool() as pool: __lowercase : Optional[Any] = processor.batch_decode(__a , __a ) __lowercase : Union[str, Any] = list(__a ) with get_context("""fork""" ).Pool() as p: __lowercase : Optional[Any] = decoder.decode_beams_batch(__a , __a ) __lowercase , __lowercase , __lowercase : Any = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__a , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(__a , decoded_processor.logit_score ) self.assertListEqual(__a , decoded_processor.lm_score ) def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase : int = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : List[str] = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Dict = self._get_dummy_logits() __lowercase : Tuple = 15 __lowercase : Tuple = -20.0 __lowercase : Dict = -4.0 __lowercase : Dict = processor.batch_decode( __a , beam_width=__a , beam_prune_logp=__a , token_min_logp=__a , ) __lowercase : Tuple = decoded_processor_out.text __lowercase : List[Any] = list(__a ) with get_context("""fork""" ).Pool() as pool: __lowercase : Any = decoder.decode_beams_batch( __a , __a , beam_width=__a , beam_prune_logp=__a , token_min_logp=__a , ) __lowercase : Optional[Any] = [d[0][0] for d in decoded_decoder_out] __lowercase : Optional[int] = [d[0][2] for d in decoded_decoder_out] __lowercase : Optional[int] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__a , __a ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , __a ) self.assertTrue(np.array_equal(__a , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , __a , atol=1E-3 ) ) self.assertTrue(np.array_equal(__a , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , __a , atol=1E-3 ) ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase : str = self.get_feature_extractor() __lowercase : List[Any] = self.get_tokenizer() __lowercase : List[Any] = self.get_decoder() __lowercase : Dict = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : List[Any] = self._get_dummy_logits() __lowercase : Optional[int] = 2.0 __lowercase : Tuple = 5.0 __lowercase : Optional[Any] = -20.0 __lowercase : Tuple = True __lowercase : Union[str, Any] = processor.batch_decode( __a , alpha=__a , beta=__a , unk_score_offset=__a , lm_score_boundary=__a , ) __lowercase : Any = decoded_processor_out.text __lowercase : List[Any] = list(__a ) decoder.reset_params( alpha=__a , beta=__a , unk_score_offset=__a , lm_score_boundary=__a , ) with get_context("""fork""" ).Pool() as pool: __lowercase : Tuple = decoder.decode_beams_batch( __a , __a , ) __lowercase : int = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__a , __a ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , __a ) __lowercase : str = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , __a ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] __lowercase : str = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __lowercase : int = os.listdir(__a ) __lowercase : Optional[Any] = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = snapshot_download("""hf-internal-testing/processor_with_lm""" ) __lowercase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(__a ) __lowercase : Dict = processor.decoder.model_container[processor.decoder._model_key] __lowercase : List[Any] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __lowercase : Dict = os.listdir(__a ) __lowercase : List[Any] = os.listdir(__a ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" __lowercase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Dict = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Any = floats_list((3, 1000) ) __lowercase : List[str] = processor_wavaveca(__a , return_tensors="""np""" ) __lowercase : List[Any] = processor_auto(__a , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) __lowercase : List[str] = self._get_dummy_logits() __lowercase : List[str] = processor_wavaveca.batch_decode(__a ) __lowercase : Optional[int] = processor_auto.batch_decode(__a ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Any = self.get_feature_extractor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : Dict = self.get_decoder() __lowercase : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def lowerCAmelCase ( __a : Union[str, Any] , __a : List[Any] ) -> Dict: """simple docstring""" __lowercase : Any = [d[key] for d in offsets] return retrieved_list def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" __lowercase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Optional[Any] = self._get_dummy_logits()[0] __lowercase : Dict = processor.decode(__a , output_word_offsets=__a ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__a , __a ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : List[str] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Any = self._get_dummy_logits() __lowercase : Dict = processor.batch_decode(__a , output_word_offsets=__a ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__a , __a ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(__a , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" import torch __lowercase : Any = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=__a ) __lowercase : str = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=16000 ) ) __lowercase : Tuple = iter(__a ) __lowercase : Union[str, Any] = next(__a ) __lowercase : int = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) __lowercase : int = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __lowercase : Union[str, Any] = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): __lowercase : List[Any] = model(__a ).logits.cpu().numpy() __lowercase : Tuple = processor.decode(logits[0] , output_word_offsets=__a ) __lowercase : int = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __lowercase : Optional[Any] = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] __lowercase : str = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(__a , """word""" ) ) , __a ) self.assertEqual(""" """.join(self.get_from_offsets(__a , """word""" ) ) , output.text ) # output times __lowercase : Tuple = torch.tensor(self.get_from_offsets(__a , """start_time""" ) ) __lowercase : Dict = torch.tensor(self.get_from_offsets(__a , """end_time""" ) ) # fmt: off __lowercase : List[Any] = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) __lowercase : Optional[int] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(__a , __a , atol=0.01 ) ) self.assertTrue(torch.allclose(__a , __a , atol=0.01 ) )
