code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] ): # Load configuration defined in the metadata file with open(lowerCAmelCase_ ) as metadata_file: __lowercase : Tuple = json.load(lowerCAmelCase_ ) __lowercase : Dict = LukeConfig(use_entity_aware_attention=lowerCAmelCase_ , **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path __lowercase : str = torch.load(lowerCAmelCase_ , map_location="""cpu""" )["""module"""] # Load the entity vocab file __lowercase : str = load_original_entity_vocab(lowerCAmelCase_ ) # add an entry for [MASK2] __lowercase : List[str] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 __lowercase : Tuple = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks __lowercase : str = AddedToken("""<ent>""" , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) __lowercase : Any = AddedToken("""<ent2>""" , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"Saving tokenizer to {pytorch_dump_folder_path}" ) tokenizer.save_pretrained(lowerCAmelCase_ ) with open(os.path.join(lowerCAmelCase_ , """tokenizer_config.json""" ) , """r""" ) as f: __lowercase : Union[str, Any] = json.load(lowerCAmelCase_ ) __lowercase : List[str] = """MLukeTokenizer""" with open(os.path.join(lowerCAmelCase_ , """tokenizer_config.json""" ) , """w""" ) as f: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) with open(os.path.join(lowerCAmelCase_ , MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ) , """w""" ) as f: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Dict = MLukeTokenizer.from_pretrained(lowerCAmelCase_ ) # Initialize the embeddings of the special tokens __lowercase : List[Any] = tokenizer.convert_tokens_to_ids(["""@"""] )[0] __lowercase : Tuple = tokenizer.convert_tokens_to_ids(["""#"""] )[0] __lowercase : Any = state_dict["""embeddings.word_embeddings.weight"""] __lowercase : str = word_emb[ent_init_index].unsqueeze(0 ) __lowercase : List[str] = word_emb[enta_init_index].unsqueeze(0 ) __lowercase : List[str] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: __lowercase : Optional[Any] = state_dict[bias_name] __lowercase : Tuple = decoder_bias[ent_init_index].unsqueeze(0 ) __lowercase : int = decoder_bias[enta_init_index].unsqueeze(0 ) __lowercase : List[Any] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __lowercase : List[str] = F"encoder.layer.{layer_index}.attention.self." __lowercase : Optional[Any] = state_dict[prefix + matrix_name] __lowercase : Tuple = state_dict[prefix + matrix_name] __lowercase : Any = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __lowercase : List[str] = state_dict["""entity_embeddings.entity_embeddings.weight"""] __lowercase : List[str] = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) __lowercase : Optional[Any] = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' __lowercase : Optional[Any] = state_dict["""entity_predictions.bias"""] __lowercase : Optional[Any] = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) __lowercase : Tuple = torch.cat([entity_prediction_bias, entity_mask_bias] ) __lowercase : Any = LukeForMaskedLM(config=lowerCAmelCase_ ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) __lowercase : int = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): __lowercase : List[str] = state_dict[key] else: __lowercase : Union[str, Any] = state_dict[key] __lowercase : Union[str, Any] = model.load_state_dict(lowerCAmelCase_ , strict=lowerCAmelCase_ ) if set(lowerCAmelCase_ ) != {"luke.embeddings.position_ids"}: raise ValueError(F"Unexpected unexpected_keys: {unexpected_keys}" ) if set(lowerCAmelCase_ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"Unexpected missing_keys: {missing_keys}" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs __lowercase : List[str] = MLukeTokenizer.from_pretrained(lowerCAmelCase_ , task="""entity_classification""" ) __lowercase : Optional[Any] = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" __lowercase : Any = (0, 9) __lowercase : Dict = tokenizer(lowerCAmelCase_ , entity_spans=[span] , return_tensors="""pt""" ) __lowercase : int = model(**lowerCAmelCase_ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base __lowercase : List[str] = torch.Size((1, 33, 768) ) __lowercase : Dict = torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base __lowercase : Any = torch.Size((1, 1, 768) ) __lowercase : Optional[Any] = torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is" F" {expected_shape}" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction __lowercase : List[Any] = MLukeTokenizer.from_pretrained(lowerCAmelCase_ ) __lowercase : Optional[Any] = """Tokyo is the capital of <mask>.""" __lowercase : Optional[Any] = (24, 30) __lowercase : Dict = tokenizer(lowerCAmelCase_ , entity_spans=[span] , return_tensors="""pt""" ) __lowercase : Tuple = model(**lowerCAmelCase_ ) __lowercase : Any = encoding["""input_ids"""][0].tolist() __lowercase : Union[str, Any] = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) __lowercase : Dict = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowerCAmelCase_ ) __lowercase : List[Any] = outputs.entity_logits[0][0].argmax().item() __lowercase : List[str] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(lowerCAmelCase_ ) ) model.save_pretrained(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : List[str] ): __lowercase : Any = ["""[MASK]""", """[PAD]""", """[UNK]"""] __lowercase : Tuple = [json.loads(lowerCAmelCase_ ) for line in open(lowerCAmelCase_ )] __lowercase : Optional[int] = {} for entry in data: __lowercase : Tuple = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: __lowercase : List[Any] = entity_id break __lowercase : Optional[int] = F"{language}:{entity_name}" __lowercase : Any = entity_id return new_mapping if __name__ == "__main__": lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) lowerCamelCase : List[str] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
700
from argparse import ArgumentParser from . import BaseTransformersCLICommand def snake_case_ ( lowerCAmelCase_ : Dict ): return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class lowerCAmelCase ( __a ): '''simple docstring''' @staticmethod def lowerCAmelCase ( __a : ArgumentParser ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = parser.add_parser("""download""" ) download_parser.add_argument( """--cache-dir""" , type=__a , default=__a , help="""Path to location to store the models""" ) download_parser.add_argument( """--force""" , action="""store_true""" , help="""Force the model to be download even if already in cache-dir""" ) download_parser.add_argument( """--trust-remote-code""" , action="""store_true""" , help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" , ) download_parser.add_argument("""model""" , type=__a , help="""Name of the model to download""" ) download_parser.set_defaults(func=__a ) def __init__( self : Dict , __a : str , __a : str , __a : bool , __a : bool ) -> Union[str, Any]: """simple docstring""" __lowercase : Dict = model __lowercase : List[Any] = cache __lowercase : Any = force __lowercase : Optional[int] = trust_remote_code def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
649
0
def snake_case_ ( lowerCAmelCase_ : int ): if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise TypeError("""Input value must be an 'int' type""" ) __lowercase : List[str] = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
701
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowerCamelCase : Union[str, Any] = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , __a : List[str] , __a : Optional[int]=16 , __a : Optional[Any]=13 , __a : str=7 , __a : List[str]=14 , __a : Any=10 , __a : str=19 , __a : int=5 , __a : Any=4 , __a : List[Any]=True , __a : Tuple=16 , __a : Dict=2 , __a : Tuple=4 , __a : int=4 , __a : List[Any]="gelu" , __a : Tuple=0.1 , __a : List[str]=0.1 , __a : int=[1, 2, 3, 4, 5] , __a : str=25 , __a : Any=5 , ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = d_model __lowercase : Dict = parent __lowercase : Tuple = batch_size __lowercase : Optional[int] = prediction_length __lowercase : List[str] = context_length __lowercase : Any = cardinality __lowercase : str = num_time_features __lowercase : Optional[int] = lags_sequence __lowercase : Optional[Any] = embedding_dimension __lowercase : List[Any] = is_training __lowercase : List[str] = hidden_size __lowercase : int = num_hidden_layers __lowercase : Any = num_attention_heads __lowercase : List[Any] = intermediate_size __lowercase : int = hidden_act __lowercase : str = hidden_dropout_prob __lowercase : List[Any] = attention_probs_dropout_prob __lowercase : str = context_length __lowercase : int = prediction_length + label_length __lowercase : Union[str, Any] = label_length __lowercase : Optional[int] = moving_average __lowercase : Optional[Any] = autocorrelation_factor def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def lowerCAmelCase ( self : Tuple , __a : str ) -> int: """simple docstring""" __lowercase : Any = config.context_length + max(config.lags_sequence ) __lowercase : Any = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __lowercase : Optional[int] = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __lowercase : List[str] = floats_tensor([self.batch_size, _past_length] ) __lowercase : List[str] = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __lowercase : Dict = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __lowercase : str = floats_tensor([self.batch_size, config.prediction_length] ) __lowercase : List[str] = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.get_config() __lowercase : Any = self.prepare_autoformer_inputs_dict(__a ) return config, inputs_dict def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase , __lowercase : List[str] = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase ( self : Optional[Any] , __a : Tuple , __a : Optional[int] ) -> Any: """simple docstring""" __lowercase : List[str] = AutoformerModel(config=__a ).to(__a ).eval() __lowercase : Optional[int] = model(**__a ) __lowercase : Dict = outputs.encoder_last_hidden_state __lowercase : Tuple = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : List[str] = model.get_encoder() encoder.save_pretrained(__a ) __lowercase : List[str] = AutoformerEncoder.from_pretrained(__a ).to(__a ) __lowercase , __lowercase , __lowercase , __lowercase , __lowercase : Any = model.create_network_inputs(**__a ) __lowercase , __lowercase : Any = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __lowercase : Optional[Any] = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __lowercase : Union[str, Any] = encoder(inputs_embeds=__a )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) __lowercase : str = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __lowercase : Optional[int] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __lowercase : Any = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __lowercase : Dict = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : Optional[Any] = model.get_decoder() decoder.save_pretrained(__a ) __lowercase : Tuple = AutoformerDecoder.from_pretrained(__a ).to(__a ) __lowercase : str = decoder( trend=__a , inputs_embeds=__a , encoder_hidden_states=__a , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[str] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _A : List[Any] = (AutoformerForPrediction,) if is_torch_available() else () _A : Any = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} _A : Dict = False _A : Tuple = False _A : Optional[int] = False _A : Tuple = False _A : str = False _A : Union[str, Any] = False def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" __lowercase : List[str] = AutoformerModelTester(self ) __lowercase : Dict = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowercase : Dict = model_class(__a ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowercase , __lowercase : Tuple = model_class.from_pretrained(__a , output_loading_info=__a ) self.assertEqual(info["""missing_keys"""] , [] ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__a ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def lowerCAmelCase ( self : str ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : Any = inspect.signature(getattr(__a , """forward""" ) ) # The main input is the name of the argument after `self` __lowercase : Optional[int] = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , __a ) def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Dict = model_class(__a ) __lowercase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : Any = [*signature.parameters.keys()] __lowercase : int = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(__a )] , __a ) def lowerCAmelCase ( self : int ) -> int: """simple docstring""" __lowercase , __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : int = True __lowercase : Tuple = getattr(self.model_tester , """seq_length""" , __a ) __lowercase : Union[str, Any] = getattr(self.model_tester , """decoder_seq_length""" , __a ) __lowercase : List[str] = getattr(self.model_tester , """encoder_seq_length""" , __a ) __lowercase : List[Any] = getattr(self.model_tester , """d_model""" , __a ) __lowercase : Optional[int] = getattr(self.model_tester , """num_attention_heads""" , __a ) __lowercase : Any = d_model // num_attention_heads for model_class in self.all_model_classes: __lowercase : Dict = True __lowercase : List[str] = False __lowercase : Optional[int] = True __lowercase : str = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : int = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase : Optional[int] = True __lowercase : List[str] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Union[str, Any] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Dict = outputs.encoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __lowercase : Tuple = len(__a ) __lowercase : str = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__a , __a ) # decoder attentions __lowercase : List[Any] = outputs.decoder_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __lowercase : Optional[int] = outputs.cross_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __lowercase : Tuple = True __lowercase : Union[str, Any] = True __lowercase : Tuple = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Any = model(**self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + 2 , len(__a ) ) __lowercase : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def snake_case_ ( lowerCAmelCase_ : Optional[int]="train-batch.pt" ): __lowercase : Dict = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=lowerCAmelCase_ , repo_type="""dataset""" ) __lowercase : Optional[int] = torch.load(lowerCAmelCase_ , map_location=lowerCAmelCase_ ) return batch @require_torch @slow class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" __lowercase : List[str] = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : List[Any] = prepare_batch() with torch.no_grad(): __lowercase : Tuple = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] __lowercase : List[str] = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , __a ) __lowercase : Optional[int] = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" __lowercase : int = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : List[str] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowercase : Optional[Any] = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state __lowercase : List[str] = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , __a ) __lowercase : Optional[int] = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : Optional[int] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowercase : int = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) __lowercase : int = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , __a ) __lowercase : Optional[Any] = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=__a ) __lowercase : Dict = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __a , rtol=1E-1 ) )
649
0
import inspect import unittest class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" try: import diffusers # noqa: F401 except ImportError: assert False def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" import diffusers from diffusers.dependency_versions_table import deps __lowercase : Any = inspect.getmembers(__a , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": __lowercase : Union[str, Any] = """k-diffusion""" elif backend == "invisible_watermark": __lowercase : Dict = """invisible-watermark""" assert backend in deps, F"{backend} is not in the deps table!"
702
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowerCAmelCase ( __a , __a ): '''simple docstring''' _A : str = 1 @register_to_config def __init__( self : Optional[int] , __a : Tuple=2000 , __a : List[str]=0.1 , __a : str=20 , __a : Optional[int]=1E-3 ) -> int: """simple docstring""" __lowercase : Tuple = None __lowercase : Union[str, Any] = None __lowercase : int = None def lowerCAmelCase ( self : List[Any] , __a : Any , __a : Union[str, torch.device] = None ) -> str: """simple docstring""" __lowercase : List[str] = torch.linspace(1 , self.config.sampling_eps , __a , device=__a ) def lowerCAmelCase ( self : Tuple , __a : List[Any] , __a : Tuple , __a : int , __a : Optional[int]=None ) -> str: """simple docstring""" if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __lowercase : Dict = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __lowercase : int = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __lowercase : Union[str, Any] = std.flatten() while len(std.shape ) < len(score.shape ): __lowercase : Optional[Any] = std.unsqueeze(-1 ) __lowercase : List[Any] = -score / std # compute __lowercase : Dict = -1.0 / len(self.timesteps ) __lowercase : int = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __lowercase : List[Any] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __lowercase : Union[str, Any] = beta_t.unsqueeze(-1 ) __lowercase : List[str] = -0.5 * beta_t * x __lowercase : int = torch.sqrt(__a ) __lowercase : Union[str, Any] = drift - diffusion**2 * score __lowercase : Optional[Any] = x + drift * dt # add noise __lowercase : List[str] = randn_tensor(x.shape , layout=x.layout , generator=__a , device=x.device , dtype=x.dtype ) __lowercase : str = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Tuple ) -> Optional[int]: """simple docstring""" return self.config.num_train_timesteps
649
0
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , __a : Optional[int] , __a : Any=2 , __a : Any=3 , __a : List[str]=4 , __a : Optional[Any]=2 , __a : Optional[Any]=7 , __a : int=True , __a : Dict=True , __a : Dict=True , __a : List[Any]=True , __a : int=99 , __a : Optional[int]=36 , __a : Dict=3 , __a : Union[str, Any]=4 , __a : Dict=37 , __a : List[str]="gelu" , __a : List[str]=0.1 , __a : int=0.1 , __a : Union[str, Any]=512 , __a : Optional[Any]=16 , __a : Any=2 , __a : Optional[Any]=0.02 , __a : List[Any]=6 , __a : Optional[Any]=6 , __a : List[Any]=3 , __a : List[str]=4 , __a : Dict=None , __a : Dict=1000 , ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = parent __lowercase : Tuple = batch_size __lowercase : Tuple = num_channels __lowercase : Union[str, Any] = image_size __lowercase : Optional[Any] = patch_size __lowercase : Optional[Any] = text_seq_length __lowercase : Tuple = is_training __lowercase : Any = use_input_mask __lowercase : str = use_token_type_ids __lowercase : Union[str, Any] = use_labels __lowercase : str = vocab_size __lowercase : Tuple = hidden_size __lowercase : Union[str, Any] = num_hidden_layers __lowercase : List[Any] = num_attention_heads __lowercase : int = intermediate_size __lowercase : Union[str, Any] = hidden_act __lowercase : List[Any] = hidden_dropout_prob __lowercase : Any = attention_probs_dropout_prob __lowercase : Optional[Any] = max_position_embeddings __lowercase : Any = type_vocab_size __lowercase : Any = type_sequence_label_size __lowercase : Tuple = initializer_range __lowercase : Tuple = coordinate_size __lowercase : List[str] = shape_size __lowercase : Tuple = num_labels __lowercase : int = num_choices __lowercase : Dict = scope __lowercase : Optional[Any] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __lowercase : int = text_seq_length __lowercase : List[str] = (image_size // patch_size) ** 2 + 1 __lowercase : Any = self.text_seq_length + self.image_seq_length def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase : int = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __lowercase : str = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __lowercase : List[Any] = bbox[i, j, 3] __lowercase : str = bbox[i, j, 1] __lowercase : Union[str, Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: __lowercase : Union[str, Any] = bbox[i, j, 2] __lowercase : List[str] = bbox[i, j, 0] __lowercase : int = t __lowercase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : List[str] = None if self.use_input_mask: __lowercase : Optional[Any] = random_attention_mask([self.batch_size, self.text_seq_length] ) __lowercase : int = None if self.use_token_type_ids: __lowercase : int = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __lowercase : Optional[int] = None __lowercase : Any = None if self.use_labels: __lowercase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : Optional[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __lowercase : Optional[Any] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def lowerCAmelCase ( self : Optional[Any] , __a : List[Any] , __a : str , __a : Optional[Any] , __a : str , __a : List[str] , __a : Any , __a : Dict , __a : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase : List[str] = LayoutLMvaModel(config=__a ) model.to(__a ) model.eval() # text + image __lowercase : Dict = model(__a , pixel_values=__a ) __lowercase : int = model( __a , bbox=__a , pixel_values=__a , attention_mask=__a , token_type_ids=__a ) __lowercase : List[Any] = model(__a , bbox=__a , pixel_values=__a , token_type_ids=__a ) __lowercase : Union[str, Any] = model(__a , bbox=__a , pixel_values=__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __lowercase : Optional[Any] = model(__a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __lowercase : Tuple = model(pixel_values=__a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Optional[Any] , __a : List[Any] , __a : List[Any] , __a : Union[str, Any] , __a : List[str] , __a : List[str] , __a : Optional[int] , __a : List[str] , __a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Any = self.num_labels __lowercase : str = LayoutLMvaForSequenceClassification(__a ) model.to(__a ) model.eval() __lowercase : str = model( __a , bbox=__a , pixel_values=__a , attention_mask=__a , token_type_ids=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Dict , __a : Optional[Any] , __a : str , __a : List[str] , __a : str , __a : Optional[Any] , __a : Optional[Any] , __a : Optional[int] , __a : List[Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[int] = self.num_labels __lowercase : Optional[int] = LayoutLMvaForTokenClassification(config=__a ) model.to(__a ) model.eval() __lowercase : int = model( __a , bbox=__a , pixel_values=__a , attention_mask=__a , token_type_ids=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def lowerCAmelCase ( self : Tuple , __a : List[str] , __a : Dict , __a : int , __a : Tuple , __a : List[str] , __a : Union[str, Any] , __a : Union[str, Any] , __a : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : int = LayoutLMvaForQuestionAnswering(config=__a ) model.to(__a ) model.eval() __lowercase : Optional[Any] = model( __a , bbox=__a , pixel_values=__a , attention_mask=__a , token_type_ids=__a , start_positions=__a , end_positions=__a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() ( __lowercase ) : Any = config_and_inputs __lowercase : Optional[int] = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Optional[int] = False _A : List[Any] = False _A : Tuple = False _A : Union[str, Any] = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) _A : Union[str, Any] = ( {'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel} if is_torch_available() else {} ) def lowerCAmelCase ( self : List[Any] , __a : Any , __a : Optional[Any] , __a : List[Any] , __a : List[Any] , __a : str ) -> List[Any]: """simple docstring""" return True def lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" __lowercase : Optional[Any] = LayoutLMvaModelTester(self ) __lowercase : int = ConfigTester(self , config_class=__a , hidden_size=37 ) def lowerCAmelCase ( self : int , __a : List[str] , __a : int , __a : Optional[Any]=False ) -> str: """simple docstring""" __lowercase : Optional[int] = copy.deepcopy(__a ) if model_class in get_values(__a ): __lowercase : str = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(__a , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__a ): __lowercase : Any = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=__a ) elif model_class in get_values(__a ): __lowercase : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a ) __lowercase : Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a ) elif model_class in [ *get_values(__a ), ]: __lowercase : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a ) elif model_class in [ *get_values(__a ), ]: __lowercase : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=__a , ) return inputs_dict def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase : Optional[Any] = type self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) @slow def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : Optional[Any] = LayoutLMvaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def snake_case_ ( ): __lowercase : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=__a ) if is_vision_available() else None @slow def lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase : Dict = LayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ).to(__a ) __lowercase : Tuple = self.default_image_processor __lowercase : Tuple = prepare_img() __lowercase : Optional[Any] = image_processor(images=__a , return_tensors="""pt""" ).pixel_values.to(__a ) __lowercase : Optional[Any] = torch.tensor([[1, 2]] ) __lowercase : int = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass __lowercase : Tuple = model( input_ids=input_ids.to(__a ) , bbox=bbox.to(__a ) , pixel_values=pixel_values.to(__a ) , ) # verify the logits __lowercase : Union[str, Any] = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , __a ) __lowercase : Optional[Any] = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(__a ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __a , atol=1E-4 ) )
703
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : str = LongformerTokenizer _A : int = True _A : Optional[int] = LongformerTokenizerFast _A : int = True def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __lowercase : Union[str, Any] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Any = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __lowercase : Optional[int] = {"""unk_token""": """<unk>"""} __lowercase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__a ) ) def lowerCAmelCase ( self : Optional[int] , **__a : Optional[Any] ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Tuple , **__a : Tuple ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : str , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = """lower newer""" __lowercase : int = """lower newer""" return input_text, output_text def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowercase : Dict = """lower newer""" __lowercase : Optional[Any] = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] __lowercase : str = tokenizer.tokenize(__a ) # , add_prefix_space=True) self.assertListEqual(__a , __a ) __lowercase : int = tokens + [tokenizer.unk_token] __lowercase : str = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=__a ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=__a ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : Any = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" ) __lowercase : Optional[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=__a ) __lowercase : List[str] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__a ) __lowercase : Optional[Any] = tokenizer.encode( """sequence builders""" , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Union[str, Any] = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : List[Any] = tokenizer.build_inputs_with_special_tokens(__a ) __lowercase : Any = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() __lowercase : Tuple = """Encode this sequence.""" __lowercase : Optional[Any] = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments __lowercase : Dict = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__a , __a ) __lowercase : List[str] = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__a , __a ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) __lowercase : str = tokenizer.encode(__a , add_special_tokens=__a ) __lowercase : Dict = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__a , __a ) # Testing spaces after special tokens __lowercase : List[Any] = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(__a , lstrip=__a , rstrip=__a )} ) # mask token has a left space __lowercase : Dict = tokenizer.convert_tokens_to_ids(__a ) __lowercase : List[str] = """Encode <mask> sequence""" __lowercase : List[str] = """Encode <mask>sequence""" __lowercase : Union[str, Any] = tokenizer.encode(__a ) __lowercase : Dict = encoded.index(__a ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__a , __a ) __lowercase : int = tokenizer.encode(__a ) __lowercase : Union[str, Any] = encoded.index(__a ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__a , __a ) def lowerCAmelCase ( self : int ) -> str: """simple docstring""" pass def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) __lowercase : List[Any] = self.tokenizer_class.from_pretrained(__a , **__a ) __lowercase : Optional[Any] = """A, <mask> AllenNLP sentence.""" __lowercase : Union[str, Any] = tokenizer_r.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) __lowercase : Optional[Any] = tokenizer_p.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) __lowercase : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __lowercase : str = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __lowercase : Dict = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __lowercase : Any = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""trim_offsets"""] , __a ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : List[str] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` __lowercase : int = F"{text_of_1_token} {text_of_1_token}" __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Any = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) __lowercase : str = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Tuple = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) __lowercase : Optional[int] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : str = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) __lowercase : str = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : int = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) __lowercase : Any = F" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : str = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ) + 1, 1 + len(__a ) + 1 + len(__a )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Dict = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Tuple = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , )
649
0
import random def snake_case_ ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict ): __lowercase : Tuple = a[left_index] __lowercase : Union[str, Any] = left_index + 1 for j in range(left_index + 1 , lowerCAmelCase_ ): if a[j] < pivot: __lowercase : Optional[Any] = a[i], a[j] i += 1 __lowercase : Optional[int] = a[i - 1], a[left_index] return i - 1 def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str ): if left < right: __lowercase : List[str] = random.randint(lowerCAmelCase_ , right - 1 ) __lowercase : int = ( a[left], a[pivot], ) # switches the pivot with the left most bound __lowercase : Optional[int] = partition(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) quick_sort_random( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # recursive quicksort to the left of the pivot point quick_sort_random( lowerCAmelCase_ , pivot_index + 1 , lowerCAmelCase_ ) # recursive quicksort to the right of the pivot point def snake_case_ ( ): __lowercase : Any = input("""Enter numbers separated by a comma:\n""" ).strip() __lowercase : Tuple = [int(lowerCAmelCase_ ) for item in user_input.split(""",""" )] quick_sort_random(lowerCAmelCase_ , 0 , len(lowerCAmelCase_ ) ) print(lowerCAmelCase_ ) if __name__ == "__main__": main()
704
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Dict , __a : Union[str, Any]=13 , __a : Dict=7 , __a : Dict=True , __a : Dict=True , __a : Any=True , __a : List[str]=True , __a : int=99 , __a : Optional[int]=32 , __a : str=2 , __a : int=4 , __a : List[str]=37 , __a : Union[str, Any]="gelu" , __a : Union[str, Any]=0.1 , __a : Union[str, Any]=0.1 , __a : List[Any]=512 , __a : int=16 , __a : Union[str, Any]=2 , __a : Union[str, Any]=0.02 , __a : List[str]=3 , __a : Dict=4 , __a : Optional[Any]=None , ) -> Optional[Any]: """simple docstring""" __lowercase : Any = parent __lowercase : Tuple = 13 __lowercase : Dict = 7 __lowercase : List[Any] = True __lowercase : Tuple = True __lowercase : List[str] = True __lowercase : Any = True __lowercase : Optional[int] = 99 __lowercase : str = 384 __lowercase : Optional[Any] = 2 __lowercase : Dict = 4 __lowercase : str = 37 __lowercase : Optional[int] = """gelu""" __lowercase : int = 0.1 __lowercase : Union[str, Any] = 0.1 __lowercase : Tuple = 512 __lowercase : Tuple = 16 __lowercase : Optional[int] = 2 __lowercase : Optional[Any] = 0.02 __lowercase : Dict = 3 __lowercase : Union[str, Any] = 4 __lowercase : Tuple = 128 __lowercase : Optional[Any] = 2 __lowercase : int = 9 __lowercase : List[Any] = 1 __lowercase : Union[str, Any] = None def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" __lowercase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : Optional[Any] = None if self.use_input_mask: __lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : Dict = None if self.use_token_type_ids: __lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase : Optional[Any] = None __lowercase : str = None __lowercase : Tuple = None if self.use_labels: __lowercase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : str = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : Optional[int] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Dict , __a : List[Any] , __a : List[str] , __a : Union[str, Any] , __a : str , __a : Union[str, Any] , __a : Tuple , __a : Tuple ) -> Dict: """simple docstring""" __lowercase : Dict = TFConvBertModel(config=__a ) __lowercase : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowercase : Any = [input_ids, input_mask] __lowercase : Dict = model(__a ) __lowercase : str = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : Any , __a : Tuple , __a : Union[str, Any] , __a : str , __a : Dict , __a : str ) -> Dict: """simple docstring""" __lowercase : Optional[int] = TFConvBertForMaskedLM(config=__a ) __lowercase : List[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : Any = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[int] , __a : int , __a : Any , __a : Optional[int] , __a : int , __a : int , __a : List[Any] , __a : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase : str = self.num_labels __lowercase : List[Any] = TFConvBertForSequenceClassification(config=__a ) __lowercase : int = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : List[str] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Optional[int] , __a : Any , __a : Optional[Any] , __a : int , __a : Optional[int] , __a : Tuple , __a : int , __a : int ) -> Dict: """simple docstring""" __lowercase : Tuple = self.num_choices __lowercase : Dict = TFConvBertForMultipleChoice(config=__a ) __lowercase : List[str] = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : int = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : str = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : str = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __lowercase : Dict = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : List[str] , __a : str , __a : List[str] , __a : List[str] , __a : List[str] , __a : Any , __a : Tuple , __a : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = self.num_labels __lowercase : Tuple = TFConvBertForTokenClassification(config=__a ) __lowercase : Dict = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : str = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : List[Any] , __a : Optional[int] , __a : List[str] , __a : Optional[Any] , __a : int , __a : Tuple , __a : Any , __a : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Any = TFConvBertForQuestionAnswering(config=__a ) __lowercase : str = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : List[Any] = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : Tuple = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : int = config_and_inputs __lowercase : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Dict = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _A : str = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _A : Union[str, Any] = False _A : List[str] = False _A : Dict = False def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : int = TFConvBertModelTester(self ) __lowercase : Tuple = ConfigTester(self , config_class=__a , hidden_size=37 ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__a ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Union[str, Any] = True __lowercase : List[Any] = True if hasattr(__a , """use_cache""" ): __lowercase : Optional[Any] = True __lowercase : List[str] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) __lowercase : int = getattr(self.model_tester , """key_length""" , __a ) for model_class in self.all_model_classes: __lowercase : Optional[Any] = self._prepare_for_class(__a , __a ) __lowercase : Tuple = model_class(__a ) __lowercase : Tuple = len(model(__a ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a , saved_model=__a ) __lowercase : List[Any] = os.path.join(__a , """saved_model""" , """1""" ) __lowercase : str = tf.keras.models.load_model(__a ) __lowercase : Optional[int] = model(__a ) if self.is_encoder_decoder: __lowercase : Union[str, Any] = outputs["""encoder_hidden_states"""] __lowercase : Union[str, Any] = outputs["""encoder_attentions"""] else: __lowercase : Union[str, Any] = outputs["""hidden_states"""] __lowercase : List[str] = outputs["""attentions"""] self.assertEqual(len(__a ) , __a ) __lowercase : List[Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : str = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) self.assertIsNotNone(__a ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : List[str] = True __lowercase : List[Any] = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length ) __lowercase : Optional[int] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) __lowercase : List[str] = getattr(self.model_tester , """key_length""" , __a ) __lowercase : List[Any] = getattr(self.model_tester , """key_length""" , __a ) def check_decoder_attentions_output(__a : List[str] ): __lowercase : Union[str, Any] = len(__a ) self.assertEqual(out_len % 2 , 0 ) __lowercase : Any = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__a : str ): __lowercase : str = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __lowercase : int = True __lowercase : Any = False __lowercase : List[Any] = model_class(__a ) __lowercase : Tuple = model(self._prepare_for_class(__a , __a ) ) __lowercase : Dict = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: __lowercase : Any = model_class(__a ) __lowercase : List[str] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __lowercase : Dict = True __lowercase : Optional[Any] = model_class(__a ) __lowercase : Optional[int] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine __lowercase : List[str] = True __lowercase : List[Any] = True __lowercase : Any = model_class(__a ) __lowercase : Optional[int] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @require_tf class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) __lowercase : str = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowercase : Tuple = model(__a )[0] __lowercase : Any = [1, 6, 768] self.assertEqual(output.shape , __a ) __lowercase : Optional[Any] = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-4 )
649
0
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device lowerCamelCase : List[str] = False class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : int ) -> str: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __lowercase : int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) __lowercase : List[Any] = torch.manual_seed(0 ) __lowercase : List[str] = pipe.dual_guided( prompt="""first prompt""" , image=__a , text_to_image_strength=0.75 , generator=__a , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__a ) __lowercase : Any = VersatileDiffusionPipeline.from_pretrained(__a , torch_dtype=torch.floataa ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __lowercase : Tuple = generator.manual_seed(0 ) __lowercase : Optional[int] = pipe.dual_guided( prompt="""first prompt""" , image=__a , text_to_image_strength=0.75 , generator=__a , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" __lowercase : Tuple = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __lowercase : int = """cyberpunk 2077""" __lowercase : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) __lowercase : Tuple = torch.manual_seed(0 ) __lowercase : Dict = pipe.dual_guided( prompt=__a , image=__a , text_to_image_strength=0.75 , generator=__a , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images __lowercase : Optional[Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __lowercase : str = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 __lowercase : Tuple = """A painting of a squirrel eating a burger """ __lowercase : Optional[int] = torch.manual_seed(0 ) __lowercase : str = pipe.text_to_image( prompt=__a , generator=__a , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images __lowercase : Optional[int] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __lowercase : List[str] = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 __lowercase : Tuple = pipe.image_variation(__a , generator=__a , output_type="""numpy""" ).images __lowercase : List[str] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __lowercase : Optional[int] = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
705
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : int , *__a : Dict , **__a : Optional[Any] ) -> None: """simple docstring""" warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , __a , ) super().__init__(*__a , **__a )
649
0
from datetime import datetime as dt import os from github import Github lowerCamelCase : Dict = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''feature request''', '''new model''', '''wip''', ] def snake_case_ ( ): __lowercase : str = Github(os.environ["""GITHUB_TOKEN"""] ) __lowercase : Optional[int] = g.get_repo("""huggingface/transformers""" ) __lowercase : Any = repo.get_issues(state="""open""" ) for issue in open_issues: __lowercase : int = sorted([comment for comment in issue.get_comments()] , key=lambda lowerCAmelCase_ : i.created_at , reverse=lowerCAmelCase_ ) __lowercase : List[Any] = comments[0] if len(lowerCAmelCase_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
706
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Optional[int] = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() __lowercase : List[str] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Dict = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } __lowercase : List[str] = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 16000, """return_attention_mask""": False, """do_normalize""": True, } __lowercase : Tuple = tempfile.mkdtemp() __lowercase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : str = os.path.join(self.tmpdirname , __a ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) # load decoder from hub __lowercase : Optional[int] = """hf-internal-testing/ngram-beam-search-decoder""" def lowerCAmelCase ( self : Optional[Any] , **__a : Dict ) -> Tuple: """simple docstring""" __lowercase : Union[str, Any] = self.add_kwargs_tokens_map.copy() kwargs.update(__a ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : str , **__a : int ) -> Tuple: """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Union[str, Any] , **__a : Union[str, Any] ) -> List[Any]: """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__a ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() __lowercase : Any = self.get_feature_extractor() __lowercase : str = self.get_decoder() __lowercase : Tuple = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) processor.save_pretrained(self.tmpdirname ) __lowercase : Tuple = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __a ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __a ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __a ) def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Any = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __lowercase : str = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : List[str] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(__a , """include""" ): WavaVecaProcessorWithLM( tokenizer=__a , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : List[Any] = self.get_feature_extractor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : int = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Optional[int] = floats_list((3, 1000) ) __lowercase : List[Any] = feature_extractor(__a , return_tensors="""np""" ) __lowercase : List[str] = processor(__a , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : List[Any] = self.get_feature_extractor() __lowercase : int = self.get_tokenizer() __lowercase : Dict = self.get_decoder() __lowercase : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Dict = """This is a test string""" __lowercase : Any = processor(text=__a ) __lowercase : Dict = tokenizer(__a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase ( self : str , __a : Tuple=(2, 10, 16) , __a : int=77 ) -> Optional[Any]: """simple docstring""" np.random.seed(__a ) return np.random.rand(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : List[str] = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : str = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : List[str] = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __lowercase : Optional[Any] = processor.decode(__a ) __lowercase : Any = decoder.decode_beams(__a )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def lowerCAmelCase ( self : List[str] , __a : Dict ) -> List[Any]: """simple docstring""" __lowercase : str = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : Optional[int] = self.get_decoder() __lowercase : Any = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Optional[Any] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __lowercase : Union[str, Any] = processor.batch_decode(__a ) else: with get_context(__a ).Pool() as pool: __lowercase : Optional[Any] = processor.batch_decode(__a , __a ) __lowercase : Union[str, Any] = list(__a ) with get_context("""fork""" ).Pool() as p: __lowercase : Optional[Any] = decoder.decode_beams_batch(__a , __a ) __lowercase , __lowercase , __lowercase : Any = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__a , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(__a , decoded_processor.logit_score ) self.assertListEqual(__a , decoded_processor.lm_score ) def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase : int = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : List[str] = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Dict = self._get_dummy_logits() __lowercase : Tuple = 15 __lowercase : Tuple = -20.0 __lowercase : Dict = -4.0 __lowercase : Dict = processor.batch_decode( __a , beam_width=__a , beam_prune_logp=__a , token_min_logp=__a , ) __lowercase : Tuple = decoded_processor_out.text __lowercase : List[Any] = list(__a ) with get_context("""fork""" ).Pool() as pool: __lowercase : Any = decoder.decode_beams_batch( __a , __a , beam_width=__a , beam_prune_logp=__a , token_min_logp=__a , ) __lowercase : Optional[Any] = [d[0][0] for d in decoded_decoder_out] __lowercase : Optional[int] = [d[0][2] for d in decoded_decoder_out] __lowercase : Optional[int] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__a , __a ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , __a ) self.assertTrue(np.array_equal(__a , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , __a , atol=1E-3 ) ) self.assertTrue(np.array_equal(__a , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , __a , atol=1E-3 ) ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase : str = self.get_feature_extractor() __lowercase : List[Any] = self.get_tokenizer() __lowercase : List[Any] = self.get_decoder() __lowercase : Dict = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : List[Any] = self._get_dummy_logits() __lowercase : Optional[int] = 2.0 __lowercase : Tuple = 5.0 __lowercase : Optional[Any] = -20.0 __lowercase : Tuple = True __lowercase : Union[str, Any] = processor.batch_decode( __a , alpha=__a , beta=__a , unk_score_offset=__a , lm_score_boundary=__a , ) __lowercase : Any = decoded_processor_out.text __lowercase : List[Any] = list(__a ) decoder.reset_params( alpha=__a , beta=__a , unk_score_offset=__a , lm_score_boundary=__a , ) with get_context("""fork""" ).Pool() as pool: __lowercase : Tuple = decoder.decode_beams_batch( __a , __a , ) __lowercase : int = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__a , __a ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , __a ) __lowercase : str = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , __a ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] __lowercase : str = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __lowercase : int = os.listdir(__a ) __lowercase : Optional[Any] = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = snapshot_download("""hf-internal-testing/processor_with_lm""" ) __lowercase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(__a ) __lowercase : Dict = processor.decoder.model_container[processor.decoder._model_key] __lowercase : List[Any] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __lowercase : Dict = os.listdir(__a ) __lowercase : List[Any] = os.listdir(__a ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" __lowercase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Dict = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Any = floats_list((3, 1000) ) __lowercase : List[str] = processor_wavaveca(__a , return_tensors="""np""" ) __lowercase : List[Any] = processor_auto(__a , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) __lowercase : List[str] = self._get_dummy_logits() __lowercase : List[str] = processor_wavaveca.batch_decode(__a ) __lowercase : Optional[int] = processor_auto.batch_decode(__a ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Any = self.get_feature_extractor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : Dict = self.get_decoder() __lowercase : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def lowerCAmelCase ( __a : Union[str, Any] , __a : List[Any] ) -> Dict: """simple docstring""" __lowercase : Any = [d[key] for d in offsets] return retrieved_list def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" __lowercase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Optional[Any] = self._get_dummy_logits()[0] __lowercase : Dict = processor.decode(__a , output_word_offsets=__a ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__a , __a ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : List[str] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Any = self._get_dummy_logits() __lowercase : Dict = processor.batch_decode(__a , output_word_offsets=__a ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__a , __a ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(__a , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" import torch __lowercase : Any = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=__a ) __lowercase : str = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=16000 ) ) __lowercase : Tuple = iter(__a ) __lowercase : Union[str, Any] = next(__a ) __lowercase : int = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) __lowercase : int = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __lowercase : Union[str, Any] = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): __lowercase : List[Any] = model(__a ).logits.cpu().numpy() __lowercase : Tuple = processor.decode(logits[0] , output_word_offsets=__a ) __lowercase : int = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __lowercase : Optional[Any] = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] __lowercase : str = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(__a , """word""" ) ) , __a ) self.assertEqual(""" """.join(self.get_from_offsets(__a , """word""" ) ) , output.text ) # output times __lowercase : Tuple = torch.tensor(self.get_from_offsets(__a , """start_time""" ) ) __lowercase : Dict = torch.tensor(self.get_from_offsets(__a , """end_time""" ) ) # fmt: off __lowercase : List[Any] = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) __lowercase : Optional[int] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(__a , __a , atol=0.01 ) ) self.assertTrue(torch.allclose(__a , __a , atol=0.01 ) )
649
0
def snake_case_ ( lowerCAmelCase_ : list[list[float]] ): __lowercase : list[list[float]] = [] for data in source_data: for i, el in enumerate(lowerCAmelCase_ ): if len(lowerCAmelCase_ ) < i + 1: data_lists.append([] ) data_lists[i].append(float(lowerCAmelCase_ ) ) return data_lists def snake_case_ ( lowerCAmelCase_ : list[list[float]] , lowerCAmelCase_ : list[int] ): __lowercase : list[list[float]] = [] for dlist, weight in zip(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : Union[str, Any] = min(lowerCAmelCase_ ) __lowercase : List[Any] = max(lowerCAmelCase_ ) __lowercase : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: __lowercase : int = F"Invalid weight of {weight:f} provided" raise ValueError(lowerCAmelCase_ ) score_lists.append(lowerCAmelCase_ ) return score_lists def snake_case_ ( lowerCAmelCase_ : list[list[float]] ): __lowercase : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(lowerCAmelCase_ ): __lowercase : Optional[Any] = final_scores[j] + ele return final_scores def snake_case_ ( lowerCAmelCase_ : list[list[float]] , lowerCAmelCase_ : list[int] ): __lowercase : str = get_data(lowerCAmelCase_ ) __lowercase : Any = calculate_each_score(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Optional[Any] = generate_final_scores(lowerCAmelCase_ ) # append scores to source data for i, ele in enumerate(lowerCAmelCase_ ): source_data[i].append(lowerCAmelCase_ ) return source_data
707
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(0 ) == 0 ) def snake_case_ ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
649
0
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline lowerCamelCase : int = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Optional[int] , __a : Any , __a : List[str] ) -> Optional[int]: """simple docstring""" super().__init__() self.register_modules(unet=__a , scheduler=__a ) @torch.no_grad() def __call__( self : str , __a : int = 1 , __a : int = 100 , __a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __a : Optional[float] = None , __a : bool = True , ) -> Union[AudioPipelineOutput, Tuple]: """simple docstring""" if audio_length_in_s is None: __lowercase : List[str] = self.unet.config.sample_size / self.unet.config.sample_rate __lowercase : List[str] = audio_length_in_s * self.unet.config.sample_rate __lowercase : str = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F"{audio_length_in_s} is too small. Make sure it's bigger or equal to" F" {3 * down_scale_factor / self.unet.config.sample_rate}." ) __lowercase : int = int(__a ) if sample_size % down_scale_factor != 0: __lowercase : Optional[Any] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F"{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled" F" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising" """ process.""" ) __lowercase : str = int(__a ) __lowercase : List[Any] = next(iter(self.unet.parameters() ) ).dtype __lowercase : Dict = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(__a , __a ) and len(__a ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(__a )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) __lowercase : Dict = randn_tensor(__a , generator=__a , device=self.device , dtype=__a ) # set step values self.scheduler.set_timesteps(__a , device=audio.device ) __lowercase : Tuple = self.scheduler.timesteps.to(__a ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __lowercase : Optional[Any] = self.unet(__a , __a ).sample # 2. compute previous image: x_t -> t_t-1 __lowercase : int = self.scheduler.step(__a , __a , __a ).prev_sample __lowercase : Dict = audio.clamp(-1 , 1 ).float().cpu().numpy() __lowercase : List[str] = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=__a )
708
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCamelCase : int = '''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine''' def snake_case_ ( ): __lowercase : List[Any] = _ask_options( """In which compute environment are you running?""" , ["""This machine""", """AWS (Amazon SageMaker)"""] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __lowercase : Union[str, Any] = get_sagemaker_input() else: __lowercase : str = get_cluster_input() return config def snake_case_ ( lowerCAmelCase_ : List[str]=None ): if subparsers is not None: __lowercase : Optional[int] = subparsers.add_parser("""config""" , description=lowerCAmelCase_ ) else: __lowercase : List[str] = argparse.ArgumentParser("""Accelerate config command""" , description=lowerCAmelCase_ ) parser.add_argument( """--config_file""" , default=lowerCAmelCase_ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def snake_case_ ( lowerCAmelCase_ : Tuple ): __lowercase : Union[str, Any] = get_user_input() if args.config_file is not None: __lowercase : List[Any] = args.config_file else: if not os.path.isdir(lowerCAmelCase_ ): os.makedirs(lowerCAmelCase_ ) __lowercase : Any = default_yaml_config_file if config_file.endswith(""".json""" ): config.to_json_file(lowerCAmelCase_ ) else: config.to_yaml_file(lowerCAmelCase_ ) print(F"accelerate configuration saved at {config_file}" ) def snake_case_ ( ): __lowercase : str = config_command_parser() __lowercase : str = parser.parse_args() config_command(lowerCAmelCase_ ) if __name__ == "__main__": main()
649
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : Tuple = ShapEImgaImgPipeline _A : Optional[int] = ['''image'''] _A : List[Any] = ['''image'''] _A : str = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] _A : int = False @property def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" return 32 @property def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" return 32 @property def lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" return self.time_input_dim * 4 @property def lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" return 8 @property def lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) __lowercase : Any = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) __lowercase : Union[str, Any] = CLIPVisionModel(__a ) return model @property def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" __lowercase : str = CLIPImageProcessor( crop_size=224 , do_center_crop=__a , do_normalize=__a , do_resize=__a , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor @property def lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) __lowercase : List[str] = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } __lowercase : str = PriorTransformer(**__a ) return model @property def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" torch.manual_seed(0 ) __lowercase : Optional[Any] = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } __lowercase : Any = ShapERenderer(**__a ) return model def lowerCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.dummy_prior __lowercase : Optional[int] = self.dummy_image_encoder __lowercase : Any = self.dummy_image_processor __lowercase : Optional[int] = self.dummy_renderer __lowercase : str = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=__a , clip_sample=__a , clip_sample_range=1.0 , ) __lowercase : List[str] = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCAmelCase ( self : Dict , __a : int , __a : str=0 ) -> int: """simple docstring""" __lowercase : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(__a ) ).to(__a ) if str(__a ).startswith("""mps""" ): __lowercase : Dict = torch.manual_seed(__a ) else: __lowercase : Optional[Any] = torch.Generator(device=__a ).manual_seed(__a ) __lowercase : List[Any] = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" __lowercase : str = """cpu""" __lowercase : Any = self.get_dummy_components() __lowercase : int = self.pipeline_class(**__a ) __lowercase : Union[str, Any] = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __lowercase : str = pipe(**self.get_dummy_inputs(__a ) ) __lowercase : List[str] = output.images[0] __lowercase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __lowercase : str = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase ( self : int ) -> str: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" __lowercase : List[Any] = torch_device == """cpu""" __lowercase : Tuple = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__a , relax_max_difference=__a , ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : int = self.get_dummy_components() __lowercase : Any = self.pipeline_class(**__a ) __lowercase : List[str] = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __lowercase : Tuple = 1 __lowercase : Dict = 2 __lowercase : Dict = self.get_dummy_inputs(__a ) for key in inputs.keys(): if key in self.batch_params: __lowercase : Optional[Any] = batch_size * [inputs[key]] __lowercase : Union[str, Any] = pipe(**__a , num_images_per_prompt=__a )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) __lowercase : Optional[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) __lowercase : str = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) __lowercase : str = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __lowercase : Any = torch.Generator(device=__a ).manual_seed(0 ) __lowercase : Dict = pipe( __a , generator=__a , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__a , __a )
709
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : list[str] | None = None ): __lowercase : Tuple = word_bank or [] # create a table __lowercase : int = len(lowerCAmelCase_ ) + 1 __lowercase : list[list[list[str]]] = [] for _ in range(lowerCAmelCase_ ): table.append([] ) # seed value __lowercase : Dict = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowerCAmelCase_ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowerCAmelCase_ )] == word: __lowercase : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowerCAmelCase_ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowerCAmelCase_ )]: combination.reverse() return table[len(lowerCAmelCase_ )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
649
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase : List[str] = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[Any] = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[Any] = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowerCamelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
710
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(1 ) != 0 ) def snake_case_ ( ): assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
649
0
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets lowerCamelCase : Union[str, Any] = '''\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } ''' lowerCamelCase : Optional[Any] = '''\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve ''' lowerCamelCase : List[str] = ''' Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: "c" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric(\'mauve\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/krishnap25/mauve""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/krishnap25/mauve"""] , reference_urls=[ """https://arxiv.org/abs/2102.01454""", """https://github.com/krishnap25/mauve""", ] , ) def lowerCAmelCase ( self : str , __a : Any , __a : int , __a : Optional[int]=None , __a : Optional[Any]=None , __a : int=None , __a : List[Any]=None , __a : Tuple="auto" , __a : Union[str, Any]=-1 , __a : Union[str, Any]=0.9 , __a : List[str]=5 , __a : Tuple=500 , __a : Optional[int]="gpt2-large" , __a : Any=-1 , __a : int=1024 , __a : List[str]=25 , __a : int=5 , __a : List[str]=True , __a : str=25 , ) -> Tuple: """simple docstring""" __lowercase : Union[str, Any] = compute_mauve( p_text=__a , q_text=__a , p_features=__a , q_features=__a , p_tokens=__a , q_tokens=__a , num_buckets=__a , pca_max_data=__a , kmeans_explained_var=__a , kmeans_num_redo=__a , kmeans_max_iter=__a , featurize_model_name=__a , device_id=__a , max_text_length=__a , divergence_curve_discretization_size=__a , mauve_scaling_factor=__a , verbose=__a , seed=__a , ) return out
711
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : int = { '''configuration_funnel''': ['''FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FunnelConfig'''], '''convert_funnel_original_tf_checkpoint_to_pytorch''': [], '''tokenization_funnel''': ['''FunnelTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = ['''FunnelTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = [ '''FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FunnelBaseModel''', '''FunnelForMaskedLM''', '''FunnelForMultipleChoice''', '''FunnelForPreTraining''', '''FunnelForQuestionAnswering''', '''FunnelForSequenceClassification''', '''FunnelForTokenClassification''', '''FunnelModel''', '''FunnelPreTrainedModel''', '''load_tf_weights_in_funnel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ '''TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFFunnelBaseModel''', '''TFFunnelForMaskedLM''', '''TFFunnelForMultipleChoice''', '''TFFunnelForPreTraining''', '''TFFunnelForQuestionAnswering''', '''TFFunnelForSequenceClassification''', '''TFFunnelForTokenClassification''', '''TFFunnelModel''', '''TFFunnelPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
649
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Tuple = logging.get_logger(__name__) class lowerCAmelCase ( __a ): '''simple docstring''' _A : Optional[Any] = '''encoder-decoder''' _A : Optional[Any] = True def __init__( self : List[str] , **__a : Optional[Any] ) -> Any: """simple docstring""" super().__init__(**__a ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" __lowercase : List[Any] = kwargs.pop("""encoder""" ) __lowercase : List[str] = encoder_config.pop("""model_type""" ) __lowercase : Optional[Any] = kwargs.pop("""decoder""" ) __lowercase : Optional[Any] = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig __lowercase : int = AutoConfig.for_model(__a , **__a ) __lowercase : Dict = AutoConfig.for_model(__a , **__a ) __lowercase : Union[str, Any] = True @classmethod def lowerCAmelCase ( cls : Optional[int] , __a : PretrainedConfig , __a : PretrainedConfig , **__a : Tuple ) -> PretrainedConfig: """simple docstring""" logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) __lowercase : Dict = True __lowercase : Tuple = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__a ) def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : int = copy.deepcopy(self.__dict__ ) __lowercase : Optional[Any] = self.encoder.to_dict() __lowercase : Optional[int] = self.decoder.to_dict() __lowercase : Tuple = self.__class__.model_type return output
712
import logging import os import threading import time try: import warnings except ImportError: lowerCamelCase : Any = None try: import msvcrt except ImportError: lowerCamelCase : str = None try: import fcntl except ImportError: lowerCamelCase : Optional[Any] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: lowerCamelCase : Union[str, Any] = OSError # Data # ------------------------------------------------ lowerCamelCase : Tuple = [ '''Timeout''', '''BaseFileLock''', '''WindowsFileLock''', '''UnixFileLock''', '''SoftFileLock''', '''FileLock''', ] lowerCamelCase : Tuple = '''3.0.12''' lowerCamelCase : Any = None def snake_case_ ( ): global _logger __lowercase : List[str] = _logger or logging.getLogger(__name__ ) return _logger class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Any , __a : Any ) -> List[Any]: """simple docstring""" __lowercase : List[str] = lock_file return None def __str__( self : str ) -> Any: """simple docstring""" __lowercase : Any = F"The file lock '{self.lock_file}' could not be acquired." return temp class lowerCAmelCase : '''simple docstring''' def __init__( self : List[Any] , __a : Optional[int] ) -> int: """simple docstring""" __lowercase : Optional[Any] = lock return None def __enter__( self : Dict ) -> Dict: """simple docstring""" return self.lock def __exit__( self : Optional[int] , __a : Dict , __a : Any , __a : Tuple ) -> Optional[Any]: """simple docstring""" self.lock.release() return None class lowerCAmelCase : '''simple docstring''' def __init__( self : Tuple , __a : Any , __a : Dict=-1 , __a : Optional[Any]=None ) -> Any: """simple docstring""" __lowercase : Optional[int] = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long __lowercase : Dict = self.hash_filename_if_too_long(__a , __a ) # The path to the lock file. __lowercase : Optional[Any] = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __lowercase : int = None # The default timeout value. __lowercase : Optional[int] = timeout # We use this lock primarily for the lock counter. __lowercase : Optional[Any] = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __lowercase : Union[str, Any] = 0 return None @property def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return self._lock_file @property def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return self._timeout @timeout.setter def lowerCAmelCase ( self : Tuple , __a : Tuple ) -> Dict: """simple docstring""" __lowercase : Tuple = float(__a ) return None def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" raise NotImplementedError() def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" raise NotImplementedError() @property def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" return self._lock_file_fd is not None def lowerCAmelCase ( self : Any , __a : Optional[Any]=None , __a : Union[str, Any]=0.05 ) -> List[str]: """simple docstring""" if timeout is None: __lowercase : Union[str, Any] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __lowercase : int = id(self ) __lowercase : Optional[Any] = self._lock_file __lowercase : List[str] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"Attempting to acquire lock {lock_id} on {lock_filename}" ) self._acquire() if self.is_locked: logger().debug(F"Lock {lock_id} acquired on {lock_filename}" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"Timeout on acquiring lock {lock_id} on {lock_filename}" ) raise Timeout(self._lock_file ) else: logger().debug( F"Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ..." ) time.sleep(__a ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __lowercase : Optional[int] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def lowerCAmelCase ( self : Union[str, Any] , __a : Optional[Any]=False ) -> Optional[Any]: """simple docstring""" with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __lowercase : Optional[Any] = id(self ) __lowercase : str = self._lock_file logger().debug(F"Attempting to release lock {lock_id} on {lock_filename}" ) self._release() __lowercase : List[str] = 0 logger().debug(F"Lock {lock_id} released on {lock_filename}" ) return None def __enter__( self : Any ) -> Optional[Any]: """simple docstring""" self.acquire() return self def __exit__( self : List[str] , __a : str , __a : int , __a : List[Any] ) -> Tuple: """simple docstring""" self.release() return None def __del__( self : Optional[int] ) -> Optional[int]: """simple docstring""" self.release(force=__a ) return None def lowerCAmelCase ( self : Tuple , __a : str , __a : int ) -> str: """simple docstring""" __lowercase : List[Any] = os.path.basename(__a ) if len(__a ) > max_length and max_length > 0: __lowercase : int = os.path.dirname(__a ) __lowercase : List[str] = str(hash(__a ) ) __lowercase : Optional[Any] = filename[: max_length - len(__a ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(__a , __a ) else: return path class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Union[str, Any] , __a : List[Any] , __a : Optional[int]=-1 , __a : Tuple=None ) -> List[Any]: """simple docstring""" from .file_utils import relative_to_absolute_path super().__init__(__a , timeout=__a , max_filename_length=__a ) __lowercase : Tuple = """\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __lowercase : Tuple = os.open(self._lock_file , __a ) except OSError: pass else: try: msvcrt.locking(__a , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__a ) else: __lowercase : Union[str, Any] = fd return None def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = self._lock_file_fd __lowercase : int = None msvcrt.locking(__a , msvcrt.LK_UNLCK , 1 ) os.close(__a ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : List[str] , __a : Optional[Any] , __a : str=-1 , __a : List[str]=None ) -> Any: """simple docstring""" __lowercase : Dict = os.statvfs(os.path.dirname(__a ) ).f_namemax super().__init__(__a , timeout=__a , max_filename_length=__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase : List[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC __lowercase : List[str] = os.open(self._lock_file , __a ) try: fcntl.flock(__a , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__a ) else: __lowercase : str = fd return None def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Any = self._lock_file_fd __lowercase : List[str] = None fcntl.flock(__a , fcntl.LOCK_UN ) os.close(__a ) return None class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __lowercase : Union[str, Any] = os.open(self._lock_file , __a ) except OSError: pass else: __lowercase : Optional[int] = fd return None def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" os.close(self._lock_file_fd ) __lowercase : int = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None lowerCamelCase : Optional[Any] = None if msvcrt: lowerCamelCase : List[Any] = WindowsFileLock elif fcntl: lowerCamelCase : List[Any] = UnixFileLock else: lowerCamelCase : Union[str, Any] = SoftFileLock if warnings is not None: warnings.warn('''only soft file lock is available''')
