code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = "naver-clova-ix/donut-base-finetuned-docvqa" __lowerCAmelCase = ( "This is a tool that answers a question about an document (pdf). It takes an input named `document` which " "should be the document containing the information, as well as a `question` that is the question about the " "document. It returns a text that contains the answer to the question." ) __lowerCAmelCase = "document_qa" __lowerCAmelCase = AutoProcessor __lowerCAmelCase = VisionEncoderDecoderModel __lowerCAmelCase = ["image", "text"] __lowerCAmelCase = ["text"] def __init__( self , *__A , **__A ) -> Tuple: if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*__A , **__A ) def SCREAMING_SNAKE_CASE ( self , __A , __A ) -> List[str]: a ='''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' a =task_prompt.replace('''{user_input}''' , __A ) a =self.pre_processor.tokenizer( __A , add_special_tokens=__A , return_tensors='''pt''' ).input_ids a =self.pre_processor(__A , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def SCREAMING_SNAKE_CASE ( self , __A ) -> int: return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__A , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__A , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__A , ).sequences def SCREAMING_SNAKE_CASE ( self , __A ) -> Optional[Any]: a =self.pre_processor.batch_decode(__A )[0] a =sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) a =sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) a =re.sub(r'''<.*?>''' , '''''' , __A , count=1 ).strip() # remove first task start token a =self.pre_processor.tokenajson(__A ) return sequence["answer"]
81
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( """The RoBERTa Model transformer with early exiting (DeeRoBERTa). """ , _a , ) class __lowerCamelCase (_a ): _lowercase = RobertaConfig _lowercase = """roberta""" def __init__( self: Union[str, Any],A_: List[str] ): '''simple docstring''' super().__init__(A_ ) __UpperCamelCase = RobertaEmbeddings(A_ ) self.init_weights() @add_start_docstrings( """RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. """ , _a , ) class __lowerCamelCase (_a ): _lowercase = RobertaConfig _lowercase = """roberta""" def __init__( self: Any,A_: int ): '''simple docstring''' super().__init__(A_ ) __UpperCamelCase = config.num_labels __UpperCamelCase = config.num_hidden_layers __UpperCamelCase = DeeRobertaModel(A_ ) __UpperCamelCase = nn.Dropout(config.hidden_dropout_prob ) __UpperCamelCase = nn.Linear(config.hidden_size,self.config.num_labels ) @add_start_docstrings_to_model_forward(A_ ) def snake_case_ ( self: List[str],A_: int=None,A_: List[Any]=None,A_: List[str]=None,A_: List[str]=None,A_: Optional[int]=None,A_: List[str]=None,A_: Any=None,A_: List[Any]=-1,A_: List[Any]=False,): '''simple docstring''' __UpperCamelCase = self.num_layers try: __UpperCamelCase = self.roberta( A_,attention_mask=A_,token_type_ids=A_,position_ids=A_,head_mask=A_,inputs_embeds=A_,) __UpperCamelCase = outputs[1] __UpperCamelCase = self.dropout(A_ ) __UpperCamelCase = self.classifier(A_ ) __UpperCamelCase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __UpperCamelCase = e.message __UpperCamelCase = e.exit_layer __UpperCamelCase = outputs[0] if not self.training: __UpperCamelCase = entropy(A_ ) __UpperCamelCase = [] __UpperCamelCase = [] if labels is not None: if self.num_labels == 1: # We are doing regression __UpperCamelCase = MSELoss() __UpperCamelCase = loss_fct(logits.view(-1 ),labels.view(-1 ) ) else: __UpperCamelCase = CrossEntropyLoss() __UpperCamelCase = loss_fct(logits.view(-1,self.num_labels ),labels.view(-1 ) ) # work with highway exits __UpperCamelCase = [] for highway_exit in outputs[-1]: __UpperCamelCase = highway_exit[0] if not self.training: highway_logits_all.append(A_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __UpperCamelCase = MSELoss() __UpperCamelCase = loss_fct(highway_logits.view(-1 ),labels.view(-1 ) ) else: __UpperCamelCase = CrossEntropyLoss() __UpperCamelCase = loss_fct(highway_logits.view(-1,self.num_labels ),labels.view(-1 ) ) highway_losses.append(A_ ) if train_highway: __UpperCamelCase = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __UpperCamelCase = (loss,) + outputs if not self.training: __UpperCamelCase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __UpperCamelCase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
310
0
def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def _UpperCAmelCase ( snake_case = 50_00 ): """simple docstring""" _lowerCAmelCase = [(i * (3 * i - 1)) // 2 for i in range(1 , snake_case )] for i, pentagonal_i in enumerate(snake_case ): for j in range(snake_case , len(snake_case ) ): _lowerCAmelCase = pentagonal_nums[j] _lowerCAmelCase = pentagonal_i + pentagonal_j _lowerCAmelCase = pentagonal_j - pentagonal_i if is_pentagonal(snake_case ) and is_pentagonal(snake_case ): return b return -1 if __name__ == "__main__": print(f"{solution() = }")
82
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCamelCase : @staticmethod def snake_case_ ( *A_: Optional[Any],**A_: Tuple ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class __lowerCamelCase (unittest.TestCase ): _lowercase = MODEL_FOR_OBJECT_DETECTION_MAPPING def snake_case_ ( self: Dict,A_: Optional[int],A_: Tuple,A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = ObjectDetectionPipeline(model=A_,image_processor=A_ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def snake_case_ ( self: int,A_: Any,A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png',threshold=0.0 ) self.assertGreater(len(A_ ),0 ) for detected_object in outputs: self.assertEqual( A_,{ 'score': ANY(A_ ), 'label': ANY(A_ ), 'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )}, },) import datasets __UpperCamelCase = datasets.load_dataset('hf-internal-testing/fixtures_image_utils','image',split='test' ) __UpperCamelCase = [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] __UpperCamelCase = object_detector(A_,threshold=0.0 ) self.assertEqual(len(A_ ),len(A_ ) ) for outputs in batch_outputs: self.assertGreater(len(A_ ),0 ) for detected_object in outputs: self.assertEqual( A_,{ 'score': ANY(A_ ), 'label': ANY(A_ ), 'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )}, },) @require_tf @unittest.skip('Object detection not implemented in TF' ) def snake_case_ ( self: str ): '''simple docstring''' pass @require_torch def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = 'hf-internal-testing/tiny-detr-mobilenetsv3' __UpperCamelCase = AutoModelForObjectDetection.from_pretrained(A_ ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained(A_ ) __UpperCamelCase = ObjectDetectionPipeline(model=A_,feature_extractor=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg',threshold=0.0 ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ],threshold=0.0,) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], ],) @require_torch @slow def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = AutoModelForObjectDetection.from_pretrained(A_ ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained(A_ ) __UpperCamelCase = ObjectDetectionPipeline(model=A_,feature_extractor=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ],) @require_torch @slow def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = pipeline('object-detection',model=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ],) @require_torch @slow def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = 0.9_9_8_5 __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = pipeline('object-detection',model=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg',threshold=A_ ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) @require_torch @require_pytesseract @slow def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = 'Narsil/layoutlmv3-finetuned-funsd' __UpperCamelCase = 0.9_9_9_3 __UpperCamelCase = pipeline('object-detection',model=A_,threshold=A_ ) __UpperCamelCase = object_detector( 'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, {'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, ],)
310
0
'''simple docstring''' import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase__ : def __init__( self : int ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Union[str, Any]=13 ,lowerCamelCase__ : str=7 ,lowerCamelCase__ : str=True ,lowerCamelCase__ : Optional[Any]=True ,lowerCamelCase__ : str=True ,lowerCamelCase__ : Union[str, Any]=True ,lowerCamelCase__ : Any=99 ,lowerCamelCase__ : Optional[Any]=16 ,lowerCamelCase__ : Optional[Any]=36 ,lowerCamelCase__ : Tuple=6 ,lowerCamelCase__ : List[str]=6 ,lowerCamelCase__ : Optional[Any]=6 ,lowerCamelCase__ : Union[str, Any]=37 ,lowerCamelCase__ : Union[str, Any]="gelu" ,lowerCamelCase__ : List[str]=0.1 ,lowerCamelCase__ : Tuple=0.1 ,lowerCamelCase__ : Tuple=512 ,lowerCamelCase__ : Dict=16 ,lowerCamelCase__ : Dict=2 ,lowerCamelCase__ : Dict=0.0_2 ,lowerCamelCase__ : str=3 ,lowerCamelCase__ : Tuple=4 ,lowerCamelCase__ : List[Any]=None ,): '''simple docstring''' _UpperCamelCase : Dict = parent _UpperCamelCase : Dict = batch_size _UpperCamelCase : Optional[Any] = seq_length _UpperCamelCase : Tuple = is_training _UpperCamelCase : List[str] = use_input_mask _UpperCamelCase : List[str] = use_token_type_ids _UpperCamelCase : Optional[int] = use_labels _UpperCamelCase : int = vocab_size _UpperCamelCase : int = embedding_size _UpperCamelCase : List[str] = hidden_size _UpperCamelCase : Tuple = num_hidden_layers _UpperCamelCase : Any = num_hidden_groups _UpperCamelCase : List[Any] = num_attention_heads _UpperCamelCase : Dict = intermediate_size _UpperCamelCase : Any = hidden_act _UpperCamelCase : List[Any] = hidden_dropout_prob _UpperCamelCase : Tuple = attention_probs_dropout_prob _UpperCamelCase : int = max_position_embeddings _UpperCamelCase : int = type_vocab_size _UpperCamelCase : str = type_sequence_label_size _UpperCamelCase : str = initializer_range _UpperCamelCase : Any = num_labels _UpperCamelCase : str = num_choices _UpperCamelCase : str = scope def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _UpperCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _UpperCamelCase : Optional[int] = None if self.use_input_mask: _UpperCamelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase : Optional[int] = None if self.use_token_type_ids: _UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) _UpperCamelCase : Any = None _UpperCamelCase : Optional[Any] = None _UpperCamelCase : Optional[int] = None if self.use_labels: _UpperCamelCase : str = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _UpperCamelCase : Any = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _UpperCamelCase : List[str] = ids_tensor([self.batch_size] ,self.num_choices ) _UpperCamelCase : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,num_hidden_groups=self.num_hidden_groups ,) def UpperCamelCase_ ( self : Dict ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : int ,lowerCamelCase__ : int ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : Optional[Any] ): '''simple docstring''' _UpperCamelCase : Dict = AlbertModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCamelCase : str = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ) _UpperCamelCase : Optional[Any] = model(lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ) _UpperCamelCase : str = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : Any ,lowerCamelCase__ : Dict ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : str ,lowerCamelCase__ : int ,lowerCamelCase__ : List[Any] ): '''simple docstring''' _UpperCamelCase : List[str] = AlbertForPreTraining(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCamelCase : Tuple = model( lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ,labels=lowerCamelCase__ ,sentence_order_label=lowerCamelCase__ ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape ,(self.batch_size, config.num_labels) ) def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Dict ,lowerCamelCase__ : str ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Optional[Any] ): '''simple docstring''' _UpperCamelCase : int = AlbertForMaskedLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCamelCase : Any = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ,labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : int ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : str ): '''simple docstring''' _UpperCamelCase : str = AlbertForQuestionAnswering(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCamelCase : List[Any] = model( lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ,start_positions=lowerCamelCase__ ,end_positions=lowerCamelCase__ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : str ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Dict ): '''simple docstring''' _UpperCamelCase : List[str] = self.num_labels _UpperCamelCase : Optional[Any] = AlbertForSequenceClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCamelCase : Dict = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ,labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Dict ,lowerCamelCase__ : int ): '''simple docstring''' _UpperCamelCase : List[Any] = self.num_labels _UpperCamelCase : Optional[int] = AlbertForTokenClassification(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCamelCase : Tuple = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ,labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Any ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Any ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Any ,lowerCamelCase__ : str ): '''simple docstring''' _UpperCamelCase : str = self.num_choices _UpperCamelCase : List[str] = AlbertForMultipleChoice(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCamelCase : List[str] = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _UpperCamelCase : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _UpperCamelCase : Dict = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _UpperCamelCase : List[Any] = model( lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ,labels=lowerCamelCase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _UpperCamelCase : Dict = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) : Dict = config_and_inputs _UpperCamelCase : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowercase__ ( lowercase , lowercase , unittest.TestCase ): lowercase__ = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowercase__ = ( { """feature-extraction""": AlbertModel, """fill-mask""": AlbertForMaskedLM, """question-answering""": AlbertForQuestionAnswering, """text-classification""": AlbertForSequenceClassification, """token-classification""": AlbertForTokenClassification, """zero-shot""": AlbertForSequenceClassification, } if is_torch_available() else {} ) lowercase__ = True def UpperCamelCase_ ( self : str ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : str ,lowerCamelCase__ : Any=False ): '''simple docstring''' _UpperCamelCase : Optional[int] = super()._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ,return_labels=lowerCamelCase__ ) if return_labels: if model_class in get_values(lowerCamelCase__ ): _UpperCamelCase : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=lowerCamelCase__ ) _UpperCamelCase : str = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=lowerCamelCase__ ) return inputs_dict def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _UpperCamelCase : Tuple = AlbertModelTester(self ) _UpperCamelCase : Any = ConfigTester(self ,config_class=lowerCamelCase__ ,hidden_size=37 ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase__ ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase__ ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCamelCase__ ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase__ ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase__ ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCamelCase : List[str] = type self.model_tester.create_and_check_model(*lowerCamelCase__ ) @slow def UpperCamelCase_ ( self : Dict ): '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : Union[str, Any] = AlbertModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @require_torch class lowercase__ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self : int ): '''simple docstring''' _UpperCamelCase : Tuple = AlbertModel.from_pretrained('albert-base-v2' ) _UpperCamelCase : Tuple = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _UpperCamelCase : List[str] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _UpperCamelCase : Optional[int] = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ )[0] _UpperCamelCase : Tuple = torch.Size((1, 11, 768) ) self.assertEqual(output.shape ,lowerCamelCase__ ) _UpperCamelCase : str = torch.tensor( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowerCamelCase__ ,atol=1E-4 ) )
83
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json''' ), } class __lowerCamelCase (_a ): _lowercase = """xlm-roberta""" def __init__( self: Union[str, Any],A_: Union[str, Any]=3_0522,A_: Dict=768,A_: Union[str, Any]=12,A_: Any=12,A_: str=3072,A_: Union[str, Any]="gelu",A_: str=0.1,A_: Optional[int]=0.1,A_: List[Any]=512,A_: Optional[Any]=2,A_: Dict=0.0_2,A_: List[Any]=1E-12,A_: Optional[int]=1,A_: str=0,A_: str=2,A_: Optional[Any]="absolute",A_: Union[str, Any]=True,A_: int=None,**A_: Optional[Any],): '''simple docstring''' super().__init__(pad_token_id=A_,bos_token_id=A_,eos_token_id=A_,**A_ ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = position_embedding_type __UpperCamelCase = use_cache __UpperCamelCase = classifier_dropout class __lowerCamelCase (_a ): @property def snake_case_ ( self: Optional[Any] ): '''simple docstring''' if self.task == "multiple-choice": __UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
310
0
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class _SCREAMING_SNAKE_CASE : @staticmethod def __lowerCAmelCase ( *__A , **__A ) -> str: pass def _snake_case ( lowercase__ : Image ) -> str: '''simple docstring''' lowerCAmelCase_ :List[str] = hashlib.mda(image.tobytes() ) return m.hexdigest()[:1_0] def _snake_case ( lowercase__ : Image ) -> Dict: '''simple docstring''' lowerCAmelCase_ :List[Any] = np.array(lowercase__ ) lowerCAmelCase_ :str = npimg.shape return {"hash": hashimage(lowercase__ ), "shape": shape} @is_pipeline_test @require_vision @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): UpperCAmelCase_ :str = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) UpperCAmelCase_ :int = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def __lowerCAmelCase ( self , __A , __A , __A ) -> Dict: lowerCAmelCase_ :int = MaskGenerationPipeline(model=__A , image_processor=__A ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __lowerCAmelCase ( self , __A , __A ) -> List[Any]: pass @require_tf @unittest.skip("""Image segmentation not implemented in TF""" ) def __lowerCAmelCase ( self ) -> Union[str, Any]: pass @slow @require_torch def __lowerCAmelCase ( self ) -> Any: lowerCAmelCase_ :Dict = pipeline("""mask-generation""" , model="""facebook/sam-vit-huge""" ) lowerCAmelCase_ :Optional[Any] = image_segmenter("""http://images.cocodataset.org/val2017/000000039769.jpg""" , points_per_batch=256 ) # Shortening by hashing lowerCAmelCase_ :List[str] = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(__A ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(__A , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0_4_4_4}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.0_2_1}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0_1_6_7}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0_1_3_2}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0_0_5_3}, {"""mask""": {"""hash""": """e2d0b7a0b7""", """shape""": (480, 640)}, """scores""": 0.9_9_6_7}, {"""mask""": {"""hash""": """453c7844bd""", """shape""": (480, 640)}, """scores""": 0.9_9_3}, {"""mask""": {"""hash""": """3d44f2926d""", """shape""": (480, 640)}, """scores""": 0.9_9_0_9}, {"""mask""": {"""hash""": """64033ddc3f""", """shape""": (480, 640)}, """scores""": 0.9_8_7_9}, {"""mask""": {"""hash""": """801064ff79""", """shape""": (480, 640)}, """scores""": 0.9_8_3_4}, {"""mask""": {"""hash""": """6172f276ef""", """shape""": (480, 640)}, """scores""": 0.9_7_1_6}, {"""mask""": {"""hash""": """b49e60e084""", """shape""": (480, 640)}, """scores""": 0.9_6_1_2}, {"""mask""": {"""hash""": """a811e775fd""", """shape""": (480, 640)}, """scores""": 0.9_5_9_9}, {"""mask""": {"""hash""": """a6a8ebcf4b""", """shape""": (480, 640)}, """scores""": 0.9_5_5_2}, {"""mask""": {"""hash""": """9d8257e080""", """shape""": (480, 640)}, """scores""": 0.9_5_3_2}, {"""mask""": {"""hash""": """32de6454a8""", """shape""": (480, 640)}, """scores""": 0.9_5_1_6}, {"""mask""": {"""hash""": """af3d4af2c8""", """shape""": (480, 640)}, """scores""": 0.9_4_9_9}, {"""mask""": {"""hash""": """3c6db475fb""", """shape""": (480, 640)}, """scores""": 0.9_4_8_3}, {"""mask""": {"""hash""": """c290813fb9""", """shape""": (480, 640)}, """scores""": 0.9_4_6_4}, {"""mask""": {"""hash""": """b6f0b8f606""", """shape""": (480, 640)}, """scores""": 0.9_4_3}, {"""mask""": {"""hash""": """92ce16bfdf""", """shape""": (480, 640)}, """scores""": 0.9_4_3}, {"""mask""": {"""hash""": """c749b25868""", """shape""": (480, 640)}, """scores""": 0.9_4_0_8}, {"""mask""": {"""hash""": """efb6cab859""", """shape""": (480, 640)}, """scores""": 0.9_3_3_5}, {"""mask""": {"""hash""": """1ff2eafb30""", """shape""": (480, 640)}, """scores""": 0.9_3_2_6}, {"""mask""": {"""hash""": """788b798e24""", """shape""": (480, 640)}, """scores""": 0.9_2_6_2}, {"""mask""": {"""hash""": """abea804f0e""", """shape""": (480, 640)}, """scores""": 0.8_9_9_9}, {"""mask""": {"""hash""": """7b9e8ddb73""", """shape""": (480, 640)}, """scores""": 0.8_9_8_6}, {"""mask""": {"""hash""": """cd24047c8a""", """shape""": (480, 640)}, """scores""": 0.8_9_8_4}, {"""mask""": {"""hash""": """6943e6bcbd""", """shape""": (480, 640)}, """scores""": 0.8_8_7_3}, {"""mask""": {"""hash""": """b5f47c9191""", """shape""": (480, 640)}, """scores""": 0.8_8_7_1} ] , ) # fmt: on @require_torch @slow def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :Tuple = """facebook/sam-vit-huge""" lowerCAmelCase_ :List[str] = pipeline("""mask-generation""" , model=__A ) lowerCAmelCase_ :Tuple = image_segmenter( """http://images.cocodataset.org/val2017/000000039769.jpg""" , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing lowerCAmelCase_ :Dict = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(__A ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(__A , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0_4_4_4}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.0_2_1_0}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0_1_6_7}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0_1_3_2}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0_0_5_3}, ] , )
84
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __snake_case = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCamelCase (_a ): _lowercase = field(default=_a , metadata={"""help""": """Whether to use SortishSampler or not."""} ) _lowercase = field( default=_a , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} ) _lowercase = field( default=_a , metadata={ """help""": ( """The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `max_length` value of the model configuration.""" ) } , ) _lowercase = field( default=_a , metadata={ """help""": ( """The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `num_beams` value of the model configuration.""" ) } , ) _lowercase = field( default=_a , metadata={ """help""": """Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.""" } , ) def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = super().to_dict() for k, v in d.items(): if isinstance(A_,A_ ): __UpperCamelCase = v.to_dict() return d
310
0
'''simple docstring''' import string def UpperCamelCase_( snake_case : str ): '''simple docstring''' snake_case_ = "" for i in sequence: snake_case_ = ord(snake_case ) if 6_5 <= extract <= 9_0: output += chr(1_5_5 - extract ) elif 9_7 <= extract <= 1_2_2: output += chr(2_1_9 - extract ) else: output += i return output def UpperCamelCase_( snake_case : str ): '''simple docstring''' snake_case_ = string.ascii_letters snake_case_ = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(snake_case )] if c in letters else c for c in sequence ) def UpperCamelCase_( ): '''simple docstring''' from timeit import timeit print("Running performance benchmarks..." ) snake_case_ = "from string import printable ; from __main__ import atbash, atbash_slow" print(f'> atbash_slow(): {timeit("atbash_slow(printable)" , setup=snake_case )} seconds' ) print(f'> atbash(): {timeit("atbash(printable)" , setup=snake_case )} seconds' ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(F"{example} encrypted in atbash: {atbash(example)}") benchmark()
85
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _A ( _lowercase ) -> Dict: """simple docstring""" if is_torch_version('<' , '2.0.0' ) or not hasattr(_lowercase , '_dynamo' ): return False return isinstance(_lowercase , torch._dynamo.eval_frame.OptimizedModule ) def _A ( _lowercase , _lowercase = True ) -> Optional[int]: """simple docstring""" __UpperCamelCase = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __UpperCamelCase = is_compiled_module(_lowercase ) if is_compiled: __UpperCamelCase = model __UpperCamelCase = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_lowercase , _lowercase ): __UpperCamelCase = model.module if not keep_fpaa_wrapper: __UpperCamelCase = getattr(_lowercase , 'forward' ) __UpperCamelCase = model.__dict__.pop('_original_forward' , _lowercase ) if original_forward is not None: while hasattr(_lowercase , '__wrapped__' ): __UpperCamelCase = forward.__wrapped__ if forward == original_forward: break __UpperCamelCase = forward if getattr(_lowercase , '_converted_to_transformer_engine' , _lowercase ): convert_model(_lowercase , to_transformer_engine=_lowercase ) if is_compiled: __UpperCamelCase = model __UpperCamelCase = compiled_model return model def _A ( ) -> Any: """simple docstring""" PartialState().wait_for_everyone() def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(_lowercase , _lowercase ) elif PartialState().local_process_index == 0: torch.save(_lowercase , _lowercase ) @contextmanager def _A ( **_lowercase ) -> Union[str, Any]: """simple docstring""" for key, value in kwargs.items(): __UpperCamelCase = str(_lowercase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _A ( _lowercase ) -> Tuple: """simple docstring""" if not hasattr(_lowercase , '__qualname__' ) and not hasattr(_lowercase , '__name__' ): __UpperCamelCase = getattr(_lowercase , '__class__' , _lowercase ) if hasattr(_lowercase , '__qualname__' ): return obj.__qualname__ if hasattr(_lowercase , '__name__' ): return obj.__name__ return str(_lowercase ) def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" for key, value in source.items(): if isinstance(_lowercase , _lowercase ): __UpperCamelCase = destination.setdefault(_lowercase , {} ) merge_dicts(_lowercase , _lowercase ) else: __UpperCamelCase = value return destination def _A ( _lowercase = None ) -> bool: """simple docstring""" if port is None: __UpperCamelCase = 2_95_00 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
310
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class A__ ( _lowerCamelCase , unittest.TestCase): A_ : str = ShapEImgaImgPipeline A_ : str = ['image'] A_ : int = ['image'] A_ : Tuple = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] A_ : Tuple = False @property def __lowerCamelCase ( self ): return 32 @property def __lowerCamelCase ( self ): return 32 @property def __lowerCamelCase ( self ): return self.time_input_dim * 4 @property def __lowerCamelCase ( self ): return 8 @property def __lowerCamelCase ( self ): torch.manual_seed(0 ) __lowerCAmelCase : Any = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) __lowerCAmelCase : Tuple = CLIPVisionModel(_SCREAMING_SNAKE_CASE ) return model @property def __lowerCamelCase ( self ): __lowerCAmelCase : Any = CLIPImageProcessor( crop_size=2_24 , do_center_crop=_SCREAMING_SNAKE_CASE , do_normalize=_SCREAMING_SNAKE_CASE , do_resize=_SCREAMING_SNAKE_CASE , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=2_24 , ) return image_processor @property def __lowerCamelCase ( self ): torch.manual_seed(0 ) __lowerCAmelCase : Optional[Any] = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'embedding_proj_norm_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __lowerCAmelCase : List[Any] = PriorTransformer(**_SCREAMING_SNAKE_CASE ) return model @property def __lowerCamelCase ( self ): torch.manual_seed(0 ) __lowerCAmelCase : Dict = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __lowerCAmelCase : int = ShapERenderer(**_SCREAMING_SNAKE_CASE ) return model def __lowerCamelCase ( self ): __lowerCAmelCase : Any = self.dummy_prior __lowerCAmelCase : List[Any] = self.dummy_image_encoder __lowerCAmelCase : int = self.dummy_image_processor __lowerCAmelCase : Any = self.dummy_renderer __lowerCAmelCase : Any = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=10_24 , prediction_type='sample' , use_karras_sigmas=_SCREAMING_SNAKE_CASE , clip_sample=_SCREAMING_SNAKE_CASE , clip_sample_range=1.0 , ) __lowerCAmelCase : Tuple = { 'prior': prior, 'image_encoder': image_encoder, 'image_processor': image_processor, 'renderer': renderer, 'scheduler': scheduler, } return components def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 ): __lowerCAmelCase : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) if str(_SCREAMING_SNAKE_CASE ).startswith('mps' ): __lowerCAmelCase : int = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase : str = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = { 'image': input_image, 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def __lowerCamelCase ( self ): __lowerCAmelCase : str = 'cpu' __lowerCAmelCase : Dict = self.get_dummy_components() __lowerCAmelCase : Optional[int] = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = pipe(**self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase : Any = output.images[0] __lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __lowerCAmelCase : List[Any] = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __lowerCamelCase ( self ): __lowerCAmelCase : str = torch_device == 'cpu' __lowerCAmelCase : Optional[Any] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_SCREAMING_SNAKE_CASE , relax_max_difference=_SCREAMING_SNAKE_CASE , ) def __lowerCamelCase ( self ): __lowerCAmelCase : str = self.get_dummy_components() __lowerCAmelCase : List[str] = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = 1 __lowerCAmelCase : List[str] = 2 __lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) for key in inputs.keys(): if key in self.batch_params: __lowerCAmelCase : Optional[Any] = batch_size * [inputs[key]] __lowerCAmelCase : List[str] = pipe(**_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class A__ ( unittest.TestCase): def __lowerCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): __lowerCAmelCase : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/corgi.png' ) __lowerCAmelCase : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_img2img_out.npy' ) __lowerCAmelCase : Union[str, Any] = ShapEImgaImgPipeline.from_pretrained('openai/shap-e-img2img' ) __lowerCAmelCase : Dict = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) __lowerCAmelCase : int = pipe( _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
86
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __snake_case = logging.getLogger(__name__) def _A ( _lowercase , _lowercase ) -> Optional[int]: """simple docstring""" return (preds == labels).mean() @dataclass class __lowerCamelCase : _lowercase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _lowercase = field( default=_a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __lowerCamelCase : _lowercase = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) _lowercase = field(metadata={"""help""": """Should contain the data files for the task."""} ) _lowercase = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _lowercase = field( default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _A ( ) -> str: """simple docstring""" __UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _lowercase ) # Set seed set_seed(training_args.seed ) try: __UpperCamelCase = processors[data_args.task_name]() __UpperCamelCase = processor.get_labels() __UpperCamelCase = len(_lowercase ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowercase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , ) # Get datasets __UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_lowercase ) -> Dict: __UpperCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_lowercase , p.label_ids )} # Data collator __UpperCamelCase = DataCollatorWithPadding(_lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __UpperCamelCase = Trainer( model=_lowercase , args=_lowercase , train_dataset=_lowercase , eval_dataset=_lowercase , compute_metrics=_lowercase , data_collator=_lowercase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCamelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __UpperCamelCase = trainer.evaluate() __UpperCamelCase = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(_lowercase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , _lowercase , _lowercase ) writer.write('%s = %s\n' % (key, value) ) results.update(_lowercase ) return results def _A ( _lowercase ) -> List[Any]: """simple docstring""" main() if __name__ == "__main__": main()
310
0
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable UpperCamelCase = {'''configuration_dpt''': ['''DPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DPTConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''DPTFeatureExtractor'''] UpperCamelCase = ['''DPTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''DPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DPTForDepthEstimation''', '''DPTForSemanticSegmentation''', '''DPTModel''', '''DPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
87
import os def _A ( ) -> Tuple: """simple docstring""" with open(os.path.dirname(_lowercase ) + '/p022_names.txt' ) as file: __UpperCamelCase = str(file.readlines()[0] ) __UpperCamelCase = names.replace('"' , '' ).split(',' ) names.sort() __UpperCamelCase = 0 __UpperCamelCase = 0 for i, name in enumerate(_lowercase ): for letter in name: name_score += ord(_lowercase ) - 64 total_score += (i + 1) * name_score __UpperCamelCase = 0 return total_score if __name__ == "__main__": print(solution())
310
0
import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class UpperCAmelCase_ ( _A ): '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : str=None , **UpperCamelCase__ : List[Any] ) -> int: """simple docstring""" __magic_name__ = parent __magic_name__ = config_class __magic_name__ = has_text_modality __magic_name__ = kwargs __magic_name__ = common_properties def _lowercase ( self : List[Any] ) -> str: """simple docstring""" __magic_name__ = self.config_class(**self.inputs_dict ) __magic_name__ = ( ["""hidden_size""", """num_attention_heads""", """num_hidden_layers"""] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["""vocab_size"""] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(UpperCamelCase__ , UpperCamelCase__ ) , msg=F'''`{prop}` does not exist''' ) # Test that config has the common properties as setter for idx, name in enumerate(UpperCamelCase__ ): try: setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) self.parent.assertEqual( getattr(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ , msg=F'''`{name} value {idx} expected, but was {getattr(UpperCamelCase__ , UpperCamelCase__ )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(UpperCamelCase__ ): try: __magic_name__ = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ , msg=F'''`{name} value {idx} expected, but was {getattr(UpperCamelCase__ , UpperCamelCase__ )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def _lowercase ( self : List[str] ) -> Any: """simple docstring""" __magic_name__ = self.config_class(**self.inputs_dict ) __magic_name__ = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , UpperCamelCase__ ) def _lowercase ( self : Tuple ) -> Optional[Any]: """simple docstring""" __magic_name__ = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __magic_name__ = os.path.join(UpperCamelCase__ , """config.json""" ) config_first.to_json_file(UpperCamelCase__ ) __magic_name__ = self.config_class.from_json_file(UpperCamelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : int ) -> List[str]: """simple docstring""" __magic_name__ = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(UpperCamelCase__ ) __magic_name__ = self.config_class.from_pretrained(UpperCamelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : str ) -> Tuple: """simple docstring""" __magic_name__ = self.config_class(**self.inputs_dict ) __magic_name__ = """test""" with tempfile.TemporaryDirectory() as tmpdirname: __magic_name__ = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) config_first.save_pretrained(UpperCamelCase__ ) __magic_name__ = self.config_class.from_pretrained(UpperCamelCase__ , subfolder=UpperCamelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : List[Any] ) -> List[Any]: """simple docstring""" __magic_name__ = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) __magic_name__ = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def _lowercase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if self.config_class.is_composition: return __magic_name__ = self.config_class() self.parent.assertIsNotNone(UpperCamelCase__ ) def _lowercase ( self : Optional[int] ) -> List[Any]: """simple docstring""" __magic_name__ = copy.deepcopy(UpperCamelCase__ ) __magic_name__ = self.config_class(**UpperCamelCase__ ) __magic_name__ = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("""torch_dtype""", config.torch_dtype, torch.floataa) ) elif getattr(UpperCamelCase__ , UpperCamelCase__ ) != value: wrong_values.append((key, getattr(UpperCamelCase__ , UpperCamelCase__ ), value) ) if len(UpperCamelCase__ ) > 0: __magic_name__ = """\n""".join([F'''- {v[0]}: got {v[1]} instead of {v[2]}''' for v in wrong_values] ) raise ValueError(F'''The following keys were not properly set in the config:\n{errors}''' ) def _lowercase ( self : Optional[int] ) -> List[Any]: """simple docstring""" self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
88
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=True , _lowercase="pt" ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = {'add_prefix_space': True} if isinstance(_lowercase , _lowercase ) and not line.startswith(' ' ) else {} __UpperCamelCase = padding_side return tokenizer( [line] , max_length=_lowercase , padding='max_length' if pad_to_max_length else None , truncation=_lowercase , return_tensors=_lowercase , add_special_tokens=_lowercase , **_lowercase , ) def _A ( _lowercase , _lowercase , _lowercase=None , ) -> List[Any]: """simple docstring""" __UpperCamelCase = input_ids.ne(_lowercase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCamelCase (_a ): def __init__( self: List[str],A_: str,A_: List[str],A_: List[str],A_: List[str],A_: Tuple="train",A_: Any=None,A_: List[str]=None,A_: List[Any]=None,A_: int="",): '''simple docstring''' super().__init__() __UpperCamelCase = Path(A_ ).joinpath(type_path + '.source' ) __UpperCamelCase = Path(A_ ).joinpath(type_path + '.target' ) __UpperCamelCase = self.get_char_lens(self.src_file ) __UpperCamelCase = max_source_length __UpperCamelCase = max_target_length assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}''' __UpperCamelCase = tokenizer __UpperCamelCase = prefix if n_obs is not None: __UpperCamelCase = self.src_lens[:n_obs] __UpperCamelCase = src_lang __UpperCamelCase = tgt_lang def __len__( self: Optional[Any] ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self: int,A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = index + 1 # linecache starts at 1 __UpperCamelCase = self.prefix + linecache.getline(str(self.src_file ),A_ ).rstrip('\n' ) __UpperCamelCase = linecache.getline(str(self.tgt_file ),A_ ).rstrip('\n' ) assert source_line, F'''empty source line for index {index}''' assert tgt_line, F'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer,A_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __UpperCamelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer,A_ ) else self.tokenizer ) __UpperCamelCase = self.tokenizer.generator if isinstance(self.tokenizer,A_ ) else self.tokenizer __UpperCamelCase = encode_line(A_,A_,self.max_source_length,'right' ) __UpperCamelCase = encode_line(A_,A_,self.max_target_length,'right' ) __UpperCamelCase = source_inputs['input_ids'].squeeze() __UpperCamelCase = target_inputs['input_ids'].squeeze() __UpperCamelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def snake_case_ ( A_: List[Any] ): '''simple docstring''' return [len(A_ ) for x in Path(A_ ).open().readlines()] def snake_case_ ( self: Union[str, Any],A_: Any ): '''simple docstring''' __UpperCamelCase = torch.stack([x['input_ids'] for x in batch] ) __UpperCamelCase = torch.stack([x['attention_mask'] for x in batch] ) __UpperCamelCase = torch.stack([x['decoder_input_ids'] for x in batch] ) __UpperCamelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer,A_ ) else self.tokenizer.pad_token_id ) __UpperCamelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer,A_ ) else self.tokenizer.pad_token_id ) __UpperCamelCase = trim_batch(A_,A_ ) __UpperCamelCase, __UpperCamelCase = trim_batch(A_,A_,attention_mask=A_ ) __UpperCamelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch __snake_case = getLogger(__name__) def _A ( _lowercase ) -> Any: """simple docstring""" return list(itertools.chain.from_iterable(_lowercase ) ) def _A ( _lowercase ) -> None: """simple docstring""" __UpperCamelCase = get_git_info() save_json(_lowercase , os.path.join(_lowercase , 'git_log.json' ) ) def _A ( _lowercase , _lowercase , _lowercase=4 , **_lowercase ) -> List[Any]: """simple docstring""" with open(_lowercase , 'w' ) as f: json.dump(_lowercase , _lowercase , indent=_lowercase , **_lowercase ) def _A ( _lowercase ) -> Union[str, Any]: """simple docstring""" with open(_lowercase ) as f: return json.load(_lowercase ) def _A ( ) -> Dict: """simple docstring""" __UpperCamelCase = git.Repo(search_parent_directories=_lowercase ) __UpperCamelCase = { 'repo_id': str(_lowercase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def _A ( _lowercase , _lowercase ) -> List: """simple docstring""" return list(map(_lowercase , _lowercase ) ) def _A ( _lowercase , _lowercase ) -> Tuple: """simple docstring""" with open(_lowercase , 'wb' ) as f: return pickle.dump(_lowercase , _lowercase ) def _A ( _lowercase ) -> List[Any]: """simple docstring""" def remove_articles(_lowercase ): return re.sub(r'\b(a|an|the)\b' , ' ' , _lowercase ) def white_space_fix(_lowercase ): return " ".join(text.split() ) def remove_punc(_lowercase ): __UpperCamelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowercase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowercase ) ) ) ) def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" __UpperCamelCase = normalize_answer(_lowercase ).split() __UpperCamelCase = normalize_answer(_lowercase ).split() __UpperCamelCase = Counter(_lowercase ) & Counter(_lowercase ) __UpperCamelCase = sum(common.values() ) if num_same == 0: return 0 __UpperCamelCase = 1.0 * num_same / len(_lowercase ) __UpperCamelCase = 1.0 * num_same / len(_lowercase ) __UpperCamelCase = (2 * precision * recall) / (precision + recall) return fa def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" return normalize_answer(_lowercase ) == normalize_answer(_lowercase ) def _A ( _lowercase , _lowercase ) -> Dict: """simple docstring""" assert len(_lowercase ) == len(_lowercase ) __UpperCamelCase = 0 for hypo, pred in zip(_lowercase , _lowercase ): em += exact_match_score(_lowercase , _lowercase ) if len(_lowercase ) > 0: em /= len(_lowercase ) return {"em": em} def _A ( _lowercase ) -> Optional[Any]: """simple docstring""" return model_prefix.startswith('rag' ) def _A ( _lowercase , _lowercase , _lowercase ) -> Dict: """simple docstring""" __UpperCamelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __UpperCamelCase = 'dropout_rate' for p in extra_params: if getattr(_lowercase , _lowercase , _lowercase ): if not hasattr(_lowercase , _lowercase ) and not hasattr(_lowercase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_lowercase ) ) delattr(_lowercase , _lowercase ) continue __UpperCamelCase = p if hasattr(_lowercase , _lowercase ) else equivalent_param[p] setattr(_lowercase , _lowercase , getattr(_lowercase , _lowercase ) ) delattr(_lowercase , _lowercase ) return hparams, config
310
0
'''simple docstring''' from maths.prime_check import is_prime def __lowerCamelCase ( lowerCAmelCase_ ) -> int: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _a : List[str] = f"""Input value of [number={number}] must be an integer""" raise TypeError(lowerCAmelCase_ ) if is_prime(lowerCAmelCase_ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
89
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __snake_case = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
310
0
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING __A = logging.get_logger(__name__) @add_end_docstrings(__magic_name__ ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str: '''simple docstring''' super().__init__(*lowerCamelCase__ , **lowerCamelCase__ ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def lowercase_ ( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = {} __lowerCamelCase = {} if prompt is not None: __lowerCamelCase = prompt if generate_kwargs is not None: __lowerCamelCase = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: __lowerCamelCase = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,' ' please use only one' ) __lowerCamelCase = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' return super().__call__(lowerCamelCase__ , **lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=None ) -> Dict: '''simple docstring''' __lowerCamelCase = load_image(lowerCamelCase__ ) if prompt is not None: if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): raise ValueError( f"""Received an invalid text input, got - {type(lowerCamelCase__ )} - but expected a single string. """ 'Note also that one single text can be provided for conditional image to text generation.' ) __lowerCamelCase = self.model.config.model_type if model_type == "git": __lowerCamelCase = self.image_processor(images=lowerCamelCase__ , return_tensors=self.framework ) __lowerCamelCase = self.tokenizer(text=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ).input_ids __lowerCamelCase = [self.tokenizer.cls_token_id] + input_ids __lowerCamelCase = torch.tensor(lowerCamelCase__ ).unsqueeze(0 ) model_inputs.update({'input_ids': input_ids} ) elif model_type == "pix2struct": __lowerCamelCase = self.image_processor(images=lowerCamelCase__ , header_text=lowerCamelCase__ , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation __lowerCamelCase = self.image_processor(images=lowerCamelCase__ , return_tensors=self.framework ) __lowerCamelCase = self.tokenizer(lowerCamelCase__ , return_tensors=self.framework ) model_inputs.update(lowerCamelCase__ ) else: raise ValueError(f"""Model type {model_type} does not support conditional text generation""" ) else: __lowerCamelCase = self.image_processor(images=lowerCamelCase__ , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: __lowerCamelCase = None return model_inputs def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=None ) -> List[str]: '''simple docstring''' # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs['input_ids'] , lowerCamelCase__ ) and all(x is None for x in model_inputs['input_ids'] ) ): __lowerCamelCase = None if generate_kwargs is None: __lowerCamelCase = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. __lowerCamelCase = model_inputs.pop(self.model.main_input_name ) __lowerCamelCase = self.model.generate(lowerCamelCase__ , **lowerCamelCase__ , **lowerCamelCase__ ) return model_outputs def lowercase_ ( self , lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = [] for output_ids in model_outputs: __lowerCamelCase = { 'generated_text': self.tokenizer.decode( lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ , ) } records.append(lowerCamelCase__ ) return records
90
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup __snake_case = '''https://www.indeed.co.in/jobs?q=mobile+app+development&l=''' def _A ( _lowercase = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" __UpperCamelCase = BeautifulSoup(requests.get(url + location ).content , 'html.parser' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('div' , attrs={'data-tn-component': 'organicJob'} ): __UpperCamelCase = job.find('a' , attrs={'data-tn-element': 'jobTitle'} ).text.strip() __UpperCamelCase = job.find('span' , {'class': 'company'} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('''Bangalore'''), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
310
0
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class lowerCAmelCase__ : '''simple docstring''' __UpperCamelCase = 42 __UpperCamelCase = None __UpperCamelCase = None UpperCAmelCase_ : Dict = namedtuple("""CoinsDistribResult""", """moves excess""") def _A (__a ) -> int: """simple docstring""" if root is None: return 0 # Validation def count_nodes(__a ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(__a ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(__a ) != count_coins(__a ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(__a ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_distrib(node.left ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = get_distrib(node.right ) SCREAMING_SNAKE_CASE_ : Optional[int] = 1 - left_distrib_excess SCREAMING_SNAKE_CASE_ : Union[str, Any] = 1 - right_distrib_excess SCREAMING_SNAKE_CASE_ : Dict = ( left_distrib_moves + right_distrib_moves + abs(__a ) + abs(__a ) ) SCREAMING_SNAKE_CASE_ : int = node.data - coins_to_left - coins_to_right return CoinsDistribResult(__a , __a ) return get_distrib(__a )[0] if __name__ == "__main__": import doctest doctest.testmod()
91
def _A ( _lowercase ) -> list: """simple docstring""" def merge(_lowercase , _lowercase ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(_lowercase ) <= 1: return collection __UpperCamelCase = len(_lowercase ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() __snake_case = input('''Enter numbers separated by a comma:\n''').strip() __snake_case = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
310
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available UpperCamelCase__ = { """configuration_audio_spectrogram_transformer""": [ """AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ASTConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ """AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ASTForAudioClassification""", """ASTModel""", """ASTPreTrainedModel""", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ["""ASTFeatureExtractor"""] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
92
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowerCamelCase (_a ): _lowercase = 0 _lowercase = False _lowercase = 3.0 class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: Any ): '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs(),{} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs(),{'a': 2} ) self.assertDictEqual(MockClass(a=2,b=A_ ).to_kwargs(),{'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2,c=2.2_5 ).to_kwargs(),{'a': 2, 'c': 2.2_5} ) @require_cuda def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = GradScalerKwargs(init_scale=1024,growth_factor=2 ) AcceleratorState._reset_state() __UpperCamelCase = Accelerator(mixed_precision='fp16',kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __UpperCamelCase = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale,1_0_2_4.0 ) self.assertEqual(scaler._growth_factor,2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor,0.5 ) self.assertEqual(scaler._growth_interval,2000 ) self.assertEqual(scaler._enabled,A_ ) @require_multi_gpu def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(A_,env=os.environ.copy() ) if __name__ == "__main__": __snake_case = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) __snake_case = Accelerator(kwargs_handlers=[ddp_scaler]) __snake_case = torch.nn.Linear(1_0_0, 2_0_0) __snake_case = accelerator.prepare(model) # Check the values changed in kwargs __snake_case = '''''' __snake_case = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
310
0
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) _lowercase : Optional[int] = pytest.mark.integration @pytest.mark.parametrize('''path''' , ['''paws''', '''csv'''] ) def snake_case_ ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Any ): """simple docstring""" inspect_dataset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Dict = path + '''.py''' assert script_name in os.listdir(__SCREAMING_SNAKE_CASE ) assert "__pycache__" not in os.listdir(__SCREAMING_SNAKE_CASE ) @pytest.mark.filterwarnings('''ignore:inspect_metric is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.parametrize('''path''' , ['''accuracy'''] ) def snake_case_ ( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" inspect_metric(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : str = path + '''.py''' assert script_name in os.listdir(__SCREAMING_SNAKE_CASE ) assert "__pycache__" not in os.listdir(__SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( '''path, config_name, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" lowercase_ : Optional[int] = get_dataset_config_info(__SCREAMING_SNAKE_CASE , config_name=__SCREAMING_SNAKE_CASE ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" with pytest.raises(__SCREAMING_SNAKE_CASE ): get_dataset_config_info(__SCREAMING_SNAKE_CASE , config_name=__SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( '''path, expected''' , [ ('''squad''', '''plain_text'''), ('''acronym_identification''', '''default'''), ('''lhoestq/squad''', '''plain_text'''), ('''lhoestq/test''', '''default'''), ('''lhoestq/demo1''', '''lhoestq--demo1'''), ('''dalle-mini/wit''', '''dalle-mini--wit'''), ] , ) def snake_case_ ( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" lowercase_ : Dict = get_dataset_config_names(__SCREAMING_SNAKE_CASE ) assert expected in config_names @pytest.mark.parametrize( '''path, expected_configs, expected_splits_in_first_config''' , [ ('''squad''', ['''plain_text'''], ['''train''', '''validation''']), ('''dalle-mini/wit''', ['''dalle-mini--wit'''], ['''train''']), ('''paws''', ['''labeled_final''', '''labeled_swap''', '''unlabeled_final'''], ['''train''', '''test''', '''validation''']), ] , ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" lowercase_ : Union[str, Any] = get_dataset_infos(__SCREAMING_SNAKE_CASE ) assert list(infos.keys() ) == expected_configs lowercase_ : List[Any] = expected_configs[0] assert expected_config in infos lowercase_ : Tuple = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( '''path, expected_config, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" lowercase_ : Dict = get_dataset_infos(__SCREAMING_SNAKE_CASE ) assert expected_config in infos lowercase_ : List[Any] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def snake_case_ ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" with pytest.raises(__SCREAMING_SNAKE_CASE ): get_dataset_split_names(__SCREAMING_SNAKE_CASE , config_name=__SCREAMING_SNAKE_CASE )
93
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class __lowerCamelCase (_a ): _lowercase = ["""image_processor""", """tokenizer"""] _lowercase = """OwlViTImageProcessor""" _lowercase = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self: int,A_: Tuple=None,A_: int=None,**A_: int ): '''simple docstring''' __UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.',A_,) __UpperCamelCase = kwargs.pop('feature_extractor' ) __UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(A_,A_ ) def __call__( self: str,A_: Dict=None,A_: Optional[int]=None,A_: Any=None,A_: Tuple="max_length",A_: int="np",**A_: Optional[Any] ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(A_,A_ ) or (isinstance(A_,A_ ) and not isinstance(text[0],A_ )): __UpperCamelCase = [self.tokenizer(A_,padding=A_,return_tensors=A_,**A_ )] elif isinstance(A_,A_ ) and isinstance(text[0],A_ ): __UpperCamelCase = [] # Maximum number of queries across batch __UpperCamelCase = max([len(A_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(A_ ) != max_num_queries: __UpperCamelCase = t + [' '] * (max_num_queries - len(A_ )) __UpperCamelCase = self.tokenizer(A_,padding=A_,return_tensors=A_,**A_ ) encodings.append(A_ ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": __UpperCamelCase = np.concatenate([encoding['input_ids'] for encoding in encodings],axis=0 ) __UpperCamelCase = np.concatenate([encoding['attention_mask'] for encoding in encodings],axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __UpperCamelCase = jnp.concatenate([encoding['input_ids'] for encoding in encodings],axis=0 ) __UpperCamelCase = jnp.concatenate([encoding['attention_mask'] for encoding in encodings],axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __UpperCamelCase = torch.cat([encoding['input_ids'] for encoding in encodings],dim=0 ) __UpperCamelCase = torch.cat([encoding['attention_mask'] for encoding in encodings],dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __UpperCamelCase = tf.stack([encoding['input_ids'] for encoding in encodings],axis=0 ) __UpperCamelCase = tf.stack([encoding['attention_mask'] for encoding in encodings],axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) __UpperCamelCase = BatchEncoding() __UpperCamelCase = input_ids __UpperCamelCase = attention_mask if query_images is not None: __UpperCamelCase = BatchEncoding() __UpperCamelCase = self.image_processor( A_,return_tensors=A_,**A_ ).pixel_values __UpperCamelCase = query_pixel_values if images is not None: __UpperCamelCase = self.image_processor(A_,return_tensors=A_,**A_ ) if text is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**A_ ),tensor_type=A_ ) def snake_case_ ( self: Optional[int],*A_: int,**A_: List[Any] ): '''simple docstring''' return self.image_processor.post_process(*A_,**A_ ) def snake_case_ ( self: str,*A_: Optional[int],**A_: List[Any] ): '''simple docstring''' return self.image_processor.post_process_object_detection(*A_,**A_ ) def snake_case_ ( self: str,*A_: Tuple,**A_: int ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*A_,**A_ ) def snake_case_ ( self: List[str],*A_: str,**A_: List[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*A_,**A_ ) def snake_case_ ( self: int,*A_: Any,**A_: Tuple ): '''simple docstring''' return self.tokenizer.decode(*A_,**A_ ) @property def snake_case_ ( self: Optional[Any] ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.',A_,) return self.image_processor_class @property def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.',A_,) return self.image_processor
310
0
from __future__ import annotations snake_case : Optional[Any] = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] snake_case : Any = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def __lowerCamelCase ( UpperCAmelCase_ : list[float] ): """simple docstring""" a :List[str] = [] a :List[str] = len(UpperCAmelCase_ ) for i in range(UpperCAmelCase_ ): a :float = -1 for j in range(i + 1 , UpperCAmelCase_ ): if arr[i] < arr[j]: a :Dict = arr[j] break result.append(UpperCAmelCase_ ) return result def __lowerCamelCase ( UpperCAmelCase_ : list[float] ): """simple docstring""" a :int = [] for i, outer in enumerate(UpperCAmelCase_ ): a :float = -1 for inner in arr[i + 1 :]: if outer < inner: a :str = inner break result.append(UpperCAmelCase_ ) return result def __lowerCamelCase ( UpperCAmelCase_ : list[float] ): """simple docstring""" a :Optional[Any] = len(UpperCAmelCase_ ) a :list[float] = [] a :list[float] = [-1] * arr_size for index in reversed(range(UpperCAmelCase_ ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: a :Any = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) snake_case : List[str] = ( '''from __main__ import arr, next_greatest_element_slow, ''' '''next_greatest_element_fast, next_greatest_element''' ) print( '''next_greatest_element_slow():''', timeit('''next_greatest_element_slow(arr)''', setup=setup), ) print( '''next_greatest_element_fast():''', timeit('''next_greatest_element_fast(arr)''', setup=setup), ) print( ''' next_greatest_element():''', timeit('''next_greatest_element(arr)''', setup=setup), )
94
import math def _A ( _lowercase ) -> int: """simple docstring""" if not isinstance(_lowercase , _lowercase ): __UpperCamelCase = f'''Input value of [number={number}] must be an integer''' raise TypeError(_lowercase ) if number < 1: __UpperCamelCase = f'''Input value of [number={number}] must be > 0''' raise ValueError(_lowercase ) elif number == 1: return 3 elif number == 2: return 5 else: __UpperCamelCase = int(math.log(number // 3 , 2 ) ) + 2 __UpperCamelCase = [3, 5] __UpperCamelCase = 2 __UpperCamelCase = 3 for block in range(1 , _lowercase ): for _ in range(_lowercase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(1_1): __snake_case = 0 try: __snake_case = proth(number) except ValueError: print(f"""ValueError: there is no {number}th Proth number""") continue print(f"""The {number}th Proth number: {value}""")
310
0
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def _A ( ): """simple docstring""" a__ : Union[str, Any] =[randint(-1_000 , 1_000 ) for i in range(10 )] a__ : Optional[Any] =randint(-5_000 , 5_000 ) return (arr, r) UpperCAmelCase : int = make_dataset() def _A ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ): """simple docstring""" for triplet in permutations(SCREAMING_SNAKE_CASE , 3 ): if sum(SCREAMING_SNAKE_CASE ) == target: return tuple(sorted(SCREAMING_SNAKE_CASE ) ) return (0, 0, 0) def _A ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ): """simple docstring""" arr.sort() a__ : int =len(SCREAMING_SNAKE_CASE ) for i in range(n - 1 ): a__ , a__ : Dict =i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def _A ( ): """simple docstring""" a__ : Any ="\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n" a__ : str ="\ntriplet_sum1(*dataset)\n" a__ : str ="\ntriplet_sum2(*dataset)\n" a__ : Optional[int] =repeat(setup=SCREAMING_SNAKE_CASE , stmt=SCREAMING_SNAKE_CASE , repeat=5 , number=10_000 ) a__ : List[Any] =repeat(setup=SCREAMING_SNAKE_CASE , stmt=SCREAMING_SNAKE_CASE , repeat=5 , number=10_000 ) return (min(SCREAMING_SNAKE_CASE ), min(SCREAMING_SNAKE_CASE )) if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase : Union[str, Any] = solution_times() print(F"""The time for naive implementation is {times[0]}.""") print(F"""The time for optimized implementation is {times[1]}.""")