649
0
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : Any = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', } lowerCamelCase : str = { '''vocab_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'''}, '''merges_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'''}, } lowerCamelCase : int = { '''ctrl''': 2_56, } lowerCamelCase : Optional[int] = { '''Pregnancy''': 16_86_29, '''Christianity''': 76_75, '''Explain''': 10_64_23, '''Fitness''': 6_34_40, '''Saving''': 6_31_63, '''Ask''': 2_71_71, '''Ass''': 9_59_85, '''Joke''': 16_35_09, '''Questions''': 4_56_22, '''Thoughts''': 4_96_05, '''Retail''': 5_23_42, '''Feminism''': 16_43_38, '''Writing''': 1_19_92, '''Atheism''': 19_22_63, '''Netflix''': 4_86_16, '''Computing''': 3_96_39, '''Opinion''': 4_32_13, '''Alone''': 4_49_67, '''Funny''': 5_89_17, '''Gaming''': 4_03_58, '''Human''': 40_88, '''India''': 13_31, '''Joker''': 7_71_38, '''Diet''': 3_62_06, '''Legal''': 1_18_59, '''Norman''': 49_39, '''Tip''': 7_26_89, '''Weight''': 5_23_43, '''Movies''': 4_62_73, '''Running''': 2_34_25, '''Science''': 20_90, '''Horror''': 3_77_93, '''Confession''': 6_05_72, '''Finance''': 1_22_50, '''Politics''': 1_63_60, '''Scary''': 19_19_85, '''Support''': 1_26_54, '''Technologies''': 3_25_16, '''Teenage''': 6_61_60, '''Event''': 3_27_69, '''Learned''': 6_74_60, '''Notion''': 18_27_70, '''Wikipedia''': 3_75_83, '''Books''': 66_65, '''Extract''': 7_60_50, '''Confessions''': 10_27_01, '''Conspiracy''': 7_59_32, '''Links''': 6_36_74, '''Narcissus''': 15_04_25, '''Relationship''': 5_47_66, '''Relationships''': 13_47_96, '''Reviews''': 4_16_71, '''News''': 42_56, '''Translation''': 2_68_20, '''multilingual''': 12_84_06, } def snake_case_ ( lowerCAmelCase_ : List[Any] ): __lowercase : Optional[Any] = set() __lowercase : str = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowercase : int = char __lowercase : Optional[Any] = set(__snake_case ) return pairs class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = VOCAB_FILES_NAMES _A : str = PRETRAINED_VOCAB_FILES_MAP _A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Optional[int] = CONTROL_CODES def __init__( self : Optional[int] , __a : Optional[Any] , __a : Tuple , __a : str="<unk>" , **__a : Optional[int] ) -> str: """simple docstring""" super().__init__(unk_token=__lowerCAmelCase , **__lowerCAmelCase ) with open(__lowerCAmelCase , encoding="""utf-8""" ) as vocab_handle: __lowercase : Dict = json.load(__lowerCAmelCase ) __lowercase : Optional[int] = {v: k for k, v in self.encoder.items()} with open(__lowerCAmelCase , encoding="""utf-8""" ) as merges_handle: __lowercase : List[Any] = merges_handle.read().split("""\n""" )[1:-1] __lowercase : List[str] = [tuple(merge.split() ) for merge in merges] __lowercase : Any = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) __lowercase : Optional[int] = {} @property def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" return len(self.encoder ) def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase ( self : Dict , __a : Dict ) -> Tuple: """simple docstring""" if token in self.cache: return self.cache[token] __lowercase : Optional[int] = tuple(__lowerCAmelCase ) __lowercase : List[Any] = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) __lowercase : List[str] = get_pairs(__lowerCAmelCase ) if not pairs: return token while True: __lowercase : List[Any] = min(__lowerCAmelCase , key=lambda __a : self.bpe_ranks.get(__lowerCAmelCase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __lowercase , __lowercase : Optional[int] = bigram __lowercase : int = [] __lowercase : Tuple = 0 while i < len(__lowerCAmelCase ): try: __lowercase : List[Any] = word.index(__lowerCAmelCase , __lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowercase : Optional[int] = j if word[i] == first and i < len(__lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowercase : Union[str, Any] = tuple(__lowerCAmelCase ) __lowercase : List[str] = new_word if len(__lowerCAmelCase ) == 1: break else: __lowercase : Optional[Any] = get_pairs(__lowerCAmelCase ) __lowercase : List[Any] = """@@ """.join(__lowerCAmelCase ) __lowercase : str = word[:-4] __lowercase : str = word return word def lowerCAmelCase ( self : int , __a : Optional[int] ) -> int: """simple docstring""" __lowercase : Dict = [] __lowercase : Union[str, Any] = re.findall(r"""\S+\n?""" , __lowerCAmelCase ) for token in words: split_tokens.extend(list(self.bpe(__lowerCAmelCase ).split(""" """ ) ) ) return split_tokens def lowerCAmelCase ( self : List[str] , __a : Optional[int] ) -> Any: """simple docstring""" return self.encoder.get(__lowerCAmelCase , self.encoder.get(self.unk_token ) ) def lowerCAmelCase ( self : Any , __a : str ) -> Dict: """simple docstring""" return self.decoder.get(__lowerCAmelCase , self.unk_token ) def lowerCAmelCase ( self : Dict , __a : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase : Tuple = """ """.join(__lowerCAmelCase ).replace("""@@ """ , """""" ).strip() return out_string def lowerCAmelCase ( self : List[Any] , __a : Tuple , __a : Union[str, Any] = None ) -> Dict: """simple docstring""" if not os.path.isdir(__lowerCAmelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __lowercase : str = os.path.join( __lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : Union[str, Any] = os.path.join( __lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCAmelCase , ensure_ascii=__lowerCAmelCase ) + """\n""" ) __lowercase : Tuple = 0 with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __a : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." """ Please check that the tokenizer is not corrupted!""" ) __lowercase : Any = token_index writer.write(""" """.join(__lowerCAmelCase ) + """\n""" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