649
0
import collections import os import re from pathlib import Path lowerCamelCase : List[str] = '''src/transformers''' # Matches is_xxx_available() lowerCamelCase : List[Any] = re.compile(r'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} lowerCamelCase : Any = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowerCamelCase : Union[str, Any] = re.compile(r'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available lowerCamelCase : Dict = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") lowerCamelCase : Optional[Any] = re.compile(r'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowerCamelCase : Any = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", lowerCamelCase : str = re.compile(r'''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], lowerCamelCase : Optional[Any] = re.compile(r'''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo lowerCamelCase : Optional[int] = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: lowerCamelCase : str = re.compile(r'''^\s*try:''') # Catches a line with else: lowerCamelCase : str = re.compile(r'''^\s*else:''') def snake_case_ ( lowerCAmelCase_ : Union[str, Any] ): if _re_test_backend.search(lowerCAmelCase_ ) is None: return None __lowercase : str = [b[0] for b in _re_backend.findall(lowerCAmelCase_ )] backends.sort() return "_and_".join(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : Tuple ): with open(lowerCAmelCase_ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __lowercase : List[Any] = f.readlines() __lowercase : Optional[Any] = 0 while line_index < len(lowerCAmelCase_ ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(lowerCAmelCase_ ): return None # First grab the objects without a specific backend in _import_structure __lowercase : Dict = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: __lowercase : Tuple = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(lowerCAmelCase_ ): __lowercase : Any = _re_one_line_import_struct.search(lowerCAmelCase_ ).groups()[0] __lowercase : int = re.findall(r"""\[([^\]]+)\]""" , lowerCAmelCase_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue __lowercase : List[str] = _re_import_struct_key_value.search(lowerCAmelCase_ ) if single_line_import_search is not None: __lowercase : int = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(lowerCAmelCase_ ) > 0] objects.extend(lowerCAmelCase_ ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 __lowercase : Tuple = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. __lowercase : Optional[Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowercase : Dict = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowercase : Dict = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): __lowercase : Union[str, Any] = lines[line_index] if _re_import_struct_add_one.search(lowerCAmelCase_ ) is not None: objects.append(_re_import_struct_add_one.search(lowerCAmelCase_ ).groups()[0] ) elif _re_import_struct_add_many.search(lowerCAmelCase_ ) is not None: __lowercase : Optional[Any] = _re_import_struct_add_many.search(lowerCAmelCase_ ).groups()[0].split(""", """ ) __lowercase : Optional[int] = [obj[1:-1] for obj in imports if len(lowerCAmelCase_ ) > 0] objects.extend(lowerCAmelCase_ ) elif _re_between_brackets.search(lowerCAmelCase_ ) is not None: __lowercase : Optional[int] = _re_between_brackets.search(lowerCAmelCase_ ).groups()[0].split(""", """ ) __lowercase : int = [obj[1:-1] for obj in imports if len(lowerCAmelCase_ ) > 0] objects.extend(lowerCAmelCase_ ) elif _re_quote_object.search(lowerCAmelCase_ ) is not None: objects.append(_re_quote_object.search(lowerCAmelCase_ ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 __lowercase : List[str] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend __lowercase : List[str] = [] while ( line_index < len(lowerCAmelCase_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): __lowercase : Any = lines[line_index] __lowercase : Optional[Any] = _re_import.search(lowerCAmelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 __lowercase : Optional[int] = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(lowerCAmelCase_ ): # If the line is an if is_backend_available, we grab all objects associated. __lowercase : int = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowercase : List[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowercase : str = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): __lowercase : List[Any] = lines[line_index] __lowercase : List[Any] = _re_import.search(lowerCAmelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 __lowercase : List[str] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] ): def find_duplicates(lowerCAmelCase_ : Tuple ): return [k for k, v in collections.Counter(lowerCAmelCase_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] __lowercase : List[Any] = [] for key in import_dict_objects.keys(): __lowercase : Optional[Any] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"Duplicate _import_structure definitions for: {duplicate_imports}" ) __lowercase : int = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): __lowercase : str = """base imports""" if key == """none""" else F"{key} backend" errors.append(F"Differences for {name}:" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F" {a} in TYPE_HINT but not in _import_structure." ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F" {a} in _import_structure but not in TYPE_HINT." ) return errors def snake_case_ ( ): __lowercase : List[str] = [] for root, _, files in os.walk(lowerCAmelCase_ ): if "__init__.py" in files: __lowercase : Any = os.path.join(lowerCAmelCase_ , """__init__.py""" ) __lowercase : Optional[int] = parse_init(lowerCAmelCase_ ) if objects is not None: __lowercase : List[str] = analyze_results(*lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 0: __lowercase : Optional[Any] = F"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}" failures.append("""\n""".join(lowerCAmelCase_ ) ) if len(lowerCAmelCase_ ) > 0: raise ValueError("""\n\n""".join(lowerCAmelCase_ ) ) def snake_case_ ( ): __lowercase : Tuple = [] for path, directories, files in os.walk(lowerCAmelCase_ ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(lowerCAmelCase_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(lowerCAmelCase_ ) / folder).glob("""*.py""" ) ) ) == 0: continue __lowercase : Optional[Any] = str((Path(lowerCAmelCase_ ) / folder).relative_to(lowerCAmelCase_ ) ) __lowercase : Optional[Any] = short_path.replace(os.path.sep , """.""" ) submodules.append(lowerCAmelCase_ ) for fname in files: if fname == "__init__.py": continue __lowercase : Optional[int] = str((Path(lowerCAmelCase_ ) / fname).relative_to(lowerCAmelCase_ ) ) __lowercase : List[str] = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(lowerCAmelCase_ ) return submodules lowerCamelCase : Optional[int] = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', '''models.esm.openfold_utils''', ] def snake_case_ ( ): # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import __lowercase : List[str] = direct_transformers_import(lowerCAmelCase_ ) __lowercase : Tuple = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(lowerCAmelCase_ , """__init__.py""" ) , """r""" ) as f: __lowercase : List[str] = f.read() import_structure_keys.update(set(re.findall(r"""import_structure\[\"([^\"]*)\"\]""" , lowerCAmelCase_ ) ) ) __lowercase : List[Any] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(lowerCAmelCase_ ) > 0: __lowercase : List[Any] = """\n""".join(F"- {module}" for module in module_not_registered ) raise ValueError( """The following submodules are not properly registed in the main init of Transformers:\n""" F"{list_of_modules}\n" """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
713
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : Tuple = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = '''layoutlmv3''' def __init__( self : Dict , __a : List[str]=50265 , __a : str=768 , __a : List[Any]=12 , __a : List[Any]=12 , __a : List[str]=3072 , __a : Optional[Any]="gelu" , __a : Optional[int]=0.1 , __a : List[Any]=0.1 , __a : Tuple=512 , __a : int=2 , __a : Any=0.02 , __a : Union[str, Any]=1E-5 , __a : List[str]=1 , __a : List[Any]=0 , __a : int=2 , __a : str=1024 , __a : str=128 , __a : List[Any]=128 , __a : Tuple=True , __a : Optional[int]=32 , __a : Any=128 , __a : List[Any]=64 , __a : Tuple=256 , __a : str=True , __a : int=True , __a : Optional[Any]=True , __a : Any=224 , __a : str=3 , __a : List[str]=16 , __a : Union[str, Any]=None , **__a : List[Any] , ) -> List[str]: """simple docstring""" super().__init__( vocab_size=__a , hidden_size=__a , num_hidden_layers=__a , num_attention_heads=__a , intermediate_size=__a , hidden_act=__a , hidden_dropout_prob=__a , attention_probs_dropout_prob=__a , max_position_embeddings=__a , type_vocab_size=__a , initializer_range=__a , layer_norm_eps=__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a , ) __lowercase : int = max_ad_position_embeddings __lowercase : Any = coordinate_size __lowercase : Optional[Any] = shape_size __lowercase : str = has_relative_attention_bias __lowercase : int = rel_pos_bins __lowercase : Union[str, Any] = max_rel_pos __lowercase : str = has_spatial_attention_bias __lowercase : str = rel_ad_pos_bins __lowercase : List[Any] = max_rel_ad_pos __lowercase : Tuple = text_embed __lowercase : int = visual_embed __lowercase : Tuple = input_size __lowercase : Dict = num_channels __lowercase : str = patch_size __lowercase : Optional[int] = classifier_dropout class lowerCAmelCase ( __a ): '''simple docstring''' _A : str = version.parse('''1.12''' ) @property def lowerCAmelCase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def lowerCAmelCase ( self : Union[str, Any] ) -> float: """simple docstring""" return 1E-5 @property def lowerCAmelCase ( self : str ) -> int: """simple docstring""" return 12 def lowerCAmelCase ( self : List[Any] , __a : "ProcessorMixin" , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional["TensorType"] = None , __a : int = 3 , __a : int = 40 , __a : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , """apply_ocr""" , __a ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase : Tuple = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase : Tuple = processor.tokenizer.num_special_tokens_to_add(__a ) __lowercase : Tuple = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__a ) # Generate dummy inputs according to compute batch and sequence __lowercase : Union[str, Any] = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowercase : Tuple = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowercase : Tuple = self._generate_dummy_images(__a , __a , __a , __a ) __lowercase : int = dict( processor( __a , text=__a , boxes=__a , return_tensors=__a , ) ) return inputs
649
0
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file lowerCamelCase : str = '''Run commands across TPU VMs for initial setup before running `accelerate launch`.''' def snake_case_ ( lowerCAmelCase_ : Optional[Any]=None ): if subparsers is not None: __lowercase : Any = subparsers.add_parser("""tpu-config""" , description=_description ) else: __lowercase : Dict = argparse.ArgumentParser("""Accelerate tpu-config command""" , description=_description ) # Core arguments __lowercase : List[Any] = parser.add_argument_group( """Config Arguments""" , """Arguments that can be configured through `accelerate config`.""" ) config_args.add_argument( """--config_file""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , help="""Path to the config file to use for accelerate.""" , ) config_args.add_argument( """--tpu_name""" , default=lowerCAmelCase_ , help="""The name of the TPU to use. If not specified, will use the TPU specified in the config file.""" , ) config_args.add_argument( """--tpu_zone""" , default=lowerCAmelCase_ , help="""The zone of the TPU to use. If not specified, will use the zone specified in the config file.""" , ) __lowercase : int = parser.add_argument_group("""TPU Arguments""" , """Arguments for options ran inside the TPU.""" ) pod_args.add_argument( """--use_alpha""" , action="""store_true""" , help="""Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.""" , ) pod_args.add_argument( """--command_file""" , default=lowerCAmelCase_ , help="""The path to the file containing the commands to run on the pod on startup.""" , ) pod_args.add_argument( """--command""" , action="""append""" , nargs="""+""" , help="""A command to run on the pod. Can be passed multiple times.""" , ) pod_args.add_argument( """--install_accelerate""" , action="""store_true""" , help="""Whether to install accelerate on the pod. Defaults to False.""" , ) pod_args.add_argument( """--accelerate_version""" , default="""latest""" , help="""The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub.""" , ) pod_args.add_argument( """--debug""" , action="""store_true""" , help="""If set, will print the command that would be run instead of running it.""" ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def snake_case_ ( lowerCAmelCase_ : Any ): __lowercase : int = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(lowerCAmelCase_ ): __lowercase : Any = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: __lowercase : int = defaults.command_file if not args.command and defaults.commands is not None: __lowercase : Dict = defaults.commands if not args.tpu_name: __lowercase : Optional[int] = defaults.tpu_name if not args.tpu_zone: __lowercase : Union[str, Any] = defaults.tpu_zone if args.accelerate_version == "dev": __lowercase : List[Any] = """git+https://github.com/huggingface/accelerate.git""" elif args.accelerate_version == "latest": __lowercase : Dict = """accelerate -U""" elif isinstance(parse(args.accelerate_version ) , lowerCAmelCase_ ): __lowercase : List[Any] = F"accelerate=={args.accelerate_version}" if not args.command_file and not args.command: raise ValueError("""You must specify either a command file or a command to run on the pod.""" ) if args.command_file: with open(args.command_file , """r""" ) as f: __lowercase : List[Any] = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , lowerCAmelCase_ ): __lowercase : Dict = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate __lowercase : Optional[Any] = ["""cd /usr/share"""] if args.install_accelerate: new_cmd += [F"pip install {args.accelerate_version}"] new_cmd += args.command __lowercase : Tuple = """; """.join(lowerCAmelCase_ ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess __lowercase : Tuple = ["""gcloud"""] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F"Running {' '.join(lowerCAmelCase_ )}" ) return subprocess.run(lowerCAmelCase_ ) print("""Successfully setup pod.""" ) def snake_case_ ( ): __lowercase : Tuple = tpu_command_parser() __lowercase : Tuple = parser.parse_args() tpu_command_launcher(lowerCAmelCase_ )
714
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowerCamelCase : List[Any] = logging.get_logger(__name__) class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , __a : str = None , __a : uuid.UUID = None , __a : Any=None , __a : List[Any]=None ) -> List[Any]: """simple docstring""" if not conversation_id: __lowercase : Any = uuid.uuida() if past_user_inputs is None: __lowercase : Dict = [] if generated_responses is None: __lowercase : Dict = [] __lowercase : uuid.UUID = conversation_id __lowercase : List[str] = past_user_inputs __lowercase : List[str] = generated_responses __lowercase : Optional[str] = text def __eq__( self : Dict , __a : Dict ) -> Any: """simple docstring""" if not isinstance(__a , __a ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCAmelCase ( self : List[str] , __a : str , __a : bool = False ) -> Dict: """simple docstring""" if self.new_user_input: if overwrite: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten " F"with: \"{text}\"." ) __lowercase : Optional[int] = text else: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" new input " F"ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input" ) else: __lowercase : Dict = text def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __lowercase : Dict = None def lowerCAmelCase ( self : Optional[int] , __a : str ) -> List[Any]: """simple docstring""" self.generated_responses.append(__a ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : int ) -> str: """simple docstring""" __lowercase : Optional[int] = F"Conversation id: {self.uuid} \n" for is_user, text in self.iter_texts(): __lowercase : Optional[Any] = """user""" if is_user else """bot""" output += F"{name} >> {text} \n" return output @add_end_docstrings( __a , r''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''' , ) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Any , *__a : int , **__a : str ) -> Union[str, Any]: """simple docstring""" super().__init__(*__a , **__a ) if self.tokenizer.pad_token_id is None: __lowercase : List[Any] = self.tokenizer.eos_token def lowerCAmelCase ( self : Union[str, Any] , __a : int=None , __a : Tuple=None , __a : Any=None , **__a : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = {} __lowercase : Tuple = {} __lowercase : List[str] = {} if min_length_for_response is not None: __lowercase : Dict = min_length_for_response if minimum_tokens is not None: __lowercase : Union[str, Any] = minimum_tokens if "max_length" in generate_kwargs: __lowercase : Union[str, Any] = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __lowercase : Union[str, Any] = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(__a ) return preprocess_params, forward_params, postprocess_params def __call__( self : Optional[int] , __a : Union[Conversation, List[Conversation]] , __a : Dict=0 , **__a : List[Any] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = super().__call__(__a , num_workers=__a , **__a ) if isinstance(__a , __a ) and len(__a ) == 1: return outputs[0] return outputs def lowerCAmelCase ( self : Union[str, Any] , __a : Conversation , __a : Tuple=32 ) -> Dict[str, Any]: """simple docstring""" if not isinstance(__a , __a ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( F"Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. " """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer , """_build_conversation_input_ids""" ): __lowercase : List[Any] = self.tokenizer._build_conversation_input_ids(__a ) else: # If the tokenizer cannot handle conversations, we default to only the old version __lowercase : Tuple = self._legacy_parse_and_tokenize(__a ) if self.framework == "pt": __lowercase : List[Any] = torch.LongTensor([input_ids] ) elif self.framework == "tf": __lowercase : List[str] = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCAmelCase ( self : Any , __a : Dict , __a : Any=10 , **__a : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = generate_kwargs.get("""max_length""" , self.model.config.max_length ) __lowercase : List[Any] = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(F"Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})" ) __lowercase : Any = max_length - minimum_tokens __lowercase : int = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: __lowercase : Dict = model_inputs["""attention_mask"""][:, -trim:] __lowercase : Union[str, Any] = model_inputs.pop("""conversation""" ) __lowercase : Tuple = max_length __lowercase : int = self.model.generate(**__a , **__a ) if self.model.config.is_encoder_decoder: __lowercase : Optional[int] = 1 else: __lowercase : str = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCAmelCase ( self : int , __a : Tuple , __a : List[Any]=True ) -> List[str]: """simple docstring""" __lowercase : int = model_outputs["""output_ids"""] __lowercase : Union[str, Any] = self.tokenizer.decode( output_ids[0] , skip_special_tokens=__a , clean_up_tokenization_spaces=__a , ) __lowercase : List[str] = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(__a ) return conversation def lowerCAmelCase ( self : int , __a : Conversation ) -> Dict: """simple docstring""" __lowercase : Optional[int] = self.tokenizer.eos_token_id __lowercase : Optional[Any] = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(__a , add_special_tokens=__a ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(__a , add_special_tokens=__a ) ) if len(__a ) > self.tokenizer.model_max_length: __lowercase : List[Any] = input_ids[-self.tokenizer.model_max_length :] return input_ids
649
0
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class lowerCAmelCase : '''simple docstring''' def __init__( self : int , __a : Dict , __a : Union[str, Any]=13 , __a : str=32 , __a : int=2 , __a : List[str]=3 , __a : Optional[int]=16 , __a : List[Any]=[1, 2, 1] , __a : Optional[Any]=[2, 2, 4] , __a : Any=2 , __a : Dict=2.0 , __a : Any=True , __a : Optional[int]=0.0 , __a : Union[str, Any]=0.0 , __a : Union[str, Any]=0.1 , __a : Optional[Any]="gelu" , __a : int=False , __a : str=True , __a : Union[str, Any]=0.02 , __a : Tuple=1E-5 , __a : str=True , __a : Optional[Any]=None , __a : Optional[Any]=True , __a : Optional[int]=10 , __a : Optional[int]=8 , __a : List[Any]=["stage1", "stage2", "stage3"] , __a : List[str]=[1, 2, 3] , ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = parent __lowercase : List[str] = batch_size __lowercase : Tuple = image_size __lowercase : Any = patch_size __lowercase : Dict = num_channels __lowercase : int = embed_dim __lowercase : Dict = depths __lowercase : Optional[Any] = num_heads __lowercase : Union[str, Any] = window_size __lowercase : Dict = mlp_ratio __lowercase : List[Any] = qkv_bias __lowercase : str = hidden_dropout_prob __lowercase : Tuple = attention_probs_dropout_prob __lowercase : Tuple = drop_path_rate __lowercase : Dict = hidden_act __lowercase : Union[str, Any] = use_absolute_embeddings __lowercase : Any = patch_norm __lowercase : Optional[int] = layer_norm_eps __lowercase : Dict = initializer_range __lowercase : Any = is_training __lowercase : List[str] = scope __lowercase : int = use_labels __lowercase : List[Any] = type_sequence_label_size __lowercase : List[Any] = encoder_stride __lowercase : Any = out_features __lowercase : List[str] = out_indices def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : Any = None if self.use_labels: __lowercase : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : Dict = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowerCAmelCase ( self : int , __a : str , __a : Tuple , __a : str ) -> Dict: """simple docstring""" __lowercase : Optional[Any] = MaskFormerSwinModel(config=__a ) model.to(__a ) model.eval() __lowercase : Tuple = model(__a ) __lowercase : List[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __lowercase : Optional[int] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowerCAmelCase ( self : List[Any] , __a : Any , __a : Optional[int] , __a : str ) -> Tuple: """simple docstring""" __lowercase : Tuple = MaskFormerSwinBackbone(config=__a ) model.to(__a ) model.eval() __lowercase : List[Any] = model(__a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(__a ): __lowercase : Optional[int] = ["""stem"""] __lowercase : int = MaskFormerSwinBackbone(config=__a ) def lowerCAmelCase ( self : str ) -> int: """simple docstring""" __lowercase : Tuple = self.prepare_config_and_inputs() __lowercase : int = config_and_inputs __lowercase : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Tuple = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) _A : int = {'''feature-extraction''': MaskFormerSwinModel} if is_torch_available() else {} _A : int = False _A : int = False _A : int = False _A : Tuple = False _A : Optional[int] = False def lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" __lowercase : List[str] = MaskFormerSwinModelTester(self ) __lowercase : Union[str, Any] = ConfigTester(self , config_class=__a , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( """`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with""" """ `nn.DataParallel`""" ) ) def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" pass def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" return def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : int ) -> List[Any]: """simple docstring""" __lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__a ) @unittest.skip("""Swin does not use inputs_embeds""" ) def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" pass @unittest.skip("""Swin does not support feedforward chunking""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" pass def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Optional[Any] = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowercase : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Optional[int] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : Any = [*signature.parameters.keys()] __lowercase : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) @unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" ) def lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" pass @unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" ) def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" pass def lowerCAmelCase ( self : Tuple , __a : Any , __a : Any , __a : List[Any] , __a : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : List[str] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : List[Any] = outputs.hidden_states __lowercase : Tuple = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__a ) , __a ) # Swin has a different seq_length __lowercase : Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowercase : Optional[int] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" __lowercase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __lowercase : Optional[int] = True self.check_hidden_states_output(__a , __a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase : List[Any] = True self.check_hidden_states_output(__a , __a , __a , __a ) def lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Tuple = 3 __lowercase : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __lowercase : Tuple = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowercase : Tuple = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __lowercase : Dict = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __lowercase : Dict = True self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase : Optional[int] = True self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) ) @unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" pass def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" __lowercase : Any = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(__a : Optional[Any] ): __lowercase : Union[str, Any] = 0 return t def check_equivalence(__a : Optional[Any] , __a : Tuple , __a : Union[str, Any] , __a : List[Any]={} ): with torch.no_grad(): __lowercase : List[str] = model(**__a , return_dict=__a , **__a ) __lowercase : Dict = model(**__a , return_dict=__a , **__a ).to_tuple() def recursive_check(__a : Optional[int] , __a : int ): if isinstance(__a , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__a , __a ): recursive_check(__a , __a ) elif isinstance(__a , __a ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(__a , __a ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(__a ) , set_nan_tensor_to_zero(__a ) , atol=1E-5 ) , msg=( """Tuple and dict output are not equal. Difference:""" F" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:" F" {torch.isnan(__a ).any()} and `inf`: {torch.isinf(__a )}. Dict has" F" `nan`: {torch.isnan(__a ).any()} and `inf`: {torch.isinf(__a )}." ) , ) recursive_check(__a , __a ) for model_class in self.all_model_classes: __lowercase : Optional[int] = model_class(__a ) model.to(__a ) model.eval() __lowercase : int = self._prepare_for_class(__a , __a ) __lowercase : Optional[Any] = self._prepare_for_class(__a , __a ) check_equivalence(__a , __a , __a ) __lowercase : List[Any] = self._prepare_for_class(__a , __a , return_labels=__a ) __lowercase : List[str] = self._prepare_for_class(__a , __a , return_labels=__a ) check_equivalence(__a , __a , __a ) __lowercase : Optional[int] = self._prepare_for_class(__a , __a ) __lowercase : List[Any] = self._prepare_for_class(__a , __a ) check_equivalence(__a , __a , __a , {"""output_hidden_states""": True} ) __lowercase : List[Any] = self._prepare_for_class(__a , __a , return_labels=__a ) __lowercase : Tuple = self._prepare_for_class(__a , __a , return_labels=__a ) check_equivalence(__a , __a , __a , {"""output_hidden_states""": True} ) @require_torch class lowerCAmelCase ( unittest.TestCase , __a ): '''simple docstring''' _A : List[str] = (MaskFormerSwinBackbone,) if is_torch_available() else () _A : List[Any] = MaskFormerSwinConfig def lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" __lowercase : Optional[Any] = MaskFormerSwinModelTester(self ) def lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : str = inputs_dict["""pixel_values"""].shape[0] for backbone_class in self.all_model_classes: __lowercase : Tuple = backbone_class(__a ) backbone.to(__a ) backbone.eval() __lowercase : Union[str, Any] = backbone(**__a ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , __a ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True __lowercase : Optional[Any] = backbone(**__a , output_hidden_states=__a ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) __lowercase : str = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: __lowercase : int = backbone(**__a , output_attentions=__a ) self.assertIsNotNone(outputs.attentions )
715
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__a , """tf_padding""" ) ) self.parent.assertTrue(hasattr(__a , """depth_multiplier""" ) ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Tuple , __a : str=13 , __a : Dict=3 , __a : List[Any]=32 , __a : Any=0.25 , __a : Any=8 , __a : Optional[int]=8 , __a : Optional[int]=6 , __a : Dict=32 , __a : Tuple=True , __a : List[Any]=True , __a : Optional[int]=True , __a : Tuple="relu6" , __a : Optional[Any]=1280 , __a : str=0.1 , __a : str=0.02 , __a : Optional[Any]=True , __a : Tuple=True , __a : Dict=10 , __a : Optional[Any]=None , ) -> Any: """simple docstring""" __lowercase : List[str] = parent __lowercase : Tuple = batch_size __lowercase : Dict = num_channels __lowercase : Optional[int] = image_size __lowercase : int = depth_multiplier __lowercase : str = depth_divisible_by __lowercase : int = min_depth __lowercase : Tuple = expand_ratio __lowercase : Optional[int] = tf_padding __lowercase : Dict = output_stride __lowercase : Dict = first_layer_is_expansion __lowercase : Optional[Any] = finegrained_output __lowercase : str = hidden_act __lowercase : Union[str, Any] = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) __lowercase : Optional[int] = classifier_dropout_prob __lowercase : int = use_labels __lowercase : Optional[int] = is_training __lowercase : Dict = num_labels __lowercase : Tuple = initializer_range __lowercase : Optional[Any] = scope def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : List[Any] = None __lowercase : Optional[Any] = None if self.use_labels: __lowercase : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __lowercase : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowercase : List[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : Tuple , __a : Dict , __a : Tuple , __a : Optional[int] , __a : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[int] = MobileNetVaModel(config=__a ) model.to(__a ) model.eval() __lowercase : Tuple = model(__a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def lowerCAmelCase ( self : List[str] , __a : Optional[int] , __a : List[str] , __a : str , __a : Optional[int] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = self.num_labels __lowercase : Dict = MobileNetVaForImageClassification(__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : int , __a : List[str] , __a : Tuple , __a : Any , __a : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : int = self.num_labels __lowercase : List[Any] = MobileNetVaForSemanticSegmentation(__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __lowercase : str = model(__a , labels=__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase : List[str] = config_and_inputs __lowercase : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Tuple = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) _A : Optional[Any] = ( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) _A : Tuple = False _A : List[str] = False _A : List[str] = False _A : Optional[int] = False def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = MobileNetVaModelTester(self ) __lowercase : int = MobileNetVaConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV2 does not use inputs_embeds""" ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not support input and output embeddings""" ) def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not output attentions""" ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[Any] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : int = [*signature.parameters.keys()] __lowercase : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" def check_hidden_states_output(__a : List[Any] , __a : Tuple , __a : List[str] ): __lowercase : Optional[Any] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : List[Any] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Tuple = outputs.hidden_states __lowercase : str = 16 self.assertEqual(len(__a ) , __a ) __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Any = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase : Union[str, Any] = True check_hidden_states_output(__a , __a , __a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : Optional[int] = MobileNetVaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def snake_case_ ( ): __lowercase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v2_1.0_224""" ) if is_vision_available() else None ) @slow def lowerCAmelCase ( self : str ) -> int: """simple docstring""" __lowercase : Tuple = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v2_1.0_224""" ).to(__a ) __lowercase : str = self.default_image_processor __lowercase : Tuple = prepare_img() __lowercase : Tuple = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : str = model(**__a ) # verify the logits __lowercase : Union[str, Any] = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , __a ) __lowercase : str = torch.tensor([0.2445, -1.1993, 0.1905] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : int = MobileNetVaForSemanticSegmentation.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __lowercase : Dict = model.to(__a ) __lowercase : Tuple = MobileNetVaImageProcessor.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __lowercase : List[str] = prepare_img() __lowercase : Optional[int] = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : Union[str, Any] = model(**__a ) __lowercase : Any = outputs.logits # verify the logits __lowercase : Dict = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , __a ) __lowercase : str = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=__a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __a , atol=1E-4 ) )
649
0
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function lowerCamelCase : str = 1.054571817E-34 # unit of ℏ : J * s lowerCamelCase : Union[str, Any] = 3E8 # unit of c : m * s^-1 def snake_case_ ( lowerCAmelCase_ : float , lowerCAmelCase_ : float , lowerCAmelCase_ : float ): if (force, area, distance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if force < 0: raise ValueError("""Magnitude of force can not be negative""" ) if distance < 0: raise ValueError("""Distance can not be negative""" ) if area < 0: raise ValueError("""Area can not be negative""" ) if force == 0: __lowercase : List[Any] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: __lowercase : Optional[Any] = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: __lowercase : Any = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("""One and only one argument must be 0""" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
716
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def snake_case_ ( lowerCAmelCase_ : bool = True , *lowerCAmelCase_ : int , **lowerCAmelCase_ : List[str] ): if not is_tqdm_available(): raise ImportError("""Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.""" ) __lowercase : List[str] = False if main_process_only: __lowercase : Optional[int] = PartialState().local_process_index == 0 return _tqdm(*lowerCAmelCase_ , **lowerCAmelCase_ , disable=lowerCAmelCase_ )
649
0
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class lowerCAmelCase : '''simple docstring''' _A : int = XGLMConfig _A : Any = {} _A : Any = '''gelu''' def __init__( self : int , __a : Dict , __a : int=14 , __a : List[Any]=7 , __a : List[Any]=True , __a : int=True , __a : Optional[int]=True , __a : Union[str, Any]=99 , __a : int=32 , __a : Optional[Any]=2 , __a : Optional[int]=4 , __a : Optional[Any]=37 , __a : int="gelu" , __a : str=0.1 , __a : str=0.1 , __a : int=512 , __a : Dict=0.02 , ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = parent __lowercase : Tuple = batch_size __lowercase : int = seq_length __lowercase : int = is_training __lowercase : Any = use_input_mask __lowercase : Any = use_labels __lowercase : Optional[Any] = vocab_size __lowercase : Tuple = d_model __lowercase : List[str] = num_hidden_layers __lowercase : Any = num_attention_heads __lowercase : List[Any] = ffn_dim __lowercase : Union[str, Any] = activation_function __lowercase : Optional[Any] = activation_dropout __lowercase : Optional[int] = attention_dropout __lowercase : List[str] = max_position_embeddings __lowercase : List[Any] = initializer_range __lowercase : Any = None __lowercase : int = 0 __lowercase : Dict = 2 __lowercase : List[Any] = 1 def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" return XGLMConfig.from_pretrained("""facebook/xglm-564M""" ) def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase : Union[str, Any] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) __lowercase : int = None if self.use_input_mask: __lowercase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : Optional[Any] = self.get_config() __lowercase : int = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__a , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__a , ) def lowerCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" __lowercase : int = self.prepare_config_and_inputs() ( __lowercase ) : Optional[int] = config_and_inputs __lowercase : Tuple = { """input_ids""": input_ids, """head_mask""": head_mask, } return config, inputs_dict @require_tf class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Optional[Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () _A : Dict = (TFXGLMForCausalLM,) if is_tf_available() else () _A : int = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) _A : Optional[Any] = False _A : Dict = False _A : Optional[Any] = False def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = TFXGLMModelTester(self ) __lowercase : int = ConfigTester(self , config_class=__a , n_embd=37 ) def lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() @slow def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : int = TFXGLMModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @unittest.skip(reason="""Currently, model embeddings are going to undergo a major refactor.""" ) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" super().test_resize_token_embeddings() @require_tf class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : List[Any] , __a : Optional[int]=True ) -> int: """simple docstring""" __lowercase : int = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) __lowercase : Tuple = tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __lowercase : Any = [2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581] # fmt: on __lowercase : Union[str, Any] = model.generate(__a , do_sample=__a , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , __a ) @slow def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) __lowercase : List[Any] = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) tf.random.set_seed(0 ) __lowercase : Optional[Any] = tokenizer("""Today is a nice day and""" , return_tensors="""tf""" ) __lowercase : str = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(""":/CPU:0""" ): __lowercase : List[str] = model.generate(__a , do_sample=__a , seed=[7, 0] ) __lowercase : List[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=__a ) __lowercase : int = ( """Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due""" ) self.assertEqual(__a , __a ) @slow def lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" __lowercase : Union[str, Any] = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) __lowercase : Dict = XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) __lowercase : Any = """left""" # use different length sentences to test batching __lowercase : Any = [ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When""", """Hello, my dog is a little""", ] __lowercase : Any = tokenizer(__a , return_tensors="""tf""" , padding=__a ) __lowercase : Union[str, Any] = inputs["""input_ids"""] __lowercase : Tuple = model.generate(input_ids=__a , attention_mask=inputs["""attention_mask"""] , max_new_tokens=12 ) __lowercase : Dict = tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids __lowercase : int = model.generate(input_ids=__a , max_new_tokens=12 ) __lowercase : int = tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids __lowercase : Tuple = model.generate(input_ids=__a , max_new_tokens=12 ) __lowercase : Union[str, Any] = tokenizer.batch_decode(__a , skip_special_tokens=__a ) __lowercase : Optional[Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__a ) __lowercase : List[str] = tokenizer.decode(output_padded[0] , skip_special_tokens=__a ) __lowercase : Optional[Any] = [ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When left padding is applied, the sequence will be """ """a single""", """Hello, my dog is a little bit of a shy one, but he is very friendly""", ] self.assertListEqual(__a , __a ) self.assertListEqual(__a , [non_padded_sentence, padded_sentence] )
717
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : list[int] ): if not nums: return 0 __lowercase : Tuple = nums[0] __lowercase : Tuple = 0 for num in nums[1:]: __lowercase , __lowercase : List[str] = ( max_excluding + num, max(lowerCAmelCase_ , lowerCAmelCase_ ), ) return max(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
649
0
import colorsys from PIL import Image # type: ignore def snake_case_ ( lowerCAmelCase_ : float , lowerCAmelCase_ : float , lowerCAmelCase_ : int ): __lowercase : Union[str, Any] = x __lowercase : Union[str, Any] = y for step in range(lowerCAmelCase_ ): # noqa: B007 __lowercase : Union[str, Any] = a * a - b * b + x __lowercase : str = 2 * a * b + y __lowercase : Optional[Any] = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def snake_case_ ( lowerCAmelCase_ : float ): if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def snake_case_ ( lowerCAmelCase_ : float ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(lowerCAmelCase_ , 1 , 1 ) ) def snake_case_ ( lowerCAmelCase_ : int = 800 , lowerCAmelCase_ : int = 600 , lowerCAmelCase_ : float = -0.6 , lowerCAmelCase_ : float = 0 , lowerCAmelCase_ : float = 3.2 , lowerCAmelCase_ : int = 50 , lowerCAmelCase_ : bool = True , ): __lowercase : List[str] = Image.new("""RGB""" , (image_width, image_height) ) __lowercase : Dict = img.load() # loop through the image-coordinates for image_x in range(lowerCAmelCase_ ): for image_y in range(lowerCAmelCase_ ): # determine the figure-coordinates based on the image-coordinates __lowercase : Optional[Any] = figure_width / image_width * image_height __lowercase : Dict = figure_center_x + (image_x / image_width - 0.5) * figure_width __lowercase : List[str] = figure_center_y + (image_y / image_height - 0.5) * figure_height __lowercase : Optional[int] = get_distance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: __lowercase : Optional[int] = get_color_coded_rgb(lowerCAmelCase_ ) else: __lowercase : int = get_black_and_white_rgb(lowerCAmelCase_ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowerCamelCase : int = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
718
lowerCamelCase : List[str] = '''0.18.2''' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
649
0
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowerCamelCase : Union[str, Any] = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , __a : List[str] , __a : Optional[int]=16 , __a : Optional[Any]=13 , __a : str=7 , __a : List[str]=14 , __a : Any=10 , __a : str=19 , __a : int=5 , __a : Any=4 , __a : List[Any]=True , __a : Tuple=16 , __a : Dict=2 , __a : Tuple=4 , __a : int=4 , __a : List[Any]="gelu" , __a : Tuple=0.1 , __a : List[str]=0.1 , __a : int=[1, 2, 3, 4, 5] , __a : str=25 , __a : Any=5 , ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = d_model __lowercase : Dict = parent __lowercase : Tuple = batch_size __lowercase : Optional[int] = prediction_length __lowercase : List[str] = context_length __lowercase : Any = cardinality __lowercase : str = num_time_features __lowercase : Optional[int] = lags_sequence __lowercase : Optional[Any] = embedding_dimension __lowercase : List[Any] = is_training __lowercase : List[str] = hidden_size __lowercase : int = num_hidden_layers __lowercase : Any = num_attention_heads __lowercase : List[Any] = intermediate_size __lowercase : int = hidden_act __lowercase : str = hidden_dropout_prob __lowercase : List[Any] = attention_probs_dropout_prob __lowercase : str = context_length __lowercase : int = prediction_length + label_length __lowercase : Union[str, Any] = label_length __lowercase : Optional[int] = moving_average __lowercase : Optional[Any] = autocorrelation_factor def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def lowerCAmelCase ( self : Tuple , __a : str ) -> int: """simple docstring""" __lowercase : Any = config.context_length + max(config.lags_sequence ) __lowercase : Any = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __lowercase : Optional[int] = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __lowercase : List[str] = floats_tensor([self.batch_size, _past_length] ) __lowercase : List[str] = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __lowercase : Dict = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __lowercase : str = floats_tensor([self.batch_size, config.prediction_length] ) __lowercase : List[str] = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.get_config() __lowercase : Any = self.prepare_autoformer_inputs_dict(__a ) return config, inputs_dict def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase ( self : Optional[Any] , __a : Tuple , __a : Optional[int] ) -> Any: """simple docstring""" __lowercase : List[str] = AutoformerModel(config=__a ).to(__a ).eval() __lowercase : Optional[int] = model(**__a ) __lowercase : Dict = outputs.encoder_last_hidden_state __lowercase : Tuple = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : List[str] = model.get_encoder() encoder.save_pretrained(__a ) __lowercase : List[str] = AutoformerEncoder.from_pretrained(__a ).to(__a ) __lowercase : Any = model.create_network_inputs(**__a ) __lowercase : Any = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __lowercase : Optional[Any] = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __lowercase : Union[str, Any] = encoder(inputs_embeds=__a )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) __lowercase : str = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __lowercase : Optional[int] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __lowercase : Any = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __lowercase : Dict = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : Optional[Any] = model.get_decoder() decoder.save_pretrained(__a ) __lowercase : Tuple = AutoformerDecoder.from_pretrained(__a ).to(__a ) __lowercase : str = decoder( trend=__a , inputs_embeds=__a , encoder_hidden_states=__a , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[str] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _A : List[Any] = (AutoformerForPrediction,) if is_torch_available() else () _A : Any = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} _A : Dict = False _A : Tuple = False _A : Optional[int] = False _A : Tuple = False _A : str = False _A : Union[str, Any] = False def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" __lowercase : List[str] = AutoformerModelTester(self ) __lowercase : Dict = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowercase : Dict = model_class(__a ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowercase : Tuple = model_class.from_pretrained(__a , output_loading_info=__a ) self.assertEqual(info["""missing_keys"""] , [] ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__a ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def lowerCAmelCase ( self : str ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : Any = inspect.signature(getattr(__a , """forward""" ) ) # The main input is the name of the argument after `self` __lowercase : Optional[int] = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , __a ) def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Dict = model_class(__a ) __lowercase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : Any = [*signature.parameters.keys()] __lowercase : int = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(__a )] , __a ) def lowerCAmelCase ( self : int ) -> int: """simple docstring""" __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : int = True __lowercase : Tuple = getattr(self.model_tester , """seq_length""" , __a ) __lowercase : Union[str, Any] = getattr(self.model_tester , """decoder_seq_length""" , __a ) __lowercase : List[str] = getattr(self.model_tester , """encoder_seq_length""" , __a ) __lowercase : List[Any] = getattr(self.model_tester , """d_model""" , __a ) __lowercase : Optional[int] = getattr(self.model_tester , """num_attention_heads""" , __a ) __lowercase : Any = d_model // num_attention_heads for model_class in self.all_model_classes: __lowercase : Dict = True __lowercase : List[str] = False __lowercase : Optional[int] = True __lowercase : str = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : int = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase : Optional[int] = True __lowercase : List[str] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Union[str, Any] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Dict = outputs.encoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __lowercase : Tuple = len(__a ) __lowercase : str = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__a , __a ) # decoder attentions __lowercase : List[Any] = outputs.decoder_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __lowercase : Optional[int] = outputs.cross_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __lowercase : Tuple = True __lowercase : Union[str, Any] = True __lowercase : Tuple = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Any = model(**self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + 2 , len(__a ) ) __lowercase : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def snake_case_ ( lowerCAmelCase_ : Optional[int]="train-batch.pt" ): __lowercase : Dict = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=lowerCAmelCase_ , repo_type="""dataset""" ) __lowercase : Optional[int] = torch.load(lowerCAmelCase_ , map_location=lowerCAmelCase_ ) return batch @require_torch @slow class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" __lowercase : List[str] = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : List[Any] = prepare_batch() with torch.no_grad(): __lowercase : Tuple = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] __lowercase : List[str] = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , __a ) __lowercase : Optional[int] = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" __lowercase : int = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : List[str] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowercase : Optional[Any] = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state __lowercase : List[str] = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , __a ) __lowercase : Optional[int] = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : Optional[int] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowercase : int = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) __lowercase : int = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , __a ) __lowercase : Optional[Any] = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=__a ) __lowercase : Dict = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __a , rtol=1E-1 ) )
719
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : List[Any] = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : str=False , lowerCAmelCase_ : Any=False ): __lowercase : Any = """backbone.""" if is_semantic else """""" __lowercase : Optional[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"{prefix}blocks.{i}.norm1.weight", F"beit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm1.bias", F"beit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.weight", F"beit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.bias", F"beit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.weight", F"beit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.bias", F"beit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.weight", F"beit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.bias", F"beit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.weight", F"beit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.bias", F"beit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ (F"{prefix}cls_token", """beit.embeddings.cls_token"""), (F"{prefix}patch_embed.proj.weight", """beit.embeddings.patch_embeddings.projection.weight"""), (F"{prefix}patch_embed.proj.bias", """beit.embeddings.patch_embeddings.projection.bias"""), (F"{prefix}pos_embed", """beit.embeddings.position_embeddings"""), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("""mask_token""", """beit.embeddings.mask_token"""), ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) else: # layernorm + classification head rename_keys.extend( [ ("""fc_norm.weight""", """beit.pooler.layernorm.weight"""), ("""fc_norm.bias""", """beit.pooler.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : List[Any]=False ): for i in range(config.num_hidden_layers ): __lowercase : Tuple = """backbone.""" if is_semantic else """""" # queries, keys and values __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.attn.qkv.weight" ) __lowercase : Dict = state_dict.pop(F"{prefix}blocks.{i}.attn.q_bias" ) __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.attn.v_bias" ) __lowercase : List[str] = in_proj_weight[ : config.hidden_size, : ] __lowercase : Union[str, Any] = q_bias __lowercase : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] __lowercase : str = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.gamma_1" ) __lowercase : str = state_dict.pop(F"{prefix}blocks.{i}.gamma_2" ) __lowercase : List[str] = gamma_a __lowercase : Optional[int] = gamma_a def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : int ): __lowercase : Tuple = dct.pop(lowerCAmelCase_ ) __lowercase : Tuple = val def snake_case_ ( ): __lowercase : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase : Any = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]=False ): __lowercase : Dict = False if """rvlcdip""" in checkpoint_url else True __lowercase : Tuple = BeitConfig(use_absolute_position_embeddings=lowerCAmelCase_ , use_mask_token=lowerCAmelCase_ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: __lowercase : Union[str, Any] = 1024 __lowercase : Optional[int] = 4096 __lowercase : List[Any] = 24 __lowercase : Dict = 16 # labels if "rvlcdip" in checkpoint_url: __lowercase : Optional[int] = 16 __lowercase : Any = """huggingface/label-files""" __lowercase : Union[str, Any] = """rvlcdip-id2label.json""" __lowercase : List[str] = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) __lowercase : Optional[int] = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowercase : Union[str, Any] = idalabel __lowercase : Optional[Any] = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys __lowercase : Optional[int] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ , map_location="""cpu""" )["""model"""] __lowercase : Union[str, Any] = create_rename_keys(lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) # load HuggingFace model __lowercase : Dict = BeitForMaskedImageModeling(lowerCAmelCase_ ) if has_lm_head else BeitForImageClassification(lowerCAmelCase_ ) model.eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image __lowercase : List[str] = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=lowerCAmelCase_ ) __lowercase : List[str] = prepare_img() __lowercase : Optional[Any] = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""" ) __lowercase : Optional[int] = encoding["""pixel_values"""] __lowercase : str = model(lowerCAmelCase_ ) __lowercase : Tuple = outputs.logits # verify logits __lowercase : str = [1, 16] if """rvlcdip""" in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(lowerCAmelCase_ ), "Shape of logits not as expected" Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: if has_lm_head: __lowercase : Optional[Any] = """dit-base""" if """base""" in checkpoint_url else """dit-large""" else: __lowercase : Tuple = """dit-base-finetuned-rvlcdip""" if """dit-b""" in checkpoint_url else """dit-large-finetuned-rvlcdip""" image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=lowerCAmelCase_ , ) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=lowerCAmelCase_ , ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) lowerCamelCase : List[str] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
649
0
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : Dict = TransfoXLTokenizer _A : Optional[int] = False _A : Optional[int] = False def lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" super().setUp() __lowercase : Union[str, Any] = [ """<unk>""", """[CLS]""", """[SEP]""", """want""", """unwanted""", """wa""", """un""", """running""", """,""", """low""", """l""", ] __lowercase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def lowerCAmelCase ( self : List[str] , **__a : Tuple ) -> List[str]: """simple docstring""" __lowercase : List[Any] = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Optional[Any] , __a : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Any = """<unk> UNwanted , running""" __lowercase : Dict = """<unk> unwanted, running""" return input_text, output_text def lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" __lowercase : Optional[Any] = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=__a ) __lowercase : str = tokenizer.tokenize("""<unk> UNwanted , running""" ) self.assertListEqual(__a , ["""<unk>""", """unwanted""", """,""", """running"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [0, 4, 8, 7] ) def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = TransfoXLTokenizer(lower_case=__a ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase : str = TransfoXLTokenizer(lower_case=__a ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" __lowercase : Optional[int] = TransfoXLTokenizer(lower_case=__a ) __lowercase : Optional[int] = """Hello (bracket) and side-scrolled [and] Henry's $5,000 with 3.34 m. What's up!?""" __lowercase : Dict = [ """Hello""", """(""", """bracket""", """)""", """and""", """side""", """@-@""", """scrolled""", """[""", """and""", """]""", """Henry""", """'s""", """$""", """5""", """@,@""", """000""", """with""", """3""", """@.@""", """34""", """m""", """.""", """What""", """'s""", """up""", """!""", """?""", ] self.assertListEqual(tokenizer.tokenize(__a ) , __a ) self.assertEqual(tokenizer.convert_tokens_to_string(__a ) , __a ) def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = self.get_tokenizer() __lowercase : str = len(__a ) tokenizer.add_tokens(["""new1""", """new2"""] ) tokenizer.move_added_token("""new1""" , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(__a ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode("""new1""" ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , """new1""" )
720
from torch import nn class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , __a : int , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" super().__init__() __lowercase : int = class_size __lowercase : int = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) __lowercase : str = nn.Linear(__a , __a ) def lowerCAmelCase ( self : Tuple , __a : int ) -> Tuple: """simple docstring""" __lowercase : str = self.mlp(__a ) return logits
649
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase : Dict = { '''configuration_nezha''': ['''NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NezhaConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ '''NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NezhaForNextSentencePrediction''', '''NezhaForMaskedLM''', '''NezhaForPreTraining''', '''NezhaForMultipleChoice''', '''NezhaForQuestionAnswering''', '''NezhaForSequenceClassification''', '''NezhaForTokenClassification''', '''NezhaModel''', '''NezhaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys lowerCamelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
721
import fire from utils import calculate_rouge, save_json def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : str=None , **lowerCAmelCase_ : str ): __lowercase : Tuple = [x.strip() for x in open(lowerCAmelCase_ ).readlines()] __lowercase : Dict = [x.strip() for x in open(lowerCAmelCase_ ).readlines()][: len(lowerCAmelCase_ )] __lowercase : Tuple = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) if save_path is not None: save_json(lowerCAmelCase_ , lowerCAmelCase_ , indent=lowerCAmelCase_ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
649
0
import os def snake_case_ ( ): with open(os.path.dirname(lowerCAmelCase_ ) + """/grid.txt""" ) as f: __lowercase : Dict = [] # noqa: E741 for _ in range(20 ): l.append([int(lowerCAmelCase_ ) for x in f.readline().split()] ) __lowercase : Optional[Any] = 0 # right for i in range(20 ): for j in range(17 ): __lowercase : Union[str, Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: __lowercase : Optional[int] = temp # down for i in range(17 ): for j in range(20 ): __lowercase : Optional[int] = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: __lowercase : List[Any] = temp # diagonal 1 for i in range(17 ): for j in range(17 ): __lowercase : Tuple = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: __lowercase : Optional[Any] = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): __lowercase : Tuple = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: __lowercase : int = temp return maximum if __name__ == "__main__": print(solution())
700
from argparse import ArgumentParser from . import BaseTransformersCLICommand def snake_case_ ( lowerCAmelCase_ : Dict ): return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class lowerCAmelCase ( __a ): '''simple docstring''' @staticmethod def lowerCAmelCase ( __a : ArgumentParser ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = parser.add_parser("""download""" ) download_parser.add_argument( """--cache-dir""" , type=__a , default=__a , help="""Path to location to store the models""" ) download_parser.add_argument( """--force""" , action="""store_true""" , help="""Force the model to be download even if already in cache-dir""" ) download_parser.add_argument( """--trust-remote-code""" , action="""store_true""" , help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" , ) download_parser.add_argument("""model""" , type=__a , help="""Name of the model to download""" ) download_parser.set_defaults(func=__a ) def __init__( self : Dict , __a : str , __a : str , __a : bool , __a : bool ) -> Union[str, Any]: """simple docstring""" __lowercase : Dict = model __lowercase : List[Any] = cache __lowercase : Any = force __lowercase : Optional[int] = trust_remote_code def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
649
0
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType lowerCamelCase : Optional[List[str]] = None lowerCamelCase : List[str] = '''<''' if sys.byteorder == '''little''' else '''>''' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image lowerCamelCase : List[str] = [ np.dtype('''|b1'''), np.dtype('''|u1'''), np.dtype('''<u2'''), np.dtype('''>u2'''), np.dtype('''<i2'''), np.dtype('''>i2'''), np.dtype('''<u4'''), np.dtype('''>u4'''), np.dtype('''<i4'''), np.dtype('''>i4'''), np.dtype('''<f4'''), np.dtype('''>f4'''), np.dtype('''<f8'''), np.dtype('''>f8'''), ] @dataclass class lowerCAmelCase : '''simple docstring''' _A : bool = True _A : Optional[str] = None # Automatically constructed _A : ClassVar[str] = "PIL.Image.Image" _A : ClassVar[Any] = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) _A : str = field(default='''Image''' , init=__a , repr=__a ) def __call__( self : Tuple ) -> Tuple: """simple docstring""" return self.pa_type def lowerCAmelCase ( self : Optional[Any] , __a : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ) -> dict: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if isinstance(__a , __a ): __lowercase : str = np.array(__a ) if isinstance(__a , __a ): return {"path": value, "bytes": None} elif isinstance(__a , __a ): return {"path": None, "bytes": value} elif isinstance(__a , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(__a ) elif isinstance(__a , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(__a ) elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( F"An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}." ) def lowerCAmelCase ( self : List[str] , __a : dict , __a : Union[str, Any]=None ) -> "PIL.Image.Image": """simple docstring""" if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support decoding images, please install 'Pillow'.""" ) if token_per_repo_id is None: __lowercase : Union[str, Any] = {} __lowercase : List[Any] = value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(F"An image should have one of 'path' or 'bytes' but both are None in {value}." ) else: if is_local_path(__a ): __lowercase : str = PIL.Image.open(__a ) else: __lowercase : Dict = path.split("""::""" )[-1] try: __lowercase : List[str] = string_to_dict(__a , config.HUB_DATASETS_URL )["""repo_id"""] __lowercase : int = token_per_repo_id.get(__a ) except ValueError: __lowercase : List[Any] = None with xopen(__a , """rb""" , use_auth_token=__a ) as f: __lowercase : Dict = BytesIO(f.read() ) __lowercase : int = PIL.Image.open(bytes_ ) else: __lowercase : Optional[Any] = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def lowerCAmelCase ( self : Union[str, Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return ( self if self.decode else { "bytes": Value("""binary""" ), "path": Value("""string""" ), } ) def lowerCAmelCase ( self : List[str] , __a : Union[pa.StringArray, pa.StructArray, pa.ListArray] ) -> pa.StructArray: """simple docstring""" if pa.types.is_string(storage.type ): __lowercase : Optional[int] = pa.array([None] * len(__a ) , type=pa.binary() ) __lowercase : Optional[Any] = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): __lowercase : Dict = pa.array([None] * len(__a ) , type=pa.string() ) __lowercase : Optional[int] = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: __lowercase : List[Any] = storage.field("""bytes""" ) else: __lowercase : Optional[int] = pa.array([None] * len(__a ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: __lowercase : Any = storage.field("""path""" ) else: __lowercase : Optional[Any] = pa.array([None] * len(__a ) , type=pa.string() ) __lowercase : Optional[int] = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): __lowercase : Dict = pa.array( [encode_np_array(np.array(__a ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) __lowercase : Dict = pa.array([None] * len(__a ) , type=pa.string() ) __lowercase : Optional[Any] = pa.StructArray.from_arrays( [bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(__a , self.pa_type ) def lowerCAmelCase ( self : Union[str, Any] , __a : pa.StructArray ) -> pa.StructArray: """simple docstring""" @no_op_if_value_is_null def path_to_bytes(__a : Any ): with xopen(__a , """rb""" ) as f: __lowercase : List[Any] = f.read() return bytes_ __lowercase : Dict = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) __lowercase : Dict = pa.array( [os.path.basename(__a ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) __lowercase : Optional[int] = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(__a , self.pa_type ) def snake_case_ ( ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() __lowercase : List[str] = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def snake_case_ ( lowerCAmelCase_ : "PIL.Image.Image" ): __lowercase : List[Any] = BytesIO() if image.format in list_image_compression_formats(): __lowercase : Any = image.format else: __lowercase : Any = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(lowerCAmelCase_ , format=lowerCAmelCase_ ) return buffer.getvalue() def snake_case_ ( lowerCAmelCase_ : "PIL.Image.Image" ): if hasattr(lowerCAmelCase_ , """filename""" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(lowerCAmelCase_ )} def snake_case_ ( lowerCAmelCase_ : np.ndarray ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) __lowercase : List[str] = array.dtype __lowercase : Optional[Any] = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER __lowercase : int = dtype.kind __lowercase : str = dtype.itemsize __lowercase : List[Any] = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: __lowercase : Union[str, Any] = np.dtype("""|u1""" ) if dtype_kind not in ["u", "i"]: raise TypeError( F"Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays." ) if dtype is not dest_dtype: warnings.warn(F"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: __lowercase : int = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: __lowercase : Dict = dtype_byteorder + dtype_kind + str(lowerCAmelCase_ ) __lowercase : Optional[int] = np.dtype(lowerCAmelCase_ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F"Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}" ) __lowercase : Any = PIL.Image.fromarray(array.astype(lowerCAmelCase_ ) ) return {"path": None, "bytes": image_to_bytes(lowerCAmelCase_ )} def snake_case_ ( lowerCAmelCase_ : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if objs: __lowercase : List[str] = first_non_null_value(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(lowerCAmelCase_ , np.ndarray ): __lowercase : int = no_op_if_value_is_null(lowerCAmelCase_ ) return [obj_to_image_dict_func(lowerCAmelCase_ ) for obj in objs] elif isinstance(lowerCAmelCase_ , PIL.Image.Image ): __lowercase : str = no_op_if_value_is_null(lowerCAmelCase_ ) return [obj_to_image_dict_func(lowerCAmelCase_ ) for obj in objs] else: return objs else: return objs
701