95
import torch from transformers import AutoModel class __lowerCamelCase (torch.nn.Module ): def __init__( self: Union[str, Any],A_: Tuple="sayef/fsner-bert-base-uncased" ): '''simple docstring''' super(A_,self ).__init__() __UpperCamelCase = AutoModel.from_pretrained(A_,return_dict=A_ ) __UpperCamelCase = torch.nn.CosineSimilarity(3,1E-08 ) __UpperCamelCase = torch.nn.Softmax(dim=1 ) def snake_case_ ( self: Tuple,**A_: Union[str, Any] ): '''simple docstring''' return self.bert(**A_ ).last_hidden_state def snake_case_ ( self: Union[str, Any],A_: Union[str, Any] ): '''simple docstring''' return token_embeddings.sum(2,keepdim=A_ ) def snake_case_ ( self: List[str],A_: Dict,A_: Union[str, Any],A_: Union[str, Any]=1 ): '''simple docstring''' return self.softmax(T * self.cos(A_,A_ ) ) def snake_case_ ( self: Optional[int],A_: Union[str, Any],A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = W_supports['sizes'].tolist() __UpperCamelCase = W_supports['start_token_id'].item() __UpperCamelCase = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] __UpperCamelCase = self.BERT(**A_ ) __UpperCamelCase = self.BERT(**A_ ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = W_supports['input_ids'] == start_token_id __UpperCamelCase = W_supports['input_ids'] == end_token_id for i, size in enumerate(A_ ): if i == 0: __UpperCamelCase = 0 else: __UpperCamelCase = support_sizes[i - 1] __UpperCamelCase = S[s : s + size][start_token_masks[s : s + size]] __UpperCamelCase = S[s : s + size][end_token_masks[s : s + size]] __UpperCamelCase = torch.matmul(q[i],s_start.T ).sum(1 ).softmax(0 ) __UpperCamelCase = torch.matmul(q[i],s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: __UpperCamelCase = torch.vstack((p_starts, p_start) ) __UpperCamelCase = torch.vstack((p_ends, p_end) ) else: __UpperCamelCase = p_start __UpperCamelCase = p_end return p_starts, p_ends
310
0
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self ): _lowerCamelCase : Tuple = StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) _lowerCamelCase : Any = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) sd_pipe.set_scheduler('sample_euler' ) _lowerCamelCase : Dict = 'A painting of a squirrel eating a burger' _lowerCamelCase : List[Any] = torch.manual_seed(0 ) _lowerCamelCase : Dict = sd_pipe([prompt] , generator=lowercase , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) _lowerCamelCase : Union[str, Any] = output.images _lowerCamelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCamelCase : Dict = np.array([0.04_47, 0.04_92, 0.04_68, 0.04_08, 0.03_83, 0.04_08, 0.03_54, 0.03_80, 0.03_39] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A_ ( self ): _lowerCamelCase : Any = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) _lowerCamelCase : Any = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) sd_pipe.set_scheduler('sample_euler' ) _lowerCamelCase : Union[str, Any] = 'A painting of a squirrel eating a burger' _lowerCamelCase : List[str] = torch.manual_seed(0 ) _lowerCamelCase : Tuple = sd_pipe([prompt] , generator=lowercase , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) _lowerCamelCase : Optional[int] = output.images _lowerCamelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCamelCase : List[str] = np.array([0.12_37, 0.13_20, 0.14_38, 0.13_59, 0.13_90, 0.11_32, 0.12_77, 0.11_75, 0.11_12] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def A_ ( self ): _lowerCamelCase : Union[str, Any] = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) _lowerCamelCase : int = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) sd_pipe.set_scheduler('sample_dpmpp_2m' ) _lowerCamelCase : int = 'A painting of a squirrel eating a burger' _lowerCamelCase : List[str] = torch.manual_seed(0 ) _lowerCamelCase : Any = sd_pipe( [prompt] , generator=lowercase , guidance_scale=7.5 , num_inference_steps=15 , output_type='np' , use_karras_sigmas=lowercase , ) _lowerCamelCase : List[Any] = output.images _lowerCamelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCamelCase : Any = np.array( [0.11_38_16_89, 0.12_11_29_21, 0.1_38_94_57, 0.12_54_96_06, 0.1_24_49_64, 0.10_83_15_17, 0.11_56_28_66, 0.10_86_78_16, 0.10_49_90_48] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
96
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = BioGptTokenizer _lowercase = False def snake_case_ ( self: Any ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCamelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] __UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) ) __UpperCamelCase = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file,'w' ) as fp: fp.write(json.dumps(A_ ) ) with open(self.merges_file,'w' ) as fp: fp.write('\n'.join(A_ ) ) def snake_case_ ( self: Optional[int],A_: List[Any] ): '''simple docstring''' __UpperCamelCase = 'lower newer' __UpperCamelCase = 'lower newer' return input_text, output_text def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = BioGptTokenizer(self.vocab_file,self.merges_file ) __UpperCamelCase = 'lower' __UpperCamelCase = ['low', 'er</w>'] __UpperCamelCase = tokenizer.tokenize(A_ ) self.assertListEqual(A_,A_ ) __UpperCamelCase = tokens + ['<unk>'] __UpperCamelCase = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ),A_ ) @slow def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) __UpperCamelCase = tokenizer.encode('sequence builders',add_special_tokens=A_ ) __UpperCamelCase = tokenizer.encode('multi-sequence build',add_special_tokens=A_ ) __UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_ ) __UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_,A_ ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
310
0
'''simple docstring''' import re from filelock import FileLock try: import nltk __snake_case = True except (ImportError, ModuleNotFoundError): __snake_case = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def a ( __a ) -> str: '''simple docstring''' re.sub('''<n>''' , '''''' , __a ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__a ) )
97
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __snake_case = r''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(_a ) class __lowerCamelCase (_a ): _lowercase = """rag""" _lowercase = True def __init__( self: Tuple,A_: Any=None,A_: Any=True,A_: List[Any]=None,A_: Optional[int]=None,A_: List[Any]=None,A_: str=None,A_: Union[str, Any]=None,A_: List[Any]=" / ",A_: Union[str, Any]=" // ",A_: List[Any]=5,A_: Optional[int]=300,A_: Tuple=768,A_: Tuple=8,A_: Optional[Any]="wiki_dpr",A_: int="train",A_: Union[str, Any]="compressed",A_: Optional[int]=None,A_: List[Any]=None,A_: List[str]=False,A_: List[str]=False,A_: str=0.0,A_: List[Any]=True,A_: Tuple=False,A_: int=False,A_: Dict=False,A_: Tuple=True,A_: int=None,**A_: Optional[int],): '''simple docstring''' super().__init__( bos_token_id=A_,pad_token_id=A_,eos_token_id=A_,decoder_start_token_id=A_,forced_eos_token_id=A_,is_encoder_decoder=A_,prefix=A_,vocab_size=A_,**A_,) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" __UpperCamelCase = kwargs.pop('question_encoder' ) __UpperCamelCase = question_encoder_config.pop('model_type' ) __UpperCamelCase = kwargs.pop('generator' ) __UpperCamelCase = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig __UpperCamelCase = AutoConfig.for_model(A_,**A_ ) __UpperCamelCase = AutoConfig.for_model(A_,**A_ ) __UpperCamelCase = reduce_loss __UpperCamelCase = label_smoothing __UpperCamelCase = exclude_bos_score __UpperCamelCase = do_marginalize __UpperCamelCase = title_sep __UpperCamelCase = doc_sep __UpperCamelCase = n_docs __UpperCamelCase = max_combined_length __UpperCamelCase = dataset __UpperCamelCase = dataset_split __UpperCamelCase = index_name __UpperCamelCase = retrieval_vector_size __UpperCamelCase = retrieval_batch_size __UpperCamelCase = passages_path __UpperCamelCase = index_path __UpperCamelCase = use_dummy_dataset __UpperCamelCase = output_retrieved __UpperCamelCase = do_deduplication __UpperCamelCase = use_cache if self.forced_eos_token_id is None: __UpperCamelCase = getattr(self.generator,'forced_eos_token_id',A_ ) @classmethod def snake_case_ ( cls: Any,A_: PretrainedConfig,A_: PretrainedConfig,**A_: int ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict(),generator=generator_config.to_dict(),**A_ ) def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = copy.deepcopy(self.__dict__ ) __UpperCamelCase = self.question_encoder.to_dict() __UpperCamelCase = self.generator.to_dict() __UpperCamelCase = self.__class__.model_type return output
310
0
"""simple docstring""" import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version lowerCAmelCase__ : int = logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') lowerCAmelCase__ : Any = { 'base': AutoModel, 'sequence-classification': AutoModelForSequenceClassification, 'question-answering': AutoModelForQuestionAnswering, 'pretraining': AutoModelForPreTraining, 'token-classification': AutoModelForTokenClassification, 'language-modeling': AutoModelWithLMHead, 'summarization': AutoModelForSeqaSeqLM, 'translation': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization lowerCAmelCase__ : int = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } lowerCAmelCase__ : str = sorted(arg_to_scheduler.keys()) lowerCAmelCase__ : List[Any] = '{' + ', '.join(arg_to_scheduler_choices) + '}' class snake_case ( pl.LightningModule ): """simple docstring""" def __init__( self : Dict ,lowerCamelCase__ : argparse.Namespace ,lowerCamelCase__ : Optional[Any]=None ,lowerCamelCase__ : Any="base" ,lowerCamelCase__ : Optional[int]=None ,lowerCamelCase__ : str=None ,lowerCamelCase__ : Any=None ,**lowerCamelCase__ : Optional[int] ,): super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(lowerCamelCase__ ) UpperCAmelCase__ = 0 UpperCAmelCase__ = Path(self.hparams.output_dir ) UpperCAmelCase__ = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: UpperCAmelCase__ = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path ,**({'num_labels': num_labels} if num_labels is not None else {}) ,cache_dir=lowerCamelCase__ ,**lowerCamelCase__ ,) else: UpperCAmelCase__ = config UpperCAmelCase__ = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams ,lowerCamelCase__ ,lowerCamelCase__ ): assert hasattr(self.config ,lowerCamelCase__ ), f'''model config doesn\'t have a `{p}` attribute''' setattr(self.config ,lowerCamelCase__ ,getattr(self.hparams ,lowerCamelCase__ ) ) if tokenizer is None: UpperCAmelCase__ = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path ,cache_dir=lowerCamelCase__ ,) else: UpperCAmelCase__ = tokenizer UpperCAmelCase__ = MODEL_MODES[mode] if model is None: UpperCAmelCase__ = self.model_type.from_pretrained( self.hparams.model_name_or_path ,from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) ,config=self.config ,cache_dir=lowerCamelCase__ ,) else: UpperCAmelCase__ = model def __lowerCAmelCase ( self : Union[str, Any] ,*lowerCamelCase__ : Tuple ,**lowerCamelCase__ : Optional[int] ): UpperCAmelCase__ = self.model_type.from_pretrained(*lowerCamelCase__ ,**lowerCamelCase__ ) def __lowerCAmelCase ( self : List[Any] ): UpperCAmelCase__ = arg_to_scheduler[self.hparams.lr_scheduler] UpperCAmelCase__ = get_schedule_func( self.opt ,num_warmup_steps=self.hparams.warmup_steps ,num_training_steps=self.total_steps() ) UpperCAmelCase__ = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def __lowerCAmelCase ( self : List[Any] ): UpperCAmelCase__ = self.model UpperCAmelCase__ = ['bias', 'LayerNorm.weight'] UpperCAmelCase__ = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: UpperCAmelCase__ = Adafactor( lowerCamelCase__ ,lr=self.hparams.learning_rate ,scale_parameter=lowerCamelCase__ ,relative_step=lowerCamelCase__ ) else: UpperCAmelCase__ = AdamW( lowerCamelCase__ ,lr=self.hparams.learning_rate ,eps=self.hparams.adam_epsilon ) UpperCAmelCase__ = optimizer UpperCAmelCase__ = self.get_lr_scheduler() return [optimizer], [scheduler] def __lowerCAmelCase ( self : Dict ,lowerCamelCase__ : Any ,lowerCamelCase__ : List[Any] ): return self.validation_step(lowerCamelCase__ ,lowerCamelCase__ ) def __lowerCAmelCase ( self : Optional[int] ,lowerCamelCase__ : List[str] ): return self.validation_end(lowerCamelCase__ ) def __lowerCAmelCase ( self : Optional[Any] ): UpperCAmelCase__ = max(1 ,self.hparams.gpus ) # TODO: consider num_tpu_cores UpperCAmelCase__ = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def __lowerCAmelCase ( self : Tuple ,lowerCamelCase__ : int ): if stage == "test": UpperCAmelCase__ = len(self.test_dataloader().dataset ) else: UpperCAmelCase__ = self.get_dataloader('train' ,self.hparams.train_batch_size ,shuffle=lowerCamelCase__ ) UpperCAmelCase__ = len(self.train_dataloader().dataset ) def __lowerCAmelCase ( self : Optional[int] ,lowerCamelCase__ : str ,lowerCamelCase__ : int ,lowerCamelCase__ : bool = False ): raise NotImplementedError('You must implement this for your task' ) def __lowerCAmelCase ( self : List[Any] ): return self.train_loader def __lowerCAmelCase ( self : Optional[int] ): return self.get_dataloader('dev' ,self.hparams.eval_batch_size ,shuffle=lowerCamelCase__ ) def __lowerCAmelCase ( self : str ): return self.get_dataloader('test' ,self.hparams.eval_batch_size ,shuffle=lowerCamelCase__ ) def __lowerCAmelCase ( self : Optional[int] ,lowerCamelCase__ : List[Any] ): return os.path.join( self.hparams.data_dir ,'cached_{}_{}_{}'.format( lowerCamelCase__ ,list(filter(lowerCamelCase__ ,self.hparams.model_name_or_path.split('/' ) ) ).pop() ,str(self.hparams.max_seq_length ) ,) ,) @pl.utilities.rank_zero_only def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : Dict[str, Any] ): UpperCAmelCase__ = self.output_dir.joinpath('best_tfmr' ) UpperCAmelCase__ = self.step_count self.model.save_pretrained(lowerCamelCase__ ) self.tokenizer.save_pretrained(lowerCamelCase__ ) @staticmethod def __lowerCAmelCase ( lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : str ): parser.add_argument( '--model_name_or_path' ,default=lowerCamelCase__ ,type=lowerCamelCase__ ,required=lowerCamelCase__ ,help='Path to pretrained model or model identifier from huggingface.co/models' ,) parser.add_argument( '--config_name' ,default='' ,type=lowerCamelCase__ ,help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' ,default=lowerCamelCase__ ,type=lowerCamelCase__ ,help='Pretrained tokenizer name or path if not the same as model_name' ,) parser.add_argument( '--cache_dir' ,default=str(Path(lowerCamelCase__ ).parent / 'test_run' / 'cache' ) ,type=lowerCamelCase__ ,help='Where do you want to store the pre-trained models downloaded from huggingface.co' ,) parser.add_argument( '--encoder_layerdrop' ,type=lowerCamelCase__ ,help='Encoder layer dropout probability (Optional). Goes into model.config' ,) parser.add_argument( '--decoder_layerdrop' ,type=lowerCamelCase__ ,help='Decoder layer dropout probability (Optional). Goes into model.config' ,) parser.add_argument( '--dropout' ,type=lowerCamelCase__ ,help='Dropout probability (Optional). Goes into model.config' ,) parser.add_argument( '--attention_dropout' ,type=lowerCamelCase__ ,help='Attention dropout probability (Optional). Goes into model.config' ,) parser.add_argument('--learning_rate' ,default=5e-5 ,type=lowerCamelCase__ ,help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' ,default='linear' ,choices=lowerCamelCase__ ,metavar=lowerCamelCase__ ,type=lowerCamelCase__ ,help='Learning rate scheduler' ,) parser.add_argument('--weight_decay' ,default=0.0 ,type=lowerCamelCase__ ,help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' ,default=1e-8 ,type=lowerCamelCase__ ,help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' ,default=0 ,type=lowerCamelCase__ ,help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' ,default=4 ,type=lowerCamelCase__ ,help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' ,dest='max_epochs' ,default=3 ,type=lowerCamelCase__ ) parser.add_argument('--train_batch_size' ,default=32 ,type=lowerCamelCase__ ) parser.add_argument('--eval_batch_size' ,default=32 ,type=lowerCamelCase__ ) parser.add_argument('--adafactor' ,action='store_true' ) class snake_case ( pl.Callback ): """simple docstring""" def __lowerCAmelCase ( self : int ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : Optional[int] ): if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class snake_case ( pl.Callback ): """simple docstring""" def __lowerCAmelCase ( self : Optional[int] ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Optional[Any] ): # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(lowerCamelCase__ ) class snake_case ( pl.Callback ): """simple docstring""" def __lowerCAmelCase ( self : Dict ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Optional[Any] ): UpperCAmelCase__ = trainer.lr_schedulers[0]['scheduler'] UpperCAmelCase__ = {f'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(lowerCamelCase__ ) def __lowerCAmelCase ( self : List[Any] ,lowerCamelCase__ : pl.Trainer ,lowerCamelCase__ : pl.LightningModule ): rank_zero_info('***** Validation results *****' ) UpperCAmelCase__ = trainer.callback_metrics # Log results for key in sorted(lowerCamelCase__ ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(lowerCamelCase__ ,str(metrics[key] ) ) ) def __lowerCAmelCase ( self : str ,lowerCamelCase__ : pl.Trainer ,lowerCamelCase__ : pl.LightningModule ): rank_zero_info('***** Test results *****' ) UpperCAmelCase__ = trainer.callback_metrics # Log and save results to file UpperCAmelCase__ = os.path.join(pl_module.hparams.output_dir ,'test_results.txt' ) with open(lowerCamelCase__ ,'w' ) as writer: for key in sorted(lowerCamelCase__ ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(lowerCamelCase__ ,str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(lowerCamelCase__ ,str(metrics[key] ) ) ) def a_ ( lowerCamelCase , lowerCamelCase ): # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( '--output_dir' , default=str(Path(lowerCamelCase ).parent / 'test_run' / 'model_checkpoints' ) , type=lowerCamelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=lowerCamelCase , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=lowerCamelCase ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=lowerCamelCase , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=lowerCamelCase , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=lowerCamelCase , default=4_2 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(lowerCamelCase ).parent / 'test_run' / 'dummy-train-data' ) , type=lowerCamelCase , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=[] , lowerCamelCase=None , lowerCamelCase=None , **lowerCamelCase , ): pl.seed_everything(args.seed ) # init model UpperCAmelCase__ = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=lowerCamelCase ) # add custom checkpoints if checkpoint_callback is None: UpperCAmelCase__ = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(lowerCamelCase ) if logging_callback is None: UpperCAmelCase__ = LoggingCallback() UpperCAmelCase__ = {} if args.fpaa: UpperCAmelCase__ = 1_6 if args.gpus > 1: UpperCAmelCase__ = 'auto' UpperCAmelCase__ = 'ddp' UpperCAmelCase__ = args.accumulate_grad_batches UpperCAmelCase__ = None UpperCAmelCase__ = 'auto' UpperCAmelCase__ = pl.Trainer.from_argparse_args( lowerCamelCase , weights_summary=lowerCamelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCamelCase , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCamelCase , ) if args.do_train: trainer.fit(lowerCamelCase ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
98
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class __lowerCamelCase (_a ): _lowercase = """M-CLIP""" def __init__( self: int,A_: Any=1024,A_: Union[str, Any]=768,**A_: str ): '''simple docstring''' __UpperCamelCase = transformerDimSize __UpperCamelCase = imageDimSize super().__init__(**A_ ) class __lowerCamelCase (_a ): _lowercase = MCLIPConfig def __init__( self: int,A_: Optional[Any],*A_: List[str],**A_: Union[str, Any] ): '''simple docstring''' super().__init__(A_,*A_,**A_ ) __UpperCamelCase = XLMRobertaModel(A_ ) __UpperCamelCase = torch.nn.Linear( in_features=config.transformerDimensions,out_features=config.numDims ) def snake_case_ ( self: Dict,A_: int,A_: Optional[int] ): '''simple docstring''' __UpperCamelCase = self.transformer(input_ids=A_,attention_mask=A_ )[0] __UpperCamelCase = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(A_ ), embs
310
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer lowercase : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name lowercase : Optional[int] = """ Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\") >>> repo = \"openai/shap-e-img2img\" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\" >>> image = load_image(image_url).convert(\"RGB\") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\") ``` """ @dataclass class A__ ( __UpperCAmelCase ): """simple docstring""" __A : Union[PIL.Image.Image, np.ndarray] class A__ ( __UpperCAmelCase ): """simple docstring""" def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> List[str]: '''simple docstring''' super().__init__() self.register_modules( prior=lowercase , image_encoder=lowercase , image_processor=lowercase , scheduler=lowercase , renderer=lowercase , ) def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase) -> Any: '''simple docstring''' if latents is None: a__ : List[Any] = randn_tensor(lowercase , generator=lowercase , device=lowercase , dtype=lowercase) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}') a__ : List[str] = latents.to(lowercase) a__ : Dict = latents * scheduler.init_noise_sigma return latents def __lowercase ( self , lowercase=0) -> Optional[int]: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`') a__ : Any = torch.device(F'cuda:{gpu_id}') a__ : Optional[Any] = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase , lowercase) @property def __lowercase ( self) -> Any: '''simple docstring''' if self.device != torch.device('meta') or not hasattr(self.image_encoder , '_hf_hook'): return self.device for module in self.image_encoder.modules(): if ( hasattr(lowercase , '_hf_hook') and hasattr(module._hf_hook , 'execution_device') and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , ) -> Any: '''simple docstring''' if isinstance(lowercase , lowercase) and isinstance(image[0] , torch.Tensor): a__ : Dict = torch.cat(lowercase , axis=0) if image[0].ndim == 4 else torch.stack(lowercase , axis=0) if not isinstance(lowercase , torch.Tensor): a__ : List[Any] = self.image_processor(lowercase , return_tensors='pt').pixel_values[0].unsqueeze(0) a__ : Optional[Any] = image.to(dtype=self.image_encoder.dtype , device=lowercase) a__ : int = self.image_encoder(lowercase)['last_hidden_state'] a__ : Optional[Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 a__ : Optional[int] = image_embeds.repeat_interleave(lowercase , dim=0) if do_classifier_free_guidance: a__ : Tuple = torch.zeros_like(lowercase) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes a__ : int = torch.cat([negative_image_embeds, image_embeds]) return image_embeds @torch.no_grad() @replace_example_docstring(lowercase) def __call__( self , lowercase , lowercase = 1 , lowercase = 25 , lowercase = None , lowercase = None , lowercase = 4.0 , lowercase = 64 , lowercase = "pil" , lowercase = True , ) -> Tuple: '''simple docstring''' if isinstance(lowercase , PIL.Image.Image): a__ : List[str] = 1 elif isinstance(lowercase , torch.Tensor): a__ : List[str] = image.shape[0] elif isinstance(lowercase , lowercase) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image)): a__ : List[str] = len(lowercase) else: raise ValueError( F'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(lowercase)}') a__ : Tuple = self._execution_device a__ : List[Any] = batch_size * num_images_per_prompt a__ : Optional[Any] = guidance_scale > 1.0 a__ : Optional[int] = self._encode_image(lowercase , lowercase , lowercase , lowercase) # prior self.scheduler.set_timesteps(lowercase , device=lowercase) a__ : str = self.scheduler.timesteps a__ : Tuple = self.prior.config.num_embeddings a__ : Optional[int] = self.prior.config.embedding_dim a__ : Dict = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , lowercase , lowercase , lowercase , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim a__ : Tuple = latents.reshape(latents.shape[0] , lowercase , lowercase) for i, t in enumerate(self.progress_bar(lowercase)): # expand the latents if we are doing classifier free guidance a__ : List[Any] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents a__ : Optional[int] = self.scheduler.scale_model_input(lowercase , lowercase) a__ : Tuple = self.prior( lowercase , timestep=lowercase , proj_embedding=lowercase , ).predicted_image_embedding # remove the variance a__ , a__ : Any = noise_pred.split( scaled_model_input.shape[2] , dim=2) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: a__ , a__ : Any = noise_pred.chunk(2) a__ : str = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) a__ : List[str] = self.scheduler.step( lowercase , timestep=lowercase , sample=lowercase , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=lowercase) a__ : List[Any] = [] for i, latent in enumerate(lowercase): print() a__ : Dict = self.renderer.decode( latent[None, :] , lowercase , size=lowercase , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(lowercase) a__ : Union[str, Any] = torch.stack(lowercase) if output_type not in ["np", "pil"]: raise ValueError(F'Only the output types `pil` and `np` are supported not output_type={output_type}') a__ : List[Any] = images.cpu().numpy() if output_type == "pil": a__ : Any = [self.numpy_to_pil(lowercase) for image in images] # Offload last model to CPU if hasattr(self , 'final_offload_hook') and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=lowercase)
99
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class __lowerCamelCase : _lowercase = XGLMConfig _lowercase = {} _lowercase = """gelu""" def __init__( self: Optional[int],A_: Dict,A_: Any=14,A_: Optional[int]=7,A_: str=True,A_: Any=True,A_: Optional[int]=True,A_: Optional[int]=99,A_: List[str]=32,A_: Any=2,A_: Tuple=4,A_: List[str]=37,A_: Dict="gelu",A_: int=0.1,A_: List[str]=0.1,A_: int=512,A_: List[Any]=0.0_2,): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = d_model __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = ffn_dim __UpperCamelCase = activation_function __UpperCamelCase = activation_dropout __UpperCamelCase = attention_dropout __UpperCamelCase = max_position_embeddings __UpperCamelCase = initializer_range __UpperCamelCase = None __UpperCamelCase = 0 __UpperCamelCase = 2 __UpperCamelCase = 1 def snake_case_ ( self: Dict ): '''simple docstring''' return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length],self.vocab_size ),clip_value_min=0,clip_value_max=3 ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = self.get_config() __UpperCamelCase = floats_tensor([self.num_hidden_layers, self.num_attention_heads],2 ) return ( config, input_ids, input_mask, head_mask, ) def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' return XGLMConfig( vocab_size=self.vocab_size,d_model=self.hidden_size,num_layers=self.num_hidden_layers,attention_heads=self.num_attention_heads,ffn_dim=self.ffn_dim,activation_function=self.activation_function,activation_dropout=self.activation_dropout,attention_dropout=self.attention_dropout,max_position_embeddings=self.max_position_embeddings,initializer_range=self.initializer_range,use_cache=A_,bos_token_id=self.bos_token_id,eos_token_id=self.eos_token_id,pad_token_id=self.pad_token_id,return_dict=A_,) def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ) = config_and_inputs __UpperCamelCase = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class __lowerCamelCase (_a , _a , unittest.TestCase ): _lowercase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () _lowercase = (TFXGLMForCausalLM,) if is_tf_available() else () _lowercase = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) _lowercase = False _lowercase = False _lowercase = False def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = TFXGLMModelTester(self ) __UpperCamelCase = ConfigTester(self,config_class=A_,n_embd=37 ) def snake_case_ ( self: Any ): '''simple docstring''' self.config_tester.run_common_tests() @slow def snake_case_ ( self: Any ): '''simple docstring''' for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = TFXGLMModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def snake_case_ ( self: Tuple ): '''simple docstring''' super().test_resize_token_embeddings() @require_tf class __lowerCamelCase (unittest.TestCase ): @slow def snake_case_ ( self: Optional[Any],A_: int=True ): '''simple docstring''' __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = tf.convert_to_tensor([[2, 268, 9865]],dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __UpperCamelCase = [2, 268, 9865, 67, 11, 1988, 5_7252, 9865, 5, 984, 67, 1988, 21_3838, 1658, 53, 7_0446, 33, 6657, 278, 1581] # fmt: on __UpperCamelCase = model.generate(A_,do_sample=A_,num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist(),A_ ) @slow def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) __UpperCamelCase = tokenizer('Today is a nice day and',return_tensors='tf' ) __UpperCamelCase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): __UpperCamelCase = model.generate(A_,do_sample=A_,seed=[7, 0] ) __UpperCamelCase = tokenizer.decode(output_ids[0],skip_special_tokens=A_ ) __UpperCamelCase = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(A_,A_ ) @slow def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = 'left' # use different length sentences to test batching __UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] __UpperCamelCase = tokenizer(A_,return_tensors='tf',padding=A_ ) __UpperCamelCase = inputs['input_ids'] __UpperCamelCase = model.generate(input_ids=A_,attention_mask=inputs['attention_mask'],max_new_tokens=12 ) __UpperCamelCase = tokenizer(sentences[0],return_tensors='tf' ).input_ids __UpperCamelCase = model.generate(input_ids=A_,max_new_tokens=12 ) __UpperCamelCase = tokenizer(sentences[1],return_tensors='tf' ).input_ids __UpperCamelCase = model.generate(input_ids=A_,max_new_tokens=12 ) __UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ ) __UpperCamelCase = tokenizer.decode(output_non_padded[0],skip_special_tokens=A_ ) __UpperCamelCase = tokenizer.decode(output_padded[0],skip_special_tokens=A_ ) __UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(A_,A_ ) self.assertListEqual(A_,[non_padded_sentence, padded_sentence] )
310
0
"""simple docstring""" import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __magic_name__ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : str = ['''input_values''', '''attention_mask'''] def __init__( self , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 1_6_0_0_0 , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = False , lowerCAmelCase__ = 8_0 , lowerCAmelCase__ = 1_6 , lowerCAmelCase__ = 6_4 , lowerCAmelCase__ = "hann_window" , lowerCAmelCase__ = 1.0 , lowerCAmelCase__ = 8_0 , lowerCAmelCase__ = 7_6_0_0 , lowerCAmelCase__ = 1E-10 , lowerCAmelCase__ = 2 , lowerCAmelCase__ = True , **lowerCAmelCase__ , ): super().__init__(feature_size=lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , padding_value=lowerCAmelCase__ , **lowerCAmelCase__) __SCREAMING_SNAKE_CASE = do_normalize __SCREAMING_SNAKE_CASE = return_attention_mask __SCREAMING_SNAKE_CASE = num_mel_bins __SCREAMING_SNAKE_CASE = hop_length __SCREAMING_SNAKE_CASE = win_length __SCREAMING_SNAKE_CASE = win_function __SCREAMING_SNAKE_CASE = frame_signal_scale __SCREAMING_SNAKE_CASE = fmin __SCREAMING_SNAKE_CASE = fmax __SCREAMING_SNAKE_CASE = mel_floor __SCREAMING_SNAKE_CASE = reduction_factor __SCREAMING_SNAKE_CASE = win_length * sampling_rate // 1_0_0_0 __SCREAMING_SNAKE_CASE = hop_length * sampling_rate // 1_0_0_0 __SCREAMING_SNAKE_CASE = optimal_fft_length(self.sample_size) __SCREAMING_SNAKE_CASE = (self.n_fft // 2) + 1 __SCREAMING_SNAKE_CASE = window_function(window_length=self.sample_size , name=self.win_function , periodic=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm="""slaney""" , mel_scale="""slaney""" , ) if frame_signal_scale != 1.0: warnings.warn( """The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers""" , lowerCAmelCase__ , ) if reduction_factor != 2.0: warnings.warn( """The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers""" , lowerCAmelCase__ , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def snake_case_ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 0.0): if attention_mask is not None: __SCREAMING_SNAKE_CASE = np.array(lowerCAmelCase__ , np.intaa) __SCREAMING_SNAKE_CASE = [] for vector, length in zip(lowerCAmelCase__ , attention_mask.sum(-1)): __SCREAMING_SNAKE_CASE = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7) if length < normed_slice.shape[0]: __SCREAMING_SNAKE_CASE = padding_value normed_input_values.append(lowerCAmelCase__) else: __SCREAMING_SNAKE_CASE = [(x - x.mean()) / np.sqrt(x.var() + 1E-7) for x in input_values] return normed_input_values def snake_case_ ( self , lowerCAmelCase__ , ): __SCREAMING_SNAKE_CASE = spectrogram( lowerCAmelCase__ , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel="""log10""" , ) return log_mel_spec.T def __call__( self , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ): if audio is None and audio_target is None: raise ValueError("""You must provide either `audio` or `audio_target` values.""") if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided audio input was sampled with" f" {self.sampling_rate} and not {sampling_rate}.") else: logger.warning( """It is strongly recommended to pass the ``sampling_rate`` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""") if audio is not None: __SCREAMING_SNAKE_CASE = self._process_audio( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ , ) else: __SCREAMING_SNAKE_CASE = None if audio_target is not None: __SCREAMING_SNAKE_CASE = self._process_audio( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ , ) if inputs is None: return inputs_target else: __SCREAMING_SNAKE_CASE = inputs_target["""input_values"""] __SCREAMING_SNAKE_CASE = inputs_target.get("""attention_mask""") if decoder_attention_mask is not None: __SCREAMING_SNAKE_CASE = decoder_attention_mask return inputs def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ): __SCREAMING_SNAKE_CASE = isinstance(lowerCAmelCase__ , np.ndarray) and len(speech.shape) > 1 if is_batched_numpy and len(speech.shape) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}") __SCREAMING_SNAKE_CASE = is_batched_numpy or ( isinstance(lowerCAmelCase__ , (list, tuple)) and (isinstance(speech[0] , (np.ndarray, tuple, list))) ) if is_batched: __SCREAMING_SNAKE_CASE = [np.asarray(lowerCAmelCase__ , dtype=np.floataa) for speech in speech] elif not is_batched and not isinstance(lowerCAmelCase__ , np.ndarray): __SCREAMING_SNAKE_CASE = np.asarray(lowerCAmelCase__ , dtype=np.floataa) elif isinstance(lowerCAmelCase__ , np.ndarray) and speech.dtype is np.dtype(np.floataa): __SCREAMING_SNAKE_CASE = speech.astype(np.floataa) # always return batch if not is_batched: __SCREAMING_SNAKE_CASE = [speech] # needed to make pad() work on spectrogram inputs __SCREAMING_SNAKE_CASE = self.feature_size # convert into correct format for padding if is_target: __SCREAMING_SNAKE_CASE = [self._extract_mel_features(lowerCAmelCase__) for waveform in speech] __SCREAMING_SNAKE_CASE = BatchFeature({"""input_values""": features}) __SCREAMING_SNAKE_CASE = self.num_mel_bins else: __SCREAMING_SNAKE_CASE = BatchFeature({"""input_values""": speech}) __SCREAMING_SNAKE_CASE = self.pad( lowerCAmelCase__ , padding=lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE = feature_size_hack # convert input values to correct format __SCREAMING_SNAKE_CASE = padded_inputs["""input_values"""] if not isinstance(input_values[0] , np.ndarray): __SCREAMING_SNAKE_CASE = [np.asarray(lowerCAmelCase__ , dtype=np.floataa) for array in input_values] elif ( not isinstance(lowerCAmelCase__ , np.ndarray) and isinstance(input_values[0] , np.ndarray) and input_values[0].dtype is np.dtype(np.floataa) ): __SCREAMING_SNAKE_CASE = [array.astype(np.floataa) for array in input_values] elif isinstance(lowerCAmelCase__ , np.ndarray) and input_values.dtype is np.dtype(np.floataa): __SCREAMING_SNAKE_CASE = input_values.astype(np.floataa) # convert attention_mask to correct format __SCREAMING_SNAKE_CASE = padded_inputs.get("""attention_mask""") if attention_mask is not None: __SCREAMING_SNAKE_CASE = [np.asarray(lowerCAmelCase__ , dtype=np.intaa) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: __SCREAMING_SNAKE_CASE = ( attention_mask if self._get_padding_strategies(lowerCAmelCase__ , max_length=lowerCAmelCase__) is not PaddingStrategy.DO_NOT_PAD else None ) __SCREAMING_SNAKE_CASE = self.zero_mean_unit_var_norm( padded_inputs["""input_values"""] , attention_mask=lowerCAmelCase__ , padding_value=self.padding_value) if return_tensors is not None: __SCREAMING_SNAKE_CASE = padded_inputs.convert_to_tensors(lowerCAmelCase__) return padded_inputs def snake_case_ ( self): __SCREAMING_SNAKE_CASE = super().to_dict() # Don't serialize these as they are derived from the other properties. __SCREAMING_SNAKE_CASE = ["""window""", """mel_filters""", """sample_size""", """sample_stride""", """n_fft""", """n_freqs"""] for name in names: if name in output: del output[name] return output
100
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __snake_case = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json''' with io.open(filename, '''r''', encoding='''utf-8''') as f: __snake_case = json.load(f) @require_torch class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: int,A_: int ): '''simple docstring''' return FSMTTokenizer.from_pretrained(A_ ) def snake_case_ ( self: Dict,A_: int ): '''simple docstring''' __UpperCamelCase = FSMTForConditionalGeneration.from_pretrained(A_ ).to(A_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 2_6.0], ['ru-en', 2_2.0], ['en-de', 2_2.0], ['de-en', 2_9.0], ] ) @slow def snake_case_ ( self: Tuple,A_: Any,A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = F'''facebook/wmt19-{pair}''' __UpperCamelCase = self.get_tokenizer(A_ ) __UpperCamelCase = self.get_model(A_ ) __UpperCamelCase = bleu_data[pair]['src'] __UpperCamelCase = bleu_data[pair]['tgt'] __UpperCamelCase = tokenizer(A_,return_tensors='pt',truncation=A_,padding='longest' ).to(A_ ) __UpperCamelCase = model.generate( input_ids=batch.input_ids,num_beams=8,) __UpperCamelCase = tokenizer.batch_decode( A_,skip_special_tokens=A_,clean_up_tokenization_spaces=A_ ) __UpperCamelCase = calculate_bleu(A_,A_ ) print(A_ ) self.assertGreaterEqual(scores['bleu'],A_ )
310
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ :str = logging.get_logger(__name__) lowercase__ :Tuple = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowercase ( SCREAMING_SNAKE_CASE__ ): lowercase_ : str ='''megatron-bert''' def __init__( self ,A__=2_9_0_5_6 ,A__=1_0_2_4 ,A__=2_4 ,A__=1_6 ,A__=4_0_9_6 ,A__="gelu" ,A__=0.1 ,A__=0.1 ,A__=5_1_2 ,A__=2 ,A__=0.02 ,A__=1E-12 ,A__=0 ,A__="absolute" ,A__=True ,**A__ ,): super().__init__(pad_token_id=A__ ,**A__) lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = hidden_act lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = initializer_range lowercase = layer_norm_eps lowercase = position_embedding_type lowercase = use_cache
101
def _A ( _lowercase ) -> list[int]: """simple docstring""" if length <= 0 or not isinstance(_lowercase , _lowercase ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(_lowercase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=1_0))
310
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE : Tuple = { """configuration_rembert""": ["""REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RemBertConfig""", """RemBertOnnxConfig"""] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : List[Any] = ["""RemBertTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Tuple = ["""RemBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[int] = [ """REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """RemBertForCausalLM""", """RemBertForMaskedLM""", """RemBertForMultipleChoice""", """RemBertForQuestionAnswering""", """RemBertForSequenceClassification""", """RemBertForTokenClassification""", """RemBertLayer""", """RemBertModel""", """RemBertPreTrainedModel""", """load_tf_weights_in_rembert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : List[Any] = [ """TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRemBertForCausalLM""", """TFRemBertForMaskedLM""", """TFRemBertForMultipleChoice""", """TFRemBertForQuestionAnswering""", """TFRemBertForSequenceClassification""", """TFRemBertForTokenClassification""", """TFRemBertLayer""", """TFRemBertModel""", """TFRemBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
102
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = MgpstrTokenizer _lowercase = False _lowercase = {} _lowercase = False def snake_case_ ( self: int ): '''simple docstring''' super().setUp() # fmt: off __UpperCamelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on __UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) ) __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file,'w',encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) def snake_case_ ( self: Dict,**A_: Tuple ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname,**A_ ) def snake_case_ ( self: List[Any],A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = 'tester' __UpperCamelCase = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.' ) def snake_case_ ( self: str ): '''simple docstring''' pass def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCamelCase = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token} ) __UpperCamelCase = tokenizer.encode([special_token],add_special_tokens=A_ ) self.assertEqual(len(A_ ),1 ) __UpperCamelCase = tokenizer.decode(A_,skip_special_tokens=A_ ) self.assertTrue(special_token not in decoded ) def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCamelCase, __UpperCamelCase = self.get_input_output_texts(A_ ) __UpperCamelCase = tokenizer.tokenize(A_ ) __UpperCamelCase = tokenizer.convert_tokens_to_ids(A_ ) __UpperCamelCase = tokenizer.encode(A_,add_special_tokens=A_ ) self.assertListEqual(A_,A_ ) __UpperCamelCase = tokenizer.convert_ids_to_tokens(A_ ) self.assertNotEqual(len(A_ ),0 ) __UpperCamelCase = tokenizer.decode(A_ ) self.assertIsInstance(A_,A_ ) self.assertEqual(text_a.replace(' ','' ),A_ ) @unittest.skip('MGP-STR tokenizer only handles one sequence.' ) def snake_case_ ( self: int ): '''simple docstring''' pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' ) def snake_case_ ( self: List[str] ): '''simple docstring''' pass
310
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __snake_case ( unittest.TestCase ): def __init__( self : int , A_ : Any , A_ : List[Any]=1_3 , A_ : Any=3 , A_ : List[str]=2_2_4 , A_ : Optional[Any]=3_0 , A_ : Optional[Any]=4_0_0 , A_ : Any=True , A_ : str=None , A_ : Tuple=True , A_ : str=[0.5, 0.5, 0.5] , A_ : Optional[int]=[0.5, 0.5, 0.5] , ): lowerCAmelCase_ : Optional[Any] = size if size is not None else {'''height''': 1_8, '''width''': 1_8} lowerCAmelCase_ : List[str] = parent lowerCAmelCase_ : str = batch_size lowerCAmelCase_ : List[str] = num_channels lowerCAmelCase_ : List[str] = image_size lowerCAmelCase_ : Dict = min_resolution lowerCAmelCase_ : Tuple = max_resolution lowerCAmelCase_ : List[Any] = do_resize lowerCAmelCase_ : Dict = size lowerCAmelCase_ : str = do_normalize lowerCAmelCase_ : Any = image_mean lowerCAmelCase_ : Optional[int] = image_std def UpperCAmelCase__ ( self : Optional[int]): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __snake_case ( UpperCamelCase_ ,unittest.TestCase ): _a = ViTImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : List[Any]): lowerCAmelCase_ : Optional[int] = EfficientFormerImageProcessorTester(self) @property def UpperCAmelCase__ ( self : Optional[int]): return self.image_proc_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : Optional[Any]): lowerCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(A_ , '''image_mean''')) self.assertTrue(hasattr(A_ , '''image_std''')) self.assertTrue(hasattr(A_ , '''do_normalize''')) self.assertTrue(hasattr(A_ , '''do_resize''')) self.assertTrue(hasattr(A_ , '''size''')) def UpperCAmelCase__ ( self : List[str]): pass def UpperCAmelCase__ ( self : Optional[int]): # Initialize image_processor lowerCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict) # create random PIL images lowerCAmelCase_ : Tuple = prepare_image_inputs(self.image_proc_tester , equal_resolution=A_) for image in image_inputs: self.assertIsInstance(A_ , Image.Image) # Test not batched input lowerCAmelCase_ : Optional[Any] = image_processor(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched lowerCAmelCase_ : str = image_processor(A_ , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def UpperCAmelCase__ ( self : str): # Initialize image_processor lowerCAmelCase_ : List[str] = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowerCAmelCase_ : Tuple = prepare_image_inputs(self.image_proc_tester , equal_resolution=A_ , numpify=A_) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray) # Test not batched input lowerCAmelCase_ : str = image_processor(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched lowerCAmelCase_ : str = image_processor(A_ , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def UpperCAmelCase__ ( self : str): # Initialize image_processor lowerCAmelCase_ : int = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowerCAmelCase_ : Tuple = prepare_image_inputs(self.image_proc_tester , equal_resolution=A_ , torchify=A_) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor) # Test not batched input lowerCAmelCase_ : Dict = image_processor(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched lowerCAmelCase_ : Dict = image_processor(A_ , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , )
103
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( """The RoBERTa Model transformer with early exiting (DeeRoBERTa). """ , _a , ) class __lowerCamelCase (_a ): _lowercase = RobertaConfig _lowercase = """roberta""" def __init__( self: Union[str, Any],A_: List[str] ): '''simple docstring''' super().__init__(A_ ) __UpperCamelCase = RobertaEmbeddings(A_ ) self.init_weights() @add_start_docstrings( """RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. """ , _a , ) class __lowerCamelCase (_a ): _lowercase = RobertaConfig _lowercase = """roberta""" def __init__( self: Any,A_: int ): '''simple docstring''' super().__init__(A_ ) __UpperCamelCase = config.num_labels __UpperCamelCase = config.num_hidden_layers __UpperCamelCase = DeeRobertaModel(A_ ) __UpperCamelCase = nn.Dropout(config.hidden_dropout_prob ) __UpperCamelCase = nn.Linear(config.hidden_size,self.config.num_labels ) @add_start_docstrings_to_model_forward(A_ ) def snake_case_ ( self: List[str],A_: int=None,A_: List[Any]=None,A_: List[str]=None,A_: List[str]=None,A_: Optional[int]=None,A_: List[str]=None,A_: Any=None,A_: List[Any]=-1,A_: List[Any]=False,): '''simple docstring''' __UpperCamelCase = self.num_layers try: __UpperCamelCase = self.roberta( A_,attention_mask=A_,token_type_ids=A_,position_ids=A_,head_mask=A_,inputs_embeds=A_,) __UpperCamelCase = outputs[1] __UpperCamelCase = self.dropout(A_ ) __UpperCamelCase = self.classifier(A_ ) __UpperCamelCase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __UpperCamelCase = e.message __UpperCamelCase = e.exit_layer __UpperCamelCase = outputs[0] if not self.training: __UpperCamelCase = entropy(A_ ) __UpperCamelCase = [] __UpperCamelCase = [] if labels is not None: if self.num_labels == 1: # We are doing regression __UpperCamelCase = MSELoss() __UpperCamelCase = loss_fct(logits.view(-1 ),labels.view(-1 ) ) else: __UpperCamelCase = CrossEntropyLoss() __UpperCamelCase = loss_fct(logits.view(-1,self.num_labels ),labels.view(-1 ) ) # work with highway exits __UpperCamelCase = [] for highway_exit in outputs[-1]: __UpperCamelCase = highway_exit[0] if not self.training: highway_logits_all.append(A_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __UpperCamelCase = MSELoss() __UpperCamelCase = loss_fct(highway_logits.view(-1 ),labels.view(-1 ) ) else: __UpperCamelCase = CrossEntropyLoss() __UpperCamelCase = loss_fct(highway_logits.view(-1,self.num_labels ),labels.view(-1 ) ) highway_losses.append(A_ ) if train_highway: __UpperCamelCase = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __UpperCamelCase = (loss,) + outputs if not self.training: __UpperCamelCase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __UpperCamelCase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
310
0