707
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(0 ) == 0 ) def snake_case_ ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
649
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase : Dict = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
708
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCamelCase : int = '''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine''' def snake_case_ ( ): __lowercase : List[Any] = _ask_options( """In which compute environment are you running?""" , ["""This machine""", """AWS (Amazon SageMaker)"""] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __lowercase : Union[str, Any] = get_sagemaker_input() else: __lowercase : str = get_cluster_input() return config def snake_case_ ( lowerCAmelCase_ : List[str]=None ): if subparsers is not None: __lowercase : Optional[int] = subparsers.add_parser("""config""" , description=lowerCAmelCase_ ) else: __lowercase : List[str] = argparse.ArgumentParser("""Accelerate config command""" , description=lowerCAmelCase_ ) parser.add_argument( """--config_file""" , default=lowerCAmelCase_ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def snake_case_ ( lowerCAmelCase_ : Tuple ): __lowercase : Union[str, Any] = get_user_input() if args.config_file is not None: __lowercase : List[Any] = args.config_file else: if not os.path.isdir(lowerCAmelCase_ ): os.makedirs(lowerCAmelCase_ ) __lowercase : Any = default_yaml_config_file if config_file.endswith(""".json""" ): config.to_json_file(lowerCAmelCase_ ) else: config.to_yaml_file(lowerCAmelCase_ ) print(F"accelerate configuration saved at {config_file}" ) def snake_case_ ( ): __lowercase : str = config_command_parser() __lowercase : str = parser.parse_args() config_command(lowerCAmelCase_ ) if __name__ == "__main__": main()
649
0
import argparse from collections import defaultdict def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] ): __lowercase : List[str] = F"{file}_{class_name}_{test_name}" done_test[_id] += 1 with open(_lowercase , """r""" ) as f: __lowercase : str = f.readlines() __lowercase : Any = F"class {class_name}(" __lowercase : Any = F"{4 * ' '}def {test_name}(" __lowercase : Optional[Any] = F"{8 * ' '}{correct_line.split()[0]}" __lowercase : Any = F"{16 * ' '}{correct_line.split()[0]}" __lowercase : Any = False __lowercase : str = False __lowercase : Union[str, Any] = False __lowercase : Optional[int] = False __lowercase : List[str] = 0 __lowercase : Optional[int] = 0 __lowercase : List[Any] = [] for line in lines: if line.startswith(_lowercase ): __lowercase : Tuple = True elif in_class and line.startswith(_lowercase ): __lowercase : Optional[Any] = True elif in_class and in_func and (line.startswith(_lowercase ) or line.startswith(_lowercase )): __lowercase : List[Any] = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: __lowercase : Optional[Any] = True if in_class and in_func and in_line: if ")" not in line: continue else: __lowercase : str = True if in_class and in_func and in_line and insert_line: new_lines.append(F"{spaces * ' '}{correct_line}" ) __lowercase : Optional[Any] = False else: new_lines.append(_lowercase ) with open(_lowercase , """w""" ) as f: for line in new_lines: f.write(_lowercase ) def snake_case_ ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str]=None ): if fail is not None: with open(_lowercase , """r""" ) as f: __lowercase : Optional[int] = {l.strip() for l in f.readlines()} else: __lowercase : Optional[Any] = None with open(_lowercase , """r""" ) as f: __lowercase : Any = f.readlines() __lowercase : List[Any] = defaultdict(_lowercase ) for line in correct_lines: __lowercase : Any = line.split(""";""" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) if __name__ == "__main__": lowerCamelCase : str = argparse.ArgumentParser() parser.add_argument('''--correct_filename''', help='''filename of tests with expected result''') parser.add_argument('''--fail_filename''', help='''filename of test failures''', type=str, default=None) lowerCamelCase : Tuple = parser.parse_args() main(args.correct_filename, args.fail_filename)
709
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : list[str] | None = None ): __lowercase : Tuple = word_bank or [] # create a table __lowercase : int = len(lowerCAmelCase_ ) + 1 __lowercase : list[list[list[str]]] = [] for _ in range(lowerCAmelCase_ ): table.append([] ) # seed value __lowercase : Dict = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowerCAmelCase_ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowerCAmelCase_ )] == word: __lowercase : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowerCAmelCase_ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowerCAmelCase_ )]: combination.reverse() return table[len(lowerCAmelCase_ )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
649
0