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowerCamelCase : Union[str, Any] = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , __a : List[str] , __a : Optional[int]=16 , __a : Optional[Any]=13 , __a : str=7 , __a : List[str]=14 , __a : Any=10 , __a : str=19 , __a : int=5 , __a : Any=4 , __a : List[Any]=True , __a : Tuple=16 , __a : Dict=2 , __a : Tuple=4 , __a : int=4 , __a : List[Any]="gelu" , __a : Tuple=0.1 , __a : List[str]=0.1 , __a : int=[1, 2, 3, 4, 5] , __a : str=25 , __a : Any=5 , ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = d_model __lowercase : Dict = parent __lowercase : Tuple = batch_size __lowercase : Optional[int] = prediction_length __lowercase : List[str] = context_length __lowercase : Any = cardinality __lowercase : str = num_time_features __lowercase : Optional[int] = lags_sequence __lowercase : Optional[Any] = embedding_dimension __lowercase : List[Any] = is_training __lowercase : List[str] = hidden_size __lowercase : int = num_hidden_layers __lowercase : Any = num_attention_heads __lowercase : List[Any] = intermediate_size __lowercase : int = hidden_act __lowercase : str = hidden_dropout_prob __lowercase : List[Any] = attention_probs_dropout_prob __lowercase : str = context_length __lowercase : int = prediction_length + label_length __lowercase : Union[str, Any] = label_length __lowercase : Optional[int] = moving_average __lowercase : Optional[Any] = autocorrelation_factor def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def lowerCAmelCase ( self : Tuple , __a : str ) -> int: """simple docstring""" __lowercase : Any = config.context_length + max(config.lags_sequence ) __lowercase : Any = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __lowercase : Optional[int] = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __lowercase : List[str] = floats_tensor([self.batch_size, _past_length] ) __lowercase : List[str] = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __lowercase : Dict = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __lowercase : str = floats_tensor([self.batch_size, config.prediction_length] ) __lowercase : List[str] = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.get_config() __lowercase : Any = self.prepare_autoformer_inputs_dict(__a ) return config, inputs_dict def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase , __lowercase : List[str] = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase ( self : Optional[Any] , __a : Tuple , __a : Optional[int] ) -> Any: """simple docstring""" __lowercase : List[str] = AutoformerModel(config=__a ).to(__a ).eval() __lowercase : Optional[int] = model(**__a ) __lowercase : Dict = outputs.encoder_last_hidden_state __lowercase : Tuple = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : List[str] = model.get_encoder() encoder.save_pretrained(__a ) __lowercase : List[str] = AutoformerEncoder.from_pretrained(__a ).to(__a ) __lowercase , __lowercase , __lowercase , __lowercase , __lowercase : Any = model.create_network_inputs(**__a ) __lowercase , __lowercase : Any = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __lowercase : Optional[Any] = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __lowercase : Union[str, Any] = encoder(inputs_embeds=__a )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) __lowercase : str = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __lowercase : Optional[int] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __lowercase : Any = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __lowercase : Dict = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : Optional[Any] = model.get_decoder() decoder.save_pretrained(__a ) __lowercase : Tuple = AutoformerDecoder.from_pretrained(__a ).to(__a ) __lowercase : str = decoder( trend=__a , inputs_embeds=__a , encoder_hidden_states=__a , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[str] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _A : List[Any] = (AutoformerForPrediction,) if is_torch_available() else () _A : Any = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} _A : Dict = False _A : Tuple = False _A : Optional[int] = False _A : Tuple = False _A : str = False _A : Union[str, Any] = False def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" __lowercase : List[str] = AutoformerModelTester(self ) __lowercase : Dict = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowercase : Dict = model_class(__a ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowercase , __lowercase : Tuple = model_class.from_pretrained(__a , output_loading_info=__a ) self.assertEqual(info["""missing_keys"""] , [] ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__a ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def lowerCAmelCase ( self : str ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : Any = inspect.signature(getattr(__a , """forward""" ) ) # The main input is the name of the argument after `self` __lowercase : Optional[int] = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , __a ) def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Dict = model_class(__a ) __lowercase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : Any = [*signature.parameters.keys()] __lowercase : int = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(__a )] , __a ) def lowerCAmelCase ( self : int ) -> int: """simple docstring""" __lowercase , __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : int = True __lowercase : Tuple = getattr(self.model_tester , """seq_length""" , __a ) __lowercase : Union[str, Any] = getattr(self.model_tester , """decoder_seq_length""" , __a ) __lowercase : List[str] = getattr(self.model_tester , """encoder_seq_length""" , __a ) __lowercase : List[Any] = getattr(self.model_tester , """d_model""" , __a ) __lowercase : Optional[int] = getattr(self.model_tester , """num_attention_heads""" , __a ) __lowercase : Any = d_model // num_attention_heads for model_class in self.all_model_classes: __lowercase : Dict = True __lowercase : List[str] = False __lowercase : Optional[int] = True __lowercase : str = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : int = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase : Optional[int] = True __lowercase : List[str] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Union[str, Any] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Dict = outputs.encoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __lowercase : Tuple = len(__a ) __lowercase : str = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__a , __a ) # decoder attentions __lowercase : List[Any] = outputs.decoder_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __lowercase : Optional[int] = outputs.cross_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __lowercase : Tuple = True __lowercase : Union[str, Any] = True __lowercase : Tuple = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Any = model(**self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + 2 , len(__a ) ) __lowercase : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def snake_case_ ( lowerCAmelCase_ : Optional[int]="train-batch.pt" ): __lowercase : Dict = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=lowerCAmelCase_ , repo_type="""dataset""" ) __lowercase : Optional[int] = torch.load(lowerCAmelCase_ , map_location=lowerCAmelCase_ ) return batch @require_torch @slow class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" __lowercase : List[str] = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : List[Any] = prepare_batch() with torch.no_grad(): __lowercase : Tuple = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] __lowercase : List[str] = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , __a ) __lowercase : Optional[int] = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" __lowercase : int = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : List[str] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowercase : Optional[Any] = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state __lowercase : List[str] = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , __a ) __lowercase : Optional[int] = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : Optional[int] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowercase : int = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) __lowercase : int = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , __a ) __lowercase : Optional[Any] = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=__a ) __lowercase : Dict = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __a , rtol=1E-1 ) )
649
0
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" __lowercase : List[str] = FlaxMTaForConditionalGeneration.from_pretrained("""google/mt5-small""" ) __lowercase : List[Any] = AutoTokenizer.from_pretrained("""google/mt5-small""" ) __lowercase : Any = tokenizer("""Hello there""" , return_tensors="""np""" ).input_ids __lowercase : int = tokenizer("""Hi I am""" , return_tensors="""np""" ).input_ids __lowercase : Optional[Any] = shift_tokens_right(__a , model.config.pad_token_id , model.config.decoder_start_token_id ) __lowercase : Dict = model(__a , decoder_input_ids=__a ).logits __lowercase : Union[str, Any] = optax.softmax_cross_entropy(__a , onehot(__a , logits.shape[-1] ) ).mean() __lowercase : Any = -(labels.shape[-1] * loss.item()) __lowercase : str = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
702
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowerCAmelCase ( __a , __a ): '''simple docstring''' _A : str = 1 @register_to_config def __init__( self : Optional[int] , __a : Tuple=2000 , __a : List[str]=0.1 , __a : str=20 , __a : Optional[int]=1E-3 ) -> int: """simple docstring""" __lowercase : Tuple = None __lowercase : Union[str, Any] = None __lowercase : int = None def lowerCAmelCase ( self : List[Any] , __a : Any , __a : Union[str, torch.device] = None ) -> str: """simple docstring""" __lowercase : List[str] = torch.linspace(1 , self.config.sampling_eps , __a , device=__a ) def lowerCAmelCase ( self : Tuple , __a : List[Any] , __a : Tuple , __a : int , __a : Optional[int]=None ) -> str: """simple docstring""" if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __lowercase : Dict = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __lowercase : int = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __lowercase : Union[str, Any] = std.flatten() while len(std.shape ) < len(score.shape ): __lowercase : Optional[Any] = std.unsqueeze(-1 ) __lowercase : List[Any] = -score / std # compute __lowercase : Dict = -1.0 / len(self.timesteps ) __lowercase : int = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __lowercase : List[Any] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __lowercase : Union[str, Any] = beta_t.unsqueeze(-1 ) __lowercase : List[str] = -0.5 * beta_t * x __lowercase : int = torch.sqrt(__a ) __lowercase : Union[str, Any] = drift - diffusion**2 * score __lowercase : Optional[Any] = x + drift * dt # add noise __lowercase : List[str] = randn_tensor(x.shape , layout=x.layout , generator=__a , device=x.device , dtype=x.dtype ) __lowercase : str = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Tuple ) -> Optional[int]: """simple docstring""" return self.config.num_train_timesteps
649
0
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @parameterized.expand([(None,), ("""foo.json""",)] ) def lowerCAmelCase ( self : List[Any] , __a : int ) -> str: """simple docstring""" __lowercase : List[str] = GenerationConfig( do_sample=__a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__a , config_name=__a ) __lowercase : List[Any] = GenerationConfig.from_pretrained(__a , config_name=__a ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , __a ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , __a ) def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase : List[str] = AutoConfig.from_pretrained("""gpt2""" ) __lowercase : List[str] = GenerationConfig.from_model_config(__a ) __lowercase : List[str] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(__a , __a ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase : Any = GenerationConfig() __lowercase : Dict = { """max_new_tokens""": 1024, """foo""": """bar""", } __lowercase : Tuple = copy.deepcopy(__a ) __lowercase : Optional[Any] = generation_config.update(**__a ) # update_kwargs was not modified (no side effects) self.assertEqual(__a , __a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(__a , {"""foo""": """bar"""} ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = GenerationConfig() __lowercase : Any = """bar""" with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir: generation_config.save_pretrained(__a ) __lowercase : Optional[Any] = GenerationConfig.from_pretrained(__a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , """bar""" ) __lowercase : Any = GenerationConfig.from_model_config(__a ) assert not hasattr(__a , """foo""" ) # no new kwargs should be initialized if from config def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" __lowercase : Dict = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , __a ) self.assertEqual(default_config.num_beams , 1 ) __lowercase : Dict = GenerationConfig( do_sample=__a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , __a ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__a ) __lowercase : Any = GenerationConfig.from_pretrained(__a , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , __a ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def lowerCAmelCase ( cls : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : Any = TOKEN HfFolder.save_token(__a ) @classmethod def lowerCAmelCase ( cls : List[str] ) -> Optional[Any]: """simple docstring""" try: delete_repo(token=cls._token , repo_id="""test-generation-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" ) except HTTPError: pass def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" __lowercase : List[str] = GenerationConfig( do_sample=__a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""test-generation-config""" , use_auth_token=self._token ) __lowercase : Dict = GenerationConfig.from_pretrained(F"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-generation-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __a , repo_id="""test-generation-config""" , push_to_hub=__a , use_auth_token=self._token ) __lowercase : Optional[int] = GenerationConfig.from_pretrained(F"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a ) ) def lowerCAmelCase ( self : int ) -> List[Any]: """simple docstring""" __lowercase : Tuple = GenerationConfig( do_sample=__a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token ) __lowercase : Optional[Any] = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __a , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=__a , use_auth_token=self._token ) __lowercase : Dict = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a ) )
703
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : str = LongformerTokenizer _A : int = True _A : Optional[int] = LongformerTokenizerFast _A : int = True def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __lowercase : Union[str, Any] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Any = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __lowercase : Optional[int] = {"""unk_token""": """<unk>"""} __lowercase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__a ) ) def lowerCAmelCase ( self : Optional[int] , **__a : Optional[Any] ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Tuple , **__a : Tuple ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : str , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = """lower newer""" __lowercase : int = """lower newer""" return input_text, output_text def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowercase : Dict = """lower newer""" __lowercase : Optional[Any] = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] __lowercase : str = tokenizer.tokenize(__a ) # , add_prefix_space=True) self.assertListEqual(__a , __a ) __lowercase : int = tokens + [tokenizer.unk_token] __lowercase : str = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=__a ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=__a ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : Any = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" ) __lowercase : Optional[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=__a ) __lowercase : List[str] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__a ) __lowercase : Optional[Any] = tokenizer.encode( """sequence builders""" , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Union[str, Any] = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : List[Any] = tokenizer.build_inputs_with_special_tokens(__a ) __lowercase : Any = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() __lowercase : Tuple = """Encode this sequence.""" __lowercase : Optional[Any] = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments __lowercase : Dict = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__a , __a ) __lowercase : List[str] = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__a , __a ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) __lowercase : str = tokenizer.encode(__a , add_special_tokens=__a ) __lowercase : Dict = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__a , __a ) # Testing spaces after special tokens __lowercase : List[Any] = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(__a , lstrip=__a , rstrip=__a )} ) # mask token has a left space __lowercase : Dict = tokenizer.convert_tokens_to_ids(__a ) __lowercase : List[str] = """Encode <mask> sequence""" __lowercase : List[str] = """Encode <mask>sequence""" __lowercase : Union[str, Any] = tokenizer.encode(__a ) __lowercase : Dict = encoded.index(__a ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__a , __a ) __lowercase : int = tokenizer.encode(__a ) __lowercase : Union[str, Any] = encoded.index(__a ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__a , __a ) def lowerCAmelCase ( self : int ) -> str: """simple docstring""" pass def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) __lowercase : List[Any] = self.tokenizer_class.from_pretrained(__a , **__a ) __lowercase : Optional[Any] = """A, <mask> AllenNLP sentence.""" __lowercase : Union[str, Any] = tokenizer_r.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) __lowercase : Optional[Any] = tokenizer_p.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) __lowercase : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __lowercase : str = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __lowercase : Dict = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __lowercase : Any = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""trim_offsets"""] , __a ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : List[str] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` __lowercase : int = F"{text_of_1_token} {text_of_1_token}" __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Any = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) __lowercase : str = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Tuple = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) __lowercase : Optional[int] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : str = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) __lowercase : str = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : int = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) __lowercase : Any = F" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : str = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ) + 1, 1 + len(__a ) + 1 + len(__a )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Dict = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Tuple = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , )
649
0
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase : List[Any] = logging.get_logger(__name__) lowerCamelCase : Tuple = { '''vocab_file''': '''vocab.json''', '''tokenizer_config_file''': '''tokenizer_config.json''', '''merges_file''': '''merges.txt''', } lowerCamelCase : Any = { '''vocab_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json''' ), }, '''tokenizer_config_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json''' ), }, '''merges_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt''' ), }, } lowerCamelCase : Any = '''</w>''' lowerCamelCase : Optional[int] = '''@@ ''' def snake_case_ ( lowerCAmelCase_ : Dict ): __lowercase : Optional[Any] = set() __lowercase : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowercase : int = char return pairs # Speech2Text2 has no max input length lowerCamelCase : Optional[int] = {'''facebook/s2t-wav2vec2-large-en-de''': 10_24} class lowerCAmelCase ( __a ): '''simple docstring''' _A : Dict = VOCAB_FILES_NAMES _A : str = PRETRAINED_VOCAB_FILES_MAP _A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self : int , __a : Optional[Any] , __a : List[Any]="<s>" , __a : str="<pad>" , __a : List[Any]="</s>" , __a : Dict="<unk>" , __a : Any=False , __a : Union[str, Any]=None , **__a : List[Any] , ) -> Optional[Any]: """simple docstring""" super().__init__( unk_token=__a , bos_token=__a , eos_token=__a , pad_token=__a , do_lower_case=__a , **__a , ) __lowercase : int = do_lower_case with open(__a , encoding="""utf-8""" ) as vocab_handle: __lowercase : List[Any] = json.load(__a ) __lowercase : Union[str, Any] = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"No merges files provided. {self.__class__.__name__} can only be used for decoding." ) __lowercase : int = None __lowercase : Union[str, Any] = None else: with open(__a , encoding="""utf-8""" ) as merges_handle: __lowercase : List[str] = merges_handle.read().split("""\n""" )[:-1] __lowercase : Union[str, Any] = [tuple(merge.split()[:2] ) for merge in merges] __lowercase : List[str] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Union[str, Any] = {} @property def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" return len(self.decoder ) def lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase ( self : Tuple , __a : Any ) -> Dict: """simple docstring""" __lowercase : List[Any] = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] __lowercase : Dict = get_pairs(__a ) if not pairs: return token while True: __lowercase : Any = min(__a , key=lambda __a : self.bpe_ranks.get(__a , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __lowercase : Any = bigram __lowercase : Dict = [] __lowercase : List[str] = 0 while i < len(__a ): try: __lowercase : Tuple = word.index(__a , __a ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowercase : str = j if word[i] == first and i < len(__a ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowercase : Dict = tuple(__a ) __lowercase : List[str] = new_word if len(__a ) == 1: break else: __lowercase : str = get_pairs(__a ) __lowercase : List[str] = """ """.join(__a ) if word == "\n " + BPE_TOKEN_MERGES: __lowercase : Tuple = """\n""" + BPE_TOKEN_MERGES if word.endswith(__a ): __lowercase : List[Any] = word.replace(__a , """""" ) __lowercase : Union[str, Any] = word.replace(""" """ , __a ) __lowercase : Any = word return word def lowerCAmelCase ( self : Optional[Any] , __a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" if self.bpe_ranks is None: raise ValueError( """This tokenizer was instantiated without a `merges.txt` file, so""" """ that it can only be used for decoding, not for encoding.""" """Make sure to provide `merges.txt` file at instantiation to enable """ """encoding.""" ) if self.do_lower_case: __lowercase : Union[str, Any] = text.lower() __lowercase : Union[str, Any] = text.split() __lowercase : Optional[Any] = [] for token in text: if token: split_tokens.extend(list(self.bpe(__a ).split(""" """ ) ) ) return split_tokens def lowerCAmelCase ( self : Dict , __a : str ) -> int: """simple docstring""" return self.encoder.get(__a , self.encoder.get(self.unk_token ) ) def lowerCAmelCase ( self : Tuple , __a : int ) -> str: """simple docstring""" __lowercase : str = self.decoder.get(__a , self.unk_token ) return result def lowerCAmelCase ( self : Union[str, Any] , __a : List[str] ) -> str: """simple docstring""" __lowercase : Optional[Any] = """ """.join(__a ) # make sure @@ tokens are concatenated __lowercase : Union[str, Any] = """""".join(string.split(__a ) ) return string def lowerCAmelCase ( self : int , __a : str , __a : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__a ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __lowercase : Tuple = os.path.join( __a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : Optional[Any] = os.path.join( __a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(__a , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__a , ensure_ascii=__a ) + """\n""" ) __lowercase : Dict = 0 if self.bpe_ranks is None: return (vocab_file,) with open(__a , """w""" , encoding="""utf-8""" ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __a : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merges_file}: BPE merge indices are not consecutive." """ Please check that the tokenizer is not corrupted!""" ) __lowercase : str = token_index writer.write(""" """.join(__a ) + """\n""" ) index += 1 return (vocab_file, merges_file)
704
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Dict , __a : Union[str, Any]=13 , __a : Dict=7 , __a : Dict=True , __a : Dict=True , __a : Any=True , __a : List[str]=True , __a : int=99 , __a : Optional[int]=32 , __a : str=2 , __a : int=4 , __a : List[str]=37 , __a : Union[str, Any]="gelu" , __a : Union[str, Any]=0.1 , __a : Union[str, Any]=0.1 , __a : List[Any]=512 , __a : int=16 , __a : Union[str, Any]=2 , __a : Union[str, Any]=0.02 , __a : List[str]=3 , __a : Dict=4 , __a : Optional[Any]=None , ) -> Optional[Any]: """simple docstring""" __lowercase : Any = parent __lowercase : Tuple = 13 __lowercase : Dict = 7 __lowercase : List[Any] = True __lowercase : Tuple = True __lowercase : List[str] = True __lowercase : Any = True __lowercase : Optional[int] = 99 __lowercase : str = 384 __lowercase : Optional[Any] = 2 __lowercase : Dict = 4 __lowercase : str = 37 __lowercase : Optional[int] = """gelu""" __lowercase : int = 0.1 __lowercase : Union[str, Any] = 0.1 __lowercase : Tuple = 512 __lowercase : Tuple = 16 __lowercase : Optional[int] = 2 __lowercase : Optional[Any] = 0.02 __lowercase : Dict = 3 __lowercase : Union[str, Any] = 4 __lowercase : Tuple = 128 __lowercase : Optional[Any] = 2 __lowercase : int = 9 __lowercase : List[Any] = 1 __lowercase : Union[str, Any] = None def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" __lowercase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : Optional[Any] = None if self.use_input_mask: __lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : Dict = None if self.use_token_type_ids: __lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase : Optional[Any] = None __lowercase : str = None __lowercase : Tuple = None if self.use_labels: __lowercase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : str = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : Optional[int] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Dict , __a : List[Any] , __a : List[str] , __a : Union[str, Any] , __a : str , __a : Union[str, Any] , __a : Tuple , __a : Tuple ) -> Dict: """simple docstring""" __lowercase : Dict = TFConvBertModel(config=__a ) __lowercase : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowercase : Any = [input_ids, input_mask] __lowercase : Dict = model(__a ) __lowercase : str = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : Any , __a : Tuple , __a : Union[str, Any] , __a : str , __a : Dict , __a : str ) -> Dict: """simple docstring""" __lowercase : Optional[int] = TFConvBertForMaskedLM(config=__a ) __lowercase : List[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : Any = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[int] , __a : int , __a : Any , __a : Optional[int] , __a : int , __a : int , __a : List[Any] , __a : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase : str = self.num_labels __lowercase : List[Any] = TFConvBertForSequenceClassification(config=__a ) __lowercase : int = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : List[str] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Optional[int] , __a : Any , __a : Optional[Any] , __a : int , __a : Optional[int] , __a : Tuple , __a : int , __a : int ) -> Dict: """simple docstring""" __lowercase : Tuple = self.num_choices __lowercase : Dict = TFConvBertForMultipleChoice(config=__a ) __lowercase : List[str] = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : int = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : str = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : str = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __lowercase : Dict = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : List[str] , __a : str , __a : List[str] , __a : List[str] , __a : List[str] , __a : Any , __a : Tuple , __a : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = self.num_labels __lowercase : Tuple = TFConvBertForTokenClassification(config=__a ) __lowercase : Dict = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : str = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : List[Any] , __a : Optional[int] , __a : List[str] , __a : Optional[Any] , __a : int , __a : Tuple , __a : Any , __a : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Any = TFConvBertForQuestionAnswering(config=__a ) __lowercase : str = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : List[Any] = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : Tuple = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : int = config_and_inputs __lowercase : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Dict = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _A : str = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _A : Union[str, Any] = False _A : List[str] = False _A : Dict = False def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : int = TFConvBertModelTester(self ) __lowercase : Tuple = ConfigTester(self , config_class=__a , hidden_size=37 ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__a ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Union[str, Any] = True __lowercase : List[Any] = True if hasattr(__a , """use_cache""" ): __lowercase : Optional[Any] = True __lowercase : List[str] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) __lowercase : int = getattr(self.model_tester , """key_length""" , __a ) for model_class in self.all_model_classes: __lowercase : Optional[Any] = self._prepare_for_class(__a , __a ) __lowercase : Tuple = model_class(__a ) __lowercase : Tuple = len(model(__a ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a , saved_model=__a ) __lowercase : List[Any] = os.path.join(__a , """saved_model""" , """1""" ) __lowercase : str = tf.keras.models.load_model(__a ) __lowercase : Optional[int] = model(__a ) if self.is_encoder_decoder: __lowercase : Union[str, Any] = outputs["""encoder_hidden_states"""] __lowercase : Union[str, Any] = outputs["""encoder_attentions"""] else: __lowercase : Union[str, Any] = outputs["""hidden_states"""] __lowercase : List[str] = outputs["""attentions"""] self.assertEqual(len(__a ) , __a ) __lowercase : List[Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : str = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) self.assertIsNotNone(__a ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : List[str] = True __lowercase : List[Any] = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length ) __lowercase : Optional[int] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) __lowercase : List[str] = getattr(self.model_tester , """key_length""" , __a ) __lowercase : List[Any] = getattr(self.model_tester , """key_length""" , __a ) def check_decoder_attentions_output(__a : List[str] ): __lowercase : Union[str, Any] = len(__a ) self.assertEqual(out_len % 2 , 0 ) __lowercase : Any = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__a : str ): __lowercase : str = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __lowercase : int = True __lowercase : Any = False __lowercase : List[Any] = model_class(__a ) __lowercase : Tuple = model(self._prepare_for_class(__a , __a ) ) __lowercase : Dict = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: __lowercase : Any = model_class(__a ) __lowercase : List[str] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __lowercase : Dict = True __lowercase : Optional[Any] = model_class(__a ) __lowercase : Optional[int] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine __lowercase : List[str] = True __lowercase : List[Any] = True __lowercase : Any = model_class(__a ) __lowercase : Optional[int] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @require_tf class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) __lowercase : str = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowercase : Tuple = model(__a )[0] __lowercase : Any = [1, 6, 768] self.assertEqual(output.shape , __a ) __lowercase : Optional[Any] = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-4 )
649
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool lowerCamelCase : Union[str, Any] = { '''Acehnese Arabic''': '''ace_Arab''', '''Acehnese Latin''': '''ace_Latn''', '''Mesopotamian Arabic''': '''acm_Arab''', '''Ta\'izzi-Adeni Arabic''': '''acq_Arab''', '''Tunisian Arabic''': '''aeb_Arab''', '''Afrikaans''': '''afr_Latn''', '''South Levantine Arabic''': '''ajp_Arab''', '''Akan''': '''aka_Latn''', '''Amharic''': '''amh_Ethi''', '''North Levantine Arabic''': '''apc_Arab''', '''Modern Standard Arabic''': '''arb_Arab''', '''Modern Standard Arabic Romanized''': '''arb_Latn''', '''Najdi Arabic''': '''ars_Arab''', '''Moroccan Arabic''': '''ary_Arab''', '''Egyptian Arabic''': '''arz_Arab''', '''Assamese''': '''asm_Beng''', '''Asturian''': '''ast_Latn''', '''Awadhi''': '''awa_Deva''', '''Central Aymara''': '''ayr_Latn''', '''South Azerbaijani''': '''azb_Arab''', '''North Azerbaijani''': '''azj_Latn''', '''Bashkir''': '''bak_Cyrl''', '''Bambara''': '''bam_Latn''', '''Balinese''': '''ban_Latn''', '''Belarusian''': '''bel_Cyrl''', '''Bemba''': '''bem_Latn''', '''Bengali''': '''ben_Beng''', '''Bhojpuri''': '''bho_Deva''', '''Banjar Arabic''': '''bjn_Arab''', '''Banjar Latin''': '''bjn_Latn''', '''Standard Tibetan''': '''bod_Tibt''', '''Bosnian''': '''bos_Latn''', '''Buginese''': '''bug_Latn''', '''Bulgarian''': '''bul_Cyrl''', '''Catalan''': '''cat_Latn''', '''Cebuano''': '''ceb_Latn''', '''Czech''': '''ces_Latn''', '''Chokwe''': '''cjk_Latn''', '''Central Kurdish''': '''ckb_Arab''', '''Crimean Tatar''': '''crh_Latn''', '''Welsh''': '''cym_Latn''', '''Danish''': '''dan_Latn''', '''German''': '''deu_Latn''', '''Southwestern Dinka''': '''dik_Latn''', '''Dyula''': '''dyu_Latn''', '''Dzongkha''': '''dzo_Tibt''', '''Greek''': '''ell_Grek''', '''English''': '''eng_Latn''', '''Esperanto''': '''epo_Latn''', '''Estonian''': '''est_Latn''', '''Basque''': '''eus_Latn''', '''Ewe''': '''ewe_Latn''', '''Faroese''': '''fao_Latn''', '''Fijian''': '''fij_Latn''', '''Finnish''': '''fin_Latn''', '''Fon''': '''fon_Latn''', '''French''': '''fra_Latn''', '''Friulian''': '''fur_Latn''', '''Nigerian Fulfulde''': '''fuv_Latn''', '''Scottish Gaelic''': '''gla_Latn''', '''Irish''': '''gle_Latn''', '''Galician''': '''glg_Latn''', '''Guarani''': '''grn_Latn''', '''Gujarati''': '''guj_Gujr''', '''Haitian Creole''': '''hat_Latn''', '''Hausa''': '''hau_Latn''', '''Hebrew''': '''heb_Hebr''', '''Hindi''': '''hin_Deva''', '''Chhattisgarhi''': '''hne_Deva''', '''Croatian''': '''hrv_Latn''', '''Hungarian''': '''hun_Latn''', '''Armenian''': '''hye_Armn''', '''Igbo''': '''ibo_Latn''', '''Ilocano''': '''ilo_Latn''', '''Indonesian''': '''ind_Latn''', '''Icelandic''': '''isl_Latn''', '''Italian''': '''ita_Latn''', '''Javanese''': '''jav_Latn''', '''Japanese''': '''jpn_Jpan''', '''Kabyle''': '''kab_Latn''', '''Jingpho''': '''kac_Latn''', '''Kamba''': '''kam_Latn''', '''Kannada''': '''kan_Knda''', '''Kashmiri Arabic''': '''kas_Arab''', '''Kashmiri Devanagari''': '''kas_Deva''', '''Georgian''': '''kat_Geor''', '''Central Kanuri Arabic''': '''knc_Arab''', '''Central Kanuri Latin''': '''knc_Latn''', '''Kazakh''': '''kaz_Cyrl''', '''Kabiyè''': '''kbp_Latn''', '''Kabuverdianu''': '''kea_Latn''', '''Khmer''': '''khm_Khmr''', '''Kikuyu''': '''kik_Latn''', '''Kinyarwanda''': '''kin_Latn''', '''Kyrgyz''': '''kir_Cyrl''', '''Kimbundu''': '''kmb_Latn''', '''Northern Kurdish''': '''kmr_Latn''', '''Kikongo''': '''kon_Latn''', '''Korean''': '''kor_Hang''', '''Lao''': '''lao_Laoo''', '''Ligurian''': '''lij_Latn''', '''Limburgish''': '''lim_Latn''', '''Lingala''': '''lin_Latn''', '''Lithuanian''': '''lit_Latn''', '''Lombard''': '''lmo_Latn''', '''Latgalian''': '''ltg_Latn''', '''Luxembourgish''': '''ltz_Latn''', '''Luba-Kasai''': '''lua_Latn''', '''Ganda''': '''lug_Latn''', '''Luo''': '''luo_Latn''', '''Mizo''': '''lus_Latn''', '''Standard Latvian''': '''lvs_Latn''', '''Magahi''': '''mag_Deva''', '''Maithili''': '''mai_Deva''', '''Malayalam''': '''mal_Mlym''', '''Marathi''': '''mar_Deva''', '''Minangkabau Arabic ''': '''min_Arab''', '''Minangkabau Latin''': '''min_Latn''', '''Macedonian''': '''mkd_Cyrl''', '''Plateau Malagasy''': '''plt_Latn''', '''Maltese''': '''mlt_Latn''', '''Meitei Bengali''': '''mni_Beng''', '''Halh Mongolian''': '''khk_Cyrl''', '''Mossi''': '''mos_Latn''', '''Maori''': '''mri_Latn''', '''Burmese''': '''mya_Mymr''', '''Dutch''': '''nld_Latn''', '''Norwegian Nynorsk''': '''nno_Latn''', '''Norwegian Bokmål''': '''nob_Latn''', '''Nepali''': '''npi_Deva''', '''Northern Sotho''': '''nso_Latn''', '''Nuer''': '''nus_Latn''', '''Nyanja''': '''nya_Latn''', '''Occitan''': '''oci_Latn''', '''West Central Oromo''': '''gaz_Latn''', '''Odia''': '''ory_Orya''', '''Pangasinan''': '''pag_Latn''', '''Eastern Panjabi''': '''pan_Guru''', '''Papiamento''': '''pap_Latn''', '''Western Persian''': '''pes_Arab''', '''Polish''': '''pol_Latn''', '''Portuguese''': '''por_Latn''', '''Dari''': '''prs_Arab''', '''Southern Pashto''': '''pbt_Arab''', '''Ayacucho Quechua''': '''quy_Latn''', '''Romanian''': '''ron_Latn''', '''Rundi''': '''run_Latn''', '''Russian''': '''rus_Cyrl''', '''Sango''': '''sag_Latn''', '''Sanskrit''': '''san_Deva''', '''Santali''': '''sat_Olck''', '''Sicilian''': '''scn_Latn''', '''Shan''': '''shn_Mymr''', '''Sinhala''': '''sin_Sinh''', '''Slovak''': '''slk_Latn''', '''Slovenian''': '''slv_Latn''', '''Samoan''': '''smo_Latn''', '''Shona''': '''sna_Latn''', '''Sindhi''': '''snd_Arab''', '''Somali''': '''som_Latn''', '''Southern Sotho''': '''sot_Latn''', '''Spanish''': '''spa_Latn''', '''Tosk Albanian''': '''als_Latn''', '''Sardinian''': '''srd_Latn''', '''Serbian''': '''srp_Cyrl''', '''Swati''': '''ssw_Latn''', '''Sundanese''': '''sun_Latn''', '''Swedish''': '''swe_Latn''', '''Swahili''': '''swh_Latn''', '''Silesian''': '''szl_Latn''', '''Tamil''': '''tam_Taml''', '''Tatar''': '''tat_Cyrl''', '''Telugu''': '''tel_Telu''', '''Tajik''': '''tgk_Cyrl''', '''Tagalog''': '''tgl_Latn''', '''Thai''': '''tha_Thai''', '''Tigrinya''': '''tir_Ethi''', '''Tamasheq Latin''': '''taq_Latn''', '''Tamasheq Tifinagh''': '''taq_Tfng''', '''Tok Pisin''': '''tpi_Latn''', '''Tswana''': '''tsn_Latn''', '''Tsonga''': '''tso_Latn''', '''Turkmen''': '''tuk_Latn''', '''Tumbuka''': '''tum_Latn''', '''Turkish''': '''tur_Latn''', '''Twi''': '''twi_Latn''', '''Central Atlas Tamazight''': '''tzm_Tfng''', '''Uyghur''': '''uig_Arab''', '''Ukrainian''': '''ukr_Cyrl''', '''Umbundu''': '''umb_Latn''', '''Urdu''': '''urd_Arab''', '''Northern Uzbek''': '''uzn_Latn''', '''Venetian''': '''vec_Latn''', '''Vietnamese''': '''vie_Latn''', '''Waray''': '''war_Latn''', '''Wolof''': '''wol_Latn''', '''Xhosa''': '''xho_Latn''', '''Eastern Yiddish''': '''ydd_Hebr''', '''Yoruba''': '''yor_Latn''', '''Yue Chinese''': '''yue_Hant''', '''Chinese Simplified''': '''zho_Hans''', '''Chinese Traditional''': '''zho_Hant''', '''Standard Malay''': '''zsm_Latn''', '''Zulu''': '''zul_Latn''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : Tuple = '''facebook/nllb-200-distilled-600M''' _A : List[Any] = ( '''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ''' '''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ''' '''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ''' '''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.''' ) _A : Tuple = '''translator''' _A : str = AutoTokenizer _A : Tuple = AutoModelForSeqaSeqLM _A : Optional[int] = LANGUAGE_CODES _A : str = ['''text''', '''text''', '''text'''] _A : Any = ['''text'''] def lowerCAmelCase ( self : str , __a : str , __a : Union[str, Any] , __a : Dict ) -> Dict: """simple docstring""" if src_lang not in self.lang_to_code: raise ValueError(F"{src_lang} is not a supported language." ) if tgt_lang not in self.lang_to_code: raise ValueError(F"{tgt_lang} is not a supported language." ) __lowercase : List[str] = self.lang_to_code[src_lang] __lowercase : int = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( __a , return_tensors="""pt""" , src_lang=__a , tgt_lang=__a ) def lowerCAmelCase ( self : List[Any] , __a : List[Any] ) -> Dict: """simple docstring""" return self.model.generate(**__a ) def lowerCAmelCase ( self : Dict , __a : Optional[Any] ) -> Tuple: """simple docstring""" return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=__a )
705
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : int , *__a : Dict , **__a : Optional[Any] ) -> None: """simple docstring""" warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , __a , ) super().__init__(*__a , **__a )
649
0
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def snake_case_ ( lowerCAmelCase_ : bytes , lowerCAmelCase_ : int ): __lowercase : List[str] = F"{sampling_rate}" __lowercase : List[str] = """1""" __lowercase : Tuple = """f32le""" __lowercase : Tuple = [ """ffmpeg""", """-i""", """pipe:0""", """-ac""", ac, """-ar""", ar, """-f""", format_for_conversion, """-hide_banner""", """-loglevel""", """quiet""", """pipe:1""", ] try: with subprocess.Popen(lowerCAmelCase_ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: __lowercase : Union[str, Any] = ffmpeg_process.communicate(lowerCAmelCase_ ) except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to load audio files from filename""" ) from error __lowercase : str = output_stream[0] __lowercase : str = np.frombuffer(lowerCAmelCase_ , np.floataa ) if audio.shape[0] == 0: raise ValueError("""Malformed soundfile""" ) return audio def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : float , lowerCAmelCase_ : str = "f32le" , ): __lowercase : List[Any] = F"{sampling_rate}" __lowercase : Tuple = """1""" if format_for_conversion == "s16le": __lowercase : Optional[Any] = 2 elif format_for_conversion == "f32le": __lowercase : Tuple = 4 else: raise ValueError(F"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`" ) __lowercase : int = platform.system() if system == "Linux": __lowercase : Optional[Any] = """alsa""" __lowercase : Optional[Any] = """default""" elif system == "Darwin": __lowercase : str = """avfoundation""" __lowercase : Optional[int] = """:0""" elif system == "Windows": __lowercase : Tuple = """dshow""" __lowercase : int = """default""" __lowercase : str = [ """ffmpeg""", """-f""", format_, """-i""", input_, """-ac""", ac, """-ar""", ar, """-f""", format_for_conversion, """-fflags""", """nobuffer""", """-hide_banner""", """-loglevel""", """quiet""", """pipe:1""", ] __lowercase : int = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample __lowercase : Optional[int] = _ffmpeg_stream(lowerCAmelCase_ , lowerCAmelCase_ ) for item in iterator: yield item def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : float , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[Union[Tuple[float, float], float]] = None , lowerCAmelCase_ : str = "f32le" , ): if stream_chunk_s is not None: __lowercase : Optional[int] = stream_chunk_s else: __lowercase : List[str] = chunk_length_s __lowercase : List[str] = ffmpeg_microphone(lowerCAmelCase_ , lowerCAmelCase_ , format_for_conversion=lowerCAmelCase_ ) if format_for_conversion == "s16le": __lowercase : Any = np.intaa __lowercase : str = 2 elif format_for_conversion == "f32le": __lowercase : Any = np.floataa __lowercase : List[str] = 4 else: raise ValueError(F"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`" ) if stride_length_s is None: __lowercase : Union[str, Any] = chunk_length_s / 6 __lowercase : Any = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(lowerCAmelCase_ , (int, float) ): __lowercase : Dict = [stride_length_s, stride_length_s] __lowercase : Tuple = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample __lowercase : Optional[int] = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample __lowercase : Dict = datetime.datetime.now() __lowercase : int = datetime.timedelta(seconds=lowerCAmelCase_ ) for item in chunk_bytes_iter(lowerCAmelCase_ , lowerCAmelCase_ , stride=(stride_left, stride_right) , stream=lowerCAmelCase_ ): # Put everything back in numpy scale __lowercase : str = np.frombuffer(item["""raw"""] , dtype=lowerCAmelCase_ ) __lowercase : int = ( item["""stride"""][0] // size_of_sample, item["""stride"""][1] // size_of_sample, ) __lowercase : List[str] = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple[int, int] , lowerCAmelCase_ : bool = False ): __lowercase : Optional[Any] = b"""""" __lowercase : str = stride if stride_left + stride_right >= chunk_len: raise ValueError( F"Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}" ) __lowercase : Optional[int] = 0 for raw in iterator: acc += raw if stream and len(lowerCAmelCase_ ) < chunk_len: __lowercase : Any = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(lowerCAmelCase_ ) >= chunk_len: # We are flushing the accumulator __lowercase : Union[str, Any] = (_stride_left, stride_right) __lowercase : Optional[int] = {"""raw""": acc[:chunk_len], """stride""": stride} if stream: __lowercase : List[Any] = False yield item __lowercase : List[str] = stride_left __lowercase : Union[str, Any] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(lowerCAmelCase_ ) > stride_left: __lowercase : List[str] = {"""raw""": acc, """stride""": (_stride_left, 0)} if stream: __lowercase : List[Any] = False yield item def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : int ): __lowercase : Any = 2**24 # 16Mo try: with subprocess.Popen(lowerCAmelCase_ , stdout=subprocess.PIPE , bufsize=lowerCAmelCase_ ) as ffmpeg_process: while True: __lowercase : List[str] = ffmpeg_process.stdout.read(lowerCAmelCase_ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to stream audio files from filename""" ) from error
706
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Optional[int] = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() __lowercase : List[str] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Dict = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } __lowercase : List[str] = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 16000, """return_attention_mask""": False, """do_normalize""": True, } __lowercase : Tuple = tempfile.mkdtemp() __lowercase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : str = os.path.join(self.tmpdirname , __a ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) # load decoder from hub __lowercase : Optional[int] = """hf-internal-testing/ngram-beam-search-decoder""" def lowerCAmelCase ( self : Optional[Any] , **__a : Dict ) -> Tuple: """simple docstring""" __lowercase : Union[str, Any] = self.add_kwargs_tokens_map.copy() kwargs.update(__a ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : str , **__a : int ) -> Tuple: """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Union[str, Any] , **__a : Union[str, Any] ) -> List[Any]: """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__a ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() __lowercase : Any = self.get_feature_extractor() __lowercase : str = self.get_decoder() __lowercase : Tuple = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) processor.save_pretrained(self.tmpdirname ) __lowercase : Tuple = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __a ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __a ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __a ) def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Any = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __lowercase : str = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : List[str] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(__a , """include""" ): WavaVecaProcessorWithLM( tokenizer=__a , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : List[Any] = self.get_feature_extractor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : int = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Optional[int] = floats_list((3, 1000) ) __lowercase : List[Any] = feature_extractor(__a , return_tensors="""np""" ) __lowercase : List[str] = processor(__a , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : List[Any] = self.get_feature_extractor() __lowercase : int = self.get_tokenizer() __lowercase : Dict = self.get_decoder() __lowercase : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Dict = """This is a test string""" __lowercase : Any = processor(text=__a ) __lowercase : Dict = tokenizer(__a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase ( self : str , __a : Tuple=(2, 10, 16) , __a : int=77 ) -> Optional[Any]: """simple docstring""" np.random.seed(__a ) return np.random.rand(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : List[str] = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : str = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : List[str] = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __lowercase : Optional[Any] = processor.decode(__a ) __lowercase : Any = decoder.decode_beams(__a )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def lowerCAmelCase ( self : List[str] , __a : Dict ) -> List[Any]: """simple docstring""" __lowercase : str = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : Optional[int] = self.get_decoder() __lowercase : Any = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Optional[Any] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __lowercase : Union[str, Any] = processor.batch_decode(__a ) else: with get_context(__a ).Pool() as pool: __lowercase : Optional[Any] = processor.batch_decode(__a , __a ) __lowercase : Union[str, Any] = list(__a ) with get_context("""fork""" ).Pool() as p: __lowercase : Optional[Any] = decoder.decode_beams_batch(__a , __a ) __lowercase , __lowercase , __lowercase : Any = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__a , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(__a , decoded_processor.logit_score ) self.assertListEqual(__a , decoded_processor.lm_score ) def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase : int = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : List[str] = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Dict = self._get_dummy_logits() __lowercase : Tuple = 15 __lowercase : Tuple = -20.0 __lowercase : Dict = -4.0 __lowercase : Dict = processor.batch_decode( __a , beam_width=__a , beam_prune_logp=__a , token_min_logp=__a , ) __lowercase : Tuple = decoded_processor_out.text __lowercase : List[Any] = list(__a ) with get_context("""fork""" ).Pool() as pool: __lowercase : Any = decoder.decode_beams_batch( __a , __a , beam_width=__a , beam_prune_logp=__a , token_min_logp=__a , ) __lowercase : Optional[Any] = [d[0][0] for d in decoded_decoder_out] __lowercase : Optional[int] = [d[0][2] for d in decoded_decoder_out] __lowercase : Optional[int] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__a , __a ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , __a ) self.assertTrue(np.array_equal(__a , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , __a , atol=1E-3 ) ) self.assertTrue(np.array_equal(__a , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , __a , atol=1E-3 ) ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase : str = self.get_feature_extractor() __lowercase : List[Any] = self.get_tokenizer() __lowercase : List[Any] = self.get_decoder() __lowercase : Dict = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : List[Any] = self._get_dummy_logits() __lowercase : Optional[int] = 2.0 __lowercase : Tuple = 5.0 __lowercase : Optional[Any] = -20.0 __lowercase : Tuple = True __lowercase : Union[str, Any] = processor.batch_decode( __a , alpha=__a , beta=__a , unk_score_offset=__a , lm_score_boundary=__a , ) __lowercase : Any = decoded_processor_out.text __lowercase : List[Any] = list(__a ) decoder.reset_params( alpha=__a , beta=__a , unk_score_offset=__a , lm_score_boundary=__a , ) with get_context("""fork""" ).Pool() as pool: __lowercase : Tuple = decoder.decode_beams_batch( __a , __a , ) __lowercase : int = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__a , __a ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , __a ) __lowercase : str = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , __a ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] __lowercase : str = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __lowercase : int = os.listdir(__a ) __lowercase : Optional[Any] = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = snapshot_download("""hf-internal-testing/processor_with_lm""" ) __lowercase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(__a ) __lowercase : Dict = processor.decoder.model_container[processor.decoder._model_key] __lowercase : List[Any] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __lowercase : Dict = os.listdir(__a ) __lowercase : List[Any] = os.listdir(__a ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" __lowercase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Dict = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Any = floats_list((3, 1000) ) __lowercase : List[str] = processor_wavaveca(__a , return_tensors="""np""" ) __lowercase : List[Any] = processor_auto(__a , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) __lowercase : List[str] = self._get_dummy_logits() __lowercase : List[str] = processor_wavaveca.batch_decode(__a ) __lowercase : Optional[int] = processor_auto.batch_decode(__a ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Any = self.get_feature_extractor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : Dict = self.get_decoder() __lowercase : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def lowerCAmelCase ( __a : Union[str, Any] , __a : List[Any] ) -> Dict: """simple docstring""" __lowercase : Any = [d[key] for d in offsets] return retrieved_list def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" __lowercase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Optional[Any] = self._get_dummy_logits()[0] __lowercase : Dict = processor.decode(__a , output_word_offsets=__a ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__a , __a ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : List[str] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Any = self._get_dummy_logits() __lowercase : Dict = processor.batch_decode(__a , output_word_offsets=__a ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__a , __a ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(__a , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" import torch __lowercase : Any = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=__a ) __lowercase : str = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=16000 ) ) __lowercase : Tuple = iter(__a ) __lowercase : Union[str, Any] = next(__a ) __lowercase : int = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) __lowercase : int = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __lowercase : Union[str, Any] = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): __lowercase : List[Any] = model(__a ).logits.cpu().numpy() __lowercase : Tuple = processor.decode(logits[0] , output_word_offsets=__a ) __lowercase : int = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __lowercase : Optional[Any] = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] __lowercase : str = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(__a , """word""" ) ) , __a ) self.assertEqual(""" """.join(self.get_from_offsets(__a , """word""" ) ) , output.text ) # output times __lowercase : Tuple = torch.tensor(self.get_from_offsets(__a , """start_time""" ) ) __lowercase : Dict = torch.tensor(self.get_from_offsets(__a , """end_time""" ) ) # fmt: off __lowercase : List[Any] = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) __lowercase : Optional[int] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(__a , __a , atol=0.01 ) ) self.assertTrue(torch.allclose(__a , __a , atol=0.01 ) )
649
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : Tuple = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any]=False ): __lowercase : Optional[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"deit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"blocks.{i}.norm1.bias", F"deit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"deit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"deit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"blocks.{i}.norm2.weight", F"deit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"blocks.{i}.norm2.bias", F"deit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"deit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"deit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"deit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"deit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """deit.embeddings.cls_token"""), ("""dist_token""", """deit.embeddings.distillation_token"""), ("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """deit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" __lowercase : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("""norm.weight""", """deit.layernorm.weight"""), ("""norm.bias""", """deit.layernorm.bias"""), ("""head.weight""", """cls_classifier.weight"""), ("""head.bias""", """cls_classifier.bias"""), ("""head_dist.weight""", """distillation_classifier.weight"""), ("""head_dist.bias""", """distillation_classifier.bias"""), ] ) return rename_keys def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str=False ): for i in range(config.num_hidden_layers ): if base_model: __lowercase : List[str] = """""" else: __lowercase : Optional[Any] = """deit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowercase : Dict = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) __lowercase : str = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict __lowercase : Optional[int] = in_proj_weight[ : config.hidden_size, : ] __lowercase : Optional[int] = in_proj_bias[: config.hidden_size] __lowercase : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowercase : Dict = in_proj_weight[ -config.hidden_size :, : ] __lowercase : Tuple = in_proj_bias[-config.hidden_size :] def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int ): __lowercase : Union[str, Any] = dct.pop(lowerCAmelCase_ ) __lowercase : Union[str, Any] = val def snake_case_ ( ): __lowercase : Optional[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase : List[Any] = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str ): __lowercase : Tuple = DeiTConfig() # all deit models have fine-tuned heads __lowercase : Dict = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size __lowercase : Any = 1000 __lowercase : str = """huggingface/label-files""" __lowercase : Union[str, Any] = """imagenet-1k-id2label.json""" __lowercase : Any = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) __lowercase : Dict = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowercase : int = idalabel __lowercase : Optional[Any] = {v: k for k, v in idalabel.items()} __lowercase : Union[str, Any] = int(deit_name[-6:-4] ) __lowercase : Any = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("""tiny""" ): __lowercase : Tuple = 192 __lowercase : Optional[int] = 768 __lowercase : str = 12 __lowercase : Tuple = 3 elif deit_name[9:].startswith("""small""" ): __lowercase : List[str] = 384 __lowercase : Tuple = 1536 __lowercase : List[str] = 12 __lowercase : Optional[Any] = 6 if deit_name[9:].startswith("""base""" ): pass elif deit_name[4:].startswith("""large""" ): __lowercase : List[Any] = 1024 __lowercase : Optional[Any] = 4096 __lowercase : Optional[Any] = 24 __lowercase : Optional[Any] = 16 # load original model from timm __lowercase : int = timm.create_model(lowerCAmelCase_ , pretrained=lowerCAmelCase_ ) timm_model.eval() # load state_dict of original model, remove and rename some keys __lowercase : Dict = timm_model.state_dict() __lowercase : List[str] = create_rename_keys(lowerCAmelCase_ , lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # load HuggingFace model __lowercase : int = DeiTForImageClassificationWithTeacher(lowerCAmelCase_ ).eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image, prepared by DeiTImageProcessor __lowercase : Tuple = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 __lowercase : int = DeiTImageProcessor(size=lowerCAmelCase_ , crop_size=config.image_size ) __lowercase : Union[str, Any] = image_processor(images=prepare_img() , return_tensors="""pt""" ) __lowercase : List[Any] = encoding["""pixel_values"""] __lowercase : Any = model(lowerCAmelCase_ ) __lowercase : Optional[int] = timm_model(lowerCAmelCase_ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase_ , outputs.logits , atol=1e-3 ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"Saving model {deit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--deit_name''', default='''vit_deit_base_distilled_patch16_224''', type=str, help='''Name of the DeiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCamelCase : List[Any] = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
707
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(0 ) == 0 ) def snake_case_ ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
649
0
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] ): # Initialise PyTorch model __lowercase : Any = FunnelConfig.from_json_file(lowerCAmelCase_ ) print(F"Building PyTorch model from configuration: {config}" ) __lowercase : Optional[int] = FunnelBaseModel(lowerCAmelCase_ ) if base_model else FunnelModel(lowerCAmelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--base_model''', action='''store_true''', help='''Whether you want just the base model (no decoder) or not.''' ) lowerCamelCase : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
708
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCamelCase : int = '''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine''' def snake_case_ ( ): __lowercase : List[Any] = _ask_options( """In which compute environment are you running?""" , ["""This machine""", """AWS (Amazon SageMaker)"""] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __lowercase : Union[str, Any] = get_sagemaker_input() else: __lowercase : str = get_cluster_input() return config def snake_case_ ( lowerCAmelCase_ : List[str]=None ): if subparsers is not None: __lowercase : Optional[int] = subparsers.add_parser("""config""" , description=lowerCAmelCase_ ) else: __lowercase : List[str] = argparse.ArgumentParser("""Accelerate config command""" , description=lowerCAmelCase_ ) parser.add_argument( """--config_file""" , default=lowerCAmelCase_ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def snake_case_ ( lowerCAmelCase_ : Tuple ): __lowercase : Union[str, Any] = get_user_input() if args.config_file is not None: __lowercase : List[Any] = args.config_file else: if not os.path.isdir(lowerCAmelCase_ ): os.makedirs(lowerCAmelCase_ ) __lowercase : Any = default_yaml_config_file if config_file.endswith(""".json""" ): config.to_json_file(lowerCAmelCase_ ) else: config.to_yaml_file(lowerCAmelCase_ ) print(F"accelerate configuration saved at {config_file}" ) def snake_case_ ( ): __lowercase : str = config_command_parser() __lowercase : str = parser.parse_args() config_command(lowerCAmelCase_ ) if __name__ == "__main__": main()
649
0
import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def snake_case_ ( lowerCAmelCase_ : List[Any] ): return 1.0 / (1.0 + np.exp(-_outputs )) def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : Dict = np.max(_outputs , axis=-1 , keepdims=lowerCAmelCase_ ) __lowercase : Tuple = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=lowerCAmelCase_ ) class lowerCAmelCase ( __a ): '''simple docstring''' _A : Union[str, Any] = '''sigmoid''' _A : Optional[int] = '''softmax''' _A : str = '''none''' @add_end_docstrings( __a , r''' return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `"default"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `"sigmoid"`: Applies the sigmoid function on the output. - `"softmax"`: Applies the softmax function on the output. - `"none"`: Does not apply any function on the output. ''' , ) class lowerCAmelCase ( __a ): '''simple docstring''' _A : Any = False _A : Dict = ClassificationFunction.NONE def __init__( self : Dict , **__a : int ) -> str: """simple docstring""" super().__init__(**__a ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def lowerCAmelCase ( self : Any , __a : Tuple=None , __a : Any=None , __a : Dict="" , **__a : Dict ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = tokenizer_kwargs __lowercase : Union[str, Any] = {} if hasattr(self.model.config , """return_all_scores""" ) and return_all_scores is None: __lowercase : Union[str, Any] = self.model.config.return_all_scores if isinstance(__a , __a ) or top_k is None: __lowercase : List[Any] = top_k __lowercase : Dict = False elif return_all_scores is not None: warnings.warn( """`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of""" """ `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.""" , __a , ) if return_all_scores: __lowercase : Union[str, Any] = None else: __lowercase : Tuple = 1 if isinstance(__a , __a ): __lowercase : str = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: __lowercase : Any = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self : str , *__a : str , **__a : List[Any] ) -> List[Any]: """simple docstring""" __lowercase : str = super().__call__(*__a , **__a ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. __lowercase : Tuple = """top_k""" not in kwargs if isinstance(args[0] , __a ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def lowerCAmelCase ( self : Union[str, Any] , __a : List[Any] , **__a : Union[str, Any] ) -> Dict[str, GenericTensor]: """simple docstring""" __lowercase : int = self.framework if isinstance(__a , __a ): return self.tokenizer(**__a , return_tensors=__a , **__a ) elif isinstance(__a , __a ) and len(__a ) == 1 and isinstance(inputs[0] , __a ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=__a , **__a ) elif isinstance(__a , __a ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( """The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a""" """ dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair.""" ) return self.tokenizer(__a , return_tensors=__a , **__a ) def lowerCAmelCase ( self : str , __a : List[str] ) -> Dict: """simple docstring""" return self.model(**__a ) def lowerCAmelCase ( self : int , __a : Optional[int] , __a : Optional[int]=None , __a : Tuple=1 , __a : List[str]=True ) -> Optional[Any]: """simple docstring""" if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: __lowercase : str = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: __lowercase : Optional[Any] = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , """function_to_apply""" ) and function_to_apply is None: __lowercase : Tuple = self.model.config.function_to_apply else: __lowercase : List[str] = ClassificationFunction.NONE __lowercase : List[str] = model_outputs["""logits"""][0] __lowercase : Any = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: __lowercase : int = sigmoid(__a ) elif function_to_apply == ClassificationFunction.SOFTMAX: __lowercase : Optional[int] = softmax(__a ) elif function_to_apply == ClassificationFunction.NONE: __lowercase : Union[str, Any] = outputs else: raise ValueError(F"Unrecognized `function_to_apply` argument: {function_to_apply}" ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} __lowercase : int = [ {"""label""": self.model.config.idalabel[i], """score""": score.item()} for i, score in enumerate(__a ) ] if not _legacy: dict_scores.sort(key=lambda __a : x["score"] , reverse=__a ) if top_k is not None: __lowercase : int = dict_scores[:top_k] return dict_scores
709
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : list[str] | None = None ): __lowercase : Tuple = word_bank or [] # create a table __lowercase : int = len(lowerCAmelCase_ ) + 1 __lowercase : list[list[list[str]]] = [] for _ in range(lowerCAmelCase_ ): table.append([] ) # seed value __lowercase : Dict = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowerCAmelCase_ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowerCAmelCase_ )] == word: __lowercase : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowerCAmelCase_ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowerCAmelCase_ )]: combination.reverse() return table[len(lowerCAmelCase_ )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
649
0
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" __lowercase : int = """ylacombe/bark-small""" __lowercase : int = tempfile.mkdtemp() __lowercase : List[Any] = """en_speaker_1""" __lowercase : Union[str, Any] = """This is a test string""" __lowercase : List[str] = """speaker_embeddings_path.json""" __lowercase : Any = """speaker_embeddings""" def lowerCAmelCase ( self : Union[str, Any] , **__a : Tuple ) -> List[str]: """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : List[str] = self.get_tokenizer() __lowercase : List[Any] = BarkProcessor(tokenizer=__a ) processor.save_pretrained(self.tmpdirname ) __lowercase : Tuple = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowerCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" __lowercase : Any = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __lowercase : Optional[int] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __lowercase : List[Any] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase : Any = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __lowercase : Union[str, Any] = 35 __lowercase : Union[str, Any] = 2 __lowercase : str = 8 __lowercase : int = { """semantic_prompt""": np.ones(__a ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset __lowercase : int = processor(text=self.input_string , voice_preset=__a ) __lowercase : List[Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__a , np.array([] ) ).tolist() ) # test loading voice preset from npz file __lowercase : Union[str, Any] = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(__a , **__a ) __lowercase : str = processor(text=self.input_string , voice_preset=__a ) __lowercase : str = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__a , np.array([] ) ).tolist() ) # test loading voice preset from the hub __lowercase : Optional[int] = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : int = BarkProcessor(tokenizer=__a ) __lowercase : List[Any] = processor(text=self.input_string ) __lowercase : Optional[Any] = tokenizer( self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=__a , return_attention_mask=__a , return_token_type_ids=__a , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
710
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(1 ) != 0 ) def snake_case_ ( ): assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
649
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase : List[Any] = logging.get_logger(__name__) class lowerCAmelCase ( __a ): '''simple docstring''' _A : str = ['''pixel_values'''] def __init__( self : str , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PIL.Image.BICUBIC , __a : bool = True , __a : Dict[str, int] = None , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , **__a : Tuple , ) -> None: """simple docstring""" super().__init__(**__a ) __lowercase : Optional[int] = size if size is not None else {"""height""": 256, """width""": 256} __lowercase : int = get_size_dict(__a ) __lowercase : Optional[Any] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __lowercase : List[Any] = get_size_dict(__a , param_name="""crop_size""" ) __lowercase : str = do_resize __lowercase : List[str] = size __lowercase : Optional[Any] = resample __lowercase : Dict = do_center_crop __lowercase : int = crop_size __lowercase : str = do_rescale __lowercase : List[str] = rescale_factor __lowercase : int = do_normalize __lowercase : Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowercase : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase ( self : List[str] , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PIL.Image.BICUBIC , __a : Optional[Union[str, ChannelDimension]] = None , **__a : int , ) -> np.ndarray: """simple docstring""" __lowercase : Union[str, Any] = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must have keys 'height' and 'width'. Got {size.keys()}" ) return resize( __a , size=(size["""height"""], size["""width"""]) , resample=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Dict , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Any , ) -> np.ndarray: """simple docstring""" __lowercase : Dict = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must have keys 'height' and 'width'. Got {size.keys()}" ) return center_crop(__a , size=(size["""height"""], size["""width"""]) , data_format=__a , **__a ) def lowerCAmelCase ( self : List[str] , __a : np.ndarray , __a : Union[int, float] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[int] , ) -> str: """simple docstring""" return rescale(__a , scale=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : List[Any] , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[Any] , ) -> np.ndarray: """simple docstring""" return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : List[Any] , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : Any=None , __a : bool = None , __a : Dict[str, int] = None , __a : bool = None , __a : float = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[str, TensorType]] = None , __a : ChannelDimension = ChannelDimension.FIRST , **__a : str , ) -> PIL.Image.Image: """simple docstring""" __lowercase : Any = do_resize if do_resize is not None else self.do_resize __lowercase : Optional[Any] = resample if resample is not None else self.resample __lowercase : Any = do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase : int = do_rescale if do_rescale is not None else self.do_rescale __lowercase : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize __lowercase : str = image_mean if image_mean is not None else self.image_mean __lowercase : Dict = image_std if image_std is not None else self.image_std __lowercase : Any = size if size is not None else self.size __lowercase : Optional[int] = get_size_dict(__a ) __lowercase : Dict = crop_size if crop_size is not None else self.crop_size __lowercase : int = get_size_dict(__a , param_name="""crop_size""" ) __lowercase : Tuple = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __lowercase : Tuple = [to_numpy_array(__a ) for image in images] if do_resize: __lowercase : Tuple = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: __lowercase : Optional[int] = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: __lowercase : List[Any] = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: __lowercase : Dict = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] __lowercase : Optional[Any] = [to_channel_dimension_format(__a , __a ) for image in images] __lowercase : Union[str, Any] = {"""pixel_values""": images} return BatchFeature(data=__a , tensor_type=__a )
711
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : int = { '''configuration_funnel''': ['''FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FunnelConfig'''], '''convert_funnel_original_tf_checkpoint_to_pytorch''': [], '''tokenization_funnel''': ['''FunnelTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = ['''FunnelTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = [ '''FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FunnelBaseModel''', '''FunnelForMaskedLM''', '''FunnelForMultipleChoice''', '''FunnelForPreTraining''', '''FunnelForQuestionAnswering''', '''FunnelForSequenceClassification''', '''FunnelForTokenClassification''', '''FunnelModel''', '''FunnelPreTrainedModel''', '''load_tf_weights_in_funnel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ '''TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFFunnelBaseModel''', '''TFFunnelForMaskedLM''', '''TFFunnelForMultipleChoice''', '''TFFunnelForPreTraining''', '''TFFunnelForQuestionAnswering''', '''TFFunnelForSequenceClassification''', '''TFFunnelForTokenClassification''', '''TFFunnelModel''', '''TFFunnelPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
649
0