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class lowercase_ : """simple docstring""" def __init__( self : str ,lowercase__ : int ,lowercase__ : List[str]=1_3 ,lowercase__ : List[str]=1_0 ,lowercase__ : int=3 ,lowercase__ : Tuple=2 ,lowercase__ : Union[str, Any]=2 ,lowercase__ : List[str]=2 ,lowercase__ : List[Any]=True ,lowercase__ : Any=True ,lowercase__ : Optional[int]=3_2 ,lowercase__ : List[str]=5 ,lowercase__ : Tuple=4 ,lowercase__ : str=3_7 ,lowercase__ : List[Any]="gelu" ,lowercase__ : Dict=0.1 ,lowercase__ : Any=0.1 ,lowercase__ : str=1_0 ,lowercase__ : Any=0.0_2 ,lowercase__ : Tuple=0.9 ,lowercase__ : Tuple=None ,): __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = num_channels __lowercase = patch_size __lowercase = tubelet_size __lowercase = num_frames __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = mask_ratio __lowercase = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame __lowercase = (image_size // patch_size) ** 2 __lowercase = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos __lowercase = int(mask_ratio * self.seq_length ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : List[str] ): return VideoMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,num_frames=self.num_frames ,tubelet_size=self.tubelet_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=lowercase__ ,initializer_range=self.initializer_range ,) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ,lowercase__ : Any ,lowercase__ : Optional[Any] ): __lowercase = VideoMAEModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Optional[Any] ,lowercase__ : Any ,lowercase__ : Any ): __lowercase = VideoMAEForPreTraining(lowercase__ ) model.to(lowercase__ ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch __lowercase = torch.ones((self.num_masks,) ) __lowercase = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) __lowercase = mask.expand(self.batch_size ,-1 ).bool() __lowercase = model(lowercase__ ,lowercase__ ) # model only returns predictions for masked patches __lowercase = mask.sum().item() __lowercase = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_masked_patches, decoder_num_labels) ) def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : int = ( {'feature-extraction': VideoMAEModel, 'video-classification': VideoMAEForVideoClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : Union[str, Any] = False def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = VideoMAEModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ,has_text_modality=lowercase__ ,hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Tuple ,lowercase__ : List[str] ,lowercase__ : List[str]=False ): __lowercase = copy.deepcopy(lowercase__ ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch __lowercase = torch.ones((self.model_tester.num_masks,) ) __lowercase = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) __lowercase = mask.expand(self.model_tester.batch_size ,-1 ).bool() __lowercase = bool_masked_pos.to(lowercase__ ) if return_labels: if model_class in [ *get_values(lowercase__ ), ]: __lowercase = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=lowercase__ ) return inputs_dict def SCREAMING_SNAKE_CASE ( self : str ): self.config_tester.run_common_tests() @unittest.skip(reason='''VideoMAE does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): pass def SCREAMING_SNAKE_CASE ( self : str ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowercase__ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) __lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase__ ,nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowercase__ ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase__ ) @slow def SCREAMING_SNAKE_CASE ( self : Any ): for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = VideoMAEModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): if not self.has_attentions: pass else: __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True for model_class in self.all_model_classes: __lowercase = self.model_tester.seq_length - self.model_tester.num_masks __lowercase = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) __lowercase = True __lowercase = False __lowercase = True __lowercase = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(lowercase__ ,lowercase__ ) ) __lowercase = outputs.attentions self.assertEqual(len(lowercase__ ) ,self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase = True __lowercase = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(lowercase__ ,lowercase__ ) ) __lowercase = outputs.attentions self.assertEqual(len(lowercase__ ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len, seq_len] ,) __lowercase = len(lowercase__ ) # Check attention is always last and order is fine __lowercase = True __lowercase = True __lowercase = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(lowercase__ ,lowercase__ ) ) self.assertEqual(out_len + 1 ,len(lowercase__ ) ) __lowercase = outputs.attentions self.assertEqual(len(lowercase__ ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len, seq_len] ,) def SCREAMING_SNAKE_CASE ( self : Dict ): def check_hidden_states_output(lowercase__ : List[str] ,lowercase__ : int ,lowercase__ : int ): __lowercase = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(lowercase__ ,lowercase__ ) ) __lowercase = outputs.hidden_states __lowercase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowercase__ ) ,lowercase__ ) __lowercase = self.model_tester.seq_length - self.model_tester.num_masks __lowercase = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[seq_length, self.model_tester.hidden_size] ,) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(lowercase__ ,lowercase__ ,lowercase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(lowercase__ ,lowercase__ ,lowercase__ ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass def _A ( ): """simple docstring""" __lowercase = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) __lowercase = np.load(A__ ) return list(A__ ) @require_torch @require_vision class lowercase_ (unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE ( self : List[str] ): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] ,image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = VideoMAEForVideoClassification.from_pretrained('''MCG-NJU/videomae-base-finetuned-kinetics''' ).to( lowercase__ ) __lowercase = self.default_image_processor __lowercase = prepare_video() __lowercase = image_processor(lowercase__ ,return_tensors='''pt''' ).to(lowercase__ ) # forward pass with torch.no_grad(): __lowercase = model(**lowercase__ ) # verify the logits __lowercase = torch.Size((1, 4_0_0) ) self.assertEqual(outputs.logits.shape ,lowercase__ ) __lowercase = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowercase__ ,atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' ).to(lowercase__ ) __lowercase = self.default_image_processor __lowercase = prepare_video() __lowercase = image_processor(lowercase__ ,return_tensors='''pt''' ).to(lowercase__ ) # add boolean mask, indicating which patches to mask __lowercase = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' ,filename='''bool_masked_pos.pt''' ) __lowercase = torch.load(lowercase__ ) # forward pass with torch.no_grad(): __lowercase = model(**lowercase__ ) # verify the logits __lowercase = torch.Size([1, 1_4_0_8, 1_5_3_6] ) __lowercase = torch.tensor( [[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] ,device=lowercase__ ) self.assertEqual(outputs.logits.shape ,lowercase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,lowercase__ ,atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) __lowercase = torch.tensor([0.5_1_4_2] ,device=lowercase__ ) self.assertTrue(torch.allclose(outputs.loss ,lowercase__ ,atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) __lowercase = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' ,norm_pix_loss=lowercase__ ).to( lowercase__ ) with torch.no_grad(): __lowercase = model(**lowercase__ ) __lowercase = torch.tensor(torch.tensor([0.6_4_6_9] ) ,device=lowercase__ ) self.assertTrue(torch.allclose(outputs.loss ,lowercase__ ,atol=1e-4 ) )
104
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCamelCase : @staticmethod def snake_case_ ( *A_: Optional[Any],**A_: Tuple ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class __lowerCamelCase (unittest.TestCase ): _lowercase = MODEL_FOR_OBJECT_DETECTION_MAPPING def snake_case_ ( self: Dict,A_: Optional[int],A_: Tuple,A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = ObjectDetectionPipeline(model=A_,image_processor=A_ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def snake_case_ ( self: int,A_: Any,A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png',threshold=0.0 ) self.assertGreater(len(A_ ),0 ) for detected_object in outputs: self.assertEqual( A_,{ 'score': ANY(A_ ), 'label': ANY(A_ ), 'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )}, },) import datasets __UpperCamelCase = datasets.load_dataset('hf-internal-testing/fixtures_image_utils','image',split='test' ) __UpperCamelCase = [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] __UpperCamelCase = object_detector(A_,threshold=0.0 ) self.assertEqual(len(A_ ),len(A_ ) ) for outputs in batch_outputs: self.assertGreater(len(A_ ),0 ) for detected_object in outputs: self.assertEqual( A_,{ 'score': ANY(A_ ), 'label': ANY(A_ ), 'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )}, },) @require_tf @unittest.skip('Object detection not implemented in TF' ) def snake_case_ ( self: str ): '''simple docstring''' pass @require_torch def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = 'hf-internal-testing/tiny-detr-mobilenetsv3' __UpperCamelCase = AutoModelForObjectDetection.from_pretrained(A_ ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained(A_ ) __UpperCamelCase = ObjectDetectionPipeline(model=A_,feature_extractor=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg',threshold=0.0 ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ],threshold=0.0,) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], ],) @require_torch @slow def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = AutoModelForObjectDetection.from_pretrained(A_ ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained(A_ ) __UpperCamelCase = ObjectDetectionPipeline(model=A_,feature_extractor=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ],) @require_torch @slow def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = pipeline('object-detection',model=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ],) @require_torch @slow def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = 0.9_9_8_5 __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = pipeline('object-detection',model=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg',threshold=A_ ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) @require_torch @require_pytesseract @slow def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = 'Narsil/layoutlmv3-finetuned-funsd' __UpperCamelCase = 0.9_9_9_3 __UpperCamelCase = pipeline('object-detection',model=A_,threshold=A_ ) __UpperCamelCase = object_detector( 'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, {'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, ],)
310
0
"""simple docstring""" print((lambda quine: quine % quine)('''print((lambda quine: quine %% quine)(%r))'''))
105
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json''' ), } class __lowerCamelCase (_a ): _lowercase = """xlm-roberta""" def __init__( self: Union[str, Any],A_: Union[str, Any]=3_0522,A_: Dict=768,A_: Union[str, Any]=12,A_: Any=12,A_: str=3072,A_: Union[str, Any]="gelu",A_: str=0.1,A_: Optional[int]=0.1,A_: List[Any]=512,A_: Optional[Any]=2,A_: Dict=0.0_2,A_: List[Any]=1E-12,A_: Optional[int]=1,A_: str=0,A_: str=2,A_: Optional[Any]="absolute",A_: Union[str, Any]=True,A_: int=None,**A_: Optional[Any],): '''simple docstring''' super().__init__(pad_token_id=A_,bos_token_id=A_,eos_token_id=A_,**A_ ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = position_embedding_type __UpperCamelCase = use_cache __UpperCamelCase = classifier_dropout class __lowerCamelCase (_a ): @property def snake_case_ ( self: Optional[Any] ): '''simple docstring''' if self.task == "multiple-choice": __UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
310
0
"""simple docstring""" from __future__ import annotations def __SCREAMING_SNAKE_CASE ( A_ ): # preprocessing the first row for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(A_ ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(A_ ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
106
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __snake_case = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCamelCase (_a ): _lowercase = field(default=_a , metadata={"""help""": """Whether to use SortishSampler or not."""} ) _lowercase = field( default=_a , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} ) _lowercase = field( default=_a , metadata={ """help""": ( """The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `max_length` value of the model configuration.""" ) } , ) _lowercase = field( default=_a , metadata={ """help""": ( """The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `num_beams` value of the model configuration.""" ) } , ) _lowercase = field( default=_a , metadata={ """help""": """Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.""" } , ) def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = super().to_dict() for k, v in d.items(): if isinstance(A_,A_ ): __UpperCamelCase = v.to_dict() return d
310
0
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class snake_case__ : """simple docstring""" def __init__( self : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[Any]=13 , __lowerCamelCase : Tuple=10 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : List[Any]=2 , __lowerCamelCase : List[Any]=2 , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Union[str, Any]=32 , __lowerCamelCase : Any=5 , __lowerCamelCase : str=4 , __lowerCamelCase : Optional[Any]=37 , __lowerCamelCase : str="gelu" , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : Dict=10 , __lowerCamelCase : Optional[int]=0.02 , __lowerCamelCase : Optional[int]="divided_space_time" , __lowerCamelCase : Tuple=None , ) -> Optional[int]: a = parent a = batch_size a = image_size a = num_channels a = patch_size a = num_frames a = is_training a = use_labels a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = attention_type a = initializer_range a = scope a = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token a = (image_size // patch_size) ** 2 a = (num_frames) * self.num_patches_per_frame + 1 def __UpperCAmelCase ( self : Dict ) -> Dict: a = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) a = None if self.use_labels: a = ids_tensor([self.batch_size] , self.num_labels ) a = self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self : Any ) -> List[str]: a = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) a = self.num_labels return config def __UpperCAmelCase ( self : Any , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] ) -> Optional[Any]: a = TimesformerModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : Dict ) -> Tuple: a = TimesformerForVideoClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase ) # verify the logits shape a = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __lowerCamelCase ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Any: a = self.prepare_config_and_inputs() a , a , a = config_and_inputs a = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case__ (_UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : str = ( {"""feature-extraction""": TimesformerModel, """video-classification""": TimesformerForVideoClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Tuple = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : Any = False SCREAMING_SNAKE_CASE_ : str = False def __UpperCAmelCase ( self : List[Any] ) -> Any: a = TimesformerModelTester(self ) a = ConfigTester( self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def __UpperCAmelCase ( self : Any , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : Any=False ) -> Any: a = copy.deepcopy(__lowerCamelCase ) if return_labels: if model_class in get_values(__lowerCamelCase ): a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) return inputs_dict def __UpperCAmelCase ( self : Union[str, Any] ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason="TimeSformer does not use inputs_embeds" ) def __UpperCAmelCase ( self : List[Any] ) -> int: pass def __UpperCAmelCase ( self : Optional[int] ) -> Any: a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(__lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear ) ) def __UpperCAmelCase ( self : int ) -> Tuple: a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(__lowerCamelCase ) a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a = [*signature.parameters.keys()] a = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def __UpperCAmelCase ( self : List[str] ) -> str: a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def __UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__lowerCamelCase ) @slow def __UpperCAmelCase ( self : int ) -> List[str]: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a = TimesformerModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def __UpperCAmelCase ( self : Union[str, Any] ) -> str: if not self.has_attentions: pass else: a , a = self.model_tester.prepare_config_and_inputs_for_common() a = True for model_class in self.all_model_classes: a = self.model_tester.seq_length a = self.model_tester.num_frames a = True a = False a = True a = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): a = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) a = outputs.attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] a = True a = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): a = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) a = outputs.attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) a = len(__lowerCamelCase ) # Check attention is always last and order is fine a = True a = True a = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): a = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(out_len + 1 , len(__lowerCamelCase ) ) a = outputs.attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def __UpperCAmelCase ( self : List[Any] ) -> Dict: def check_hidden_states_output(__lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : Any ): a = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): a = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) a = outputs.hidden_states a = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) a = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def __magic_name__ ( ): '''simple docstring''' a = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video", filename="eating_spaghetti.npy", repo_type="dataset" ) a = np.load(A ) return list(A ) @require_torch @require_vision class snake_case__ (unittest.TestCase ): """simple docstring""" @cached_property def __UpperCAmelCase ( self : List[str] ) -> List[Any]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __UpperCAmelCase ( self : int ) -> List[Any]: a = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400" ).to( __lowerCamelCase ) a = self.default_image_processor a = prepare_video() a = image_processor(video[:8] , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): a = model(**__lowerCamelCase ) # verify the logits a = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) a = torch.tensor([-0.3_016, -0.7_713, -0.4_205] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
107
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _A ( _lowercase ) -> Dict: """simple docstring""" if is_torch_version('<' , '2.0.0' ) or not hasattr(_lowercase , '_dynamo' ): return False return isinstance(_lowercase , torch._dynamo.eval_frame.OptimizedModule ) def _A ( _lowercase , _lowercase = True ) -> Optional[int]: """simple docstring""" __UpperCamelCase = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __UpperCamelCase = is_compiled_module(_lowercase ) if is_compiled: __UpperCamelCase = model __UpperCamelCase = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_lowercase , _lowercase ): __UpperCamelCase = model.module if not keep_fpaa_wrapper: __UpperCamelCase = getattr(_lowercase , 'forward' ) __UpperCamelCase = model.__dict__.pop('_original_forward' , _lowercase ) if original_forward is not None: while hasattr(_lowercase , '__wrapped__' ): __UpperCamelCase = forward.__wrapped__ if forward == original_forward: break __UpperCamelCase = forward if getattr(_lowercase , '_converted_to_transformer_engine' , _lowercase ): convert_model(_lowercase , to_transformer_engine=_lowercase ) if is_compiled: __UpperCamelCase = model __UpperCamelCase = compiled_model return model def _A ( ) -> Any: """simple docstring""" PartialState().wait_for_everyone() def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(_lowercase , _lowercase ) elif PartialState().local_process_index == 0: torch.save(_lowercase , _lowercase ) @contextmanager def _A ( **_lowercase ) -> Union[str, Any]: """simple docstring""" for key, value in kwargs.items(): __UpperCamelCase = str(_lowercase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _A ( _lowercase ) -> Tuple: """simple docstring""" if not hasattr(_lowercase , '__qualname__' ) and not hasattr(_lowercase , '__name__' ): __UpperCamelCase = getattr(_lowercase , '__class__' , _lowercase ) if hasattr(_lowercase , '__qualname__' ): return obj.__qualname__ if hasattr(_lowercase , '__name__' ): return obj.__name__ return str(_lowercase ) def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" for key, value in source.items(): if isinstance(_lowercase , _lowercase ): __UpperCamelCase = destination.setdefault(_lowercase , {} ) merge_dicts(_lowercase , _lowercase ) else: __UpperCamelCase = value return destination def _A ( _lowercase = None ) -> bool: """simple docstring""" if port is None: __UpperCamelCase = 2_95_00 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
310
0
"""simple docstring""" from __future__ import annotations def a__ ( SCREAMING_SNAKE_CASE : list[int] ): '''simple docstring''' return len(set(SCREAMING_SNAKE_CASE ) ) == len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
108
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __snake_case = logging.getLogger(__name__) def _A ( _lowercase , _lowercase ) -> Optional[int]: """simple docstring""" return (preds == labels).mean() @dataclass class __lowerCamelCase : _lowercase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _lowercase = field( default=_a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __lowerCamelCase : _lowercase = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) _lowercase = field(metadata={"""help""": """Should contain the data files for the task."""} ) _lowercase = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _lowercase = field( default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _A ( ) -> str: """simple docstring""" __UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _lowercase ) # Set seed set_seed(training_args.seed ) try: __UpperCamelCase = processors[data_args.task_name]() __UpperCamelCase = processor.get_labels() __UpperCamelCase = len(_lowercase ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowercase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , ) # Get datasets __UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_lowercase ) -> Dict: __UpperCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_lowercase , p.label_ids )} # Data collator __UpperCamelCase = DataCollatorWithPadding(_lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __UpperCamelCase = Trainer( model=_lowercase , args=_lowercase , train_dataset=_lowercase , eval_dataset=_lowercase , compute_metrics=_lowercase , data_collator=_lowercase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCamelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __UpperCamelCase = trainer.evaluate() __UpperCamelCase = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(_lowercase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , _lowercase , _lowercase ) writer.write('%s = %s\n' % (key, value) ) results.update(_lowercase ) return results def _A ( _lowercase ) -> List[Any]: """simple docstring""" main() if __name__ == "__main__": main()
310
0
"""simple docstring""" import flax.linen as nn import jax import jax.numpy as jnp class SCREAMING_SNAKE_CASE__ ( nn.Module ): __lowerCAmelCase : int __lowerCAmelCase : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : List[str] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = hidden_states.shape UpperCAmelCase : str = jax.image.resize( _SCREAMING_SNAKE_CASE , shape=(batch, height * 2, width * 2, channels) , method="""nearest""" , ) UpperCAmelCase : Optional[int] = self.conv(_SCREAMING_SNAKE_CASE ) return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): __lowerCAmelCase : int __lowerCAmelCase : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Tuple = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , _SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' UpperCAmelCase : Any = self.conv(_SCREAMING_SNAKE_CASE ) return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): __lowerCAmelCase : int __lowerCAmelCase : int = None __lowerCAmelCase : float = 0.0 __lowerCAmelCase : bool = None __lowerCAmelCase : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Optional[Any] = self.in_channels if self.out_channels is None else self.out_channels UpperCAmelCase : Any = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) UpperCAmelCase : Optional[Any] = nn.Conv( _SCREAMING_SNAKE_CASE , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) UpperCAmelCase : str = nn.Dense(_SCREAMING_SNAKE_CASE , dtype=self.dtype ) UpperCAmelCase : str = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) UpperCAmelCase : List[str] = nn.Dropout(self.dropout_prob ) UpperCAmelCase : str = nn.Conv( _SCREAMING_SNAKE_CASE , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) UpperCAmelCase : Tuple = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut UpperCAmelCase : Dict = None if use_nin_shortcut: UpperCAmelCase : str = nn.Conv( _SCREAMING_SNAKE_CASE , kernel_size=(1, 1) , strides=(1, 1) , padding="""VALID""" , dtype=self.dtype , ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Tuple = hidden_states UpperCAmelCase : Dict = self.norma(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Tuple = nn.swish(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = self.conva(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = self.time_emb_proj(nn.swish(_SCREAMING_SNAKE_CASE ) ) UpperCAmelCase : Optional[int] = jnp.expand_dims(jnp.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) , 1 ) UpperCAmelCase : Union[str, Any] = hidden_states + temb UpperCAmelCase : Any = self.norma(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = nn.swish(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = self.dropout(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Tuple = self.conva(_SCREAMING_SNAKE_CASE ) if self.conv_shortcut is not None: UpperCAmelCase : Dict = self.conv_shortcut(_SCREAMING_SNAKE_CASE ) return hidden_states + residual
109
import os def _A ( ) -> Tuple: """simple docstring""" with open(os.path.dirname(_lowercase ) + '/p022_names.txt' ) as file: __UpperCamelCase = str(file.readlines()[0] ) __UpperCamelCase = names.replace('"' , '' ).split(',' ) names.sort() __UpperCamelCase = 0 __UpperCamelCase = 0 for i, name in enumerate(_lowercase ): for letter in name: name_score += ord(_lowercase ) - 64 total_score += (i + 1) * name_score __UpperCamelCase = 0 return total_score if __name__ == "__main__": print(solution())
310
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def lowerCamelCase ( self : Any ): snake_case__ : Optional[int] = TFXLMRobertaModel.from_pretrained("""jplu/tf-xlm-roberta-base""" ) snake_case__ : int = { """input_ids""": tf.convert_to_tensor([[0, 2_646, 10_269, 83, 99_942, 2]] , dtype=tf.intaa ), # "My dog is cute" """attention_mask""": tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } snake_case__ : List[Any] = model(A_ )["""last_hidden_state"""] snake_case__ : int = tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape , A_ ) # compare the actual values for a slice. snake_case__ : Tuple = tf.convert_to_tensor( [ [ [0.0681762, 0.10894451, 0.06772504], [-0.06423668, 0.02366615, 0.04329344], [-0.06057295, 0.09974135, -0.00070584], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
35
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=True , _lowercase="pt" ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = {'add_prefix_space': True} if isinstance(_lowercase , _lowercase ) and not line.startswith(' ' ) else {} __UpperCamelCase = padding_side return tokenizer( [line] , max_length=_lowercase , padding='max_length' if pad_to_max_length else None , truncation=_lowercase , return_tensors=_lowercase , add_special_tokens=_lowercase , **_lowercase , ) def _A ( _lowercase , _lowercase , _lowercase=None , ) -> List[Any]: """simple docstring""" __UpperCamelCase = input_ids.ne(_lowercase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCamelCase (_a ): def __init__( self: List[str],A_: str,A_: List[str],A_: List[str],A_: List[str],A_: Tuple="train",A_: Any=None,A_: List[str]=None,A_: List[Any]=None,A_: int="",): '''simple docstring''' super().__init__() __UpperCamelCase = Path(A_ ).joinpath(type_path + '.source' ) __UpperCamelCase = Path(A_ ).joinpath(type_path + '.target' ) __UpperCamelCase = self.get_char_lens(self.src_file ) __UpperCamelCase = max_source_length __UpperCamelCase = max_target_length assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}''' __UpperCamelCase = tokenizer __UpperCamelCase = prefix if n_obs is not None: __UpperCamelCase = self.src_lens[:n_obs] __UpperCamelCase = src_lang __UpperCamelCase = tgt_lang def __len__( self: Optional[Any] ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self: int,A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = index + 1 # linecache starts at 1 __UpperCamelCase = self.prefix + linecache.getline(str(self.src_file ),A_ ).rstrip('\n' ) __UpperCamelCase = linecache.getline(str(self.tgt_file ),A_ ).rstrip('\n' ) assert source_line, F'''empty source line for index {index}''' assert tgt_line, F'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer,A_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __UpperCamelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer,A_ ) else self.tokenizer ) __UpperCamelCase = self.tokenizer.generator if isinstance(self.tokenizer,A_ ) else self.tokenizer __UpperCamelCase = encode_line(A_,A_,self.max_source_length,'right' ) __UpperCamelCase = encode_line(A_,A_,self.max_target_length,'right' ) __UpperCamelCase = source_inputs['input_ids'].squeeze() __UpperCamelCase = target_inputs['input_ids'].squeeze() __UpperCamelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def snake_case_ ( A_: List[Any] ): '''simple docstring''' return [len(A_ ) for x in Path(A_ ).open().readlines()] def snake_case_ ( self: Union[str, Any],A_: Any ): '''simple docstring''' __UpperCamelCase = torch.stack([x['input_ids'] for x in batch] ) __UpperCamelCase = torch.stack([x['attention_mask'] for x in batch] ) __UpperCamelCase = torch.stack([x['decoder_input_ids'] for x in batch] ) __UpperCamelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer,A_ ) else self.tokenizer.pad_token_id ) __UpperCamelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer,A_ ) else self.tokenizer.pad_token_id ) __UpperCamelCase = trim_batch(A_,A_ ) __UpperCamelCase, __UpperCamelCase = trim_batch(A_,A_,attention_mask=A_ ) __UpperCamelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch __snake_case = getLogger(__name__) def _A ( _lowercase ) -> Any: """simple docstring""" return list(itertools.chain.from_iterable(_lowercase ) ) def _A ( _lowercase ) -> None: """simple docstring""" __UpperCamelCase = get_git_info() save_json(_lowercase , os.path.join(_lowercase , 'git_log.json' ) ) def _A ( _lowercase , _lowercase , _lowercase=4 , **_lowercase ) -> List[Any]: """simple docstring""" with open(_lowercase , 'w' ) as f: json.dump(_lowercase , _lowercase , indent=_lowercase , **_lowercase ) def _A ( _lowercase ) -> Union[str, Any]: """simple docstring""" with open(_lowercase ) as f: return json.load(_lowercase ) def _A ( ) -> Dict: """simple docstring""" __UpperCamelCase = git.Repo(search_parent_directories=_lowercase ) __UpperCamelCase = { 'repo_id': str(_lowercase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def _A ( _lowercase , _lowercase ) -> List: """simple docstring""" return list(map(_lowercase , _lowercase ) ) def _A ( _lowercase , _lowercase ) -> Tuple: """simple docstring""" with open(_lowercase , 'wb' ) as f: return pickle.dump(_lowercase , _lowercase ) def _A ( _lowercase ) -> List[Any]: """simple docstring""" def remove_articles(_lowercase ): return re.sub(r'\b(a|an|the)\b' , ' ' , _lowercase ) def white_space_fix(_lowercase ): return " ".join(text.split() ) def remove_punc(_lowercase ): __UpperCamelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowercase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowercase ) ) ) ) def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" __UpperCamelCase = normalize_answer(_lowercase ).split() __UpperCamelCase = normalize_answer(_lowercase ).split() __UpperCamelCase = Counter(_lowercase ) & Counter(_lowercase ) __UpperCamelCase = sum(common.values() ) if num_same == 0: return 0 __UpperCamelCase = 1.0 * num_same / len(_lowercase ) __UpperCamelCase = 1.0 * num_same / len(_lowercase ) __UpperCamelCase = (2 * precision * recall) / (precision + recall) return fa def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" return normalize_answer(_lowercase ) == normalize_answer(_lowercase ) def _A ( _lowercase , _lowercase ) -> Dict: """simple docstring""" assert len(_lowercase ) == len(_lowercase ) __UpperCamelCase = 0 for hypo, pred in zip(_lowercase , _lowercase ): em += exact_match_score(_lowercase , _lowercase ) if len(_lowercase ) > 0: em /= len(_lowercase ) return {"em": em} def _A ( _lowercase ) -> Optional[Any]: """simple docstring""" return model_prefix.startswith('rag' ) def _A ( _lowercase , _lowercase , _lowercase ) -> Dict: """simple docstring""" __UpperCamelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __UpperCamelCase = 'dropout_rate' for p in extra_params: if getattr(_lowercase , _lowercase , _lowercase ): if not hasattr(_lowercase , _lowercase ) and not hasattr(_lowercase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_lowercase ) ) delattr(_lowercase , _lowercase ) continue __UpperCamelCase = p if hasattr(_lowercase , _lowercase ) else equivalent_param[p] setattr(_lowercase , _lowercase , getattr(_lowercase , _lowercase ) ) delattr(_lowercase , _lowercase ) return hparams, config
310
0
from math import sqrt def lowerCAmelCase_ ( __lowerCAmelCase = 1_00_00_00 )-> int: '''simple docstring''' UpperCAmelCase : List[str] =0 UpperCAmelCase : int =0 UpperCAmelCase : Optional[Any] =42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_lowercase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'{solution() = }')
348
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __snake_case = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
310
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class A ( _a ): __snake_case = 'yolos' def __init__( self, UpperCamelCase__=768, UpperCamelCase__=12, UpperCamelCase__=12, UpperCamelCase__=3072, UpperCamelCase__="gelu", UpperCamelCase__=0.0, UpperCamelCase__=0.0, UpperCamelCase__=0.02, UpperCamelCase__=1E-12, UpperCamelCase__=[512, 864], UpperCamelCase__=16, UpperCamelCase__=3, UpperCamelCase__=True, UpperCamelCase__=100, UpperCamelCase__=True, UpperCamelCase__=False, UpperCamelCase__=1, UpperCamelCase__=5, UpperCamelCase__=2, UpperCamelCase__=5, UpperCamelCase__=2, UpperCamelCase__=0.1, **UpperCamelCase__, ): """simple docstring""" super().__init__(**A_ ) lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = image_size lowerCAmelCase_ = patch_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = qkv_bias lowerCAmelCase_ = num_detection_tokens lowerCAmelCase_ = use_mid_position_embeddings lowerCAmelCase_ = auxiliary_loss # Hungarian matcher lowerCAmelCase_ = class_cost lowerCAmelCase_ = bbox_cost lowerCAmelCase_ = giou_cost # Loss coefficients lowerCAmelCase_ = bbox_loss_coefficient lowerCAmelCase_ = giou_loss_coefficient lowerCAmelCase_ = eos_coefficient class A ( _a ): __snake_case = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return 1E-4 @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return 12
278
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup __snake_case = '''https://www.indeed.co.in/jobs?q=mobile+app+development&l=''' def _A ( _lowercase = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" __UpperCamelCase = BeautifulSoup(requests.get(url + location ).content , 'html.parser' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('div' , attrs={'data-tn-component': 'organicJob'} ): __UpperCamelCase = job.find('a' , attrs={'data-tn-element': 'jobTitle'} ).text.strip() __UpperCamelCase = job.find('span' , {'class': 'company'} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('''Bangalore'''), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
310
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging A : Any = logging.get_logger(__name__) class A (_a ): '''simple docstring''' __lowerCamelCase : str = ['''pixel_values'''] def __init__( self : Optional[Any] , __lowerCAmelCase : bool = True , __lowerCAmelCase : Optional[Dict[str, int]] = None , __lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , __lowerCAmelCase : bool = True , __lowerCAmelCase : bool = True , __lowerCAmelCase : Union[int, float] = 1 / 2_55 , __lowerCAmelCase : Dict[str, int] = None , __lowerCAmelCase : bool = True , __lowerCAmelCase : Optional[Union[float, List[float]]] = None , __lowerCAmelCase : Optional[Union[float, List[float]]] = None , **__lowerCAmelCase : Any , ) -> Union[str, Any]: """simple docstring""" super().__init__(**A_ ) A__ = size if size is not None else {"""height""": 2_24, """width""": 2_24} A__ = get_size_dict(A_ ) A__ = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} A__ = get_size_dict(A_ , default_to_square=A_ , param_name="""crop_size""" ) A__ = do_resize A__ = do_rescale A__ = do_normalize A__ = do_center_crop A__ = crop_size A__ = size A__ = resample A__ = rescale_factor A__ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN A__ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def a_ ( self : List[Any] , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : Dict[str, int] , __lowerCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , __lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCAmelCase : Dict , ) -> Any: """simple docstring""" A__ = get_size_dict(A_ ) if "shortest_edge" in size: A__ = get_resize_output_image_size(A_ , size=size["""shortest_edge"""] , default_to_square=A_ ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: A__ = (size["""height"""], size["""width"""]) else: raise ValueError(f'Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}' ) return resize(A_ , size=A_ , resample=A_ , data_format=A_ , **A_ ) def a_ ( self : Any , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : Dict[str, int] , __lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCAmelCase : int , ) -> List[str]: """simple docstring""" A__ = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(A_ , size=(size["""height"""], size["""width"""]) , data_format=A_ , **A_ ) def a_ ( self : Tuple , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : float , __lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def a_ ( self : Optional[int] , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : Union[float, List[float]] , __lowerCAmelCase : Union[float, List[float]] , __lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCAmelCase : Optional[Any] , ) -> Tuple: """simple docstring""" return normalize(A_ , mean=A_ , std=A_ , data_format=A_ , **A_ ) def a_ ( self : int , __lowerCAmelCase : ImageInput , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : Dict[str, int] = None , __lowerCAmelCase : PILImageResampling = None , __lowerCAmelCase : bool = None , __lowerCAmelCase : int = None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : Optional[float] = None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : Optional[Union[float, List[float]]] = None , __lowerCAmelCase : Optional[Union[float, List[float]]] = None , __lowerCAmelCase : Optional[Union[str, TensorType]] = None , __lowerCAmelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__lowerCAmelCase : Dict , ) -> List[Any]: """simple docstring""" A__ = do_resize if do_resize is not None else self.do_resize A__ = do_rescale if do_rescale is not None else self.do_rescale A__ = do_normalize if do_normalize is not None else self.do_normalize A__ = do_center_crop if do_center_crop is not None else self.do_center_crop A__ = crop_size if crop_size is not None else self.crop_size A__ = get_size_dict(A_ , param_name="""crop_size""" , default_to_square=A_ ) A__ = resample if resample is not None else self.resample A__ = rescale_factor if rescale_factor is not None else self.rescale_factor A__ = image_mean if image_mean is not None else self.image_mean A__ = image_std if image_std is not None else self.image_std A__ = size if size is not None else self.size A__ = get_size_dict(A_ ) if not is_batched(A_ ): A__ = [images] if not valid_images(A_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. A__ = [to_numpy_array(A_ ) for image in images] if do_resize: A__ = [self.resize(image=A_ , size=A_ , resample=A_ ) for image in images] if do_center_crop: A__ = [self.center_crop(image=A_ , size=A_ ) for image in images] if do_rescale: A__ = [self.rescale(image=A_ , scale=A_ ) for image in images] if do_normalize: A__ = [self.normalize(image=A_ , mean=A_ , std=A_ ) for image in images] A__ = [to_channel_dimension_format(A_ , A_ ) for image in images] A__ = {"""pixel_values""": images} return BatchFeature(data=A_ , tensor_type=A_ )
274
def _A ( _lowercase ) -> list: """simple docstring""" def merge(_lowercase , _lowercase ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(_lowercase ) <= 1: return collection __UpperCamelCase = len(_lowercase ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() __snake_case = input('''Enter numbers separated by a comma:\n''').strip() __snake_case = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
310
0
'''simple docstring''' from manim import * class a ( _a ): def __UpperCAmelCase ( self ) -> List[str]: _a = Rectangle(height=0.5 , width=0.5 ) _a = Rectangle(height=0.2_5 , width=0.2_5 ) _a = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) _a = [mem.copy() for i in range(6 )] _a = [mem.copy() for i in range(6 )] _a = VGroup(*A_ ).arrange(A_ , buff=0 ) _a = VGroup(*A_ ).arrange(A_ , buff=0 ) _a = VGroup(A_ , A_ ).arrange(A_ , buff=0 ) _a = Text('CPU' , font_size=24 ) _a = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(A_ ) _a = [mem.copy() for i in range(4 )] _a = VGroup(*A_ ).arrange(A_ , buff=0 ) _a = Text('GPU' , font_size=24 ) _a = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) gpu.move_to([-1, -1, 0] ) self.add(A_ ) _a = [mem.copy() for i in range(6 )] _a = VGroup(*A_ ).arrange(A_ , buff=0 ) _a = Text('Model' , font_size=24 ) _a = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) model.move_to([3, -1.0, 0] ) self.add(A_ ) _a = [] _a = [] _a = [] for i, rect in enumerate(A_ ): rect.set_stroke(A_ ) _a = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(A_ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=A_ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=A_ , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=A_ , buff=0.0 ) self.add(A_ ) model_cpu_arr.append(A_ ) self.add(*A_ , *A_ , *A_ ) _a = [mem.copy() for i in range(6 )] _a = VGroup(*A_ ).arrange(A_ , buff=0 ) _a = Text('Loaded Checkpoint' , font_size=24 ) _a = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) checkpoint.move_to([3, 0.5, 0] ) self.add(A_ ) _a = [] _a = [] for i, rect in enumerate(A_ ): _a = fill.copy().set_fill(A_ , opacity=0.7 ) target.move_to(A_ ) ckpt_arr.append(A_ ) _a = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(A_ ) self.add(*A_ , *A_ ) _a = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _a = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(A_ , A_ ) _a = MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(A_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(A_ ) _a = MarkupText( f'Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) _a = [meta_mem.copy() for i in range(6 )] _a = [meta_mem.copy() for i in range(6 )] _a = VGroup(*A_ ).arrange(A_ , buff=0 ) _a = VGroup(*A_ ).arrange(A_ , buff=0 ) _a = VGroup(A_ , A_ ).arrange(A_ , buff=0 ) _a = Text('Disk' , font_size=24 ) _a = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) disk.move_to([-4.0, -1.2_5, 0] ) self.play(Write(A_ , run_time=3 ) , Write(A_ , run_time=1 ) , Create(A_ , run_time=1 ) ) _a = [] for i, rect in enumerate(A_ ): _a = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(A_ , run_time=1.5 ) ) self.play(*A_ ) self.play(FadeOut(A_ ) ) _a = MarkupText(f'Then, the checkpoint is removed from memory\nthrough garbage collection.' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ , run_time=3 ) ) self.play( FadeOut(A_ , A_ , *A_ , *A_ ) , ) self.wait()
168
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowerCamelCase (_a ): _lowercase = 0 _lowercase = False _lowercase = 3.0 class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: Any ): '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs(),{} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs(),{'a': 2} ) self.assertDictEqual(MockClass(a=2,b=A_ ).to_kwargs(),{'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2,c=2.2_5 ).to_kwargs(),{'a': 2, 'c': 2.2_5} ) @require_cuda def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = GradScalerKwargs(init_scale=1024,growth_factor=2 ) AcceleratorState._reset_state() __UpperCamelCase = Accelerator(mixed_precision='fp16',kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __UpperCamelCase = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale,1_0_2_4.0 ) self.assertEqual(scaler._growth_factor,2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor,0.5 ) self.assertEqual(scaler._growth_interval,2000 ) self.assertEqual(scaler._enabled,A_ ) @require_multi_gpu def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(A_,env=os.environ.copy() ) if __name__ == "__main__": __snake_case = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) __snake_case = Accelerator(kwargs_handlers=[ddp_scaler]) __snake_case = torch.nn.Linear(1_0_0, 2_0_0) __snake_case = accelerator.prepare(model) # Check the values changed in kwargs __snake_case = '''''' __snake_case = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
310
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''transfo-xl-wt103''': '''https://huggingface.co/transfo-xl-wt103/resolve/main/config.json''', } class lowercase ( _a ): """simple docstring""" _a = 'transfo-xl' _a = ['mems'] _a = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , UpperCamelCase_=267735 , UpperCamelCase_=[20000, 40000, 200000] , UpperCamelCase_=1024 , UpperCamelCase_=1024 , UpperCamelCase_=16 , UpperCamelCase_=64 , UpperCamelCase_=4096 , UpperCamelCase_=4 , UpperCamelCase_=False , UpperCamelCase_=18 , UpperCamelCase_=1600 , UpperCamelCase_=1000 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=0 , UpperCamelCase_=-1 , UpperCamelCase_=True , UpperCamelCase_=0.1 , UpperCamelCase_=0.0 , UpperCamelCase_=True , UpperCamelCase_="normal" , UpperCamelCase_=0.01 , UpperCamelCase_=0.01 , UpperCamelCase_=0.02 , UpperCamelCase_=1e-5 , UpperCamelCase_=0 , **UpperCamelCase_ , ): '''simple docstring''' UpperCamelCase__ :str = vocab_size UpperCamelCase__ :int = [] self.cutoffs.extend(A_ ) if proj_share_all_but_first: UpperCamelCase__ :Dict = [False] + [True] * len(self.cutoffs ) else: UpperCamelCase__ :List[str] = [False] + [False] * len(self.cutoffs ) UpperCamelCase__ :List[Any] = d_model UpperCamelCase__ :str = d_embed UpperCamelCase__ :List[Any] = d_head UpperCamelCase__ :Dict = d_inner UpperCamelCase__ :Any = div_val UpperCamelCase__ :Tuple = pre_lnorm UpperCamelCase__ :Dict = n_layer UpperCamelCase__ :Any = n_head UpperCamelCase__ :Tuple = mem_len UpperCamelCase__ :List[Any] = same_length UpperCamelCase__ :List[str] = attn_type UpperCamelCase__ :Dict = clamp_len UpperCamelCase__ :List[str] = sample_softmax UpperCamelCase__ :List[Any] = adaptive UpperCamelCase__ :Optional[Any] = dropout UpperCamelCase__ :Optional[Any] = dropatt UpperCamelCase__ :Tuple = untie_r UpperCamelCase__ :int = init UpperCamelCase__ :Any = init_range UpperCamelCase__ :Optional[int] = proj_init_std UpperCamelCase__ :Tuple = init_std UpperCamelCase__ :List[Any] = layer_norm_epsilon super().__init__(eos_token_id=A_ , **A_ ) @property def lowerCAmelCase__ ( self ): '''simple docstring''' logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