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowerCAmelCase ( __a ): '''simple docstring''' _A : Any = (DPMSolverSDEScheduler,) _A : str = 10 def lowerCAmelCase ( self : List[Any] , **__a : str ) -> int: """simple docstring""" __lowercase : List[Any] = { """num_train_timesteps""": 1100, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**__a ) return config def lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=__a , beta_end=__a ) def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__a ) def lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" __lowercase : List[Any] = self.scheduler_classes[0] __lowercase : int = self.get_scheduler_config() __lowercase : Union[str, Any] = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase : Tuple = self.dummy_model() __lowercase : int = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase : str = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): __lowercase : int = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[int] = model(__a , __a ) __lowercase : Optional[Any] = scheduler.step(__a , __a , __a ) __lowercase : Optional[Any] = output.prev_sample __lowercase : List[str] = torch.sum(torch.abs(__a ) ) __lowercase : str = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47821044921875 ) < 1E-2 assert abs(result_mean.item() - 0.2178705964565277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59352111816406 ) < 1E-2 assert abs(result_mean.item() - 0.22342906892299652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3 def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Any = self.scheduler_classes[0] __lowercase : List[Any] = self.get_scheduler_config(prediction_type="""v_prediction""" ) __lowercase : Dict = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase : Dict = self.dummy_model() __lowercase : int = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase : List[str] = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): __lowercase : Optional[int] = scheduler.scale_model_input(__a , __a ) __lowercase : int = model(__a , __a ) __lowercase : Union[str, Any] = scheduler.step(__a , __a , __a ) __lowercase : List[str] = output.prev_sample __lowercase : Tuple = torch.sum(torch.abs(__a ) ) __lowercase : Tuple = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77149200439453 ) < 1E-2 assert abs(result_mean.item() - 0.16226289014816284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1663360595703 ) < 1E-2 assert abs(result_mean.item() - 0.16688326001167297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8487548828125 ) < 1E-2 assert abs(result_mean.item() - 0.1560530662536621 ) < 1E-3 def lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" __lowercase : Dict = self.scheduler_classes[0] __lowercase : Any = self.get_scheduler_config() __lowercase : str = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps , device=__a ) __lowercase : Tuple = self.dummy_model() __lowercase : Dict = self.dummy_sample_deter.to(__a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __lowercase : Tuple = scheduler.scale_model_input(__a , __a ) __lowercase : List[str] = model(__a , __a ) __lowercase : Dict = scheduler.step(__a , __a , __a ) __lowercase : Tuple = output.prev_sample __lowercase : Any = torch.sum(torch.abs(__a ) ) __lowercase : Any = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46957397460938 ) < 1E-2 assert abs(result_mean.item() - 0.21805934607982635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59353637695312 ) < 1E-2 assert abs(result_mean.item() - 0.22342908382415771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3 def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = self.scheduler_classes[0] __lowercase : Optional[int] = self.get_scheduler_config() __lowercase : int = scheduler_class(**__a , use_karras_sigmas=__a ) scheduler.set_timesteps(self.num_inference_steps , device=__a ) __lowercase : Tuple = self.dummy_model() __lowercase : Any = self.dummy_sample_deter.to(__a ) * scheduler.init_noise_sigma __lowercase : Union[str, Any] = sample.to(__a ) for t in scheduler.timesteps: __lowercase : Dict = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[Any] = model(__a , __a ) __lowercase : Dict = scheduler.step(__a , __a , __a ) __lowercase : Union[str, Any] = output.prev_sample __lowercase : Union[str, Any] = torch.sum(torch.abs(__a ) ) __lowercase : Any = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66974135742188 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63653564453125 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3135223388672 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2
712
import logging import os import threading import time try: import warnings except ImportError: lowerCamelCase : Any = None try: import msvcrt except ImportError: lowerCamelCase : str = None try: import fcntl except ImportError: lowerCamelCase : Optional[Any] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: lowerCamelCase : Union[str, Any] = OSError # Data # ------------------------------------------------ lowerCamelCase : Tuple = [ '''Timeout''', '''BaseFileLock''', '''WindowsFileLock''', '''UnixFileLock''', '''SoftFileLock''', '''FileLock''', ] lowerCamelCase : Tuple = '''3.0.12''' lowerCamelCase : Any = None def snake_case_ ( ): global _logger __lowercase : List[str] = _logger or logging.getLogger(__name__ ) return _logger class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Any , __a : Any ) -> List[Any]: """simple docstring""" __lowercase : List[str] = lock_file return None def __str__( self : str ) -> Any: """simple docstring""" __lowercase : Any = F"The file lock '{self.lock_file}' could not be acquired." return temp class lowerCAmelCase : '''simple docstring''' def __init__( self : List[Any] , __a : Optional[int] ) -> int: """simple docstring""" __lowercase : Optional[Any] = lock return None def __enter__( self : Dict ) -> Dict: """simple docstring""" return self.lock def __exit__( self : Optional[int] , __a : Dict , __a : Any , __a : Tuple ) -> Optional[Any]: """simple docstring""" self.lock.release() return None class lowerCAmelCase : '''simple docstring''' def __init__( self : Tuple , __a : Any , __a : Dict=-1 , __a : Optional[Any]=None ) -> Any: """simple docstring""" __lowercase : Optional[int] = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long __lowercase : Dict = self.hash_filename_if_too_long(__a , __a ) # The path to the lock file. __lowercase : Optional[Any] = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __lowercase : int = None # The default timeout value. __lowercase : Optional[int] = timeout # We use this lock primarily for the lock counter. __lowercase : Optional[Any] = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __lowercase : Union[str, Any] = 0 return None @property def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return self._lock_file @property def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return self._timeout @timeout.setter def lowerCAmelCase ( self : Tuple , __a : Tuple ) -> Dict: """simple docstring""" __lowercase : Tuple = float(__a ) return None def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" raise NotImplementedError() def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" raise NotImplementedError() @property def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" return self._lock_file_fd is not None def lowerCAmelCase ( self : Any , __a : Optional[Any]=None , __a : Union[str, Any]=0.05 ) -> List[str]: """simple docstring""" if timeout is None: __lowercase : Union[str, Any] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __lowercase : int = id(self ) __lowercase : Optional[Any] = self._lock_file __lowercase : List[str] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"Attempting to acquire lock {lock_id} on {lock_filename}" ) self._acquire() if self.is_locked: logger().debug(F"Lock {lock_id} acquired on {lock_filename}" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"Timeout on acquiring lock {lock_id} on {lock_filename}" ) raise Timeout(self._lock_file ) else: logger().debug( F"Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ..." ) time.sleep(__a ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __lowercase : Optional[int] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def lowerCAmelCase ( self : Union[str, Any] , __a : Optional[Any]=False ) -> Optional[Any]: """simple docstring""" with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __lowercase : Optional[Any] = id(self ) __lowercase : str = self._lock_file logger().debug(F"Attempting to release lock {lock_id} on {lock_filename}" ) self._release() __lowercase : List[str] = 0 logger().debug(F"Lock {lock_id} released on {lock_filename}" ) return None def __enter__( self : Any ) -> Optional[Any]: """simple docstring""" self.acquire() return self def __exit__( self : List[str] , __a : str , __a : int , __a : List[Any] ) -> Tuple: """simple docstring""" self.release() return None def __del__( self : Optional[int] ) -> Optional[int]: """simple docstring""" self.release(force=__a ) return None def lowerCAmelCase ( self : Tuple , __a : str , __a : int ) -> str: """simple docstring""" __lowercase : List[Any] = os.path.basename(__a ) if len(__a ) > max_length and max_length > 0: __lowercase : int = os.path.dirname(__a ) __lowercase : List[str] = str(hash(__a ) ) __lowercase : Optional[Any] = filename[: max_length - len(__a ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(__a , __a ) else: return path class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Union[str, Any] , __a : List[Any] , __a : Optional[int]=-1 , __a : Tuple=None ) -> List[Any]: """simple docstring""" from .file_utils import relative_to_absolute_path super().__init__(__a , timeout=__a , max_filename_length=__a ) __lowercase : Tuple = """\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __lowercase : Tuple = os.open(self._lock_file , __a ) except OSError: pass else: try: msvcrt.locking(__a , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__a ) else: __lowercase : Union[str, Any] = fd return None def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = self._lock_file_fd __lowercase : int = None msvcrt.locking(__a , msvcrt.LK_UNLCK , 1 ) os.close(__a ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : List[str] , __a : Optional[Any] , __a : str=-1 , __a : List[str]=None ) -> Any: """simple docstring""" __lowercase : Dict = os.statvfs(os.path.dirname(__a ) ).f_namemax super().__init__(__a , timeout=__a , max_filename_length=__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase : List[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC __lowercase : List[str] = os.open(self._lock_file , __a ) try: fcntl.flock(__a , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__a ) else: __lowercase : str = fd return None def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Any = self._lock_file_fd __lowercase : List[str] = None fcntl.flock(__a , fcntl.LOCK_UN ) os.close(__a ) return None class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __lowercase : Union[str, Any] = os.open(self._lock_file , __a ) except OSError: pass else: __lowercase : Optional[int] = fd return None def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" os.close(self._lock_file_fd ) __lowercase : int = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None lowerCamelCase : Optional[Any] = None if msvcrt: lowerCamelCase : List[Any] = WindowsFileLock elif fcntl: lowerCamelCase : List[Any] = UnixFileLock else: lowerCamelCase : Union[str, Any] = SoftFileLock if warnings is not None: warnings.warn('''only soft file lock is available''')
649
0
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(1 ) != 0 ) def snake_case_ ( ): assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
713
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : Tuple = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = '''layoutlmv3''' def __init__( self : Dict , __a : List[str]=50265 , __a : str=768 , __a : List[Any]=12 , __a : List[Any]=12 , __a : List[str]=3072 , __a : Optional[Any]="gelu" , __a : Optional[int]=0.1 , __a : List[Any]=0.1 , __a : Tuple=512 , __a : int=2 , __a : Any=0.02 , __a : Union[str, Any]=1E-5 , __a : List[str]=1 , __a : List[Any]=0 , __a : int=2 , __a : str=1024 , __a : str=128 , __a : List[Any]=128 , __a : Tuple=True , __a : Optional[int]=32 , __a : Any=128 , __a : List[Any]=64 , __a : Tuple=256 , __a : str=True , __a : int=True , __a : Optional[Any]=True , __a : Any=224 , __a : str=3 , __a : List[str]=16 , __a : Union[str, Any]=None , **__a : List[Any] , ) -> List[str]: """simple docstring""" super().__init__( vocab_size=__a , hidden_size=__a , num_hidden_layers=__a , num_attention_heads=__a , intermediate_size=__a , hidden_act=__a , hidden_dropout_prob=__a , attention_probs_dropout_prob=__a , max_position_embeddings=__a , type_vocab_size=__a , initializer_range=__a , layer_norm_eps=__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a , ) __lowercase : int = max_ad_position_embeddings __lowercase : Any = coordinate_size __lowercase : Optional[Any] = shape_size __lowercase : str = has_relative_attention_bias __lowercase : int = rel_pos_bins __lowercase : Union[str, Any] = max_rel_pos __lowercase : str = has_spatial_attention_bias __lowercase : str = rel_ad_pos_bins __lowercase : List[Any] = max_rel_ad_pos __lowercase : Tuple = text_embed __lowercase : int = visual_embed __lowercase : Tuple = input_size __lowercase : Dict = num_channels __lowercase : str = patch_size __lowercase : Optional[int] = classifier_dropout class lowerCAmelCase ( __a ): '''simple docstring''' _A : str = version.parse('''1.12''' ) @property def lowerCAmelCase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def lowerCAmelCase ( self : Union[str, Any] ) -> float: """simple docstring""" return 1E-5 @property def lowerCAmelCase ( self : str ) -> int: """simple docstring""" return 12 def lowerCAmelCase ( self : List[Any] , __a : "ProcessorMixin" , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional["TensorType"] = None , __a : int = 3 , __a : int = 40 , __a : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , """apply_ocr""" , __a ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase : Tuple = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase : Tuple = processor.tokenizer.num_special_tokens_to_add(__a ) __lowercase : Tuple = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__a ) # Generate dummy inputs according to compute batch and sequence __lowercase : Union[str, Any] = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowercase : Tuple = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowercase : Tuple = self._generate_dummy_images(__a , __a , __a , __a ) __lowercase : int = dict( processor( __a , text=__a , boxes=__a , return_tensors=__a , ) ) return inputs
649
0
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='''%(message)s''') def snake_case_ ( lowerCAmelCase_ : np.ndarray ): return input_array.reshape((input_array.size, 1) ) def snake_case_ ( lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : int ): __lowercase : List[str] = np.nan for i in range(lowerCAmelCase_ ): __lowercase : str = features[:, labels == i] __lowercase : Optional[Any] = data.mean(1 ) # Centralize the data of class i __lowercase : Optional[Any] = data - column_reshape(lowerCAmelCase_ ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(lowerCAmelCase_ , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) __lowercase : Tuple = np.dot(lowerCAmelCase_ , centered_data.T ) return covariance_sum / features.shape[1] def snake_case_ ( lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : int ): __lowercase : List[Any] = features.mean(1 ) __lowercase : Tuple = np.nan for i in range(lowerCAmelCase_ ): __lowercase : str = features[:, labels == i] __lowercase : Any = data.shape[1] __lowercase : List[str] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(lowerCAmelCase_ ) - column_reshape(lowerCAmelCase_ ) , (column_reshape(lowerCAmelCase_ ) - column_reshape(lowerCAmelCase_ )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) __lowercase : Tuple = device_data * np.dot( column_reshape(lowerCAmelCase_ ) - column_reshape(lowerCAmelCase_ ) , (column_reshape(lowerCAmelCase_ ) - column_reshape(lowerCAmelCase_ )).T , ) return covariance_sum / features.shape[1] def snake_case_ ( lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : int ): # Check if the features have been loaded if features.any(): __lowercase : Union[str, Any] = features.mean(1 ) # Center the dataset __lowercase : Union[str, Any] = features - np.reshape(lowerCAmelCase_ , (data_mean.size, 1) ) __lowercase : List[str] = np.dot(lowerCAmelCase_ , centered_data.T ) / features.shape[1] __lowercase : List[str] = np.linalg.eigh(lowerCAmelCase_ ) # Take all the columns in the reverse order (-1), and then takes only the first __lowercase : Union[str, Any] = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space __lowercase : Dict = np.dot(filtered_eigenvectors.T , lowerCAmelCase_ ) logging.info("""Principal Component Analysis computed""" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="""%(message)s""" , force=lowerCAmelCase_ ) logging.error("""Dataset empty""" ) raise AssertionError def snake_case_ ( lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : int , lowerCAmelCase_ : int ): assert classes > dimensions # Check if features have been already loaded if features.any: __lowercase : str = eigh( covariance_between_classes(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) , covariance_within_classes(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) , ) __lowercase : Tuple = eigenvectors[:, ::-1][:, :dimensions] __lowercase : List[Any] = np.linalg.svd(lowerCAmelCase_ ) __lowercase : Optional[Any] = svd_matrix[:, 0:dimensions] __lowercase : List[Any] = np.dot(filtered_svd_matrix.T , lowerCAmelCase_ ) logging.info("""Linear Discriminant Analysis computed""" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="""%(message)s""" , force=lowerCAmelCase_ ) logging.error("""Dataset empty""" ) raise AssertionError def snake_case_ ( ): # Create dummy dataset with 2 classes and 3 features __lowercase : Optional[int] = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) __lowercase : Tuple = np.array([0, 0, 0, 1, 1] ) __lowercase : int = 2 __lowercase : Union[str, Any] = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(lowerCAmelCase_ ) as error_info: __lowercase : List[str] = linear_discriminant_analysis( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , np.ndarray ): raise AssertionError( """Did not raise AssertionError for dimensions > classes""" ) assert error_info.type is AssertionError def snake_case_ ( ): __lowercase : Optional[int] = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) __lowercase : Dict = 2 __lowercase : Tuple = np.array([[6.92_820_323, 8.66_025_404, 10.39_230_485], [3.0, 3.0, 3.0]] ) with pytest.raises(lowerCAmelCase_ ) as error_info: __lowercase : Dict = principal_component_analysis(lowerCAmelCase_ , lowerCAmelCase_ ) if not np.allclose(lowerCAmelCase_ , lowerCAmelCase_ ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
714
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowerCamelCase : List[Any] = logging.get_logger(__name__) class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , __a : str = None , __a : uuid.UUID = None , __a : Any=None , __a : List[Any]=None ) -> List[Any]: """simple docstring""" if not conversation_id: __lowercase : Any = uuid.uuida() if past_user_inputs is None: __lowercase : Dict = [] if generated_responses is None: __lowercase : Dict = [] __lowercase : uuid.UUID = conversation_id __lowercase : List[str] = past_user_inputs __lowercase : List[str] = generated_responses __lowercase : Optional[str] = text def __eq__( self : Dict , __a : Dict ) -> Any: """simple docstring""" if not isinstance(__a , __a ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCAmelCase ( self : List[str] , __a : str , __a : bool = False ) -> Dict: """simple docstring""" if self.new_user_input: if overwrite: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten " F"with: \"{text}\"." ) __lowercase : Optional[int] = text else: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" new input " F"ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input" ) else: __lowercase : Dict = text def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __lowercase : Dict = None def lowerCAmelCase ( self : Optional[int] , __a : str ) -> List[Any]: """simple docstring""" self.generated_responses.append(__a ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : int ) -> str: """simple docstring""" __lowercase : Optional[int] = F"Conversation id: {self.uuid} \n" for is_user, text in self.iter_texts(): __lowercase : Optional[Any] = """user""" if is_user else """bot""" output += F"{name} >> {text} \n" return output @add_end_docstrings( __a , r''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''' , ) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Any , *__a : int , **__a : str ) -> Union[str, Any]: """simple docstring""" super().__init__(*__a , **__a ) if self.tokenizer.pad_token_id is None: __lowercase : List[Any] = self.tokenizer.eos_token def lowerCAmelCase ( self : Union[str, Any] , __a : int=None , __a : Tuple=None , __a : Any=None , **__a : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = {} __lowercase : Tuple = {} __lowercase : List[str] = {} if min_length_for_response is not None: __lowercase : Dict = min_length_for_response if minimum_tokens is not None: __lowercase : Union[str, Any] = minimum_tokens if "max_length" in generate_kwargs: __lowercase : Union[str, Any] = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __lowercase : Union[str, Any] = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(__a ) return preprocess_params, forward_params, postprocess_params def __call__( self : Optional[int] , __a : Union[Conversation, List[Conversation]] , __a : Dict=0 , **__a : List[Any] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = super().__call__(__a , num_workers=__a , **__a ) if isinstance(__a , __a ) and len(__a ) == 1: return outputs[0] return outputs def lowerCAmelCase ( self : Union[str, Any] , __a : Conversation , __a : Tuple=32 ) -> Dict[str, Any]: """simple docstring""" if not isinstance(__a , __a ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( F"Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. " """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer , """_build_conversation_input_ids""" ): __lowercase : List[Any] = self.tokenizer._build_conversation_input_ids(__a ) else: # If the tokenizer cannot handle conversations, we default to only the old version __lowercase : Tuple = self._legacy_parse_and_tokenize(__a ) if self.framework == "pt": __lowercase : List[Any] = torch.LongTensor([input_ids] ) elif self.framework == "tf": __lowercase : List[str] = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCAmelCase ( self : Any , __a : Dict , __a : Any=10 , **__a : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = generate_kwargs.get("""max_length""" , self.model.config.max_length ) __lowercase : List[Any] = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(F"Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})" ) __lowercase : Any = max_length - minimum_tokens __lowercase : int = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: __lowercase : Dict = model_inputs["""attention_mask"""][:, -trim:] __lowercase : Union[str, Any] = model_inputs.pop("""conversation""" ) __lowercase : Tuple = max_length __lowercase : int = self.model.generate(**__a , **__a ) if self.model.config.is_encoder_decoder: __lowercase : Optional[int] = 1 else: __lowercase : str = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCAmelCase ( self : int , __a : Tuple , __a : List[Any]=True ) -> List[str]: """simple docstring""" __lowercase : int = model_outputs["""output_ids"""] __lowercase : Union[str, Any] = self.tokenizer.decode( output_ids[0] , skip_special_tokens=__a , clean_up_tokenization_spaces=__a , ) __lowercase : List[str] = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(__a ) return conversation def lowerCAmelCase ( self : int , __a : Conversation ) -> Dict: """simple docstring""" __lowercase : Optional[int] = self.tokenizer.eos_token_id __lowercase : Optional[Any] = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(__a , add_special_tokens=__a ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(__a , add_special_tokens=__a ) ) if len(__a ) > self.tokenizer.model_max_length: __lowercase : List[Any] = input_ids[-self.tokenizer.model_max_length :] return input_ids
649
0
from __future__ import annotations lowerCamelCase : Optional[int] = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def snake_case_ ( lowerCAmelCase_ : list[list[int]] , lowerCAmelCase_ : list[int] , lowerCAmelCase_ : list[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : list[list[int]] , ): __lowercase : str = [ [0 for col in range(len(grid[0] ) )] for row in range(len(lowerCAmelCase_ ) ) ] # the reference grid __lowercase : str = 1 __lowercase : Optional[Any] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(lowerCAmelCase_ ) ) ] # the action grid __lowercase : Optional[Any] = init[0] __lowercase : Dict = init[1] __lowercase : str = 0 __lowercase : Union[str, Any] = g + heuristic[x][y] # cost from starting cell to destination cell __lowercase : Any = [[f, g, x, y]] __lowercase : Union[str, Any] = False # flag that is set when search is complete __lowercase : Optional[int] = False # flag set if we can't find expand while not found and not resign: if len(lowerCAmelCase_ ) == 0: raise ValueError("""Algorithm is unable to find solution""" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __lowercase : Tuple = cell.pop() __lowercase : Optional[int] = next_cell[2] __lowercase : Tuple = next_cell[3] __lowercase : List[Any] = next_cell[1] if x == goal[0] and y == goal[1]: __lowercase : Optional[Any] = True else: for i in range(len(lowerCAmelCase_ ) ): # to try out different valid actions __lowercase : Dict = x + DIRECTIONS[i][0] __lowercase : Any = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(lowerCAmelCase_ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __lowercase : str = g + cost __lowercase : Tuple = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __lowercase : List[Any] = 1 __lowercase : List[str] = i __lowercase : int = [] __lowercase : str = goal[0] __lowercase : Dict = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __lowercase : List[str] = x - DIRECTIONS[action[x][y]][0] __lowercase : int = y - DIRECTIONS[action[x][y]][1] __lowercase : int = xa __lowercase : int = ya invpath.append([x, y] ) __lowercase : List[Any] = [] for i in range(len(lowerCAmelCase_ ) ): path.append(invpath[len(lowerCAmelCase_ ) - 1 - i] ) return path, action if __name__ == "__main__": lowerCamelCase : Any = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] lowerCamelCase : Any = [0, 0] # all coordinates are given in format [y,x] lowerCamelCase : str = [len(grid) - 1, len(grid[0]) - 1] lowerCamelCase : List[Any] = 1 # the cost map which pushes the path closer to the goal lowerCamelCase : str = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): lowerCamelCase : Tuple = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map lowerCamelCase : str = 99 lowerCamelCase : Optional[Any] = search(grid, init, goal, cost, heuristic) print('''ACTION MAP''') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
715
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__a , """tf_padding""" ) ) self.parent.assertTrue(hasattr(__a , """depth_multiplier""" ) ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Tuple , __a : str=13 , __a : Dict=3 , __a : List[Any]=32 , __a : Any=0.25 , __a : Any=8 , __a : Optional[int]=8 , __a : Optional[int]=6 , __a : Dict=32 , __a : Tuple=True , __a : List[Any]=True , __a : Optional[int]=True , __a : Tuple="relu6" , __a : Optional[Any]=1280 , __a : str=0.1 , __a : str=0.02 , __a : Optional[Any]=True , __a : Tuple=True , __a : Dict=10 , __a : Optional[Any]=None , ) -> Any: """simple docstring""" __lowercase : List[str] = parent __lowercase : Tuple = batch_size __lowercase : Dict = num_channels __lowercase : Optional[int] = image_size __lowercase : int = depth_multiplier __lowercase : str = depth_divisible_by __lowercase : int = min_depth __lowercase : Tuple = expand_ratio __lowercase : Optional[int] = tf_padding __lowercase : Dict = output_stride __lowercase : Dict = first_layer_is_expansion __lowercase : Optional[Any] = finegrained_output __lowercase : str = hidden_act __lowercase : Union[str, Any] = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) __lowercase : Optional[int] = classifier_dropout_prob __lowercase : int = use_labels __lowercase : Optional[int] = is_training __lowercase : Dict = num_labels __lowercase : Tuple = initializer_range __lowercase : Optional[Any] = scope def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : List[Any] = None __lowercase : Optional[Any] = None if self.use_labels: __lowercase : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __lowercase : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowercase : List[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : Tuple , __a : Dict , __a : Tuple , __a : Optional[int] , __a : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[int] = MobileNetVaModel(config=__a ) model.to(__a ) model.eval() __lowercase : Tuple = model(__a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def lowerCAmelCase ( self : List[str] , __a : Optional[int] , __a : List[str] , __a : str , __a : Optional[int] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = self.num_labels __lowercase : Dict = MobileNetVaForImageClassification(__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : int , __a : List[str] , __a : Tuple , __a : Any , __a : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : int = self.num_labels __lowercase : List[Any] = MobileNetVaForSemanticSegmentation(__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __lowercase : str = model(__a , labels=__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase : List[str] = config_and_inputs __lowercase : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Tuple = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) _A : Optional[Any] = ( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) _A : Tuple = False _A : List[str] = False _A : List[str] = False _A : Optional[int] = False def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = MobileNetVaModelTester(self ) __lowercase : int = MobileNetVaConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV2 does not use inputs_embeds""" ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not support input and output embeddings""" ) def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not output attentions""" ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[Any] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : int = [*signature.parameters.keys()] __lowercase : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" def check_hidden_states_output(__a : List[Any] , __a : Tuple , __a : List[str] ): __lowercase : Optional[Any] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : List[Any] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Tuple = outputs.hidden_states __lowercase : str = 16 self.assertEqual(len(__a ) , __a ) __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Any = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase : Union[str, Any] = True check_hidden_states_output(__a , __a , __a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : Optional[int] = MobileNetVaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def snake_case_ ( ): __lowercase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v2_1.0_224""" ) if is_vision_available() else None ) @slow def lowerCAmelCase ( self : str ) -> int: """simple docstring""" __lowercase : Tuple = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v2_1.0_224""" ).to(__a ) __lowercase : str = self.default_image_processor __lowercase : Tuple = prepare_img() __lowercase : Tuple = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : str = model(**__a ) # verify the logits __lowercase : Union[str, Any] = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , __a ) __lowercase : str = torch.tensor([0.2445, -1.1993, 0.1905] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : int = MobileNetVaForSemanticSegmentation.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __lowercase : Dict = model.to(__a ) __lowercase : Tuple = MobileNetVaImageProcessor.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __lowercase : List[str] = prepare_img() __lowercase : Optional[int] = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : Union[str, Any] = model(**__a ) __lowercase : Any = outputs.logits # verify the logits __lowercase : Dict = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , __a ) __lowercase : str = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=__a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __a , atol=1E-4 ) )
649
0
from maths.prime_check import is_prime def snake_case_ ( lowerCAmelCase_ : int ): if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : Any = F"Input value of [number={number}] must be an integer" raise TypeError(lowerCAmelCase_ ) if is_prime(lowerCAmelCase_ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
716
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def snake_case_ ( lowerCAmelCase_ : bool = True , *lowerCAmelCase_ : int , **lowerCAmelCase_ : List[str] ): if not is_tqdm_available(): raise ImportError("""Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.""" ) __lowercase : List[str] = False if main_process_only: __lowercase : Optional[int] = PartialState().local_process_index == 0 return _tqdm(*lowerCAmelCase_ , **lowerCAmelCase_ , disable=lowerCAmelCase_ )
649
0
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow lowerCamelCase : Dict = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[int] , __a : Path , __a : Union[str, None] = None , __a : Union[List[str], None] = None , __a : Union[str, List[str], None] = None , __a : bool = True , ) -> int: """simple docstring""" __lowercase : Tuple = [file for file in os.listdir(__a ) if os.path.isfile(os.path.join(__a , __a ) )] if identifier is not None: __lowercase : int = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__a , __a ): for n_ in n_identifier: __lowercase : List[str] = [file for file in files if n_ not in file] else: __lowercase : Tuple = [file for file in files if n_identifier not in file] __lowercase : Optional[int] = ignore_files or [] ignore_files.append("""__init__.py""" ) __lowercase : Any = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , __a ) if only_modules: __lowercase : List[Any] = file.split(""".""" )[0] try: __lowercase : str = getattr(__a , __a ) __lowercase : List[str] = doctest.DocTestSuite(__a ) __lowercase : List[str] = unittest.TextTestRunner().run(__a ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F"{module_identifier} is not a module." ) else: __lowercase : Dict = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Dict = Path("""src/transformers""" ) __lowercase : Optional[int] = """modeling""" __lowercase : Optional[int] = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(__a , identifier=__a , ignore_files=__a ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" __lowercase : Tuple = Path("""src/transformers""" ) __lowercase : Optional[Any] = """tokenization""" self.analyze_directory(__a , identifier=__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase : Dict = Path("""src/transformers""" ) __lowercase : Any = """configuration""" self.analyze_directory(__a , identifier=__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase : int = Path("""src/transformers""" ) __lowercase : str = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(__a , n_identifier=__a ) def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : str = Path("""docs/source""" ) __lowercase : Optional[int] = ["""favicon.ico"""] self.analyze_directory(__a , ignore_files=__a , only_modules=__a )
717
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : list[int] ): if not nums: return 0 __lowercase : Tuple = nums[0] __lowercase : Tuple = 0 for num in nums[1:]: __lowercase , __lowercase : List[str] = ( max_excluding + num, max(lowerCAmelCase_ , lowerCAmelCase_ ), ) return max(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
649
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase : int = { '''configuration_clip''': [ '''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPConfig''', '''CLIPOnnxConfig''', '''CLIPTextConfig''', '''CLIPVisionConfig''', ], '''processing_clip''': ['''CLIPProcessor'''], '''tokenization_clip''': ['''CLIPTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = ['''CLIPTokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = ['''CLIPFeatureExtractor'''] lowerCamelCase : List[Any] = ['''CLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ '''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPModel''', '''CLIPPreTrainedModel''', '''CLIPTextModel''', '''CLIPTextModelWithProjection''', '''CLIPVisionModel''', '''CLIPVisionModelWithProjection''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[Any] = [ '''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCLIPModel''', '''TFCLIPPreTrainedModel''', '''TFCLIPTextModel''', '''TFCLIPVisionModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = [ '''FlaxCLIPModel''', '''FlaxCLIPPreTrainedModel''', '''FlaxCLIPTextModel''', '''FlaxCLIPTextPreTrainedModel''', '''FlaxCLIPVisionModel''', '''FlaxCLIPVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys lowerCamelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
718
lowerCamelCase : List[str] = '''0.18.2''' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
649
0
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : Union[str, Any] = LEDTokenizer _A : Tuple = LEDTokenizerFast _A : Tuple = True def lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" super().setUp() __lowercase : str = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __lowercase : int = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Any = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __lowercase : List[str] = {"""unk_token""": """<unk>"""} __lowercase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__a ) ) def lowerCAmelCase ( self : Any , **__a : Optional[int] ) -> Tuple: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Tuple , **__a : str ) -> Optional[int]: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : str , __a : List[str] ) -> Optional[int]: """simple docstring""" return "lower newer", "lower newer" @cached_property def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" __lowercase : Any = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] __lowercase : Optional[Any] = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowercase : Union[str, Any] = tokenizer(__a , max_length=len(__a ) , padding=__a , return_tensors="""pt""" ) self.assertIsInstance(__a , __a ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) __lowercase : List[str] = batch.input_ids.tolist()[0] self.assertListEqual(__a , __a ) @require_torch def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : List[str] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowercase : Dict = tokenizer(__a , padding=__a , return_tensors="""pt""" ) self.assertIn("""input_ids""" , __a ) self.assertIn("""attention_mask""" , __a ) self.assertNotIn("""labels""" , __a ) self.assertNotIn("""decoder_attention_mask""" , __a ) @require_torch def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" __lowercase : List[Any] = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowercase : Dict = tokenizer(text_target=__a , max_length=32 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) @require_torch def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowercase : Optional[int] = tokenizer( ["""I am a small frog""" * 1024, """I am a small frog"""] , padding=__a , truncation=__a , return_tensors="""pt""" ) self.assertIsInstance(__a , __a ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase : Optional[int] = ["""A long paragraph for summarization."""] __lowercase : List[str] = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowercase : Optional[int] = tokenizer(__a , return_tensors="""pt""" ) __lowercase : str = tokenizer(text_target=__a , return_tensors="""pt""" ) __lowercase : int = inputs["""input_ids"""] __lowercase : List[Any] = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowercase : int = ["""Summary of the text.""", """Another summary."""] __lowercase : Tuple = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] __lowercase : str = tokenizer(__a , padding=__a ) __lowercase : Optional[Any] = [[0] * len(__a ) for x in encoded_output["""input_ids"""]] __lowercase : Tuple = tokenizer.pad(__a ) self.assertSequenceEqual(outputs["""global_attention_mask"""] , __a ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" pass def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : Any = self.rust_tokenizer_class.from_pretrained(__a , **__a ) __lowercase : Optional[Any] = self.tokenizer_class.from_pretrained(__a , **__a ) __lowercase : Dict = """A, <mask> AllenNLP sentence.""" __lowercase : Optional[int] = tokenizer_r.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) __lowercase : Tuple = tokenizer_p.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) __lowercase : Optional[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __lowercase : List[str] = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
719
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : List[Any] = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : str=False , lowerCAmelCase_ : Any=False ): __lowercase : Any = """backbone.""" if is_semantic else """""" __lowercase : Optional[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"{prefix}blocks.{i}.norm1.weight", F"beit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm1.bias", F"beit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.weight", F"beit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.bias", F"beit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.weight", F"beit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.bias", F"beit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.weight", F"beit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.bias", F"beit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.weight", F"beit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.bias", F"beit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ (F"{prefix}cls_token", """beit.embeddings.cls_token"""), (F"{prefix}patch_embed.proj.weight", """beit.embeddings.patch_embeddings.projection.weight"""), (F"{prefix}patch_embed.proj.bias", """beit.embeddings.patch_embeddings.projection.bias"""), (F"{prefix}pos_embed", """beit.embeddings.position_embeddings"""), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("""mask_token""", """beit.embeddings.mask_token"""), ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) else: # layernorm + classification head rename_keys.extend( [ ("""fc_norm.weight""", """beit.pooler.layernorm.weight"""), ("""fc_norm.bias""", """beit.pooler.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : List[Any]=False ): for i in range(config.num_hidden_layers ): __lowercase : Tuple = """backbone.""" if is_semantic else """""" # queries, keys and values __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.attn.qkv.weight" ) __lowercase : Dict = state_dict.pop(F"{prefix}blocks.{i}.attn.q_bias" ) __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.attn.v_bias" ) __lowercase : List[str] = in_proj_weight[ : config.hidden_size, : ] __lowercase : Union[str, Any] = q_bias __lowercase : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] __lowercase : str = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.gamma_1" ) __lowercase : str = state_dict.pop(F"{prefix}blocks.{i}.gamma_2" ) __lowercase : List[str] = gamma_a __lowercase : Optional[int] = gamma_a def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : int ): __lowercase : Tuple = dct.pop(lowerCAmelCase_ ) __lowercase : Tuple = val def snake_case_ ( ): __lowercase : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase : Any = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]=False ): __lowercase : Dict = False if """rvlcdip""" in checkpoint_url else True __lowercase : Tuple = BeitConfig(use_absolute_position_embeddings=lowerCAmelCase_ , use_mask_token=lowerCAmelCase_ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: __lowercase : Union[str, Any] = 1024 __lowercase : Optional[int] = 4096 __lowercase : List[Any] = 24 __lowercase : Dict = 16 # labels if "rvlcdip" in checkpoint_url: __lowercase : Optional[int] = 16 __lowercase : Any = """huggingface/label-files""" __lowercase : Union[str, Any] = """rvlcdip-id2label.json""" __lowercase : List[str] = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) __lowercase : Optional[int] = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowercase : Union[str, Any] = idalabel __lowercase : Optional[Any] = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys __lowercase : Optional[int] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ , map_location="""cpu""" )["""model"""] __lowercase : Union[str, Any] = create_rename_keys(lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) # load HuggingFace model __lowercase : Dict = BeitForMaskedImageModeling(lowerCAmelCase_ ) if has_lm_head else BeitForImageClassification(lowerCAmelCase_ ) model.eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image __lowercase : List[str] = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=lowerCAmelCase_ ) __lowercase : List[str] = prepare_img() __lowercase : Optional[Any] = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""" ) __lowercase : Optional[int] = encoding["""pixel_values"""] __lowercase : str = model(lowerCAmelCase_ ) __lowercase : Tuple = outputs.logits # verify logits __lowercase : str = [1, 16] if """rvlcdip""" in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(lowerCAmelCase_ ), "Shape of logits not as expected" Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: if has_lm_head: __lowercase : Optional[Any] = """dit-base""" if """base""" in checkpoint_url else """dit-large""" else: __lowercase : Tuple = """dit-base-finetuned-rvlcdip""" if """dit-b""" in checkpoint_url else """dit-large-finetuned-rvlcdip""" image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=lowerCAmelCase_ , ) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=lowerCAmelCase_ , ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) lowerCamelCase : List[str] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
649
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Dict = { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json''' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class lowerCAmelCase ( __a ): '''simple docstring''' _A : Optional[Any] = '''speech_to_text_2''' _A : Optional[Any] = ['''past_key_values'''] _A : Tuple = {'''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Optional[Any] , __a : str=10000 , __a : str=6 , __a : Optional[int]=2048 , __a : Dict=4 , __a : str=0.0 , __a : Optional[Any]=True , __a : str="relu" , __a : Dict=256 , __a : str=0.1 , __a : Tuple=0.0 , __a : Any=0.0 , __a : Optional[int]=0.02 , __a : Any=2 , __a : Dict=True , __a : Optional[int]=1 , __a : Dict=0 , __a : List[Any]=2 , __a : str=1024 , **__a : Tuple , ) -> Dict: """simple docstring""" __lowercase : str = vocab_size __lowercase : Optional[int] = d_model __lowercase : Union[str, Any] = decoder_ffn_dim __lowercase : str = decoder_layers __lowercase : List[str] = decoder_attention_heads __lowercase : int = dropout __lowercase : List[str] = attention_dropout __lowercase : Any = activation_dropout __lowercase : Optional[Any] = activation_function __lowercase : Any = init_std __lowercase : Dict = decoder_layerdrop __lowercase : Tuple = use_cache __lowercase : Optional[Any] = decoder_layers __lowercase : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True __lowercase : Tuple = max_target_positions super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , decoder_start_token_id=__a , **__a , )
720
from torch import nn class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , __a : int , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" super().__init__() __lowercase : int = class_size __lowercase : int = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) __lowercase : str = nn.Linear(__a , __a ) def lowerCAmelCase ( self : Tuple , __a : int ) -> Tuple: """simple docstring""" __lowercase : str = self.mlp(__a ) return logits
649
0
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) __lowercase : Union[str, Any] = str(bin(lowerCAmelCase_ ) )[2:] # remove the leading "0b" __lowercase : Tuple = str(bin(lowerCAmelCase_ ) )[2:] __lowercase : List[str] = max(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) return "0b" + "".join( str(int("""1""" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowerCAmelCase_ ) , b_binary.zfill(lowerCAmelCase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
721
import fire from utils import calculate_rouge, save_json def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : str=None , **lowerCAmelCase_ : str ): __lowercase : Tuple = [x.strip() for x in open(lowerCAmelCase_ ).readlines()] __lowercase : Dict = [x.strip() for x in open(lowerCAmelCase_ ).readlines()][: len(lowerCAmelCase_ )] __lowercase : Tuple = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) if save_path is not None: save_json(lowerCAmelCase_ , lowerCAmelCase_ , indent=lowerCAmelCase_ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
649
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase : Optional[int] = { '''configuration_altclip''': [ '''ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AltCLIPConfig''', '''AltCLIPTextConfig''', '''AltCLIPVisionConfig''', ], '''processing_altclip''': ['''AltCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Any = [ '''ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AltCLIPPreTrainedModel''', '''AltCLIPModel''', '''AltCLIPTextModel''', '''AltCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys lowerCamelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
700
from argparse import ArgumentParser from . import BaseTransformersCLICommand def snake_case_ ( lowerCAmelCase_ : Dict ): return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class lowerCAmelCase ( __a ): '''simple docstring''' @staticmethod def lowerCAmelCase ( __a : ArgumentParser ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = parser.add_parser("""download""" ) download_parser.add_argument( """--cache-dir""" , type=__a , default=__a , help="""Path to location to store the models""" ) download_parser.add_argument( """--force""" , action="""store_true""" , help="""Force the model to be download even if already in cache-dir""" ) download_parser.add_argument( """--trust-remote-code""" , action="""store_true""" , help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" , ) download_parser.add_argument("""model""" , type=__a , help="""Name of the model to download""" ) download_parser.set_defaults(func=__a ) def __init__( self : Dict , __a : str , __a : str , __a : bool , __a : bool ) -> Union[str, Any]: """simple docstring""" __lowercase : Dict = model __lowercase : List[Any] = cache __lowercase : Any = force __lowercase : Optional[int] = trust_remote_code def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
649
0
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowerCamelCase : Any = TypeVar('''T''') class lowerCAmelCase ( Generic[T] ): '''simple docstring''' _A : deque[T] # Cache store of keys _A : set[T] # References of the keys in cache _A : int = 10 # Maximum capacity of cache def __init__( self : Optional[int] , __a : int ) -> None: """simple docstring""" __lowercase : List[Any] = deque() __lowercase : Any = set() if not n: __lowercase : Tuple = sys.maxsize elif n < 0: raise ValueError("""n should be an integer greater than 0.""" ) else: __lowercase : Dict = n def lowerCAmelCase ( self : Any , __a : T ) -> None: """simple docstring""" if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: __lowercase : Optional[Any] = self.dq_store.pop() self.key_reference.remove(__a ) else: self.dq_store.remove(__a ) self.dq_store.appendleft(__a ) self.key_reference.add(__a ) def lowerCAmelCase ( self : List[Any] ) -> None: """simple docstring""" for k in self.dq_store: print(__a ) def __repr__( self : Optional[Any] ) -> str: """simple docstring""" return F"LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}" if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : LRUCache[str | int] = LRUCache(4) lru_cache.refer('''A''') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('''A''') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
701
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowerCamelCase : Union[str, Any] = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , __a : List[str] , __a : Optional[int]=16 , __a : Optional[Any]=13 , __a : str=7 , __a : List[str]=14 , __a : Any=10 , __a : str=19 , __a : int=5 , __a : Any=4 , __a : List[Any]=True , __a : Tuple=16 , __a : Dict=2 , __a : Tuple=4 , __a : int=4 , __a : List[Any]="gelu" , __a : Tuple=0.1 , __a : List[str]=0.1 , __a : int=[1, 2, 3, 4, 5] , __a : str=25 , __a : Any=5 , ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = d_model __lowercase : Dict = parent __lowercase : Tuple = batch_size __lowercase : Optional[int] = prediction_length __lowercase : List[str] = context_length __lowercase : Any = cardinality __lowercase : str = num_time_features __lowercase : Optional[int] = lags_sequence __lowercase : Optional[Any] = embedding_dimension __lowercase : List[Any] = is_training __lowercase : List[str] = hidden_size __lowercase : int = num_hidden_layers __lowercase : Any = num_attention_heads __lowercase : List[Any] = intermediate_size __lowercase : int = hidden_act __lowercase : str = hidden_dropout_prob __lowercase : List[Any] = attention_probs_dropout_prob __lowercase : str = context_length __lowercase : int = prediction_length + label_length __lowercase : Union[str, Any] = label_length __lowercase : Optional[int] = moving_average __lowercase : Optional[Any] = autocorrelation_factor def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def lowerCAmelCase ( self : Tuple , __a : str ) -> int: """simple docstring""" __lowercase : Any = config.context_length + max(config.lags_sequence ) __lowercase : Any = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __lowercase : Optional[int] = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __lowercase : List[str] = floats_tensor([self.batch_size, _past_length] ) __lowercase : List[str] = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __lowercase : Dict = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __lowercase : str = floats_tensor([self.batch_size, config.prediction_length] ) __lowercase : List[str] = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.get_config() __lowercase : Any = self.prepare_autoformer_inputs_dict(__a ) return config, inputs_dict def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase , __lowercase : List[str] = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase ( self : Optional[Any] , __a : Tuple , __a : Optional[int] ) -> Any: """simple docstring""" __lowercase : List[str] = AutoformerModel(config=__a ).to(__a ).eval() __lowercase : Optional[int] = model(**__a ) __lowercase : Dict = outputs.encoder_last_hidden_state __lowercase : Tuple = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : List[str] = model.get_encoder() encoder.save_pretrained(__a ) __lowercase : List[str] = AutoformerEncoder.from_pretrained(__a ).to(__a ) __lowercase , __lowercase , __lowercase , __lowercase , __lowercase : Any = model.create_network_inputs(**__a ) __lowercase , __lowercase : Any = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __lowercase : Optional[Any] = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __lowercase : Union[str, Any] = encoder(inputs_embeds=__a )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) __lowercase : str = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __lowercase : Optional[int] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __lowercase : Any = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __lowercase : Dict = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : Optional[Any] = model.get_decoder() decoder.save_pretrained(__a ) __lowercase : Tuple = AutoformerDecoder.from_pretrained(__a ).to(__a ) __lowercase : str = decoder( trend=__a , inputs_embeds=__a , encoder_hidden_states=__a , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[str] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _A : List[Any] = (AutoformerForPrediction,) if is_torch_available() else () _A : Any = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} _A : Dict = False _A : Tuple = False _A : Optional[int] = False _A : Tuple = False _A : str = False _A : Union[str, Any] = False def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" __lowercase : List[str] = AutoformerModelTester(self ) __lowercase : Dict = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowercase : Dict = model_class(__a ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowercase , __lowercase : Tuple = model_class.from_pretrained(__a , output_loading_info=__a ) self.assertEqual(info["""missing_keys"""] , [] ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__a ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def lowerCAmelCase ( self : str ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : Any = inspect.signature(getattr(__a , """forward""" ) ) # The main input is the name of the argument after `self` __lowercase : Optional[int] = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , __a ) def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Dict = model_class(__a ) __lowercase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : Any = [*signature.parameters.keys()] __lowercase : int = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(__a )] , __a ) def lowerCAmelCase ( self : int ) -> int: """simple docstring""" __lowercase , __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : int = True __lowercase : Tuple = getattr(self.model_tester , """seq_length""" , __a ) __lowercase : Union[str, Any] = getattr(self.model_tester , """decoder_seq_length""" , __a ) __lowercase : List[str] = getattr(self.model_tester , """encoder_seq_length""" , __a ) __lowercase : List[Any] = getattr(self.model_tester , """d_model""" , __a ) __lowercase : Optional[int] = getattr(self.model_tester , """num_attention_heads""" , __a ) __lowercase : Any = d_model // num_attention_heads for model_class in self.all_model_classes: __lowercase : Dict = True __lowercase : List[str] = False __lowercase : Optional[int] = True __lowercase : str = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : int = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase : Optional[int] = True __lowercase : List[str] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Union[str, Any] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Dict = outputs.encoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __lowercase : Tuple = len(__a ) __lowercase : str = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__a , __a ) # decoder attentions __lowercase : List[Any] = outputs.decoder_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __lowercase : Optional[int] = outputs.cross_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __lowercase : Tuple = True __lowercase : Union[str, Any] = True __lowercase : Tuple = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Any = model(**self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + 2 , len(__a ) ) __lowercase : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def snake_case_ ( lowerCAmelCase_ : Optional[int]="train-batch.pt" ): __lowercase : Dict = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=lowerCAmelCase_ , repo_type="""dataset""" ) __lowercase : Optional[int] = torch.load(lowerCAmelCase_ , map_location=lowerCAmelCase_ ) return batch @require_torch @slow class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" __lowercase : List[str] = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : List[Any] = prepare_batch() with torch.no_grad(): __lowercase : Tuple = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] __lowercase : List[str] = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , __a ) __lowercase : Optional[int] = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" __lowercase : int = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : List[str] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowercase : Optional[Any] = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state __lowercase : List[str] = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , __a ) __lowercase : Optional[int] = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : Optional[int] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowercase : int = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) __lowercase : int = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , __a ) __lowercase : Optional[Any] = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=__a ) __lowercase : Dict = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __a , rtol=1E-1 ) )
649
0
def snake_case_ ( lowerCAmelCase_ : int ): if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : Tuple = F"Input value of [number={number}] must be an integer" raise TypeError(lowerCAmelCase_ ) if number < 1: __lowercase : Dict = F"Input value of [number={number}] must be > 0" raise ValueError(lowerCAmelCase_ ) __lowercase : Tuple = 1 for i in range(1 , lowerCAmelCase_ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
702
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowerCAmelCase ( __a , __a ): '''simple docstring''' _A : str = 1 @register_to_config def __init__( self : Optional[int] , __a : Tuple=2000 , __a : List[str]=0.1 , __a : str=20 , __a : Optional[int]=1E-3 ) -> int: """simple docstring""" __lowercase : Tuple = None __lowercase : Union[str, Any] = None __lowercase : int = None def lowerCAmelCase ( self : List[Any] , __a : Any , __a : Union[str, torch.device] = None ) -> str: """simple docstring""" __lowercase : List[str] = torch.linspace(1 , self.config.sampling_eps , __a , device=__a ) def lowerCAmelCase ( self : Tuple , __a : List[Any] , __a : Tuple , __a : int , __a : Optional[int]=None ) -> str: """simple docstring""" if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __lowercase : Dict = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __lowercase : int = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __lowercase : Union[str, Any] = std.flatten() while len(std.shape ) < len(score.shape ): __lowercase : Optional[Any] = std.unsqueeze(-1 ) __lowercase : List[Any] = -score / std # compute __lowercase : Dict = -1.0 / len(self.timesteps ) __lowercase : int = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __lowercase : List[Any] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __lowercase : Union[str, Any] = beta_t.unsqueeze(-1 ) __lowercase : List[str] = -0.5 * beta_t * x __lowercase : int = torch.sqrt(__a ) __lowercase : Union[str, Any] = drift - diffusion**2 * score __lowercase : Optional[Any] = x + drift * dt # add noise __lowercase : List[str] = randn_tensor(x.shape , layout=x.layout , generator=__a , device=x.device , dtype=x.dtype ) __lowercase : str = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Tuple ) -> Optional[int]: """simple docstring""" return self.config.num_train_timesteps
649
0
from torch import nn class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , __a : int , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" super().__init__() __lowercase : int = class_size __lowercase : int = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) __lowercase : str = nn.Linear(__a , __a ) def lowerCAmelCase ( self : Tuple , __a : int ) -> Tuple: """simple docstring""" __lowercase : str = self.mlp(__a ) return logits
703
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : str = LongformerTokenizer _A : int = True _A : Optional[int] = LongformerTokenizerFast _A : int = True def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __lowercase : Union[str, Any] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Any = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __lowercase : Optional[int] = {"""unk_token""": """<unk>"""} __lowercase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__a ) ) def lowerCAmelCase ( self : Optional[int] , **__a : Optional[Any] ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Tuple , **__a : Tuple ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : str , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = """lower newer""" __lowercase : int = """lower newer""" return input_text, output_text def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowercase : Dict = """lower newer""" __lowercase : Optional[Any] = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] __lowercase : str = tokenizer.tokenize(__a ) # , add_prefix_space=True) self.assertListEqual(__a , __a ) __lowercase : int = tokens + [tokenizer.unk_token] __lowercase : str = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=__a ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=__a ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : Any = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" ) __lowercase : Optional[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=__a ) __lowercase : List[str] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__a ) __lowercase : Optional[Any] = tokenizer.encode( """sequence builders""" , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Union[str, Any] = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : List[Any] = tokenizer.build_inputs_with_special_tokens(__a ) __lowercase : Any = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() __lowercase : Tuple = """Encode this sequence.""" __lowercase : Optional[Any] = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments __lowercase : Dict = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__a , __a ) __lowercase : List[str] = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__a , __a ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) __lowercase : str = tokenizer.encode(__a , add_special_tokens=__a ) __lowercase : Dict = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__a , __a ) # Testing spaces after special tokens __lowercase : List[Any] = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(__a , lstrip=__a , rstrip=__a )} ) # mask token has a left space __lowercase : Dict = tokenizer.convert_tokens_to_ids(__a ) __lowercase : List[str] = """Encode <mask> sequence""" __lowercase : List[str] = """Encode <mask>sequence""" __lowercase : Union[str, Any] = tokenizer.encode(__a ) __lowercase : Dict = encoded.index(__a ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__a , __a ) __lowercase : int = tokenizer.encode(__a ) __lowercase : Union[str, Any] = encoded.index(__a ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__a , __a ) def lowerCAmelCase ( self : int ) -> str: """simple docstring""" pass def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) __lowercase : List[Any] = self.tokenizer_class.from_pretrained(__a , **__a ) __lowercase : Optional[Any] = """A, <mask> AllenNLP sentence.""" __lowercase : Union[str, Any] = tokenizer_r.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) __lowercase : Optional[Any] = tokenizer_p.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) __lowercase : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __lowercase : str = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __lowercase : Dict = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __lowercase : Any = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""trim_offsets"""] , __a ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : List[str] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` __lowercase : int = F"{text_of_1_token} {text_of_1_token}" __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Any = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) __lowercase : str = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Tuple = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) __lowercase : Optional[int] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : str = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) __lowercase : str = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : int = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) __lowercase : Any = F" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : str = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ) + 1, 1 + len(__a ) + 1 + len(__a )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Dict = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Tuple = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , )
649
0
import os lowerCamelCase : Dict = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 1_00, '''D''': 5_00, '''M''': 10_00} def snake_case_ ( lowerCAmelCase_ : str ): __lowercase : List[Any] = 0 __lowercase : str = 0 while index < len(lowerCAmelCase_ ) - 1: __lowercase : List[Any] = SYMBOLS[numerals[index]] __lowercase : str = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : Tuple = """""" __lowercase : List[str] = num // 1000 numerals += m_count * "M" num %= 1000 __lowercase : List[Any] = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 __lowercase : List[str] = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def snake_case_ ( lowerCAmelCase_ : str = "/p089_roman.txt" ): __lowercase : Optional[Any] = 0 with open(os.path.dirname(lowerCAmelCase_ ) + roman_numerals_filename ) as filea: __lowercase : Any = filea.readlines() for line in lines: __lowercase : Optional[int] = line.strip() __lowercase : str = parse_roman_numerals(lowerCAmelCase_ ) __lowercase : List[str] = generate_roman_numerals(lowerCAmelCase_ ) savings += len(lowerCAmelCase_ ) - len(lowerCAmelCase_ ) return savings if __name__ == "__main__": print(f'''{solution() = }''')
704
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Dict , __a : Union[str, Any]=13 , __a : Dict=7 , __a : Dict=True , __a : Dict=True , __a : Any=True , __a : List[str]=True , __a : int=99 , __a : Optional[int]=32 , __a : str=2 , __a : int=4 , __a : List[str]=37 , __a : Union[str, Any]="gelu" , __a : Union[str, Any]=0.1 , __a : Union[str, Any]=0.1 , __a : List[Any]=512 , __a : int=16 , __a : Union[str, Any]=2 , __a : Union[str, Any]=0.02 , __a : List[str]=3 , __a : Dict=4 , __a : Optional[Any]=None , ) -> Optional[Any]: """simple docstring""" __lowercase : Any = parent __lowercase : Tuple = 13 __lowercase : Dict = 7 __lowercase : List[Any] = True __lowercase : Tuple = True __lowercase : List[str] = True __lowercase : Any = True __lowercase : Optional[int] = 99 __lowercase : str = 384 __lowercase : Optional[Any] = 2 __lowercase : Dict = 4 __lowercase : str = 37 __lowercase : Optional[int] = """gelu""" __lowercase : int = 0.1 __lowercase : Union[str, Any] = 0.1 __lowercase : Tuple = 512 __lowercase : Tuple = 16 __lowercase : Optional[int] = 2 __lowercase : Optional[Any] = 0.02 __lowercase : Dict = 3 __lowercase : Union[str, Any] = 4 __lowercase : Tuple = 128 __lowercase : Optional[Any] = 2 __lowercase : int = 9 __lowercase : List[Any] = 1 __lowercase : Union[str, Any] = None def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" __lowercase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : Optional[Any] = None if self.use_input_mask: __lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : Dict = None if self.use_token_type_ids: __lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase : Optional[Any] = None __lowercase : str = None __lowercase : Tuple = None if self.use_labels: __lowercase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : str = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : Optional[int] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Dict , __a : List[Any] , __a : List[str] , __a : Union[str, Any] , __a : str , __a : Union[str, Any] , __a : Tuple , __a : Tuple ) -> Dict: """simple docstring""" __lowercase : Dict = TFConvBertModel(config=__a ) __lowercase : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowercase : Any = [input_ids, input_mask] __lowercase : Dict = model(__a ) __lowercase : str = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : Any , __a : Tuple , __a : Union[str, Any] , __a : str , __a : Dict , __a : str ) -> Dict: """simple docstring""" __lowercase : Optional[int] = TFConvBertForMaskedLM(config=__a ) __lowercase : List[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : Any = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[int] , __a : int , __a : Any , __a : Optional[int] , __a : int , __a : int , __a : List[Any] , __a : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase : str = self.num_labels __lowercase : List[Any] = TFConvBertForSequenceClassification(config=__a ) __lowercase : int = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : List[str] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Optional[int] , __a : Any , __a : Optional[Any] , __a : int , __a : Optional[int] , __a : Tuple , __a : int , __a : int ) -> Dict: """simple docstring""" __lowercase : Tuple = self.num_choices __lowercase : Dict = TFConvBertForMultipleChoice(config=__a ) __lowercase : List[str] = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : int = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : str = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : str = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __lowercase : Dict = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : List[str] , __a : str , __a : List[str] , __a : List[str] , __a : List[str] , __a : Any , __a : Tuple , __a : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = self.num_labels __lowercase : Tuple = TFConvBertForTokenClassification(config=__a ) __lowercase : Dict = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : str = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : List[Any] , __a : Optional[int] , __a : List[str] , __a : Optional[Any] , __a : int , __a : Tuple , __a : Any , __a : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Any = TFConvBertForQuestionAnswering(config=__a ) __lowercase : str = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : List[Any] = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : Tuple = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : int = config_and_inputs __lowercase : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Dict = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _A : str = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _A : Union[str, Any] = False _A : List[str] = False _A : Dict = False def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : int = TFConvBertModelTester(self ) __lowercase : Tuple = ConfigTester(self , config_class=__a , hidden_size=37 ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__a ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Union[str, Any] = True __lowercase : List[Any] = True if hasattr(__a , """use_cache""" ): __lowercase : Optional[Any] = True __lowercase : List[str] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) __lowercase : int = getattr(self.model_tester , """key_length""" , __a ) for model_class in self.all_model_classes: __lowercase : Optional[Any] = self._prepare_for_class(__a , __a ) __lowercase : Tuple = model_class(__a ) __lowercase : Tuple = len(model(__a ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a , saved_model=__a ) __lowercase : List[Any] = os.path.join(__a , """saved_model""" , """1""" ) __lowercase : str = tf.keras.models.load_model(__a ) __lowercase : Optional[int] = model(__a ) if self.is_encoder_decoder: __lowercase : Union[str, Any] = outputs["""encoder_hidden_states"""] __lowercase : Union[str, Any] = outputs["""encoder_attentions"""] else: __lowercase : Union[str, Any] = outputs["""hidden_states"""] __lowercase : List[str] = outputs["""attentions"""] self.assertEqual(len(__a ) , __a ) __lowercase : List[Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : str = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) self.assertIsNotNone(__a ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : List[str] = True __lowercase : List[Any] = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length ) __lowercase : Optional[int] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) __lowercase : List[str] = getattr(self.model_tester , """key_length""" , __a ) __lowercase : List[Any] = getattr(self.model_tester , """key_length""" , __a ) def check_decoder_attentions_output(__a : List[str] ): __lowercase : Union[str, Any] = len(__a ) self.assertEqual(out_len % 2 , 0 ) __lowercase : Any = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__a : str ): __lowercase : str = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __lowercase : int = True __lowercase : Any = False __lowercase : List[Any] = model_class(__a ) __lowercase : Tuple = model(self._prepare_for_class(__a , __a ) ) __lowercase : Dict = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: __lowercase : Any = model_class(__a ) __lowercase : List[str] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __lowercase : Dict = True __lowercase : Optional[Any] = model_class(__a ) __lowercase : Optional[int] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine __lowercase : List[str] = True __lowercase : List[Any] = True __lowercase : Any = model_class(__a ) __lowercase : Optional[int] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @require_tf class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) __lowercase : str = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowercase : Tuple = model(__a )[0] __lowercase : Any = [1, 6, 768] self.assertEqual(output.shape , __a ) __lowercase : Optional[Any] = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-4 )
649
0
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : str ): return [ord(lowerCAmelCase_ ) - 96 for elem in plain] def snake_case_ ( lowerCAmelCase_ : list[int] ): return "".join(chr(elem + 96 ) for elem in encoded ) def snake_case_ ( ): __lowercase : str = encode(input("""-> """ ).strip().lower() ) print("""Encoded: """ , lowerCAmelCase_ ) print("""Decoded:""" , decode(lowerCAmelCase_ ) ) if __name__ == "__main__": main()
705
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : int , *__a : Dict , **__a : Optional[Any] ) -> None: """simple docstring""" warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , __a , ) super().__init__(*__a , **__a )
649
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase : Union[str, Any] = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[Any] = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
706
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Optional[int] = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() __lowercase : List[str] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Dict = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } __lowercase : List[str] = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 16000, """return_attention_mask""": False, """do_normalize""": True, } __lowercase : Tuple = tempfile.mkdtemp() __lowercase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : str = os.path.join(self.tmpdirname , __a ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) # load decoder from hub __lowercase : Optional[int] = """hf-internal-testing/ngram-beam-search-decoder""" def lowerCAmelCase ( self : Optional[Any] , **__a : Dict ) -> Tuple: """simple docstring""" __lowercase : Union[str, Any] = self.add_kwargs_tokens_map.copy() kwargs.update(__a ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : str , **__a : int ) -> Tuple: """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Union[str, Any] , **__a : Union[str, Any] ) -> List[Any]: """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__a ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() __lowercase : Any = self.get_feature_extractor() __lowercase : str = self.get_decoder() __lowercase : Tuple = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) processor.save_pretrained(self.tmpdirname ) __lowercase : Tuple = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __a ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __a ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __a ) def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Any = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __lowercase : str = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : List[str] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(__a , """include""" ): WavaVecaProcessorWithLM( tokenizer=__a , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : List[Any] = self.get_feature_extractor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : int = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Optional[int] = floats_list((3, 1000) ) __lowercase : List[Any] = feature_extractor(__a , return_tensors="""np""" ) __lowercase : List[str] = processor(__a , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : List[Any] = self.get_feature_extractor() __lowercase : int = self.get_tokenizer() __lowercase : Dict = self.get_decoder() __lowercase : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Dict = """This is a test string""" __lowercase : Any = processor(text=__a ) __lowercase : Dict = tokenizer(__a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase ( self : str , __a : Tuple=(2, 10, 16) , __a : int=77 ) -> Optional[Any]: """simple docstring""" np.random.seed(__a ) return np.random.rand(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : List[str] = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : str = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : List[str] = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __lowercase : Optional[Any] = processor.decode(__a ) __lowercase : Any = decoder.decode_beams(__a )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def lowerCAmelCase ( self : List[str] , __a : Dict ) -> List[Any]: """simple docstring""" __lowercase : str = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : Optional[int] = self.get_decoder() __lowercase : Any = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Optional[Any] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __lowercase : Union[str, Any] = processor.batch_decode(__a ) else: with get_context(__a ).Pool() as pool: __lowercase : Optional[Any] = processor.batch_decode(__a , __a ) __lowercase : Union[str, Any] = list(__a ) with get_context("""fork""" ).Pool() as p: __lowercase : Optional[Any] = decoder.decode_beams_batch(__a , __a ) __lowercase , __lowercase , __lowercase : Any = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__a , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(__a , decoded_processor.logit_score ) self.assertListEqual(__a , decoded_processor.lm_score ) def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase : int = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : List[str] = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Dict = self._get_dummy_logits() __lowercase : Tuple = 15 __lowercase : Tuple = -20.0 __lowercase : Dict = -4.0 __lowercase : Dict = processor.batch_decode( __a , beam_width=__a , beam_prune_logp=__a , token_min_logp=__a , ) __lowercase : Tuple = decoded_processor_out.text __lowercase : List[Any] = list(__a ) with get_context("""fork""" ).Pool() as pool: __lowercase : Any = decoder.decode_beams_batch( __a , __a , beam_width=__a , beam_prune_logp=__a , token_min_logp=__a , ) __lowercase : Optional[Any] = [d[0][0] for d in decoded_decoder_out] __lowercase : Optional[int] = [d[0][2] for d in decoded_decoder_out] __lowercase : Optional[int] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__a , __a ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , __a ) self.assertTrue(np.array_equal(__a , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , __a , atol=1E-3 ) ) self.assertTrue(np.array_equal(__a , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , __a , atol=1E-3 ) ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase : str = self.get_feature_extractor() __lowercase : List[Any] = self.get_tokenizer() __lowercase : List[Any] = self.get_decoder() __lowercase : Dict = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : List[Any] = self._get_dummy_logits() __lowercase : Optional[int] = 2.0 __lowercase : Tuple = 5.0 __lowercase : Optional[Any] = -20.0 __lowercase : Tuple = True __lowercase : Union[str, Any] = processor.batch_decode( __a , alpha=__a , beta=__a , unk_score_offset=__a , lm_score_boundary=__a , ) __lowercase : Any = decoded_processor_out.text __lowercase : List[Any] = list(__a ) decoder.reset_params( alpha=__a , beta=__a , unk_score_offset=__a , lm_score_boundary=__a , ) with get_context("""fork""" ).Pool() as pool: __lowercase : Tuple = decoder.decode_beams_batch( __a , __a , ) __lowercase : int = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__a , __a ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , __a ) __lowercase : str = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , __a ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] __lowercase : str = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __lowercase : int = os.listdir(__a ) __lowercase : Optional[Any] = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = snapshot_download("""hf-internal-testing/processor_with_lm""" ) __lowercase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(__a ) __lowercase : Dict = processor.decoder.model_container[processor.decoder._model_key] __lowercase : List[Any] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __lowercase : Dict = os.listdir(__a ) __lowercase : List[Any] = os.listdir(__a ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" __lowercase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Dict = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Any = floats_list((3, 1000) ) __lowercase : List[str] = processor_wavaveca(__a , return_tensors="""np""" ) __lowercase : List[Any] = processor_auto(__a , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) __lowercase : List[str] = self._get_dummy_logits() __lowercase : List[str] = processor_wavaveca.batch_decode(__a ) __lowercase : Optional[int] = processor_auto.batch_decode(__a ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Any = self.get_feature_extractor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : Dict = self.get_decoder() __lowercase : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def lowerCAmelCase ( __a : Union[str, Any] , __a : List[Any] ) -> Dict: """simple docstring""" __lowercase : Any = [d[key] for d in offsets] return retrieved_list def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" __lowercase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Optional[Any] = self._get_dummy_logits()[0] __lowercase : Dict = processor.decode(__a , output_word_offsets=__a ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__a , __a ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : List[str] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Any = self._get_dummy_logits() __lowercase : Dict = processor.batch_decode(__a , output_word_offsets=__a ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__a , __a ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(__a , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" import torch __lowercase : Any = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=__a ) __lowercase : str = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=16000 ) ) __lowercase : Tuple = iter(__a ) __lowercase : Union[str, Any] = next(__a ) __lowercase : int = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) __lowercase : int = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __lowercase : Union[str, Any] = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): __lowercase : List[Any] = model(__a ).logits.cpu().numpy() __lowercase : Tuple = processor.decode(logits[0] , output_word_offsets=__a ) __lowercase : int = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __lowercase : Optional[Any] = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] __lowercase : str = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(__a , """word""" ) ) , __a ) self.assertEqual(""" """.join(self.get_from_offsets(__a , """word""" ) ) , output.text ) # output times __lowercase : Tuple = torch.tensor(self.get_from_offsets(__a , """start_time""" ) ) __lowercase : Dict = torch.tensor(self.get_from_offsets(__a , """end_time""" ) ) # fmt: off __lowercase : List[Any] = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) __lowercase : Optional[int] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(__a , __a , atol=0.01 ) ) self.assertTrue(torch.allclose(__a , __a , atol=0.01 ) )
649
0
def snake_case_ ( lowerCAmelCase_ : int ): if upper_limit < 0: raise ValueError("""Limit for the Catalan sequence must be ≥ 0""" ) __lowercase : List[str] = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 __lowercase : Tuple = 1 if upper_limit > 0: __lowercase : Dict = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(lowerCAmelCase_ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print('''\n********* Catalan Numbers Using Dynamic Programming ************\n''') print('''\n*** Enter -1 at any time to quit ***''') print('''\nEnter the upper limit (≥ 0) for the Catalan number sequence: ''', end='''''') try: while True: lowerCamelCase : Dict = int(input().strip()) if N < 0: print('''\n********* Goodbye!! ************''') break else: print(f'''The Catalan numbers from 0 through {N} are:''') print(catalan_numbers(N)) print('''Try another upper limit for the sequence: ''', end='''''') except (NameError, ValueError): print('''\n********* Invalid input, goodbye! ************\n''') import doctest doctest.testmod()
707
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(0 ) == 0 ) def snake_case_ ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
649
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase : Union[str, Any] = { '''configuration_roc_bert''': ['''ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoCBertConfig'''], '''tokenization_roc_bert''': ['''RoCBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ '''ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoCBertForCausalLM''', '''RoCBertForMaskedLM''', '''RoCBertForMultipleChoice''', '''RoCBertForPreTraining''', '''RoCBertForQuestionAnswering''', '''RoCBertForSequenceClassification''', '''RoCBertForTokenClassification''', '''RoCBertLayer''', '''RoCBertModel''', '''RoCBertPreTrainedModel''', '''load_tf_weights_in_roc_bert''', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys lowerCamelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
708
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCamelCase : int = '''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine''' def snake_case_ ( ): __lowercase : List[Any] = _ask_options( """In which compute environment are you running?""" , ["""This machine""", """AWS (Amazon SageMaker)"""] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __lowercase : Union[str, Any] = get_sagemaker_input() else: __lowercase : str = get_cluster_input() return config def snake_case_ ( lowerCAmelCase_ : List[str]=None ): if subparsers is not None: __lowercase : Optional[int] = subparsers.add_parser("""config""" , description=lowerCAmelCase_ ) else: __lowercase : List[str] = argparse.ArgumentParser("""Accelerate config command""" , description=lowerCAmelCase_ ) parser.add_argument( """--config_file""" , default=lowerCAmelCase_ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def snake_case_ ( lowerCAmelCase_ : Tuple ): __lowercase : Union[str, Any] = get_user_input() if args.config_file is not None: __lowercase : List[Any] = args.config_file else: if not os.path.isdir(lowerCAmelCase_ ): os.makedirs(lowerCAmelCase_ ) __lowercase : Any = default_yaml_config_file if config_file.endswith(""".json""" ): config.to_json_file(lowerCAmelCase_ ) else: config.to_yaml_file(lowerCAmelCase_ ) print(F"accelerate configuration saved at {config_file}" ) def snake_case_ ( ): __lowercase : str = config_command_parser() __lowercase : str = parser.parse_args() config_command(lowerCAmelCase_ ) if __name__ == "__main__": main()
649
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase : Dict = {'''configuration_sew''': ['''SEW_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SEWConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ '''SEW_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SEWForCTC''', '''SEWForSequenceClassification''', '''SEWModel''', '''SEWPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
709
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : list[str] | None = None ): __lowercase : Tuple = word_bank or [] # create a table __lowercase : int = len(lowerCAmelCase_ ) + 1 __lowercase : list[list[list[str]]] = [] for _ in range(lowerCAmelCase_ ): table.append([] ) # seed value __lowercase : Dict = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowerCAmelCase_ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowerCAmelCase_ )] == word: __lowercase : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowerCAmelCase_ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowerCAmelCase_ )]: combination.reverse() return table[len(lowerCAmelCase_ )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
649
0
def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : str = len(lowerCAmelCase_ ) __lowercase : Any = len(lowerCAmelCase_ ) __lowercase : List[Any] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __lowercase : Dict = True for i in range(lowerCAmelCase_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __lowercase : Optional[Any] = True if a[i].islower(): __lowercase : List[Any] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
710
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(1 ) != 0 ) def snake_case_ ( ): assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
649
0
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : Dict = prime_factors(lowerCAmelCase_ ) if is_square_free(lowerCAmelCase_ ): return -1 if len(lowerCAmelCase_ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
711
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : int = { '''configuration_funnel''': ['''FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FunnelConfig'''], '''convert_funnel_original_tf_checkpoint_to_pytorch''': [], '''tokenization_funnel''': ['''FunnelTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = ['''FunnelTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = [ '''FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FunnelBaseModel''', '''FunnelForMaskedLM''', '''FunnelForMultipleChoice''', '''FunnelForPreTraining''', '''FunnelForQuestionAnswering''', '''FunnelForSequenceClassification''', '''FunnelForTokenClassification''', '''FunnelModel''', '''FunnelPreTrainedModel''', '''load_tf_weights_in_funnel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ '''TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFFunnelBaseModel''', '''TFFunnelForMaskedLM''', '''TFFunnelForMultipleChoice''', '''TFFunnelForPreTraining''', '''TFFunnelForQuestionAnswering''', '''TFFunnelForSequenceClassification''', '''TFFunnelForTokenClassification''', '''TFFunnelModel''', '''TFFunnelPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
649
0
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast lowerCamelCase : Tuple = datasets.utils.logging.get_logger(__name__) @dataclass class lowerCAmelCase ( datasets.BuilderConfig ): '''simple docstring''' _A : int = 10000 _A : Optional[List[str]] = None _A : Optional[datasets.Features] = None class lowerCAmelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' _A : Dict = ParquetConfig def lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def lowerCAmelCase ( self : Union[str, Any] , __a : Union[str, Any] ) -> str: """simple docstring""" if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) __lowercase : Optional[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__a , (str, list, tuple) ): __lowercase : Any = data_files if isinstance(__a , __a ): __lowercase : Optional[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __lowercase : Any = [dl_manager.iter_files(__a ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] __lowercase : Any = [] for split_name, files in data_files.items(): if isinstance(__a , __a ): __lowercase : str = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __lowercase : str = [dl_manager.iter_files(__a ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(__a ): with open(__a , """rb""" ) as f: __lowercase : Optional[int] = datasets.Features.from_arrow_schema(pq.read_schema(__a ) ) break splits.append(datasets.SplitGenerator(name=__a , gen_kwargs={"""files""": files} ) ) return splits def lowerCAmelCase ( self : Dict , __a : pa.Table ) -> pa.Table: """simple docstring""" if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __lowercase : Dict = table_cast(__a , self.info.features.arrow_schema ) return pa_table def lowerCAmelCase ( self : int , __a : Any ) -> int: """simple docstring""" __lowercase : Tuple = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F"Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'" ) for file_idx, file in enumerate(itertools.chain.from_iterable(__a ) ): with open(__a , """rb""" ) as f: __lowercase : str = pq.ParquetFile(__a ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __lowercase : Union[str, Any] = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F"{file_idx}_{batch_idx}", self._cast_table(__a ) except ValueError as e: logger.error(F"Failed to read file '{file}' with error {type(__a )}: {e}" ) raise
712
import logging import os import threading import time try: import warnings except ImportError: lowerCamelCase : Any = None try: import msvcrt except ImportError: lowerCamelCase : str = None try: import fcntl except ImportError: lowerCamelCase : Optional[Any] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: lowerCamelCase : Union[str, Any] = OSError # Data # ------------------------------------------------ lowerCamelCase : Tuple = [ '''Timeout''', '''BaseFileLock''', '''WindowsFileLock''', '''UnixFileLock''', '''SoftFileLock''', '''FileLock''', ] lowerCamelCase : Tuple = '''3.0.12''' lowerCamelCase : Any = None def snake_case_ ( ): global _logger __lowercase : List[str] = _logger or logging.getLogger(__name__ ) return _logger class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Any , __a : Any ) -> List[Any]: """simple docstring""" __lowercase : List[str] = lock_file return None def __str__( self : str ) -> Any: """simple docstring""" __lowercase : Any = F"The file lock '{self.lock_file}' could not be acquired." return temp class lowerCAmelCase : '''simple docstring''' def __init__( self : List[Any] , __a : Optional[int] ) -> int: """simple docstring""" __lowercase : Optional[Any] = lock return None def __enter__( self : Dict ) -> Dict: """simple docstring""" return self.lock def __exit__( self : Optional[int] , __a : Dict , __a : Any , __a : Tuple ) -> Optional[Any]: """simple docstring""" self.lock.release() return None class lowerCAmelCase : '''simple docstring''' def __init__( self : Tuple , __a : Any , __a : Dict=-1 , __a : Optional[Any]=None ) -> Any: """simple docstring""" __lowercase : Optional[int] = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long __lowercase : Dict = self.hash_filename_if_too_long(__a , __a ) # The path to the lock file. __lowercase : Optional[Any] = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __lowercase : int = None # The default timeout value. __lowercase : Optional[int] = timeout # We use this lock primarily for the lock counter. __lowercase : Optional[Any] = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __lowercase : Union[str, Any] = 0 return None @property def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return self._lock_file @property def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return self._timeout @timeout.setter def lowerCAmelCase ( self : Tuple , __a : Tuple ) -> Dict: """simple docstring""" __lowercase : Tuple = float(__a ) return None def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" raise NotImplementedError() def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" raise NotImplementedError() @property def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" return self._lock_file_fd is not None def lowerCAmelCase ( self : Any , __a : Optional[Any]=None , __a : Union[str, Any]=0.05 ) -> List[str]: """simple docstring""" if timeout is None: __lowercase : Union[str, Any] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __lowercase : int = id(self ) __lowercase : Optional[Any] = self._lock_file __lowercase : List[str] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"Attempting to acquire lock {lock_id} on {lock_filename}" ) self._acquire() if self.is_locked: logger().debug(F"Lock {lock_id} acquired on {lock_filename}" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"Timeout on acquiring lock {lock_id} on {lock_filename}" ) raise Timeout(self._lock_file ) else: logger().debug( F"Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ..." ) time.sleep(__a ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __lowercase : Optional[int] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def lowerCAmelCase ( self : Union[str, Any] , __a : Optional[Any]=False ) -> Optional[Any]: """simple docstring""" with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __lowercase : Optional[Any] = id(self ) __lowercase : str = self._lock_file logger().debug(F"Attempting to release lock {lock_id} on {lock_filename}" ) self._release() __lowercase : List[str] = 0 logger().debug(F"Lock {lock_id} released on {lock_filename}" ) return None def __enter__( self : Any ) -> Optional[Any]: """simple docstring""" self.acquire() return self def __exit__( self : List[str] , __a : str , __a : int , __a : List[Any] ) -> Tuple: """simple docstring""" self.release() return None def __del__( self : Optional[int] ) -> Optional[int]: """simple docstring""" self.release(force=__a ) return None def lowerCAmelCase ( self : Tuple , __a : str , __a : int ) -> str: """simple docstring""" __lowercase : List[Any] = os.path.basename(__a ) if len(__a ) > max_length and max_length > 0: __lowercase : int = os.path.dirname(__a ) __lowercase : List[str] = str(hash(__a ) ) __lowercase : Optional[Any] = filename[: max_length - len(__a ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(__a , __a ) else: return path class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Union[str, Any] , __a : List[Any] , __a : Optional[int]=-1 , __a : Tuple=None ) -> List[Any]: """simple docstring""" from .file_utils import relative_to_absolute_path super().__init__(__a , timeout=__a , max_filename_length=__a ) __lowercase : Tuple = """\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __lowercase : Tuple = os.open(self._lock_file , __a ) except OSError: pass else: try: msvcrt.locking(__a , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__a ) else: __lowercase : Union[str, Any] = fd return None def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = self._lock_file_fd __lowercase : int = None msvcrt.locking(__a , msvcrt.LK_UNLCK , 1 ) os.close(__a ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : List[str] , __a : Optional[Any] , __a : str=-1 , __a : List[str]=None ) -> Any: """simple docstring""" __lowercase : Dict = os.statvfs(os.path.dirname(__a ) ).f_namemax super().__init__(__a , timeout=__a , max_filename_length=__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase : List[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC __lowercase : List[str] = os.open(self._lock_file , __a ) try: fcntl.flock(__a , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__a ) else: __lowercase : str = fd return None def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Any = self._lock_file_fd __lowercase : List[str] = None fcntl.flock(__a , fcntl.LOCK_UN ) os.close(__a ) return None class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __lowercase : Union[str, Any] = os.open(self._lock_file , __a ) except OSError: pass else: __lowercase : Optional[int] = fd return None def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" os.close(self._lock_file_fd ) __lowercase : int = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None lowerCamelCase : Optional[Any] = None if msvcrt: lowerCamelCase : List[Any] = WindowsFileLock elif fcntl: lowerCamelCase : List[Any] = UnixFileLock else: lowerCamelCase : Union[str, Any] = SoftFileLock if warnings is not None: warnings.warn('''only soft file lock is available''')
649
0
def snake_case_ ( lowerCAmelCase_ : list ): __lowercase : Union[str, Any] = False while is_sorted is False: # Until all the indices are traversed keep looping __lowercase : List[Any] = True for i in range(0 , len(lowerCAmelCase_ ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: __lowercase : int = input_list[i + 1], input_list[i] # swapping if elements not in order __lowercase : Any = False for i in range(1 , len(lowerCAmelCase_ ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: __lowercase : int = input_list[i + 1], input_list[i] # swapping if elements not in order __lowercase : Dict = False return input_list if __name__ == "__main__": print('''Enter list to be sorted''') lowerCamelCase : List[str] = [int(x) for x in input().split()] # inputing elements of the list in one line lowerCamelCase : List[Any] = odd_even_sort(input_list) print('''The sorted list is''') print(sorted_list)
713
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : Tuple = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = '''layoutlmv3''' def __init__( self : Dict , __a : List[str]=50265 , __a : str=768 , __a : List[Any]=12 , __a : List[Any]=12 , __a : List[str]=3072 , __a : Optional[Any]="gelu" , __a : Optional[int]=0.1 , __a : List[Any]=0.1 , __a : Tuple=512 , __a : int=2 , __a : Any=0.02 , __a : Union[str, Any]=1E-5 , __a : List[str]=1 , __a : List[Any]=0 , __a : int=2 , __a : str=1024 , __a : str=128 , __a : List[Any]=128 , __a : Tuple=True , __a : Optional[int]=32 , __a : Any=128 , __a : List[Any]=64 , __a : Tuple=256 , __a : str=True , __a : int=True , __a : Optional[Any]=True , __a : Any=224 , __a : str=3 , __a : List[str]=16 , __a : Union[str, Any]=None , **__a : List[Any] , ) -> List[str]: """simple docstring""" super().__init__( vocab_size=__a , hidden_size=__a , num_hidden_layers=__a , num_attention_heads=__a , intermediate_size=__a , hidden_act=__a , hidden_dropout_prob=__a , attention_probs_dropout_prob=__a , max_position_embeddings=__a , type_vocab_size=__a , initializer_range=__a , layer_norm_eps=__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a , ) __lowercase : int = max_ad_position_embeddings __lowercase : Any = coordinate_size __lowercase : Optional[Any] = shape_size __lowercase : str = has_relative_attention_bias __lowercase : int = rel_pos_bins __lowercase : Union[str, Any] = max_rel_pos __lowercase : str = has_spatial_attention_bias __lowercase : str = rel_ad_pos_bins __lowercase : List[Any] = max_rel_ad_pos __lowercase : Tuple = text_embed __lowercase : int = visual_embed __lowercase : Tuple = input_size __lowercase : Dict = num_channels __lowercase : str = patch_size __lowercase : Optional[int] = classifier_dropout class lowerCAmelCase ( __a ): '''simple docstring''' _A : str = version.parse('''1.12''' ) @property def lowerCAmelCase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def lowerCAmelCase ( self : Union[str, Any] ) -> float: """simple docstring""" return 1E-5 @property def lowerCAmelCase ( self : str ) -> int: """simple docstring""" return 12 def lowerCAmelCase ( self : List[Any] , __a : "ProcessorMixin" , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional["TensorType"] = None , __a : int = 3 , __a : int = 40 , __a : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , """apply_ocr""" , __a ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase : Tuple = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase : Tuple = processor.tokenizer.num_special_tokens_to_add(__a ) __lowercase : Tuple = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__a ) # Generate dummy inputs according to compute batch and sequence __lowercase : Union[str, Any] = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowercase : Tuple = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowercase : Tuple = self._generate_dummy_images(__a , __a , __a , __a ) __lowercase : int = dict( processor( __a , text=__a , boxes=__a , return_tensors=__a , ) ) return inputs
649
0
import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# lowerCamelCase : Tuple = [ # (stable-diffusion, HF Diffusers) ('''time_embed.0.weight''', '''time_embedding.linear_1.weight'''), ('''time_embed.0.bias''', '''time_embedding.linear_1.bias'''), ('''time_embed.2.weight''', '''time_embedding.linear_2.weight'''), ('''time_embed.2.bias''', '''time_embedding.linear_2.bias'''), ('''input_blocks.0.0.weight''', '''conv_in.weight'''), ('''input_blocks.0.0.bias''', '''conv_in.bias'''), ('''out.0.weight''', '''conv_norm_out.weight'''), ('''out.0.bias''', '''conv_norm_out.bias'''), ('''out.2.weight''', '''conv_out.weight'''), ('''out.2.bias''', '''conv_out.bias'''), ] lowerCamelCase : Optional[Any] = [ # (stable-diffusion, HF Diffusers) ('''in_layers.0''', '''norm1'''), ('''in_layers.2''', '''conv1'''), ('''out_layers.0''', '''norm2'''), ('''out_layers.3''', '''conv2'''), ('''emb_layers.1''', '''time_emb_proj'''), ('''skip_connection''', '''conv_shortcut'''), ] lowerCamelCase : Tuple = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks lowerCamelCase : str = f'''down_blocks.{i}.resnets.{j}.''' lowerCamelCase : Optional[Any] = f'''input_blocks.{3*i + j + 1}.0.''' unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 lowerCamelCase : Optional[Any] = f'''down_blocks.{i}.attentions.{j}.''' lowerCamelCase : str = f'''input_blocks.{3*i + j + 1}.1.''' unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks lowerCamelCase : Union[str, Any] = f'''up_blocks.{i}.resnets.{j}.''' lowerCamelCase : Optional[Any] = f'''output_blocks.{3*i + j}.0.''' unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 lowerCamelCase : List[Any] = f'''up_blocks.{i}.attentions.{j}.''' lowerCamelCase : Optional[int] = f'''output_blocks.{3*i + j}.1.''' unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 lowerCamelCase : List[str] = f'''down_blocks.{i}.downsamplers.0.conv.''' lowerCamelCase : List[str] = f'''input_blocks.{3*(i+1)}.0.op.''' unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 lowerCamelCase : Optional[int] = f'''up_blocks.{i}.upsamplers.0.''' lowerCamelCase : Optional[int] = f'''output_blocks.{3*i + 2}.{1 if i == 0 else 2}.''' unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) lowerCamelCase : Optional[Any] = '''mid_block.attentions.0.''' lowerCamelCase : Tuple = '''middle_block.1.''' unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): lowerCamelCase : Optional[Any] = f'''mid_block.resnets.{j}.''' lowerCamelCase : int = f'''middle_block.{2*j}.''' unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def snake_case_ ( lowerCAmelCase_ : Optional[int] ): # buyer beware: this is a *brittle* function, # and correct output requires that all of these pieces interact in # the exact order in which I have arranged them. __lowercase : List[str] = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: __lowercase : Union[str, Any] = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: __lowercase : List[str] = v.replace(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : str = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: __lowercase : int = v.replace(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : List[Any] = v __lowercase : List[str] = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# lowerCamelCase : List[str] = [ # (stable-diffusion, HF Diffusers) ('''nin_shortcut''', '''conv_shortcut'''), ('''norm_out''', '''conv_norm_out'''), ('''mid.attn_1.''', '''mid_block.attentions.0.'''), ] for i in range(4): # down_blocks have two resnets for j in range(2): lowerCamelCase : str = f'''encoder.down_blocks.{i}.resnets.{j}.''' lowerCamelCase : Dict = f'''encoder.down.{i}.block.{j}.''' vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: lowerCamelCase : List[str] = f'''down_blocks.{i}.downsamplers.0.''' lowerCamelCase : Tuple = f'''down.{i}.downsample.''' vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) lowerCamelCase : Union[str, Any] = f'''up_blocks.{i}.upsamplers.0.''' lowerCamelCase : List[str] = f'''up.{3-i}.upsample.''' vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): lowerCamelCase : Dict = f'''decoder.up_blocks.{i}.resnets.{j}.''' lowerCamelCase : Any = f'''decoder.up.{3-i}.block.{j}.''' vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): lowerCamelCase : Optional[Any] = f'''mid_block.resnets.{i}.''' lowerCamelCase : Dict = f'''mid.block_{i+1}.''' vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) lowerCamelCase : str = [ # (stable-diffusion, HF Diffusers) ('''norm.''', '''group_norm.'''), ('''q.''', '''query.'''), ('''k.''', '''key.'''), ('''v.''', '''value.'''), ('''proj_out.''', '''proj_attn.'''), ] def snake_case_ ( lowerCAmelCase_ : Tuple ): # convert HF linear weights to SD conv2d weights return w.reshape(*w.shape , 1 , 1 ) def snake_case_ ( lowerCAmelCase_ : Union[str, Any] ): __lowercase : str = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: __lowercase : Optional[int] = v.replace(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Optional[int] = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: __lowercase : Any = v.replace(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Optional[Any] = v __lowercase : Any = {v: vae_state_dict[k] for k, v in mapping.items()} __lowercase : str = ["""q""", """k""", """v""", """proj_out"""] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if F"mid.attn_1.{weight_name}.weight" in k: print(F"Reshaping {k} for SD format" ) __lowercase : Dict = reshape_weight_for_sd(lowerCAmelCase_ ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# lowerCamelCase : Tuple = [ # (stable-diffusion, HF Diffusers) ('''resblocks.''', '''text_model.encoder.layers.'''), ('''ln_1''', '''layer_norm1'''), ('''ln_2''', '''layer_norm2'''), ('''.c_fc.''', '''.fc1.'''), ('''.c_proj.''', '''.fc2.'''), ('''.attn''', '''.self_attn'''), ('''ln_final.''', '''transformer.text_model.final_layer_norm.'''), ('''token_embedding.weight''', '''transformer.text_model.embeddings.token_embedding.weight'''), ('''positional_embedding''', '''transformer.text_model.embeddings.position_embedding.weight'''), ] lowerCamelCase : Union[str, Any] = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} lowerCamelCase : Any = re.compile('''|'''.join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp lowerCamelCase : Dict = {'''q''': 0, '''k''': 1, '''v''': 2} def snake_case_ ( lowerCAmelCase_ : str ): __lowercase : List[Any] = {} __lowercase : Tuple = {} __lowercase : Dict = {} for k, v in text_enc_dict.items(): if ( k.endswith(""".self_attn.q_proj.weight""" ) or k.endswith(""".self_attn.k_proj.weight""" ) or k.endswith(""".self_attn.v_proj.weight""" ) ): __lowercase : List[str] = k[: -len(""".q_proj.weight""" )] __lowercase : Any = k[-len("""q_proj.weight""" )] if k_pre not in capture_qkv_weight: __lowercase : Any = [None, None, None] __lowercase : List[Any] = v continue if ( k.endswith(""".self_attn.q_proj.bias""" ) or k.endswith(""".self_attn.k_proj.bias""" ) or k.endswith(""".self_attn.v_proj.bias""" ) ): __lowercase : Optional[Any] = k[: -len(""".q_proj.bias""" )] __lowercase : Optional[Any] = k[-len("""q_proj.bias""" )] if k_pre not in capture_qkv_bias: __lowercase : Any = [None, None, None] __lowercase : List[str] = v continue __lowercase : List[Any] = textenc_pattern.sub(lambda lowerCAmelCase_ : protected[re.escape(m.group(0 ) )] , lowerCAmelCase_ ) __lowercase : Union[str, Any] = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception("""CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing""" ) __lowercase : Any = textenc_pattern.sub(lambda lowerCAmelCase_ : protected[re.escape(m.group(0 ) )] , lowerCAmelCase_ ) __lowercase : List[Any] = torch.cat(lowerCAmelCase_ ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception("""CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing""" ) __lowercase : Union[str, Any] = textenc_pattern.sub(lambda lowerCAmelCase_ : protected[re.escape(m.group(0 ) )] , lowerCAmelCase_ ) __lowercase : str = torch.cat(lowerCAmelCase_ ) return new_state_dict def snake_case_ ( lowerCAmelCase_ : Union[str, Any] ): return text_enc_dict if __name__ == "__main__": lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''') parser.add_argument( '''--use_safetensors''', action='''store_true''', help='''Save weights use safetensors, default is ckpt.''' ) lowerCamelCase : List[Any] = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors lowerCamelCase : Dict = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.safetensors''') lowerCamelCase : Tuple = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.safetensors''') lowerCamelCase : List[str] = osp.join(args.model_path, '''text_encoder''', '''model.safetensors''') # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): lowerCamelCase : Any = load_file(unet_path, device='''cpu''') else: lowerCamelCase : Optional[Any] = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.bin''') lowerCamelCase : List[Any] = torch.load(unet_path, map_location='''cpu''') if osp.exists(vae_path): lowerCamelCase : List[str] = load_file(vae_path, device='''cpu''') else: lowerCamelCase : Tuple = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.bin''') lowerCamelCase : str = torch.load(vae_path, map_location='''cpu''') if osp.exists(text_enc_path): lowerCamelCase : Optional[Any] = load_file(text_enc_path, device='''cpu''') else: lowerCamelCase : Any = osp.join(args.model_path, '''text_encoder''', '''pytorch_model.bin''') lowerCamelCase : Dict = torch.load(text_enc_path, map_location='''cpu''') # Convert the UNet model lowerCamelCase : Dict = convert_unet_state_dict(unet_state_dict) lowerCamelCase : Optional[int] = {'''model.diffusion_model.''' + k: v for k, v in unet_state_dict.items()} # Convert the VAE model lowerCamelCase : Optional[int] = convert_vae_state_dict(vae_state_dict) lowerCamelCase : Optional[Any] = {'''first_stage_model.''' + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper lowerCamelCase : Union[str, Any] = '''text_model.encoder.layers.22.layer_norm2.bias''' in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm lowerCamelCase : int = {'''transformer.''' + k: v for k, v in text_enc_dict.items()} lowerCamelCase : Tuple = convert_text_enc_state_dict_vaa(text_enc_dict) lowerCamelCase : str = {'''cond_stage_model.model.''' + k: v for k, v in text_enc_dict.items()} else: lowerCamelCase : Union[str, Any] = convert_text_enc_state_dict(text_enc_dict) lowerCamelCase : Optional[int] = {'''cond_stage_model.transformer.''' + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint lowerCamelCase : List[Any] = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: lowerCamelCase : Union[str, Any] = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: lowerCamelCase : List[str] = {'''state_dict''': state_dict} torch.save(state_dict, args.checkpoint_path)
714
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowerCamelCase : List[Any] = logging.get_logger(__name__) class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , __a : str = None , __a : uuid.UUID = None , __a : Any=None , __a : List[Any]=None ) -> List[Any]: """simple docstring""" if not conversation_id: __lowercase : Any = uuid.uuida() if past_user_inputs is None: __lowercase : Dict = [] if generated_responses is None: __lowercase : Dict = [] __lowercase : uuid.UUID = conversation_id __lowercase : List[str] = past_user_inputs __lowercase : List[str] = generated_responses __lowercase : Optional[str] = text def __eq__( self : Dict , __a : Dict ) -> Any: """simple docstring""" if not isinstance(__a , __a ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCAmelCase ( self : List[str] , __a : str , __a : bool = False ) -> Dict: """simple docstring""" if self.new_user_input: if overwrite: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten " F"with: \"{text}\"." ) __lowercase : Optional[int] = text else: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" new input " F"ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input" ) else: __lowercase : Dict = text def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __lowercase : Dict = None def lowerCAmelCase ( self : Optional[int] , __a : str ) -> List[Any]: """simple docstring""" self.generated_responses.append(__a ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : int ) -> str: """simple docstring""" __lowercase : Optional[int] = F"Conversation id: {self.uuid} \n" for is_user, text in self.iter_texts(): __lowercase : Optional[Any] = """user""" if is_user else """bot""" output += F"{name} >> {text} \n" return output @add_end_docstrings( __a , r''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''' , ) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Any , *__a : int , **__a : str ) -> Union[str, Any]: """simple docstring""" super().__init__(*__a , **__a ) if self.tokenizer.pad_token_id is None: __lowercase : List[Any] = self.tokenizer.eos_token def lowerCAmelCase ( self : Union[str, Any] , __a : int=None , __a : Tuple=None , __a : Any=None , **__a : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = {} __lowercase : Tuple = {} __lowercase : List[str] = {} if min_length_for_response is not None: __lowercase : Dict = min_length_for_response if minimum_tokens is not None: __lowercase : Union[str, Any] = minimum_tokens if "max_length" in generate_kwargs: __lowercase : Union[str, Any] = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __lowercase : Union[str, Any] = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(__a ) return preprocess_params, forward_params, postprocess_params def __call__( self : Optional[int] , __a : Union[Conversation, List[Conversation]] , __a : Dict=0 , **__a : List[Any] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = super().__call__(__a , num_workers=__a , **__a ) if isinstance(__a , __a ) and len(__a ) == 1: return outputs[0] return outputs def lowerCAmelCase ( self : Union[str, Any] , __a : Conversation , __a : Tuple=32 ) -> Dict[str, Any]: """simple docstring""" if not isinstance(__a , __a ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( F"Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. " """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer , """_build_conversation_input_ids""" ): __lowercase : List[Any] = self.tokenizer._build_conversation_input_ids(__a ) else: # If the tokenizer cannot handle conversations, we default to only the old version __lowercase : Tuple = self._legacy_parse_and_tokenize(__a ) if self.framework == "pt": __lowercase : List[Any] = torch.LongTensor([input_ids] ) elif self.framework == "tf": __lowercase : List[str] = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCAmelCase ( self : Any , __a : Dict , __a : Any=10 , **__a : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = generate_kwargs.get("""max_length""" , self.model.config.max_length ) __lowercase : List[Any] = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(F"Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})" ) __lowercase : Any = max_length - minimum_tokens __lowercase : int = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: __lowercase : Dict = model_inputs["""attention_mask"""][:, -trim:] __lowercase : Union[str, Any] = model_inputs.pop("""conversation""" ) __lowercase : Tuple = max_length __lowercase : int = self.model.generate(**__a , **__a ) if self.model.config.is_encoder_decoder: __lowercase : Optional[int] = 1 else: __lowercase : str = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCAmelCase ( self : int , __a : Tuple , __a : List[Any]=True ) -> List[str]: """simple docstring""" __lowercase : int = model_outputs["""output_ids"""] __lowercase : Union[str, Any] = self.tokenizer.decode( output_ids[0] , skip_special_tokens=__a , clean_up_tokenization_spaces=__a , ) __lowercase : List[str] = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(__a ) return conversation def lowerCAmelCase ( self : int , __a : Conversation ) -> Dict: """simple docstring""" __lowercase : Optional[int] = self.tokenizer.eos_token_id __lowercase : Optional[Any] = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(__a , add_special_tokens=__a ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(__a , add_special_tokens=__a ) ) if len(__a ) > self.tokenizer.model_max_length: __lowercase : List[Any] = input_ids[-self.tokenizer.model_max_length :] return input_ids
649
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : List[str] = { '''google/vit-base-patch16-224''': '''https://huggingface.co/vit-base-patch16-224/resolve/main/config.json''', # See all ViT models at https://huggingface.co/models?filter=vit } class lowerCAmelCase ( __a ): '''simple docstring''' _A : Union[str, Any] = '''vit''' def __init__( self : Union[str, Any] , __a : int=768 , __a : Optional[int]=12 , __a : Union[str, Any]=12 , __a : int=3072 , __a : str="gelu" , __a : Optional[Any]=0.0 , __a : List[str]=0.0 , __a : Any=0.02 , __a : Dict=1E-12 , __a : Optional[int]=224 , __a : Optional[Any]=16 , __a : List[Any]=3 , __a : Any=True , __a : int=16 , **__a : List[Any] , ) -> Dict: """simple docstring""" super().__init__(**__a ) __lowercase : Tuple = hidden_size __lowercase : Optional[Any] = num_hidden_layers __lowercase : Any = num_attention_heads __lowercase : Dict = intermediate_size __lowercase : Tuple = hidden_act __lowercase : List[str] = hidden_dropout_prob __lowercase : str = attention_probs_dropout_prob __lowercase : List[Any] = initializer_range __lowercase : Union[str, Any] = layer_norm_eps __lowercase : Optional[Any] = image_size __lowercase : Tuple = patch_size __lowercase : Tuple = num_channels __lowercase : int = qkv_bias __lowercase : Dict = encoder_stride class lowerCAmelCase ( __a ): '''simple docstring''' _A : Optional[int] = version.parse('''1.11''' ) @property def lowerCAmelCase ( self : str ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase ( self : List[str] ) -> float: """simple docstring""" return 1E-4
715
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__a , """tf_padding""" ) ) self.parent.assertTrue(hasattr(__a , """depth_multiplier""" ) ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Tuple , __a : str=13 , __a : Dict=3 , __a : List[Any]=32 , __a : Any=0.25 , __a : Any=8 , __a : Optional[int]=8 , __a : Optional[int]=6 , __a : Dict=32 , __a : Tuple=True , __a : List[Any]=True , __a : Optional[int]=True , __a : Tuple="relu6" , __a : Optional[Any]=1280 , __a : str=0.1 , __a : str=0.02 , __a : Optional[Any]=True , __a : Tuple=True , __a : Dict=10 , __a : Optional[Any]=None , ) -> Any: """simple docstring""" __lowercase : List[str] = parent __lowercase : Tuple = batch_size __lowercase : Dict = num_channels __lowercase : Optional[int] = image_size __lowercase : int = depth_multiplier __lowercase : str = depth_divisible_by __lowercase : int = min_depth __lowercase : Tuple = expand_ratio __lowercase : Optional[int] = tf_padding __lowercase : Dict = output_stride __lowercase : Dict = first_layer_is_expansion __lowercase : Optional[Any] = finegrained_output __lowercase : str = hidden_act __lowercase : Union[str, Any] = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) __lowercase : Optional[int] = classifier_dropout_prob __lowercase : int = use_labels __lowercase : Optional[int] = is_training __lowercase : Dict = num_labels __lowercase : Tuple = initializer_range __lowercase : Optional[Any] = scope def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : List[Any] = None __lowercase : Optional[Any] = None if self.use_labels: __lowercase : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __lowercase : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowercase : List[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : Tuple , __a : Dict , __a : Tuple , __a : Optional[int] , __a : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[int] = MobileNetVaModel(config=__a ) model.to(__a ) model.eval() __lowercase : Tuple = model(__a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def lowerCAmelCase ( self : List[str] , __a : Optional[int] , __a : List[str] , __a : str , __a : Optional[int] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = self.num_labels __lowercase : Dict = MobileNetVaForImageClassification(__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : int , __a : List[str] , __a : Tuple , __a : Any , __a : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : int = self.num_labels __lowercase : List[Any] = MobileNetVaForSemanticSegmentation(__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __lowercase : str = model(__a , labels=__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase : List[str] = config_and_inputs __lowercase : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Tuple = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) _A : Optional[Any] = ( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) _A : Tuple = False _A : List[str] = False _A : List[str] = False _A : Optional[int] = False def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = MobileNetVaModelTester(self ) __lowercase : int = MobileNetVaConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV2 does not use inputs_embeds""" ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not support input and output embeddings""" ) def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not output attentions""" ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[Any] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : int = [*signature.parameters.keys()] __lowercase : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" def check_hidden_states_output(__a : List[Any] , __a : Tuple , __a : List[str] ): __lowercase : Optional[Any] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : List[Any] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Tuple = outputs.hidden_states __lowercase : str = 16 self.assertEqual(len(__a ) , __a ) __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Any = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase : Union[str, Any] = True check_hidden_states_output(__a , __a , __a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : Optional[int] = MobileNetVaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def snake_case_ ( ): __lowercase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v2_1.0_224""" ) if is_vision_available() else None ) @slow def lowerCAmelCase ( self : str ) -> int: """simple docstring""" __lowercase : Tuple = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v2_1.0_224""" ).to(__a ) __lowercase : str = self.default_image_processor __lowercase : Tuple = prepare_img() __lowercase : Tuple = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : str = model(**__a ) # verify the logits __lowercase : Union[str, Any] = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , __a ) __lowercase : str = torch.tensor([0.2445, -1.1993, 0.1905] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : int = MobileNetVaForSemanticSegmentation.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __lowercase : Dict = model.to(__a ) __lowercase : Tuple = MobileNetVaImageProcessor.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __lowercase : List[str] = prepare_img() __lowercase : Optional[int] = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : Union[str, Any] = model(**__a ) __lowercase : Any = outputs.logits # verify the logits __lowercase : Dict = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , __a ) __lowercase : str = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=__a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __a , atol=1E-4 ) )
649
0
import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py lowerCamelCase : str = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase : str = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. lowerCamelCase : Dict = re.compile(r'''TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') lowerCamelCase : List[str] = re.compile(r'''Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowerCamelCase : str = re.compile(r'''(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) lowerCamelCase : Dict = [ ('''pretraining''', '''MODEL_FOR_PRETRAINING_MAPPING_NAMES''', '''AutoModelForPreTraining'''), ('''feature-extraction''', '''MODEL_MAPPING_NAMES''', '''AutoModel'''), ('''audio-classification''', '''MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForAudioClassification'''), ('''text-generation''', '''MODEL_FOR_CAUSAL_LM_MAPPING_NAMES''', '''AutoModelForCausalLM'''), ('''automatic-speech-recognition''', '''MODEL_FOR_CTC_MAPPING_NAMES''', '''AutoModelForCTC'''), ('''image-classification''', '''MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForImageClassification'''), ('''image-segmentation''', '''MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES''', '''AutoModelForImageSegmentation'''), ('''fill-mask''', '''MODEL_FOR_MASKED_LM_MAPPING_NAMES''', '''AutoModelForMaskedLM'''), ('''object-detection''', '''MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES''', '''AutoModelForObjectDetection'''), ( '''zero-shot-object-detection''', '''MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES''', '''AutoModelForZeroShotObjectDetection''', ), ('''question-answering''', '''MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForQuestionAnswering'''), ('''text2text-generation''', '''MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES''', '''AutoModelForSeq2SeqLM'''), ('''text-classification''', '''MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForSequenceClassification'''), ('''automatic-speech-recognition''', '''MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES''', '''AutoModelForSpeechSeq2Seq'''), ( '''table-question-answering''', '''MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForTableQuestionAnswering''', ), ('''token-classification''', '''MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForTokenClassification'''), ('''multiple-choice''', '''MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES''', '''AutoModelForMultipleChoice'''), ( '''next-sentence-prediction''', '''MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES''', '''AutoModelForNextSentencePrediction''', ), ( '''audio-frame-classification''', '''MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForAudioFrameClassification''', ), ('''audio-xvector''', '''MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES''', '''AutoModelForAudioXVector'''), ( '''document-question-answering''', '''MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForDocumentQuestionAnswering''', ), ( '''visual-question-answering''', '''MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForVisualQuestionAnswering''', ), ('''image-to-text''', '''MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES''', '''AutoModelForVision2Seq'''), ( '''zero-shot-image-classification''', '''MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForZeroShotImageClassification''', ), ('''depth-estimation''', '''MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES''', '''AutoModelForDepthEstimation'''), ('''video-classification''', '''MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForVideoClassification'''), ('''mask-generation''', '''MODEL_FOR_MASK_GENERATION_MAPPING_NAMES''', '''AutoModelForMaskGeneration'''), ] def snake_case_ ( lowerCAmelCase_ : List[Any] ): __lowercase : List[Any] = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , lowerCAmelCase_ ) return [m.group(0 ) for m in matches] def snake_case_ ( ): __lowercase : Dict = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __lowercase : Dict = { config.replace("""Config""" , """""" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. __lowercase : str = collections.defaultdict(lowerCAmelCase_ ) __lowercase : Optional[Any] = collections.defaultdict(lowerCAmelCase_ ) __lowercase : Any = collections.defaultdict(lowerCAmelCase_ ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(lowerCAmelCase_ ): __lowercase : Any = None if _re_tf_models.match(lowerCAmelCase_ ) is not None: __lowercase : Optional[int] = tf_models __lowercase : Any = _re_tf_models.match(lowerCAmelCase_ ).groups()[0] elif _re_flax_models.match(lowerCAmelCase_ ) is not None: __lowercase : List[Any] = flax_models __lowercase : str = _re_flax_models.match(lowerCAmelCase_ ).groups()[0] elif _re_pt_models.match(lowerCAmelCase_ ) is not None: __lowercase : Dict = pt_models __lowercase : Union[str, Any] = _re_pt_models.match(lowerCAmelCase_ ).groups()[0] if lookup_dict is not None: while len(lowerCAmelCase_ ) > 0: if attr_name in model_prefix_to_model_type: __lowercase : Union[str, Any] = True break # Try again after removing the last word in the name __lowercase : str = """""".join(camel_case_split(lowerCAmelCase_ )[:-1] ) __lowercase : List[Any] = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) __lowercase : Optional[Any] = list(lowerCAmelCase_ ) all_models.sort() __lowercase : int = {"""model_type""": all_models} __lowercase : Dict = [pt_models[t] for t in all_models] __lowercase : List[Any] = [tf_models[t] for t in all_models] __lowercase : Tuple = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure __lowercase : Any = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: __lowercase : Union[str, Any] = """AutoProcessor""" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: __lowercase : int = """AutoTokenizer""" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: __lowercase : List[Any] = """AutoFeatureExtractor""" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. __lowercase : str = """AutoTokenizer""" __lowercase : str = [processors[t] for t in all_models] return pd.DataFrame(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : List[str] ): __lowercase : Any = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: __lowercase : Union[str, Any] = [model_mapping, F"TF_{model_mapping}", F"FLAX_{model_mapping}"] __lowercase : Optional[Any] = [auto_class, F"TF_{auto_class}", F"Flax_{auto_class}"] # Loop through all three frameworks for module, cls, mapping in zip(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): # The type of pipeline may not exist in this framework if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): continue # First extract all model_names __lowercase : Optional[int] = [] for name in getattr(lowerCAmelCase_ , lowerCAmelCase_ ).values(): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): model_names.append(lowerCAmelCase_ ) else: model_names.extend(list(lowerCAmelCase_ ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str ): __lowercase : List[str] = get_frameworks_table() __lowercase : Optional[int] = Dataset.from_pandas(lowerCAmelCase_ ) __lowercase : Any = hf_hub_download( """huggingface/transformers-metadata""" , """pipeline_tags.json""" , repo_type="""dataset""" , token=lowerCAmelCase_ ) __lowercase : str = Dataset.from_json(lowerCAmelCase_ ) __lowercase : Dict = { tags_dataset[i]["""model_class"""]: (tags_dataset[i]["""pipeline_tag"""], tags_dataset[i]["""auto_class"""]) for i in range(len(lowerCAmelCase_ ) ) } __lowercase : Optional[Any] = update_pipeline_and_auto_class_table(lowerCAmelCase_ ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. __lowercase : Optional[int] = sorted(table.keys() ) __lowercase : Union[str, Any] = pd.DataFrame( { """model_class""": model_classes, """pipeline_tag""": [table[m][0] for m in model_classes], """auto_class""": [table[m][1] for m in model_classes], } ) __lowercase : List[str] = Dataset.from_pandas(lowerCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(lowerCAmelCase_ , """frameworks.json""" ) ) tags_dataset.to_json(os.path.join(lowerCAmelCase_ , """pipeline_tags.json""" ) ) if commit_sha is not None: __lowercase : Any = ( F"Update with commit {commit_sha}\n\nSee: " F"https://github.com/huggingface/transformers/commit/{commit_sha}" ) else: __lowercase : Optional[int] = """Update""" upload_folder( repo_id="""huggingface/transformers-metadata""" , folder_path=lowerCAmelCase_ , repo_type="""dataset""" , token=lowerCAmelCase_ , commit_message=lowerCAmelCase_ , ) def snake_case_ ( ): __lowercase : Dict = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} __lowercase : Union[str, Any] = transformers_module.pipelines.SUPPORTED_TASKS __lowercase : List[str] = [] for key in pipeline_tasks: if key not in in_table: __lowercase : Union[str, Any] = pipeline_tasks[key]["""pt"""] if isinstance(lowerCAmelCase_ , (list, tuple) ): __lowercase : Tuple = model[0] __lowercase : str = model.__name__ if model not in in_table.values(): missing.append(lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 0: __lowercase : str = """, """.join(lowerCAmelCase_ ) raise ValueError( """The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside """ F"`utils/update_metadata.py`: {msg}. Please add them!" ) if __name__ == "__main__": lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--token''', type=str, help='''The token to use to push to the transformers-metadata dataset.''') parser.add_argument('''--commit_sha''', type=str, help='''The sha of the commit going with this update.''') parser.add_argument('''--check-only''', action='''store_true''', help='''Activate to just check all pipelines are present.''') lowerCamelCase : Optional[Any] = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
716
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def snake_case_ ( lowerCAmelCase_ : bool = True , *lowerCAmelCase_ : int , **lowerCAmelCase_ : List[str] ): if not is_tqdm_available(): raise ImportError("""Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.""" ) __lowercase : List[str] = False if main_process_only: __lowercase : Optional[int] = PartialState().local_process_index == 0 return _tqdm(*lowerCAmelCase_ , **lowerCAmelCase_ , disable=lowerCAmelCase_ )
649
0
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed lowerCamelCase : Union[str, Any] = { '''distilbert''': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), '''roberta''': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), '''bert''': (BertConfig, BertForMaskedLM, BertTokenizer), '''gpt2''': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def snake_case_ ( lowerCAmelCase_ : Optional[Any] ): assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict ): if args.student_type == "roberta": __lowercase : Tuple = False elif args.student_type == "gpt2": __lowercase : int = False def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple ): if args.student_type == "roberta": __lowercase : Union[str, Any] = False def snake_case_ ( ): __lowercase : Tuple = argparse.ArgumentParser(description="""Training""" ) parser.add_argument("""--force""" , action="""store_true""" , help="""Overwrite dump_path if it already exists.""" ) parser.add_argument( """--dump_path""" , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help="""The output directory (log, checkpoints, parameters, etc.)""" ) parser.add_argument( """--data_file""" , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help="""The binarized file (tokenized + tokens_to_ids) and grouped by sequence.""" , ) parser.add_argument( """--student_type""" , type=lowerCAmelCase_ , choices=["""distilbert""", """roberta""", """gpt2"""] , required=lowerCAmelCase_ , help="""The student type (DistilBERT, RoBERTa).""" , ) parser.add_argument("""--student_config""" , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help="""Path to the student configuration.""" ) parser.add_argument( """--student_pretrained_weights""" , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help="""Load student initialization checkpoint.""" ) parser.add_argument( """--teacher_type""" , choices=["""bert""", """roberta""", """gpt2"""] , required=lowerCAmelCase_ , help="""Teacher type (BERT, RoBERTa).""" ) parser.add_argument("""--teacher_name""" , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help="""The teacher model.""" ) parser.add_argument("""--temperature""" , default=2.0 , type=lowerCAmelCase_ , help="""Temperature for the softmax temperature.""" ) parser.add_argument( """--alpha_ce""" , default=0.5 , type=lowerCAmelCase_ , help="""Linear weight for the distillation loss. Must be >=0.""" ) parser.add_argument( """--alpha_mlm""" , default=0.0 , type=lowerCAmelCase_ , help="""Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.""" , ) parser.add_argument("""--alpha_clm""" , default=0.5 , type=lowerCAmelCase_ , help="""Linear weight for the CLM loss. Must be >=0.""" ) parser.add_argument("""--alpha_mse""" , default=0.0 , type=lowerCAmelCase_ , help="""Linear weight of the MSE loss. Must be >=0.""" ) parser.add_argument( """--alpha_cos""" , default=0.0 , type=lowerCAmelCase_ , help="""Linear weight of the cosine embedding loss. Must be >=0.""" ) parser.add_argument( """--mlm""" , action="""store_true""" , help="""The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.""" ) parser.add_argument( """--mlm_mask_prop""" , default=0.15 , type=lowerCAmelCase_ , help="""Proportion of tokens for which we need to make a prediction.""" , ) parser.add_argument("""--word_mask""" , default=0.8 , type=lowerCAmelCase_ , help="""Proportion of tokens to mask out.""" ) parser.add_argument("""--word_keep""" , default=0.1 , type=lowerCAmelCase_ , help="""Proportion of tokens to keep.""" ) parser.add_argument("""--word_rand""" , default=0.1 , type=lowerCAmelCase_ , help="""Proportion of tokens to randomly replace.""" ) parser.add_argument( """--mlm_smoothing""" , default=0.7 , type=lowerCAmelCase_ , help="""Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).""" , ) parser.add_argument("""--token_counts""" , type=lowerCAmelCase_ , help="""The token counts in the data_file for MLM.""" ) parser.add_argument( """--restrict_ce_to_mask""" , action="""store_true""" , help="""If true, compute the distillation loss only the [MLM] prediction distribution.""" , ) parser.add_argument( """--freeze_pos_embs""" , action="""store_true""" , help="""Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.""" , ) parser.add_argument( """--freeze_token_type_embds""" , action="""store_true""" , help="""Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.""" , ) parser.add_argument("""--n_epoch""" , type=lowerCAmelCase_ , default=3 , help="""Number of pass on the whole dataset.""" ) parser.add_argument("""--batch_size""" , type=lowerCAmelCase_ , default=5 , help="""Batch size (for each process).""" ) parser.add_argument( """--group_by_size""" , action="""store_false""" , help="""If true, group sequences that have similar length into the same batch. Default is true.""" , ) parser.add_argument( """--gradient_accumulation_steps""" , type=lowerCAmelCase_ , default=50 , help="""Gradient accumulation for larger training batches.""" , ) parser.add_argument("""--warmup_prop""" , default=0.05 , type=lowerCAmelCase_ , help="""Linear warmup proportion.""" ) parser.add_argument("""--weight_decay""" , default=0.0 , type=lowerCAmelCase_ , help="""Weight decay if we apply some.""" ) parser.add_argument("""--learning_rate""" , default=5e-4 , type=lowerCAmelCase_ , help="""The initial learning rate for Adam.""" ) parser.add_argument("""--adam_epsilon""" , default=1e-6 , type=lowerCAmelCase_ , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""" , default=5.0 , type=lowerCAmelCase_ , help="""Max gradient norm.""" ) parser.add_argument("""--initializer_range""" , default=0.02 , type=lowerCAmelCase_ , help="""Random initialization range.""" ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=lowerCAmelCase_ , default="""O1""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_gpu""" , type=lowerCAmelCase_ , default=1 , help="""Number of GPUs in the node.""" ) parser.add_argument("""--local_rank""" , type=lowerCAmelCase_ , default=-1 , help="""Distributed training - Local rank""" ) parser.add_argument("""--seed""" , type=lowerCAmelCase_ , default=56 , help="""Random seed""" ) parser.add_argument("""--log_interval""" , type=lowerCAmelCase_ , default=500 , help="""Tensorboard logging interval.""" ) parser.add_argument("""--checkpoint_interval""" , type=lowerCAmelCase_ , default=4000 , help="""Checkpoint interval.""" ) __lowercase : Optional[int] = parser.parse_args() sanity_checks(lowerCAmelCase_ ) # ARGS # init_gpu_params(lowerCAmelCase_ ) set_seed(lowerCAmelCase_ ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F"Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite" """ itUse `--force` if you want to overwrite it""" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F"Experiment will be dumped and logged in {args.dump_path}" ) # SAVE PARAMS # logger.info(F"Param: {args}" ) with open(os.path.join(args.dump_path , """parameters.json""" ) , """w""" ) as f: json.dump(vars(lowerCAmelCase_ ) , lowerCAmelCase_ , indent=4 ) git_log(args.dump_path ) __lowercase : List[str] = MODEL_CLASSES[args.student_type] __lowercase : Dict = MODEL_CLASSES[args.teacher_type] # TOKENIZER # __lowercase : List[Any] = teacher_tokenizer_class.from_pretrained(args.teacher_name ) __lowercase : Tuple = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): __lowercase : Optional[int] = tokenizer.all_special_tokens.index(lowerCAmelCase_ ) __lowercase : str = tokenizer.all_special_ids[idx] logger.info(F"Special tokens {special_tok_ids}" ) __lowercase : Any = special_tok_ids __lowercase : int = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F"Loading data from {args.data_file}" ) with open(args.data_file , """rb""" ) as fp: __lowercase : List[str] = pickle.load(lowerCAmelCase_ ) if args.mlm: logger.info(F"Loading token counts from {args.token_counts} (already pre-computed)" ) with open(args.token_counts , """rb""" ) as fp: __lowercase : Optional[int] = pickle.load(lowerCAmelCase_ ) __lowercase : Any = np.maximum(lowerCAmelCase_ , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): __lowercase : List[str] = 0.0 # do not predict special tokens __lowercase : List[str] = torch.from_numpy(lowerCAmelCase_ ) else: __lowercase : str = None __lowercase : Optional[int] = LmSeqsDataset(params=lowerCAmelCase_ , data=lowerCAmelCase_ ) logger.info("""Data loader created.""" ) # STUDENT # logger.info(F"Loading student config from {args.student_config}" ) __lowercase : Any = student_config_class.from_pretrained(args.student_config ) __lowercase : Optional[int] = True if args.student_pretrained_weights is not None: logger.info(F"Loading pretrained weights from {args.student_pretrained_weights}" ) __lowercase : str = student_model_class.from_pretrained(args.student_pretrained_weights , config=lowerCAmelCase_ ) else: __lowercase : int = student_model_class(lowerCAmelCase_ ) if args.n_gpu > 0: student.to(F"cuda:{args.local_rank}" ) logger.info("""Student loaded.""" ) # TEACHER # __lowercase : Optional[int] = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=lowerCAmelCase_ ) if args.n_gpu > 0: teacher.to(F"cuda:{args.local_rank}" ) logger.info(F"Teacher loaded from {args.teacher_name}." ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(lowerCAmelCase_ , lowerCAmelCase_ ) if args.freeze_token_type_embds: freeze_token_type_embeddings(lowerCAmelCase_ , lowerCAmelCase_ ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() __lowercase : Optional[int] = Distiller( params=lowerCAmelCase_ , dataset=lowerCAmelCase_ , token_probs=lowerCAmelCase_ , student=lowerCAmelCase_ , teacher=lowerCAmelCase_ ) distiller.train() logger.info("""Let's go get some drinks.""" ) if __name__ == "__main__": main()