97
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class __lowerCamelCase (_a ): _lowercase = ["""image_processor""", """tokenizer"""] _lowercase = """OwlViTImageProcessor""" _lowercase = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self: int,A_: Tuple=None,A_: int=None,**A_: int ): '''simple docstring''' __UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.',A_,) __UpperCamelCase = kwargs.pop('feature_extractor' ) __UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(A_,A_ ) def __call__( self: str,A_: Dict=None,A_: Optional[int]=None,A_: Any=None,A_: Tuple="max_length",A_: int="np",**A_: Optional[Any] ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(A_,A_ ) or (isinstance(A_,A_ ) and not isinstance(text[0],A_ )): __UpperCamelCase = [self.tokenizer(A_,padding=A_,return_tensors=A_,**A_ )] elif isinstance(A_,A_ ) and isinstance(text[0],A_ ): __UpperCamelCase = [] # Maximum number of queries across batch __UpperCamelCase = max([len(A_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(A_ ) != max_num_queries: __UpperCamelCase = t + [' '] * (max_num_queries - len(A_ )) __UpperCamelCase = self.tokenizer(A_,padding=A_,return_tensors=A_,**A_ ) encodings.append(A_ ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": __UpperCamelCase = np.concatenate([encoding['input_ids'] for encoding in encodings],axis=0 ) __UpperCamelCase = np.concatenate([encoding['attention_mask'] for encoding in encodings],axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __UpperCamelCase = jnp.concatenate([encoding['input_ids'] for encoding in encodings],axis=0 ) __UpperCamelCase = jnp.concatenate([encoding['attention_mask'] for encoding in encodings],axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __UpperCamelCase = torch.cat([encoding['input_ids'] for encoding in encodings],dim=0 ) __UpperCamelCase = torch.cat([encoding['attention_mask'] for encoding in encodings],dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __UpperCamelCase = tf.stack([encoding['input_ids'] for encoding in encodings],axis=0 ) __UpperCamelCase = tf.stack([encoding['attention_mask'] for encoding in encodings],axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) __UpperCamelCase = BatchEncoding() __UpperCamelCase = input_ids __UpperCamelCase = attention_mask if query_images is not None: __UpperCamelCase = BatchEncoding() __UpperCamelCase = self.image_processor( A_,return_tensors=A_,**A_ ).pixel_values __UpperCamelCase = query_pixel_values if images is not None: __UpperCamelCase = self.image_processor(A_,return_tensors=A_,**A_ ) if text is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**A_ ),tensor_type=A_ ) def snake_case_ ( self: Optional[int],*A_: int,**A_: List[Any] ): '''simple docstring''' return self.image_processor.post_process(*A_,**A_ ) def snake_case_ ( self: str,*A_: Optional[int],**A_: List[Any] ): '''simple docstring''' return self.image_processor.post_process_object_detection(*A_,**A_ ) def snake_case_ ( self: str,*A_: Tuple,**A_: int ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*A_,**A_ ) def snake_case_ ( self: List[str],*A_: str,**A_: List[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*A_,**A_ ) def snake_case_ ( self: int,*A_: Any,**A_: Tuple ): '''simple docstring''' return self.tokenizer.decode(*A_,**A_ ) @property def snake_case_ ( self: Optional[Any] ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.',A_,) return self.image_processor_class @property def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.',A_,) return self.image_processor
310
0
'''simple docstring''' import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def UpperCAmelCase_ ( __lowercase : str , __lowercase : Dict , __lowercase : Dict=1024 , __lowercase : int=1024 , __lowercase : Dict=False , **__lowercase : List[Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = AutoTokenizer.from_pretrained(_lowercase ) _UpperCAmelCase = SeqaSeqDataset(_lowercase , _lowercase , _lowercase , _lowercase , type_path="train" , **_lowercase ) _UpperCAmelCase = tok.pad_token_id def get_lens(__lowercase : List[Any] ): _UpperCAmelCase = tqdm( DataLoader(_lowercase , batch_size=512 , num_workers=8 , shuffle=_lowercase , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) _UpperCAmelCase = [] for batch in dl: _UpperCAmelCase = batch["input_ids"].ne(_lowercase ).sum(1 ).tolist() _UpperCAmelCase = batch["labels"].ne(_lowercase ).sum(1 ).tolist() if consider_target: for src, tgt in zip(_lowercase , _lowercase ): max_lens.append(max(_lowercase , _lowercase ) ) else: max_lens.extend(_lowercase ) return max_lens _UpperCAmelCase = get_lens(_lowercase ) _UpperCAmelCase = SeqaSeqDataset(_lowercase , _lowercase , _lowercase , _lowercase , type_path="val" , **_lowercase ) _UpperCAmelCase = get_lens(_lowercase ) pickle_save(_lowercase , train_ds.len_file ) pickle_save(_lowercase , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
22
import math def _A ( _lowercase ) -> int: """simple docstring""" if not isinstance(_lowercase , _lowercase ): __UpperCamelCase = f'''Input value of [number={number}] must be an integer''' raise TypeError(_lowercase ) if number < 1: __UpperCamelCase = f'''Input value of [number={number}] must be > 0''' raise ValueError(_lowercase ) elif number == 1: return 3 elif number == 2: return 5 else: __UpperCamelCase = int(math.log(number // 3 , 2 ) ) + 2 __UpperCamelCase = [3, 5] __UpperCamelCase = 2 __UpperCamelCase = 3 for block in range(1 , _lowercase ): for _ in range(_lowercase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(1_1): __snake_case = 0 try: __snake_case = proth(number) except ValueError: print(f"""ValueError: there is no {number}th Proth number""") continue print(f"""The {number}th Proth number: {value}""")
310
0
from __future__ import annotations __A = [] def lowerCAmelCase_ ( __a , __a , __a ) -> bool: """simple docstring""" for i in range(len(_lowercase ) ): if board[row][i] == 1: return False for i in range(len(_lowercase ) ): if board[i][column] == 1: return False for i, j in zip(range(_lowercase , -1 , -1 ) , range(_lowercase , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(_lowercase , -1 , -1 ) , range(_lowercase , len(_lowercase ) ) ): if board[i][j] == 1: return False return True def lowerCAmelCase_ ( __a , __a ) -> bool: """simple docstring""" if row >= len(_lowercase ): solution.append(_lowercase ) printboard(_lowercase ) print() return True for i in range(len(_lowercase ) ): if is_safe(_lowercase , _lowercase , _lowercase ): lowerCamelCase__: Optional[Any] =1 solve(_lowercase , row + 1 ) lowerCamelCase__: List[str] =0 return False def lowerCAmelCase_ ( __a ) -> None: """simple docstring""" for i in range(len(_lowercase ) ): for j in range(len(_lowercase ) ): if board[i][j] == 1: print("Q" , end=" " ) else: print("." , end=" " ) print() # n=int(input("The no. of queens")) __A = 8 __A = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("The total no. of solutions are :", len(solution))
10
import torch from transformers import AutoModel class __lowerCamelCase (torch.nn.Module ): def __init__( self: Union[str, Any],A_: Tuple="sayef/fsner-bert-base-uncased" ): '''simple docstring''' super(A_,self ).__init__() __UpperCamelCase = AutoModel.from_pretrained(A_,return_dict=A_ ) __UpperCamelCase = torch.nn.CosineSimilarity(3,1E-08 ) __UpperCamelCase = torch.nn.Softmax(dim=1 ) def snake_case_ ( self: Tuple,**A_: Union[str, Any] ): '''simple docstring''' return self.bert(**A_ ).last_hidden_state def snake_case_ ( self: Union[str, Any],A_: Union[str, Any] ): '''simple docstring''' return token_embeddings.sum(2,keepdim=A_ ) def snake_case_ ( self: List[str],A_: Dict,A_: Union[str, Any],A_: Union[str, Any]=1 ): '''simple docstring''' return self.softmax(T * self.cos(A_,A_ ) ) def snake_case_ ( self: Optional[int],A_: Union[str, Any],A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = W_supports['sizes'].tolist() __UpperCamelCase = W_supports['start_token_id'].item() __UpperCamelCase = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] __UpperCamelCase = self.BERT(**A_ ) __UpperCamelCase = self.BERT(**A_ ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = W_supports['input_ids'] == start_token_id __UpperCamelCase = W_supports['input_ids'] == end_token_id for i, size in enumerate(A_ ): if i == 0: __UpperCamelCase = 0 else: __UpperCamelCase = support_sizes[i - 1] __UpperCamelCase = S[s : s + size][start_token_masks[s : s + size]] __UpperCamelCase = S[s : s + size][end_token_masks[s : s + size]] __UpperCamelCase = torch.matmul(q[i],s_start.T ).sum(1 ).softmax(0 ) __UpperCamelCase = torch.matmul(q[i],s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: __UpperCamelCase = torch.vstack((p_starts, p_start) ) __UpperCamelCase = torch.vstack((p_ends, p_end) ) else: __UpperCamelCase = p_start __UpperCamelCase = p_end return p_starts, p_ends
310
0
import math def lowerCamelCase__ ( _A ): '''simple docstring''' return math.sqrt(_lowercase ) * math.sqrt(_lowercase ) == num def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = 0 snake_case_ = n while left <= right: snake_case_ = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: snake_case_ = mid - 1 else: snake_case_ = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
187
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = BioGptTokenizer _lowercase = False def snake_case_ ( self: Any ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCamelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] __UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) ) __UpperCamelCase = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file,'w' ) as fp: fp.write(json.dumps(A_ ) ) with open(self.merges_file,'w' ) as fp: fp.write('\n'.join(A_ ) ) def snake_case_ ( self: Optional[int],A_: List[Any] ): '''simple docstring''' __UpperCamelCase = 'lower newer' __UpperCamelCase = 'lower newer' return input_text, output_text def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = BioGptTokenizer(self.vocab_file,self.merges_file ) __UpperCamelCase = 'lower' __UpperCamelCase = ['low', 'er</w>'] __UpperCamelCase = tokenizer.tokenize(A_ ) self.assertListEqual(A_,A_ ) __UpperCamelCase = tokens + ['<unk>'] __UpperCamelCase = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ),A_ ) @slow def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) __UpperCamelCase = tokenizer.encode('sequence builders',add_special_tokens=A_ ) __UpperCamelCase = tokenizer.encode('multi-sequence build',add_special_tokens=A_ ) __UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_ ) __UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_,A_ ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
310
0
class UpperCAmelCase : '''simple docstring''' def __init__( self : List[str] , lowerCAmelCase_ : Any ): """simple docstring""" _A: Optional[Any] = arr.split(''',''' ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: Dict = [int(self.array[0] )] * len(self.array ) _A: Optional[int] = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): _A: Any = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) _A: Tuple = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": UpperCAmelCase__ : int = input('please input some numbers:') UpperCAmelCase__ : List[str] = SubArray(whole_array) UpperCAmelCase__ : str = array.solve_sub_array() print(('the results is:', re))
121
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __snake_case = r''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(_a ) class __lowerCamelCase (_a ): _lowercase = """rag""" _lowercase = True def __init__( self: Tuple,A_: Any=None,A_: Any=True,A_: List[Any]=None,A_: Optional[int]=None,A_: List[Any]=None,A_: str=None,A_: Union[str, Any]=None,A_: List[Any]=" / ",A_: Union[str, Any]=" // ",A_: List[Any]=5,A_: Optional[int]=300,A_: Tuple=768,A_: Tuple=8,A_: Optional[Any]="wiki_dpr",A_: int="train",A_: Union[str, Any]="compressed",A_: Optional[int]=None,A_: List[Any]=None,A_: List[str]=False,A_: List[str]=False,A_: str=0.0,A_: List[Any]=True,A_: Tuple=False,A_: int=False,A_: Dict=False,A_: Tuple=True,A_: int=None,**A_: Optional[int],): '''simple docstring''' super().__init__( bos_token_id=A_,pad_token_id=A_,eos_token_id=A_,decoder_start_token_id=A_,forced_eos_token_id=A_,is_encoder_decoder=A_,prefix=A_,vocab_size=A_,**A_,) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" __UpperCamelCase = kwargs.pop('question_encoder' ) __UpperCamelCase = question_encoder_config.pop('model_type' ) __UpperCamelCase = kwargs.pop('generator' ) __UpperCamelCase = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig __UpperCamelCase = AutoConfig.for_model(A_,**A_ ) __UpperCamelCase = AutoConfig.for_model(A_,**A_ ) __UpperCamelCase = reduce_loss __UpperCamelCase = label_smoothing __UpperCamelCase = exclude_bos_score __UpperCamelCase = do_marginalize __UpperCamelCase = title_sep __UpperCamelCase = doc_sep __UpperCamelCase = n_docs __UpperCamelCase = max_combined_length __UpperCamelCase = dataset __UpperCamelCase = dataset_split __UpperCamelCase = index_name __UpperCamelCase = retrieval_vector_size __UpperCamelCase = retrieval_batch_size __UpperCamelCase = passages_path __UpperCamelCase = index_path __UpperCamelCase = use_dummy_dataset __UpperCamelCase = output_retrieved __UpperCamelCase = do_deduplication __UpperCamelCase = use_cache if self.forced_eos_token_id is None: __UpperCamelCase = getattr(self.generator,'forced_eos_token_id',A_ ) @classmethod def snake_case_ ( cls: Any,A_: PretrainedConfig,A_: PretrainedConfig,**A_: int ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict(),generator=generator_config.to_dict(),**A_ ) def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = copy.deepcopy(self.__dict__ ) __UpperCamelCase = self.question_encoder.to_dict() __UpperCamelCase = self.generator.to_dict() __UpperCamelCase = self.__class__.model_type return output
310
0
"""simple docstring""" def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: if index == number_of_items: return 0 __lowerCAmelCase: Dict = 0 __lowerCAmelCase: Any = 0 __lowerCAmelCase: List[str] = knapsack(_lowercase , _lowercase , _lowercase , _lowercase , index + 1 ) if weights[index] <= max_weight: __lowerCAmelCase: str = values[index] + knapsack( _lowercase , _lowercase , _lowercase , max_weight - weights[index] , index + 1 ) return max(_lowercase , _lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
217
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class __lowerCamelCase (_a ): _lowercase = """M-CLIP""" def __init__( self: int,A_: Any=1024,A_: Union[str, Any]=768,**A_: str ): '''simple docstring''' __UpperCamelCase = transformerDimSize __UpperCamelCase = imageDimSize super().__init__(**A_ ) class __lowerCamelCase (_a ): _lowercase = MCLIPConfig def __init__( self: int,A_: Optional[Any],*A_: List[str],**A_: Union[str, Any] ): '''simple docstring''' super().__init__(A_,*A_,**A_ ) __UpperCamelCase = XLMRobertaModel(A_ ) __UpperCamelCase = torch.nn.Linear( in_features=config.transformerDimensions,out_features=config.numDims ) def snake_case_ ( self: Dict,A_: int,A_: Optional[int] ): '''simple docstring''' __UpperCamelCase = self.transformer(input_ids=A_,attention_mask=A_ )[0] __UpperCamelCase = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(A_ ), embs
310
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __a = { "configuration_mvp": ["MVP_PRETRAINED_CONFIG_ARCHIVE_MAP", "MvpConfig", "MvpOnnxConfig"], "tokenization_mvp": ["MvpTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["MvpTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "MVP_PRETRAINED_MODEL_ARCHIVE_LIST", "MvpForCausalLM", "MvpForConditionalGeneration", "MvpForQuestionAnswering", "MvpForSequenceClassification", "MvpModel", "MvpPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
35
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class __lowerCamelCase : _lowercase = XGLMConfig _lowercase = {} _lowercase = """gelu""" def __init__( self: Optional[int],A_: Dict,A_: Any=14,A_: Optional[int]=7,A_: str=True,A_: Any=True,A_: Optional[int]=True,A_: Optional[int]=99,A_: List[str]=32,A_: Any=2,A_: Tuple=4,A_: List[str]=37,A_: Dict="gelu",A_: int=0.1,A_: List[str]=0.1,A_: int=512,A_: List[Any]=0.0_2,): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = d_model __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = ffn_dim __UpperCamelCase = activation_function __UpperCamelCase = activation_dropout __UpperCamelCase = attention_dropout __UpperCamelCase = max_position_embeddings __UpperCamelCase = initializer_range __UpperCamelCase = None __UpperCamelCase = 0 __UpperCamelCase = 2 __UpperCamelCase = 1 def snake_case_ ( self: Dict ): '''simple docstring''' return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length],self.vocab_size ),clip_value_min=0,clip_value_max=3 ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = self.get_config() __UpperCamelCase = floats_tensor([self.num_hidden_layers, self.num_attention_heads],2 ) return ( config, input_ids, input_mask, head_mask, ) def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' return XGLMConfig( vocab_size=self.vocab_size,d_model=self.hidden_size,num_layers=self.num_hidden_layers,attention_heads=self.num_attention_heads,ffn_dim=self.ffn_dim,activation_function=self.activation_function,activation_dropout=self.activation_dropout,attention_dropout=self.attention_dropout,max_position_embeddings=self.max_position_embeddings,initializer_range=self.initializer_range,use_cache=A_,bos_token_id=self.bos_token_id,eos_token_id=self.eos_token_id,pad_token_id=self.pad_token_id,return_dict=A_,) def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ) = config_and_inputs __UpperCamelCase = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class __lowerCamelCase (_a , _a , unittest.TestCase ): _lowercase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () _lowercase = (TFXGLMForCausalLM,) if is_tf_available() else () _lowercase = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) _lowercase = False _lowercase = False _lowercase = False def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = TFXGLMModelTester(self ) __UpperCamelCase = ConfigTester(self,config_class=A_,n_embd=37 ) def snake_case_ ( self: Any ): '''simple docstring''' self.config_tester.run_common_tests() @slow def snake_case_ ( self: Any ): '''simple docstring''' for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = TFXGLMModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def snake_case_ ( self: Tuple ): '''simple docstring''' super().test_resize_token_embeddings() @require_tf class __lowerCamelCase (unittest.TestCase ): @slow def snake_case_ ( self: Optional[Any],A_: int=True ): '''simple docstring''' __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = tf.convert_to_tensor([[2, 268, 9865]],dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __UpperCamelCase = [2, 268, 9865, 67, 11, 1988, 5_7252, 9865, 5, 984, 67, 1988, 21_3838, 1658, 53, 7_0446, 33, 6657, 278, 1581] # fmt: on __UpperCamelCase = model.generate(A_,do_sample=A_,num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist(),A_ ) @slow def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) __UpperCamelCase = tokenizer('Today is a nice day and',return_tensors='tf' ) __UpperCamelCase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): __UpperCamelCase = model.generate(A_,do_sample=A_,seed=[7, 0] ) __UpperCamelCase = tokenizer.decode(output_ids[0],skip_special_tokens=A_ ) __UpperCamelCase = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(A_,A_ ) @slow def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = 'left' # use different length sentences to test batching __UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] __UpperCamelCase = tokenizer(A_,return_tensors='tf',padding=A_ ) __UpperCamelCase = inputs['input_ids'] __UpperCamelCase = model.generate(input_ids=A_,attention_mask=inputs['attention_mask'],max_new_tokens=12 ) __UpperCamelCase = tokenizer(sentences[0],return_tensors='tf' ).input_ids __UpperCamelCase = model.generate(input_ids=A_,max_new_tokens=12 ) __UpperCamelCase = tokenizer(sentences[1],return_tensors='tf' ).input_ids __UpperCamelCase = model.generate(input_ids=A_,max_new_tokens=12 ) __UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ ) __UpperCamelCase = tokenizer.decode(output_non_padded[0],skip_special_tokens=A_ ) __UpperCamelCase = tokenizer.decode(output_padded[0],skip_special_tokens=A_ ) __UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(A_,A_ ) self.assertListEqual(A_,[non_padded_sentence, padded_sentence] )
310
0
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __snake_case = 16 __snake_case = 32 def lowerCAmelCase_ ( __lowerCAmelCase )-> List[str]: '''simple docstring''' return int(x / 2**20 ) class __snake_case : def __enter__( self ) -> Optional[Any]: '''simple docstring''' gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero UpperCAmelCase : Optional[Any] =torch.cuda.memory_allocated() return self def __exit__( self , *snake_case__ ) -> Optional[int]: '''simple docstring''' gc.collect() torch.cuda.empty_cache() UpperCAmelCase : Any =torch.cuda.memory_allocated() UpperCAmelCase : Optional[int] =torch.cuda.max_memory_allocated() UpperCAmelCase : str =bamb(self.end - self.begin ) UpperCAmelCase : Optional[Any] =bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase = 16 , __lowerCAmelCase = "bert-base-cased" , __lowerCAmelCase = 3_20 , __lowerCAmelCase = 1_60 , )-> Any: '''simple docstring''' UpperCAmelCase : Optional[Any] =AutoTokenizer.from_pretrained(_lowercase ) UpperCAmelCase : Dict =load_dataset( '''glue''' , '''mrpc''' , split={'''train''': f'''train[:{n_train}]''', '''validation''': f'''validation[:{n_val}]'''} ) def tokenize_function(__lowerCAmelCase ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase : Optional[int] =tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_lowercase , max_length=_lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCAmelCase : List[Any] =datasets.map( _lowercase , batched=_lowercase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=_lowercase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase : Dict =tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowerCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowercase , padding='''max_length''' , max_length=1_28 , return_tensors='''pt''' ) return tokenizer.pad(_lowercase , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. UpperCAmelCase : Optional[int] =DataLoader( tokenized_datasets['''train'''] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase ) UpperCAmelCase : Any =DataLoader( tokenized_datasets['''validation'''] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase ) return train_dataloader, eval_dataloader def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> Tuple: '''simple docstring''' UpperCAmelCase : Union[str, Any] =Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase : List[Any] =config['''lr'''] UpperCAmelCase : List[Any] =int(config['''num_epochs'''] ) UpperCAmelCase : Union[str, Any] =int(config['''seed'''] ) UpperCAmelCase : List[Any] =int(config['''batch_size'''] ) UpperCAmelCase : Optional[Any] =args.model_name_or_path set_seed(_lowercase ) UpperCAmelCase , UpperCAmelCase : Union[str, Any] =get_dataloaders(_lowercase , _lowercase , _lowercase , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase : Optional[Any] =AutoModelForSequenceClassification.from_pretrained(_lowercase , return_dict=_lowercase ) # Instantiate optimizer UpperCAmelCase : str =( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCAmelCase : Optional[int] =optimizer_cls(params=model.parameters() , lr=_lowercase ) if accelerator.state.deepspeed_plugin is not None: UpperCAmelCase : Dict =accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: UpperCAmelCase : Any =1 UpperCAmelCase : List[Any] =(len(_lowercase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCAmelCase : Optional[int] =get_linear_schedule_with_warmup( optimizer=_lowercase , num_warmup_steps=0 , num_training_steps=_lowercase , ) else: UpperCAmelCase : Optional[Any] =DummyScheduler(_lowercase , total_num_steps=_lowercase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] =accelerator.prepare( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # We need to keep track of how many total steps we have iterated over UpperCAmelCase : List[str] =0 # We also need to keep track of the stating epoch so files are named properly UpperCAmelCase : Any =0 # Now we train the model UpperCAmelCase : Optional[Any] ={} for epoch in range(_lowercase , _lowercase ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(_lowercase ): UpperCAmelCase : Optional[Any] =model(**_lowercase ) UpperCAmelCase : int =outputs.loss UpperCAmelCase : Dict =loss / gradient_accumulation_steps accelerator.backward(_lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('''Memory before entering the train : {}'''.format(bamb(tracemalloc.begin ) ) ) accelerator.print('''Memory consumed at the end of the train (end-begin): {}'''.format(tracemalloc.used ) ) accelerator.print('''Peak Memory consumed during the train (max-begin): {}'''.format(tracemalloc.peaked ) ) accelerator.print( '''Total Peak Memory consumed during the train (max): {}'''.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) UpperCAmelCase : List[Any] =tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f'''epoch-{epoch}'''] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''peak_memory_utilization.json''' ) , '''w''' ) as f: json.dump(_lowercase , _lowercase ) def lowerCAmelCase_ ( )-> Tuple: '''simple docstring''' UpperCAmelCase : Any =argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=_lowercase , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=_lowercase , ) parser.add_argument( '''--output_dir''' , type=_lowercase , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--peak_memory_upper_bound''' , type=_lowercase , default=_lowercase , help='''The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.''' , ) parser.add_argument( '''--n_train''' , type=_lowercase , default=3_20 , help='''Number of training examples to use.''' , ) parser.add_argument( '''--n_val''' , type=_lowercase , default=1_60 , help='''Number of validation examples to use.''' , ) parser.add_argument( '''--num_epochs''' , type=_lowercase , default=1 , help='''Number of train epochs.''' , ) UpperCAmelCase : Tuple =parser.parse_args() UpperCAmelCase : int ={'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(_lowercase , _lowercase ) if __name__ == "__main__": main()
348
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __snake_case = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json''' with io.open(filename, '''r''', encoding='''utf-8''') as f: __snake_case = json.load(f) @require_torch class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: int,A_: int ): '''simple docstring''' return FSMTTokenizer.from_pretrained(A_ ) def snake_case_ ( self: Dict,A_: int ): '''simple docstring''' __UpperCamelCase = FSMTForConditionalGeneration.from_pretrained(A_ ).to(A_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 2_6.0], ['ru-en', 2_2.0], ['en-de', 2_2.0], ['de-en', 2_9.0], ] ) @slow def snake_case_ ( self: Tuple,A_: Any,A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = F'''facebook/wmt19-{pair}''' __UpperCamelCase = self.get_tokenizer(A_ ) __UpperCamelCase = self.get_model(A_ ) __UpperCamelCase = bleu_data[pair]['src'] __UpperCamelCase = bleu_data[pair]['tgt'] __UpperCamelCase = tokenizer(A_,return_tensors='pt',truncation=A_,padding='longest' ).to(A_ ) __UpperCamelCase = model.generate( input_ids=batch.input_ids,num_beams=8,) __UpperCamelCase = tokenizer.batch_decode( A_,skip_special_tokens=A_,clean_up_tokenization_spaces=A_ ) __UpperCamelCase = calculate_bleu(A_,A_ ) print(A_ ) self.assertGreaterEqual(scores['bleu'],A_ )
310
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = '''▁''' _A = {'''vocab_file''': '''sentencepiece.bpe.model'''} _A = { '''vocab_file''': { '''facebook/mbart-large-50-one-to-many-mmt''': ( '''https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model''' ), } } _A = { '''facebook/mbart-large-50-one-to-many-mmt''': 1_024, } # fmt: off _A = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN''', '''af_ZA''', '''az_AZ''', '''bn_IN''', '''fa_IR''', '''he_IL''', '''hr_HR''', '''id_ID''', '''ka_GE''', '''km_KH''', '''mk_MK''', '''ml_IN''', '''mn_MN''', '''mr_IN''', '''pl_PL''', '''ps_AF''', '''pt_XX''', '''sv_SE''', '''sw_KE''', '''ta_IN''', '''te_IN''', '''th_TH''', '''tl_XX''', '''uk_UA''', '''ur_PK''', '''xh_ZA''', '''gl_ES''', '''sl_SI'''] class A ( _a ): __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = ['input_ids', 'attention_mask'] __snake_case = [] __snake_case = [] def __init__( self, UpperCamelCase__, UpperCamelCase__=None, UpperCamelCase__=None, UpperCamelCase__="</s>", UpperCamelCase__="</s>", UpperCamelCase__="<s>", UpperCamelCase__="<unk>", UpperCamelCase__="<pad>", UpperCamelCase__="<mask>", UpperCamelCase__ = None, **UpperCamelCase__, ): """simple docstring""" lowerCAmelCase_ = AddedToken(A_, lstrip=A_, rstrip=A_ ) if isinstance(A_, A_ ) else mask_token lowerCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs lowerCAmelCase_ = kwargs.get('''additional_special_tokens''', [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=A_, tgt_lang=A_, eos_token=A_, unk_token=A_, sep_token=A_, cls_token=A_, pad_token=A_, mask_token=A_, sp_model_kwargs=self.sp_model_kwargs, **A_, ) lowerCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A_ ) ) lowerCAmelCase_ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token lowerCAmelCase_ = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCAmelCase_ = 1 lowerCAmelCase_ = len(self.sp_model ) lowerCAmelCase_ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(A_ ) } lowerCAmelCase_ = {v: k for k, v in self.lang_code_to_id.items()} lowerCAmelCase_ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowerCAmelCase_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} lowerCAmelCase_ = src_lang if src_lang is not None else '''en_XX''' lowerCAmelCase_ = self.lang_code_to_id[self._src_lang] lowerCAmelCase_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): """simple docstring""" lowerCAmelCase_ = self.__dict__.copy() lowerCAmelCase_ = None return state def __setstate__( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = d # for backward compatibility if not hasattr(self, '''sp_model_kwargs''' ): lowerCAmelCase_ = {} lowerCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" return self.sp_model.encode(A_, out_type=A_ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCAmelCase_ = self.sp_model.PieceToId(A_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = [] lowerCAmelCase_ = '''''' lowerCAmelCase_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A_ ) + token lowerCAmelCase_ = True lowerCAmelCase_ = [] else: current_sub_tokens.append(A_ ) lowerCAmelCase_ = False out_string += self.sp_model.decode(A_ ) return out_string.strip() def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None ): """simple docstring""" if not os.path.isdir(A_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase_ = os.path.join( A_, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_, '''wb''' ) as fi: lowerCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None, UpperCamelCase__ = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_, token_ids_a=A_, already_has_special_tokens=A_ ) lowerCAmelCase_ = [1] * len(self.prefix_tokens ) lowerCAmelCase_ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(A_ )) + suffix_ones return prefix_ones + ([0] * len(A_ )) + ([0] * len(A_ )) + suffix_ones def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) lowerCAmelCase_ = src_lang lowerCAmelCase_ = self(A_, add_special_tokens=A_, return_tensors=A_, **A_ ) lowerCAmelCase_ = self.convert_tokens_to_ids(A_ ) lowerCAmelCase_ = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = "en_XX", UpperCamelCase__ = None, UpperCamelCase__ = "ro_RO", **UpperCamelCase__, ): """simple docstring""" lowerCAmelCase_ = src_lang lowerCAmelCase_ = tgt_lang return super().prepare_seqaseq_batch(A_, A_, **A_ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = self.lang_code_to_id[src_lang] lowerCAmelCase_ = [self.cur_lang_code_id] lowerCAmelCase_ = [self.eos_token_id] def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = self.lang_code_to_id[tgt_lang] lowerCAmelCase_ = [self.cur_lang_code_id] lowerCAmelCase_ = [self.eos_token_id]
278
def _A ( _lowercase ) -> list[int]: """simple docstring""" if length <= 0 or not isinstance(_lowercase , _lowercase ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(_lowercase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=1_0))
310
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A : List[str] = { '''configuration_groupvit''': [ '''GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GroupViTConfig''', '''GroupViTOnnxConfig''', '''GroupViTTextConfig''', '''GroupViTVisionConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ '''GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GroupViTModel''', '''GroupViTPreTrainedModel''', '''GroupViTTextModel''', '''GroupViTVisionModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Any = [ '''TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFGroupViTModel''', '''TFGroupViTPreTrainedModel''', '''TFGroupViTTextModel''', '''TFGroupViTVisionModel''', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
274
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = MgpstrTokenizer _lowercase = False _lowercase = {} _lowercase = False def snake_case_ ( self: int ): '''simple docstring''' super().setUp() # fmt: off __UpperCamelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on __UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) ) __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file,'w',encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) def snake_case_ ( self: Dict,**A_: Tuple ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname,**A_ ) def snake_case_ ( self: List[Any],A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = 'tester' __UpperCamelCase = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.' ) def snake_case_ ( self: str ): '''simple docstring''' pass def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCamelCase = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token} ) __UpperCamelCase = tokenizer.encode([special_token],add_special_tokens=A_ ) self.assertEqual(len(A_ ),1 ) __UpperCamelCase = tokenizer.decode(A_,skip_special_tokens=A_ ) self.assertTrue(special_token not in decoded ) def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCamelCase, __UpperCamelCase = self.get_input_output_texts(A_ ) __UpperCamelCase = tokenizer.tokenize(A_ ) __UpperCamelCase = tokenizer.convert_tokens_to_ids(A_ ) __UpperCamelCase = tokenizer.encode(A_,add_special_tokens=A_ ) self.assertListEqual(A_,A_ ) __UpperCamelCase = tokenizer.convert_ids_to_tokens(A_ ) self.assertNotEqual(len(A_ ),0 ) __UpperCamelCase = tokenizer.decode(A_ ) self.assertIsInstance(A_,A_ ) self.assertEqual(text_a.replace(' ','' ),A_ ) @unittest.skip('MGP-STR tokenizer only handles one sequence.' ) def snake_case_ ( self: int ): '''simple docstring''' pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' ) def snake_case_ ( self: List[str] ): '''simple docstring''' pass
310
0
'''simple docstring''' import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class a ( enum.Enum ): _lowerCAmelCase = 0 _lowerCAmelCase = 1 _lowerCAmelCase = 2 @add_end_docstrings(_a ) class a ( _a ): _lowerCAmelCase = """ In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> """ def __init__( self , *__magic_name__ , **__magic_name__ ) -> Optional[int]: super().__init__(*A_ , **A_ ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. _a = None if self.model.config.prefix is not None: _a = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. _a = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. _a , _a , _a = self._sanitize_parameters(prefix=A_ , **self._forward_params ) _a = {**self._preprocess_params, **preprocess_params} _a = {**self._forward_params, **forward_params} def __UpperCAmelCase ( self , __magic_name__=None , __magic_name__=None , __magic_name__=None , __magic_name__=None , __magic_name__=None , __magic_name__=None , __magic_name__=None , __magic_name__=None , **__magic_name__ , ) -> Optional[Any]: _a = {} if prefix is not None: _a = prefix if prefix: _a = self.tokenizer( A_ , padding=A_ , add_special_tokens=A_ , return_tensors=self.framework ) _a = prefix_inputs['input_ids'].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f'{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected' ' [None, \'hole\']' ) _a = handle_long_generation preprocess_params.update(A_ ) _a = generate_kwargs _a = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_full_text`' ) if return_tensors is not None: raise ValueError('`return_full_text` is mutually exclusive with `return_tensors`' ) _a = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_tensors`' ) _a = ReturnType.TENSORS if return_type is not None: _a = return_type if clean_up_tokenization_spaces is not None: _a = clean_up_tokenization_spaces if stop_sequence is not None: _a = self.tokenizer.encode(A_ , add_special_tokens=A_ ) if len(A_ ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) _a = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __UpperCAmelCase ( self , *__magic_name__ , **__magic_name__ ) -> Union[str, Any]: if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'add_space_before_punct_symbol': True} ) return super()._parse_and_tokenize(*A_ , **A_ ) def __call__( self , __magic_name__ , **__magic_name__ ) -> Any: return super().__call__(A_ , **A_ ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__="" , __magic_name__=None , **__magic_name__ ) -> int: _a = self.tokenizer( prefix + prompt_text , padding=A_ , add_special_tokens=A_ , return_tensors=self.framework ) _a = prompt_text if handle_long_generation == "hole": _a = inputs['input_ids'].shape[-1] if "max_new_tokens" in generate_kwargs: _a = generate_kwargs['max_new_tokens'] else: _a = generate_kwargs.get('max_length' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('We cannot infer how many new tokens are expected' ) if cur_len + new_tokens > self.tokenizer.model_max_length: _a = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( 'We cannot use `hole` to handle this generation the number of desired tokens exceeds the' ' models max length' ) _a = inputs['input_ids'][:, -keep_length:] if "attention_mask" in inputs: _a = inputs['attention_mask'][:, -keep_length:] return inputs def __UpperCAmelCase ( self , __magic_name__ , **__magic_name__ ) -> Union[str, Any]: _a = model_inputs['input_ids'] _a = model_inputs.get('attention_mask' , A_ ) # Allow empty prompts if input_ids.shape[1] == 0: _a = None _a = None _a = 1 else: _a = input_ids.shape[0] _a = model_inputs.pop('prompt_text' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. _a = generate_kwargs.pop('prefix_length' , 0 ) if prefix_length > 0: _a = 'max_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].max_new_tokens is not None ) if not has_max_new_tokens: _a = generate_kwargs.get('max_length' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length _a = 'min_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL _a = self.model.generate(input_ids=A_ , attention_mask=A_ , **A_ ) _a = generated_sequence.shape[0] if self.framework == "pt": _a = generated_sequence.reshape(A_ , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": _a = tf.reshape(A_ , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def __UpperCAmelCase ( self , __magic_name__ , __magic_name__=ReturnType.FULL_TEXT , __magic_name__=True ) -> Tuple: _a = model_outputs['generated_sequence'][0] _a = model_outputs['input_ids'] _a = model_outputs['prompt_text'] _a = generated_sequence.numpy().tolist() _a = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: _a = {'generated_token_ids': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text _a = self.tokenizer.decode( A_ , skip_special_tokens=A_ , clean_up_tokenization_spaces=A_ , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: _a = 0 else: _a = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=A_ , clean_up_tokenization_spaces=A_ , ) ) if return_type == ReturnType.FULL_TEXT: _a = prompt_text + text[prompt_length:] else: _a = text[prompt_length:] _a = {'generated_text': all_text} records.append(A_ ) return records
168
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( """The RoBERTa Model transformer with early exiting (DeeRoBERTa). """ , _a , ) class __lowerCamelCase (_a ): _lowercase = RobertaConfig _lowercase = """roberta""" def __init__( self: Union[str, Any],A_: List[str] ): '''simple docstring''' super().__init__(A_ ) __UpperCamelCase = RobertaEmbeddings(A_ ) self.init_weights() @add_start_docstrings( """RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. """ , _a , ) class __lowerCamelCase (_a ): _lowercase = RobertaConfig _lowercase = """roberta""" def __init__( self: Any,A_: int ): '''simple docstring''' super().__init__(A_ ) __UpperCamelCase = config.num_labels __UpperCamelCase = config.num_hidden_layers __UpperCamelCase = DeeRobertaModel(A_ ) __UpperCamelCase = nn.Dropout(config.hidden_dropout_prob ) __UpperCamelCase = nn.Linear(config.hidden_size,self.config.num_labels ) @add_start_docstrings_to_model_forward(A_ ) def snake_case_ ( self: List[str],A_: int=None,A_: List[Any]=None,A_: List[str]=None,A_: List[str]=None,A_: Optional[int]=None,A_: List[str]=None,A_: Any=None,A_: List[Any]=-1,A_: List[Any]=False,): '''simple docstring''' __UpperCamelCase = self.num_layers try: __UpperCamelCase = self.roberta( A_,attention_mask=A_,token_type_ids=A_,position_ids=A_,head_mask=A_,inputs_embeds=A_,) __UpperCamelCase = outputs[1] __UpperCamelCase = self.dropout(A_ ) __UpperCamelCase = self.classifier(A_ ) __UpperCamelCase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __UpperCamelCase = e.message __UpperCamelCase = e.exit_layer __UpperCamelCase = outputs[0] if not self.training: __UpperCamelCase = entropy(A_ ) __UpperCamelCase = [] __UpperCamelCase = [] if labels is not None: if self.num_labels == 1: # We are doing regression __UpperCamelCase = MSELoss() __UpperCamelCase = loss_fct(logits.view(-1 ),labels.view(-1 ) ) else: __UpperCamelCase = CrossEntropyLoss() __UpperCamelCase = loss_fct(logits.view(-1,self.num_labels ),labels.view(-1 ) ) # work with highway exits __UpperCamelCase = [] for highway_exit in outputs[-1]: __UpperCamelCase = highway_exit[0] if not self.training: highway_logits_all.append(A_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __UpperCamelCase = MSELoss() __UpperCamelCase = loss_fct(highway_logits.view(-1 ),labels.view(-1 ) ) else: __UpperCamelCase = CrossEntropyLoss() __UpperCamelCase = loss_fct(highway_logits.view(-1,self.num_labels ),labels.view(-1 ) ) highway_losses.append(A_ ) if train_highway: __UpperCamelCase = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __UpperCamelCase = (loss,) + outputs if not self.training: __UpperCamelCase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __UpperCamelCase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
310
0
'''simple docstring''' import comet # From: unbabel-comet import torch import datasets __snake_case = datasets.logging.get_logger(__name__) __snake_case = '''\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } ''' __snake_case = '''\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. ''' __snake_case = ''' COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric(\'comet\') >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): """simple docstring""" def lowerCAmelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''sources''': datasets.Value('''string''' , id='''sequence''' ), '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ] , ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' if self.config_name == "default": UpperCamelCase__ :Optional[Any] = comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''' ) ) else: UpperCamelCase__ :Optional[Any] = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_=False ): '''simple docstring''' if gpus is None: UpperCamelCase__ :Union[str, Any] = 1 if torch.cuda.is_available() else 0 UpperCamelCase__ :Optional[int] = {'''src''': sources, '''mt''': predictions, '''ref''': references} UpperCamelCase__ :int = [dict(zip(A_ , A_ ) ) for t in zip(*data.values() )] UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = self.scorer.predict(A_ , gpus=A_ , progress_bar=A_ ) return {"mean_score": mean_score, "scores": scores}
97
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCamelCase : @staticmethod def snake_case_ ( *A_: Optional[Any],**A_: Tuple ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class __lowerCamelCase (unittest.TestCase ): _lowercase = MODEL_FOR_OBJECT_DETECTION_MAPPING def snake_case_ ( self: Dict,A_: Optional[int],A_: Tuple,A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = ObjectDetectionPipeline(model=A_,image_processor=A_ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def snake_case_ ( self: int,A_: Any,A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png',threshold=0.0 ) self.assertGreater(len(A_ ),0 ) for detected_object in outputs: self.assertEqual( A_,{ 'score': ANY(A_ ), 'label': ANY(A_ ), 'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )}, },) import datasets __UpperCamelCase = datasets.load_dataset('hf-internal-testing/fixtures_image_utils','image',split='test' ) __UpperCamelCase = [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] __UpperCamelCase = object_detector(A_,threshold=0.0 ) self.assertEqual(len(A_ ),len(A_ ) ) for outputs in batch_outputs: self.assertGreater(len(A_ ),0 ) for detected_object in outputs: self.assertEqual( A_,{ 'score': ANY(A_ ), 'label': ANY(A_ ), 'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )}, },) @require_tf @unittest.skip('Object detection not implemented in TF' ) def snake_case_ ( self: str ): '''simple docstring''' pass @require_torch def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = 'hf-internal-testing/tiny-detr-mobilenetsv3' __UpperCamelCase = AutoModelForObjectDetection.from_pretrained(A_ ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained(A_ ) __UpperCamelCase = ObjectDetectionPipeline(model=A_,feature_extractor=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg',threshold=0.0 ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ],threshold=0.0,) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], ],) @require_torch @slow def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = AutoModelForObjectDetection.from_pretrained(A_ ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained(A_ ) __UpperCamelCase = ObjectDetectionPipeline(model=A_,feature_extractor=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ],) @require_torch @slow def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = pipeline('object-detection',model=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ],) @require_torch @slow def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = 0.9_9_8_5 __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = pipeline('object-detection',model=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg',threshold=A_ ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) @require_torch @require_pytesseract @slow def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = 'Narsil/layoutlmv3-finetuned-funsd' __UpperCamelCase = 0.9_9_9_3 __UpperCamelCase = pipeline('object-detection',model=A_,threshold=A_ ) __UpperCamelCase = object_detector( 'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, {'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, ],)
310
0
'''simple docstring''' def UpperCAmelCase_ ( __lowercase : Dict , __lowercase : Optional[int] ) -> str: '''simple docstring''' if not (isinstance(_lowercase , _lowercase ) and isinstance(_lowercase , _lowercase )): raise ValueError("longest_common_substring() takes two strings for inputs" ) _UpperCAmelCase = len(_lowercase ) _UpperCAmelCase = len(_lowercase ) _UpperCAmelCase = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] _UpperCAmelCase = 0 _UpperCAmelCase = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: _UpperCAmelCase = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: _UpperCAmelCase = i _UpperCAmelCase = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
22
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json''' ), } class __lowerCamelCase (_a ): _lowercase = """xlm-roberta""" def __init__( self: Union[str, Any],A_: Union[str, Any]=3_0522,A_: Dict=768,A_: Union[str, Any]=12,A_: Any=12,A_: str=3072,A_: Union[str, Any]="gelu",A_: str=0.1,A_: Optional[int]=0.1,A_: List[Any]=512,A_: Optional[Any]=2,A_: Dict=0.0_2,A_: List[Any]=1E-12,A_: Optional[int]=1,A_: str=0,A_: str=2,A_: Optional[Any]="absolute",A_: Union[str, Any]=True,A_: int=None,**A_: Optional[Any],): '''simple docstring''' super().__init__(pad_token_id=A_,bos_token_id=A_,eos_token_id=A_,**A_ ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = position_embedding_type __UpperCamelCase = use_cache __UpperCamelCase = classifier_dropout class __lowerCamelCase (_a ): @property def snake_case_ ( self: Optional[Any] ): '''simple docstring''' if self.task == "multiple-choice": __UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