717
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : list[int] ): if not nums: return 0 __lowercase : Tuple = nums[0] __lowercase : Tuple = 0 for num in nums[1:]: __lowercase , __lowercase : List[str] = ( max_excluding + num, max(lowerCAmelCase_ , lowerCAmelCase_ ), ) return max(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
649
0
from typing import Any class lowerCAmelCase : '''simple docstring''' def __init__( self : List[Any] , __a : Any ) -> List[str]: """simple docstring""" __lowercase : Tuple = data __lowercase : Optional[int] = None class lowerCAmelCase : '''simple docstring''' def __init__( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Dict = None def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = self.head while temp is not None: print(temp.data , end=""" """ ) __lowercase : str = temp.next print() def lowerCAmelCase ( self : Union[str, Any] , __a : Any ) -> Dict: """simple docstring""" __lowercase : List[Any] = Node(__a ) __lowercase : Tuple = self.head __lowercase : List[str] = new_node def lowerCAmelCase ( self : int , __a : Any , __a : Optional[Any] ) -> List[Any]: """simple docstring""" if node_data_a == node_data_a: return else: __lowercase : Any = self.head while node_a is not None and node_a.data != node_data_a: __lowercase : Tuple = node_a.next __lowercase : int = self.head while node_a is not None and node_a.data != node_data_a: __lowercase : str = node_a.next if node_a is None or node_a is None: return __lowercase : List[Any] = node_a.data, node_a.data if __name__ == "__main__": lowerCamelCase : List[str] = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('''After swapping''') ll.print_list()
718
lowerCamelCase : List[str] = '''0.18.2''' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
649
0
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : list[str] | None = None , lowerCAmelCase_ : dict[str, float] | None = None , lowerCAmelCase_ : bool = False , ): __lowercase : Any = cipher_alphabet or [chr(lowerCAmelCase_ ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) __lowercase : Union[str, Any] = { """a""": 0.08_497, """b""": 0.01_492, """c""": 0.02_202, """d""": 0.04_253, """e""": 0.11_162, """f""": 0.02_228, """g""": 0.02_015, """h""": 0.06_094, """i""": 0.07_546, """j""": 0.00_153, """k""": 0.01_292, """l""": 0.04_025, """m""": 0.02_406, """n""": 0.06_749, """o""": 0.07_507, """p""": 0.01_929, """q""": 0.00_095, """r""": 0.07_587, """s""": 0.06_327, """t""": 0.09_356, """u""": 0.02_758, """v""": 0.00_978, """w""": 0.02_560, """x""": 0.00_150, """y""": 0.01_994, """z""": 0.00_077, } else: # Custom frequencies dictionary __lowercase : Dict = frequencies_dict if not case_sensitive: __lowercase : Any = ciphertext.lower() # Chi squared statistic values __lowercase : dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(lowerCAmelCase_ ) ): __lowercase : str = """""" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet __lowercase : Union[str, Any] = (alphabet_letters.index(letter.lower() ) - shift) % len( lowerCAmelCase_ ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter __lowercase : Dict = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: __lowercase : Optional[Any] = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message __lowercase : Dict = decrypted_with_shift.lower().count(lowerCAmelCase_ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies __lowercase : Optional[int] = frequencies[letter] * occurrences # Complete the chi squared statistic formula __lowercase : Optional[Any] = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message __lowercase : Any = decrypted_with_shift.count(lowerCAmelCase_ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies __lowercase : int = frequencies[letter] * occurrences # Complete the chi squared statistic formula __lowercase : str = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary __lowercase : Dict = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(lowerCAmelCase_ : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] __lowercase : int = min( lowerCAmelCase_ , key=lowerCAmelCase_ , ) # Get all the data from the most likely cipher (key, decoded message) ( __lowercase ) : Dict = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
719
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : List[Any] = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : str=False , lowerCAmelCase_ : Any=False ): __lowercase : Any = """backbone.""" if is_semantic else """""" __lowercase : Optional[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"{prefix}blocks.{i}.norm1.weight", F"beit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm1.bias", F"beit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.weight", F"beit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.bias", F"beit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.weight", F"beit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.bias", F"beit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.weight", F"beit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.bias", F"beit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.weight", F"beit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.bias", F"beit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ (F"{prefix}cls_token", """beit.embeddings.cls_token"""), (F"{prefix}patch_embed.proj.weight", """beit.embeddings.patch_embeddings.projection.weight"""), (F"{prefix}patch_embed.proj.bias", """beit.embeddings.patch_embeddings.projection.bias"""), (F"{prefix}pos_embed", """beit.embeddings.position_embeddings"""), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("""mask_token""", """beit.embeddings.mask_token"""), ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) else: # layernorm + classification head rename_keys.extend( [ ("""fc_norm.weight""", """beit.pooler.layernorm.weight"""), ("""fc_norm.bias""", """beit.pooler.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : List[Any]=False ): for i in range(config.num_hidden_layers ): __lowercase : Tuple = """backbone.""" if is_semantic else """""" # queries, keys and values __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.attn.qkv.weight" ) __lowercase : Dict = state_dict.pop(F"{prefix}blocks.{i}.attn.q_bias" ) __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.attn.v_bias" ) __lowercase : List[str] = in_proj_weight[ : config.hidden_size, : ] __lowercase : Union[str, Any] = q_bias __lowercase : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] __lowercase : str = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.gamma_1" ) __lowercase : str = state_dict.pop(F"{prefix}blocks.{i}.gamma_2" ) __lowercase : List[str] = gamma_a __lowercase : Optional[int] = gamma_a def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : int ): __lowercase : Tuple = dct.pop(lowerCAmelCase_ ) __lowercase : Tuple = val def snake_case_ ( ): __lowercase : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase : Any = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]=False ): __lowercase : Dict = False if """rvlcdip""" in checkpoint_url else True __lowercase : Tuple = BeitConfig(use_absolute_position_embeddings=lowerCAmelCase_ , use_mask_token=lowerCAmelCase_ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: __lowercase : Union[str, Any] = 1024 __lowercase : Optional[int] = 4096 __lowercase : List[Any] = 24 __lowercase : Dict = 16 # labels if "rvlcdip" in checkpoint_url: __lowercase : Optional[int] = 16 __lowercase : Any = """huggingface/label-files""" __lowercase : Union[str, Any] = """rvlcdip-id2label.json""" __lowercase : List[str] = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) __lowercase : Optional[int] = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowercase : Union[str, Any] = idalabel __lowercase : Optional[Any] = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys __lowercase : Optional[int] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ , map_location="""cpu""" )["""model"""] __lowercase : Union[str, Any] = create_rename_keys(lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) # load HuggingFace model __lowercase : Dict = BeitForMaskedImageModeling(lowerCAmelCase_ ) if has_lm_head else BeitForImageClassification(lowerCAmelCase_ ) model.eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image __lowercase : List[str] = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=lowerCAmelCase_ ) __lowercase : List[str] = prepare_img() __lowercase : Optional[Any] = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""" ) __lowercase : Optional[int] = encoding["""pixel_values"""] __lowercase : str = model(lowerCAmelCase_ ) __lowercase : Tuple = outputs.logits # verify logits __lowercase : str = [1, 16] if """rvlcdip""" in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(lowerCAmelCase_ ), "Shape of logits not as expected" Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: if has_lm_head: __lowercase : Optional[Any] = """dit-base""" if """base""" in checkpoint_url else """dit-large""" else: __lowercase : Tuple = """dit-base-finetuned-rvlcdip""" if """dit-b""" in checkpoint_url else """dit-large-finetuned-rvlcdip""" image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=lowerCAmelCase_ , ) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=lowerCAmelCase_ , ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) lowerCamelCase : List[str] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
649
0
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" __lowercase : Any = FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowercase : List[str] = """A painting of a squirrel eating a burger""" __lowercase : Any = jax.device_count() __lowercase : List[str] = num_samples * [prompt] __lowercase : Dict = sd_pipe.prepare_inputs(__a ) __lowercase : List[str] = replicate(__a ) __lowercase : Tuple = shard(__a ) __lowercase : Union[str, Any] = jax.random.PRNGKey(0 ) __lowercase : int = jax.random.split(__a , jax.device_count() ) __lowercase : List[Any] = sd_pipe(__a , __a , __a , num_inference_steps=25 , jit=__a )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __lowercase : Dict = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowercase : Any = images[0, 253:256, 253:256, -1] __lowercase : Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase : Optional[int] = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.45508, 0.4512] ) print(F"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" __lowercase : Optional[int] = """stabilityai/stable-diffusion-2""" __lowercase : List[str] = FlaxDPMSolverMultistepScheduler.from_pretrained(__a , subfolder="""scheduler""" ) __lowercase : Any = FlaxStableDiffusionPipeline.from_pretrained( __a , scheduler=__a , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowercase : Optional[int] = scheduler_params __lowercase : Optional[int] = """A painting of a squirrel eating a burger""" __lowercase : Optional[Any] = jax.device_count() __lowercase : str = num_samples * [prompt] __lowercase : Any = sd_pipe.prepare_inputs(__a ) __lowercase : int = replicate(__a ) __lowercase : Tuple = shard(__a ) __lowercase : str = jax.random.PRNGKey(0 ) __lowercase : Optional[int] = jax.random.split(__a , jax.device_count() ) __lowercase : str = sd_pipe(__a , __a , __a , num_inference_steps=25 , jit=__a )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __lowercase : str = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowercase : Optional[Any] = images[0, 253:256, 253:256, -1] __lowercase : Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase : List[str] = jnp.array([0.4336, 0.42969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297] ) print(F"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
720
from torch import nn class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , __a : int , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" super().__init__() __lowercase : int = class_size __lowercase : int = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) __lowercase : str = nn.Linear(__a , __a ) def lowerCAmelCase ( self : Tuple , __a : int ) -> Tuple: """simple docstring""" __lowercase : str = self.mlp(__a ) return logits
649
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCamelCase : Optional[Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-classification/requirements.txt''') lowerCamelCase : Tuple = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) lowerCamelCase : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def snake_case_ ( lowerCAmelCase_ : str ): with open(lowerCAmelCase_ , """rb""" ) as f: __lowercase : Tuple = Image.open(lowerCAmelCase_ ) return im.convert("""RGB""" ) @dataclass class lowerCAmelCase : '''simple docstring''' _A : Optional[str] = field( default=__a , metadata={ '''help''': '''Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).''' } , ) _A : Optional[str] = field( default=__a , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) _A : Optional[str] = field(default=__a , metadata={'''help''': '''A folder containing the training data.'''} ) _A : Optional[str] = field(default=__a , metadata={'''help''': '''A folder containing the validation data.'''} ) _A : Optional[float] = field( default=0.1_5 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) _A : Optional[int] = field( default=__a , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) _A : Optional[int] = field( default=__a , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( """You must specify either a dataset name from the hub or a train and/or validation directory.""" ) @dataclass class lowerCAmelCase : '''simple docstring''' _A : str = field( default='''google/vit-base-patch16-224-in21k''' , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} , ) _A : Optional[str] = field( default=__a , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(__a )} , ) _A : Optional[str] = field( default=__a , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _A : Optional[str] = field( default=__a , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} ) _A : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) _A : str = field(default=__a , metadata={'''help''': '''Name or path of preprocessor config.'''} ) _A : bool = field( default=__a , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) _A : bool = field( default=__a , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def snake_case_ ( lowerCAmelCase_ : Optional[Any] ): __lowercase : Tuple = torch.stack([example["""pixel_values"""] for example in examples] ) __lowercase : Dict = torch.tensor([example["""labels"""] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def snake_case_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowercase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowercase : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowercase : Optional[int] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_image_classification""" , lowerCAmelCase_ , lowerCAmelCase_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __lowercase : Any = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase_ ) transformers.utils.logging.set_verbosity(lowerCAmelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. __lowercase : int = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowercase : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: __lowercase : Tuple = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="""image-classification""" , use_auth_token=True if model_args.use_auth_token else None , ) else: __lowercase : Tuple = {} if data_args.train_dir is not None: __lowercase : Tuple = os.path.join(data_args.train_dir , """**""" ) if data_args.validation_dir is not None: __lowercase : Tuple = os.path.join(data_args.validation_dir , """**""" ) __lowercase : Dict = load_dataset( """imagefolder""" , data_files=lowerCAmelCase_ , cache_dir=model_args.cache_dir , task="""image-classification""" , ) # If we don't have a validation split, split off a percentage of train as validation. __lowercase : Union[str, Any] = None if """validation""" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowerCAmelCase_ ) and data_args.train_val_split > 0.0: __lowercase : Optional[int] = dataset["""train"""].train_test_split(data_args.train_val_split ) __lowercase : List[Any] = split["""train"""] __lowercase : List[Any] = split["""test"""] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. __lowercase : Union[str, Any] = dataset["""train"""].features["""labels"""].names __lowercase : List[str] = {}, {} for i, label in enumerate(lowerCAmelCase_ ): __lowercase : Union[str, Any] = str(lowerCAmelCase_ ) __lowercase : Any = label # Load the accuracy metric from the datasets package __lowercase : str = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase_ : str ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) __lowercase : Tuple = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowerCAmelCase_ ) , labelaid=lowerCAmelCase_ , idalabel=lowerCAmelCase_ , finetuning_task="""image-classification""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __lowercase : Any = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) __lowercase : Dict = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: __lowercase : str = image_processor.size["""shortest_edge"""] else: __lowercase : List[str] = (image_processor.size["""height"""], image_processor.size["""width"""]) __lowercase : int = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) __lowercase : Dict = Compose( [ RandomResizedCrop(lowerCAmelCase_ ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) __lowercase : List[Any] = Compose( [ Resize(lowerCAmelCase_ ), CenterCrop(lowerCAmelCase_ ), ToTensor(), normalize, ] ) def train_transforms(lowerCAmelCase_ : Tuple ): __lowercase : int = [ _train_transforms(pil_img.convert("""RGB""" ) ) for pil_img in example_batch["""image"""] ] return example_batch def val_transforms(lowerCAmelCase_ : int ): __lowercase : Dict = [_val_transforms(pil_img.convert("""RGB""" ) ) for pil_img in example_batch["""image"""]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: __lowercase : List[str] = ( dataset["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(lowerCAmelCase_ ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: __lowercase : Optional[Any] = ( dataset["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(lowerCAmelCase_ ) # Initalize our trainer __lowercase : List[Any] = Trainer( model=lowerCAmelCase_ , args=lowerCAmelCase_ , train_dataset=dataset["""train"""] if training_args.do_train else None , eval_dataset=dataset["""validation"""] if training_args.do_eval else None , compute_metrics=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , data_collator=lowerCAmelCase_ , ) # Training if training_args.do_train: __lowercase : int = None if training_args.resume_from_checkpoint is not None: __lowercase : str = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowercase : List[Any] = last_checkpoint __lowercase : Any = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __lowercase : Union[str, Any] = trainer.evaluate() trainer.log_metrics("""eval""" , lowerCAmelCase_ ) trainer.save_metrics("""eval""" , lowerCAmelCase_ ) # Write model card and (optionally) push to hub __lowercase : Optional[int] = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """image-classification""", """dataset""": data_args.dataset_name, """tags""": ["""image-classification""", """vision"""], } if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase_ ) else: trainer.create_model_card(**lowerCAmelCase_ ) if __name__ == "__main__": main()
721
import fire from utils import calculate_rouge, save_json def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : str=None , **lowerCAmelCase_ : str ): __lowercase : Tuple = [x.strip() for x in open(lowerCAmelCase_ ).readlines()] __lowercase : Dict = [x.strip() for x in open(lowerCAmelCase_ ).readlines()][: len(lowerCAmelCase_ )] __lowercase : Tuple = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) if save_path is not None: save_json(lowerCAmelCase_ , lowerCAmelCase_ , indent=lowerCAmelCase_ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
649
0
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def snake_case_ ( lowerCAmelCase_ : bool = True , *lowerCAmelCase_ : int , **lowerCAmelCase_ : List[str] ): if not is_tqdm_available(): raise ImportError("""Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.""" ) __lowercase : List[str] = False if main_process_only: __lowercase : Optional[int] = PartialState().local_process_index == 0 return _tqdm(*lowerCAmelCase_ , **lowerCAmelCase_ , disable=lowerCAmelCase_ )
700
from argparse import ArgumentParser from . import BaseTransformersCLICommand def snake_case_ ( lowerCAmelCase_ : Dict ): return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class lowerCAmelCase ( __a ): '''simple docstring''' @staticmethod def lowerCAmelCase ( __a : ArgumentParser ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = parser.add_parser("""download""" ) download_parser.add_argument( """--cache-dir""" , type=__a , default=__a , help="""Path to location to store the models""" ) download_parser.add_argument( """--force""" , action="""store_true""" , help="""Force the model to be download even if already in cache-dir""" ) download_parser.add_argument( """--trust-remote-code""" , action="""store_true""" , help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" , ) download_parser.add_argument("""model""" , type=__a , help="""Name of the model to download""" ) download_parser.set_defaults(func=__a ) def __init__( self : Dict , __a : str , __a : str , __a : bool , __a : bool ) -> Union[str, Any]: """simple docstring""" __lowercase : Dict = model __lowercase : List[Any] = cache __lowercase : Any = force __lowercase : Optional[int] = trust_remote_code def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
649
0
from collections.abc import Generator from math import sin def snake_case_ ( lowerCAmelCase_ : bytes ): if len(lowerCAmelCase_ ) != 32: raise ValueError("""Input must be of length 32""" ) __lowercase : Union[str, Any] = b"""""" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def snake_case_ ( lowerCAmelCase_ : int ): if i < 0: raise ValueError("""Input must be non-negative""" ) __lowercase : List[str] = format(lowerCAmelCase_ , """08x""" )[-8:] __lowercase : Optional[int] = b"""""" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("""utf-8""" ) return little_endian_hex def snake_case_ ( lowerCAmelCase_ : bytes ): __lowercase : Any = b"""""" for char in message: bit_string += format(lowerCAmelCase_ , """08b""" ).encode("""utf-8""" ) __lowercase : int = format(len(lowerCAmelCase_ ) , """064b""" ).encode("""utf-8""" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(lowerCAmelCase_ ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def snake_case_ ( lowerCAmelCase_ : bytes ): if len(lowerCAmelCase_ ) % 512 != 0: raise ValueError("""Input must have length that's a multiple of 512""" ) for pos in range(0 , len(lowerCAmelCase_ ) , 512 ): __lowercase : List[str] = bit_string[pos : pos + 512] __lowercase : Dict = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def snake_case_ ( lowerCAmelCase_ : int ): if i < 0: raise ValueError("""Input must be non-negative""" ) __lowercase : Any = format(lowerCAmelCase_ , """032b""" ) __lowercase : Optional[Any] = """""" for c in i_str: new_str += "1" if c == "0" else "0" return int(lowerCAmelCase_ , 2 ) def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return (a + b) % 2**32 def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): if i < 0: raise ValueError("""Input must be non-negative""" ) if shift < 0: raise ValueError("""Shift must be non-negative""" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def snake_case_ ( lowerCAmelCase_ : bytes ): __lowercase : List[str] = preprocess(lowerCAmelCase_ ) __lowercase : int = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states __lowercase : int = 0x6745_2301 __lowercase : Dict = 0xefcd_ab89 __lowercase : str = 0x98ba_dcfe __lowercase : Dict = 0x1032_5476 __lowercase : Dict = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(lowerCAmelCase_ ): __lowercase : Union[str, Any] = aa __lowercase : int = ba __lowercase : Optional[Any] = ca __lowercase : Optional[Any] = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __lowercase : str = d ^ (b & (c ^ d)) __lowercase : Any = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __lowercase : str = c ^ (d & (b ^ c)) __lowercase : Dict = (5 * i + 1) % 16 elif i <= 47: __lowercase : List[Any] = b ^ c ^ d __lowercase : Tuple = (3 * i + 5) % 16 else: __lowercase : int = c ^ (b | not_aa(lowerCAmelCase_ )) __lowercase : List[Any] = (7 * i) % 16 __lowercase : Optional[int] = (f + a + added_consts[i] + block_words[g]) % 2**32 __lowercase : List[Any] = d __lowercase : str = c __lowercase : Dict = b __lowercase : int = sum_aa(lowerCAmelCase_ , left_rotate_aa(lowerCAmelCase_ , shift_amounts[i] ) ) # Add hashed chunk to running total __lowercase : List[str] = sum_aa(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Any = sum_aa(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Union[str, Any] = sum_aa(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : List[Any] = sum_aa(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Dict = reformat_hex(lowerCAmelCase_ ) + reformat_hex(lowerCAmelCase_ ) + reformat_hex(lowerCAmelCase_ ) + reformat_hex(lowerCAmelCase_ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
701
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowerCamelCase : Union[str, Any] = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , __a : List[str] , __a : Optional[int]=16 , __a : Optional[Any]=13 , __a : str=7 , __a : List[str]=14 , __a : Any=10 , __a : str=19 , __a : int=5 , __a : Any=4 , __a : List[Any]=True , __a : Tuple=16 , __a : Dict=2 , __a : Tuple=4 , __a : int=4 , __a : List[Any]="gelu" , __a : Tuple=0.1 , __a : List[str]=0.1 , __a : int=[1, 2, 3, 4, 5] , __a : str=25 , __a : Any=5 , ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = d_model __lowercase : Dict = parent __lowercase : Tuple = batch_size __lowercase : Optional[int] = prediction_length __lowercase : List[str] = context_length __lowercase : Any = cardinality __lowercase : str = num_time_features __lowercase : Optional[int] = lags_sequence __lowercase : Optional[Any] = embedding_dimension __lowercase : List[Any] = is_training __lowercase : List[str] = hidden_size __lowercase : int = num_hidden_layers __lowercase : Any = num_attention_heads __lowercase : List[Any] = intermediate_size __lowercase : int = hidden_act __lowercase : str = hidden_dropout_prob __lowercase : List[Any] = attention_probs_dropout_prob __lowercase : str = context_length __lowercase : int = prediction_length + label_length __lowercase : Union[str, Any] = label_length __lowercase : Optional[int] = moving_average __lowercase : Optional[Any] = autocorrelation_factor def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def lowerCAmelCase ( self : Tuple , __a : str ) -> int: """simple docstring""" __lowercase : Any = config.context_length + max(config.lags_sequence ) __lowercase : Any = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __lowercase : Optional[int] = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __lowercase : List[str] = floats_tensor([self.batch_size, _past_length] ) __lowercase : List[str] = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __lowercase : Dict = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __lowercase : str = floats_tensor([self.batch_size, config.prediction_length] ) __lowercase : List[str] = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.get_config() __lowercase : Any = self.prepare_autoformer_inputs_dict(__a ) return config, inputs_dict def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase , __lowercase : List[str] = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase ( self : Optional[Any] , __a : Tuple , __a : Optional[int] ) -> Any: """simple docstring""" __lowercase : List[str] = AutoformerModel(config=__a ).to(__a ).eval() __lowercase : Optional[int] = model(**__a ) __lowercase : Dict = outputs.encoder_last_hidden_state __lowercase : Tuple = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : List[str] = model.get_encoder() encoder.save_pretrained(__a ) __lowercase : List[str] = AutoformerEncoder.from_pretrained(__a ).to(__a ) __lowercase , __lowercase , __lowercase , __lowercase , __lowercase : Any = model.create_network_inputs(**__a ) __lowercase , __lowercase : Any = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __lowercase : Optional[Any] = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __lowercase : Union[str, Any] = encoder(inputs_embeds=__a )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) __lowercase : str = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __lowercase : Optional[int] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __lowercase : Any = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __lowercase : Dict = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : Optional[Any] = model.get_decoder() decoder.save_pretrained(__a ) __lowercase : Tuple = AutoformerDecoder.from_pretrained(__a ).to(__a ) __lowercase : str = decoder( trend=__a , inputs_embeds=__a , encoder_hidden_states=__a , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[str] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _A : List[Any] = (AutoformerForPrediction,) if is_torch_available() else () _A : Any = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} _A : Dict = False _A : Tuple = False _A : Optional[int] = False _A : Tuple = False _A : str = False _A : Union[str, Any] = False def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" __lowercase : List[str] = AutoformerModelTester(self ) __lowercase : Dict = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowercase : Dict = model_class(__a ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowercase , __lowercase : Tuple = model_class.from_pretrained(__a , output_loading_info=__a ) self.assertEqual(info["""missing_keys"""] , [] ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__a ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def lowerCAmelCase ( self : str ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : Any = inspect.signature(getattr(__a , """forward""" ) ) # The main input is the name of the argument after `self` __lowercase : Optional[int] = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , __a ) def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Dict = model_class(__a ) __lowercase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : Any = [*signature.parameters.keys()] __lowercase : int = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(__a )] , __a ) def lowerCAmelCase ( self : int ) -> int: """simple docstring""" __lowercase , __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : int = True __lowercase : Tuple = getattr(self.model_tester , """seq_length""" , __a ) __lowercase : Union[str, Any] = getattr(self.model_tester , """decoder_seq_length""" , __a ) __lowercase : List[str] = getattr(self.model_tester , """encoder_seq_length""" , __a ) __lowercase : List[Any] = getattr(self.model_tester , """d_model""" , __a ) __lowercase : Optional[int] = getattr(self.model_tester , """num_attention_heads""" , __a ) __lowercase : Any = d_model // num_attention_heads for model_class in self.all_model_classes: __lowercase : Dict = True __lowercase : List[str] = False __lowercase : Optional[int] = True __lowercase : str = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : int = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase : Optional[int] = True __lowercase : List[str] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Union[str, Any] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Dict = outputs.encoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __lowercase : Tuple = len(__a ) __lowercase : str = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__a , __a ) # decoder attentions __lowercase : List[Any] = outputs.decoder_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __lowercase : Optional[int] = outputs.cross_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __lowercase : Tuple = True __lowercase : Union[str, Any] = True __lowercase : Tuple = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Any = model(**self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + 2 , len(__a ) ) __lowercase : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def snake_case_ ( lowerCAmelCase_ : Optional[int]="train-batch.pt" ): __lowercase : Dict = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=lowerCAmelCase_ , repo_type="""dataset""" ) __lowercase : Optional[int] = torch.load(lowerCAmelCase_ , map_location=lowerCAmelCase_ ) return batch @require_torch @slow class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" __lowercase : List[str] = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : List[Any] = prepare_batch() with torch.no_grad(): __lowercase : Tuple = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] __lowercase : List[str] = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , __a ) __lowercase : Optional[int] = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" __lowercase : int = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : List[str] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowercase : Optional[Any] = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state __lowercase : List[str] = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , __a ) __lowercase : Optional[int] = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : Optional[int] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowercase : int = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) __lowercase : int = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , __a ) __lowercase : Optional[Any] = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=__a ) __lowercase : Dict = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __a , rtol=1E-1 ) )
649
0
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : str = LongformerTokenizer _A : int = True _A : Optional[int] = LongformerTokenizerFast _A : int = True def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __lowercase : Union[str, Any] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Any = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __lowercase : Optional[int] = {"""unk_token""": """<unk>"""} __lowercase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__a ) ) def lowerCAmelCase ( self : Optional[int] , **__a : Optional[Any] ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Tuple , **__a : Tuple ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : str , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = """lower newer""" __lowercase : int = """lower newer""" return input_text, output_text def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowercase : Dict = """lower newer""" __lowercase : Optional[Any] = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] __lowercase : str = tokenizer.tokenize(__a ) # , add_prefix_space=True) self.assertListEqual(__a , __a ) __lowercase : int = tokens + [tokenizer.unk_token] __lowercase : str = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=__a ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=__a ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : Any = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" ) __lowercase : Optional[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=__a ) __lowercase : List[str] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__a ) __lowercase : Optional[Any] = tokenizer.encode( """sequence builders""" , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Union[str, Any] = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : List[Any] = tokenizer.build_inputs_with_special_tokens(__a ) __lowercase : Any = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() __lowercase : Tuple = """Encode this sequence.""" __lowercase : Optional[Any] = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments __lowercase : Dict = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__a , __a ) __lowercase : List[str] = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__a , __a ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) __lowercase : str = tokenizer.encode(__a , add_special_tokens=__a ) __lowercase : Dict = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__a , __a ) # Testing spaces after special tokens __lowercase : List[Any] = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(__a , lstrip=__a , rstrip=__a )} ) # mask token has a left space __lowercase : Dict = tokenizer.convert_tokens_to_ids(__a ) __lowercase : List[str] = """Encode <mask> sequence""" __lowercase : List[str] = """Encode <mask>sequence""" __lowercase : Union[str, Any] = tokenizer.encode(__a ) __lowercase : Dict = encoded.index(__a ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__a , __a ) __lowercase : int = tokenizer.encode(__a ) __lowercase : Union[str, Any] = encoded.index(__a ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__a , __a ) def lowerCAmelCase ( self : int ) -> str: """simple docstring""" pass def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) __lowercase : List[Any] = self.tokenizer_class.from_pretrained(__a , **__a ) __lowercase : Optional[Any] = """A, <mask> AllenNLP sentence.""" __lowercase : Union[str, Any] = tokenizer_r.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) __lowercase : Optional[Any] = tokenizer_p.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) __lowercase : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __lowercase : str = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __lowercase : Dict = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __lowercase : Any = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""trim_offsets"""] , __a ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : List[str] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` __lowercase : int = F"{text_of_1_token} {text_of_1_token}" __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Any = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) __lowercase : str = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Tuple = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) __lowercase : Optional[int] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : str = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) __lowercase : str = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : int = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) __lowercase : Any = F" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : str = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ) + 1, 1 + len(__a ) + 1 + len(__a )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Dict = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Tuple = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , )
702
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowerCAmelCase ( __a , __a ): '''simple docstring''' _A : str = 1 @register_to_config def __init__( self : Optional[int] , __a : Tuple=2000 , __a : List[str]=0.1 , __a : str=20 , __a : Optional[int]=1E-3 ) -> int: """simple docstring""" __lowercase : Tuple = None __lowercase : Union[str, Any] = None __lowercase : int = None def lowerCAmelCase ( self : List[Any] , __a : Any , __a : Union[str, torch.device] = None ) -> str: """simple docstring""" __lowercase : List[str] = torch.linspace(1 , self.config.sampling_eps , __a , device=__a ) def lowerCAmelCase ( self : Tuple , __a : List[Any] , __a : Tuple , __a : int , __a : Optional[int]=None ) -> str: """simple docstring""" if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __lowercase : Dict = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __lowercase : int = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __lowercase : Union[str, Any] = std.flatten() while len(std.shape ) < len(score.shape ): __lowercase : Optional[Any] = std.unsqueeze(-1 ) __lowercase : List[Any] = -score / std # compute __lowercase : Dict = -1.0 / len(self.timesteps ) __lowercase : int = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __lowercase : List[Any] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __lowercase : Union[str, Any] = beta_t.unsqueeze(-1 ) __lowercase : List[str] = -0.5 * beta_t * x __lowercase : int = torch.sqrt(__a ) __lowercase : Union[str, Any] = drift - diffusion**2 * score __lowercase : Optional[Any] = x + drift * dt # add noise __lowercase : List[str] = randn_tensor(x.shape , layout=x.layout , generator=__a , device=x.device , dtype=x.dtype ) __lowercase : str = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Tuple ) -> Optional[int]: """simple docstring""" return self.config.num_train_timesteps
649
0
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowerCamelCase : int = 2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowerCamelCase : Optional[int] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowerCamelCase : int = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : List[Any] = len([g for position, g in enumerate(lowerCAmelCase_ ) if g == main_target[position]] ) return (item, float(lowerCAmelCase_ )) def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Tuple = random.randint(0 , len(lowerCAmelCase_ ) - 1 ) __lowercase : Any = parent_a[:random_slice] + parent_a[random_slice:] __lowercase : int = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : list[str] ): __lowercase : Union[str, Any] = list(lowerCAmelCase_ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: __lowercase : Tuple = random.choice(lowerCAmelCase_ ) return "".join(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : tuple[str, float] , lowerCAmelCase_ : list[tuple[str, float]] , lowerCAmelCase_ : list[str] , ): __lowercase : List[Any] = [] # Generate more children proportionally to the fitness score. __lowercase : Optional[Any] = int(parent_a[1] * 100 ) + 1 __lowercase : Optional[int] = 10 if child_n >= 10 else child_n for _ in range(lowerCAmelCase_ ): __lowercase : Union[str, Any] = population_score[random.randint(0 , lowerCAmelCase_ )][0] __lowercase : str = crossover(parent_a[0] , lowerCAmelCase_ ) # Append new string to the population list. pop.append(mutate(lowerCAmelCase_ , lowerCAmelCase_ ) ) pop.append(mutate(lowerCAmelCase_ , lowerCAmelCase_ ) ) return pop def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : list[str] , lowerCAmelCase_ : bool = True ): # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: __lowercase : str = F"{N_POPULATION} must be bigger than {N_SELECTED}" raise ValueError(lowerCAmelCase_ ) # Verify that the target contains no genes besides the ones inside genes variable. __lowercase : Union[str, Any] = sorted({c for c in target if c not in genes} ) if not_in_genes_list: __lowercase : List[Any] = F"{not_in_genes_list} is not in genes list, evolution cannot converge" raise ValueError(lowerCAmelCase_ ) # Generate random starting population. __lowercase : Optional[int] = [] for _ in range(lowerCAmelCase_ ): population.append("""""".join([random.choice(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) )] ) ) # Just some logs to know what the algorithms is doing. __lowercase : List[Any] = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowerCAmelCase_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. __lowercase : Union[str, Any] = [evaluate(lowerCAmelCase_ , lowerCAmelCase_ ) for item in population] # Check if there is a matching evolution. __lowercase : Optional[Any] = sorted(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : x[1] , reverse=lowerCAmelCase_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F"\nGeneration: {generation}" F"\nTotal Population:{total_population}" F"\nBest score: {population_score[0][1]}" F"\nBest string: {population_score[0][0]}" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. __lowercase : List[str] = population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowerCAmelCase_ ) # Normalize population score to be between 0 and 1. __lowercase : Any = [ (item, score / len(lowerCAmelCase_ )) for item, score in population_score ] # This is selection for i in range(lowerCAmelCase_ ): population.extend(select(population_score[int(lowerCAmelCase_ )] , lowerCAmelCase_ , lowerCAmelCase_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowerCAmelCase_ ) > N_POPULATION: break if __name__ == "__main__": lowerCamelCase : Any = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) lowerCamelCase : Union[str, Any] = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) lowerCamelCase : List[str] = basic(target_str, genes_list) print( f'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
703
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : str = LongformerTokenizer _A : int = True _A : Optional[int] = LongformerTokenizerFast _A : int = True def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __lowercase : Union[str, Any] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Any = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __lowercase : Optional[int] = {"""unk_token""": """<unk>"""} __lowercase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__a ) ) def lowerCAmelCase ( self : Optional[int] , **__a : Optional[Any] ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Tuple , **__a : Tuple ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : str , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = """lower newer""" __lowercase : int = """lower newer""" return input_text, output_text def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowercase : Dict = """lower newer""" __lowercase : Optional[Any] = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] __lowercase : str = tokenizer.tokenize(__a ) # , add_prefix_space=True) self.assertListEqual(__a , __a ) __lowercase : int = tokens + [tokenizer.unk_token] __lowercase : str = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=__a ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=__a ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : Any = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" ) __lowercase : Optional[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=__a ) __lowercase : List[str] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__a ) __lowercase : Optional[Any] = tokenizer.encode( """sequence builders""" , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Union[str, Any] = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : List[Any] = tokenizer.build_inputs_with_special_tokens(__a ) __lowercase : Any = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() __lowercase : Tuple = """Encode this sequence.""" __lowercase : Optional[Any] = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments __lowercase : Dict = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__a , __a ) __lowercase : List[str] = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__a , __a ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) __lowercase : str = tokenizer.encode(__a , add_special_tokens=__a ) __lowercase : Dict = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__a , __a ) # Testing spaces after special tokens __lowercase : List[Any] = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(__a , lstrip=__a , rstrip=__a )} ) # mask token has a left space __lowercase : Dict = tokenizer.convert_tokens_to_ids(__a ) __lowercase : List[str] = """Encode <mask> sequence""" __lowercase : List[str] = """Encode <mask>sequence""" __lowercase : Union[str, Any] = tokenizer.encode(__a ) __lowercase : Dict = encoded.index(__a ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__a , __a ) __lowercase : int = tokenizer.encode(__a ) __lowercase : Union[str, Any] = encoded.index(__a ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__a , __a ) def lowerCAmelCase ( self : int ) -> str: """simple docstring""" pass def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) __lowercase : List[Any] = self.tokenizer_class.from_pretrained(__a , **__a ) __lowercase : Optional[Any] = """A, <mask> AllenNLP sentence.""" __lowercase : Union[str, Any] = tokenizer_r.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) __lowercase : Optional[Any] = tokenizer_p.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) __lowercase : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __lowercase : str = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __lowercase : Dict = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __lowercase : Any = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""trim_offsets"""] , __a ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : List[str] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` __lowercase : int = F"{text_of_1_token} {text_of_1_token}" __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Any = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) __lowercase : str = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Tuple = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) __lowercase : Optional[int] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : str = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) __lowercase : str = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : int = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) __lowercase : Any = F" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : str = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ) + 1, 1 + len(__a ) + 1 + len(__a )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Dict = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Tuple = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , )
649
0
def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any] ): if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(lowerCAmelCase_ , n - 1 , lowerCAmelCase_ ) * a) % mod else: __lowercase : Optional[Any] = binary_exponentiation(lowerCAmelCase_ , n / 2 , lowerCAmelCase_ ) return (b * b) % mod # a prime number lowerCamelCase : Any = 7_01 lowerCamelCase : Optional[int] = 10_00_00_00_00 lowerCamelCase : Union[str, Any] = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
704
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Dict , __a : Union[str, Any]=13 , __a : Dict=7 , __a : Dict=True , __a : Dict=True , __a : Any=True , __a : List[str]=True , __a : int=99 , __a : Optional[int]=32 , __a : str=2 , __a : int=4 , __a : List[str]=37 , __a : Union[str, Any]="gelu" , __a : Union[str, Any]=0.1 , __a : Union[str, Any]=0.1 , __a : List[Any]=512 , __a : int=16 , __a : Union[str, Any]=2 , __a : Union[str, Any]=0.02 , __a : List[str]=3 , __a : Dict=4 , __a : Optional[Any]=None , ) -> Optional[Any]: """simple docstring""" __lowercase : Any = parent __lowercase : Tuple = 13 __lowercase : Dict = 7 __lowercase : List[Any] = True __lowercase : Tuple = True __lowercase : List[str] = True __lowercase : Any = True __lowercase : Optional[int] = 99 __lowercase : str = 384 __lowercase : Optional[Any] = 2 __lowercase : Dict = 4 __lowercase : str = 37 __lowercase : Optional[int] = """gelu""" __lowercase : int = 0.1 __lowercase : Union[str, Any] = 0.1 __lowercase : Tuple = 512 __lowercase : Tuple = 16 __lowercase : Optional[int] = 2 __lowercase : Optional[Any] = 0.02 __lowercase : Dict = 3 __lowercase : Union[str, Any] = 4 __lowercase : Tuple = 128 __lowercase : Optional[Any] = 2 __lowercase : int = 9 __lowercase : List[Any] = 1 __lowercase : Union[str, Any] = None def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" __lowercase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : Optional[Any] = None if self.use_input_mask: __lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : Dict = None if self.use_token_type_ids: __lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase : Optional[Any] = None __lowercase : str = None __lowercase : Tuple = None if self.use_labels: __lowercase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : str = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : Optional[int] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Dict , __a : List[Any] , __a : List[str] , __a : Union[str, Any] , __a : str , __a : Union[str, Any] , __a : Tuple , __a : Tuple ) -> Dict: """simple docstring""" __lowercase : Dict = TFConvBertModel(config=__a ) __lowercase : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowercase : Any = [input_ids, input_mask] __lowercase : Dict = model(__a ) __lowercase : str = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : Any , __a : Tuple , __a : Union[str, Any] , __a : str , __a : Dict , __a : str ) -> Dict: """simple docstring""" __lowercase : Optional[int] = TFConvBertForMaskedLM(config=__a ) __lowercase : List[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : Any = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[int] , __a : int , __a : Any , __a : Optional[int] , __a : int , __a : int , __a : List[Any] , __a : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase : str = self.num_labels __lowercase : List[Any] = TFConvBertForSequenceClassification(config=__a ) __lowercase : int = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : List[str] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Optional[int] , __a : Any , __a : Optional[Any] , __a : int , __a : Optional[int] , __a : Tuple , __a : int , __a : int ) -> Dict: """simple docstring""" __lowercase : Tuple = self.num_choices __lowercase : Dict = TFConvBertForMultipleChoice(config=__a ) __lowercase : List[str] = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : int = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : str = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowercase : str = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __lowercase : Dict = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : List[str] , __a : str , __a : List[str] , __a : List[str] , __a : List[str] , __a : Any , __a : Tuple , __a : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = self.num_labels __lowercase : Tuple = TFConvBertForTokenClassification(config=__a ) __lowercase : Dict = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : str = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : List[Any] , __a : Optional[int] , __a : List[str] , __a : Optional[Any] , __a : int , __a : Tuple , __a : Any , __a : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Any = TFConvBertForQuestionAnswering(config=__a ) __lowercase : str = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : List[Any] = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : Tuple = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : int = config_and_inputs __lowercase : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Dict = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _A : str = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _A : Union[str, Any] = False _A : List[str] = False _A : Dict = False def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : int = TFConvBertModelTester(self ) __lowercase : Tuple = ConfigTester(self , config_class=__a , hidden_size=37 ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__a ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Union[str, Any] = True __lowercase : List[Any] = True if hasattr(__a , """use_cache""" ): __lowercase : Optional[Any] = True __lowercase : List[str] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) __lowercase : int = getattr(self.model_tester , """key_length""" , __a ) for model_class in self.all_model_classes: __lowercase : Optional[Any] = self._prepare_for_class(__a , __a ) __lowercase : Tuple = model_class(__a ) __lowercase : Tuple = len(model(__a ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a , saved_model=__a ) __lowercase : List[Any] = os.path.join(__a , """saved_model""" , """1""" ) __lowercase : str = tf.keras.models.load_model(__a ) __lowercase : Optional[int] = model(__a ) if self.is_encoder_decoder: __lowercase : Union[str, Any] = outputs["""encoder_hidden_states"""] __lowercase : Union[str, Any] = outputs["""encoder_attentions"""] else: __lowercase : Union[str, Any] = outputs["""hidden_states"""] __lowercase : List[str] = outputs["""attentions"""] self.assertEqual(len(__a ) , __a ) __lowercase : List[Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : str = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) self.assertIsNotNone(__a ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : List[str] = True __lowercase : List[Any] = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length ) __lowercase : Optional[int] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) __lowercase : List[str] = getattr(self.model_tester , """key_length""" , __a ) __lowercase : List[Any] = getattr(self.model_tester , """key_length""" , __a ) def check_decoder_attentions_output(__a : List[str] ): __lowercase : Union[str, Any] = len(__a ) self.assertEqual(out_len % 2 , 0 ) __lowercase : Any = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__a : str ): __lowercase : str = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __lowercase : int = True __lowercase : Any = False __lowercase : List[Any] = model_class(__a ) __lowercase : Tuple = model(self._prepare_for_class(__a , __a ) ) __lowercase : Dict = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: __lowercase : Any = model_class(__a ) __lowercase : List[str] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __lowercase : Dict = True __lowercase : Optional[Any] = model_class(__a ) __lowercase : Optional[int] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine __lowercase : List[str] = True __lowercase : List[Any] = True __lowercase : Any = model_class(__a ) __lowercase : Optional[int] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @require_tf class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) __lowercase : str = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowercase : Tuple = model(__a )[0] __lowercase : Any = [1, 6, 768] self.assertEqual(output.shape , __a ) __lowercase : Optional[Any] = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-4 )
649
0
def snake_case_ ( lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 7 , lowerCAmelCase_ : int = 1000000 ): __lowercase : Dict = 0 __lowercase : Optional[Any] = 1 for current_denominator in range(1 , limit + 1 ): __lowercase : Optional[int] = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: __lowercase : Any = current_numerator __lowercase : str = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_00_00_00))
705
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : int , *__a : Dict , **__a : Optional[Any] ) -> None: """simple docstring""" warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , __a , ) super().__init__(*__a , **__a )
649
0
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() lowerCamelCase : Dict = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model lowerCamelCase : str = { # fairseq: '''wmt19-ru-en''': {'''length_penalty''': 1.1}, '''wmt19-en-ru''': {'''length_penalty''': 1.15}, '''wmt19-en-de''': {'''length_penalty''': 1.0}, '''wmt19-de-en''': {'''length_penalty''': 1.1}, # allenai: '''wmt16-en-de-dist-12-1''': {'''length_penalty''': 0.6}, '''wmt16-en-de-dist-6-1''': {'''length_penalty''': 0.6}, '''wmt16-en-de-12-1''': {'''length_penalty''': 0.8}, '''wmt19-de-en-6-6-base''': {'''length_penalty''': 0.6}, '''wmt19-de-en-6-6-big''': {'''length_penalty''': 0.6}, } # this remaps the different models to their organization names lowerCamelCase : Tuple = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowerCamelCase : str = '''facebook''' for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: lowerCamelCase : Optional[Any] = '''allenai''' def snake_case_ ( lowerCAmelCase_ : int ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} __lowercase : Optional[Any] = dict((re.sub(r"""@@$""" , """""" , lowerCAmelCase_ ), v) if k.endswith("""@@""" ) else (re.sub(r"""$""" , """</w>""" , lowerCAmelCase_ ), v) for k, v in d.items() ) __lowercase : Any = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[F"{k}</w>"] __lowercase : Optional[int] = d[k] # restore return da def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : Any ): # prep assert os.path.exists(lowerCAmelCase_ ) os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) print(F"Writing results to {pytorch_dump_folder_path}" ) # handle various types of models __lowercase : Tuple = basename(lowerCAmelCase_ ) __lowercase : str = dirname(lowerCAmelCase_ ) __lowercase : Any = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel __lowercase : Optional[Any] = cls.hub_models() __lowercase : Any = {"""bpe""": """fastbpe""", """tokenizer""": """moses"""} __lowercase : List[str] = """.""" # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(F"using checkpoint {checkpoint_file}" ) __lowercase : List[Any] = hub_utils.from_pretrained( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , archive_map=lowerCAmelCase_ , **lowerCAmelCase_ ) __lowercase : Union[str, Any] = vars(chkpt["""args"""]["""model"""] ) __lowercase : Optional[int] = args["""source_lang"""] __lowercase : Tuple = args["""target_lang"""] __lowercase : Optional[int] = dirname(lowerCAmelCase_ ) __lowercase : List[str] = basename(lowerCAmelCase_ ) # dicts __lowercase : List[Any] = os.path.join(lowerCAmelCase_ , F"dict.{src_lang}.txt" ) __lowercase : Optional[Any] = os.path.join(lowerCAmelCase_ , F"dict.{tgt_lang}.txt" ) __lowercase : List[str] = Dictionary.load(lowerCAmelCase_ ) __lowercase : Tuple = rewrite_dict_keys(src_dict.indices ) __lowercase : int = len(lowerCAmelCase_ ) __lowercase : List[Any] = os.path.join(lowerCAmelCase_ , """vocab-src.json""" ) print(F"Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records" ) with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ , indent=lowerCAmelCase_ ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab __lowercase : Optional[Any] = True for k in src_vocab.keys(): if not k.islower(): __lowercase : Any = False break __lowercase : str = Dictionary.load(lowerCAmelCase_ ) __lowercase : List[Any] = rewrite_dict_keys(tgt_dict.indices ) __lowercase : Dict = len(lowerCAmelCase_ ) __lowercase : Optional[int] = os.path.join(lowerCAmelCase_ , """vocab-tgt.json""" ) print(F"Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records" ) with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ , indent=lowerCAmelCase_ ) ) # merges_file (bpecodes) __lowercase : List[str] = os.path.join(lowerCAmelCase_ , VOCAB_FILES_NAMES["""merges_file"""] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" __lowercase : Tuple = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) if os.path.exists(lowerCAmelCase_ ): break with open(lowerCAmelCase_ , encoding="""utf-8""" ) as fin: __lowercase : Optional[Any] = fin.read() __lowercase : str = re.sub(r""" \d+$""" , """""" , lowerCAmelCase_ , 0 , re.M ) # remove frequency number print(F"Generating {merges_file}" ) with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""" ) as fout: fout.write(lowerCAmelCase_ ) # model config __lowercase : int = os.path.join(lowerCAmelCase_ , """config.json""" ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", F"need to extend tokenizer to support bpe={args['bpe']}" assert args["tokenizer"] == "moses", F"need to extend tokenizer to support bpe={args['tokenizer']}" __lowercase : Any = { """architectures""": ["""FSMTForConditionalGeneration"""], """model_type""": """fsmt""", """activation_dropout""": args["""activation_dropout"""], """activation_function""": """relu""", """attention_dropout""": args["""attention_dropout"""], """d_model""": args["""decoder_embed_dim"""], """dropout""": args["""dropout"""], """init_std""": 0.02, """max_position_embeddings""": args["""max_source_positions"""], """num_hidden_layers""": args["""encoder_layers"""], """src_vocab_size""": src_vocab_size, """tgt_vocab_size""": tgt_vocab_size, """langs""": [src_lang, tgt_lang], """encoder_attention_heads""": args["""encoder_attention_heads"""], """encoder_ffn_dim""": args["""encoder_ffn_embed_dim"""], """encoder_layerdrop""": args["""encoder_layerdrop"""], """encoder_layers""": args["""encoder_layers"""], """decoder_attention_heads""": args["""decoder_attention_heads"""], """decoder_ffn_dim""": args["""decoder_ffn_embed_dim"""], """decoder_layerdrop""": args["""decoder_layerdrop"""], """decoder_layers""": args["""decoder_layers"""], """bos_token_id""": 0, """pad_token_id""": 1, """eos_token_id""": 2, """is_encoder_decoder""": True, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_all_embeddings"""], } # good hparam defaults to start with __lowercase : Any = 5 __lowercase : List[str] = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: __lowercase : List[Any] = best_score_hparams[model_dir]["""length_penalty"""] else: __lowercase : Optional[Any] = 1.0 print(F"Generating {fsmt_model_config_file}" ) with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ , indent=lowerCAmelCase_ ) ) # tokenizer config __lowercase : Dict = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : List[str] = { """langs""": [src_lang, tgt_lang], """model_max_length""": 1024, """do_lower_case""": do_lower_case, } print(F"Generating {fsmt_tokenizer_config_file}" ) with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ , indent=lowerCAmelCase_ ) ) # model __lowercase : List[Any] = chkpt["""models"""][0] __lowercase : Optional[Any] = model.state_dict() # rename keys to start with 'model.' __lowercase : int = OrderedDict(("""model.""" + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys __lowercase : Union[str, Any] = [ """model.model""", """model.encoder.version""", """model.decoder.version""", """model.encoder_embed_tokens.weight""", """model.decoder_embed_tokens.weight""", """model.encoder.embed_positions._float_tensor""", """model.decoder.embed_positions._float_tensor""", ] for k in ignore_keys: model_state_dict.pop(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Optional[int] = FSMTConfig.from_pretrained(lowerCAmelCase_ ) __lowercase : List[Any] = FSMTForConditionalGeneration(lowerCAmelCase_ ) # check that it loads ok model_new.load_state_dict(lowerCAmelCase_ , strict=lowerCAmelCase_ ) # save __lowercase : int = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) print(F"Generating {pytorch_weights_dump_path}" ) torch.save(lowerCAmelCase_ , lowerCAmelCase_ ) print("""Conversion is done!""" ) print("""\nLast step is to upload the files to s3""" ) print(F"cd {data_root}" ) print(F"transformers-cli upload {model_dir}" ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fsmt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCamelCase : Dict = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
706
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Optional[int] = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() __lowercase : List[str] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Dict = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } __lowercase : List[str] = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 16000, """return_attention_mask""": False, """do_normalize""": True, } __lowercase : Tuple = tempfile.mkdtemp() __lowercase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : str = os.path.join(self.tmpdirname , __a ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) # load decoder from hub __lowercase : Optional[int] = """hf-internal-testing/ngram-beam-search-decoder""" def lowerCAmelCase ( self : Optional[Any] , **__a : Dict ) -> Tuple: """simple docstring""" __lowercase : Union[str, Any] = self.add_kwargs_tokens_map.copy() kwargs.update(__a ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : str , **__a : int ) -> Tuple: """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Union[str, Any] , **__a : Union[str, Any] ) -> List[Any]: """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__a ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() __lowercase : Any = self.get_feature_extractor() __lowercase : str = self.get_decoder() __lowercase : Tuple = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) processor.save_pretrained(self.tmpdirname ) __lowercase : Tuple = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __a ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __a ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __a ) def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Any = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __lowercase : str = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : List[str] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(__a , """include""" ): WavaVecaProcessorWithLM( tokenizer=__a , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : List[Any] = self.get_feature_extractor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : int = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Optional[int] = floats_list((3, 1000) ) __lowercase : List[Any] = feature_extractor(__a , return_tensors="""np""" ) __lowercase : List[str] = processor(__a , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : List[Any] = self.get_feature_extractor() __lowercase : int = self.get_tokenizer() __lowercase : Dict = self.get_decoder() __lowercase : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Dict = """This is a test string""" __lowercase : Any = processor(text=__a ) __lowercase : Dict = tokenizer(__a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase ( self : str , __a : Tuple=(2, 10, 16) , __a : int=77 ) -> Optional[Any]: """simple docstring""" np.random.seed(__a ) return np.random.rand(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : List[str] = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : str = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : List[str] = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __lowercase : Optional[Any] = processor.decode(__a ) __lowercase : Any = decoder.decode_beams(__a )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def lowerCAmelCase ( self : List[str] , __a : Dict ) -> List[Any]: """simple docstring""" __lowercase : str = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : Optional[int] = self.get_decoder() __lowercase : Any = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Optional[Any] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __lowercase : Union[str, Any] = processor.batch_decode(__a ) else: with get_context(__a ).Pool() as pool: __lowercase : Optional[Any] = processor.batch_decode(__a , __a ) __lowercase : Union[str, Any] = list(__a ) with get_context("""fork""" ).Pool() as p: __lowercase : Optional[Any] = decoder.decode_beams_batch(__a , __a ) __lowercase , __lowercase , __lowercase : Any = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__a , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(__a , decoded_processor.logit_score ) self.assertListEqual(__a , decoded_processor.lm_score ) def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase : int = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : List[str] = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Dict = self._get_dummy_logits() __lowercase : Tuple = 15 __lowercase : Tuple = -20.0 __lowercase : Dict = -4.0 __lowercase : Dict = processor.batch_decode( __a , beam_width=__a , beam_prune_logp=__a , token_min_logp=__a , ) __lowercase : Tuple = decoded_processor_out.text __lowercase : List[Any] = list(__a ) with get_context("""fork""" ).Pool() as pool: __lowercase : Any = decoder.decode_beams_batch( __a , __a , beam_width=__a , beam_prune_logp=__a , token_min_logp=__a , ) __lowercase : Optional[Any] = [d[0][0] for d in decoded_decoder_out] __lowercase : Optional[int] = [d[0][2] for d in decoded_decoder_out] __lowercase : Optional[int] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__a , __a ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , __a ) self.assertTrue(np.array_equal(__a , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , __a , atol=1E-3 ) ) self.assertTrue(np.array_equal(__a , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , __a , atol=1E-3 ) ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase : str = self.get_feature_extractor() __lowercase : List[Any] = self.get_tokenizer() __lowercase : List[Any] = self.get_decoder() __lowercase : Dict = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : List[Any] = self._get_dummy_logits() __lowercase : Optional[int] = 2.0 __lowercase : Tuple = 5.0 __lowercase : Optional[Any] = -20.0 __lowercase : Tuple = True __lowercase : Union[str, Any] = processor.batch_decode( __a , alpha=__a , beta=__a , unk_score_offset=__a , lm_score_boundary=__a , ) __lowercase : Any = decoded_processor_out.text __lowercase : List[Any] = list(__a ) decoder.reset_params( alpha=__a , beta=__a , unk_score_offset=__a , lm_score_boundary=__a , ) with get_context("""fork""" ).Pool() as pool: __lowercase : Tuple = decoder.decode_beams_batch( __a , __a , ) __lowercase : int = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__a , __a ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , __a ) __lowercase : str = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , __a ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] __lowercase : str = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __lowercase : int = os.listdir(__a ) __lowercase : Optional[Any] = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = snapshot_download("""hf-internal-testing/processor_with_lm""" ) __lowercase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(__a ) __lowercase : Dict = processor.decoder.model_container[processor.decoder._model_key] __lowercase : List[Any] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __lowercase : Dict = os.listdir(__a ) __lowercase : List[Any] = os.listdir(__a ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" __lowercase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Dict = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Any = floats_list((3, 1000) ) __lowercase : List[str] = processor_wavaveca(__a , return_tensors="""np""" ) __lowercase : List[Any] = processor_auto(__a , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) __lowercase : List[str] = self._get_dummy_logits() __lowercase : List[str] = processor_wavaveca.batch_decode(__a ) __lowercase : Optional[int] = processor_auto.batch_decode(__a ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Any = self.get_feature_extractor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : Dict = self.get_decoder() __lowercase : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def lowerCAmelCase ( __a : Union[str, Any] , __a : List[Any] ) -> Dict: """simple docstring""" __lowercase : Any = [d[key] for d in offsets] return retrieved_list def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" __lowercase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Optional[Any] = self._get_dummy_logits()[0] __lowercase : Dict = processor.decode(__a , output_word_offsets=__a ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__a , __a ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : List[str] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Any = self._get_dummy_logits() __lowercase : Dict = processor.batch_decode(__a , output_word_offsets=__a ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__a , __a ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(__a , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" import torch __lowercase : Any = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=__a ) __lowercase : str = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=16000 ) ) __lowercase : Tuple = iter(__a ) __lowercase : Union[str, Any] = next(__a ) __lowercase : int = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) __lowercase : int = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __lowercase : Union[str, Any] = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): __lowercase : List[Any] = model(__a ).logits.cpu().numpy() __lowercase : Tuple = processor.decode(logits[0] , output_word_offsets=__a ) __lowercase : int = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __lowercase : Optional[Any] = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] __lowercase : str = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(__a , """word""" ) ) , __a ) self.assertEqual(""" """.join(self.get_from_offsets(__a , """word""" ) ) , output.text ) # output times __lowercase : Tuple = torch.tensor(self.get_from_offsets(__a , """start_time""" ) ) __lowercase : Dict = torch.tensor(self.get_from_offsets(__a , """end_time""" ) ) # fmt: off __lowercase : List[Any] = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) __lowercase : Optional[int] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(__a , __a , atol=0.01 ) ) self.assertTrue(torch.allclose(__a , __a , atol=0.01 ) )
649
0
class lowerCAmelCase ( __a ): '''simple docstring''' pass class lowerCAmelCase ( __a ): '''simple docstring''' pass class lowerCAmelCase : '''simple docstring''' def __init__( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : Dict = [ [], [], [], ] def lowerCAmelCase ( self : str , __a : int , __a : int ) -> None: """simple docstring""" try: if len(self.queues[priority] ) >= 100: raise OverflowError("""Maximum queue size is 100""" ) self.queues[priority].append(__a ) except IndexError: raise ValueError("""Valid priorities are 0, 1, and 2""" ) def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("""All queues are empty""" ) def __str__( self : Any ) -> str: """simple docstring""" return "\n".join(F"Priority {i}: {q}" for i, q in enumerate(self.queues ) ) class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] ) -> Dict: """simple docstring""" __lowercase : Dict = [] def lowerCAmelCase ( self : Optional[int] , __a : int ) -> None: """simple docstring""" if len(self.queue ) == 100: raise OverFlowError("""Maximum queue size is 100""" ) self.queue.append(__a ) def lowerCAmelCase ( self : int ) -> int: """simple docstring""" if not self.queue: raise UnderFlowError("""The queue is empty""" ) else: __lowercase : Optional[int] = min(self.queue ) self.queue.remove(__a ) return data def __str__( self : Any ) -> str: """simple docstring""" return str(self.queue ) def snake_case_ ( ): __lowercase : Any = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 100 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 128 ) print(lowerCAmelCase_ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(lowerCAmelCase_ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def snake_case_ ( ): __lowercase : Any = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(lowerCAmelCase_ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(lowerCAmelCase_ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
707
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(0 ) == 0 ) def snake_case_ ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
649
0
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] ): __lowercase : List[str] = { """en""": """Machine learning is great, isn't it?""", """ru""": """Машинное обучение - это здорово, не так ли?""", """de""": """Maschinelles Lernen ist großartig, nicht wahr?""", } # BLUE scores as follows: # "pair": [fairseq, transformers] __lowercase : int = { """wmt16-en-de-dist-12-1""": [28.3, 27.52], """wmt16-en-de-dist-6-1""": [27.4, 27.11], """wmt16-en-de-12-1""": [26.9, 25.75], } __lowercase : Optional[Any] = F"{src_lang}-{tgt_lang}" __lowercase : int = F"\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"allenai/{model_name}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n" model_card_dir.mkdir(parents=lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowercase : List[Any] = os.path.join(lowerCAmelCase_ , """README.md""" ) print(F"Generating {path}" ) with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""" ) as f: f.write(lowerCAmelCase_ ) # make sure we are under the root of the project lowerCamelCase : int = Path(__file__).resolve().parent.parent.parent lowerCamelCase : Dict = repo_dir / '''model_cards''' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: lowerCamelCase : List[Any] = model_cards_dir / '''allenai''' / model_name write_model_card(model_card_dir, src_lang='''en''', tgt_lang='''de''', model_name=model_name)
708
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCamelCase : int = '''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine''' def snake_case_ ( ): __lowercase : List[Any] = _ask_options( """In which compute environment are you running?""" , ["""This machine""", """AWS (Amazon SageMaker)"""] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __lowercase : Union[str, Any] = get_sagemaker_input() else: __lowercase : str = get_cluster_input() return config def snake_case_ ( lowerCAmelCase_ : List[str]=None ): if subparsers is not None: __lowercase : Optional[int] = subparsers.add_parser("""config""" , description=lowerCAmelCase_ ) else: __lowercase : List[str] = argparse.ArgumentParser("""Accelerate config command""" , description=lowerCAmelCase_ ) parser.add_argument( """--config_file""" , default=lowerCAmelCase_ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def snake_case_ ( lowerCAmelCase_ : Tuple ): __lowercase : Union[str, Any] = get_user_input() if args.config_file is not None: __lowercase : List[Any] = args.config_file else: if not os.path.isdir(lowerCAmelCase_ ): os.makedirs(lowerCAmelCase_ ) __lowercase : Any = default_yaml_config_file if config_file.endswith(""".json""" ): config.to_json_file(lowerCAmelCase_ ) else: config.to_yaml_file(lowerCAmelCase_ ) print(F"accelerate configuration saved at {config_file}" ) def snake_case_ ( ): __lowercase : str = config_command_parser() __lowercase : str = parser.parse_args() config_command(lowerCAmelCase_ ) if __name__ == "__main__": main()
649
0
from argparse import ArgumentParser from . import BaseTransformersCLICommand def snake_case_ ( lowerCAmelCase_ : Dict ): return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class lowerCAmelCase ( __a ): '''simple docstring''' @staticmethod def lowerCAmelCase ( __a : ArgumentParser ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = parser.add_parser("""download""" ) download_parser.add_argument( """--cache-dir""" , type=__a , default=__a , help="""Path to location to store the models""" ) download_parser.add_argument( """--force""" , action="""store_true""" , help="""Force the model to be download even if already in cache-dir""" ) download_parser.add_argument( """--trust-remote-code""" , action="""store_true""" , help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" , ) download_parser.add_argument("""model""" , type=__a , help="""Name of the model to download""" ) download_parser.set_defaults(func=__a ) def __init__( self : Dict , __a : str , __a : str , __a : bool , __a : bool ) -> Union[str, Any]: """simple docstring""" __lowercase : Dict = model __lowercase : List[Any] = cache __lowercase : Any = force __lowercase : Optional[int] = trust_remote_code def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
709
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : list[str] | None = None ): __lowercase : Tuple = word_bank or [] # create a table __lowercase : int = len(lowerCAmelCase_ ) + 1 __lowercase : list[list[list[str]]] = [] for _ in range(lowerCAmelCase_ ): table.append([] ) # seed value __lowercase : Dict = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowerCAmelCase_ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowerCAmelCase_ )] == word: __lowercase : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowerCAmelCase_ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowerCAmelCase_ )]: combination.reverse() return table[len(lowerCAmelCase_ )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
649
0
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Optional[int] = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() __lowercase : List[str] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Dict = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } __lowercase : List[str] = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 16000, """return_attention_mask""": False, """do_normalize""": True, } __lowercase : Tuple = tempfile.mkdtemp() __lowercase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : str = os.path.join(self.tmpdirname , __a ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) # load decoder from hub __lowercase : Optional[int] = """hf-internal-testing/ngram-beam-search-decoder""" def lowerCAmelCase ( self : Optional[Any] , **__a : Dict ) -> Tuple: """simple docstring""" __lowercase : Union[str, Any] = self.add_kwargs_tokens_map.copy() kwargs.update(__a ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : str , **__a : int ) -> Tuple: """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Union[str, Any] , **__a : Union[str, Any] ) -> List[Any]: """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__a ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() __lowercase : Any = self.get_feature_extractor() __lowercase : str = self.get_decoder() __lowercase : Tuple = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) processor.save_pretrained(self.tmpdirname ) __lowercase : Tuple = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __a ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __a ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __a ) def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Any = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __lowercase : str = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : List[str] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(__a , """include""" ): WavaVecaProcessorWithLM( tokenizer=__a , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : List[Any] = self.get_feature_extractor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : int = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Optional[int] = floats_list((3, 1000) ) __lowercase : List[Any] = feature_extractor(__a , return_tensors="""np""" ) __lowercase : List[str] = processor(__a , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : List[Any] = self.get_feature_extractor() __lowercase : int = self.get_tokenizer() __lowercase : Dict = self.get_decoder() __lowercase : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Dict = """This is a test string""" __lowercase : Any = processor(text=__a ) __lowercase : Dict = tokenizer(__a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase ( self : str , __a : Tuple=(2, 10, 16) , __a : int=77 ) -> Optional[Any]: """simple docstring""" np.random.seed(__a ) return np.random.rand(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : List[str] = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : str = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : List[str] = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __lowercase : Optional[Any] = processor.decode(__a ) __lowercase : Any = decoder.decode_beams(__a )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def lowerCAmelCase ( self : List[str] , __a : Dict ) -> List[Any]: """simple docstring""" __lowercase : str = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : Optional[int] = self.get_decoder() __lowercase : Any = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Optional[Any] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __lowercase : Union[str, Any] = processor.batch_decode(__a ) else: with get_context(__a ).Pool() as pool: __lowercase : Optional[Any] = processor.batch_decode(__a , __a ) __lowercase : Union[str, Any] = list(__a ) with get_context("""fork""" ).Pool() as p: __lowercase : Optional[Any] = decoder.decode_beams_batch(__a , __a ) __lowercase : Any = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__a , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(__a , decoded_processor.logit_score ) self.assertListEqual(__a , decoded_processor.lm_score ) def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase : int = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : List[str] = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Dict = self._get_dummy_logits() __lowercase : Tuple = 15 __lowercase : Tuple = -20.0 __lowercase : Dict = -4.0 __lowercase : Dict = processor.batch_decode( __a , beam_width=__a , beam_prune_logp=__a , token_min_logp=__a , ) __lowercase : Tuple = decoded_processor_out.text __lowercase : List[Any] = list(__a ) with get_context("""fork""" ).Pool() as pool: __lowercase : Any = decoder.decode_beams_batch( __a , __a , beam_width=__a , beam_prune_logp=__a , token_min_logp=__a , ) __lowercase : Optional[Any] = [d[0][0] for d in decoded_decoder_out] __lowercase : Optional[int] = [d[0][2] for d in decoded_decoder_out] __lowercase : Optional[int] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__a , __a ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , __a ) self.assertTrue(np.array_equal(__a , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , __a , atol=1E-3 ) ) self.assertTrue(np.array_equal(__a , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , __a , atol=1E-3 ) ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase : str = self.get_feature_extractor() __lowercase : List[Any] = self.get_tokenizer() __lowercase : List[Any] = self.get_decoder() __lowercase : Dict = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : List[Any] = self._get_dummy_logits() __lowercase : Optional[int] = 2.0 __lowercase : Tuple = 5.0 __lowercase : Optional[Any] = -20.0 __lowercase : Tuple = True __lowercase : Union[str, Any] = processor.batch_decode( __a , alpha=__a , beta=__a , unk_score_offset=__a , lm_score_boundary=__a , ) __lowercase : Any = decoded_processor_out.text __lowercase : List[Any] = list(__a ) decoder.reset_params( alpha=__a , beta=__a , unk_score_offset=__a , lm_score_boundary=__a , ) with get_context("""fork""" ).Pool() as pool: __lowercase : Tuple = decoder.decode_beams_batch( __a , __a , ) __lowercase : int = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__a , __a ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , __a ) __lowercase : str = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , __a ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] __lowercase : str = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __lowercase : int = os.listdir(__a ) __lowercase : Optional[Any] = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = snapshot_download("""hf-internal-testing/processor_with_lm""" ) __lowercase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(__a ) __lowercase : Dict = processor.decoder.model_container[processor.decoder._model_key] __lowercase : List[Any] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __lowercase : Dict = os.listdir(__a ) __lowercase : List[Any] = os.listdir(__a ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" __lowercase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Dict = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Any = floats_list((3, 1000) ) __lowercase : List[str] = processor_wavaveca(__a , return_tensors="""np""" ) __lowercase : List[Any] = processor_auto(__a , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) __lowercase : List[str] = self._get_dummy_logits() __lowercase : List[str] = processor_wavaveca.batch_decode(__a ) __lowercase : Optional[int] = processor_auto.batch_decode(__a ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Any = self.get_feature_extractor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : Dict = self.get_decoder() __lowercase : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def lowerCAmelCase ( __a : Union[str, Any] , __a : List[Any] ) -> Dict: """simple docstring""" __lowercase : Any = [d[key] for d in offsets] return retrieved_list def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" __lowercase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Optional[Any] = self._get_dummy_logits()[0] __lowercase : Dict = processor.decode(__a , output_word_offsets=__a ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__a , __a ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : List[str] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Any = self._get_dummy_logits() __lowercase : Dict = processor.batch_decode(__a , output_word_offsets=__a ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__a , __a ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(__a , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" import torch __lowercase : Any = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=__a ) __lowercase : str = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=16000 ) ) __lowercase : Tuple = iter(__a ) __lowercase : Union[str, Any] = next(__a ) __lowercase : int = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) __lowercase : int = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __lowercase : Union[str, Any] = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): __lowercase : List[Any] = model(__a ).logits.cpu().numpy() __lowercase : Tuple = processor.decode(logits[0] , output_word_offsets=__a ) __lowercase : int = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __lowercase : Optional[Any] = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] __lowercase : str = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(__a , """word""" ) ) , __a ) self.assertEqual(""" """.join(self.get_from_offsets(__a , """word""" ) ) , output.text ) # output times __lowercase : Tuple = torch.tensor(self.get_from_offsets(__a , """start_time""" ) ) __lowercase : Dict = torch.tensor(self.get_from_offsets(__a , """end_time""" ) ) # fmt: off __lowercase : List[Any] = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) __lowercase : Optional[int] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(__a , __a , atol=0.01 ) ) self.assertTrue(torch.allclose(__a , __a , atol=0.01 ) )
710
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(1 ) != 0 ) def snake_case_ ( ): assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
649
0
def snake_case_ ( lowerCAmelCase_ : int = 1000 ): __lowercase : List[Any] = 3 __lowercase : Tuple = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f'''{solution() = }''')
711
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : int = { '''configuration_funnel''': ['''FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FunnelConfig'''], '''convert_funnel_original_tf_checkpoint_to_pytorch''': [], '''tokenization_funnel''': ['''FunnelTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = ['''FunnelTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = [ '''FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FunnelBaseModel''', '''FunnelForMaskedLM''', '''FunnelForMultipleChoice''', '''FunnelForPreTraining''', '''FunnelForQuestionAnswering''', '''FunnelForSequenceClassification''', '''FunnelForTokenClassification''', '''FunnelModel''', '''FunnelPreTrainedModel''', '''load_tf_weights_in_funnel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ '''TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFFunnelBaseModel''', '''TFFunnelForMaskedLM''', '''TFFunnelForMultipleChoice''', '''TFFunnelForPreTraining''', '''TFFunnelForQuestionAnswering''', '''TFFunnelForSequenceClassification''', '''TFFunnelForTokenClassification''', '''TFFunnelModel''', '''TFFunnelPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
649
0
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , __a : List[str] , __a : Dict=2 , __a : Union[str, Any]=True , __a : List[Any]=False , __a : int=10 , __a : List[Any]=3 , __a : Optional[int]=32 * 8 , __a : str=32 * 8 , __a : Optional[int]=4 , __a : str=64 , ) -> str: """simple docstring""" __lowercase : List[Any] = parent __lowercase : List[str] = batch_size __lowercase : Union[str, Any] = is_training __lowercase : Union[str, Any] = use_auxiliary_loss __lowercase : int = num_queries __lowercase : Dict = num_channels __lowercase : List[Any] = min_size __lowercase : Optional[int] = max_size __lowercase : Optional[Any] = num_labels __lowercase : List[str] = hidden_dim __lowercase : Optional[int] = hidden_dim def lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase : int = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __a ) __lowercase : List[str] = torch.ones([self.batch_size, self.min_size, self.max_size] , device=__a ) __lowercase : Dict = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__a ) > 0.5 ).float() __lowercase : Dict = (torch.rand((self.batch_size, self.num_labels) , device=__a ) > 0.5).long() __lowercase : int = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = MaskaFormerConfig( hidden_size=self.hidden_dim , ) __lowercase : List[Any] = self.num_queries __lowercase : Union[str, Any] = self.num_labels __lowercase : Dict = [1, 1, 1, 1] __lowercase : Optional[int] = self.num_channels __lowercase : List[str] = 64 __lowercase : List[str] = 128 __lowercase : List[str] = self.hidden_dim __lowercase : Optional[Any] = self.hidden_dim __lowercase : List[str] = self.hidden_dim return config def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" __lowercase : Optional[int] = self.prepare_config_and_inputs() __lowercase : Any = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def lowerCAmelCase ( self : str , __a : Union[str, Any] , __a : Union[str, Any] ) -> str: """simple docstring""" __lowercase : List[Any] = output.encoder_hidden_states __lowercase : int = output.pixel_decoder_hidden_states __lowercase : Dict = output.transformer_decoder_hidden_states self.parent.assertTrue(len(__a ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__a ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__a ) , config.decoder_layers ) def lowerCAmelCase ( self : Optional[Any] , __a : Any , __a : List[str] , __a : List[str] , __a : List[Any]=False ) -> str: """simple docstring""" with torch.no_grad(): __lowercase : Union[str, Any] = MaskaFormerModel(config=__a ) model.to(__a ) model.eval() __lowercase : Optional[Any] = model(pixel_values=__a , pixel_mask=__a ) __lowercase : Optional[int] = model(__a , output_hidden_states=__a ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__a , __a ) def lowerCAmelCase ( self : Optional[int] , __a : List[str] , __a : List[str] , __a : Dict , __a : Tuple , __a : str ) -> Tuple: """simple docstring""" __lowercase : Tuple = MaskaFormerForUniversalSegmentation(config=__a ) model.to(__a ) model.eval() def comm_check_on_output(__a : Dict ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __lowercase : Tuple = model(pixel_values=__a , pixel_mask=__a ) __lowercase : str = model(__a ) comm_check_on_output(__a ) __lowercase : int = model( pixel_values=__a , pixel_mask=__a , mask_labels=__a , class_labels=__a ) comm_check_on_output(__a ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Tuple = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () _A : Union[str, Any] = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} _A : Optional[int] = False _A : Dict = False _A : List[str] = False _A : Dict = False def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = MaskaFormerModelTester(self ) __lowercase : List[Any] = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__a , **__a , output_hidden_states=__a ) def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*__a ) @unittest.skip(reason="""Mask2Former does not use inputs_embeds""" ) def lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" ) def lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason="""Mask2Former is not a generative model""" ) def lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" pass @unittest.skip(reason="""Mask2Former does not use token embeddings""" ) def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip( reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[Any] = model_class(__a ) __lowercase : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : str = [*signature.parameters.keys()] __lowercase : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __lowercase : Any = MaskaFormerModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase : str = (self.model_tester.min_size,) * 2 __lowercase : Tuple = { """pixel_values""": torch.randn((2, 3, *size) , device=__a ), """mask_labels""": torch.randn((2, 10, *size) , device=__a ), """class_labels""": torch.zeros(2 , 10 , device=__a ).long(), } __lowercase : List[Any] = self.model_tester.get_config() __lowercase : str = MaskaFormerForUniversalSegmentation(__a ).to(__a ) __lowercase : Any = model(**__a ) self.assertTrue(outputs.loss is not None ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__a , **__a , output_hidden_states=__a ) def lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Union[str, Any] = model_class(__a ).to(__a ) __lowercase : Any = model(**__a , output_attentions=__a ) self.assertTrue(outputs.attentions is not None ) def lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" if not self.model_tester.is_training: return __lowercase : Optional[Any] = self.all_model_classes[1] __lowercase : Any = self.model_tester.prepare_config_and_inputs() __lowercase : Optional[int] = model_class(__a ) model.to(__a ) model.train() __lowercase : Any = model(__a , mask_labels=__a , class_labels=__a ).loss loss.backward() def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" __lowercase : Optional[int] = self.all_model_classes[1] __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() __lowercase : List[str] = True __lowercase : int = True __lowercase : Optional[int] = model_class(__a ).to(__a ) model.train() __lowercase : Dict = model(__a , mask_labels=__a , class_labels=__a ) __lowercase : Union[str, Any] = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __lowercase : int = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __lowercase : Any = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __lowercase : Optional[int] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__a ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowerCamelCase : Optional[int] = 1E-4 def snake_case_ ( ): __lowercase : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" __lowercase : str = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(__a ) __lowercase : Tuple = self.default_image_processor __lowercase : int = prepare_img() __lowercase : Dict = image_processor(__a , return_tensors="""pt""" ).to(__a ) __lowercase : int = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__a , (1, 3, 384, 384) ) with torch.no_grad(): __lowercase : Union[str, Any] = model(**__a ) __lowercase : str = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(__a ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , __a , atol=__a ) ) __lowercase : List[Any] = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(__a ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __a , atol=__a ) ) __lowercase : Optional[Any] = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(__a ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase : List[Any] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__a ).eval() __lowercase : Optional[Any] = self.default_image_processor __lowercase : Union[str, Any] = prepare_img() __lowercase : Any = image_processor(__a , return_tensors="""pt""" ).to(__a ) __lowercase : str = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__a , (1, 3, 384, 384) ) with torch.no_grad(): __lowercase : Optional[Any] = model(**__a ) # masks_queries_logits __lowercase : Dict = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __lowercase : Dict = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] __lowercase : int = torch.tensor(__a ).to(__a ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __a , atol=__a ) ) # class_queries_logits __lowercase : Dict = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __lowercase : List[str] = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(__a ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : str = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__a ).eval() __lowercase : Optional[int] = self.default_image_processor __lowercase : Union[str, Any] = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="""pt""" , ) __lowercase : Optional[Any] = inputs["""pixel_values"""].to(__a ) __lowercase : Optional[int] = [el.to(__a ) for el in inputs["""mask_labels"""]] __lowercase : str = [el.to(__a ) for el in inputs["""class_labels"""]] with torch.no_grad(): __lowercase : Optional[Any] = model(**__a ) self.assertTrue(outputs.loss is not None )
712
import logging import os import threading import time try: import warnings except ImportError: lowerCamelCase : Any = None try: import msvcrt except ImportError: lowerCamelCase : str = None try: import fcntl except ImportError: lowerCamelCase : Optional[Any] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: lowerCamelCase : Union[str, Any] = OSError # Data # ------------------------------------------------ lowerCamelCase : Tuple = [ '''Timeout''', '''BaseFileLock''', '''WindowsFileLock''', '''UnixFileLock''', '''SoftFileLock''', '''FileLock''', ] lowerCamelCase : Tuple = '''3.0.12''' lowerCamelCase : Any = None def snake_case_ ( ): global _logger __lowercase : List[str] = _logger or logging.getLogger(__name__ ) return _logger class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Any , __a : Any ) -> List[Any]: """simple docstring""" __lowercase : List[str] = lock_file return None def __str__( self : str ) -> Any: """simple docstring""" __lowercase : Any = F"The file lock '{self.lock_file}' could not be acquired." return temp class lowerCAmelCase : '''simple docstring''' def __init__( self : List[Any] , __a : Optional[int] ) -> int: """simple docstring""" __lowercase : Optional[Any] = lock return None def __enter__( self : Dict ) -> Dict: """simple docstring""" return self.lock def __exit__( self : Optional[int] , __a : Dict , __a : Any , __a : Tuple ) -> Optional[Any]: """simple docstring""" self.lock.release() return None class lowerCAmelCase : '''simple docstring''' def __init__( self : Tuple , __a : Any , __a : Dict=-1 , __a : Optional[Any]=None ) -> Any: """simple docstring""" __lowercase : Optional[int] = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long __lowercase : Dict = self.hash_filename_if_too_long(__a , __a ) # The path to the lock file. __lowercase : Optional[Any] = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __lowercase : int = None # The default timeout value. __lowercase : Optional[int] = timeout # We use this lock primarily for the lock counter. __lowercase : Optional[Any] = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __lowercase : Union[str, Any] = 0 return None @property def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return self._lock_file @property def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return self._timeout @timeout.setter def lowerCAmelCase ( self : Tuple , __a : Tuple ) -> Dict: """simple docstring""" __lowercase : Tuple = float(__a ) return None def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" raise NotImplementedError() def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" raise NotImplementedError() @property def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" return self._lock_file_fd is not None def lowerCAmelCase ( self : Any , __a : Optional[Any]=None , __a : Union[str, Any]=0.05 ) -> List[str]: """simple docstring""" if timeout is None: __lowercase : Union[str, Any] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __lowercase : int = id(self ) __lowercase : Optional[Any] = self._lock_file __lowercase : List[str] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"Attempting to acquire lock {lock_id} on {lock_filename}" ) self._acquire() if self.is_locked: logger().debug(F"Lock {lock_id} acquired on {lock_filename}" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"Timeout on acquiring lock {lock_id} on {lock_filename}" ) raise Timeout(self._lock_file ) else: logger().debug( F"Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ..." ) time.sleep(__a ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __lowercase : Optional[int] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def lowerCAmelCase ( self : Union[str, Any] , __a : Optional[Any]=False ) -> Optional[Any]: """simple docstring""" with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __lowercase : Optional[Any] = id(self ) __lowercase : str = self._lock_file logger().debug(F"Attempting to release lock {lock_id} on {lock_filename}" ) self._release() __lowercase : List[str] = 0 logger().debug(F"Lock {lock_id} released on {lock_filename}" ) return None def __enter__( self : Any ) -> Optional[Any]: """simple docstring""" self.acquire() return self def __exit__( self : List[str] , __a : str , __a : int , __a : List[Any] ) -> Tuple: """simple docstring""" self.release() return None def __del__( self : Optional[int] ) -> Optional[int]: """simple docstring""" self.release(force=__a ) return None def lowerCAmelCase ( self : Tuple , __a : str , __a : int ) -> str: """simple docstring""" __lowercase : List[Any] = os.path.basename(__a ) if len(__a ) > max_length and max_length > 0: __lowercase : int = os.path.dirname(__a ) __lowercase : List[str] = str(hash(__a ) ) __lowercase : Optional[Any] = filename[: max_length - len(__a ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(__a , __a ) else: return path class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Union[str, Any] , __a : List[Any] , __a : Optional[int]=-1 , __a : Tuple=None ) -> List[Any]: """simple docstring""" from .file_utils import relative_to_absolute_path super().__init__(__a , timeout=__a , max_filename_length=__a ) __lowercase : Tuple = """\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __lowercase : Tuple = os.open(self._lock_file , __a ) except OSError: pass else: try: msvcrt.locking(__a , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__a ) else: __lowercase : Union[str, Any] = fd return None def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = self._lock_file_fd __lowercase : int = None msvcrt.locking(__a , msvcrt.LK_UNLCK , 1 ) os.close(__a ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : List[str] , __a : Optional[Any] , __a : str=-1 , __a : List[str]=None ) -> Any: """simple docstring""" __lowercase : Dict = os.statvfs(os.path.dirname(__a ) ).f_namemax super().__init__(__a , timeout=__a , max_filename_length=__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase : List[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC __lowercase : List[str] = os.open(self._lock_file , __a ) try: fcntl.flock(__a , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__a ) else: __lowercase : str = fd return None def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Any = self._lock_file_fd __lowercase : List[str] = None fcntl.flock(__a , fcntl.LOCK_UN ) os.close(__a ) return None class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __lowercase : Union[str, Any] = os.open(self._lock_file , __a ) except OSError: pass else: __lowercase : Optional[int] = fd return None def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" os.close(self._lock_file_fd ) __lowercase : int = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None lowerCamelCase : Optional[Any] = None if msvcrt: lowerCamelCase : List[Any] = WindowsFileLock elif fcntl: lowerCamelCase : List[Any] = UnixFileLock else: lowerCamelCase : Union[str, Any] = SoftFileLock if warnings is not None: warnings.warn('''only soft file lock is available''')
649
0
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Any = { '''Helsinki-NLP/opus-mt-en-de''': '''https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json''', # See all Marian models at https://huggingface.co/models?filter=marian } class lowerCAmelCase ( __a ): '''simple docstring''' _A : Any = '''marian''' _A : Optional[Any] = ['''past_key_values'''] _A : Dict = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : List[Any] , __a : Dict=58101 , __a : Optional[int]=None , __a : int=1024 , __a : Dict=12 , __a : Optional[Any]=4096 , __a : Union[str, Any]=16 , __a : str=12 , __a : Optional[int]=4096 , __a : Optional[Any]=16 , __a : Any=0.0 , __a : Union[str, Any]=0.0 , __a : Dict=True , __a : str=True , __a : str="gelu" , __a : Dict=1024 , __a : Dict=0.1 , __a : Tuple=0.0 , __a : str=0.0 , __a : Any=0.02 , __a : Optional[Any]=58100 , __a : Union[str, Any]=False , __a : Union[str, Any]=58100 , __a : Optional[Any]=0 , __a : int=0 , __a : Dict=True , **__a : List[str] , ) -> Union[str, Any]: """simple docstring""" __lowercase : Any = vocab_size __lowercase : str = decoder_vocab_size or vocab_size __lowercase : Any = max_position_embeddings __lowercase : Optional[Any] = d_model __lowercase : int = encoder_ffn_dim __lowercase : List[str] = encoder_layers __lowercase : Union[str, Any] = encoder_attention_heads __lowercase : Tuple = decoder_ffn_dim __lowercase : Any = decoder_layers __lowercase : Tuple = decoder_attention_heads __lowercase : Optional[Any] = dropout __lowercase : Dict = attention_dropout __lowercase : Optional[Any] = activation_dropout __lowercase : Optional[int] = activation_function __lowercase : Union[str, Any] = init_std __lowercase : Union[str, Any] = encoder_layerdrop __lowercase : Dict = decoder_layerdrop __lowercase : Optional[Any] = use_cache __lowercase : Union[str, Any] = encoder_layers __lowercase : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True __lowercase : List[Any] = share_encoder_decoder_embeddings super().__init__( pad_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , decoder_start_token_id=__a , forced_eos_token_id=__a , **__a , ) class lowerCAmelCase ( __a ): '''simple docstring''' @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def lowerCAmelCase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __lowercase : Any = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: __lowercase : List[str] = {0: """batch"""} __lowercase : Optional[int] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: __lowercase : int = {0: """batch""", 1: """decoder_sequence"""} __lowercase : List[str] = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(__a , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. __lowercase : List[Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: __lowercase : List[str] = self.num_layers for i in range(__a ): __lowercase : Optional[Any] = {0: """batch""", 2: """past_sequence + sequence"""} __lowercase : Tuple = {0: """batch""", 2: """past_sequence + sequence"""} else: __lowercase : Optional[int] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def lowerCAmelCase ( self : Dict ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __lowercase : Dict = super().outputs else: __lowercase : List[Any] = super(__a , self ).outputs if self.use_past: __lowercase : Any = self.num_layers for i in range(__a ): __lowercase : int = {0: """batch""", 2: """past_sequence + sequence"""} __lowercase : List[Any] = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def lowerCAmelCase ( self : Any , __a : PreTrainedTokenizer , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" __lowercase : Dict = self._generate_dummy_inputs_for_encoder_and_decoder( __a , __a , __a , __a , __a ) # Generate decoder inputs __lowercase : Any = seq_length if not self.use_past else 1 __lowercase : Union[str, Any] = self._generate_dummy_inputs_for_encoder_and_decoder( __a , __a , __a , __a , __a ) __lowercase : Optional[Any] = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} __lowercase : List[str] = dict(**__a , **__a ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __lowercase : Optional[int] = common_inputs["""input_ids"""].shape __lowercase : List[Any] = common_inputs["""decoder_input_ids"""].shape[1] __lowercase : List[str] = self.num_attention_heads __lowercase : int = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase : Any = decoder_seq_length + 3 __lowercase : Union[str, Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowercase : Optional[int] = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(__a , __a )] , dim=1 ) __lowercase : Union[str, Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowercase : Any = self.num_layers __lowercase : str = min(__a , __a ) __lowercase : int = max(__a , __a ) - min_num_layers __lowercase : List[str] = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(__a ): common_inputs["past_key_values"].append( ( torch.zeros(__a ), torch.zeros(__a ), torch.zeros(__a ), torch.zeros(__a ), ) ) # TODO: test this. __lowercase : Union[str, Any] = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(__a , __a ): common_inputs["past_key_values"].append((torch.zeros(__a ), torch.zeros(__a )) ) return common_inputs def lowerCAmelCase ( self : Optional[int] , __a : PreTrainedTokenizer , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" __lowercase : Tuple = self._generate_dummy_inputs_for_encoder_and_decoder( __a , __a , __a , __a , __a ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __lowercase : Any = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __lowercase : Optional[Any] = seqlen + 2 __lowercase : Dict = self.num_layers __lowercase : Optional[int] = self.num_attention_heads __lowercase : List[str] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase : str = common_inputs["""attention_mask"""].dtype __lowercase : Union[str, Any] = torch.cat( [common_inputs["""attention_mask"""], torch.ones(__a , __a , dtype=__a )] , dim=1 ) __lowercase : Union[str, Any] = [ (torch.zeros(__a ), torch.zeros(__a )) for _ in range(__a ) ] return common_inputs def lowerCAmelCase ( self : List[str] , __a : PreTrainedTokenizer , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase : str = tokenizer.num_special_tokens_to_add(__a ) __lowercase : Any = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__a ) # Generate dummy inputs according to compute batch and sequence __lowercase : int = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size __lowercase : Union[str, Any] = dict(tokenizer(__a , return_tensors=__a ) ) return common_inputs def lowerCAmelCase ( self : int , __a : PreTrainedTokenizer , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __lowercase : str = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __a , batch_size=__a , seq_length=__a , is_pair=__a , framework=__a ) else: __lowercase : Optional[Any] = self._generate_dummy_inputs_for_causal_lm( __a , batch_size=__a , seq_length=__a , is_pair=__a , framework=__a ) return common_inputs def lowerCAmelCase ( self : Union[str, Any] , __a : Dict , __a : Any , __a : Optional[Any] , __a : str ) -> int: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __lowercase : Tuple = super()._flatten_past_key_values_(__a , __a , __a , __a ) else: __lowercase : List[str] = super(__a , self )._flatten_past_key_values_( __a , __a , __a , __a ) @property def lowerCAmelCase ( self : str ) -> float: """simple docstring""" return 1E-4
713
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : Tuple = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = '''layoutlmv3''' def __init__( self : Dict , __a : List[str]=50265 , __a : str=768 , __a : List[Any]=12 , __a : List[Any]=12 , __a : List[str]=3072 , __a : Optional[Any]="gelu" , __a : Optional[int]=0.1 , __a : List[Any]=0.1 , __a : Tuple=512 , __a : int=2 , __a : Any=0.02 , __a : Union[str, Any]=1E-5 , __a : List[str]=1 , __a : List[Any]=0 , __a : int=2 , __a : str=1024 , __a : str=128 , __a : List[Any]=128 , __a : Tuple=True , __a : Optional[int]=32 , __a : Any=128 , __a : List[Any]=64 , __a : Tuple=256 , __a : str=True , __a : int=True , __a : Optional[Any]=True , __a : Any=224 , __a : str=3 , __a : List[str]=16 , __a : Union[str, Any]=None , **__a : List[Any] , ) -> List[str]: """simple docstring""" super().__init__( vocab_size=__a , hidden_size=__a , num_hidden_layers=__a , num_attention_heads=__a , intermediate_size=__a , hidden_act=__a , hidden_dropout_prob=__a , attention_probs_dropout_prob=__a , max_position_embeddings=__a , type_vocab_size=__a , initializer_range=__a , layer_norm_eps=__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a , ) __lowercase : int = max_ad_position_embeddings __lowercase : Any = coordinate_size __lowercase : Optional[Any] = shape_size __lowercase : str = has_relative_attention_bias __lowercase : int = rel_pos_bins __lowercase : Union[str, Any] = max_rel_pos __lowercase : str = has_spatial_attention_bias __lowercase : str = rel_ad_pos_bins __lowercase : List[Any] = max_rel_ad_pos __lowercase : Tuple = text_embed __lowercase : int = visual_embed __lowercase : Tuple = input_size __lowercase : Dict = num_channels __lowercase : str = patch_size __lowercase : Optional[int] = classifier_dropout class lowerCAmelCase ( __a ): '''simple docstring''' _A : str = version.parse('''1.12''' ) @property def lowerCAmelCase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def lowerCAmelCase ( self : Union[str, Any] ) -> float: """simple docstring""" return 1E-5 @property def lowerCAmelCase ( self : str ) -> int: """simple docstring""" return 12 def lowerCAmelCase ( self : List[Any] , __a : "ProcessorMixin" , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional["TensorType"] = None , __a : int = 3 , __a : int = 40 , __a : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , """apply_ocr""" , __a ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase : Tuple = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase : Tuple = processor.tokenizer.num_special_tokens_to_add(__a ) __lowercase : Tuple = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__a ) # Generate dummy inputs according to compute batch and sequence __lowercase : Union[str, Any] = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowercase : Tuple = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowercase : Tuple = self._generate_dummy_images(__a , __a , __a , __a ) __lowercase : int = dict( processor( __a , text=__a , boxes=__a , return_tensors=__a , ) ) return inputs
649
0
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.17.0.dev0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''') lowerCamelCase : Optional[int] = logging.getLogger(__name__) @dataclass class lowerCAmelCase : '''simple docstring''' _A : Optional[str] = field( default='''tab_fact''' , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) _A : Optional[str] = field( default='''tab_fact''' , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} , ) _A : int = field( default=1024 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _A : bool = field( default=__a , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) _A : bool = field( default=__a , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) _A : Optional[int] = field( default=__a , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) _A : Optional[int] = field( default=__a , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) _A : Optional[int] = field( default=__a , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of prediction examples to this ''' '''value if set.''' ) } , ) _A : Optional[str] = field( default=__a , metadata={'''help''': '''A csv or a json file containing the training data.'''} ) _A : Optional[str] = field( default=__a , metadata={'''help''': '''A csv or a json file containing the validation data.'''} ) _A : Optional[str] = field(default=__a , metadata={'''help''': '''A csv or a json file containing the test data.'''} ) def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" ) else: __lowercase : Any = self.train_file.split(""".""" )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __lowercase : Optional[int] = self.validation_file.split(""".""" )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class lowerCAmelCase : '''simple docstring''' _A : str = field( default=__a , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _A : Optional[str] = field( default=__a , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _A : Optional[str] = field( default=__a , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _A : Optional[str] = field( default=__a , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) _A : bool = field( default=__a , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) _A : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) _A : bool = field( default=__a , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def snake_case_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowercase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowercase : Tuple = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowercase : Union[str, Any] = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) __lowercase : List[Any] = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase_ ) datasets.utils.logging.set_verbosity(lowerCAmelCase_ ) transformers.utils.logging.set_verbosity(lowerCAmelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. __lowercase : Optional[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowercase : Optional[int] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowercase : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __lowercase : int = {"""train""": data_args.train_file, """validation""": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __lowercase : List[str] = data_args.train_file.split(""".""" )[-1] __lowercase : List[str] = data_args.test_file.split(""".""" )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __lowercase : List[str] = data_args.test_file else: raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" ) for key in data_files.keys(): logger.info(F"load a local file for {key}: {data_files[key]}" ) if data_args.train_file.endswith(""".csv""" ): # Loading a dataset from local csv files __lowercase : Optional[int] = load_dataset("""csv""" , data_files=lowerCAmelCase_ , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __lowercase : Dict = load_dataset("""json""" , data_files=lowerCAmelCase_ , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __lowercase : Optional[int] = raw_datasets["""train"""].features["""label"""].names __lowercase : List[Any] = len(lowerCAmelCase_ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowercase : List[str] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __lowercase : Union[str, Any] = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=lowerCAmelCase_ , ) __lowercase : int = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __lowercase : str = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __lowercase : List[str] = False # Some models have set the order of the labels to use, so let's make sure we do use it. __lowercase : Tuple = {"""Refused""": 0, """Entailed""": 1} __lowercase : List[str] = {0: """Refused""", 1: """Entailed"""} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" F"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) __lowercase : Union[str, Any] = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(lowerCAmelCase_ : Union[str, Any] ): # Tokenize the texts def _convert_table_text_to_pandas(lowerCAmelCase_ : Union[str, Any] ): __lowercase : Optional[int] = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )] __lowercase : List[str] = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __lowercase : List[Any] = examples["""statement"""] __lowercase : Tuple = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) ) __lowercase : int = tokenizer(lowerCAmelCase_ , lowerCAmelCase_ , padding=lowerCAmelCase_ , max_length=lowerCAmelCase_ , truncation=lowerCAmelCase_ ) __lowercase : List[Any] = examples["""label"""] return result with training_args.main_process_first(desc="""dataset map pre-processing""" ): __lowercase : Tuple = raw_datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) __lowercase : List[str] = raw_datasets["""train"""] if data_args.max_train_samples is not None: __lowercase : Optional[Any] = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) __lowercase : Union[str, Any] = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: __lowercase : Any = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("""--do_predict requires a test dataset""" ) __lowercase : Tuple = raw_datasets["""test"""] if data_args.max_predict_samples is not None: __lowercase : Any = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowerCAmelCase_ ) ) , 3 ): logger.info(F"Sample {index} of the training set: {train_dataset[index]}." ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase_ : EvalPrediction ): __lowercase : List[Any] = p.predictions[0] if isinstance(p.predictions , lowerCAmelCase_ ) else p.predictions __lowercase : int = np.argmax(lowerCAmelCase_ , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __lowercase : str = default_data_collator elif training_args.fpaa: __lowercase : Optional[int] = DataCollatorWithPadding(lowerCAmelCase_ , pad_to_multiple_of=8 ) else: __lowercase : List[Any] = None # Initialize our Trainer __lowercase : List[str] = Trainer( model=lowerCAmelCase_ , args=lowerCAmelCase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , data_collator=lowerCAmelCase_ , ) # Training if training_args.do_train: __lowercase : Optional[int] = None if training_args.resume_from_checkpoint is not None: __lowercase : Tuple = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowercase : Any = last_checkpoint __lowercase : Tuple = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) __lowercase : Dict = train_result.metrics __lowercase : List[str] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase_ ) ) __lowercase : List[str] = min(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , lowerCAmelCase_ ) trainer.save_metrics("""train""" , lowerCAmelCase_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowercase : Union[str, Any] = trainer.evaluate(eval_dataset=lowerCAmelCase_ ) __lowercase : Dict = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase_ ) __lowercase : Dict = min(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) trainer.log_metrics("""eval""" , lowerCAmelCase_ ) trainer.save_metrics("""eval""" , lowerCAmelCase_ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __lowercase : Dict = predict_dataset.remove_columns("""label""" ) __lowercase : int = trainer.predict(lowerCAmelCase_ , metric_key_prefix="""predict""" ).predictions __lowercase : Union[str, Any] = np.argmax(lowerCAmelCase_ , axis=1 ) __lowercase : Dict = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_ , """w""" ) as writer: logger.info("""***** Predict Results *****""" ) writer.write("""index\tprediction\n""" ) for index, item in enumerate(lowerCAmelCase_ ): __lowercase : int = label_list[item] writer.write(F"{index}\t{item}\n" ) __lowercase : Dict = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""} if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase_ ) else: trainer.create_model_card(**lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : Tuple ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
714
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowerCamelCase : List[Any] = logging.get_logger(__name__) class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , __a : str = None , __a : uuid.UUID = None , __a : Any=None , __a : List[Any]=None ) -> List[Any]: """simple docstring""" if not conversation_id: __lowercase : Any = uuid.uuida() if past_user_inputs is None: __lowercase : Dict = [] if generated_responses is None: __lowercase : Dict = [] __lowercase : uuid.UUID = conversation_id __lowercase : List[str] = past_user_inputs __lowercase : List[str] = generated_responses __lowercase : Optional[str] = text def __eq__( self : Dict , __a : Dict ) -> Any: """simple docstring""" if not isinstance(__a , __a ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCAmelCase ( self : List[str] , __a : str , __a : bool = False ) -> Dict: """simple docstring""" if self.new_user_input: if overwrite: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten " F"with: \"{text}\"." ) __lowercase : Optional[int] = text else: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" new input " F"ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input" ) else: __lowercase : Dict = text def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __lowercase : Dict = None def lowerCAmelCase ( self : Optional[int] , __a : str ) -> List[Any]: """simple docstring""" self.generated_responses.append(__a ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : int ) -> str: """simple docstring""" __lowercase : Optional[int] = F"Conversation id: {self.uuid} \n" for is_user, text in self.iter_texts(): __lowercase : Optional[Any] = """user""" if is_user else """bot""" output += F"{name} >> {text} \n" return output @add_end_docstrings( __a , r''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''' , ) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Any , *__a : int , **__a : str ) -> Union[str, Any]: """simple docstring""" super().__init__(*__a , **__a ) if self.tokenizer.pad_token_id is None: __lowercase : List[Any] = self.tokenizer.eos_token def lowerCAmelCase ( self : Union[str, Any] , __a : int=None , __a : Tuple=None , __a : Any=None , **__a : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = {} __lowercase : Tuple = {} __lowercase : List[str] = {} if min_length_for_response is not None: __lowercase : Dict = min_length_for_response if minimum_tokens is not None: __lowercase : Union[str, Any] = minimum_tokens if "max_length" in generate_kwargs: __lowercase : Union[str, Any] = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __lowercase : Union[str, Any] = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(__a ) return preprocess_params, forward_params, postprocess_params def __call__( self : Optional[int] , __a : Union[Conversation, List[Conversation]] , __a : Dict=0 , **__a : List[Any] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = super().__call__(__a , num_workers=__a , **__a ) if isinstance(__a , __a ) and len(__a ) == 1: return outputs[0] return outputs def lowerCAmelCase ( self : Union[str, Any] , __a : Conversation , __a : Tuple=32 ) -> Dict[str, Any]: """simple docstring""" if not isinstance(__a , __a ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( F"Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. " """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer , """_build_conversation_input_ids""" ): __lowercase : List[Any] = self.tokenizer._build_conversation_input_ids(__a ) else: # If the tokenizer cannot handle conversations, we default to only the old version __lowercase : Tuple = self._legacy_parse_and_tokenize(__a ) if self.framework == "pt": __lowercase : List[Any] = torch.LongTensor([input_ids] ) elif self.framework == "tf": __lowercase : List[str] = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCAmelCase ( self : Any , __a : Dict , __a : Any=10 , **__a : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = generate_kwargs.get("""max_length""" , self.model.config.max_length ) __lowercase : List[Any] = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(F"Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})" ) __lowercase : Any = max_length - minimum_tokens __lowercase : int = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: __lowercase : Dict = model_inputs["""attention_mask"""][:, -trim:] __lowercase : Union[str, Any] = model_inputs.pop("""conversation""" ) __lowercase : Tuple = max_length __lowercase : int = self.model.generate(**__a , **__a ) if self.model.config.is_encoder_decoder: __lowercase : Optional[int] = 1 else: __lowercase : str = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCAmelCase ( self : int , __a : Tuple , __a : List[Any]=True ) -> List[str]: """simple docstring""" __lowercase : int = model_outputs["""output_ids"""] __lowercase : Union[str, Any] = self.tokenizer.decode( output_ids[0] , skip_special_tokens=__a , clean_up_tokenization_spaces=__a , ) __lowercase : List[str] = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(__a ) return conversation def lowerCAmelCase ( self : int , __a : Conversation ) -> Dict: """simple docstring""" __lowercase : Optional[int] = self.tokenizer.eos_token_id __lowercase : Optional[Any] = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(__a , add_special_tokens=__a ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(__a , add_special_tokens=__a ) ) if len(__a ) > self.tokenizer.model_max_length: __lowercase : List[Any] = input_ids[-self.tokenizer.model_max_length :] return input_ids
649
0
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : str , __a : List[Any] , __a : Union[str, Any]=7 , __a : Optional[Any]=3 , __a : Optional[int]=18 , __a : Tuple=30 , __a : str=400 , __a : int=True , __a : str=None , __a : Union[str, Any]=True , ) -> Dict: """simple docstring""" __lowercase : str = size if size is not None else {"""height""": 18, """width""": 18} __lowercase : List[Any] = parent __lowercase : Any = batch_size __lowercase : Any = num_channels __lowercase : Dict = image_size __lowercase : int = min_resolution __lowercase : Union[str, Any] = max_resolution __lowercase : Dict = do_resize __lowercase : str = size __lowercase : Tuple = apply_ocr def lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : Dict = LayoutLMvaImageProcessor if is_pytesseract_available() else None def lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = LayoutLMvaImageProcessingTester(self ) @property def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__a , """do_resize""" ) ) self.assertTrue(hasattr(__a , """size""" ) ) self.assertTrue(hasattr(__a , """apply_ocr""" ) ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) __lowercase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" pass def lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a ) for image in image_inputs: self.assertIsInstance(__a , Image.Image ) # Test not batched input __lowercase : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) self.assertIsInstance(encoding.words , __a ) self.assertIsInstance(encoding.boxes , __a ) # Test batched __lowercase : List[str] = image_processing(__a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , numpify=__a ) for image in image_inputs: self.assertIsInstance(__a , np.ndarray ) # Test not batched input __lowercase : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __lowercase : Dict = image_processing(__a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" __lowercase : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a ) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor ) # Test not batched input __lowercase : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __lowercase : List[Any] = image_processing(__a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" __lowercase : Dict = LayoutLMvaImageProcessor() from datasets import load_dataset __lowercase : List[str] = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" ) __lowercase : Optional[int] = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) __lowercase : Tuple = image_processing(__a , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __lowercase : Tuple = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 __lowercase : List[Any] = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __a ) self.assertListEqual(encoding.boxes , __a ) # with apply_OCR = False __lowercase : List[str] = LayoutLMvaImageProcessor(apply_ocr=__a ) __lowercase : Union[str, Any] = image_processing(__a , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
715
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__a , """tf_padding""" ) ) self.parent.assertTrue(hasattr(__a , """depth_multiplier""" ) ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Tuple , __a : str=13 , __a : Dict=3 , __a : List[Any]=32 , __a : Any=0.25 , __a : Any=8 , __a : Optional[int]=8 , __a : Optional[int]=6 , __a : Dict=32 , __a : Tuple=True , __a : List[Any]=True , __a : Optional[int]=True , __a : Tuple="relu6" , __a : Optional[Any]=1280 , __a : str=0.1 , __a : str=0.02 , __a : Optional[Any]=True , __a : Tuple=True , __a : Dict=10 , __a : Optional[Any]=None , ) -> Any: """simple docstring""" __lowercase : List[str] = parent __lowercase : Tuple = batch_size __lowercase : Dict = num_channels __lowercase : Optional[int] = image_size __lowercase : int = depth_multiplier __lowercase : str = depth_divisible_by __lowercase : int = min_depth __lowercase : Tuple = expand_ratio __lowercase : Optional[int] = tf_padding __lowercase : Dict = output_stride __lowercase : Dict = first_layer_is_expansion __lowercase : Optional[Any] = finegrained_output __lowercase : str = hidden_act __lowercase : Union[str, Any] = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) __lowercase : Optional[int] = classifier_dropout_prob __lowercase : int = use_labels __lowercase : Optional[int] = is_training __lowercase : Dict = num_labels __lowercase : Tuple = initializer_range __lowercase : Optional[Any] = scope def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : List[Any] = None __lowercase : Optional[Any] = None if self.use_labels: __lowercase : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __lowercase : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowercase : List[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : Tuple , __a : Dict , __a : Tuple , __a : Optional[int] , __a : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[int] = MobileNetVaModel(config=__a ) model.to(__a ) model.eval() __lowercase : Tuple = model(__a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def lowerCAmelCase ( self : List[str] , __a : Optional[int] , __a : List[str] , __a : str , __a : Optional[int] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = self.num_labels __lowercase : Dict = MobileNetVaForImageClassification(__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : int , __a : List[str] , __a : Tuple , __a : Any , __a : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : int = self.num_labels __lowercase : List[Any] = MobileNetVaForSemanticSegmentation(__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __lowercase : str = model(__a , labels=__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase : List[str] = config_and_inputs __lowercase : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Tuple = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) _A : Optional[Any] = ( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) _A : Tuple = False _A : List[str] = False _A : List[str] = False _A : Optional[int] = False def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = MobileNetVaModelTester(self ) __lowercase : int = MobileNetVaConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV2 does not use inputs_embeds""" ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not support input and output embeddings""" ) def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not output attentions""" ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[Any] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : int = [*signature.parameters.keys()] __lowercase : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" def check_hidden_states_output(__a : List[Any] , __a : Tuple , __a : List[str] ): __lowercase : Optional[Any] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : List[Any] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Tuple = outputs.hidden_states __lowercase : str = 16 self.assertEqual(len(__a ) , __a ) __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Any = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase : Union[str, Any] = True check_hidden_states_output(__a , __a , __a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : Optional[int] = MobileNetVaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def snake_case_ ( ): __lowercase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v2_1.0_224""" ) if is_vision_available() else None ) @slow def lowerCAmelCase ( self : str ) -> int: """simple docstring""" __lowercase : Tuple = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v2_1.0_224""" ).to(__a ) __lowercase : str = self.default_image_processor __lowercase : Tuple = prepare_img() __lowercase : Tuple = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : str = model(**__a ) # verify the logits __lowercase : Union[str, Any] = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , __a ) __lowercase : str = torch.tensor([0.2445, -1.1993, 0.1905] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : int = MobileNetVaForSemanticSegmentation.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __lowercase : Dict = model.to(__a ) __lowercase : Tuple = MobileNetVaImageProcessor.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __lowercase : List[str] = prepare_img() __lowercase : Optional[int] = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : Union[str, Any] = model(**__a ) __lowercase : Any = outputs.logits # verify the logits __lowercase : Dict = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , __a ) __lowercase : str = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=__a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __a , atol=1E-4 ) )
649
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : List[Any] = { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json''', '''allenai/longformer-large-4096''': '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json''', '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json''' ), } class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = '''longformer''' def __init__( self : Union[str, Any] , __a : Union[List[int], int] = 512 , __a : int = 2 , __a : int = 1 , __a : int = 0 , __a : int = 2 , __a : int = 30522 , __a : int = 768 , __a : int = 12 , __a : int = 12 , __a : int = 3072 , __a : str = "gelu" , __a : float = 0.1 , __a : float = 0.1 , __a : int = 512 , __a : int = 2 , __a : float = 0.02 , __a : float = 1E-12 , __a : bool = False , **__a : Union[str, Any] , ) -> Dict: """simple docstring""" super().__init__(pad_token_id=__a , **__a ) __lowercase : Tuple = attention_window __lowercase : str = sep_token_id __lowercase : Tuple = bos_token_id __lowercase : Optional[int] = eos_token_id __lowercase : Any = vocab_size __lowercase : Any = hidden_size __lowercase : Dict = num_hidden_layers __lowercase : List[str] = num_attention_heads __lowercase : Dict = hidden_act __lowercase : Dict = intermediate_size __lowercase : Dict = hidden_dropout_prob __lowercase : Optional[Any] = attention_probs_dropout_prob __lowercase : int = max_position_embeddings __lowercase : List[str] = type_vocab_size __lowercase : List[str] = initializer_range __lowercase : Union[str, Any] = layer_norm_eps __lowercase : List[Any] = onnx_export class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Optional[Any] , __a : "PretrainedConfig" , __a : str = "default" , __a : "List[PatchingSpec]" = None ) -> Tuple: """simple docstring""" super().__init__(__a , __a , __a ) __lowercase : Dict = True @property def lowerCAmelCase ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": __lowercase : List[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __lowercase : Any = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""global_attention_mask""", dynamic_axis), ] ) @property def lowerCAmelCase ( self : str ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" __lowercase : Any = super().outputs if self.task == "default": __lowercase : Any = {0: """batch"""} return outputs @property def lowerCAmelCase ( self : List[Any] ) -> float: """simple docstring""" return 1E-4 @property def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" return max(super().default_onnx_opset , 14 ) def lowerCAmelCase ( self : Dict , __a : "PreTrainedTokenizerBase" , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" __lowercase : Optional[int] = super().generate_dummy_inputs( preprocessor=__a , batch_size=__a , seq_length=__a , is_pair=__a , framework=__a ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly __lowercase : Optional[int] = torch.zeros_like(inputs["""input_ids"""] ) # make every second token global __lowercase : str = 1 return inputs