310
0
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function __A = 1.0_5_4_5_7_1_8_1_7e-3_4 # unit of ℏ : J * s __A = 3e8 # unit of c : m * s^-1 def lowerCAmelCase_ ( __a , __a , __a ) -> dict[str, float]: """simple docstring""" if (force, area, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if force < 0: raise ValueError("Magnitude of force can not be negative" ) if distance < 0: raise ValueError("Distance can not be negative" ) if area < 0: raise ValueError("Area can not be negative" ) if force == 0: lowerCamelCase__: str =(REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: lowerCamelCase__: str =(240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: lowerCamelCase__: str =( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("One and only one argument must be 0" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
10
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __snake_case = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCamelCase (_a ): _lowercase = field(default=_a , metadata={"""help""": """Whether to use SortishSampler or not."""} ) _lowercase = field( default=_a , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} ) _lowercase = field( default=_a , metadata={ """help""": ( """The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `max_length` value of the model configuration.""" ) } , ) _lowercase = field( default=_a , metadata={ """help""": ( """The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `num_beams` value of the model configuration.""" ) } , ) _lowercase = field( default=_a , metadata={ """help""": """Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.""" } , ) def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = super().to_dict() for k, v in d.items(): if isinstance(A_,A_ ): __UpperCamelCase = v.to_dict() return d
310
0
def lowerCamelCase__ ( ): '''simple docstring''' snake_case_ = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] snake_case_ = 6 snake_case_ = 1 snake_case_ = 1901 snake_case_ = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 snake_case_ = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 snake_case_ = day - 29 else: if day > days_per_month[month - 1]: month += 1 snake_case_ = day - days_per_month[month - 2] if month > 12: year += 1 snake_case_ = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
187
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _A ( _lowercase ) -> Dict: """simple docstring""" if is_torch_version('<' , '2.0.0' ) or not hasattr(_lowercase , '_dynamo' ): return False return isinstance(_lowercase , torch._dynamo.eval_frame.OptimizedModule ) def _A ( _lowercase , _lowercase = True ) -> Optional[int]: """simple docstring""" __UpperCamelCase = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __UpperCamelCase = is_compiled_module(_lowercase ) if is_compiled: __UpperCamelCase = model __UpperCamelCase = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_lowercase , _lowercase ): __UpperCamelCase = model.module if not keep_fpaa_wrapper: __UpperCamelCase = getattr(_lowercase , 'forward' ) __UpperCamelCase = model.__dict__.pop('_original_forward' , _lowercase ) if original_forward is not None: while hasattr(_lowercase , '__wrapped__' ): __UpperCamelCase = forward.__wrapped__ if forward == original_forward: break __UpperCamelCase = forward if getattr(_lowercase , '_converted_to_transformer_engine' , _lowercase ): convert_model(_lowercase , to_transformer_engine=_lowercase ) if is_compiled: __UpperCamelCase = model __UpperCamelCase = compiled_model return model def _A ( ) -> Any: """simple docstring""" PartialState().wait_for_everyone() def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(_lowercase , _lowercase ) elif PartialState().local_process_index == 0: torch.save(_lowercase , _lowercase ) @contextmanager def _A ( **_lowercase ) -> Union[str, Any]: """simple docstring""" for key, value in kwargs.items(): __UpperCamelCase = str(_lowercase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _A ( _lowercase ) -> Tuple: """simple docstring""" if not hasattr(_lowercase , '__qualname__' ) and not hasattr(_lowercase , '__name__' ): __UpperCamelCase = getattr(_lowercase , '__class__' , _lowercase ) if hasattr(_lowercase , '__qualname__' ): return obj.__qualname__ if hasattr(_lowercase , '__name__' ): return obj.__name__ return str(_lowercase ) def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" for key, value in source.items(): if isinstance(_lowercase , _lowercase ): __UpperCamelCase = destination.setdefault(_lowercase , {} ) merge_dicts(_lowercase , _lowercase ) else: __UpperCamelCase = value return destination def _A ( _lowercase = None ) -> bool: """simple docstring""" if port is None: __UpperCamelCase = 2_95_00 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
310
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : List[str] = logging.get_logger(__name__) UpperCAmelCase__ : List[str] = { 'microsoft/biogpt': 'https://huggingface.co/microsoft/biogpt/resolve/main/config.json', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class UpperCAmelCase ( _a ): '''simple docstring''' __UpperCamelCase : Optional[Any] = '''biogpt''' def __init__( self : str , lowerCAmelCase_ : List[Any]=4_2_3_8_4 , lowerCAmelCase_ : Union[str, Any]=1_0_2_4 , lowerCAmelCase_ : List[str]=2_4 , lowerCAmelCase_ : Union[str, Any]=1_6 , lowerCAmelCase_ : Any=4_0_9_6 , lowerCAmelCase_ : Optional[Any]="gelu" , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Dict=1_0_2_4 , lowerCAmelCase_ : List[str]=0.02 , lowerCAmelCase_ : Optional[int]=1e-12 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : List[Any]=0.0 , lowerCAmelCase_ : int=0.0 , lowerCAmelCase_ : int=1 , lowerCAmelCase_ : List[Any]=0 , lowerCAmelCase_ : Union[str, Any]=2 , **lowerCAmelCase_ : Union[str, Any] , ): """simple docstring""" _A: int = vocab_size _A: Optional[Any] = max_position_embeddings _A: Dict = hidden_size _A: Optional[int] = num_hidden_layers _A: Any = num_attention_heads _A: Tuple = intermediate_size _A: Any = hidden_act _A: int = hidden_dropout_prob _A: List[str] = attention_probs_dropout_prob _A: int = initializer_range _A: str = layer_norm_eps _A: str = scale_embedding _A: str = use_cache _A: Union[str, Any] = layerdrop _A: Dict = activation_dropout super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ )
121
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __snake_case = logging.getLogger(__name__) def _A ( _lowercase , _lowercase ) -> Optional[int]: """simple docstring""" return (preds == labels).mean() @dataclass class __lowerCamelCase : _lowercase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _lowercase = field( default=_a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __lowerCamelCase : _lowercase = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) _lowercase = field(metadata={"""help""": """Should contain the data files for the task."""} ) _lowercase = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _lowercase = field( default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _A ( ) -> str: """simple docstring""" __UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _lowercase ) # Set seed set_seed(training_args.seed ) try: __UpperCamelCase = processors[data_args.task_name]() __UpperCamelCase = processor.get_labels() __UpperCamelCase = len(_lowercase ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowercase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , ) # Get datasets __UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_lowercase ) -> Dict: __UpperCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_lowercase , p.label_ids )} # Data collator __UpperCamelCase = DataCollatorWithPadding(_lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __UpperCamelCase = Trainer( model=_lowercase , args=_lowercase , train_dataset=_lowercase , eval_dataset=_lowercase , compute_metrics=_lowercase , data_collator=_lowercase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCamelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __UpperCamelCase = trainer.evaluate() __UpperCamelCase = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(_lowercase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , _lowercase , _lowercase ) writer.write('%s = %s\n' % (key, value) ) results.update(_lowercase ) return results def _A ( _lowercase ) -> List[Any]: """simple docstring""" main() if __name__ == "__main__": main()
310
0
"""simple docstring""" import copy import random from transformers import CLIPTokenizer class snake_case ( _a ): def __init__( self : int , *UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : str)-> Union[str, Any]: '''simple docstring''' super().__init__(*A_ , **A_) __lowerCAmelCase: List[Any] = {} def lowercase_ ( self : int , UpperCamelCase__ : Dict , *UpperCamelCase__ : List[str] , **UpperCamelCase__ : Any)-> str: '''simple docstring''' __lowerCAmelCase: str = super().add_tokens(A_ , *A_ , **A_) if num_added_tokens == 0: raise ValueError( f"The tokenizer already contains the token {placeholder_token}. Please pass a different" " `placeholder_token` that is not already in the tokenizer.") def lowercase_ ( self : int , UpperCamelCase__ : Dict , *UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any]=1 , **UpperCamelCase__ : List[Any])-> Dict: '''simple docstring''' __lowerCAmelCase: Optional[Any] = [] if num_vec_per_token == 1: self.try_adding_tokens(A_ , *A_ , **A_) output.append(A_) else: __lowerCAmelCase: Tuple = [] for i in range(A_): __lowerCAmelCase: Union[str, Any] = placeholder_token + f"_{i}" self.try_adding_tokens(A_ , *A_ , **A_) output.append(A_) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f"The tokenizer already has placeholder token {token} that can get confused with" f" {placeholder_token}keep placeholder tokens independent") __lowerCAmelCase: Dict = output def lowercase_ ( self : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any]=False , UpperCamelCase__ : Optional[Any]=1.0)-> int: '''simple docstring''' if isinstance(A_ , A_): __lowerCAmelCase: str = [] for i in range(len(A_)): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=A_)) return output for placeholder_token in self.token_map: if placeholder_token in text: __lowerCAmelCase: Optional[int] = self.token_map[placeholder_token] __lowerCAmelCase: str = tokens[: 1 + int(len(A_) * prop_tokens_to_load)] if vector_shuffle: __lowerCAmelCase: Tuple = copy.copy(A_) random.shuffle(A_) __lowerCAmelCase: Any = text.replace(A_ , " ".join(A_)) return text def __call__( self : Any , UpperCamelCase__ : Optional[Any] , *UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : List[Any]=1.0 , **UpperCamelCase__ : str)-> Any: '''simple docstring''' return super().__call__( self.replace_placeholder_tokens_in_text( A_ , vector_shuffle=A_ , prop_tokens_to_load=A_) , *A_ , **A_ , ) def lowercase_ ( self : Any , UpperCamelCase__ : str , *UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : Any=1.0 , **UpperCamelCase__ : Any)-> Dict: '''simple docstring''' return super().encode( self.replace_placeholder_tokens_in_text( A_ , vector_shuffle=A_ , prop_tokens_to_load=A_) , *A_ , **A_ , )
217
import os def _A ( ) -> Tuple: """simple docstring""" with open(os.path.dirname(_lowercase ) + '/p022_names.txt' ) as file: __UpperCamelCase = str(file.readlines()[0] ) __UpperCamelCase = names.replace('"' , '' ).split(',' ) names.sort() __UpperCamelCase = 0 __UpperCamelCase = 0 for i, name in enumerate(_lowercase ): for letter in name: name_score += ord(_lowercase ) - 64 total_score += (i + 1) * name_score __UpperCamelCase = 0 return total_score if __name__ == "__main__": print(solution())
310
0
'''simple docstring''' from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 10**-10 ) -> float: snake_case__ : List[str] = a while True: snake_case__ : Union[str, Any] = Decimal(_lowercase ) - ( Decimal(eval(_lowercase ) ) / Decimal(eval(str(diff(_lowercase ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(_lowercase ) ) < precision: # noqa: S307 return float(_lowercase ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}") # Find root of polynomial print(F"The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}") # Find Square Root of 5 print(F"The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}") # Exponential Roots print(F"The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}")
35
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=True , _lowercase="pt" ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = {'add_prefix_space': True} if isinstance(_lowercase , _lowercase ) and not line.startswith(' ' ) else {} __UpperCamelCase = padding_side return tokenizer( [line] , max_length=_lowercase , padding='max_length' if pad_to_max_length else None , truncation=_lowercase , return_tensors=_lowercase , add_special_tokens=_lowercase , **_lowercase , ) def _A ( _lowercase , _lowercase , _lowercase=None , ) -> List[Any]: """simple docstring""" __UpperCamelCase = input_ids.ne(_lowercase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCamelCase (_a ): def __init__( self: List[str],A_: str,A_: List[str],A_: List[str],A_: List[str],A_: Tuple="train",A_: Any=None,A_: List[str]=None,A_: List[Any]=None,A_: int="",): '''simple docstring''' super().__init__() __UpperCamelCase = Path(A_ ).joinpath(type_path + '.source' ) __UpperCamelCase = Path(A_ ).joinpath(type_path + '.target' ) __UpperCamelCase = self.get_char_lens(self.src_file ) __UpperCamelCase = max_source_length __UpperCamelCase = max_target_length assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}''' __UpperCamelCase = tokenizer __UpperCamelCase = prefix if n_obs is not None: __UpperCamelCase = self.src_lens[:n_obs] __UpperCamelCase = src_lang __UpperCamelCase = tgt_lang def __len__( self: Optional[Any] ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self: int,A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = index + 1 # linecache starts at 1 __UpperCamelCase = self.prefix + linecache.getline(str(self.src_file ),A_ ).rstrip('\n' ) __UpperCamelCase = linecache.getline(str(self.tgt_file ),A_ ).rstrip('\n' ) assert source_line, F'''empty source line for index {index}''' assert tgt_line, F'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer,A_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __UpperCamelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer,A_ ) else self.tokenizer ) __UpperCamelCase = self.tokenizer.generator if isinstance(self.tokenizer,A_ ) else self.tokenizer __UpperCamelCase = encode_line(A_,A_,self.max_source_length,'right' ) __UpperCamelCase = encode_line(A_,A_,self.max_target_length,'right' ) __UpperCamelCase = source_inputs['input_ids'].squeeze() __UpperCamelCase = target_inputs['input_ids'].squeeze() __UpperCamelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def snake_case_ ( A_: List[Any] ): '''simple docstring''' return [len(A_ ) for x in Path(A_ ).open().readlines()] def snake_case_ ( self: Union[str, Any],A_: Any ): '''simple docstring''' __UpperCamelCase = torch.stack([x['input_ids'] for x in batch] ) __UpperCamelCase = torch.stack([x['attention_mask'] for x in batch] ) __UpperCamelCase = torch.stack([x['decoder_input_ids'] for x in batch] ) __UpperCamelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer,A_ ) else self.tokenizer.pad_token_id ) __UpperCamelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer,A_ ) else self.tokenizer.pad_token_id ) __UpperCamelCase = trim_batch(A_,A_ ) __UpperCamelCase, __UpperCamelCase = trim_batch(A_,A_,attention_mask=A_ ) __UpperCamelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch __snake_case = getLogger(__name__) def _A ( _lowercase ) -> Any: """simple docstring""" return list(itertools.chain.from_iterable(_lowercase ) ) def _A ( _lowercase ) -> None: """simple docstring""" __UpperCamelCase = get_git_info() save_json(_lowercase , os.path.join(_lowercase , 'git_log.json' ) ) def _A ( _lowercase , _lowercase , _lowercase=4 , **_lowercase ) -> List[Any]: """simple docstring""" with open(_lowercase , 'w' ) as f: json.dump(_lowercase , _lowercase , indent=_lowercase , **_lowercase ) def _A ( _lowercase ) -> Union[str, Any]: """simple docstring""" with open(_lowercase ) as f: return json.load(_lowercase ) def _A ( ) -> Dict: """simple docstring""" __UpperCamelCase = git.Repo(search_parent_directories=_lowercase ) __UpperCamelCase = { 'repo_id': str(_lowercase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def _A ( _lowercase , _lowercase ) -> List: """simple docstring""" return list(map(_lowercase , _lowercase ) ) def _A ( _lowercase , _lowercase ) -> Tuple: """simple docstring""" with open(_lowercase , 'wb' ) as f: return pickle.dump(_lowercase , _lowercase ) def _A ( _lowercase ) -> List[Any]: """simple docstring""" def remove_articles(_lowercase ): return re.sub(r'\b(a|an|the)\b' , ' ' , _lowercase ) def white_space_fix(_lowercase ): return " ".join(text.split() ) def remove_punc(_lowercase ): __UpperCamelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowercase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowercase ) ) ) ) def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" __UpperCamelCase = normalize_answer(_lowercase ).split() __UpperCamelCase = normalize_answer(_lowercase ).split() __UpperCamelCase = Counter(_lowercase ) & Counter(_lowercase ) __UpperCamelCase = sum(common.values() ) if num_same == 0: return 0 __UpperCamelCase = 1.0 * num_same / len(_lowercase ) __UpperCamelCase = 1.0 * num_same / len(_lowercase ) __UpperCamelCase = (2 * precision * recall) / (precision + recall) return fa def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" return normalize_answer(_lowercase ) == normalize_answer(_lowercase ) def _A ( _lowercase , _lowercase ) -> Dict: """simple docstring""" assert len(_lowercase ) == len(_lowercase ) __UpperCamelCase = 0 for hypo, pred in zip(_lowercase , _lowercase ): em += exact_match_score(_lowercase , _lowercase ) if len(_lowercase ) > 0: em /= len(_lowercase ) return {"em": em} def _A ( _lowercase ) -> Optional[Any]: """simple docstring""" return model_prefix.startswith('rag' ) def _A ( _lowercase , _lowercase , _lowercase ) -> Dict: """simple docstring""" __UpperCamelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __UpperCamelCase = 'dropout_rate' for p in extra_params: if getattr(_lowercase , _lowercase , _lowercase ): if not hasattr(_lowercase , _lowercase ) and not hasattr(_lowercase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_lowercase ) ) delattr(_lowercase , _lowercase ) continue __UpperCamelCase = p if hasattr(_lowercase , _lowercase ) else equivalent_param[p] setattr(_lowercase , _lowercase , getattr(_lowercase , _lowercase ) ) delattr(_lowercase , _lowercase ) return hparams, config
310
0
from math import sqrt def lowerCAmelCase_ ( __lowerCAmelCase )-> int: '''simple docstring''' UpperCAmelCase : Dict =0 for i in range(1 , int(sqrt(_lowercase ) + 1 ) ): if n % i == 0 and i != sqrt(_lowercase ): total += i + n // i elif i == sqrt(_lowercase ): total += i return total - n def lowerCAmelCase_ ( __lowerCAmelCase = 1_00_00 )-> int: '''simple docstring''' UpperCAmelCase : str =sum( i for i in range(1 , _lowercase ) if sum_of_divisors(sum_of_divisors(_lowercase ) ) == i and sum_of_divisors(_lowercase ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
348
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __snake_case = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
310
0
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa _A = logging.getLogger(__name__) class A ( _a ): __snake_case = 'summarization' __snake_case = ['loss'] __snake_case = ROUGE_KEYS __snake_case = 'rouge2' def __init__( self, UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" if hparams.sortish_sampler and hparams.gpus > 1: lowerCAmelCase_ = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('''Dynamic Batch size does not work for multi-gpu training''' ) if hparams.sortish_sampler: raise ValueError('''--sortish_sampler and --max_tokens_per_batch may not be used simultaneously''' ) super().__init__(A_, num_labels=A_, mode=self.mode, **A_ ) use_task_specific_params(self.model, '''summarization''' ) save_git_info(self.hparams.output_dir ) lowerCAmelCase_ = Path(self.output_dir ) / '''metrics.json''' lowerCAmelCase_ = Path(self.output_dir ) / '''hparams.pkl''' pickle_save(self.hparams, self.hparams_save_path ) lowerCAmelCase_ = 0 lowerCAmelCase_ = defaultdict(A_ ) lowerCAmelCase_ = self.config.model_type lowerCAmelCase_ = self.config.tgt_vocab_size if self.model_type == '''fsmt''' else self.config.vocab_size lowerCAmelCase_ = { '''data_dir''': self.hparams.data_dir, '''max_source_length''': self.hparams.max_source_length, '''prefix''': self.model.config.prefix or '''''', } lowerCAmelCase_ = { '''train''': self.hparams.n_train, '''val''': self.hparams.n_val, '''test''': self.hparams.n_test, } lowerCAmelCase_ = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} lowerCAmelCase_ = { '''train''': self.hparams.max_target_length, '''val''': self.hparams.val_max_target_length, '''test''': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], f"target_lens: {self.target_lens}" assert self.target_lens["train"] <= self.target_lens["test"], f"target_lens: {self.target_lens}" if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) lowerCAmelCase_ = get_git_info()['''repo_sha'''] lowerCAmelCase_ = hparams.num_workers lowerCAmelCase_ = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer, A_ ): lowerCAmelCase_ = self.tokenizer.lang_code_to_id[hparams.tgt_lang] lowerCAmelCase_ = self.decoder_start_token_id lowerCAmelCase_ = ( SeqaSeqDataset if hasattr(self.tokenizer, '''prepare_seq2seq_batch''' ) else LegacySeqaSeqDataset ) lowerCAmelCase_ = False lowerCAmelCase_ = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: lowerCAmelCase_ = self.hparams.eval_max_gen_length else: lowerCAmelCase_ = self.model.config.max_length lowerCAmelCase_ = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = { k: self.tokenizer.batch_decode(v.tolist() ) if '''mask''' not in k else v.shape for k, v in batch.items() } save_json(A_, Path(self.output_dir ) / '''text_batch.json''' ) save_json({k: v.tolist() for k, v in batch.items()}, Path(self.output_dir ) / '''tok_batch.json''' ) lowerCAmelCase_ = True return readable_batch def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" return self.model(A_, **A_ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = self.tokenizer.batch_decode( A_, skip_special_tokens=A_, clean_up_tokenization_spaces=A_ ) return lmap(str.strip, A_ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = self.tokenizer.pad_token_id lowerCAmelCase_ , lowerCAmelCase_ = batch['''input_ids'''], batch['''attention_mask'''] lowerCAmelCase_ = batch['''labels'''] if isinstance(self.model, A_ ): lowerCAmelCase_ = self.model._shift_right(A_ ) else: lowerCAmelCase_ = shift_tokens_right(A_, A_ ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero lowerCAmelCase_ = decoder_input_ids self.save_readable_batch(A_ ) lowerCAmelCase_ = self(A_, attention_mask=A_, decoder_input_ids=A_, use_cache=A_ ) lowerCAmelCase_ = outputs['''logits'''] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id lowerCAmelCase_ = nn.CrossEntropyLoss(ignore_index=A_ ) assert lm_logits.shape[-1] == self.vocab_size lowerCAmelCase_ = ce_loss_fct(lm_logits.view(-1, lm_logits.shape[-1] ), tgt_ids.view(-1 ) ) else: lowerCAmelCase_ = nn.functional.log_softmax(A_, dim=-1 ) lowerCAmelCase_ , lowerCAmelCase_ = label_smoothed_nll_loss( A_, A_, self.hparams.label_smoothing, ignore_index=A_ ) return (loss,) @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return self.tokenizer.pad_token_id def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = self._step(A_ ) lowerCAmelCase_ = dict(zip(self.loss_names, A_ ) ) # tokens per batch lowerCAmelCase_ = batch['''input_ids'''].ne(self.pad ).sum() + batch['''labels'''].ne(self.pad ).sum() lowerCAmelCase_ = batch['''input_ids'''].shape[0] lowerCAmelCase_ = batch['''input_ids'''].eq(self.pad ).sum() lowerCAmelCase_ = batch['''input_ids'''].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" return self._generative_step(A_ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__="val" ): """simple docstring""" self.step_count += 1 lowerCAmelCase_ = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} lowerCAmelCase_ = losses['''loss'''] lowerCAmelCase_ = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['''gen_time''', '''gen_len'''] } lowerCAmelCase_ = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) lowerCAmelCase_ = torch.tensor(A_ ).type_as(A_ ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(A_ ) lowerCAmelCase_ = {f"{prefix}_avg_{k}": x for k, x in losses.items()} lowerCAmelCase_ = self.step_count self.metrics[prefix].append(A_ ) # callback writes this to self.metrics_save_path lowerCAmelCase_ = flatten_list([x['''preds'''] for x in outputs] ) return { "log": all_metrics, "preds": preds, f"{prefix}_loss": loss, f"{prefix}_{self.val_metric}": metric_tensor, } def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" return calculate_rouge(A_, A_ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') lowerCAmelCase_ = self.model.generate( batch['''input_ids'''], attention_mask=batch['''attention_mask'''], use_cache=A_, decoder_start_token_id=self.decoder_start_token_id, num_beams=self.eval_beams, max_length=self.eval_max_length, ) lowerCAmelCase_ = (time.time() - ta) / batch['''input_ids'''].shape[0] lowerCAmelCase_ = self.ids_to_clean_text(A_ ) lowerCAmelCase_ = self.ids_to_clean_text(batch['''labels'''] ) lowerCAmelCase_ = self._step(A_ ) lowerCAmelCase_ = dict(zip(self.loss_names, A_ ) ) lowerCAmelCase_ = self.calc_generative_metrics(A_, A_ ) lowerCAmelCase_ = np.mean(lmap(A_, A_ ) ) base_metrics.update(gen_time=A_, gen_len=A_, preds=A_, target=A_, **A_ ) return base_metrics def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" return self._generative_step(A_ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" return self.validation_epoch_end(A_, prefix='''test''' ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = self.n_obs[type_path] lowerCAmelCase_ = self.target_lens[type_path] lowerCAmelCase_ = self.dataset_class( self.tokenizer, type_path=A_, n_obs=A_, max_target_length=A_, **self.dataset_kwargs, ) return dataset def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ = False ): """simple docstring""" lowerCAmelCase_ = self.get_dataset(A_ ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": lowerCAmelCase_ = dataset.make_sortish_sampler(A_, distributed=self.hparams.gpus > 1 ) return DataLoader( A_, batch_size=A_, collate_fn=dataset.collate_fn, shuffle=A_, num_workers=self.num_workers, sampler=A_, ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": lowerCAmelCase_ = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch, distributed=self.hparams.gpus > 1 ) return DataLoader( A_, batch_sampler=A_, collate_fn=dataset.collate_fn, num_workers=self.num_workers, ) else: return DataLoader( A_, batch_size=A_, collate_fn=dataset.collate_fn, shuffle=A_, num_workers=self.num_workers, sampler=A_, ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_dataloader('''train''', batch_size=self.hparams.train_batch_size, shuffle=A_ ) return dataloader def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return self.get_dataloader('''val''', batch_size=self.hparams.eval_batch_size ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return self.get_dataloader('''test''', batch_size=self.hparams.eval_batch_size ) @staticmethod def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" BaseTransformer.add_model_specific_args(A_, A_ ) add_generic_args(A_, A_ ) parser.add_argument( '''--max_source_length''', default=1024, type=A_, help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ), ) parser.add_argument( '''--max_target_length''', default=56, type=A_, help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ), ) parser.add_argument( '''--val_max_target_length''', default=142, type=A_, help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ), ) parser.add_argument( '''--test_max_target_length''', default=142, type=A_, help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ), ) parser.add_argument('''--freeze_encoder''', action='''store_true''' ) parser.add_argument('''--freeze_embeds''', action='''store_true''' ) parser.add_argument('''--sortish_sampler''', action='''store_true''', default=A_ ) parser.add_argument('''--overwrite_output_dir''', action='''store_true''', default=A_ ) parser.add_argument('''--max_tokens_per_batch''', type=A_, default=A_ ) parser.add_argument('''--logger_name''', type=A_, choices=['''default''', '''wandb''', '''wandb_shared'''], default='''default''' ) parser.add_argument('''--n_train''', type=A_, default=-1, required=A_, help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_val''', type=A_, default=500, required=A_, help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_test''', type=A_, default=-1, required=A_, help='''# examples. -1 means use all.''' ) parser.add_argument( '''--task''', type=A_, default='''summarization''', required=A_, help='''# examples. -1 means use all.''' ) parser.add_argument('''--label_smoothing''', type=A_, default=0.0, required=A_ ) parser.add_argument('''--src_lang''', type=A_, default='''''', required=A_ ) parser.add_argument('''--tgt_lang''', type=A_, default='''''', required=A_ ) parser.add_argument('''--eval_beams''', type=A_, default=A_, required=A_ ) parser.add_argument( '''--val_metric''', type=A_, default=A_, required=A_, choices=['''bleu''', '''rouge2''', '''loss''', None] ) parser.add_argument('''--eval_max_gen_length''', type=A_, default=A_, help='''never generate more than n tokens''' ) parser.add_argument('''--save_top_k''', type=A_, default=1, required=A_, help='''How many checkpoints to save''' ) parser.add_argument( '''--early_stopping_patience''', type=A_, default=-1, required=A_, help=( '''-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So''' ''' val_check_interval will effect it.''' ), ) return parser class A ( _a ): __snake_case = 'translation' __snake_case = ['loss'] __snake_case = ['bleu'] __snake_case = 'bleu' def __init__( self, UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" super().__init__(A_, **A_ ) lowerCAmelCase_ = hparams.src_lang lowerCAmelCase_ = hparams.tgt_lang def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" return calculate_bleu(A_, A_ ) def __UpperCamelCase ( _A , _A=None ): Path(args.output_dir ).mkdir(exist_ok=_lowercase ) check_output_dir(_lowercase , expected_items=3 ) if model is None: if "summarization" in args.task: lowerCAmelCase_ = SummarizationModule(_lowercase ) else: lowerCAmelCase_ = TranslationModule(_lowercase ) lowerCAmelCase_ = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('''/tmp''' ) or str(args.output_dir ).startswith('''/var''' ) ): lowerCAmelCase_ = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger lowerCAmelCase_ = os.environ.get('''WANDB_PROJECT''' , _lowercase ) lowerCAmelCase_ = WandbLogger(name=model.output_dir.name , project=_lowercase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger lowerCAmelCase_ = WandbLogger(name=model.output_dir.name , project=f"hf_{dataset}" ) if args.early_stopping_patience >= 0: lowerCAmelCase_ = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: lowerCAmelCase_ = False lowerCAmelCase_ = args.val_metric == '''loss''' lowerCAmelCase_ = generic_train( _lowercase , _lowercase , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , _lowercase ) , early_stopping_callback=_lowercase , logger=_lowercase , ) pickle_save(model.hparams , model.output_dir / '''hparams.pkl''' ) if not args.do_predict: return model lowerCAmelCase_ = '''''' lowerCAmelCase_ = sorted(glob.glob(os.path.join(args.output_dir , '''*.ckpt''' ) , recursive=_lowercase ) ) if checkpoints: lowerCAmelCase_ = checkpoints[-1] lowerCAmelCase_ = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": _A = argparse.ArgumentParser() _A = pl.Trainer.add_argparse_args(parser) _A = SummarizationModule.add_model_specific_args(parser, os.getcwd()) _A = parser.parse_args() main(args)
278
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup __snake_case = '''https://www.indeed.co.in/jobs?q=mobile+app+development&l=''' def _A ( _lowercase = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" __UpperCamelCase = BeautifulSoup(requests.get(url + location ).content , 'html.parser' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('div' , attrs={'data-tn-component': 'organicJob'} ): __UpperCamelCase = job.find('a' , attrs={'data-tn-element': 'jobTitle'} ).text.strip() __UpperCamelCase = job.find('span' , {'class': 'company'} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('''Bangalore'''), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
310
0
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __lowerCamelCase ( __a :Union[str, Any] ) -> bool: """simple docstring""" A__ = int(number**0.5 ) return number == sq * sq def __lowerCamelCase ( __a :Tuple , __a :Optional[Any] , __a :Tuple , __a :Optional[Any] , __a :int , __a :Optional[int] ) -> tuple[int, int]: """simple docstring""" A__ = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den A__ = x_den * y_den * z_den A__ = gcd(_lowercase , _lowercase ) top //= hcf bottom //= hcf return top, bottom def __lowerCamelCase ( __a :List[Any] = 3_5 ) -> int: """simple docstring""" A__ = set() A__ = 4_2 A__ = Fraction(0 ) A__ = 4_2 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 A__ = x_num * y_den + x_den * y_num A__ = x_den * y_den A__ = gcd(_lowercase , _lowercase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: A__ = add_three( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) unique_s.add(_lowercase ) # n=2 A__ = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) A__ = x_den * x_den * y_den * y_den if is_sq(_lowercase ) and is_sq(_lowercase ): A__ = int(sqrt(_lowercase ) ) A__ = int(sqrt(_lowercase ) ) A__ = gcd(_lowercase , _lowercase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: A__ = add_three( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) unique_s.add(_lowercase ) # n=-1 A__ = x_num * y_num A__ = x_den * y_num + x_num * y_den A__ = gcd(_lowercase , _lowercase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: A__ = add_three( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) unique_s.add(_lowercase ) # n=2 A__ = x_num * x_num * y_num * y_num A__ = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_lowercase ) and is_sq(_lowercase ): A__ = int(sqrt(_lowercase ) ) A__ = int(sqrt(_lowercase ) ) A__ = gcd(_lowercase , _lowercase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: A__ = add_three( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) unique_s.add(_lowercase ) for num, den in unique_s: total += Fraction(_lowercase , _lowercase ) return total.denominator + total.numerator if __name__ == "__main__": print(F'''{solution() = }''')
274
def _A ( _lowercase ) -> list: """simple docstring""" def merge(_lowercase , _lowercase ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(_lowercase ) <= 1: return collection __UpperCamelCase = len(_lowercase ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() __snake_case = input('''Enter numbers separated by a comma:\n''').strip() __snake_case = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
310
0
'''simple docstring''' import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def _A () -> int: '''simple docstring''' _a = torch.nn.Linear(2 , 4 ) _a = torch.optim.AdamW(model.parameters() , lr=1.0 ) _a = torch.optim.lr_scheduler.OneCycleLR(_lowercase , max_lr=0.0_1 , steps_per_epoch=2 , epochs=1 ) _a = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) _a = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def _A (lowerCAmelCase__ :Dict ) -> Optional[Any]: '''simple docstring''' return (model.weight.abs().sum() + model.bias.abs().sum()).item() def _A (lowerCAmelCase__ :Optional[int] ) -> Union[str, Any]: '''simple docstring''' _a = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(_lowercase ) class a ( _a ): @require_cuda def __UpperCAmelCase ( self ) -> Optional[int]: _a = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(A_ ): _a = Accelerator(cpu=A_ ) def __UpperCAmelCase ( self ) -> Optional[Any]: _a = Accelerator() _a = GradientState() assert state.num_steps == 1 _a = 4 assert state.num_steps == 4 assert state.sync_gradients is True _a = False assert state.sync_gradients is False GradientState._reset_state() def __UpperCAmelCase ( self ) -> Optional[int]: _a = Accelerator() _a , _a , _a , _a , _a = create_components() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = accelerator.prepare(A_ , A_ , A_ , A_ , A_ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def __UpperCAmelCase ( self ) -> Tuple: _a = Accelerator() _a , _a , _a , _a , _a = create_components() accelerator.prepare(A_ , A_ , A_ , A_ , A_ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def __UpperCAmelCase ( self ) -> int: PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*__magic_name__ , **__magic_name__ ): pass with patch('torch.cuda.set_device' , A_ ), patch_environment(ACCELERATE_TORCH_DEVICE='cuda:64' ): _a = Accelerator() self.assertEqual(str(accelerator.state.device ) , 'cuda:64' ) def __UpperCAmelCase ( self ) -> List[Any]: _a = Accelerator() _a , _a , _a , _a , _a = create_components() accelerator.prepare(A_ , A_ , A_ , A_ , A_ ) _a = get_signature(A_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(A_ ) # make sure random weights don't match load_random_weights(A_ ) self.assertTrue(abs(model_signature - get_signature(A_ ) ) > 1e-3 ) # make sure loaded weights match accelerator.load_state(A_ ) self.assertTrue(abs(model_signature - get_signature(A_ ) ) < 1e-3 ) def __UpperCAmelCase ( self ) -> Tuple: _a = Accelerator() _a , _a , _a , _a , _a = create_components() accelerator.prepare(A_ , A_ , A_ , A_ , A_ ) _a = get_signature(A_ ) # saving hook def save_config(__magic_name__ , __magic_name__ , __magic_name__ ): _a = {'class_name': models[0].__class__.__name__} with open(os.path.join(A_ , 'data.json' ) , 'w' ) as f: json.dump(A_ , A_ ) # loading hook def load_config(__magic_name__ , __magic_name__ ): with open(os.path.join(A_ , 'data.json' ) , 'r' ) as f: _a = json.load(A_ ) _a = config['class_name'] _a = accelerator.register_save_state_pre_hook(A_ ) _a = accelerator.register_load_state_pre_hook(A_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(A_ ) # make sure random weights don't match with hooks load_random_weights(A_ ) self.assertTrue(abs(model_signature - get_signature(A_ ) ) > 1e-3 ) # random class name to verify correct one is loaded _a = 'random' # make sure loaded weights match with hooks accelerator.load_state(A_ ) self.assertTrue(abs(model_signature - get_signature(A_ ) ) < 1e-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(A_ ) # make sure random weights don't match with hooks removed load_random_weights(A_ ) self.assertTrue(abs(model_signature - get_signature(A_ ) ) > 1e-3 ) # random class name to verify correct one is loaded _a = 'random' # make sure loaded weights match with hooks removed accelerator.load_state(A_ ) self.assertTrue(abs(model_signature - get_signature(A_ ) ) < 1e-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def __UpperCAmelCase ( self ) -> Optional[int]: _a = Accelerator() _a , _a , _a , _a , _a = create_components() _a = None # This should work _a , _a , _a , _a , _a , _a = accelerator.prepare( A_ , A_ , A_ , A_ , A_ , A_ ) self.assertTrue(dummy_obj is None ) def __UpperCAmelCase ( self ) -> Union[str, Any]: _a = Accelerator() _a , _a , _a , _a , _a = create_components() _a = [1, 2, 3] # This should work _a , _a , _a , _a , _a , _a = accelerator.prepare( A_ , A_ , A_ , A_ , A_ , A_ ) self.assertEqual( getattr(A_ , '_is_accelerate_prepared' , A_ ) , A_ , 'Dummy object should have `_is_accelerate_prepared` set to `True`' , ) self.assertEqual( getattr(A_ , '_is_accelerate_prepared' , A_ ) , A_ , 'Model is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(A_ , '_is_accelerate_prepared' , A_ ) , A_ , 'Optimizer is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(A_ , '_is_accelerate_prepared' , A_ ) , A_ , 'Scheduler is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(A_ , '_is_accelerate_prepared' , A_ ) , A_ , 'Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(A_ , '_is_accelerate_prepared' , A_ ) , A_ , 'Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`' , ) @slow @require_bnb def __UpperCAmelCase ( self ) -> Optional[int]: from transformers import AutoModelForCausalLM _a = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , load_in_abit=A_ , device_map={'': 0} , ) _a = Accelerator() # This should work _a = accelerator.prepare(A_ ) @slow @require_bnb def __UpperCAmelCase ( self ) -> Dict: from transformers import AutoModelForCausalLM _a = Accelerator() with init_empty_weights(): _a = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , ) model.tie_weights() _a = infer_auto_device_map(A_ ) _a = 'cpu' _a = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , device_map=A_ , load_in_abit=A_ , llm_inta_enable_fpaa_cpu_offload=A_ ) # This should not work and get value error with self.assertRaises(A_ ): _a = accelerator.prepare(A_ ) @slow @require_bnb @require_multi_gpu def __UpperCAmelCase ( self ) -> Dict: from transformers import AutoModelForCausalLM _a = {'distributed_type': DistributedType.MULTI_GPU} with init_empty_weights(): _a = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , ) model.tie_weights() _a = infer_auto_device_map(A_ ) _a = 1 _a = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , load_in_abit=A_ , device_map=A_ , ) _a = Accelerator() # This should not work and get value error with self.assertRaises(A_ ): _a = accelerator.prepare(A_ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def __UpperCAmelCase ( self ) -> Tuple: from transformers import AutoModelForCausalLM with init_empty_weights(): _a = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , ) _a = infer_auto_device_map(A_ ) _a = 1 _a = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , load_in_abit=A_ , device_map=A_ , ) _a = Accelerator() # This should work _a = accelerator.prepare(A_ ) @require_cuda def __UpperCAmelCase ( self ) -> Optional[Any]: _a = torch.nn.Linear(10 , 10 ) _a = torch.optim.SGD(model.parameters() , lr=0.0_1 ) _a = Accelerator(cpu=A_ ) _a = accelerator.prepare(A_ )
168
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowerCamelCase (_a ): _lowercase = 0 _lowercase = False _lowercase = 3.0 class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: Any ): '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs(),{} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs(),{'a': 2} ) self.assertDictEqual(MockClass(a=2,b=A_ ).to_kwargs(),{'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2,c=2.2_5 ).to_kwargs(),{'a': 2, 'c': 2.2_5} ) @require_cuda def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = GradScalerKwargs(init_scale=1024,growth_factor=2 ) AcceleratorState._reset_state() __UpperCamelCase = Accelerator(mixed_precision='fp16',kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __UpperCamelCase = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale,1_0_2_4.0 ) self.assertEqual(scaler._growth_factor,2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor,0.5 ) self.assertEqual(scaler._growth_interval,2000 ) self.assertEqual(scaler._enabled,A_ ) @require_multi_gpu def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(A_,env=os.environ.copy() ) if __name__ == "__main__": __snake_case = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) __snake_case = Accelerator(kwargs_handlers=[ddp_scaler]) __snake_case = torch.nn.Linear(1_0_0, 2_0_0) __snake_case = accelerator.prepare(model) # Check the values changed in kwargs __snake_case = '''''' __snake_case = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
310
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) def a ( __a ) -> Any: '''simple docstring''' UpperCamelCase__ :Optional[Any] = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['''stage2''', '''stage3''', '''stage4'''] , ) UpperCamelCase__ :Any = DetaConfig( backbone_config=_lowercase , num_queries=900 , encoder_ffn_dim=2048 , decoder_ffn_dim=2048 , num_feature_levels=5 , assign_first_stage=_lowercase , with_box_refine=_lowercase , two_stage=_lowercase , ) # set labels UpperCamelCase__ :List[Any] = '''huggingface/label-files''' if "o365" in model_name: UpperCamelCase__ :List[Any] = 366 UpperCamelCase__ :Tuple = '''object365-id2label.json''' else: UpperCamelCase__ :Tuple = 91 UpperCamelCase__ :Optional[int] = '''coco-detection-id2label.json''' UpperCamelCase__ :Optional[Any] = num_labels UpperCamelCase__ :int = json.load(open(cached_download(hf_hub_url(_lowercase , _lowercase , repo_type='''dataset''' ) ) , '''r''' ) ) UpperCamelCase__ :int = {int(_lowercase ): v for k, v in idalabel.items()} UpperCamelCase__ :str = idalabel UpperCamelCase__ :Optional[Any] = {v: k for k, v in idalabel.items()} return config def a ( __a ) -> Any: '''simple docstring''' UpperCamelCase__ :Tuple = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.patch_embed.proj.weight''', '''model.backbone.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.proj.bias''', '''model.backbone.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.weight''', '''model.backbone.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.bias''', '''model.backbone.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.reduction.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.bias''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(('''backbone.0.body.norm1.weight''', '''model.backbone.model.hidden_states_norms.stage2.weight''') ) rename_keys.append(('''backbone.0.body.norm1.bias''', '''model.backbone.model.hidden_states_norms.stage2.bias''') ) rename_keys.append(('''backbone.0.body.norm2.weight''', '''model.backbone.model.hidden_states_norms.stage3.weight''') ) rename_keys.append(('''backbone.0.body.norm2.bias''', '''model.backbone.model.hidden_states_norms.stage3.bias''') ) rename_keys.append(('''backbone.0.body.norm3.weight''', '''model.backbone.model.hidden_states_norms.stage4.weight''') ) rename_keys.append(('''backbone.0.body.norm3.bias''', '''model.backbone.model.hidden_states_norms.stage4.bias''') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', f'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', f'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', f'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', f'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', f'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', f'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.weight''', f'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.weight''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.weight''', f'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.bias''', f'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def a ( __a , __a , __a ) -> Any: '''simple docstring''' UpperCamelCase__ :int = dct.pop(_lowercase ) UpperCamelCase__ :str = val def a ( __a , __a ) -> str: '''simple docstring''' UpperCamelCase__ :Tuple = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCamelCase__ :Any = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCamelCase__ :Any = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) UpperCamelCase__ :Any = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ :Any = in_proj_weight[:dim, :] UpperCamelCase__ :Any = in_proj_bias[: dim] UpperCamelCase__ :List[str] = in_proj_weight[ dim : dim * 2, : ] UpperCamelCase__ :str = in_proj_bias[ dim : dim * 2 ] UpperCamelCase__ :List[str] = in_proj_weight[ -dim :, : ] UpperCamelCase__ :str = in_proj_bias[-dim :] # fmt: on def a ( __a , __a ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ :Tuple = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention UpperCamelCase__ :int = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCamelCase__ :Optional[int] = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ :str = in_proj_weight[:hidden_size, :] UpperCamelCase__ :Dict = in_proj_bias[:hidden_size] UpperCamelCase__ :str = in_proj_weight[ hidden_size : hidden_size * 2, : ] UpperCamelCase__ :List[Any] = in_proj_bias[hidden_size : hidden_size * 2] UpperCamelCase__ :Union[str, Any] = in_proj_weight[-hidden_size:, :] UpperCamelCase__ :Union[str, Any] = in_proj_bias[-hidden_size:] def a ( ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ :int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCamelCase__ :Optional[int] = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def a ( __a , __a , __a ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ :List[str] = get_deta_config(_lowercase ) # load original state dict if model_name == "deta-swin-large": UpperCamelCase__ :str = hf_hub_download(repo_id='''nielsr/deta-checkpoints''' , filename='''adet_swin_ft.pth''' ) elif model_name == "deta-swin-large-o365": UpperCamelCase__ :List[str] = hf_hub_download(repo_id='''jozhang97/deta-swin-l-o365''' , filename='''deta_swin_pt_o365.pth''' ) else: raise ValueError(f'''Model name {model_name} not supported''' ) UpperCamelCase__ :Union[str, Any] = torch.load(_lowercase , map_location='''cpu''' )['''model'''] # original state dict for name, param in state_dict.items(): print(_lowercase , param.shape ) # rename keys UpperCamelCase__ :str = create_rename_keys(_lowercase ) for src, dest in rename_keys: rename_key(_lowercase , _lowercase , _lowercase ) read_in_swin_q_k_v(_lowercase , config.backbone_config ) read_in_decoder_q_k_v(_lowercase , _lowercase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: UpperCamelCase__ :Dict = state_dict.pop(_lowercase ) UpperCamelCase__ :Union[str, Any] = val if "input_proj" in key: UpperCamelCase__ :Any = state_dict.pop(_lowercase ) UpperCamelCase__ :Any = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: UpperCamelCase__ :Optional[Any] = state_dict.pop(_lowercase ) UpperCamelCase__ :List[str] = val # finally, create HuggingFace model and load state dict UpperCamelCase__ :List[str] = DetaForObjectDetection(_lowercase ) model.load_state_dict(_lowercase ) model.eval() UpperCamelCase__ :Optional[Any] = '''cuda''' if torch.cuda.is_available() else '''cpu''' model.to(_lowercase ) # load image processor UpperCamelCase__ :Union[str, Any] = DetaImageProcessor(format='''coco_detection''' ) # verify our conversion on image UpperCamelCase__ :List[str] = prepare_img() UpperCamelCase__ :Optional[Any] = processor(images=_lowercase , return_tensors='''pt''' ) UpperCamelCase__ :List[Any] = encoding['''pixel_values'''] UpperCamelCase__ :int = model(pixel_values.to(_lowercase ) ) # verify logits print('''Logits:''' , outputs.logits[0, :3, :3] ) print('''Boxes:''' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": UpperCamelCase__ :List[str] = torch.tensor( [[-7.6_3_0_8, -2.8_4_8_5, -5.3_7_3_7], [-7.2_0_3_7, -4.5_5_0_5, -4.8_0_2_7], [-7.2_9_4_3, -4.2_6_1_1, -4.6_6_1_7]] ) UpperCamelCase__ :Tuple = torch.tensor([[0.4_9_8_7, 0.4_9_6_9, 0.9_9_9_9], [0.2_5_4_9, 0.5_4_9_8, 0.4_8_0_5], [0.5_4_9_8, 0.2_7_5_7, 0.0_5_6_9]] ) elif model_name == "deta-swin-large-o365": UpperCamelCase__ :Any = torch.tensor( [[-8.0_1_2_2, -3.5_7_2_0, -4.9_7_1_7], [-8.1_5_4_7, -3.6_8_8_6, -4.6_3_8_9], [-7.6_6_1_0, -3.6_1_9_4, -5.0_1_3_4]] ) UpperCamelCase__ :Any = torch.tensor([[0.2_5_2_3, 0.5_5_4_9, 0.4_8_8_1], [0.7_7_1_5, 0.4_1_4_9, 0.4_6_0_1], [0.5_5_0_3, 0.2_7_5_3, 0.0_5_7_5]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(_lowercase ) , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(_lowercase ) , atol=1e-4 ) print('''Everything ok!''' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) processor.save_pretrained(_lowercase ) # Push to hub if push_to_hub: print('''Pushing model and processor to hub...''' ) model.push_to_hub(f'''jozhang97/{model_name}''' ) processor.push_to_hub(f'''jozhang97/{model_name}''' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument( '''--model_name''', type=str, default='''deta-swin-large''', choices=['''deta-swin-large''', '''deta-swin-large-o365'''], help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __snake_case = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