716
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def snake_case_ ( lowerCAmelCase_ : bool = True , *lowerCAmelCase_ : int , **lowerCAmelCase_ : List[str] ): if not is_tqdm_available(): raise ImportError("""Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.""" ) __lowercase : List[str] = False if main_process_only: __lowercase : Optional[int] = PartialState().local_process_index == 0 return _tqdm(*lowerCAmelCase_ , **lowerCAmelCase_ , disable=lowerCAmelCase_ )
649
0
def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError("""String lengths must match!""" ) __lowercase : Tuple = 0 for chara, chara in zip(lowerCAmelCase_ , lowerCAmelCase_ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
717
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : list[int] ): if not nums: return 0 __lowercase : Tuple = nums[0] __lowercase : Tuple = 0 for num in nums[1:]: __lowercase , __lowercase : List[str] = ( max_excluding + num, max(lowerCAmelCase_ , lowerCAmelCase_ ), ) return max(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
649
0
from manim import * class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" __lowercase : Optional[Any] = Rectangle(height=0.5 , width=0.5 ) __lowercase : Union[str, Any] = Rectangle(height=0.25 , width=0.25 ) __lowercase : List[str] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) __lowercase : List[Any] = [mem.copy() for i in range(6 )] __lowercase : Optional[Any] = [mem.copy() for i in range(6 )] __lowercase : str = VGroup(*__a ).arrange(__a , buff=0 ) __lowercase : Tuple = VGroup(*__a ).arrange(__a , buff=0 ) __lowercase : Union[str, Any] = VGroup(__a , __a ).arrange(__a , buff=0 ) __lowercase : List[Any] = Text("""CPU""" , font_size=24 ) __lowercase : Optional[int] = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__a ) __lowercase : str = [mem.copy() for i in range(4 )] __lowercase : Optional[int] = VGroup(*__a ).arrange(__a , buff=0 ) __lowercase : List[str] = Text("""GPU""" , font_size=24 ) __lowercase : Any = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) gpu.move_to([-1, -1, 0] ) self.add(__a ) __lowercase : Tuple = [mem.copy() for i in range(6 )] __lowercase : Dict = VGroup(*__a ).arrange(__a , buff=0 ) __lowercase : List[str] = Text("""Model""" , font_size=24 ) __lowercase : Any = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) model.move_to([3, -1.0, 0] ) self.add(__a ) __lowercase : List[str] = [] __lowercase : Dict = [] __lowercase : Tuple = [] for i, rect in enumerate(__a ): rect.set_stroke(__a ) __lowercase : Any = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__a , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__a ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=__a , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=__a , buff=0.0 ) self.add(__a ) model_cpu_arr.append(__a ) self.add(*__a , *__a , *__a ) __lowercase : List[Any] = [mem.copy() for i in range(6 )] __lowercase : Optional[Any] = VGroup(*__a ).arrange(__a , buff=0 ) __lowercase : str = Text("""Loaded Checkpoint""" , font_size=24 ) __lowercase : Dict = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) checkpoint.move_to([3, 0.5, 0] ) self.add(__a ) __lowercase : List[Any] = [] __lowercase : str = [] for i, rect in enumerate(__a ): __lowercase : List[Any] = fill.copy().set_fill(__a , opacity=0.7 ) target.move_to(__a ) ckpt_arr.append(__a ) __lowercase : str = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(__a ) self.add(*__a , *__a ) __lowercase : Tuple = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __lowercase : int = MarkupText( F"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__a , __a ) __lowercase : Union[str, Any] = MarkupText( F"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(__a , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(__a ) __lowercase : Tuple = MarkupText( F"Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device." , font_size=24 , ) step_a.move_to([2, 2, 0] ) __lowercase : Any = [meta_mem.copy() for i in range(6 )] __lowercase : List[str] = [meta_mem.copy() for i in range(6 )] __lowercase : List[Any] = VGroup(*__a ).arrange(__a , buff=0 ) __lowercase : List[Any] = VGroup(*__a ).arrange(__a , buff=0 ) __lowercase : List[Any] = VGroup(__a , __a ).arrange(__a , buff=0 ) __lowercase : Dict = Text("""Disk""" , font_size=24 ) __lowercase : Union[str, Any] = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(__a , run_time=3 ) , Write(__a , run_time=1 ) , Create(__a , run_time=1 ) ) __lowercase : Optional[int] = [] for i, rect in enumerate(__a ): __lowercase : str = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(__a , run_time=1.5 ) ) self.play(*__a ) self.play(FadeOut(__a ) ) __lowercase : Dict = MarkupText(F"Then, the checkpoint is removed from memory\nthrough garbage collection." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(__a , run_time=3 ) ) self.play( FadeOut(__a , __a , *__a , *__a ) , ) self.wait()
718
lowerCamelCase : List[str] = '''0.18.2''' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
649
0
def snake_case_ ( lowerCAmelCase_ : int = 10**9 ): __lowercase : Optional[int] = 1 __lowercase : Dict = 2 __lowercase : Dict = 0 __lowercase : Optional[Any] = 0 __lowercase : Any = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __lowercase : Optional[Any] = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
719
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : List[Any] = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : str=False , lowerCAmelCase_ : Any=False ): __lowercase : Any = """backbone.""" if is_semantic else """""" __lowercase : Optional[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"{prefix}blocks.{i}.norm1.weight", F"beit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm1.bias", F"beit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.weight", F"beit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.bias", F"beit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.weight", F"beit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.bias", F"beit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.weight", F"beit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.bias", F"beit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.weight", F"beit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.bias", F"beit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ (F"{prefix}cls_token", """beit.embeddings.cls_token"""), (F"{prefix}patch_embed.proj.weight", """beit.embeddings.patch_embeddings.projection.weight"""), (F"{prefix}patch_embed.proj.bias", """beit.embeddings.patch_embeddings.projection.bias"""), (F"{prefix}pos_embed", """beit.embeddings.position_embeddings"""), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("""mask_token""", """beit.embeddings.mask_token"""), ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) else: # layernorm + classification head rename_keys.extend( [ ("""fc_norm.weight""", """beit.pooler.layernorm.weight"""), ("""fc_norm.bias""", """beit.pooler.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : List[Any]=False ): for i in range(config.num_hidden_layers ): __lowercase : Tuple = """backbone.""" if is_semantic else """""" # queries, keys and values __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.attn.qkv.weight" ) __lowercase : Dict = state_dict.pop(F"{prefix}blocks.{i}.attn.q_bias" ) __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.attn.v_bias" ) __lowercase : List[str] = in_proj_weight[ : config.hidden_size, : ] __lowercase : Union[str, Any] = q_bias __lowercase : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] __lowercase : str = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.gamma_1" ) __lowercase : str = state_dict.pop(F"{prefix}blocks.{i}.gamma_2" ) __lowercase : List[str] = gamma_a __lowercase : Optional[int] = gamma_a def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : int ): __lowercase : Tuple = dct.pop(lowerCAmelCase_ ) __lowercase : Tuple = val def snake_case_ ( ): __lowercase : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase : Any = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]=False ): __lowercase : Dict = False if """rvlcdip""" in checkpoint_url else True __lowercase : Tuple = BeitConfig(use_absolute_position_embeddings=lowerCAmelCase_ , use_mask_token=lowerCAmelCase_ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: __lowercase : Union[str, Any] = 1024 __lowercase : Optional[int] = 4096 __lowercase : List[Any] = 24 __lowercase : Dict = 16 # labels if "rvlcdip" in checkpoint_url: __lowercase : Optional[int] = 16 __lowercase : Any = """huggingface/label-files""" __lowercase : Union[str, Any] = """rvlcdip-id2label.json""" __lowercase : List[str] = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) __lowercase : Optional[int] = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowercase : Union[str, Any] = idalabel __lowercase : Optional[Any] = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys __lowercase : Optional[int] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ , map_location="""cpu""" )["""model"""] __lowercase : Union[str, Any] = create_rename_keys(lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) # load HuggingFace model __lowercase : Dict = BeitForMaskedImageModeling(lowerCAmelCase_ ) if has_lm_head else BeitForImageClassification(lowerCAmelCase_ ) model.eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image __lowercase : List[str] = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=lowerCAmelCase_ ) __lowercase : List[str] = prepare_img() __lowercase : Optional[Any] = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""" ) __lowercase : Optional[int] = encoding["""pixel_values"""] __lowercase : str = model(lowerCAmelCase_ ) __lowercase : Tuple = outputs.logits # verify logits __lowercase : str = [1, 16] if """rvlcdip""" in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(lowerCAmelCase_ ), "Shape of logits not as expected" Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: if has_lm_head: __lowercase : Optional[Any] = """dit-base""" if """base""" in checkpoint_url else """dit-large""" else: __lowercase : Tuple = """dit-base-finetuned-rvlcdip""" if """dit-b""" in checkpoint_url else """dit-large-finetuned-rvlcdip""" image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=lowerCAmelCase_ , ) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=lowerCAmelCase_ , ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) lowerCamelCase : List[str] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
649
0
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : float , lowerCAmelCase_ : float ): return round(float(moles / volume ) * nfactor ) def snake_case_ ( lowerCAmelCase_ : float , lowerCAmelCase_ : float , lowerCAmelCase_ : float ): return round(float((moles * 0.0_821 * temperature) / (volume) ) ) def snake_case_ ( lowerCAmelCase_ : float , lowerCAmelCase_ : float , lowerCAmelCase_ : float ): return round(float((moles * 0.0_821 * temperature) / (pressure) ) ) def snake_case_ ( lowerCAmelCase_ : float , lowerCAmelCase_ : float , lowerCAmelCase_ : float ): return round(float((pressure * volume) / (0.0_821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
720
from torch import nn class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , __a : int , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" super().__init__() __lowercase : int = class_size __lowercase : int = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) __lowercase : str = nn.Linear(__a , __a ) def lowerCAmelCase ( self : Tuple , __a : int ) -> Tuple: """simple docstring""" __lowercase : str = self.mlp(__a ) return logits
649
0
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 lowerCamelCase : Tuple = { # 1536-bit 5: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 2048-bit 14: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AACAA68FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 3072-bit 15: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 4096-bit 16: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199''' + '''FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 6144-bit 17: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08''' + '''8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B''' + '''302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9''' + '''A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6''' + '''49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8''' + '''FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C''' + '''180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718''' + '''3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D''' + '''04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D''' + '''B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226''' + '''1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC''' + '''E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26''' + '''99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB''' + '''04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2''' + '''233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127''' + '''D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406''' + '''AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918''' + '''DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151''' + '''2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03''' + '''F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F''' + '''BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B''' + '''B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632''' + '''387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E''' + '''6DCC4024FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 8192-bit 18: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD''' + '''F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831''' + '''179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B''' + '''DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF''' + '''5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6''' + '''D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3''' + '''23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328''' + '''06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C''' + '''DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE''' + '''12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4''' + '''38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300''' + '''741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568''' + '''3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9''' + '''22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B''' + '''4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A''' + '''062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36''' + '''4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1''' + '''B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92''' + '''4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47''' + '''9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71''' + '''60C980DD98EDD3DFFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, } class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , __a : int = 14 ) -> None: """simple docstring""" if group not in primes: raise ValueError("""Unsupported Group""" ) __lowercase : Tuple = primes[group]["""prime"""] __lowercase : str = primes[group]["""generator"""] __lowercase : Union[str, Any] = int(hexlify(urandom(32 ) ) , base=16 ) def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" return hex(self.__private_key )[2:] def lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" __lowercase : Dict = pow(self.generator , self.__private_key , self.prime ) return hex(__a )[2:] def lowerCAmelCase ( self : Optional[int] , __a : int ) -> bool: """simple docstring""" return ( 2 <= key <= self.prime - 2 and pow(__a , (self.prime - 1) // 2 , self.prime ) == 1 ) def lowerCAmelCase ( self : List[str] , __a : str ) -> str: """simple docstring""" __lowercase : Dict = int(__a , base=16 ) if not self.is_valid_public_key(__a ): raise ValueError("""Invalid public key""" ) __lowercase : Dict = pow(__a , self.__private_key , self.prime ) return shaaaa(str(__a ).encode() ).hexdigest() @staticmethod def lowerCAmelCase ( __a : int , __a : int ) -> bool: """simple docstring""" return ( 2 <= remote_public_key_str <= prime - 2 and pow(__a , (prime - 1) // 2 , __a ) == 1 ) @staticmethod def lowerCAmelCase ( __a : str , __a : str , __a : int = 14 ) -> str: """simple docstring""" __lowercase : str = int(__a , base=16 ) __lowercase : Any = int(__a , base=16 ) __lowercase : str = primes[group]["""prime"""] if not DiffieHellman.is_valid_public_key_static(__a , __a ): raise ValueError("""Invalid public key""" ) __lowercase : str = pow(__a , __a , __a ) return shaaaa(str(__a ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
721
import fire from utils import calculate_rouge, save_json def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : str=None , **lowerCAmelCase_ : str ): __lowercase : Tuple = [x.strip() for x in open(lowerCAmelCase_ ).readlines()] __lowercase : Dict = [x.strip() for x in open(lowerCAmelCase_ ).readlines()][: len(lowerCAmelCase_ )] __lowercase : Tuple = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) if save_path is not None: save_json(lowerCAmelCase_ , lowerCAmelCase_ , indent=lowerCAmelCase_ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
649
0
from __future__ import annotations from fractions import Fraction def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): return ( num != den and num % 1_0 == den // 1_0 and (num // 1_0) / (den % 1_0) == num / den ) def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = [] lowercase_ = 1_1 lowercase_ = int("""1""" + """0""" * digit_len ) for num in range(UpperCAmelCase__ , UpperCAmelCase__ ): while den <= 9_9: if (num != den) and (num % 1_0 == den // 1_0) and (den % 1_0 != 0): if is_digit_cancelling(UpperCAmelCase__ , UpperCAmelCase__ ): solutions.append(F'''{num}/{den}''' ) den += 1 num += 1 lowercase_ = 1_0 return solutions def UpperCAmelCase_ ( UpperCAmelCase__ = 2 ): lowercase_ = 1.0 for fraction in fraction_list(UpperCAmelCase__ ): lowercase_ = Fraction(UpperCAmelCase__ ) result *= frac.denominator / frac.numerator return int(UpperCAmelCase__ ) if __name__ == "__main__": print(solution())
650
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionDiffEditPipeline __SCREAMING_SNAKE_CASE : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'height', 'width', 'image'} | {'image_latents'} __SCREAMING_SNAKE_CASE : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'image'} | {'image_latents'} __SCREAMING_SNAKE_CASE : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __SCREAMING_SNAKE_CASE : Any = frozenset([] ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase__ , ) lowercase_ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCamelCase__ , set_alpha_to_one=UpperCamelCase__ , ) lowercase_ = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCamelCase__ , set_alpha_to_zero=UpperCamelCase__ , ) torch.manual_seed(0 ) lowercase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=512 , ) lowercase_ = CLIPTextModel(UpperCamelCase__ ) lowercase_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase_ = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCAmelCase__ ( self : int , UpperCamelCase__ : Any , UpperCamelCase__ : Any=0 ): '''simple docstring''' lowercase_ = floats_tensor((1, 16, 16) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowercase_ = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) if str(UpperCamelCase__ ).startswith("""mps""" ): lowercase_ = torch.manual_seed(UpperCamelCase__ ) else: lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowercase_ = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str=0 ): '''simple docstring''' lowercase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowercase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase_ = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert("""RGB""" ) if str(UpperCamelCase__ ).startswith("""mps""" ): lowercase_ = torch.manual_seed(UpperCamelCase__ ) else: lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowercase_ = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple=0 ): '''simple docstring''' lowercase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowercase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase_ = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert("""RGB""" ) if str(UpperCamelCase__ ).startswith("""mps""" ): lowercase_ = torch.manual_seed(UpperCamelCase__ ) else: lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowercase_ = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : int ): '''simple docstring''' if not hasattr(self.pipeline_class , """_optional_components""" ): return lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowercase_ = self.get_dummy_inputs(UpperCamelCase__ ) lowercase_ = pipe(**UpperCamelCase__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCamelCase__ ) lowercase_ = self.pipeline_class.from_pretrained(UpperCamelCase__ ) pipe_loaded.to(UpperCamelCase__ ) pipe_loaded.set_progress_bar_config(disable=UpperCamelCase__ ) for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCamelCase__ , UpperCamelCase__ ) is None , F'''`{optional_component}` did not stay set to None after loading.''' , ) lowercase_ = self.get_dummy_inputs(UpperCamelCase__ ) lowercase_ = pipe_loaded(**UpperCamelCase__ )[0] lowercase_ = np.abs(output - output_loaded ).max() self.assertLess(UpperCamelCase__ , 1e-4 ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = """cpu""" lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_mask_inputs(UpperCamelCase__ ) lowercase_ = pipe.generate_mask(**UpperCamelCase__ ) lowercase_ = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowercase_ = np.array([0] * 9 ) lowercase_ = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = """cpu""" lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_inversion_inputs(UpperCamelCase__ ) lowercase_ = pipe.invert(**UpperCamelCase__ ).images lowercase_ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase_ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1e-3 ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = """cpu""" lowercase_ = self.get_dummy_components() lowercase_ = {"""beta_start""": 0.00_085, """beta_end""": 0.012, """beta_schedule""": """scaled_linear"""} lowercase_ = DPMSolverMultistepScheduler(**UpperCamelCase__ ) lowercase_ = DPMSolverMultistepInverseScheduler(**UpperCamelCase__ ) lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_inversion_inputs(UpperCamelCase__ ) lowercase_ = pipe.invert(**UpperCamelCase__ ).images lowercase_ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase_ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1e-3 ) @require_torch_gpu @slow class UpperCamelCase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def UpperCAmelCase__ ( cls : Dict ): '''simple docstring''' lowercase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) lowercase_ = raw_image.convert("""RGB""" ).resize((768, 768) ) lowercase_ = raw_image def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = torch.manual_seed(0 ) lowercase_ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa ) lowercase_ = DDIMScheduler.from_config(pipe.scheduler.config ) lowercase_ = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = """a bowl of fruit""" lowercase_ = """a bowl of pears""" lowercase_ = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCamelCase__ , target_prompt=UpperCamelCase__ , generator=UpperCamelCase__ , ) lowercase_ = pipe.invert( prompt=UpperCamelCase__ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCamelCase__ ).latents lowercase_ = pipe( prompt=UpperCamelCase__ , mask_image=UpperCamelCase__ , image_latents=UpperCamelCase__ , generator=UpperCamelCase__ , negative_prompt=UpperCamelCase__ , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0] lowercase_ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1 def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = torch.manual_seed(0 ) lowercase_ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa ) lowercase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase_ = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = """a bowl of fruit""" lowercase_ = """a bowl of pears""" lowercase_ = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCamelCase__ , target_prompt=UpperCamelCase__ , generator=UpperCamelCase__ , ) lowercase_ = pipe.invert( prompt=UpperCamelCase__ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCamelCase__ , num_inference_steps=25 , ).latents lowercase_ = pipe( prompt=UpperCamelCase__ , mask_image=UpperCamelCase__ , image_latents=UpperCamelCase__ , generator=UpperCamelCase__ , negative_prompt=UpperCamelCase__ , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0] lowercase_ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1
650
1
from manim import * class UpperCamelCase__ ( __magic_name__ ): def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = Rectangle(height=0.5 , width=0.5 ) lowercase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowercase_ = [mem.copy() for i in range(6 )] lowercase_ = [mem.copy() for i in range(6 )] lowercase_ = VGroup(*UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) lowercase_ = VGroup(*UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) lowercase_ = VGroup(UpperCamelCase__ , UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) lowercase_ = Text("""CPU""" , font_size=24 ) lowercase_ = Group(UpperCamelCase__ , UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0.5 , aligned_edge=UpperCamelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCamelCase__ ) lowercase_ = [mem.copy() for i in range(4 )] lowercase_ = VGroup(*UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) lowercase_ = Text("""GPU""" , font_size=24 ) lowercase_ = Group(UpperCamelCase__ , UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0.5 , aligned_edge=UpperCamelCase__ ) gpu.move_to([-1, -1, 0] ) self.add(UpperCamelCase__ ) lowercase_ = [mem.copy() for i in range(6 )] lowercase_ = VGroup(*UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) lowercase_ = Text("""Model""" , font_size=24 ) lowercase_ = Group(UpperCamelCase__ , UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0.5 , aligned_edge=UpperCamelCase__ ) model.move_to([3, -1.0, 0] ) self.add(UpperCamelCase__ ) lowercase_ = [] for i, rect in enumerate(UpperCamelCase__ ): rect.set_stroke(UpperCamelCase__ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) lowercase_ = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(UpperCamelCase__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=UpperCamelCase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=UpperCamelCase__ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=UpperCamelCase__ , buff=0.0 ) self.add(UpperCamelCase__ ) cpu_targs.append(UpperCamelCase__ ) lowercase_ = [mem.copy() for i in range(6 )] lowercase_ = VGroup(*UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) lowercase_ = Text("""Loaded Checkpoint""" , font_size=24 ) lowercase_ = Group(UpperCamelCase__ , UpperCamelCase__ ).arrange(UpperCamelCase__ , aligned_edge=UpperCamelCase__ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) lowercase_ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowercase_ = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(UpperCamelCase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) lowercase_ = MarkupText( F'''Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCamelCase__ ) , Write(UpperCamelCase__ ) ) self.play(Write(UpperCamelCase__ , run_time=1 ) , Create(UpperCamelCase__ , run_time=1 ) ) lowercase_ = [] lowercase_ = [] for i, rect in enumerate(UpperCamelCase__ ): lowercase_ = fill.copy().set_fill(UpperCamelCase__ , opacity=0.7 ) target.move_to(UpperCamelCase__ ) first_animations.append(GrowFromCenter(UpperCamelCase__ , run_time=1 ) ) lowercase_ = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(UpperCamelCase__ , run_time=1.5 ) ) self.play(*UpperCamelCase__ ) self.play(*UpperCamelCase__ ) self.wait()
650
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging a = logging.get_logger(__name__) class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : str = ['pixel_values'] def __init__( self : List[Any] , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[int, float] = 1 / 255 , UpperCamelCase__ : bool = True , UpperCamelCase__ : int = 8 , **UpperCamelCase__ : Optional[Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowercase_ = do_rescale lowercase_ = rescale_factor lowercase_ = do_pad lowercase_ = pad_size def UpperCAmelCase__ ( self : int , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : float , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[Any] ): '''simple docstring''' return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None ): '''simple docstring''' lowercase_ , lowercase_ = get_image_size(UpperCamelCase__ ) lowercase_ = (old_height // size + 1) * size - old_height lowercase_ = (old_width // size + 1) * size - old_width return pad(UpperCamelCase__ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[float] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase__ : Dict , ): '''simple docstring''' lowercase_ = do_rescale if do_rescale is not None else self.do_rescale lowercase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ = do_pad if do_pad is not None else self.do_pad lowercase_ = pad_size if pad_size is not None else self.pad_size lowercase_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_rescale: lowercase_ = [self.rescale(image=UpperCamelCase__ , scale=UpperCamelCase__ ) for image in images] if do_pad: lowercase_ = [self.pad(UpperCamelCase__ , size=UpperCamelCase__ ) for image in images] lowercase_ = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] lowercase_ = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
650
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a = logging.get_logger(__name__) a = { 'ut/deta': 'https://huggingface.co/ut/deta/resolve/main/config.json', } class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Optional[int] = 'deta' __SCREAMING_SNAKE_CASE : str = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Union[str, Any] , UpperCamelCase__ : int=None , UpperCamelCase__ : str=900 , UpperCamelCase__ : int=2_048 , UpperCamelCase__ : List[str]=6 , UpperCamelCase__ : Dict=2_048 , UpperCamelCase__ : Dict=8 , UpperCamelCase__ : str=6 , UpperCamelCase__ : Optional[Any]=1_024 , UpperCamelCase__ : Tuple=8 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Dict=True , UpperCamelCase__ : str="relu" , UpperCamelCase__ : Any=256 , UpperCamelCase__ : List[Any]=0.1 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Dict=0.0 , UpperCamelCase__ : List[str]=0.02 , UpperCamelCase__ : int=1.0 , UpperCamelCase__ : Dict=True , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : Any="sine" , UpperCamelCase__ : Dict=5 , UpperCamelCase__ : Tuple=4 , UpperCamelCase__ : Union[str, Any]=4 , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : List[str]=300 , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : str=1 , UpperCamelCase__ : int=5 , UpperCamelCase__ : str=2 , UpperCamelCase__ : Dict=1 , UpperCamelCase__ : Tuple=1 , UpperCamelCase__ : Optional[Any]=5 , UpperCamelCase__ : int=2 , UpperCamelCase__ : Optional[Any]=0.1 , UpperCamelCase__ : int=0.25 , **UpperCamelCase__ : Tuple , ): '''simple docstring''' if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowercase_ = CONFIG_MAPPING["""resnet"""](out_features=["""stage2""", """stage3""", """stage4"""] ) else: if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = backbone_config.pop("""model_type""" ) lowercase_ = CONFIG_MAPPING[backbone_model_type] lowercase_ = config_class.from_dict(UpperCamelCase__ ) lowercase_ = backbone_config lowercase_ = num_queries lowercase_ = max_position_embeddings lowercase_ = d_model lowercase_ = encoder_ffn_dim lowercase_ = encoder_layers lowercase_ = encoder_attention_heads lowercase_ = decoder_ffn_dim lowercase_ = decoder_layers lowercase_ = decoder_attention_heads lowercase_ = dropout lowercase_ = attention_dropout lowercase_ = activation_dropout lowercase_ = activation_function lowercase_ = init_std lowercase_ = init_xavier_std lowercase_ = encoder_layerdrop lowercase_ = auxiliary_loss lowercase_ = position_embedding_type # deformable attributes lowercase_ = num_feature_levels lowercase_ = encoder_n_points lowercase_ = decoder_n_points lowercase_ = two_stage lowercase_ = two_stage_num_proposals lowercase_ = with_box_refine lowercase_ = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher lowercase_ = class_cost lowercase_ = bbox_cost lowercase_ = giou_cost # Loss coefficients lowercase_ = mask_loss_coefficient lowercase_ = dice_loss_coefficient lowercase_ = bbox_loss_coefficient lowercase_ = giou_loss_coefficient lowercase_ = eos_coefficient lowercase_ = focal_alpha super().__init__(is_encoder_decoder=UpperCamelCase__ , **UpperCamelCase__ ) @property def UpperCAmelCase__ ( self : int ): '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase__ ( self : str ): '''simple docstring''' return self.d_model def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = copy.deepcopy(self.__dict__ ) lowercase_ = self.backbone_config.to_dict() lowercase_ = self.__class__.model_type return output
650
def UpperCAmelCase_ ( UpperCAmelCase__ ): if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise TypeError("""Input value must be an 'int' type""" ) lowercase_ = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
650
1
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() a = logging.get_logger(__name__) a = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } a = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): for attribute in key.split(""".""" ): lowercase_ = getattr(UpperCAmelCase__ , UpperCAmelCase__ ) if weight_type is not None: lowercase_ = getattr(UpperCAmelCase__ , UpperCAmelCase__ ).shape else: lowercase_ = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase_ = value elif weight_type == "weight_g": lowercase_ = value elif weight_type == "weight_v": lowercase_ = value elif weight_type == "bias": lowercase_ = value else: lowercase_ = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = [] lowercase_ = fairseq_model.state_dict() lowercase_ = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight lowercase_ = None for name, value in fairseq_dict.items(): lowercase_ = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , hf_model.config.feat_extract_norm == """group""" , ) lowercase_ = True elif name.split(""".""" )[0] == "proj": lowercase_ = fairseq_model.proj lowercase_ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: lowercase_ = True if "*" in mapped_key: lowercase_ = name.split(UpperCAmelCase__ )[0].split(""".""" )[-2] lowercase_ = mapped_key.replace("""*""" , UpperCAmelCase__ ) if "weight_g" in name: lowercase_ = """weight_g""" elif "weight_v" in name: lowercase_ = """weight_v""" elif "bias" in name: lowercase_ = """bias""" elif "weight" in name: lowercase_ = """weight""" else: lowercase_ = None set_recursively(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) continue if not is_used: unused_weights.append(UpperCAmelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) return proj_weight def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = full_name.split("""conv_layers.""" )[-1] lowercase_ = name.split(""".""" ) lowercase_ = int(items[0] ) lowercase_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowercase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(UpperCAmelCase__ ) def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ , lowercase_ = emb.weight.shape lowercase_ = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ , bias=UpperCAmelCase__ ) lowercase_ = emb.weight.data return lin_layer def UpperCAmelCase_ ( UpperCAmelCase__ ): with open(UpperCAmelCase__ , """r""" , encoding="""utf-8""" ) as f: lowercase_ = f.readlines() lowercase_ = [line.split(""" """ )[0] for line in lines] lowercase_ = len(UpperCAmelCase__ ) lowercase_ = { """<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3, } vocab_dict.update(dict(zip(UpperCAmelCase__ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ): lowercase_ = WavaVecaConfig.from_pretrained(UpperCAmelCase__ ) lowercase_ = SpeechaTextaConfig.from_pretrained( UpperCAmelCase__ , vocab_size=UpperCAmelCase__ , decoder_layers=UpperCAmelCase__ , do_stable_layer_norm=UpperCAmelCase__ ) lowercase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , ) lowercase_ , lowercase_ , lowercase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) lowercase_ = model[0].eval() # set weights for wav2vec2 encoder lowercase_ = WavaVecaModel(UpperCAmelCase__ ) lowercase_ = recursively_load_weights_wavaveca(model.encoder , UpperCAmelCase__ ) lowercase_ = SpeechaTextaForCausalLM(UpperCAmelCase__ ) lowercase_ , lowercase_ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=UpperCAmelCase__ ) # set output linear layer unexpected_keys.remove("""embed_out""" ) lowercase_ = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) lowercase_ = SpeechEncoderDecoderModel(encoder=UpperCAmelCase__ , decoder=UpperCAmelCase__ ) lowercase_ = False # add projection layer lowercase_ = nn.Parameter(projection_layer.weight ) lowercase_ = nn.Parameter(projection_layer.bias ) lowercase_ = create_vocab_dict(UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__ , """vocab.json""" ) , """w""" ) as fp: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ = SpeechaTextaTokenizer(os.path.join(UpperCAmelCase__ , """vocab.json""" ) ) tokenizer.save_pretrained(UpperCAmelCase__ ) lowercase_ = hf_wavavec.config.to_dict() lowercase_ = tokenizer.pad_token_id lowercase_ = tokenizer.bos_token_id lowercase_ = tokenizer.eos_token_id lowercase_ = """speech_to_text_2""" lowercase_ = """wav2vec2""" lowercase_ = SpeechEncoderDecoderConfig.from_dict(UpperCAmelCase__ ) hf_wavavec.save_pretrained(UpperCAmelCase__ ) feature_extractor.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-large-lv60', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/s2t-small-mustc-en-fr-st', type=str, help='Path to hf decoder s2t checkpoint config', ) parser.add_argument('--vocab_size', default=1_0_2_2_4, type=int, help='Vocab size of decoder') parser.add_argument('--num_decoder_layers', default=7, type=int, help='Number of decoder layers') a = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
650
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ ): @register_to_config def __init__( self : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : bool = False , ): '''simple docstring''' super().__init__() lowercase_ = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = False lowercase_ = nn.Dropout(p=UpperCamelCase__ ) lowercase_ = TaConfig( vocab_size=UpperCamelCase__ , d_model=UpperCamelCase__ , num_heads=UpperCamelCase__ , d_kv=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ , feed_forward_proj=UpperCamelCase__ , is_decoder=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , ) lowercase_ = nn.ModuleList() for lyr_num in range(UpperCamelCase__ ): lowercase_ = TaBlock(UpperCamelCase__ ) self.encoders.append(UpperCamelCase__ ) lowercase_ = TaLayerNorm(UpperCamelCase__ ) lowercase_ = nn.Dropout(p=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = self.token_embedder(UpperCamelCase__ ) lowercase_ = encoder_input_tokens.shape[1] lowercase_ = torch.arange(UpperCamelCase__ , device=encoder_input_tokens.device ) x += self.position_encoding(UpperCamelCase__ ) lowercase_ = self.dropout_pre(UpperCamelCase__ ) # inverted the attention mask lowercase_ = encoder_input_tokens.size() lowercase_ = self.get_extended_attention_mask(UpperCamelCase__ , UpperCamelCase__ ) for lyr in self.encoders: lowercase_ = lyr(UpperCamelCase__ , UpperCamelCase__ )[0] lowercase_ = self.layer_norm(UpperCamelCase__ ) return self.dropout_post(UpperCamelCase__ ), encoder_inputs_mask
650
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a = {'configuration_focalnet': ['FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FocalNetConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FocalNetForImageClassification', 'FocalNetForMaskedImageModeling', 'FocalNetBackbone', 'FocalNetModel', 'FocalNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
650
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar a = TypeVar('T') class UpperCamelCase__ ( Generic[T] ): __SCREAMING_SNAKE_CASE : deque[T] # Cache store of keys __SCREAMING_SNAKE_CASE : set[T] # References of the keys in cache __SCREAMING_SNAKE_CASE : int = 10 # Maximum capacity of cache def __init__( self : str , UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = deque() lowercase_ = set() if not n: lowercase_ = sys.maxsize elif n < 0: raise ValueError("""n should be an integer greater than 0.""" ) else: lowercase_ = n def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : T ): '''simple docstring''' if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: lowercase_ = self.dq_store.pop() self.key_reference.remove(UpperCamelCase__ ) else: self.dq_store.remove(UpperCamelCase__ ) self.dq_store.appendleft(UpperCamelCase__ ) self.key_reference.add(UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' for k in self.dq_store: print(UpperCamelCase__ ) def __repr__( self : Optional[Any] ): '''simple docstring''' return F'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() a = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
650
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ['XLNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ['XLNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLNetForMultipleChoice', 'XLNetForQuestionAnswering', 'XLNetForQuestionAnsweringSimple', 'XLNetForSequenceClassification', 'XLNetForTokenClassification', 'XLNetLMHeadModel', 'XLNetModel', 'XLNetPreTrainedModel', 'load_tf_weights_in_xlnet', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLNetForMultipleChoice', 'TFXLNetForQuestionAnsweringSimple', 'TFXLNetForSequenceClassification', 'TFXLNetForTokenClassification', 'TFXLNetLMHeadModel', 'TFXLNetMainLayer', 'TFXLNetModel', 'TFXLNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
650
def UpperCAmelCase_ ( UpperCAmelCase__ ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
650
1
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() a = logging.get_logger() @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : nn.Module __SCREAMING_SNAKE_CASE : List[nn.Module] = field(default_factory=__magic_name__ ) __SCREAMING_SNAKE_CASE : list = field(default_factory=__magic_name__ ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tensor , UpperCamelCase__ : Tensor ): '''simple docstring''' lowercase_ = len(list(m.modules() ) ) == 1 or isinstance(UpperCamelCase__ , nn.Convad ) or isinstance(UpperCamelCase__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(UpperCamelCase__ ) def __call__( self : List[str] , UpperCamelCase__ : Tensor ): '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(UpperCamelCase__ ) [x.remove() for x in self.handles] return self @property def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' return list(filter(lambda UpperCamelCase__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : nn.Module __SCREAMING_SNAKE_CASE : nn.Module __SCREAMING_SNAKE_CASE : int = 0 __SCREAMING_SNAKE_CASE : List = field(default_factory=__magic_name__ ) __SCREAMING_SNAKE_CASE : List = field(default_factory=__magic_name__ ) def __call__( self : Any , UpperCamelCase__ : Tensor ): '''simple docstring''' lowercase_ = Tracker(self.dest )(UpperCamelCase__ ).parametrized lowercase_ = Tracker(self.src )(UpperCamelCase__ ).parametrized lowercase_ = list(filter(lambda UpperCamelCase__ : type(UpperCamelCase__ ) not in self.src_skip , UpperCamelCase__ ) ) lowercase_ = list(filter(lambda UpperCamelCase__ : type(UpperCamelCase__ ) not in self.dest_skip , UpperCamelCase__ ) ) if len(UpperCamelCase__ ) != len(UpperCamelCase__ ): raise Exception( F'''Numbers of operations are different. Source module has {len(UpperCamelCase__ )} operations while''' F''' destination module has {len(UpperCamelCase__ )}.''' ) for dest_m, src_m in zip(UpperCamelCase__ , UpperCamelCase__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'''Transfered from={src_m} to={dest_m}''' ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = True ): print(F'''Converting {name}...''' ) with torch.no_grad(): lowercase_ = timm.create_model(UpperCAmelCase__ , pretrained=UpperCAmelCase__ ).eval() lowercase_ = ResNetForImageClassification(UpperCAmelCase__ ).eval() lowercase_ = ModuleTransfer(src=UpperCAmelCase__ , dest=UpperCAmelCase__ ) lowercase_ = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(UpperCAmelCase__ ) assert torch.allclose(from_model(UpperCAmelCase__ ) , our_model(UpperCAmelCase__ ).logits ), "The model logits don't match the original one." lowercase_ = F'''resnet{"-".join(name.split("resnet" ) )}''' print(UpperCAmelCase__ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add model""" , use_temp_dir=UpperCAmelCase__ , ) # we can use the convnext one lowercase_ = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add image processor""" , use_temp_dir=UpperCAmelCase__ , ) print(F'''Pushed {checkpoint_name}''' ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = True ): lowercase_ = """imagenet-1k-id2label.json""" lowercase_ = 1_0_0_0 lowercase_ = (1, num_labels) lowercase_ = """huggingface/label-files""" lowercase_ = num_labels lowercase_ = json.load(open(hf_hub_download(UpperCAmelCase__ , UpperCAmelCase__ , repo_type="""dataset""" ) , """r""" ) ) lowercase_ = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} lowercase_ = idalabel lowercase_ = {v: k for k, v in idalabel.items()} lowercase_ = partial(UpperCAmelCase__ , num_labels=UpperCAmelCase__ , idalabel=UpperCAmelCase__ , labelaid=UpperCAmelCase__ ) lowercase_ = { """resnet18""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="""basic""" ), """resnet26""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet34""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="""basic""" ), """resnet50""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet101""": ImageNetPreTrainedConfig( depths=[3, 4, 2_3, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet152""": ImageNetPreTrainedConfig( depths=[3, 8, 3_6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), } if model_name: convert_weight_and_push(UpperCAmelCase__ , names_to_config[model_name] , UpperCAmelCase__ , UpperCAmelCase__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return config, expected_shape if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) a = parser.parse_args() a = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
650
def UpperCAmelCase_ ( UpperCAmelCase__=2_8_1_2_3 ): lowercase_ = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i lowercase_ = set() lowercase_ = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(UpperCAmelCase__ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
650
1
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features a = logging.get_logger(__name__) a = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) a = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : str = field( default=__magic_name__ , metadata={'help': 'Model type selected in the list: ' + ', '.join(__magic_name__ )} ) __SCREAMING_SNAKE_CASE : str = field( default=__magic_name__ , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) __SCREAMING_SNAKE_CASE : int = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __SCREAMING_SNAKE_CASE : int = field( default=128 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) __SCREAMING_SNAKE_CASE : int = field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) __SCREAMING_SNAKE_CASE : int = field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) __SCREAMING_SNAKE_CASE : bool = field( default=__magic_name__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) __SCREAMING_SNAKE_CASE : bool = field( default=__magic_name__ , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) __SCREAMING_SNAKE_CASE : float = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) __SCREAMING_SNAKE_CASE : int = field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) __SCREAMING_SNAKE_CASE : int = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) __SCREAMING_SNAKE_CASE : int = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : str = 'train' __SCREAMING_SNAKE_CASE : Dict = 'dev' class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : SquadDataTrainingArguments __SCREAMING_SNAKE_CASE : List[SquadFeatures] __SCREAMING_SNAKE_CASE : Split __SCREAMING_SNAKE_CASE : bool def __init__( self : Tuple , UpperCamelCase__ : SquadDataTrainingArguments , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Union[str, Split] = Split.train , UpperCamelCase__ : Optional[bool] = False , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : Optional[str] = "pt" , ): '''simple docstring''' lowercase_ = args lowercase_ = is_language_sensitive lowercase_ = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(UpperCamelCase__ , UpperCamelCase__ ): try: lowercase_ = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) lowercase_ = mode # Load data features from cache or dataset file lowercase_ = """v2""" if args.version_2_with_negative else """v1""" lowercase_ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowercase_ = cached_features_file + """.lock""" with FileLock(UpperCamelCase__ ): if os.path.exists(UpperCamelCase__ ) and not args.overwrite_cache: lowercase_ = time.time() lowercase_ = torch.load(UpperCamelCase__ ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. lowercase_ = self.old_features["""features"""] lowercase_ = self.old_features.get("""dataset""" , UpperCamelCase__ ) lowercase_ = self.old_features.get("""examples""" , UpperCamelCase__ ) logger.info( F'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' """ future run""" ) else: if mode == Split.dev: lowercase_ = self.processor.get_dev_examples(args.data_dir ) else: lowercase_ = self.processor.get_train_examples(args.data_dir ) lowercase_ , lowercase_ = squad_convert_examples_to_features( examples=self.examples , tokenizer=UpperCamelCase__ , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=UpperCamelCase__ , ) lowercase_ = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , UpperCamelCase__ , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self : List[Any] ): '''simple docstring''' return len(self.features ) def __getitem__( self : int , UpperCamelCase__ : Dict ): '''simple docstring''' lowercase_ = self.features[i] lowercase_ = torch.tensor(feature.input_ids , dtype=torch.long ) lowercase_ = torch.tensor(feature.attention_mask , dtype=torch.long ) lowercase_ = torch.tensor(feature.token_type_ids , dtype=torch.long ) lowercase_ = torch.tensor(feature.cls_index , dtype=torch.long ) lowercase_ = torch.tensor(feature.p_mask , dtype=torch.float ) lowercase_ = torch.tensor(feature.is_impossible , dtype=torch.float ) lowercase_ = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: lowercase_ = torch.tensor(feature.start_position , dtype=torch.long ) lowercase_ = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
650
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase__ : def __init__( self : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str]=13 , UpperCamelCase__ : str=7 , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : str=False , UpperCamelCase__ : str=True , UpperCamelCase__ : Union[str, Any]=99 , UpperCamelCase__ : Dict=32 , UpperCamelCase__ : Union[str, Any]=5 , UpperCamelCase__ : Tuple=4 , UpperCamelCase__ : Dict=37 , UpperCamelCase__ : Any="gelu" , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Tuple=512 , UpperCamelCase__ : Union[str, Any]=16 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : int=0.02 , UpperCamelCase__ : int=3 , UpperCamelCase__ : Optional[Any]=4 , UpperCamelCase__ : int=None , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_input_mask lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_labels lowercase_ = num_choices lowercase_ = scope def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ = None if self.use_input_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ = None if self.use_token_type_ids: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ = None lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , use_stable_embedding=UpperCamelCase__ , ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] ): '''simple docstring''' lowercase_ = OpenLlamaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , ): '''simple docstring''' lowercase_ = True lowercase_ = OpenLlamaModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , ) lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , ) lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , ): '''simple docstring''' lowercase_ = OpenLlamaForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : Tuple , ): '''simple docstring''' lowercase_ = True lowercase_ = True lowercase_ = OpenLlamaForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # first forward pass lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , use_cache=UpperCamelCase__ , ) lowercase_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowercase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase_ = torch.cat([input_mask, next_mask] , dim=-1 ) lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , )["""hidden_states"""][0] lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , past_key_values=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , )["""hidden_states"""][0] # select random slice lowercase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase_ = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : List[str] = (OpenLlamaForCausalLM,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : List[Any] = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Optional[int] = False def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = OpenLlamaModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase_ = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = input_dict["""input_ids"""] lowercase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowercase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase_ = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = """single_label_classification""" lowercase_ = input_dict["""input_ids"""] lowercase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowercase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase_ = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = """multi_label_classification""" lowercase_ = input_dict["""input_ids"""] lowercase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowercase_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowercase_ = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = ids_tensor([1, 10] , config.vocab_size ) lowercase_ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase_ = OpenLlamaModel(UpperCamelCase__ ) original_model.to(UpperCamelCase__ ) original_model.eval() lowercase_ = original_model(UpperCamelCase__ ).last_hidden_state lowercase_ = original_model(UpperCamelCase__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase_ = {"""type""": scaling_type, """factor""": 10.0} lowercase_ = OpenLlamaModel(UpperCamelCase__ ) scaled_model.to(UpperCamelCase__ ) scaled_model.eval() lowercase_ = scaled_model(UpperCamelCase__ ).last_hidden_state lowercase_ = scaled_model(UpperCamelCase__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) )
650
1
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCamelCase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : Optional[int] ): '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): lowercase_ = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = """sshleifer/tiny-gpt2""" lowercase_ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=UpperCamelCase__ , multi_process=UpperCamelCase__ , ) lowercase_ = TensorFlowBenchmark(UpperCamelCase__ ) lowercase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = """sgugger/tiny-distilbert-classification""" lowercase_ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , only_pretrain_model=UpperCamelCase__ , ) lowercase_ = TensorFlowBenchmark(UpperCamelCase__ ) lowercase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = """sshleifer/tiny-gpt2""" lowercase_ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) lowercase_ = TensorFlowBenchmark(UpperCamelCase__ ) lowercase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = """sshleifer/tiny-gpt2""" lowercase_ = AutoConfig.from_pretrained(UpperCamelCase__ ) lowercase_ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=UpperCamelCase__ , multi_process=UpperCamelCase__ , ) lowercase_ = TensorFlowBenchmark(UpperCamelCase__ , [config] ) lowercase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ = """sshleifer/tiny-gpt2""" lowercase_ = AutoConfig.from_pretrained(UpperCamelCase__ ) lowercase_ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) lowercase_ = TensorFlowBenchmark(UpperCamelCase__ , [config] ) lowercase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = """sshleifer/tiny-gpt2""" lowercase_ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) lowercase_ = TensorFlowBenchmark(UpperCamelCase__ ) lowercase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = """sshleifer/tiny-gpt2""" lowercase_ = AutoConfig.from_pretrained(UpperCamelCase__ ) lowercase_ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) lowercase_ = TensorFlowBenchmark(UpperCamelCase__ , [config] ) lowercase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = """patrickvonplaten/t5-tiny-random""" lowercase_ = AutoConfig.from_pretrained(UpperCamelCase__ ) lowercase_ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) lowercase_ = TensorFlowBenchmark(UpperCamelCase__ , configs=[config] ) lowercase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , """Cannot do xla on CPU.""" ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = """sshleifer/tiny-gpt2""" lowercase_ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , use_xla=UpperCamelCase__ , multi_process=UpperCamelCase__ , ) lowercase_ = TensorFlowBenchmark(UpperCamelCase__ ) lowercase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=UpperCamelCase__ , save_to_csv=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(UpperCamelCase__ , """inf_time.csv""" ) , inference_memory_csv_file=os.path.join(UpperCamelCase__ , """inf_mem.csv""" ) , env_info_csv_file=os.path.join(UpperCamelCase__ , """env.csv""" ) , multi_process=UpperCamelCase__ , ) lowercase_ = TensorFlowBenchmark(UpperCamelCase__ ) benchmark.run() self.assertTrue(Path(os.path.join(UpperCamelCase__ , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCamelCase__ , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCamelCase__ , """env.csv""" ) ).exists() ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(UpperCamelCase__ : str ): self.assertTrue(hasattr(UpperCamelCase__ , """sequential""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """cumulative""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """current""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(UpperCamelCase__ , """log.txt""" ) , log_print=UpperCamelCase__ , trace_memory_line_by_line=UpperCamelCase__ , eager_mode=UpperCamelCase__ , multi_process=UpperCamelCase__ , ) lowercase_ = TensorFlowBenchmark(UpperCamelCase__ ) lowercase_ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(UpperCamelCase__ , """log.txt""" ) ).exists() )
650
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: a = False a = logging.get_logger(__name__) a = 'ybelkada/fonts' def UpperCAmelCase_ ( ): if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F'''You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ''' """Pix2StructImageProcessor. Please upgrade torch.""" ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): requires_backends(UpperCAmelCase__ , ["""torch"""] ) _check_torch_version() lowercase_ = image_tensor.unsqueeze(0 ) lowercase_ = torch.nn.functional.unfold(UpperCAmelCase__ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) lowercase_ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , UpperCAmelCase__ , UpperCAmelCase__ , -1 ) lowercase_ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ = 3_6 , UpperCAmelCase__ = "black" , UpperCAmelCase__ = "white" , UpperCAmelCase__ = 5 , UpperCAmelCase__ = 5 , UpperCAmelCase__ = 5 , UpperCAmelCase__ = 5 , UpperCAmelCase__ = None , UpperCAmelCase__ = None , ): requires_backends(UpperCAmelCase__ , """vision""" ) # Add new lines so that each line is no more than 80 characters. lowercase_ = textwrap.TextWrapper(width=8_0 ) lowercase_ = wrapper.wrap(text=UpperCAmelCase__ ) lowercase_ = """\n""".join(UpperCAmelCase__ ) if font_bytes is not None and font_path is None: lowercase_ = io.BytesIO(UpperCAmelCase__ ) elif font_path is not None: lowercase_ = font_path else: lowercase_ = hf_hub_download(UpperCAmelCase__ , """Arial.TTF""" ) lowercase_ = ImageFont.truetype(UpperCAmelCase__ , encoding="""UTF-8""" , size=UpperCAmelCase__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. lowercase_ = ImageDraw.Draw(Image.new("""RGB""" , (1, 1) , UpperCAmelCase__ ) ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = temp_draw.textbbox((0, 0) , UpperCAmelCase__ , UpperCAmelCase__ ) # Create the actual image with a bit of padding around the text. lowercase_ = text_width + left_padding + right_padding lowercase_ = text_height + top_padding + bottom_padding lowercase_ = Image.new("""RGB""" , (image_width, image_height) , UpperCAmelCase__ ) lowercase_ = ImageDraw.Draw(UpperCAmelCase__ ) draw.text(xy=(left_padding, top_padding) , text=UpperCAmelCase__ , fill=UpperCAmelCase__ , font=UpperCAmelCase__ ) return image def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ): requires_backends(UpperCAmelCase__ , """vision""" ) # Convert to PIL image if necessary lowercase_ = to_pil_image(UpperCAmelCase__ ) lowercase_ = render_text(UpperCAmelCase__ , **UpperCAmelCase__ ) lowercase_ = max(header_image.width , image.width ) lowercase_ = int(image.height * (new_width / image.width) ) lowercase_ = int(header_image.height * (new_width / header_image.width) ) lowercase_ = Image.new("""RGB""" , (new_width, new_height + new_header_height) , """white""" ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary lowercase_ = to_numpy_array(UpperCAmelCase__ ) if infer_channel_dimension_format(UpperCAmelCase__ ) == ChannelDimension.LAST: lowercase_ = to_channel_dimension_format(UpperCAmelCase__ , ChannelDimension.LAST ) return new_image class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Tuple = ['flattened_patches'] def __init__( self : str , UpperCamelCase__ : bool = True , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : int = 2_048 , UpperCamelCase__ : bool = False , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowercase_ = patch_size if patch_size is not None else {"""height""": 16, """width""": 16} lowercase_ = do_normalize lowercase_ = do_convert_rgb lowercase_ = max_patches lowercase_ = is_vqa def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : int , UpperCamelCase__ : dict , **UpperCamelCase__ : Optional[int] ): '''simple docstring''' requires_backends(self.extract_flattened_patches , """torch""" ) _check_torch_version() # convert to torch lowercase_ = to_channel_dimension_format(UpperCamelCase__ , ChannelDimension.FIRST ) lowercase_ = torch.from_numpy(UpperCamelCase__ ) lowercase_ , lowercase_ = patch_size["""height"""], patch_size["""width"""] lowercase_ , lowercase_ = get_image_size(UpperCamelCase__ ) # maximize scale s.t. lowercase_ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) lowercase_ = max(min(math.floor(scale * image_height / patch_height ) , UpperCamelCase__ ) , 1 ) lowercase_ = max(min(math.floor(scale * image_width / patch_width ) , UpperCamelCase__ ) , 1 ) lowercase_ = max(num_feasible_rows * patch_height , 1 ) lowercase_ = max(num_feasible_cols * patch_width , 1 ) lowercase_ = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="""bilinear""" , align_corners=UpperCamelCase__ , antialias=UpperCamelCase__ , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] lowercase_ = torch_extract_patches(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = patches.shape lowercase_ = patches_shape[1] lowercase_ = patches_shape[2] lowercase_ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] lowercase_ = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] lowercase_ = torch.arange(UpperCamelCase__ ).reshape([rows, 1] ).repeat(1 , UpperCamelCase__ ).reshape([rows * columns, 1] ) lowercase_ = torch.arange(UpperCamelCase__ ).reshape([1, columns] ).repeat(UpperCamelCase__ , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] lowercase_ = row_ids.to(torch.floataa ) lowercase_ = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] lowercase_ = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] lowercase_ = torch.nn.functional.pad(UpperCamelCase__ , [0, 0, 0, max_patches - (rows * columns)] ).float() lowercase_ = to_numpy_array(UpperCamelCase__ ) return result def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Dict ): '''simple docstring''' if image.dtype == np.uinta: lowercase_ = image.astype(np.floataa ) # take mean across the whole `image` lowercase_ = np.mean(UpperCamelCase__ ) lowercase_ = np.std(UpperCamelCase__ ) lowercase_ = max(UpperCamelCase__ , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase__ : Union[str, Any] , ): '''simple docstring''' lowercase_ = do_normalize if do_normalize is not None else self.do_normalize lowercase_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase_ = patch_size if patch_size is not None else self.patch_size lowercase_ = max_patches if max_patches is not None else self.max_patches lowercase_ = self.is_vqa if kwargs.get("""data_format""" , UpperCamelCase__ ) is not None: raise ValueError("""data_format is not an accepted input as the outputs are """ ) lowercase_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase_ = [convert_to_rgb(UpperCamelCase__ ) for image in images] # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(UpperCamelCase__ ) for image in images] if is_vqa: if header_text is None: raise ValueError("""A header text must be provided for VQA models.""" ) lowercase_ = kwargs.pop("""font_bytes""" , UpperCamelCase__ ) lowercase_ = kwargs.pop("""font_path""" , UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = [header_text] * len(UpperCamelCase__ ) lowercase_ = [ render_header(UpperCamelCase__ , header_text[i] , font_bytes=UpperCamelCase__ , font_path=UpperCamelCase__ ) for i, image in enumerate(UpperCamelCase__ ) ] if do_normalize: lowercase_ = [self.normalize(image=UpperCamelCase__ ) for image in images] # convert to torch tensor and permute lowercase_ = [ self.extract_flattened_patches(image=UpperCamelCase__ , max_patches=UpperCamelCase__ , patch_size=UpperCamelCase__ ) for image in images ] # create attention mask in numpy lowercase_ = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] lowercase_ = BatchFeature( data={"""flattened_patches""": images, """attention_mask""": attention_masks} , tensor_type=UpperCamelCase__ ) return encoded_outputs
650
1
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar a = TypeVar('T') class UpperCamelCase__ ( Generic[T] ): __SCREAMING_SNAKE_CASE : deque[T] # Cache store of keys __SCREAMING_SNAKE_CASE : set[T] # References of the keys in cache __SCREAMING_SNAKE_CASE : int = 10 # Maximum capacity of cache def __init__( self : str , UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = deque() lowercase_ = set() if not n: lowercase_ = sys.maxsize elif n < 0: raise ValueError("""n should be an integer greater than 0.""" ) else: lowercase_ = n def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : T ): '''simple docstring''' if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: lowercase_ = self.dq_store.pop() self.key_reference.remove(UpperCamelCase__ ) else: self.dq_store.remove(UpperCamelCase__ ) self.dq_store.appendleft(UpperCamelCase__ ) self.key_reference.add(UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' for k in self.dq_store: print(UpperCamelCase__ ) def __repr__( self : Optional[Any] ): '''simple docstring''' return F'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() a = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
650
import cva import numpy as np class UpperCamelCase__ : def __init__( self : List[str] , UpperCamelCase__ : float , UpperCamelCase__ : int ): '''simple docstring''' if k in (0.04, 0.06): lowercase_ = k lowercase_ = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : Optional[int] ): '''simple docstring''' return str(self.k ) def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = cva.imread(UpperCamelCase__ , 0 ) lowercase_ , lowercase_ = img.shape lowercase_ = [] lowercase_ = img.copy() lowercase_ = cva.cvtColor(UpperCamelCase__ , cva.COLOR_GRAY2RGB ) lowercase_ , lowercase_ = np.gradient(UpperCamelCase__ ) lowercase_ = dx**2 lowercase_ = dy**2 lowercase_ = dx * dy lowercase_ = 0.04 lowercase_ = self.window_size // 2 for y in range(UpperCamelCase__ , h - offset ): for x in range(UpperCamelCase__ , w - offset ): lowercase_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase_ = (wxx * wyy) - (wxy**2) lowercase_ = wxx + wyy lowercase_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": a = HarrisCorner(0.04, 3) a , a = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
650
1
from __future__ import annotations a = '#' class UpperCamelCase__ : def __init__( self : List[str] ): '''simple docstring''' lowercase_ = {} def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = self._trie for char in text: if char not in trie: lowercase_ = {} lowercase_ = trie[char] lowercase_ = True def UpperCAmelCase__ ( self : List[str] , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = self._trie for char in prefix: if char in trie: lowercase_ = trie[char] else: return [] return self._elements(UpperCamelCase__ ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : dict ): '''simple docstring''' lowercase_ = [] for c, v in d.items(): lowercase_ = [""" """] if c == END else [(c + s) for s in self._elements(UpperCamelCase__ )] result.extend(UpperCamelCase__ ) return tuple(UpperCamelCase__ ) a = Trie() a = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = trie.find_word(UpperCAmelCase__ ) return tuple(string + word for word in suffixes ) def UpperCAmelCase_ ( ): print(autocomplete_using_trie("""de""" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
650
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): a = { 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: a = { 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = (images / 2 + 0.5).clamp(0 , 1 ) lowercase_ = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowercase_ = numpy_to_pil(UpperCAmelCase__ ) return images def UpperCAmelCase_ ( UpperCAmelCase__ ): if images.ndim == 3: lowercase_ = images[None, ...] lowercase_ = (images * 2_5_5).round().astype("""uint8""" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images lowercase_ = [Image.fromarray(image.squeeze() , mode="""L""" ) for image in images] else: lowercase_ = [Image.fromarray(UpperCAmelCase__ ) for image in images] return pil_images
650
1
import requests a = 'https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=' def UpperCAmelCase_ ( UpperCAmelCase__ ): # fetching a list of articles in json format lowercase_ = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page["""articles"""] , 1 ): print(F'''{i}.) {article["title"]}''' ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key='<Your BBC News API key goes here>')
650
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : str = (UnCLIPScheduler,) def UpperCAmelCase__ ( self : int , **UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = { """num_train_timesteps""": 1_000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**UpperCamelCase__ ) return config def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=UpperCamelCase__ , prev_timestep=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config(variance_type="""fixed_small_log""" ) lowercase_ = scheduler_class(**UpperCamelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1e-5 def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config(variance_type="""learned_range""" ) lowercase_ = scheduler_class(**UpperCamelCase__ ) lowercase_ = 0.5 assert scheduler._get_variance(1 , predicted_variance=UpperCamelCase__ ) - -10.1_712_790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=UpperCamelCase__ ) - -5.7_998_052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=UpperCamelCase__ ) - -0.0_010_011 < 1e-5 def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**UpperCamelCase__ ) lowercase_ = scheduler.timesteps lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter lowercase_ = torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase__ ): # 1. predict noise residual lowercase_ = model(UpperCamelCase__ , UpperCamelCase__ ) # 2. predict previous mean of sample x_t-1 lowercase_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample lowercase_ = pred_prev_sample lowercase_ = torch.sum(torch.abs(UpperCamelCase__ ) ) lowercase_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1e-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1e-3 def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(25 ) lowercase_ = scheduler.timesteps lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter lowercase_ = torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase__ ): # 1. predict noise residual lowercase_ = model(UpperCamelCase__ , UpperCamelCase__ ) if i + 1 == timesteps.shape[0]: lowercase_ = None else: lowercase_ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 lowercase_ = scheduler.step( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , prev_timestep=UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample lowercase_ = pred_prev_sample lowercase_ = torch.sum(torch.abs(UpperCamelCase__ ) ) lowercase_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1e-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1e-3 def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' pass def UpperCAmelCase__ ( self : int ): '''simple docstring''' pass
650
1