97
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class __lowerCamelCase (_a ): _lowercase = ["""image_processor""", """tokenizer"""] _lowercase = """OwlViTImageProcessor""" _lowercase = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self: int,A_: Tuple=None,A_: int=None,**A_: int ): '''simple docstring''' __UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.',A_,) __UpperCamelCase = kwargs.pop('feature_extractor' ) __UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(A_,A_ ) def __call__( self: str,A_: Dict=None,A_: Optional[int]=None,A_: Any=None,A_: Tuple="max_length",A_: int="np",**A_: Optional[Any] ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(A_,A_ ) or (isinstance(A_,A_ ) and not isinstance(text[0],A_ )): __UpperCamelCase = [self.tokenizer(A_,padding=A_,return_tensors=A_,**A_ )] elif isinstance(A_,A_ ) and isinstance(text[0],A_ ): __UpperCamelCase = [] # Maximum number of queries across batch __UpperCamelCase = max([len(A_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(A_ ) != max_num_queries: __UpperCamelCase = t + [' '] * (max_num_queries - len(A_ )) __UpperCamelCase = self.tokenizer(A_,padding=A_,return_tensors=A_,**A_ ) encodings.append(A_ ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": __UpperCamelCase = np.concatenate([encoding['input_ids'] for encoding in encodings],axis=0 ) __UpperCamelCase = np.concatenate([encoding['attention_mask'] for encoding in encodings],axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __UpperCamelCase = jnp.concatenate([encoding['input_ids'] for encoding in encodings],axis=0 ) __UpperCamelCase = jnp.concatenate([encoding['attention_mask'] for encoding in encodings],axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __UpperCamelCase = torch.cat([encoding['input_ids'] for encoding in encodings],dim=0 ) __UpperCamelCase = torch.cat([encoding['attention_mask'] for encoding in encodings],dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __UpperCamelCase = tf.stack([encoding['input_ids'] for encoding in encodings],axis=0 ) __UpperCamelCase = tf.stack([encoding['attention_mask'] for encoding in encodings],axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) __UpperCamelCase = BatchEncoding() __UpperCamelCase = input_ids __UpperCamelCase = attention_mask if query_images is not None: __UpperCamelCase = BatchEncoding() __UpperCamelCase = self.image_processor( A_,return_tensors=A_,**A_ ).pixel_values __UpperCamelCase = query_pixel_values if images is not None: __UpperCamelCase = self.image_processor(A_,return_tensors=A_,**A_ ) if text is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**A_ ),tensor_type=A_ ) def snake_case_ ( self: Optional[int],*A_: int,**A_: List[Any] ): '''simple docstring''' return self.image_processor.post_process(*A_,**A_ ) def snake_case_ ( self: str,*A_: Optional[int],**A_: List[Any] ): '''simple docstring''' return self.image_processor.post_process_object_detection(*A_,**A_ ) def snake_case_ ( self: str,*A_: Tuple,**A_: int ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*A_,**A_ ) def snake_case_ ( self: List[str],*A_: str,**A_: List[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*A_,**A_ ) def snake_case_ ( self: int,*A_: Any,**A_: Tuple ): '''simple docstring''' return self.tokenizer.decode(*A_,**A_ ) @property def snake_case_ ( self: Optional[Any] ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.',A_,) return self.image_processor_class @property def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.',A_,) return self.image_processor
310
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE :Optional[Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE :Optional[int] = { '''microsoft/swinv2-tiny-patch4-window8-256''': ( '''https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json''' ), } class A_ ( _a ): _lowerCamelCase : List[str] = """swinv2""" _lowerCamelCase : List[str] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : Optional[Any] , snake_case_ : Tuple=2_2_4 , snake_case_ : Tuple=4 , snake_case_ : Dict=3 , snake_case_ : Tuple=9_6 , snake_case_ : int=[2, 2, 6, 2] , snake_case_ : Optional[int]=[3, 6, 1_2, 2_4] , snake_case_ : Any=7 , snake_case_ : Union[str, Any]=4.0 , snake_case_ : Dict=True , snake_case_ : Tuple=0.0 , snake_case_ : List[Any]=0.0 , snake_case_ : List[str]=0.1 , snake_case_ : Dict="gelu" , snake_case_ : str=False , snake_case_ : Optional[int]=0.0_2 , snake_case_ : Any=1e-5 , snake_case_ : Dict=3_2 , **snake_case_ : List[Any] , ): super().__init__(**A_ ) _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = len(A_ ) _UpperCAmelCase = num_heads _UpperCAmelCase = window_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = use_absolute_embeddings _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _UpperCAmelCase = int(embed_dim * 2 ** (len(A_ ) - 1) ) _UpperCAmelCase = (0, 0, 0, 0)
22
import math def _A ( _lowercase ) -> int: """simple docstring""" if not isinstance(_lowercase , _lowercase ): __UpperCamelCase = f'''Input value of [number={number}] must be an integer''' raise TypeError(_lowercase ) if number < 1: __UpperCamelCase = f'''Input value of [number={number}] must be > 0''' raise ValueError(_lowercase ) elif number == 1: return 3 elif number == 2: return 5 else: __UpperCamelCase = int(math.log(number // 3 , 2 ) ) + 2 __UpperCamelCase = [3, 5] __UpperCamelCase = 2 __UpperCamelCase = 3 for block in range(1 , _lowercase ): for _ in range(_lowercase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(1_1): __snake_case = 0 try: __snake_case = proth(number) except ValueError: print(f"""ValueError: there is no {number}th Proth number""") continue print(f"""The {number}th Proth number: {value}""")
310
0
import random class _SCREAMING_SNAKE_CASE : '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE_ (UpperCAmelCase_ : str) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[Any] =[ord(A_) for i in text] lowerCamelCase__: List[str] =[] lowerCamelCase__: Union[str, Any] =[] for i in plain: lowerCamelCase__: List[str] =random.randint(1 , 300) lowerCamelCase__: Tuple =(i + k) * k cipher.append(A_) key.append(A_) return cipher, key @staticmethod def SCREAMING_SNAKE_CASE_ (UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int]) ->Dict: '''simple docstring''' lowerCamelCase__: Any =[] for i in range(len(A_)): lowerCamelCase__: List[str] =int((cipher[i] - (key[i]) ** 2) / key[i]) plain.append(chr(A_)) return "".join(A_) if __name__ == "__main__": __A , __A = Onepad().encrypt("Hello") print(c, k) print(Onepad().decrypt(c, k))
10
import torch from transformers import AutoModel class __lowerCamelCase (torch.nn.Module ): def __init__( self: Union[str, Any],A_: Tuple="sayef/fsner-bert-base-uncased" ): '''simple docstring''' super(A_,self ).__init__() __UpperCamelCase = AutoModel.from_pretrained(A_,return_dict=A_ ) __UpperCamelCase = torch.nn.CosineSimilarity(3,1E-08 ) __UpperCamelCase = torch.nn.Softmax(dim=1 ) def snake_case_ ( self: Tuple,**A_: Union[str, Any] ): '''simple docstring''' return self.bert(**A_ ).last_hidden_state def snake_case_ ( self: Union[str, Any],A_: Union[str, Any] ): '''simple docstring''' return token_embeddings.sum(2,keepdim=A_ ) def snake_case_ ( self: List[str],A_: Dict,A_: Union[str, Any],A_: Union[str, Any]=1 ): '''simple docstring''' return self.softmax(T * self.cos(A_,A_ ) ) def snake_case_ ( self: Optional[int],A_: Union[str, Any],A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = W_supports['sizes'].tolist() __UpperCamelCase = W_supports['start_token_id'].item() __UpperCamelCase = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] __UpperCamelCase = self.BERT(**A_ ) __UpperCamelCase = self.BERT(**A_ ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = W_supports['input_ids'] == start_token_id __UpperCamelCase = W_supports['input_ids'] == end_token_id for i, size in enumerate(A_ ): if i == 0: __UpperCamelCase = 0 else: __UpperCamelCase = support_sizes[i - 1] __UpperCamelCase = S[s : s + size][start_token_masks[s : s + size]] __UpperCamelCase = S[s : s + size][end_token_masks[s : s + size]] __UpperCamelCase = torch.matmul(q[i],s_start.T ).sum(1 ).softmax(0 ) __UpperCamelCase = torch.matmul(q[i],s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: __UpperCamelCase = torch.vstack((p_starts, p_start) ) __UpperCamelCase = torch.vstack((p_ends, p_end) ) else: __UpperCamelCase = p_start __UpperCamelCase = p_end return p_starts, p_ends
310
0
def lowerCamelCase__ ( _A = 4000000 ): '''simple docstring''' snake_case_ = [] snake_case_ , snake_case_ = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(_lowercase ) snake_case_ , snake_case_ = b, a + b return sum(_lowercase ) if __name__ == "__main__": print(f'''{solution() = }''')
187
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = BioGptTokenizer _lowercase = False def snake_case_ ( self: Any ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCamelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] __UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) ) __UpperCamelCase = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file,'w' ) as fp: fp.write(json.dumps(A_ ) ) with open(self.merges_file,'w' ) as fp: fp.write('\n'.join(A_ ) ) def snake_case_ ( self: Optional[int],A_: List[Any] ): '''simple docstring''' __UpperCamelCase = 'lower newer' __UpperCamelCase = 'lower newer' return input_text, output_text def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = BioGptTokenizer(self.vocab_file,self.merges_file ) __UpperCamelCase = 'lower' __UpperCamelCase = ['low', 'er</w>'] __UpperCamelCase = tokenizer.tokenize(A_ ) self.assertListEqual(A_,A_ ) __UpperCamelCase = tokens + ['<unk>'] __UpperCamelCase = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ),A_ ) @slow def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) __UpperCamelCase = tokenizer.encode('sequence builders',add_special_tokens=A_ ) __UpperCamelCase = tokenizer.encode('multi-sequence build',add_special_tokens=A_ ) __UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_ ) __UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_,A_ ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
310
0
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def lowerCamelCase__ ( a , a , a=1E-12 ) -> Any: _A: Any = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(_lowercase , axis=1 ) , a_min=_lowercase ) ).T _A: List[Any] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(_lowercase , axis=1 ) , a_min=_lowercase ) ).T return jnp.matmul(_lowercase , norm_emb_a.T ) class UpperCAmelCase ( nn.Module ): '''simple docstring''' __UpperCamelCase : List[Any] = 42 __UpperCamelCase : Any = jnp.floataa def __magic_name__ ( self : Dict ): """simple docstring""" _A: Optional[Any] = FlaxCLIPVisionModule(self.config.vision_config ) _A: Dict = nn.Dense(self.config.projection_dim , use_bias=A_ , dtype=self.dtype ) _A: Optional[Any] = self.param('''concept_embeds''' , jax.nn.initializers.ones , (1_7, self.config.projection_dim) ) _A: Any = self.param( '''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim) ) _A: int = self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (1_7,) ) _A: Optional[int] = self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,) ) def __call__( self : Optional[int] , lowerCAmelCase_ : List[Any] ): """simple docstring""" _A: Union[str, Any] = self.vision_model(A_ )[1] _A: Union[str, Any] = self.visual_projection(A_ ) _A: int = jax_cosine_distance(A_ , self.special_care_embeds ) _A: str = jax_cosine_distance(A_ , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs _A: Any = 0.0 _A: str = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment _A: Optional[int] = jnp.round(A_ , 3 ) _A: Union[str, Any] = jnp.any(special_scores > 0 , axis=1 , keepdims=A_ ) # Use a lower threshold if an image has any special care concept _A: Optional[int] = is_special_care * 0.01 _A: List[str] = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment _A: int = jnp.round(A_ , 3 ) _A: Optional[int] = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class UpperCAmelCase ( _a ): '''simple docstring''' __UpperCamelCase : int = CLIPConfig __UpperCamelCase : str = '''clip_input''' __UpperCamelCase : Union[str, Any] = FlaxStableDiffusionSafetyCheckerModule def __init__( self : List[Any] , lowerCAmelCase_ : CLIPConfig , lowerCAmelCase_ : Optional[Tuple] = None , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : jnp.dtype = jnp.floataa , lowerCAmelCase_ : bool = True , **lowerCAmelCase_ : List[Any] , ): """simple docstring""" if input_shape is None: _A: Any = (1, 2_2_4, 2_2_4, 3) _A: Optional[Any] = self.module_class(config=A_ , dtype=A_ , **A_ ) super().__init__(A_ , A_ , input_shape=A_ , seed=A_ , dtype=A_ , _do_init=_do_init ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : jax.random.KeyArray , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : FrozenDict = None ): """simple docstring""" _A: List[str] = jax.random.normal(A_ , A_ ) _A , _A: List[str] = jax.random.split(A_ ) _A: Tuple = {'''params''': params_rng, '''dropout''': dropout_rng} _A: List[str] = self.module.init(A_ , A_ )['''params'''] return random_params def __call__( self : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : dict = None , ): """simple docstring""" _A: Optional[Any] = jnp.transpose(A_ , (0, 2, 3, 1) ) return self.module.apply( {'''params''': params or self.params} , jnp.array(A_ , dtype=jnp.floataa ) , rngs={} , )
121
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __snake_case = r''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(_a ) class __lowerCamelCase (_a ): _lowercase = """rag""" _lowercase = True def __init__( self: Tuple,A_: Any=None,A_: Any=True,A_: List[Any]=None,A_: Optional[int]=None,A_: List[Any]=None,A_: str=None,A_: Union[str, Any]=None,A_: List[Any]=" / ",A_: Union[str, Any]=" // ",A_: List[Any]=5,A_: Optional[int]=300,A_: Tuple=768,A_: Tuple=8,A_: Optional[Any]="wiki_dpr",A_: int="train",A_: Union[str, Any]="compressed",A_: Optional[int]=None,A_: List[Any]=None,A_: List[str]=False,A_: List[str]=False,A_: str=0.0,A_: List[Any]=True,A_: Tuple=False,A_: int=False,A_: Dict=False,A_: Tuple=True,A_: int=None,**A_: Optional[int],): '''simple docstring''' super().__init__( bos_token_id=A_,pad_token_id=A_,eos_token_id=A_,decoder_start_token_id=A_,forced_eos_token_id=A_,is_encoder_decoder=A_,prefix=A_,vocab_size=A_,**A_,) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" __UpperCamelCase = kwargs.pop('question_encoder' ) __UpperCamelCase = question_encoder_config.pop('model_type' ) __UpperCamelCase = kwargs.pop('generator' ) __UpperCamelCase = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig __UpperCamelCase = AutoConfig.for_model(A_,**A_ ) __UpperCamelCase = AutoConfig.for_model(A_,**A_ ) __UpperCamelCase = reduce_loss __UpperCamelCase = label_smoothing __UpperCamelCase = exclude_bos_score __UpperCamelCase = do_marginalize __UpperCamelCase = title_sep __UpperCamelCase = doc_sep __UpperCamelCase = n_docs __UpperCamelCase = max_combined_length __UpperCamelCase = dataset __UpperCamelCase = dataset_split __UpperCamelCase = index_name __UpperCamelCase = retrieval_vector_size __UpperCamelCase = retrieval_batch_size __UpperCamelCase = passages_path __UpperCamelCase = index_path __UpperCamelCase = use_dummy_dataset __UpperCamelCase = output_retrieved __UpperCamelCase = do_deduplication __UpperCamelCase = use_cache if self.forced_eos_token_id is None: __UpperCamelCase = getattr(self.generator,'forced_eos_token_id',A_ ) @classmethod def snake_case_ ( cls: Any,A_: PretrainedConfig,A_: PretrainedConfig,**A_: int ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict(),generator=generator_config.to_dict(),**A_ ) def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = copy.deepcopy(self.__dict__ ) __UpperCamelCase = self.question_encoder.to_dict() __UpperCamelCase = self.generator.to_dict() __UpperCamelCase = self.__class__.model_type return output
310
0
"""simple docstring""" import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class snake_case ( _a, unittest.TestCase ): SCREAMING_SNAKE_CASE_ : int = CpmAntTokenizer SCREAMING_SNAKE_CASE_ : Any = False def lowercase_ ( self : List[Any])-> str: '''simple docstring''' super().setUp() __lowerCAmelCase: Union[str, Any] = [ "<d>", "</d>", "<s>", "</s>", "</_>", "<unk>", "<pad>", "</n>", "我", "是", "C", "P", "M", "A", "n", "t", ] __lowerCAmelCase: List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) @tooslow def lowercase_ ( self : Optional[Any])-> Tuple: '''simple docstring''' __lowerCAmelCase: int = CpmAntTokenizer.from_pretrained("openbmb/cpm-ant-10b") __lowerCAmelCase: List[str] = "今天天气真好!" __lowerCAmelCase: List[Any] = ["今天", "天气", "真", "好", "!"] __lowerCAmelCase: Optional[Any] = tokenizer.tokenize(A_) self.assertListEqual(A_ , A_) __lowerCAmelCase: int = "今天天气真好!" __lowerCAmelCase: int = [tokenizer.bos_token] + tokens __lowerCAmelCase: Optional[Any] = [6, 9_8_0_2, 1_4_9_6_2, 2_0_8_2, 8_3_1, 2_4_4] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_) , A_) __lowerCAmelCase: str = tokenizer.decode(A_) self.assertEqual(A_ , A_)
217
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class __lowerCamelCase (_a ): _lowercase = """M-CLIP""" def __init__( self: int,A_: Any=1024,A_: Union[str, Any]=768,**A_: str ): '''simple docstring''' __UpperCamelCase = transformerDimSize __UpperCamelCase = imageDimSize super().__init__(**A_ ) class __lowerCamelCase (_a ): _lowercase = MCLIPConfig def __init__( self: int,A_: Optional[Any],*A_: List[str],**A_: Union[str, Any] ): '''simple docstring''' super().__init__(A_,*A_,**A_ ) __UpperCamelCase = XLMRobertaModel(A_ ) __UpperCamelCase = torch.nn.Linear( in_features=config.transformerDimensions,out_features=config.numDims ) def snake_case_ ( self: Dict,A_: int,A_: Optional[int] ): '''simple docstring''' __UpperCamelCase = self.transformer(input_ids=A_,attention_mask=A_ )[0] __UpperCamelCase = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(A_ ), embs
310
0
'''simple docstring''' import copy import os import cva import numpy as np from matplotlib import pyplot as plt class UpperCAmelCase_ : """simple docstring""" def __init__( self : Union[str, Any] ): snake_case__ : List[Any] = """""" snake_case__ : Tuple = """""" snake_case__ : List[Any] = [] snake_case__ : Union[str, Any] = 0 snake_case__ : List[str] = 256 snake_case__ : List[str] = 0 snake_case__ : List[str] = 0 snake_case__ : str = 0 snake_case__ : int = 0 def lowerCamelCase ( self : str , snake_case_ : int ): snake_case__ : Tuple = cva.imread(A_ , 0 ) snake_case__ : Dict = copy.deepcopy(self.img ) snake_case__ , snake_case__ , snake_case__ : List[str] = plt.hist(self.img.ravel() , 256 , [0, 256] , label="""x""" ) snake_case__ : Dict = np.sum(A_ ) for i in range(len(A_ ) ): snake_case__ : Optional[Any] = x[i] / self.k self.sk += prk snake_case__ : Optional[int] = (self.L - 1) * self.sk if self.rem != 0: snake_case__ : int = int(last % last ) snake_case__ : Dict = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(A_ ) snake_case__ : List[str] = int(np.ma.count(self.img ) / self.img[1].size ) snake_case__ : List[Any] = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): snake_case__ : Any = self.img[j][i] if num != self.last_list[num]: snake_case__ : Tuple = self.last_list[num] cva.imwrite("""output_data/output.jpg""" , self.img ) def lowerCamelCase ( self : Dict ): plt.hist(self.img.ravel() , 256 , [0, 256] ) def lowerCamelCase ( self : str ): cva.imshow("""Output-Image""" , self.img ) cva.imshow("""Input-Image""" , self.original_image ) cva.waitKey(5_000 ) cva.destroyAllWindows() if __name__ == "__main__": __a = os.path.join(os.path.basename(__file__), "image_data/input.jpg") __a = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
35
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class __lowerCamelCase : _lowercase = XGLMConfig _lowercase = {} _lowercase = """gelu""" def __init__( self: Optional[int],A_: Dict,A_: Any=14,A_: Optional[int]=7,A_: str=True,A_: Any=True,A_: Optional[int]=True,A_: Optional[int]=99,A_: List[str]=32,A_: Any=2,A_: Tuple=4,A_: List[str]=37,A_: Dict="gelu",A_: int=0.1,A_: List[str]=0.1,A_: int=512,A_: List[Any]=0.0_2,): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = d_model __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = ffn_dim __UpperCamelCase = activation_function __UpperCamelCase = activation_dropout __UpperCamelCase = attention_dropout __UpperCamelCase = max_position_embeddings __UpperCamelCase = initializer_range __UpperCamelCase = None __UpperCamelCase = 0 __UpperCamelCase = 2 __UpperCamelCase = 1 def snake_case_ ( self: Dict ): '''simple docstring''' return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length],self.vocab_size ),clip_value_min=0,clip_value_max=3 ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = self.get_config() __UpperCamelCase = floats_tensor([self.num_hidden_layers, self.num_attention_heads],2 ) return ( config, input_ids, input_mask, head_mask, ) def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' return XGLMConfig( vocab_size=self.vocab_size,d_model=self.hidden_size,num_layers=self.num_hidden_layers,attention_heads=self.num_attention_heads,ffn_dim=self.ffn_dim,activation_function=self.activation_function,activation_dropout=self.activation_dropout,attention_dropout=self.attention_dropout,max_position_embeddings=self.max_position_embeddings,initializer_range=self.initializer_range,use_cache=A_,bos_token_id=self.bos_token_id,eos_token_id=self.eos_token_id,pad_token_id=self.pad_token_id,return_dict=A_,) def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ) = config_and_inputs __UpperCamelCase = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class __lowerCamelCase (_a , _a , unittest.TestCase ): _lowercase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () _lowercase = (TFXGLMForCausalLM,) if is_tf_available() else () _lowercase = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) _lowercase = False _lowercase = False _lowercase = False def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = TFXGLMModelTester(self ) __UpperCamelCase = ConfigTester(self,config_class=A_,n_embd=37 ) def snake_case_ ( self: Any ): '''simple docstring''' self.config_tester.run_common_tests() @slow def snake_case_ ( self: Any ): '''simple docstring''' for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = TFXGLMModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def snake_case_ ( self: Tuple ): '''simple docstring''' super().test_resize_token_embeddings() @require_tf class __lowerCamelCase (unittest.TestCase ): @slow def snake_case_ ( self: Optional[Any],A_: int=True ): '''simple docstring''' __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = tf.convert_to_tensor([[2, 268, 9865]],dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __UpperCamelCase = [2, 268, 9865, 67, 11, 1988, 5_7252, 9865, 5, 984, 67, 1988, 21_3838, 1658, 53, 7_0446, 33, 6657, 278, 1581] # fmt: on __UpperCamelCase = model.generate(A_,do_sample=A_,num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist(),A_ ) @slow def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) __UpperCamelCase = tokenizer('Today is a nice day and',return_tensors='tf' ) __UpperCamelCase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): __UpperCamelCase = model.generate(A_,do_sample=A_,seed=[7, 0] ) __UpperCamelCase = tokenizer.decode(output_ids[0],skip_special_tokens=A_ ) __UpperCamelCase = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(A_,A_ ) @slow def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = 'left' # use different length sentences to test batching __UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] __UpperCamelCase = tokenizer(A_,return_tensors='tf',padding=A_ ) __UpperCamelCase = inputs['input_ids'] __UpperCamelCase = model.generate(input_ids=A_,attention_mask=inputs['attention_mask'],max_new_tokens=12 ) __UpperCamelCase = tokenizer(sentences[0],return_tensors='tf' ).input_ids __UpperCamelCase = model.generate(input_ids=A_,max_new_tokens=12 ) __UpperCamelCase = tokenizer(sentences[1],return_tensors='tf' ).input_ids __UpperCamelCase = model.generate(input_ids=A_,max_new_tokens=12 ) __UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ ) __UpperCamelCase = tokenizer.decode(output_non_padded[0],skip_special_tokens=A_ ) __UpperCamelCase = tokenizer.decode(output_padded[0],skip_special_tokens=A_ ) __UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(A_,A_ ) self.assertListEqual(A_,[non_padded_sentence, padded_sentence] )
310
0
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 1 / sqrt(2 ) )-> IIRFilter: '''simple docstring''' UpperCAmelCase : Any =tau * frequency / samplerate UpperCAmelCase : Union[str, Any] =sin(_lowercase ) UpperCAmelCase : Tuple =cos(_lowercase ) UpperCAmelCase : List[str] =_sin / (2 * q_factor) UpperCAmelCase : Tuple =(1 - _cos) / 2 UpperCAmelCase : int =1 - _cos UpperCAmelCase : Any =1 + alpha UpperCAmelCase : Dict =-2 * _cos UpperCAmelCase : List[str] =1 - alpha UpperCAmelCase : Any =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 1 / sqrt(2 ) )-> IIRFilter: '''simple docstring''' UpperCAmelCase : Dict =tau * frequency / samplerate UpperCAmelCase : Dict =sin(_lowercase ) UpperCAmelCase : Optional[int] =cos(_lowercase ) UpperCAmelCase : Optional[int] =_sin / (2 * q_factor) UpperCAmelCase : List[Any] =(1 + _cos) / 2 UpperCAmelCase : List[str] =-1 - _cos UpperCAmelCase : List[Any] =1 + alpha UpperCAmelCase : Tuple =-2 * _cos UpperCAmelCase : Optional[int] =1 - alpha UpperCAmelCase : int =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 1 / sqrt(2 ) )-> IIRFilter: '''simple docstring''' UpperCAmelCase : Optional[int] =tau * frequency / samplerate UpperCAmelCase : Tuple =sin(_lowercase ) UpperCAmelCase : int =cos(_lowercase ) UpperCAmelCase : Optional[Any] =_sin / (2 * q_factor) UpperCAmelCase : Any =_sin / 2 UpperCAmelCase : Any =0 UpperCAmelCase : str =-ba UpperCAmelCase : Union[str, Any] =1 + alpha UpperCAmelCase : str =-2 * _cos UpperCAmelCase : Optional[int] =1 - alpha UpperCAmelCase : Dict =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 1 / sqrt(2 ) )-> IIRFilter: '''simple docstring''' UpperCAmelCase : Optional[Any] =tau * frequency / samplerate UpperCAmelCase : Optional[Any] =sin(_lowercase ) UpperCAmelCase : Union[str, Any] =cos(_lowercase ) UpperCAmelCase : Dict =_sin / (2 * q_factor) UpperCAmelCase : Tuple =1 - alpha UpperCAmelCase : Any =-2 * _cos UpperCAmelCase : Optional[Any] =1 + alpha UpperCAmelCase : int =IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 1 / sqrt(2 ) , )-> IIRFilter: '''simple docstring''' UpperCAmelCase : str =tau * frequency / samplerate UpperCAmelCase : Optional[Any] =sin(_lowercase ) UpperCAmelCase : Optional[Any] =cos(_lowercase ) UpperCAmelCase : Union[str, Any] =_sin / (2 * q_factor) UpperCAmelCase : Dict =10 ** (gain_db / 40) UpperCAmelCase : Dict =1 + alpha * big_a UpperCAmelCase : List[Any] =-2 * _cos UpperCAmelCase : Optional[Any] =1 - alpha * big_a UpperCAmelCase : Dict =1 + alpha / big_a UpperCAmelCase : Any =-2 * _cos UpperCAmelCase : Any =1 - alpha / big_a UpperCAmelCase : Any =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 1 / sqrt(2 ) , )-> IIRFilter: '''simple docstring''' UpperCAmelCase : List[str] =tau * frequency / samplerate UpperCAmelCase : str =sin(_lowercase ) UpperCAmelCase : Union[str, Any] =cos(_lowercase ) UpperCAmelCase : Union[str, Any] =_sin / (2 * q_factor) UpperCAmelCase : Union[str, Any] =10 ** (gain_db / 40) UpperCAmelCase : Union[str, Any] =(big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : List[str] =(big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int =(big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : str =(big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : Dict =2 * sqrt(_lowercase ) * alpha UpperCAmelCase : Optional[int] =big_a * (pmc + aaa) UpperCAmelCase : Union[str, Any] =2 * big_a * mpc UpperCAmelCase : Optional[Any] =big_a * (pmc - aaa) UpperCAmelCase : int =ppmc + aaa UpperCAmelCase : Any =-2 * pmpc UpperCAmelCase : int =ppmc - aaa UpperCAmelCase : Any =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 1 / sqrt(2 ) , )-> IIRFilter: '''simple docstring''' UpperCAmelCase : Dict =tau * frequency / samplerate UpperCAmelCase : Optional[Any] =sin(_lowercase ) UpperCAmelCase : str =cos(_lowercase ) UpperCAmelCase : Union[str, Any] =_sin / (2 * q_factor) UpperCAmelCase : Union[str, Any] =10 ** (gain_db / 40) UpperCAmelCase : Dict =(big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : Any =(big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : str =(big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Optional[Any] =(big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : List[str] =2 * sqrt(_lowercase ) * alpha UpperCAmelCase : Optional[int] =big_a * (ppmc + aaa) UpperCAmelCase : str =-2 * big_a * pmpc UpperCAmelCase : str =big_a * (ppmc - aaa) UpperCAmelCase : Union[str, Any] =pmc + aaa UpperCAmelCase : int =2 * mpc UpperCAmelCase : Union[str, Any] =pmc - aaa UpperCAmelCase : int =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
348
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __snake_case = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json''' with io.open(filename, '''r''', encoding='''utf-8''') as f: __snake_case = json.load(f) @require_torch class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: int,A_: int ): '''simple docstring''' return FSMTTokenizer.from_pretrained(A_ ) def snake_case_ ( self: Dict,A_: int ): '''simple docstring''' __UpperCamelCase = FSMTForConditionalGeneration.from_pretrained(A_ ).to(A_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 2_6.0], ['ru-en', 2_2.0], ['en-de', 2_2.0], ['de-en', 2_9.0], ] ) @slow def snake_case_ ( self: Tuple,A_: Any,A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = F'''facebook/wmt19-{pair}''' __UpperCamelCase = self.get_tokenizer(A_ ) __UpperCamelCase = self.get_model(A_ ) __UpperCamelCase = bleu_data[pair]['src'] __UpperCamelCase = bleu_data[pair]['tgt'] __UpperCamelCase = tokenizer(A_,return_tensors='pt',truncation=A_,padding='longest' ).to(A_ ) __UpperCamelCase = model.generate( input_ids=batch.input_ids,num_beams=8,) __UpperCamelCase = tokenizer.batch_decode( A_,skip_special_tokens=A_,clean_up_tokenization_spaces=A_ ) __UpperCamelCase = calculate_bleu(A_,A_ ) print(A_ ) self.assertGreaterEqual(scores['bleu'],A_ )
310
0
import torch from transformers import AutoModel class A ( torch.nn.Module ): def __init__( self, UpperCamelCase__="sayef/fsner-bert-base-uncased" ): """simple docstring""" super(A_, self ).__init__() lowerCAmelCase_ = AutoModel.from_pretrained(A_, return_dict=A_ ) lowerCAmelCase_ = torch.nn.CosineSimilarity(3, 1E-08 ) lowerCAmelCase_ = torch.nn.Softmax(dim=1 ) def SCREAMING_SNAKE_CASE__ ( self, **UpperCamelCase__ ): """simple docstring""" return self.bert(**A_ ).last_hidden_state def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" return token_embeddings.sum(2, keepdim=A_ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__=1 ): """simple docstring""" return self.softmax(T * self.cos(A_, A_ ) ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = W_supports['''sizes'''].tolist() lowerCAmelCase_ = W_supports['''start_token_id'''].item() lowerCAmelCase_ = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] lowerCAmelCase_ = self.BERT(**A_ ) lowerCAmelCase_ = self.BERT(**A_ ) lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = W_supports['''input_ids'''] == start_token_id lowerCAmelCase_ = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(A_ ): if i == 0: lowerCAmelCase_ = 0 else: lowerCAmelCase_ = support_sizes[i - 1] lowerCAmelCase_ = S[s : s + size][start_token_masks[s : s + size]] lowerCAmelCase_ = S[s : s + size][end_token_masks[s : s + size]] lowerCAmelCase_ = torch.matmul(q[i], s_start.T ).sum(1 ).softmax(0 ) lowerCAmelCase_ = torch.matmul(q[i], s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: lowerCAmelCase_ = torch.vstack((p_starts, p_start) ) lowerCAmelCase_ = torch.vstack((p_ends, p_end) ) else: lowerCAmelCase_ = p_start lowerCAmelCase_ = p_end return p_starts, p_ends
278
def _A ( _lowercase ) -> list[int]: """simple docstring""" if length <= 0 or not isinstance(_lowercase , _lowercase ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(_lowercase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=1_0))
310
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A : Optional[Any] = logging.get_logger(__name__) A : Optional[Any] = {'''vocab_file''': '''sentencepiece.bpe.model'''} A : List[str] = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', } } A : Tuple = { '''camembert-base''': 5_1_2, } A : List[Any] = '''▁''' class A (_a ): '''simple docstring''' __lowerCamelCase : List[str] = VOCAB_FILES_NAMES __lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Any = ['''input_ids''', '''attention_mask'''] def __init__( self : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any]="<s>" , __lowerCAmelCase : List[Any]="</s>" , __lowerCAmelCase : List[str]="</s>" , __lowerCAmelCase : Union[str, Any]="<s>" , __lowerCAmelCase : str="<unk>" , __lowerCAmelCase : Dict="<pad>" , __lowerCAmelCase : Union[str, Any]="<mask>" , __lowerCAmelCase : int=["<s>NOTUSED", "</s>NOTUSED"] , __lowerCAmelCase : Optional[Dict[str, Any]] = None , **__lowerCAmelCase : Any , ) -> Optional[Any]: """simple docstring""" A__ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token A__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , additional_special_tokens=A_ , sp_model_kwargs=self.sp_model_kwargs , **A_ , ) A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A_ ) ) A__ = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> A__ = {"""<s>NOTUSED""": 0, """<pad>""": 1, """</s>NOTUSED""": 2, """<unk>""": 3} A__ = len(self.fairseq_tokens_to_ids ) A__ = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) A__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def a_ ( self : Any , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> Union[str, Any]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ = [self.cls_token_id] A__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a_ ( self : Optional[int] , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None , __lowerCAmelCase : bool = False ) -> Optional[Any]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def a_ ( self : List[Any] , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> Optional[Any]: """simple docstring""" A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def a_ ( self : Union[str, Any] ) -> Any: """simple docstring""" return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def a_ ( self : Any ) -> Dict: """simple docstring""" A__ = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a_ ( self : Dict , __lowerCAmelCase : str ) -> str: """simple docstring""" return self.sp_model.encode(A_ , out_type=A_ ) def a_ ( self : str , __lowerCAmelCase : Tuple ) -> str: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(A_ ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(A_ ) def a_ ( self : str , __lowerCAmelCase : Any ) -> int: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def a_ ( self : Optional[int] , __lowerCAmelCase : List[Any] ) -> Any: """simple docstring""" A__ = [] A__ = """""" A__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A_ ) + token A__ = True A__ = [] else: current_sub_tokens.append(A_ ) A__ = False out_string += self.sp_model.decode(A_ ) return out_string.strip() def __getstate__( self : int ) -> List[Any]: """simple docstring""" A__ = self.__dict__.copy() A__ = None return state def __setstate__( self : str , __lowerCAmelCase : str ) -> Union[str, Any]: """simple docstring""" A__ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): A__ = {} A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a_ ( self : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ) -> Tuple: """simple docstring""" if not os.path.isdir(A_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A__ = os.path.join( A_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_ , """wb""" ) as fi: A__ = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,)
274
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = MgpstrTokenizer _lowercase = False _lowercase = {} _lowercase = False def snake_case_ ( self: int ): '''simple docstring''' super().setUp() # fmt: off __UpperCamelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on __UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) ) __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file,'w',encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) def snake_case_ ( self: Dict,**A_: Tuple ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname,**A_ ) def snake_case_ ( self: List[Any],A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = 'tester' __UpperCamelCase = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.' ) def snake_case_ ( self: str ): '''simple docstring''' pass def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCamelCase = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token} ) __UpperCamelCase = tokenizer.encode([special_token],add_special_tokens=A_ ) self.assertEqual(len(A_ ),1 ) __UpperCamelCase = tokenizer.decode(A_,skip_special_tokens=A_ ) self.assertTrue(special_token not in decoded ) def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCamelCase, __UpperCamelCase = self.get_input_output_texts(A_ ) __UpperCamelCase = tokenizer.tokenize(A_ ) __UpperCamelCase = tokenizer.convert_tokens_to_ids(A_ ) __UpperCamelCase = tokenizer.encode(A_,add_special_tokens=A_ ) self.assertListEqual(A_,A_ ) __UpperCamelCase = tokenizer.convert_ids_to_tokens(A_ ) self.assertNotEqual(len(A_ ),0 ) __UpperCamelCase = tokenizer.decode(A_ ) self.assertIsInstance(A_,A_ ) self.assertEqual(text_a.replace(' ','' ),A_ ) @unittest.skip('MGP-STR tokenizer only handles one sequence.' ) def snake_case_ ( self: int ): '''simple docstring''' pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' ) def snake_case_ ( self: List[str] ): '''simple docstring''' pass
310
0
'''simple docstring''' import math def _A (lowerCAmelCase__ :Optional[Any] ) -> int: '''simple docstring''' if not isinstance(_lowercase , _lowercase ): _a = f'Input value of [number={number}] must be an integer' raise TypeError(_lowercase ) if number < 1: _a = f'Input value of [number={number}] must be > 0' raise ValueError(_lowercase ) elif number == 1: return 3 elif number == 2: return 5 else: _a = int(math.log(number // 3 , 2 ) ) + 2 _a = [3, 5] _a = 2 _a = 3 for block in range(1 , _lowercase ): for _ in range(_lowercase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(1_1): a_ : Optional[Any] = 0 try: a_ : int = proth(number) except ValueError: print(f'''ValueError: there is no {number}th Proth number''') continue print(f'''The {number}th Proth number: {value}''')
168
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( """The RoBERTa Model transformer with early exiting (DeeRoBERTa). """ , _a , ) class __lowerCamelCase (_a ): _lowercase = RobertaConfig _lowercase = """roberta""" def __init__( self: Union[str, Any],A_: List[str] ): '''simple docstring''' super().__init__(A_ ) __UpperCamelCase = RobertaEmbeddings(A_ ) self.init_weights() @add_start_docstrings( """RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. """ , _a , ) class __lowerCamelCase (_a ): _lowercase = RobertaConfig _lowercase = """roberta""" def __init__( self: Any,A_: int ): '''simple docstring''' super().__init__(A_ ) __UpperCamelCase = config.num_labels __UpperCamelCase = config.num_hidden_layers __UpperCamelCase = DeeRobertaModel(A_ ) __UpperCamelCase = nn.Dropout(config.hidden_dropout_prob ) __UpperCamelCase = nn.Linear(config.hidden_size,self.config.num_labels ) @add_start_docstrings_to_model_forward(A_ ) def snake_case_ ( self: List[str],A_: int=None,A_: List[Any]=None,A_: List[str]=None,A_: List[str]=None,A_: Optional[int]=None,A_: List[str]=None,A_: Any=None,A_: List[Any]=-1,A_: List[Any]=False,): '''simple docstring''' __UpperCamelCase = self.num_layers try: __UpperCamelCase = self.roberta( A_,attention_mask=A_,token_type_ids=A_,position_ids=A_,head_mask=A_,inputs_embeds=A_,) __UpperCamelCase = outputs[1] __UpperCamelCase = self.dropout(A_ ) __UpperCamelCase = self.classifier(A_ ) __UpperCamelCase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __UpperCamelCase = e.message __UpperCamelCase = e.exit_layer __UpperCamelCase = outputs[0] if not self.training: __UpperCamelCase = entropy(A_ ) __UpperCamelCase = [] __UpperCamelCase = [] if labels is not None: if self.num_labels == 1: # We are doing regression __UpperCamelCase = MSELoss() __UpperCamelCase = loss_fct(logits.view(-1 ),labels.view(-1 ) ) else: __UpperCamelCase = CrossEntropyLoss() __UpperCamelCase = loss_fct(logits.view(-1,self.num_labels ),labels.view(-1 ) ) # work with highway exits __UpperCamelCase = [] for highway_exit in outputs[-1]: __UpperCamelCase = highway_exit[0] if not self.training: highway_logits_all.append(A_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __UpperCamelCase = MSELoss() __UpperCamelCase = loss_fct(highway_logits.view(-1 ),labels.view(-1 ) ) else: __UpperCamelCase = CrossEntropyLoss() __UpperCamelCase = loss_fct(highway_logits.view(-1,self.num_labels ),labels.view(-1 ) ) highway_losses.append(A_ ) if train_highway: __UpperCamelCase = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __UpperCamelCase = (loss,) + outputs if not self.training: __UpperCamelCase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __UpperCamelCase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
310
0
'''simple docstring''' from __future__ import annotations import pandas as pd def a ( __a , __a , __a ) -> list[int]: '''simple docstring''' UpperCamelCase__ :Tuple = [0] * no_of_processes UpperCamelCase__ :str = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(_lowercase ): UpperCamelCase__ :Optional[int] = burst_time[i] UpperCamelCase__ :List[Any] = 0 UpperCamelCase__ :Dict = 0 UpperCamelCase__ :List[str] = 999999999 UpperCamelCase__ :Any = 0 UpperCamelCase__ :Tuple = False # Process until all processes are completed while complete != no_of_processes: for j in range(_lowercase ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: UpperCamelCase__ :Optional[int] = remaining_time[j] UpperCamelCase__ :int = j UpperCamelCase__ :Optional[Any] = True if not check: increment_time += 1 continue remaining_time[short] -= 1 UpperCamelCase__ :int = remaining_time[short] if minm == 0: UpperCamelCase__ :Optional[int] = 999999999 if remaining_time[short] == 0: complete += 1 UpperCamelCase__ :Tuple = False # Find finish time of current process UpperCamelCase__ :Union[str, Any] = increment_time + 1 # Calculate waiting time UpperCamelCase__ :Tuple = finish_time - arrival_time[short] UpperCamelCase__ :int = finar - burst_time[short] if waiting_time[short] < 0: UpperCamelCase__ :Optional[int] = 0 # Increment time increment_time += 1 return waiting_time def a ( __a , __a , __a ) -> list[int]: '''simple docstring''' UpperCamelCase__ :Optional[int] = [0] * no_of_processes for i in range(_lowercase ): UpperCamelCase__ :Dict = burst_time[i] + waiting_time[i] return turn_around_time def a ( __a , __a , __a ) -> None: '''simple docstring''' UpperCamelCase__ :List[Any] = 0 UpperCamelCase__ :Tuple = 0 for i in range(_lowercase ): UpperCamelCase__ :List[Any] = total_waiting_time + waiting_time[i] UpperCamelCase__ :Optional[int] = total_turn_around_time + turn_around_time[i] print(f'''Average waiting time = {total_waiting_time / no_of_processes:.5f}''' ) print('''Average turn around time =''' , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print('''Enter how many process you want to analyze''') __snake_case = int(input()) __snake_case = [0] * no_of_processes __snake_case = [0] * no_of_processes __snake_case = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print('''Enter the arrival time and burst time for process:--''' + str(i + 1)) __snake_case , __snake_case = map(int, input().split()) __snake_case = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __snake_case = burst_time __snake_case = no_of_processes __snake_case = waiting_time __snake_case = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) __snake_case = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ '''Process''', '''BurstTime''', '''ArrivalTime''', '''WaitingTime''', '''TurnAroundTime''', ], ) # Printing the dataFrame pd.set_option('''display.max_rows''', fcfs.shape[0] + 1) print(fcfs)
97
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCamelCase : @staticmethod def snake_case_ ( *A_: Optional[Any],**A_: Tuple ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class __lowerCamelCase (unittest.TestCase ): _lowercase = MODEL_FOR_OBJECT_DETECTION_MAPPING def snake_case_ ( self: Dict,A_: Optional[int],A_: Tuple,A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = ObjectDetectionPipeline(model=A_,image_processor=A_ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def snake_case_ ( self: int,A_: Any,A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png',threshold=0.0 ) self.assertGreater(len(A_ ),0 ) for detected_object in outputs: self.assertEqual( A_,{ 'score': ANY(A_ ), 'label': ANY(A_ ), 'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )}, },) import datasets __UpperCamelCase = datasets.load_dataset('hf-internal-testing/fixtures_image_utils','image',split='test' ) __UpperCamelCase = [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] __UpperCamelCase = object_detector(A_,threshold=0.0 ) self.assertEqual(len(A_ ),len(A_ ) ) for outputs in batch_outputs: self.assertGreater(len(A_ ),0 ) for detected_object in outputs: self.assertEqual( A_,{ 'score': ANY(A_ ), 'label': ANY(A_ ), 'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )}, },) @require_tf @unittest.skip('Object detection not implemented in TF' ) def snake_case_ ( self: str ): '''simple docstring''' pass @require_torch def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = 'hf-internal-testing/tiny-detr-mobilenetsv3' __UpperCamelCase = AutoModelForObjectDetection.from_pretrained(A_ ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained(A_ ) __UpperCamelCase = ObjectDetectionPipeline(model=A_,feature_extractor=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg',threshold=0.0 ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ],threshold=0.0,) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], ],) @require_torch @slow def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = AutoModelForObjectDetection.from_pretrained(A_ ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained(A_ ) __UpperCamelCase = ObjectDetectionPipeline(model=A_,feature_extractor=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ],) @require_torch @slow def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = pipeline('object-detection',model=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ],) @require_torch @slow def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = 0.9_9_8_5 __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = pipeline('object-detection',model=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg',threshold=A_ ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) @require_torch @require_pytesseract @slow def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = 'Narsil/layoutlmv3-finetuned-funsd' __UpperCamelCase = 0.9_9_9_3 __UpperCamelCase = pipeline('object-detection',model=A_,threshold=A_ ) __UpperCamelCase = object_detector( 'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, {'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, ],)
310
0
'''simple docstring''' import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder __SCREAMING_SNAKE_CASE :Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name __SCREAMING_SNAKE_CASE :str = 256 class A_ ( _a ): _lowerCamelCase : List[str] = ["""melgan"""] def __init__( self : List[str] , snake_case_ : SpectrogramNotesEncoder , snake_case_ : SpectrogramContEncoder , snake_case_ : TaFilmDecoder , snake_case_ : DDPMScheduler , snake_case_ : OnnxRuntimeModel if is_onnx_available() else Any , ): super().__init__() # From MELGAN _UpperCAmelCase = math.log(1e-5 ) # Matches MelGAN training. _UpperCAmelCase = 4.0 # Largest value for most examples _UpperCAmelCase = 1_2_8 self.register_modules( notes_encoder=A_ , continuous_encoder=A_ , decoder=A_ , scheduler=A_ , melgan=A_ , ) def lowercase ( self : Optional[Any] , snake_case_ : Tuple , snake_case_ : Optional[Any]=(-1.0, 1.0) , snake_case_ : Dict=False ): _UpperCAmelCase , _UpperCAmelCase = output_range if clip: _UpperCAmelCase = torch.clip(A_ , self.min_value , self.max_value ) # Scale to [0, 1]. _UpperCAmelCase = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def lowercase ( self : List[Any] , snake_case_ : List[Any] , snake_case_ : Optional[Any]=(-1.0, 1.0) , snake_case_ : Dict=False ): _UpperCAmelCase , _UpperCAmelCase = input_range _UpperCAmelCase = torch.clip(A_ , A_ , A_ ) if clip else outputs # Scale to [0, 1]. _UpperCAmelCase = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def lowercase ( self : Union[str, Any] , snake_case_ : int , snake_case_ : Dict , snake_case_ : List[str] ): _UpperCAmelCase = input_tokens > 0 _UpperCAmelCase , _UpperCAmelCase = self.notes_encoder( encoder_input_tokens=A_ , encoder_inputs_mask=A_ ) _UpperCAmelCase , _UpperCAmelCase = self.continuous_encoder( encoder_inputs=A_ , encoder_inputs_mask=A_ ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def lowercase ( self : Optional[int] , snake_case_ : str , snake_case_ : int , snake_case_ : Any ): _UpperCAmelCase = noise_time if not torch.is_tensor(A_ ): _UpperCAmelCase = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(A_ ) and len(timesteps.shape ) == 0: _UpperCAmelCase = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _UpperCAmelCase = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) _UpperCAmelCase = self.decoder( encodings_and_masks=A_ , decoder_input_tokens=A_ , decoder_noise_time=A_ ) return logits @torch.no_grad() def __call__( self : Tuple , snake_case_ : List[List[int]] , snake_case_ : Optional[torch.Generator] = None , snake_case_ : int = 1_0_0 , snake_case_ : bool = True , snake_case_ : str = "numpy" , snake_case_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , snake_case_ : int = 1 , ): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A_ , A_ ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(A_ )}.' ) _UpperCAmelCase = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) _UpperCAmelCase = np.zeros([1, 0, self.n_dims] , np.floataa ) _UpperCAmelCase = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=A_ , device=self.device ) for i, encoder_input_tokens in enumerate(A_ ): if i == 0: _UpperCAmelCase = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. _UpperCAmelCase = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=A_ , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. _UpperCAmelCase = ones _UpperCAmelCase = self.scale_features( A_ , output_range=[-1.0, 1.0] , clip=A_ ) _UpperCAmelCase = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=A_ , continuous_mask=A_ , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop _UpperCAmelCase = randn_tensor( shape=encoder_continuous_inputs.shape , generator=A_ , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(A_ ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): _UpperCAmelCase = self.decode( encodings_and_masks=A_ , input_tokens=A_ , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 _UpperCAmelCase = self.scheduler.step(A_ , A_ , A_ , generator=A_ ).prev_sample _UpperCAmelCase = self.scale_to_features(A_ , input_range=[-1.0, 1.0] ) _UpperCAmelCase = mel[:1] _UpperCAmelCase = mel.cpu().float().numpy() _UpperCAmelCase = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A_ , A_ ) logger.info("Generated segment" , A_ ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( "Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'." ) elif output_type == "numpy" and self.melgan is None: raise ValueError( "Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'." ) if output_type == "numpy": _UpperCAmelCase = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: _UpperCAmelCase = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=A_ )
22
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json''' ), } class __lowerCamelCase (_a ): _lowercase = """xlm-roberta""" def __init__( self: Union[str, Any],A_: Union[str, Any]=3_0522,A_: Dict=768,A_: Union[str, Any]=12,A_: Any=12,A_: str=3072,A_: Union[str, Any]="gelu",A_: str=0.1,A_: Optional[int]=0.1,A_: List[Any]=512,A_: Optional[Any]=2,A_: Dict=0.0_2,A_: List[Any]=1E-12,A_: Optional[int]=1,A_: str=0,A_: str=2,A_: Optional[Any]="absolute",A_: Union[str, Any]=True,A_: int=None,**A_: Optional[Any],): '''simple docstring''' super().__init__(pad_token_id=A_,bos_token_id=A_,eos_token_id=A_,**A_ ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = position_embedding_type __UpperCamelCase = use_cache __UpperCamelCase = classifier_dropout class __lowerCamelCase (_a ): @property def snake_case_ ( self: Optional[Any] ): '''simple docstring''' if self.task == "multiple-choice": __UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
310
0
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class _SCREAMING_SNAKE_CASE ( _a ): '''simple docstring''' lowercase_ = 42 class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__(self : List[str] , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : Tuple=("DownEncoderBlock2D",) , UpperCAmelCase_ : str=(64,) , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : Tuple="silu" , UpperCAmelCase_ : Any=True , ) ->Optional[int]: '''simple docstring''' super().__init__() lowerCamelCase__: Union[str, Any] =layers_per_block lowerCamelCase__: str =torch.nn.Convad( A_ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) lowerCamelCase__: str =None lowerCamelCase__: Union[str, Any] =nn.ModuleList([]) # down lowerCamelCase__: Dict =block_out_channels[0] for i, down_block_type in enumerate(A_): lowerCamelCase__: Any =output_channel lowerCamelCase__: List[str] =block_out_channels[i] lowerCamelCase__: Dict =i == len(A_) - 1 lowerCamelCase__: Optional[Any] =get_down_block( A_ , num_layers=self.layers_per_block , in_channels=A_ , out_channels=A_ , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=A_ , resnet_groups=A_ , attention_head_dim=A_ , temb_channels=A_ , ) self.down_blocks.append(A_) # mid lowerCamelCase__: Any =UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=A_ , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=A_ , temb_channels=A_ , ) # out lowerCamelCase__: str =nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=A_ , eps=1E-6) lowerCamelCase__: List[str] =nn.SiLU() lowerCamelCase__: Union[str, Any] =2 * out_channels if double_z else out_channels lowerCamelCase__: Union[str, Any] =nn.Convad(block_out_channels[-1] , A_ , 3 , padding=1) lowerCamelCase__: Union[str, Any] =False def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : str) ->Tuple: '''simple docstring''' lowerCamelCase__: Union[str, Any] =x lowerCamelCase__: Tuple =self.conv_in(A_) if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCAmelCase_ : List[Any]): def custom_forward(*UpperCAmelCase_ : Optional[Any]): return module(*A_) return custom_forward # down if is_torch_version(">=" , "1.11.0"): for down_block in self.down_blocks: lowerCamelCase__: List[str] =torch.utils.checkpoint.checkpoint( create_custom_forward(A_) , A_ , use_reentrant=A_) # middle lowerCamelCase__: Dict =torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block) , A_ , use_reentrant=A_) else: for down_block in self.down_blocks: lowerCamelCase__: Tuple =torch.utils.checkpoint.checkpoint(create_custom_forward(A_) , A_) # middle lowerCamelCase__: Optional[Any] =torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block) , A_) else: # down for down_block in self.down_blocks: lowerCamelCase__: Tuple =down_block(A_) # middle lowerCamelCase__: List[str] =self.mid_block(A_) # post-process lowerCamelCase__: List[str] =self.conv_norm_out(A_) lowerCamelCase__: Tuple =self.conv_act(A_) lowerCamelCase__: Tuple =self.conv_out(A_) return sample class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__(self : str , UpperCAmelCase_ : Any=3 , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : str=("UpDecoderBlock2D",) , UpperCAmelCase_ : Optional[Any]=(64,) , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Any=32 , UpperCAmelCase_ : Dict="silu" , UpperCAmelCase_ : Dict="group" , ) ->Optional[int]: '''simple docstring''' super().__init__() lowerCamelCase__: List[str] =layers_per_block lowerCamelCase__: Optional[Any] =nn.Convad( A_ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) lowerCamelCase__: List[str] =None lowerCamelCase__: int =nn.ModuleList([]) lowerCamelCase__: Any =in_channels if norm_type == "spatial" else None # mid lowerCamelCase__: List[Any] =UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=A_ , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=A_ , temb_channels=A_ , ) # up lowerCamelCase__: Union[str, Any] =list(reversed(A_)) lowerCamelCase__: Dict =reversed_block_out_channels[0] for i, up_block_type in enumerate(A_): lowerCamelCase__: List[str] =output_channel lowerCamelCase__: Union[str, Any] =reversed_block_out_channels[i] lowerCamelCase__: Union[str, Any] =i == len(A_) - 1 lowerCamelCase__: Any =get_up_block( A_ , num_layers=self.layers_per_block + 1 , in_channels=A_ , out_channels=A_ , prev_output_channel=A_ , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=A_ , resnet_groups=A_ , attention_head_dim=A_ , temb_channels=A_ , resnet_time_scale_shift=A_ , ) self.up_blocks.append(A_) lowerCamelCase__: int =output_channel # out if norm_type == "spatial": lowerCamelCase__: List[str] =SpatialNorm(block_out_channels[0] , A_) else: lowerCamelCase__: Optional[Any] =nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=A_ , eps=1E-6) lowerCamelCase__: List[Any] =nn.SiLU() lowerCamelCase__: Dict =nn.Convad(block_out_channels[0] , A_ , 3 , padding=1) lowerCamelCase__: Dict =False def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any]=None) ->Tuple: '''simple docstring''' lowerCamelCase__: List[str] =z lowerCamelCase__: str =self.conv_in(A_) lowerCamelCase__: Optional[int] =next(iter(self.up_blocks.parameters())).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCAmelCase_ : Tuple): def custom_forward(*UpperCAmelCase_ : Dict): return module(*A_) return custom_forward if is_torch_version(">=" , "1.11.0"): # middle lowerCamelCase__: List[Any] =torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block) , A_ , A_ , use_reentrant=A_) lowerCamelCase__: Optional[Any] =sample.to(A_) # up for up_block in self.up_blocks: lowerCamelCase__: List[str] =torch.utils.checkpoint.checkpoint( create_custom_forward(A_) , A_ , A_ , use_reentrant=A_) else: # middle lowerCamelCase__: List[str] =torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block) , A_ , A_) lowerCamelCase__: Optional[int] =sample.to(A_) # up for up_block in self.up_blocks: lowerCamelCase__: int =torch.utils.checkpoint.checkpoint(create_custom_forward(A_) , A_ , A_) else: # middle lowerCamelCase__: Optional[int] =self.mid_block(A_ , A_) lowerCamelCase__: Optional[Any] =sample.to(A_) # up for up_block in self.up_blocks: lowerCamelCase__: Union[str, Any] =up_block(A_ , A_) # post-process if latent_embeds is None: lowerCamelCase__: List[str] =self.conv_norm_out(A_) else: lowerCamelCase__: List[str] =self.conv_norm_out(A_ , A_) lowerCamelCase__: Dict =self.conv_act(A_) lowerCamelCase__: Any =self.conv_out(A_) return sample class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__(self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any="random" , UpperCAmelCase_ : str=False , UpperCAmelCase_ : Optional[Any]=True) ->Optional[Any]: '''simple docstring''' super().__init__() lowerCamelCase__: int =n_e lowerCamelCase__: Dict =vq_embed_dim lowerCamelCase__: int =beta lowerCamelCase__: Dict =legacy lowerCamelCase__: List[str] =nn.Embedding(self.n_e , self.vq_embed_dim) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e) lowerCamelCase__: Tuple =remap if self.remap is not None: self.register_buffer("used" , torch.tensor(np.load(self.remap))) lowerCamelCase__: List[Any] =self.used.shape[0] lowerCamelCase__: int =unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": lowerCamelCase__: Any =self.re_embed lowerCamelCase__: str =self.re_embed + 1 print( F"""Remapping {self.n_e} indices to {self.re_embed} indices. """ F"""Using {self.unknown_index} for unknown indices.""") else: lowerCamelCase__: List[str] =n_e lowerCamelCase__: Optional[Any] =sane_index_shape def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : str) ->List[Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =inds.shape assert len(A_) > 1 lowerCamelCase__: str =inds.reshape(ishape[0] , -1) lowerCamelCase__: Optional[int] =self.used.to(A_) lowerCamelCase__: Optional[Any] =(inds[:, :, None] == used[None, None, ...]).long() lowerCamelCase__: Dict =match.argmax(-1) lowerCamelCase__: Dict =match.sum(2) < 1 if self.unknown_index == "random": lowerCamelCase__: str =torch.randint(0 , self.re_embed , size=new[unknown].shape).to(device=new.device) else: lowerCamelCase__: Optional[int] =self.unknown_index return new.reshape(A_) def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : Union[str, Any]) ->Any: '''simple docstring''' lowerCamelCase__: List[str] =inds.shape assert len(A_) > 1 lowerCamelCase__: Union[str, Any] =inds.reshape(ishape[0] , -1) lowerCamelCase__: List[Any] =self.used.to(A_) if self.re_embed > self.used.shape[0]: # extra token lowerCamelCase__: Any =0 # simply set to zero lowerCamelCase__: str =torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , A_) return back.reshape(A_) def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Tuple) ->Dict: '''simple docstring''' lowerCamelCase__: Dict =z.permute(0 , 2 , 3 , 1).contiguous() lowerCamelCase__: Dict =z.view(-1 , self.vq_embed_dim) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z lowerCamelCase__: Union[str, Any] =torch.argmin(torch.cdist(A_ , self.embedding.weight) , dim=1) lowerCamelCase__: Tuple =self.embedding(A_).view(z.shape) lowerCamelCase__: Dict =None lowerCamelCase__: int =None # compute loss for embedding if not self.legacy: lowerCamelCase__: Any =self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2) else: lowerCamelCase__: Any =torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2) # preserve gradients lowerCamelCase__: Optional[int] =z + (z_q - z).detach() # reshape back to match original input shape lowerCamelCase__: str =z_q.permute(0 , 3 , 1 , 2).contiguous() if self.remap is not None: lowerCamelCase__: Union[str, Any] =min_encoding_indices.reshape(z.shape[0] , -1) # add batch axis lowerCamelCase__: Union[str, Any] =self.remap_to_used(A_) lowerCamelCase__: List[str] =min_encoding_indices.reshape(-1 , 1) # flatten if self.sane_index_shape: lowerCamelCase__: List[str] =min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3]) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any]) ->Tuple: '''simple docstring''' if self.remap is not None: lowerCamelCase__: Dict =indices.reshape(shape[0] , -1) # add batch axis lowerCamelCase__: List[Any] =self.unmap_to_all(A_) lowerCamelCase__: Dict =indices.reshape(-1) # flatten again # get quantized latent vectors lowerCamelCase__: Optional[int] =self.embedding(A_) if shape is not None: lowerCamelCase__: int =z_q.view(A_) # reshape back to match original input shape lowerCamelCase__: Dict =z_q.permute(0 , 3 , 1 , 2).contiguous() return z_q class _SCREAMING_SNAKE_CASE ( _a ): '''simple docstring''' def __init__(self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any=False) ->Any: '''simple docstring''' lowerCamelCase__: Dict =parameters lowerCamelCase__ , lowerCamelCase__: List[Any] =torch.chunk(A_ , 2 , dim=1) lowerCamelCase__: Optional[Any] =torch.clamp(self.logvar , -30.0 , 20.0) lowerCamelCase__: Optional[int] =deterministic lowerCamelCase__: Dict =torch.exp(0.5 * self.logvar) lowerCamelCase__: Dict =torch.exp(self.logvar) if self.deterministic: lowerCamelCase__: Optional[Any] =torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype) def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Optional[torch.Generator] = None) ->Dict: '''simple docstring''' lowerCamelCase__: List[Any] =randn_tensor( self.mean.shape , generator=A_ , device=self.parameters.device , dtype=self.parameters.dtype) lowerCamelCase__: Any =self.mean + self.std * sample return x def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : Optional[int]=None) ->Any: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0]) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2) + self.var - 1.0 - self.logvar , dim=[1, 2, 3]) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any=[1, 2, 3]) ->Union[str, Any]: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0]) lowerCamelCase__: Optional[int] =np.log(2.0 * np.pi) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2) / self.var , dim=A_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->List[str]: '''simple docstring''' return self.mean
10
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __snake_case = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCamelCase (_a ): _lowercase = field(default=_a , metadata={"""help""": """Whether to use SortishSampler or not."""} ) _lowercase = field( default=_a , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} ) _lowercase = field( default=_a , metadata={ """help""": ( """The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `max_length` value of the model configuration.""" ) } , ) _lowercase = field( default=_a , metadata={ """help""": ( """The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `num_beams` value of the model configuration.""" ) } , ) _lowercase = field( default=_a , metadata={ """help""": """Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.""" } , ) def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = super().to_dict() for k, v in d.items(): if isinstance(A_,A_ ): __UpperCamelCase = v.to_dict() return d
310
0
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowercase__ : Union[str, Any] = abspath(join(dirname(dirname(dirname(__file__))), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def lowerCamelCase__ ( _A ): '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(_lowercase ) def lowerCamelCase__ ( _A ): '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main snake_case_ = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(_lowercase , id=_lowercase )
187
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _A ( _lowercase ) -> Dict: """simple docstring""" if is_torch_version('<' , '2.0.0' ) or not hasattr(_lowercase , '_dynamo' ): return False return isinstance(_lowercase , torch._dynamo.eval_frame.OptimizedModule ) def _A ( _lowercase , _lowercase = True ) -> Optional[int]: """simple docstring""" __UpperCamelCase = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __UpperCamelCase = is_compiled_module(_lowercase ) if is_compiled: __UpperCamelCase = model __UpperCamelCase = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_lowercase , _lowercase ): __UpperCamelCase = model.module if not keep_fpaa_wrapper: __UpperCamelCase = getattr(_lowercase , 'forward' ) __UpperCamelCase = model.__dict__.pop('_original_forward' , _lowercase ) if original_forward is not None: while hasattr(_lowercase , '__wrapped__' ): __UpperCamelCase = forward.__wrapped__ if forward == original_forward: break __UpperCamelCase = forward if getattr(_lowercase , '_converted_to_transformer_engine' , _lowercase ): convert_model(_lowercase , to_transformer_engine=_lowercase ) if is_compiled: __UpperCamelCase = model __UpperCamelCase = compiled_model return model def _A ( ) -> Any: """simple docstring""" PartialState().wait_for_everyone() def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(_lowercase , _lowercase ) elif PartialState().local_process_index == 0: torch.save(_lowercase , _lowercase ) @contextmanager def _A ( **_lowercase ) -> Union[str, Any]: """simple docstring""" for key, value in kwargs.items(): __UpperCamelCase = str(_lowercase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _A ( _lowercase ) -> Tuple: """simple docstring""" if not hasattr(_lowercase , '__qualname__' ) and not hasattr(_lowercase , '__name__' ): __UpperCamelCase = getattr(_lowercase , '__class__' , _lowercase ) if hasattr(_lowercase , '__qualname__' ): return obj.__qualname__ if hasattr(_lowercase , '__name__' ): return obj.__name__ return str(_lowercase ) def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" for key, value in source.items(): if isinstance(_lowercase , _lowercase ): __UpperCamelCase = destination.setdefault(_lowercase , {} ) merge_dicts(_lowercase , _lowercase ) else: __UpperCamelCase = value return destination def _A ( _lowercase = None ) -> bool: """simple docstring""" if port is None: __UpperCamelCase = 2_95_00 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
310
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase__ : Union[str, Any] = {'configuration_vit_mae': ['VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMAEConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[int] = [ 'VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMAEForPreTraining', 'ViTMAELayer', 'ViTMAEModel', 'ViTMAEPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Union[str, Any] = [ 'TFViTMAEForPreTraining', 'TFViTMAEModel', 'TFViTMAEPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys UpperCAmelCase__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
121
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __snake_case = logging.getLogger(__name__) def _A ( _lowercase , _lowercase ) -> Optional[int]: """simple docstring""" return (preds == labels).mean() @dataclass class __lowerCamelCase : _lowercase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _lowercase = field( default=_a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __lowerCamelCase : _lowercase = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) _lowercase = field(metadata={"""help""": """Should contain the data files for the task."""} ) _lowercase = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _lowercase = field( default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _A ( ) -> str: """simple docstring""" __UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _lowercase ) # Set seed set_seed(training_args.seed ) try: __UpperCamelCase = processors[data_args.task_name]() __UpperCamelCase = processor.get_labels() __UpperCamelCase = len(_lowercase ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowercase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , ) # Get datasets __UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_lowercase ) -> Dict: __UpperCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_lowercase , p.label_ids )} # Data collator __UpperCamelCase = DataCollatorWithPadding(_lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __UpperCamelCase = Trainer( model=_lowercase , args=_lowercase , train_dataset=_lowercase , eval_dataset=_lowercase , compute_metrics=_lowercase , data_collator=_lowercase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCamelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __UpperCamelCase = trainer.evaluate() __UpperCamelCase = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(_lowercase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , _lowercase , _lowercase ) writer.write('%s = %s\n' % (key, value) ) results.update(_lowercase ) return results def _A ( _lowercase ) -> List[Any]: """simple docstring""" main() if __name__ == "__main__": main()
310
0
"""simple docstring""" import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class snake_case : def __init__( self : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Any=None , UpperCamelCase__ : List[Any]="resnet50" , UpperCamelCase__ : Dict=3 , UpperCamelCase__ : Dict=3_2 , UpperCamelCase__ : Union[str, Any]=3 , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : str=True , )-> List[Any]: '''simple docstring''' __lowerCAmelCase: List[str] = parent __lowerCAmelCase: Dict = out_indices if out_indices is not None else [4] __lowerCAmelCase: str = stage_names __lowerCAmelCase: Union[str, Any] = out_features __lowerCAmelCase: Any = backbone __lowerCAmelCase: Dict = batch_size __lowerCAmelCase: Union[str, Any] = image_size __lowerCAmelCase: Tuple = num_channels __lowerCAmelCase: List[str] = use_pretrained_backbone __lowerCAmelCase: int = is_training def lowercase_ ( self : Tuple)-> Union[str, Any]: '''simple docstring''' __lowerCAmelCase: int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __lowerCAmelCase: Optional[Any] = self.get_config() return config, pixel_values def lowercase_ ( self : Optional[Any])-> str: '''simple docstring''' return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowercase_ ( self : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int])-> Union[str, Any]: '''simple docstring''' __lowerCAmelCase: Optional[Any] = TimmBackbone(config=A_) model.to(A_) model.eval() with torch.no_grad(): __lowerCAmelCase: Tuple = model(A_) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 1_4, 1_4) , ) def lowercase_ ( self : int)-> Union[str, Any]: '''simple docstring''' __lowerCAmelCase: str = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase: int = config_and_inputs __lowerCAmelCase: List[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch @require_timm class snake_case ( _a, _a, _a, unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Optional[int] = (TimmBackbone,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : Optional[int] = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} SCREAMING_SNAKE_CASE_ : List[str] = False SCREAMING_SNAKE_CASE_ : Dict = False SCREAMING_SNAKE_CASE_ : List[Any] = False SCREAMING_SNAKE_CASE_ : Tuple = False def lowercase_ ( self : List[Any])-> Any: '''simple docstring''' __lowerCAmelCase: Dict = TimmBackboneModelTester(self) __lowerCAmelCase: Optional[int] = ConfigTester(self , config_class=A_ , has_text_modality=A_) def lowercase_ ( self : Any)-> str: '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self : Dict)-> Optional[int]: '''simple docstring''' __lowerCAmelCase: str = "resnet18" __lowerCAmelCase: List[str] = "microsoft/resnet-18" __lowerCAmelCase: str = AutoBackbone.from_pretrained(A_ , use_timm_backbone=A_) __lowerCAmelCase: Any = AutoBackbone.from_pretrained(A_) self.assertEqual(len(timm_model.out_features) , len(transformers_model.out_features)) self.assertEqual(len(timm_model.stage_names) , len(transformers_model.stage_names)) self.assertEqual(timm_model.channels , transformers_model.channels) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,)) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names) - 1]) __lowerCAmelCase: str = AutoBackbone.from_pretrained(A_ , use_timm_backbone=A_ , out_indices=[1, 2, 3]) __lowerCAmelCase: Tuple = AutoBackbone.from_pretrained(A_ , out_indices=[1, 2, 3]) self.assertEqual(timm_model.out_indices , transformers_model.out_indices) self.assertEqual(len(timm_model.out_features) , len(transformers_model.out_features)) self.assertEqual(timm_model.channels , transformers_model.channels) @unittest.skip("TimmBackbone doesn\'t support feed forward chunking") def lowercase_ ( self : Any)-> List[Any]: '''simple docstring''' pass @unittest.skip("TimmBackbone doesn\'t have num_hidden_layers attribute") def lowercase_ ( self : Optional[Any])-> Optional[Any]: '''simple docstring''' pass @unittest.skip("TimmBackbone initialization is managed on the timm side") def lowercase_ ( self : Dict)-> List[str]: '''simple docstring''' pass @unittest.skip("TimmBackbone models doesn\'t have inputs_embeds") def lowercase_ ( self : Tuple)-> List[Any]: '''simple docstring''' pass @unittest.skip("TimmBackbone models doesn\'t have inputs_embeds") def lowercase_ ( self : List[Any])-> List[Any]: '''simple docstring''' pass @unittest.skip("TimmBackbone model cannot be created without specifying a backbone checkpoint") def lowercase_ ( self : Optional[int])-> Dict: '''simple docstring''' pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone") def lowercase_ ( self : Optional[int])-> List[str]: '''simple docstring''' pass @unittest.skip("model weights aren\'t tied in TimmBackbone.") def lowercase_ ( self : Dict)-> Optional[int]: '''simple docstring''' pass @unittest.skip("model weights aren\'t tied in TimmBackbone.") def lowercase_ ( self : Any)-> Tuple: '''simple docstring''' pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone") def lowercase_ ( self : int)-> Optional[Any]: '''simple docstring''' pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone") def lowercase_ ( self : Optional[int])-> Tuple: '''simple docstring''' pass @unittest.skip("TimmBackbone doesn\'t have hidden size info in its configuration.") def lowercase_ ( self : Optional[int])-> Tuple: '''simple docstring''' pass @unittest.skip("TimmBackbone doesn\'t support output_attentions.") def lowercase_ ( self : Optional[Any])-> Dict: '''simple docstring''' pass @unittest.skip("Safetensors is not supported by timm.") def lowercase_ ( self : Tuple)-> List[Any]: '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") def lowercase_ ( self : Optional[Any])-> Any: '''simple docstring''' pass def lowercase_ ( self : Dict)-> Tuple: '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase: Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase: Optional[int] = model_class(A_) __lowerCAmelCase: Dict = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase: Union[str, Any] = [*signature.parameters.keys()] __lowerCAmelCase: Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , A_) def lowercase_ ( self : List[Any])-> str: '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase: Dict = True __lowerCAmelCase: Optional[int] = self.has_attentions # no need to test all models as different heads yield the same functionality __lowerCAmelCase: List[str] = self.all_model_classes[0] __lowerCAmelCase: Any = model_class(A_) model.to(A_) __lowerCAmelCase: Optional[Any] = self._prepare_for_class(A_ , A_) __lowerCAmelCase: str = model(**A_) __lowerCAmelCase: Tuple = outputs[0][-1] # Encoder-/Decoder-only models __lowerCAmelCase: Union[str, Any] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowerCAmelCase: int = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=A_) self.assertIsNotNone(hidden_states.grad) if self.has_attentions: self.assertIsNotNone(attentions.grad) def lowercase_ ( self : Tuple)-> str: '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase: List[str] = model_class(A_) model.to(A_) model.eval() __lowerCAmelCase: str = model(**A_) self.assertEqual(len(result.feature_maps) , len(config.out_indices)) self.assertEqual(len(model.channels) , len(config.out_indices)) # Check output of last stage is taken if out_features=None, out_indices=None __lowerCAmelCase: Tuple = copy.deepcopy(A_) __lowerCAmelCase: str = None __lowerCAmelCase: str = model_class(A_) model.to(A_) model.eval() __lowerCAmelCase: str = model(**A_) self.assertEqual(len(result.feature_maps) , 1) self.assertEqual(len(model.channels) , 1) # Check backbone can be initialized with fresh weights __lowerCAmelCase: Optional[Any] = copy.deepcopy(A_) __lowerCAmelCase: List[str] = False __lowerCAmelCase: int = model_class(A_) model.to(A_) model.eval() __lowerCAmelCase: List[Any] = model(**A_)
217
import os def _A ( ) -> Tuple: """simple docstring""" with open(os.path.dirname(_lowercase ) + '/p022_names.txt' ) as file: __UpperCamelCase = str(file.readlines()[0] ) __UpperCamelCase = names.replace('"' , '' ).split(',' ) names.sort() __UpperCamelCase = 0 __UpperCamelCase = 0 for i, name in enumerate(_lowercase ): for letter in name: name_score += ord(_lowercase ) - 64 total_score += (i + 1) * name_score __UpperCamelCase = 0 return total_score if __name__ == "__main__": print(solution())
310
0
'''simple docstring''' import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = (DDPMParallelScheduler,) def lowerCamelCase ( self : Tuple , **snake_case_ : List[Any] ): snake_case__ : Tuple = { """num_train_timesteps""": 1_000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**A_ ) return config def lowerCamelCase ( self : str ): for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=A_ ) def lowerCamelCase ( self : Optional[int] ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=A_ , beta_end=A_ ) def lowerCamelCase ( self : Tuple ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=A_ ) def lowerCamelCase ( self : Optional[Any] ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=A_ ) def lowerCamelCase ( self : Optional[Any] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=A_ ) def lowerCamelCase ( self : List[str] ): self.check_over_configs(thresholding=A_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=A_ , prediction_type=A_ , sample_max_value=A_ , ) def lowerCamelCase ( self : Union[str, Any] ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=A_ ) def lowerCamelCase ( self : int ): for t in [0, 500, 999]: self.check_over_forward(time_step=A_ ) def lowerCamelCase ( self : str ): snake_case__ : Dict = self.scheduler_classes[0] snake_case__ : str = self.get_scheduler_config() snake_case__ : Dict = scheduler_class(**A_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def lowerCamelCase ( self : int ): snake_case__ : Dict = self.scheduler_classes[0] snake_case__ : List[str] = self.get_scheduler_config() snake_case__ : List[str] = scheduler_class(**A_ ) snake_case__ : List[str] = len(A_ ) snake_case__ : Union[str, Any] = self.dummy_model() snake_case__ : str = self.dummy_sample_deter snake_case__ : int = self.dummy_sample_deter + 0.1 snake_case__ : Dict = self.dummy_sample_deter - 0.1 snake_case__ : List[Any] = samplea.shape[0] snake_case__ : Union[str, Any] = torch.stack([samplea, samplea, samplea] , dim=0 ) snake_case__ : Tuple = torch.arange(A_ )[0:3, None].repeat(1 , A_ ) snake_case__ : Any = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) snake_case__ : Optional[Any] = scheduler.batch_step_no_noise(A_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) snake_case__ : int = torch.sum(torch.abs(A_ ) ) snake_case__ : Union[str, Any] = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 1_153.1_833 ) < 1E-2 assert abs(result_mean.item() - 0.5005 ) < 1E-3 def lowerCamelCase ( self : str ): snake_case__ : Optional[int] = self.scheduler_classes[0] snake_case__ : int = self.get_scheduler_config() snake_case__ : Optional[int] = scheduler_class(**A_ ) snake_case__ : List[Any] = len(A_ ) snake_case__ : Optional[Any] = self.dummy_model() snake_case__ : Optional[int] = self.dummy_sample_deter snake_case__ : Union[str, Any] = torch.manual_seed(0 ) for t in reversed(range(A_ ) ): # 1. predict noise residual snake_case__ : Tuple = model(A_ , A_ ) # 2. predict previous mean of sample x_t-1 snake_case__ : List[str] = scheduler.step(A_ , A_ , A_ , generator=A_ ).prev_sample snake_case__ : Tuple = pred_prev_sample snake_case__ : int = torch.sum(torch.abs(A_ ) ) snake_case__ : Tuple = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 258.9_606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def lowerCamelCase ( self : Optional[Any] ): snake_case__ : str = self.scheduler_classes[0] snake_case__ : Tuple = self.get_scheduler_config(prediction_type="""v_prediction""" ) snake_case__ : Optional[Any] = scheduler_class(**A_ ) snake_case__ : Union[str, Any] = len(A_ ) snake_case__ : Optional[Any] = self.dummy_model() snake_case__ : Any = self.dummy_sample_deter snake_case__ : Optional[int] = torch.manual_seed(0 ) for t in reversed(range(A_ ) ): # 1. predict noise residual snake_case__ : Union[str, Any] = model(A_ , A_ ) # 2. predict previous mean of sample x_t-1 snake_case__ : Optional[Any] = scheduler.step(A_ , A_ , A_ , generator=A_ ).prev_sample snake_case__ : List[str] = pred_prev_sample snake_case__ : Tuple = torch.sum(torch.abs(A_ ) ) snake_case__ : Any = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 202.0_296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def lowerCamelCase ( self : Any ): snake_case__ : Union[str, Any] = self.scheduler_classes[0] snake_case__ : str = self.get_scheduler_config() snake_case__ : List[Any] = scheduler_class(**A_ ) snake_case__ : Any = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=A_ ) snake_case__ : str = scheduler.timesteps for i, timestep in enumerate(A_ ): if i == len(A_ ) - 1: snake_case__ : Optional[int] = -1 else: snake_case__ : str = timesteps[i + 1] snake_case__ : Any = scheduler.previous_timestep(A_ ) snake_case__ : List[str] = prev_t.item() self.assertEqual(A_ , A_ ) def lowerCamelCase ( self : str ): snake_case__ : Any = self.scheduler_classes[0] snake_case__ : str = self.get_scheduler_config() snake_case__ : Tuple = scheduler_class(**A_ ) snake_case__ : str = [100, 87, 50, 51, 0] with self.assertRaises(A_ , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=A_ ) def lowerCamelCase ( self : List[Any] ): snake_case__ : str = self.scheduler_classes[0] snake_case__ : Optional[Any] = self.get_scheduler_config() snake_case__ : Optional[Any] = scheduler_class(**A_ ) snake_case__ : List[Any] = [100, 87, 50, 1, 0] snake_case__ : Tuple = len(A_ ) with self.assertRaises(A_ , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=A_ , timesteps=A_ ) def lowerCamelCase ( self : Dict ): snake_case__ : List[str] = self.scheduler_classes[0] snake_case__ : int = self.get_scheduler_config() snake_case__ : Union[str, Any] = scheduler_class(**A_ ) snake_case__ : str = [scheduler.config.num_train_timesteps] with self.assertRaises( A_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=A_ )
35
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=True , _lowercase="pt" ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = {'add_prefix_space': True} if isinstance(_lowercase , _lowercase ) and not line.startswith(' ' ) else {} __UpperCamelCase = padding_side return tokenizer( [line] , max_length=_lowercase , padding='max_length' if pad_to_max_length else None , truncation=_lowercase , return_tensors=_lowercase , add_special_tokens=_lowercase , **_lowercase , ) def _A ( _lowercase , _lowercase , _lowercase=None , ) -> List[Any]: """simple docstring""" __UpperCamelCase = input_ids.ne(_lowercase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCamelCase (_a ): def __init__( self: List[str],A_: str,A_: List[str],A_: List[str],A_: List[str],A_: Tuple="train",A_: Any=None,A_: List[str]=None,A_: List[Any]=None,A_: int="",): '''simple docstring''' super().__init__() __UpperCamelCase = Path(A_ ).joinpath(type_path + '.source' ) __UpperCamelCase = Path(A_ ).joinpath(type_path + '.target' ) __UpperCamelCase = self.get_char_lens(self.src_file ) __UpperCamelCase = max_source_length __UpperCamelCase = max_target_length assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}''' __UpperCamelCase = tokenizer __UpperCamelCase = prefix if n_obs is not None: __UpperCamelCase = self.src_lens[:n_obs] __UpperCamelCase = src_lang __UpperCamelCase = tgt_lang def __len__( self: Optional[Any] ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self: int,A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = index + 1 # linecache starts at 1 __UpperCamelCase = self.prefix + linecache.getline(str(self.src_file ),A_ ).rstrip('\n' ) __UpperCamelCase = linecache.getline(str(self.tgt_file ),A_ ).rstrip('\n' ) assert source_line, F'''empty source line for index {index}''' assert tgt_line, F'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer,A_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __UpperCamelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer,A_ ) else self.tokenizer ) __UpperCamelCase = self.tokenizer.generator if isinstance(self.tokenizer,A_ ) else self.tokenizer __UpperCamelCase = encode_line(A_,A_,self.max_source_length,'right' ) __UpperCamelCase = encode_line(A_,A_,self.max_target_length,'right' ) __UpperCamelCase = source_inputs['input_ids'].squeeze() __UpperCamelCase = target_inputs['input_ids'].squeeze() __UpperCamelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def snake_case_ ( A_: List[Any] ): '''simple docstring''' return [len(A_ ) for x in Path(A_ ).open().readlines()] def snake_case_ ( self: Union[str, Any],A_: Any ): '''simple docstring''' __UpperCamelCase = torch.stack([x['input_ids'] for x in batch] ) __UpperCamelCase = torch.stack([x['attention_mask'] for x in batch] ) __UpperCamelCase = torch.stack([x['decoder_input_ids'] for x in batch] ) __UpperCamelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer,A_ ) else self.tokenizer.pad_token_id ) __UpperCamelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer,A_ ) else self.tokenizer.pad_token_id ) __UpperCamelCase = trim_batch(A_,A_ ) __UpperCamelCase, __UpperCamelCase = trim_batch(A_,A_,attention_mask=A_ ) __UpperCamelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch __snake_case = getLogger(__name__) def _A ( _lowercase ) -> Any: """simple docstring""" return list(itertools.chain.from_iterable(_lowercase ) ) def _A ( _lowercase ) -> None: """simple docstring""" __UpperCamelCase = get_git_info() save_json(_lowercase , os.path.join(_lowercase , 'git_log.json' ) ) def _A ( _lowercase , _lowercase , _lowercase=4 , **_lowercase ) -> List[Any]: """simple docstring""" with open(_lowercase , 'w' ) as f: json.dump(_lowercase , _lowercase , indent=_lowercase , **_lowercase ) def _A ( _lowercase ) -> Union[str, Any]: """simple docstring""" with open(_lowercase ) as f: return json.load(_lowercase ) def _A ( ) -> Dict: """simple docstring""" __UpperCamelCase = git.Repo(search_parent_directories=_lowercase ) __UpperCamelCase = { 'repo_id': str(_lowercase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def _A ( _lowercase , _lowercase ) -> List: """simple docstring""" return list(map(_lowercase , _lowercase ) ) def _A ( _lowercase , _lowercase ) -> Tuple: """simple docstring""" with open(_lowercase , 'wb' ) as f: return pickle.dump(_lowercase , _lowercase ) def _A ( _lowercase ) -> List[Any]: """simple docstring""" def remove_articles(_lowercase ): return re.sub(r'\b(a|an|the)\b' , ' ' , _lowercase ) def white_space_fix(_lowercase ): return " ".join(text.split() ) def remove_punc(_lowercase ): __UpperCamelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowercase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowercase ) ) ) ) def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" __UpperCamelCase = normalize_answer(_lowercase ).split() __UpperCamelCase = normalize_answer(_lowercase ).split() __UpperCamelCase = Counter(_lowercase ) & Counter(_lowercase ) __UpperCamelCase = sum(common.values() ) if num_same == 0: return 0 __UpperCamelCase = 1.0 * num_same / len(_lowercase ) __UpperCamelCase = 1.0 * num_same / len(_lowercase ) __UpperCamelCase = (2 * precision * recall) / (precision + recall) return fa def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" return normalize_answer(_lowercase ) == normalize_answer(_lowercase ) def _A ( _lowercase , _lowercase ) -> Dict: """simple docstring""" assert len(_lowercase ) == len(_lowercase ) __UpperCamelCase = 0 for hypo, pred in zip(_lowercase , _lowercase ): em += exact_match_score(_lowercase , _lowercase ) if len(_lowercase ) > 0: em /= len(_lowercase ) return {"em": em} def _A ( _lowercase ) -> Optional[Any]: """simple docstring""" return model_prefix.startswith('rag' ) def _A ( _lowercase , _lowercase , _lowercase ) -> Dict: """simple docstring""" __UpperCamelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __UpperCamelCase = 'dropout_rate' for p in extra_params: if getattr(_lowercase , _lowercase , _lowercase ): if not hasattr(_lowercase , _lowercase ) and not hasattr(_lowercase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_lowercase ) ) delattr(_lowercase , _lowercase ) continue __UpperCamelCase = p if hasattr(_lowercase , _lowercase ) else equivalent_param[p] setattr(_lowercase , _lowercase , getattr(_lowercase , _lowercase ) ) delattr(_lowercase , _lowercase ) return hparams, config
310
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) def lowerCAmelCase_ ( __lowerCAmelCase )-> YolosConfig: '''simple docstring''' UpperCAmelCase : List[str] =YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: UpperCAmelCase : Union[str, Any] =1_92 UpperCAmelCase : Tuple =7_68 UpperCAmelCase : Optional[Any] =12 UpperCAmelCase : str =3 UpperCAmelCase : Optional[int] =[8_00, 13_33] UpperCAmelCase : int =False elif yolos_name == "yolos_s_dWr": UpperCAmelCase : Tuple =3_30 UpperCAmelCase : List[Any] =14 UpperCAmelCase : Tuple =6 UpperCAmelCase : Dict =13_20 elif "yolos_s" in yolos_name: UpperCAmelCase : Union[str, Any] =3_84 UpperCAmelCase : Tuple =15_36 UpperCAmelCase : int =12 UpperCAmelCase : Dict =6 elif "yolos_b" in yolos_name: UpperCAmelCase : List[str] =[8_00, 13_44] UpperCAmelCase : List[str] =91 UpperCAmelCase : Tuple ='''huggingface/label-files''' UpperCAmelCase : Tuple ='''coco-detection-id2label.json''' UpperCAmelCase : Union[str, Any] =json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase : Any ={int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase : Union[str, Any] =idalabel UpperCAmelCase : str ={v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = False )-> Dict: '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase : Optional[int] =state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) UpperCAmelCase : Any =state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : List[str] =in_proj_weight[: config.hidden_size, :] UpperCAmelCase : List[str] =in_proj_bias[: config.hidden_size] UpperCAmelCase : int =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase : Any =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase : Union[str, Any] =in_proj_weight[-config.hidden_size :, :] UpperCAmelCase : Any =in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( __lowerCAmelCase )-> str: '''simple docstring''' if "backbone" in name: UpperCAmelCase : Tuple =name.replace('''backbone''' , '''vit''' ) if "cls_token" in name: UpperCAmelCase : Tuple =name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "det_token" in name: UpperCAmelCase : int =name.replace('''det_token''' , '''embeddings.detection_tokens''' ) if "mid_pos_embed" in name: UpperCAmelCase : Optional[Any] =name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''' ) if "pos_embed" in name: UpperCAmelCase : List[str] =name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: UpperCAmelCase : Union[str, Any] =name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "blocks" in name: UpperCAmelCase : Tuple =name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: UpperCAmelCase : List[Any] =name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: UpperCAmelCase : Dict =name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: UpperCAmelCase : Optional[int] =name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: UpperCAmelCase : str =name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: UpperCAmelCase : Tuple =name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase : str =name.replace('''mlp.fc2''' , '''output.dense''' ) if "class_embed" in name: UpperCAmelCase : Dict =name.replace('''class_embed''' , '''class_labels_classifier''' ) if "bbox_embed" in name: UpperCAmelCase : Optional[Any] =name.replace('''bbox_embed''' , '''bbox_predictor''' ) if "vit.norm" in name: UpperCAmelCase : List[str] =name.replace('''vit.norm''' , '''vit.layernorm''' ) return name def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCAmelCase : List[Any] =orig_state_dict.pop(_lowercase ) if "qkv" in key: UpperCAmelCase : Optional[int] =key.split('''.''' ) UpperCAmelCase : Union[str, Any] =int(key_split[2] ) UpperCAmelCase : str =model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: UpperCAmelCase : Union[str, Any] =val[:dim, :] UpperCAmelCase : Dict =val[ dim : dim * 2, : ] UpperCAmelCase : List[Any] =val[-dim:, :] else: UpperCAmelCase : Any =val[:dim] UpperCAmelCase : Any =val[dim : dim * 2] UpperCAmelCase : Union[str, Any] =val[-dim:] else: UpperCAmelCase : List[Any] =val return orig_state_dict def lowerCAmelCase_ ( )-> torch.Tensor: '''simple docstring''' UpperCAmelCase : List[str] ='''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase : Dict =Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = False )-> Tuple: '''simple docstring''' UpperCAmelCase : Optional[int] =get_yolos_config(_lowercase ) # load original state_dict UpperCAmelCase : Tuple =torch.load(_lowercase , map_location='''cpu''' )['''model'''] # load 🤗 model UpperCAmelCase : Optional[Any] =YolosForObjectDetection(_lowercase ) model.eval() UpperCAmelCase : Optional[int] =convert_state_dict(_lowercase , _lowercase ) model.load_state_dict(_lowercase ) # Check outputs on an image, prepared by YolosImageProcessor UpperCAmelCase : List[Any] =8_00 if yolos_name != '''yolos_ti''' else 5_12 UpperCAmelCase : Tuple =YolosImageProcessor(format='''coco_detection''' , size=_lowercase ) UpperCAmelCase : Dict =image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCAmelCase : Dict =model(**_lowercase ) UpperCAmelCase , UpperCAmelCase : Dict =outputs.logits, outputs.pred_boxes UpperCAmelCase , UpperCAmelCase : Tuple =None, None if yolos_name == "yolos_ti": UpperCAmelCase : Any =torch.tensor( [[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] ) UpperCAmelCase : List[str] =torch.tensor( [[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] ) elif yolos_name == "yolos_s_200_pre": UpperCAmelCase : Dict =torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] ) UpperCAmelCase : Dict =torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] ) elif yolos_name == "yolos_s_300_pre": UpperCAmelCase : Tuple =torch.tensor( [[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] ) UpperCAmelCase : Optional[Any] =torch.tensor( [[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] ) elif yolos_name == "yolos_s_dWr": UpperCAmelCase : str =torch.tensor( [[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] ) UpperCAmelCase : Any =torch.tensor( [[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] ) elif yolos_name == "yolos_base": UpperCAmelCase : str =torch.tensor( [[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] ) UpperCAmelCase : Dict =torch.tensor( [[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] ) else: raise ValueError(f'''Unknown yolos_name: {yolos_name}''' ) assert torch.allclose(logits[0, :3, :3] , _lowercase , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , _lowercase , atol=1e-4 ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(f'''Saving model {yolos_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowercase ) if push_to_hub: UpperCAmelCase : Any ={ '''yolos_ti''': '''yolos-tiny''', '''yolos_s_200_pre''': '''yolos-small''', '''yolos_s_300_pre''': '''yolos-small-300''', '''yolos_s_dWr''': '''yolos-small-dwr''', '''yolos_base''': '''yolos-base''', } print('''Pushing to the hub...''' ) UpperCAmelCase : Optional[Any] =model_mapping[yolos_name] image_processor.push_to_hub(_lowercase , organization='''hustvl''' ) model.push_to_hub(_lowercase , organization='''hustvl''' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--yolos_name''', default='''yolos_s_200_pre''', type=str, help=( '''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',''' ''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.''' ), ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __snake_case = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
348
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __snake_case = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
310
0
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch _A = '''sshleifer/bart-tiny-random''' _A = '''patrickvonplaten/t5-tiny-random''' @require_torch class A ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return AutoConfig.from_pretrained(A_ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ , *lowerCAmelCase_ = create_student_by_copying_alternating_layers(A_, tempfile.mkdtemp(), e=1, d=1 ) self.assertEqual(student.config.num_hidden_layers, 1 ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ , *lowerCAmelCase_ = create_student_by_copying_alternating_layers(A_, tempfile.mkdtemp(), e=1, d=A_ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ , *lowerCAmelCase_ = create_student_by_copying_alternating_layers(A_, tempfile.mkdtemp(), e=1, d=A_ ) self.assertEqual(student.config.encoder_layers, 1 ) self.assertEqual(student.config.decoder_layers, self.teacher_config.encoder_layers ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ , *lowerCAmelCase_ = create_student_by_copying_alternating_layers(A_, tempfile.mkdtemp(), e=1, d=1 ) self.assertEqual(student.config.encoder_layers, 1 ) self.assertEqual(student.config.decoder_layers, 1 ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" with self.assertRaises(A_ ): create_student_by_copying_alternating_layers(A_, tempfile.mkdtemp(), e=A_, d=A_ )
278
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup __snake_case = '''https://www.indeed.co.in/jobs?q=mobile+app+development&l=''' def _A ( _lowercase = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" __UpperCamelCase = BeautifulSoup(requests.get(url + location ).content , 'html.parser' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('div' , attrs={'data-tn-component': 'organicJob'} ): __UpperCamelCase = job.find('a' , attrs={'data-tn-element': 'jobTitle'} ).text.strip() __UpperCamelCase = job.find('span' , {'class': 'company'} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('''Bangalore'''), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
310
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
274
def _A ( _lowercase ) -> list: """simple docstring""" def merge(_lowercase , _lowercase ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(_lowercase ) <= 1: return collection __UpperCamelCase = len(_lowercase ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() __snake_case = input('''Enter numbers separated by a comma:\n''').strip() __snake_case = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
310
0
'''simple docstring''' import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a : def __init__( self , __magic_name__ , __magic_name__=13 , __magic_name__=30 , __magic_name__=2 , __magic_name__=3 , __magic_name__=True , __magic_name__=True , __magic_name__=32 , __magic_name__=5 , __magic_name__=4 , __magic_name__=37 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=10 , __magic_name__=0.0_2 , __magic_name__=None , __magic_name__=2 , ) -> Optional[int]: _a = parent _a = batch_size _a = image_size _a = patch_size _a = num_channels _a = is_training _a = use_labels _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = type_sequence_label_size _a = initializer_range _a = scope _a = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _a = (image_size // patch_size) ** 2 _a = num_patches + 1 def __UpperCAmelCase ( self ) -> Optional[Any]: _a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self ) -> int: return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ) -> int: _a = ViTModel(config=A_ ) model.to(A_ ) model.eval() _a = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ) -> Dict: _a = ViTForMaskedImageModeling(config=A_ ) model.to(A_ ) model.eval() _a = model(A_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _a = 1 _a = ViTForMaskedImageModeling(A_ ) model.to(A_ ) model.eval() _a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _a = model(A_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: _a = self.type_sequence_label_size _a = ViTForImageClassification(A_ ) model.to(A_ ) model.eval() _a = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _a = 1 _a = ViTForImageClassification(A_ ) model.to(A_ ) model.eval() _a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _a = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCAmelCase ( self ) -> Optional[int]: _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class a ( _a , _a , unittest.TestCase ): _lowerCAmelCase = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) _lowerCAmelCase = ( {"""feature-extraction""": ViTModel, """image-classification""": ViTForImageClassification} if is_torch_available() else {} ) _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def __UpperCAmelCase ( self ) -> Optional[int]: _a = ViTModelTester(self ) _a = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def __UpperCAmelCase ( self ) -> Any: self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def __UpperCAmelCase ( self ) -> Union[str, Any]: pass def __UpperCAmelCase ( self ) -> Optional[Any]: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def __UpperCAmelCase ( self ) -> Dict: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(A_ ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def __UpperCAmelCase ( self ) -> Union[str, Any]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __UpperCAmelCase ( self ) -> Optional[int]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A_ ) def __UpperCAmelCase ( self ) -> Tuple: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @slow def __UpperCAmelCase ( self ) -> str: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = ViTModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _A () -> Optional[int]: '''simple docstring''' _a = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class a ( unittest.TestCase ): @cached_property def __UpperCAmelCase ( self ) -> int: return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None @slow def __UpperCAmelCase ( self ) -> str: _a = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ).to(A_ ) _a = self.default_image_processor _a = prepare_img() _a = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): _a = model(**A_ ) # verify the logits _a = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , A_ ) _a = torch.tensor([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1e-4 ) ) @slow def __UpperCAmelCase ( self ) -> List[str]: _a = ViTModel.from_pretrained('facebook/dino-vits8' ).to(A_ ) _a = ViTImageProcessor.from_pretrained('facebook/dino-vits8' , size=4_80 ) _a = prepare_img() _a = image_processor(images=A_ , return_tensors='pt' ) _a = inputs.pixel_values.to(A_ ) # forward pass with torch.no_grad(): _a = model(A_ , interpolate_pos_encoding=A_ ) # verify the logits _a = torch.Size((1, 36_01, 3_84) ) self.assertEqual(outputs.last_hidden_state.shape , A_ ) _a = torch.tensor( [[4.2_3_4_0, 4.3_9_0_6, -6.6_6_9_2], [4.5_4_6_3, 1.8_9_2_8, -6.7_2_5_7], [4.4_4_2_9, 0.8_4_9_6, -5.8_5_8_5]] ).to(A_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , A_ , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def __UpperCAmelCase ( self ) -> Tuple: _a = ViTModel.from_pretrained('facebook/dino-vits8' , torch_dtype=torch.floataa , device_map='auto' ) _a = self.default_image_processor _a = prepare_img() _a = image_processor(images=A_ , return_tensors='pt' ) _a = inputs.pixel_values.to(A_ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): _a = model(A_ )
168
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowerCamelCase (_a ): _lowercase = 0 _lowercase = False _lowercase = 3.0 class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: Any ): '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs(),{} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs(),{'a': 2} ) self.assertDictEqual(MockClass(a=2,b=A_ ).to_kwargs(),{'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2,c=2.2_5 ).to_kwargs(),{'a': 2, 'c': 2.2_5} ) @require_cuda def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = GradScalerKwargs(init_scale=1024,growth_factor=2 ) AcceleratorState._reset_state() __UpperCamelCase = Accelerator(mixed_precision='fp16',kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __UpperCamelCase = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale,1_0_2_4.0 ) self.assertEqual(scaler._growth_factor,2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor,0.5 ) self.assertEqual(scaler._growth_interval,2000 ) self.assertEqual(scaler._enabled,A_ ) @require_multi_gpu def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(A_,env=os.environ.copy() ) if __name__ == "__main__": __snake_case = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) __snake_case = Accelerator(kwargs_handlers=[ddp_scaler]) __snake_case = torch.nn.Linear(1_0_0, 2_0_0) __snake_case = accelerator.prepare(model) # Check the values changed in kwargs __snake_case = '''''' __snake_case = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
310
0
'''simple docstring''' from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract __snake_case = logging.get_logger(__name__) def a ( __a , __a , __a ) -> str: '''simple docstring''' return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def a ( __a , __a , __a = None ) -> Any: '''simple docstring''' UpperCamelCase__ :str = tesseract_config if tesseract_config is not None else '''''' # apply OCR UpperCamelCase__ :Tuple = to_pil_image(_lowercase ) UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = pil_image.size UpperCamelCase__ :Tuple = pytesseract.image_to_data(_lowercase , lang=_lowercase , output_type='''dict''' , config=_lowercase ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[int] = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates UpperCamelCase__ :Union[str, Any] = [idx for idx, word in enumerate(_lowercase ) if not word.strip()] UpperCamelCase__ :Dict = [word for idx, word in enumerate(_lowercase ) if idx not in irrelevant_indices] UpperCamelCase__ :int = [coord for idx, coord in enumerate(_lowercase ) if idx not in irrelevant_indices] UpperCamelCase__ :Optional[Any] = [coord for idx, coord in enumerate(_lowercase ) if idx not in irrelevant_indices] UpperCamelCase__ :Any = [coord for idx, coord in enumerate(_lowercase ) if idx not in irrelevant_indices] UpperCamelCase__ :List[Any] = [coord for idx, coord in enumerate(_lowercase ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format UpperCamelCase__ :Optional[Any] = [] for x, y, w, h in zip(_lowercase , _lowercase , _lowercase , _lowercase ): UpperCamelCase__ :Tuple = [x, y, x + w, y + h] actual_boxes.append(_lowercase ) # finally, normalize the bounding boxes UpperCamelCase__ :Optional[int] = [] for box in actual_boxes: normalized_boxes.append(normalize_box(_lowercase , _lowercase , _lowercase ) ) assert len(_lowercase ) == len(_lowercase ), "Not as many words as there are bounding boxes" return words, normalized_boxes class lowercase ( _a ): """simple docstring""" _a = ['pixel_values'] def __init__( self , UpperCamelCase_ = True , UpperCamelCase_ = None , UpperCamelCase_ = PILImageResampling.BILINEAR , UpperCamelCase_ = True , UpperCamelCase_ = None , UpperCamelCase_ = "" , **UpperCamelCase_ , ): '''simple docstring''' super().__init__(**A_ ) UpperCamelCase__ :List[Any] = size if size is not None else {'''height''': 224, '''width''': 224} UpperCamelCase__ :List[Any] = get_size_dict(A_ ) UpperCamelCase__ :Tuple = do_resize UpperCamelCase__ :List[str] = size UpperCamelCase__ :List[Any] = resample UpperCamelCase__ :Tuple = apply_ocr UpperCamelCase__ :Dict = ocr_lang UpperCamelCase__ :Union[str, Any] = tesseract_config def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = PILImageResampling.BILINEAR , UpperCamelCase_ = None , **UpperCamelCase_ , ): '''simple docstring''' UpperCamelCase__ :int = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) UpperCamelCase__ :int = (size['''height'''], size['''width''']) return resize(A_ , size=A_ , resample=A_ , data_format=A_ , **A_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = ChannelDimension.FIRST , **UpperCamelCase_ , ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ :int = size if size is not None else self.size UpperCamelCase__ :Any = get_size_dict(A_ ) UpperCamelCase__ :Any = resample if resample is not None else self.resample UpperCamelCase__ :Tuple = apply_ocr if apply_ocr is not None else self.apply_ocr UpperCamelCase__ :Optional[int] = ocr_lang if ocr_lang is not None else self.ocr_lang UpperCamelCase__ :str = tesseract_config if tesseract_config is not None else self.tesseract_config UpperCamelCase__ :int = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) # All transformations expect numpy arrays. UpperCamelCase__ :Tuple = [to_numpy_array(A_ ) for image in images] if apply_ocr: requires_backends(self , '''pytesseract''' ) UpperCamelCase__ :Any = [] UpperCamelCase__ :int = [] for image in images: UpperCamelCase__ , UpperCamelCase__ :List[Any] = apply_tesseract(A_ , A_ , A_ ) words_batch.append(A_ ) boxes_batch.append(A_ ) if do_resize: UpperCamelCase__ :Any = [self.resize(image=A_ , size=A_ , resample=A_ ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) UpperCamelCase__ :List[str] = [flip_channel_order(A_ ) for image in images] UpperCamelCase__ :str = [to_channel_dimension_format(A_ , A_ ) for image in images] UpperCamelCase__ :Dict = BatchFeature(data={'''pixel_values''': images} , tensor_type=A_ ) if apply_ocr: UpperCamelCase__ :List[str] = words_batch UpperCamelCase__ :Optional[Any] = boxes_batch return data
97
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class __lowerCamelCase (_a ): _lowercase = ["""image_processor""", """tokenizer"""] _lowercase = """OwlViTImageProcessor""" _lowercase = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self: int,A_: Tuple=None,A_: int=None,**A_: int ): '''simple docstring''' __UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.',A_,) __UpperCamelCase = kwargs.pop('feature_extractor' ) __UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(A_,A_ ) def __call__( self: str,A_: Dict=None,A_: Optional[int]=None,A_: Any=None,A_: Tuple="max_length",A_: int="np",**A_: Optional[Any] ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(A_,A_ ) or (isinstance(A_,A_ ) and not isinstance(text[0],A_ )): __UpperCamelCase = [self.tokenizer(A_,padding=A_,return_tensors=A_,**A_ )] elif isinstance(A_,A_ ) and isinstance(text[0],A_ ): __UpperCamelCase = [] # Maximum number of queries across batch __UpperCamelCase = max([len(A_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(A_ ) != max_num_queries: __UpperCamelCase = t + [' '] * (max_num_queries - len(A_ )) __UpperCamelCase = self.tokenizer(A_,padding=A_,return_tensors=A_,**A_ ) encodings.append(A_ ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": __UpperCamelCase = np.concatenate([encoding['input_ids'] for encoding in encodings],axis=0 ) __UpperCamelCase = np.concatenate([encoding['attention_mask'] for encoding in encodings],axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __UpperCamelCase = jnp.concatenate([encoding['input_ids'] for encoding in encodings],axis=0 ) __UpperCamelCase = jnp.concatenate([encoding['attention_mask'] for encoding in encodings],axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __UpperCamelCase = torch.cat([encoding['input_ids'] for encoding in encodings],dim=0 ) __UpperCamelCase = torch.cat([encoding['attention_mask'] for encoding in encodings],dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __UpperCamelCase = tf.stack([encoding['input_ids'] for encoding in encodings],axis=0 ) __UpperCamelCase = tf.stack([encoding['attention_mask'] for encoding in encodings],axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) __UpperCamelCase = BatchEncoding() __UpperCamelCase = input_ids __UpperCamelCase = attention_mask if query_images is not None: __UpperCamelCase = BatchEncoding() __UpperCamelCase = self.image_processor( A_,return_tensors=A_,**A_ ).pixel_values __UpperCamelCase = query_pixel_values if images is not None: __UpperCamelCase = self.image_processor(A_,return_tensors=A_,**A_ ) if text is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**A_ ),tensor_type=A_ ) def snake_case_ ( self: Optional[int],*A_: int,**A_: List[Any] ): '''simple docstring''' return self.image_processor.post_process(*A_,**A_ ) def snake_case_ ( self: str,*A_: Optional[int],**A_: List[Any] ): '''simple docstring''' return self.image_processor.post_process_object_detection(*A_,**A_ ) def snake_case_ ( self: str,*A_: Tuple,**A_: int ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*A_,**A_ ) def snake_case_ ( self: List[str],*A_: str,**A_: List[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*A_,**A_ ) def snake_case_ ( self: int,*A_: Any,**A_: Tuple ): '''simple docstring''' return self.tokenizer.decode(*A_,**A_ ) @property def snake_case_ ( self: Optional[Any] ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.',A_,) return self.image_processor_class @property def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.',A_,) return self.image_processor
310
0
'''simple docstring''' import math import sys def UpperCAmelCase_ ( __lowercase : Dict ) -> str: '''simple docstring''' _UpperCAmelCase = "" try: with open(_lowercase , "rb" ) as binary_file: _UpperCAmelCase = binary_file.read() for dat in data: _UpperCAmelCase = f'{dat:08b}' result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def UpperCAmelCase_ ( __lowercase : Union[str, Any] ) -> str: '''simple docstring''' _UpperCAmelCase = {"0": "0", "1": "1"} _UpperCAmelCase , _UpperCAmelCase = "", "" _UpperCAmelCase = len(_lowercase ) for i in range(len(_lowercase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue _UpperCAmelCase = lexicon[curr_string] result += last_match_id _UpperCAmelCase = last_match_id + "0" if math.loga(_lowercase ).is_integer(): _UpperCAmelCase = {} for curr_key in list(_lowercase ): _UpperCAmelCase = lexicon.pop(_lowercase ) _UpperCAmelCase = new_lex _UpperCAmelCase = last_match_id + "1" index += 1 _UpperCAmelCase = "" return result def UpperCAmelCase_ ( __lowercase : int , __lowercase : Tuple ) -> None: '''simple docstring''' _UpperCAmelCase = 8 try: with open(_lowercase , "wb" ) as opened_file: _UpperCAmelCase = [ to_write[i : i + byte_length] for i in range(0 , len(_lowercase ) , _lowercase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(_lowercase , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def UpperCAmelCase_ ( __lowercase : List[Any] ) -> str: '''simple docstring''' _UpperCAmelCase = 0 for letter in data_bits: if letter == "1": break counter += 1 _UpperCAmelCase = data_bits[counter:] _UpperCAmelCase = data_bits[counter + 1 :] return data_bits def UpperCAmelCase_ ( __lowercase : Optional[int] , __lowercase : int ) -> None: '''simple docstring''' _UpperCAmelCase = read_file_binary(_lowercase ) _UpperCAmelCase = remove_prefix(_lowercase ) _UpperCAmelCase = decompress_data(_lowercase ) write_file_binary(_lowercase , _lowercase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
22
import math def _A ( _lowercase ) -> int: """simple docstring""" if not isinstance(_lowercase , _lowercase ): __UpperCamelCase = f'''Input value of [number={number}] must be an integer''' raise TypeError(_lowercase ) if number < 1: __UpperCamelCase = f'''Input value of [number={number}] must be > 0''' raise ValueError(_lowercase ) elif number == 1: return 3 elif number == 2: return 5 else: __UpperCamelCase = int(math.log(number // 3 , 2 ) ) + 2 __UpperCamelCase = [3, 5] __UpperCamelCase = 2 __UpperCamelCase = 3 for block in range(1 , _lowercase ): for _ in range(_lowercase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(1_1): __snake_case = 0 try: __snake_case = proth(number) except ValueError: print(f"""ValueError: there is no {number}th Proth number""") continue print(f"""The {number}th Proth number: {value}""")
310
0
def lowerCAmelCase_ ( __a , __a , __a ) -> bool: """simple docstring""" return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(_lowercase ) ) def lowerCAmelCase_ ( __a , __a , __a , __a ) -> bool: """simple docstring""" if index == len(_lowercase ): return True # Recursive Step for i in range(_lowercase ): if valid_coloring(graph[index] , _lowercase , _lowercase ): # Color current vertex lowerCamelCase__: int =i # Validate coloring if util_color(_lowercase , _lowercase , _lowercase , index + 1 ): return True # Backtrack lowerCamelCase__: List[Any] =-1 return False def lowerCAmelCase_ ( __a , __a ) -> list[int]: """simple docstring""" lowerCamelCase__: int =[-1] * len(_lowercase ) if util_color(_lowercase , _lowercase , _lowercase , 0 ): return colored_vertices return []
10
import torch from transformers import AutoModel class __lowerCamelCase (torch.nn.Module ): def __init__( self: Union[str, Any],A_: Tuple="sayef/fsner-bert-base-uncased" ): '''simple docstring''' super(A_,self ).__init__() __UpperCamelCase = AutoModel.from_pretrained(A_,return_dict=A_ ) __UpperCamelCase = torch.nn.CosineSimilarity(3,1E-08 ) __UpperCamelCase = torch.nn.Softmax(dim=1 ) def snake_case_ ( self: Tuple,**A_: Union[str, Any] ): '''simple docstring''' return self.bert(**A_ ).last_hidden_state def snake_case_ ( self: Union[str, Any],A_: Union[str, Any] ): '''simple docstring''' return token_embeddings.sum(2,keepdim=A_ ) def snake_case_ ( self: List[str],A_: Dict,A_: Union[str, Any],A_: Union[str, Any]=1 ): '''simple docstring''' return self.softmax(T * self.cos(A_,A_ ) ) def snake_case_ ( self: Optional[int],A_: Union[str, Any],A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = W_supports['sizes'].tolist() __UpperCamelCase = W_supports['start_token_id'].item() __UpperCamelCase = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] __UpperCamelCase = self.BERT(**A_ ) __UpperCamelCase = self.BERT(**A_ ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = W_supports['input_ids'] == start_token_id __UpperCamelCase = W_supports['input_ids'] == end_token_id for i, size in enumerate(A_ ): if i == 0: __UpperCamelCase = 0 else: __UpperCamelCase = support_sizes[i - 1] __UpperCamelCase = S[s : s + size][start_token_masks[s : s + size]] __UpperCamelCase = S[s : s + size][end_token_masks[s : s + size]] __UpperCamelCase = torch.matmul(q[i],s_start.T ).sum(1 ).softmax(0 ) __UpperCamelCase = torch.matmul(q[i],s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: __UpperCamelCase = torch.vstack((p_starts, p_start) ) __UpperCamelCase = torch.vstack((p_ends, p_end) ) else: __UpperCamelCase = p_start __UpperCamelCase = p_end return p_starts, p_ends
310
0
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin lowercase__ : List[str] = "\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n" class UpperCAmelCase ( unittest.TestCase , _a ): '''simple docstring''' def snake_case__ ( self : List[Any] ): """simple docstring""" snake_case_ = load_tool("text-question-answering" ) self.tool.setup() snake_case_ = load_tool("text-question-answering" , remote=A_ ) def snake_case__ ( self : str ): """simple docstring""" snake_case_ = self.tool(A_ , "What did Hugging Face do in April 2021?" ) self.assertEqual(A_ , "launched the BigScience Research Workshop" ) def snake_case__ ( self : Any ): """simple docstring""" snake_case_ = self.remote_tool(A_ , "What did Hugging Face do in April 2021?" ) self.assertEqual(A_ , "launched the BigScience Research Workshop" ) def snake_case__ ( self : Any ): """simple docstring""" snake_case_ = self.tool(text=A_ , question="What did Hugging Face do in April 2021?" ) self.assertEqual(A_ , "launched the BigScience Research Workshop" ) def snake_case__ ( self : Tuple ): """simple docstring""" snake_case_ = self.remote_tool(text=A_ , question="What did Hugging Face do in April 2021?" ) self.assertEqual(A_ , "launched the BigScience Research Workshop" )
187
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = BioGptTokenizer _lowercase = False def snake_case_ ( self: Any ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCamelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] __UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) ) __UpperCamelCase = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file,'w' ) as fp: fp.write(json.dumps(A_ ) ) with open(self.merges_file,'w' ) as fp: fp.write('\n'.join(A_ ) ) def snake_case_ ( self: Optional[int],A_: List[Any] ): '''simple docstring''' __UpperCamelCase = 'lower newer' __UpperCamelCase = 'lower newer' return input_text, output_text def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = BioGptTokenizer(self.vocab_file,self.merges_file ) __UpperCamelCase = 'lower' __UpperCamelCase = ['low', 'er</w>'] __UpperCamelCase = tokenizer.tokenize(A_ ) self.assertListEqual(A_,A_ ) __UpperCamelCase = tokens + ['<unk>'] __UpperCamelCase = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ),A_ ) @slow def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) __UpperCamelCase = tokenizer.encode('sequence builders',add_special_tokens=A_ ) __UpperCamelCase = tokenizer.encode('multi-sequence build',add_special_tokens=A_ ) __UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_ ) __UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_,A_ ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
310
0
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : Dict = logging.get_logger(__name__) UpperCAmelCase__ : Optional[Any] = { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/config.json', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/config.json', } class UpperCAmelCase ( _a ): '''simple docstring''' __UpperCamelCase : Optional[int] = '''xlnet''' __UpperCamelCase : List[Any] = ['''mems'''] __UpperCamelCase : List[Any] = { '''n_token''': '''vocab_size''', # Backward compatibility '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : List[Any] , lowerCAmelCase_ : Optional[int]=3_2_0_0_0 , lowerCAmelCase_ : List[Any]=1_0_2_4 , lowerCAmelCase_ : List[str]=2_4 , lowerCAmelCase_ : str=1_6 , lowerCAmelCase_ : Optional[Any]=4_0_9_6 , lowerCAmelCase_ : Union[str, Any]="gelu" , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Union[str, Any]="bi" , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : Optional[int]=1e-12 , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : int=5_1_2 , lowerCAmelCase_ : str=None , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Tuple=-1 , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : str="last" , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Union[str, Any]="tanh" , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : List[Any]=5 , lowerCAmelCase_ : Union[str, Any]=5 , lowerCAmelCase_ : Union[str, Any]=5 , lowerCAmelCase_ : Optional[int]=1 , lowerCAmelCase_ : Union[str, Any]=2 , **lowerCAmelCase_ : Union[str, Any] , ): """simple docstring""" _A: str = vocab_size _A: Tuple = d_model _A: Dict = n_layer _A: Optional[Any] = n_head if d_model % n_head != 0: raise ValueError(F"""\'d_model % n_head\' ({d_model % n_head}) should be equal to 0""" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F"""`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})""" ) _A: Union[str, Any] = d_model // n_head _A: List[Any] = ff_activation _A: List[Any] = d_inner _A: Optional[int] = untie_r _A: Any = attn_type _A: Optional[Any] = initializer_range _A: Optional[int] = layer_norm_eps _A: str = dropout _A: str = mem_len _A: Union[str, Any] = reuse_len _A: Any = bi_data _A: Any = clamp_len _A: Any = same_length _A: str = summary_type _A: Union[str, Any] = summary_use_proj _A: Optional[int] = summary_activation _A: Optional[int] = summary_last_dropout _A: Union[str, Any] = start_n_top _A: Optional[Any] = end_n_top _A: Optional[int] = bos_token_id _A: str = pad_token_id _A: List[Any] = eos_token_id if "use_cache" in kwargs: warnings.warn( '''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`''' ''' instead.''' , A_ , ) _A: List[str] = kwargs['''use_cache'''] _A: str = use_mems_eval _A: Union[str, Any] = use_mems_train super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) @property def __magic_name__ ( self : Optional[int] ): """simple docstring""" logger.info(F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def __magic_name__ ( self : int , lowerCAmelCase_ : List[Any] ): """simple docstring""" raise NotImplementedError( F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
121
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __snake_case = r''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(_a ) class __lowerCamelCase (_a ): _lowercase = """rag""" _lowercase = True def __init__( self: Tuple,A_: Any=None,A_: Any=True,A_: List[Any]=None,A_: Optional[int]=None,A_: List[Any]=None,A_: str=None,A_: Union[str, Any]=None,A_: List[Any]=" / ",A_: Union[str, Any]=" // ",A_: List[Any]=5,A_: Optional[int]=300,A_: Tuple=768,A_: Tuple=8,A_: Optional[Any]="wiki_dpr",A_: int="train",A_: Union[str, Any]="compressed",A_: Optional[int]=None,A_: List[Any]=None,A_: List[str]=False,A_: List[str]=False,A_: str=0.0,A_: List[Any]=True,A_: Tuple=False,A_: int=False,A_: Dict=False,A_: Tuple=True,A_: int=None,**A_: Optional[int],): '''simple docstring''' super().__init__( bos_token_id=A_,pad_token_id=A_,eos_token_id=A_,decoder_start_token_id=A_,forced_eos_token_id=A_,is_encoder_decoder=A_,prefix=A_,vocab_size=A_,**A_,) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" __UpperCamelCase = kwargs.pop('question_encoder' ) __UpperCamelCase = question_encoder_config.pop('model_type' ) __UpperCamelCase = kwargs.pop('generator' ) __UpperCamelCase = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig __UpperCamelCase = AutoConfig.for_model(A_,**A_ ) __UpperCamelCase = AutoConfig.for_model(A_,**A_ ) __UpperCamelCase = reduce_loss __UpperCamelCase = label_smoothing __UpperCamelCase = exclude_bos_score __UpperCamelCase = do_marginalize __UpperCamelCase = title_sep __UpperCamelCase = doc_sep __UpperCamelCase = n_docs __UpperCamelCase = max_combined_length __UpperCamelCase = dataset __UpperCamelCase = dataset_split __UpperCamelCase = index_name __UpperCamelCase = retrieval_vector_size __UpperCamelCase = retrieval_batch_size __UpperCamelCase = passages_path __UpperCamelCase = index_path __UpperCamelCase = use_dummy_dataset __UpperCamelCase = output_retrieved __UpperCamelCase = do_deduplication __UpperCamelCase = use_cache if self.forced_eos_token_id is None: __UpperCamelCase = getattr(self.generator,'forced_eos_token_id',A_ ) @classmethod def snake_case_ ( cls: Any,A_: PretrainedConfig,A_: PretrainedConfig,**A_: int ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict(),generator=generator_config.to_dict(),**A_ ) def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = copy.deepcopy(self.__dict__ ) __UpperCamelCase = self.question_encoder.to_dict() __UpperCamelCase = self.generator.to_dict() __UpperCamelCase = self.__class__.model_type return output
310
0
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class snake_case : SCREAMING_SNAKE_CASE_ : Any = 42 # setable values SCREAMING_SNAKE_CASE_ : str = 42 SCREAMING_SNAKE_CASE_ : int = 42 SCREAMING_SNAKE_CASE_ : str = None @classmethod def lowercase_ ( cls : Optional[int] , UpperCamelCase__ : CommonSchedulerState , UpperCamelCase__ : jnp.ndarray , UpperCamelCase__ : jnp.ndarray)-> Dict: '''simple docstring''' return cls(common=A_ , init_noise_sigma=A_ , timesteps=A_) @dataclass class snake_case ( _a ): SCREAMING_SNAKE_CASE_ : int = 42 class snake_case ( _a, _a ): SCREAMING_SNAKE_CASE_ : Optional[int] = [e.name for e in FlaxKarrasDiffusionSchedulers] SCREAMING_SNAKE_CASE_ : Union[str, Any] = 42 @property def lowercase_ ( self : List[Any])-> Optional[Any]: '''simple docstring''' return True @register_to_config def __init__( self : Tuple , UpperCamelCase__ : int = 1_0_0_0 , UpperCamelCase__ : float = 0.0001 , UpperCamelCase__ : float = 0.02 , UpperCamelCase__ : str = "linear" , UpperCamelCase__ : Optional[jnp.ndarray] = None , UpperCamelCase__ : str = "fixed_small" , UpperCamelCase__ : bool = True , UpperCamelCase__ : str = "epsilon" , UpperCamelCase__ : jnp.dtype = jnp.floataa , )-> Any: '''simple docstring''' __lowerCAmelCase: List[str] = dtype def lowercase_ ( self : str , UpperCamelCase__ : Optional[CommonSchedulerState] = None)-> Dict: '''simple docstring''' if common is None: __lowerCAmelCase: str = CommonSchedulerState.create(self) # standard deviation of the initial noise distribution __lowerCAmelCase: List[str] = jnp.array(1.0 , dtype=self.dtype) __lowerCAmelCase: Optional[int] = jnp.arange(0 , self.config.num_train_timesteps).round()[::-1] return DDPMSchedulerState.create( common=A_ , init_noise_sigma=A_ , timesteps=A_ , ) def lowercase_ ( self : Dict , UpperCamelCase__ : DDPMSchedulerState , UpperCamelCase__ : jnp.ndarray , UpperCamelCase__ : Optional[int] = None)-> Dict: '''simple docstring''' return sample def lowercase_ ( self : int , UpperCamelCase__ : DDPMSchedulerState , UpperCamelCase__ : int , UpperCamelCase__ : Tuple = ())-> List[str]: '''simple docstring''' __lowerCAmelCase: Any = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 __lowerCAmelCase: Any = (jnp.arange(0 , A_) * step_ratio).round()[::-1] return state.replace( num_inference_steps=A_ , timesteps=A_ , ) def lowercase_ ( self : str , UpperCamelCase__ : DDPMSchedulerState , UpperCamelCase__ : List[str] , UpperCamelCase__ : str=None , UpperCamelCase__ : Union[str, Any]=None)-> Tuple: '''simple docstring''' __lowerCAmelCase: List[Any] = state.common.alphas_cumprod[t] __lowerCAmelCase: int = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype)) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __lowerCAmelCase: Tuple = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: __lowerCAmelCase: Optional[int] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": __lowerCAmelCase: Optional[Any] = jnp.clip(A_ , a_min=1e-20) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": __lowerCAmelCase: Optional[int] = jnp.log(jnp.clip(A_ , a_min=1e-20)) elif variance_type == "fixed_large": __lowerCAmelCase: Dict = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log __lowerCAmelCase: Optional[Any] = jnp.log(state.common.betas[t]) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": __lowerCAmelCase: Any = variance __lowerCAmelCase: Dict = state.common.betas[t] __lowerCAmelCase: Any = (predicted_variance + 1) / 2 __lowerCAmelCase: Union[str, Any] = frac * max_log + (1 - frac) * min_log return variance def lowercase_ ( self : Optional[int] , UpperCamelCase__ : DDPMSchedulerState , UpperCamelCase__ : jnp.ndarray , UpperCamelCase__ : int , UpperCamelCase__ : jnp.ndarray , UpperCamelCase__ : Optional[jax.random.KeyArray] = None , UpperCamelCase__ : bool = True , )-> Tuple: '''simple docstring''' __lowerCAmelCase: Tuple = timestep if key is None: __lowerCAmelCase: str = jax.random.PRNGKey(0) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: __lowerCAmelCase , __lowerCAmelCase: List[str] = jnp.split(A_ , sample.shape[1] , axis=1) else: __lowerCAmelCase: List[Any] = None # 1. compute alphas, betas __lowerCAmelCase: int = state.common.alphas_cumprod[t] __lowerCAmelCase: Union[str, Any] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype)) __lowerCAmelCase: Tuple = 1 - alpha_prod_t __lowerCAmelCase: List[Any] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __lowerCAmelCase: Optional[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __lowerCAmelCase: Optional[Any] = model_output elif self.config.prediction_type == "v_prediction": __lowerCAmelCase: List[str] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` " " for the FlaxDDPMScheduler.") # 3. Clip "predicted x_0" if self.config.clip_sample: __lowerCAmelCase: List[Any] = jnp.clip(A_ , -1 , 1) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowerCAmelCase: Union[str, Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t __lowerCAmelCase: Optional[int] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowerCAmelCase: Tuple = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): __lowerCAmelCase: Optional[int] = jax.random.split(A_ , num=1) __lowerCAmelCase: List[str] = jax.random.normal(A_ , shape=model_output.shape , dtype=self.dtype) return (self._get_variance(A_ , A_ , predicted_variance=A_) ** 0.5) * noise __lowerCAmelCase: Optional[Any] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype)) __lowerCAmelCase: List[str] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=A_ , state=A_) def lowercase_ ( self : int , UpperCamelCase__ : DDPMSchedulerState , UpperCamelCase__ : jnp.ndarray , UpperCamelCase__ : jnp.ndarray , UpperCamelCase__ : jnp.ndarray , )-> List[Any]: '''simple docstring''' return add_noise_common(state.common , A_ , A_ , A_) def lowercase_ ( self : Tuple , UpperCamelCase__ : DDPMSchedulerState , UpperCamelCase__ : jnp.ndarray , UpperCamelCase__ : jnp.ndarray , UpperCamelCase__ : jnp.ndarray , )-> Any: '''simple docstring''' return get_velocity_common(state.common , A_ , A_ , A_) def __len__( self : List[str])-> Union[str, Any]: '''simple docstring''' return self.config.num_train_timesteps
217
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class __lowerCamelCase (_a ): _lowercase = """M-CLIP""" def __init__( self: int,A_: Any=1024,A_: Union[str, Any]=768,**A_: str ): '''simple docstring''' __UpperCamelCase = transformerDimSize __UpperCamelCase = imageDimSize super().__init__(**A_ ) class __lowerCamelCase (_a ): _lowercase = MCLIPConfig def __init__( self: int,A_: Optional[Any],*A_: List[str],**A_: Union[str, Any] ): '''simple docstring''' super().__init__(A_,*A_,**A_ ) __UpperCamelCase = XLMRobertaModel(A_ ) __UpperCamelCase = torch.nn.Linear( in_features=config.transformerDimensions,out_features=config.numDims ) def snake_case_ ( self: Dict,A_: int,A_: Optional[int] ): '''simple docstring''' __UpperCamelCase = self.transformer(input_ids=A_,attention_mask=A_ )[0] __UpperCamelCase = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(A_ ), embs
310
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) __a = torch.device("cpu") def __snake_case( ) -> Optional[int]: snake_case__ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case__ : int = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im def __snake_case( _lowerCAmelCase ) -> Any: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: snake_case__ : Dict = dct.pop(_lowercase ) snake_case__ : Dict = val def __snake_case( _lowerCAmelCase ) -> Any: snake_case__ : Tuple = [] for k in state_dict.keys(): snake_case__ : Optional[int] = k if ".pwconv" in k: snake_case__ : List[str] = k_new.replace(""".pwconv""" , """.point_wise_conv""" ) if ".dwconv" in k: snake_case__ : Dict = k_new.replace(""".dwconv""" , """.depth_wise_conv""" ) if ".Proj." in k: snake_case__ : Union[str, Any] = k_new.replace(""".Proj.""" , """.proj.""" ) if "patch_embed" in k_new: snake_case__ : Optional[int] = k_new.replace("""patch_embed""" , """swiftformer.patch_embed.patch_embedding""" ) if "network" in k_new: snake_case__ : Any = k_new.split(""".""" ) if ls[2].isdigit(): snake_case__ : Dict = """swiftformer.encoder.network.""" + ls[1] + """.blocks.""" + ls[2] + """.""" + """.""".join(ls[3:] ) else: snake_case__ : List[Any] = k_new.replace("""network""" , """swiftformer.encoder.network""" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: snake_case__ : Any = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size snake_case__ : Union[str, Any] = 1_000 snake_case__ : Union[str, Any] = """huggingface/label-files""" snake_case__ : List[Any] = """imagenet-1k-id2label.json""" snake_case__ : Dict = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) ) snake_case__ : Tuple = {int(_lowercase ): v for k, v in idalabel.items()} snake_case__ : str = idalabel snake_case__ : Union[str, Any] = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": snake_case__ : List[Any] = [3, 3, 6, 4] snake_case__ : List[Any] = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": snake_case__ : List[Any] = [3, 3, 9, 6] snake_case__ : Dict = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": snake_case__ : str = [4, 3, 10, 5] snake_case__ : List[str] = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": snake_case__ : Optional[int] = [4, 4, 12, 6] snake_case__ : Union[str, Any] = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("""https""" ): snake_case__ : int = torch.hub.load_state_dict_from_url(_lowercase , map_location="""cpu""" , check_hash=_lowercase ) else: snake_case__ : int = torch.load(_lowercase , map_location="""cpu""" ) snake_case__ : Dict = checkpoint snake_case__ : List[Any] = create_rename_keys(_lowercase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(_lowercase , _lowercase , _lowercase ) # load HuggingFace model snake_case__ : Any = SwiftFormerForImageClassification(_lowercase ).eval() hf_model.load_state_dict(_lowercase ) # prepare test inputs snake_case__ : Dict = prepare_img() snake_case__ : List[str] = ViTImageProcessor.from_pretrained("""preprocessor_config""" ) snake_case__ : Tuple = processor(images=_lowercase , return_tensors="""pt""" ) # compare outputs from both models snake_case__ : Any = get_expected_output(_lowercase ) snake_case__ : List[Any] = hf_model(inputs["""pixel_values"""] ).logits assert hf_logits.shape == torch.Size([1, 1_000] ) assert torch.allclose(hf_logits[0, 0:5] , _lowercase , atol=1e-3 ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(f"Saving model {swiftformer_name} to {pytorch_dump_folder_path}" ) hf_model.save_pretrained(_lowercase ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swiftformer_name", default="swiftformer_xs", choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"], type=str, help="Name of the SwiftFormer model you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="./converted_outputs/", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.") __a = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
35
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class __lowerCamelCase : _lowercase = XGLMConfig _lowercase = {} _lowercase = """gelu""" def __init__( self: Optional[int],A_: Dict,A_: Any=14,A_: Optional[int]=7,A_: str=True,A_: Any=True,A_: Optional[int]=True,A_: Optional[int]=99,A_: List[str]=32,A_: Any=2,A_: Tuple=4,A_: List[str]=37,A_: Dict="gelu",A_: int=0.1,A_: List[str]=0.1,A_: int=512,A_: List[Any]=0.0_2,): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = d_model __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = ffn_dim __UpperCamelCase = activation_function __UpperCamelCase = activation_dropout __UpperCamelCase = attention_dropout __UpperCamelCase = max_position_embeddings __UpperCamelCase = initializer_range __UpperCamelCase = None __UpperCamelCase = 0 __UpperCamelCase = 2 __UpperCamelCase = 1 def snake_case_ ( self: Dict ): '''simple docstring''' return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length],self.vocab_size ),clip_value_min=0,clip_value_max=3 ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = self.get_config() __UpperCamelCase = floats_tensor([self.num_hidden_layers, self.num_attention_heads],2 ) return ( config, input_ids, input_mask, head_mask, ) def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' return XGLMConfig( vocab_size=self.vocab_size,d_model=self.hidden_size,num_layers=self.num_hidden_layers,attention_heads=self.num_attention_heads,ffn_dim=self.ffn_dim,activation_function=self.activation_function,activation_dropout=self.activation_dropout,attention_dropout=self.attention_dropout,max_position_embeddings=self.max_position_embeddings,initializer_range=self.initializer_range,use_cache=A_,bos_token_id=self.bos_token_id,eos_token_id=self.eos_token_id,pad_token_id=self.pad_token_id,return_dict=A_,) def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ) = config_and_inputs __UpperCamelCase = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class __lowerCamelCase (_a , _a , unittest.TestCase ): _lowercase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () _lowercase = (TFXGLMForCausalLM,) if is_tf_available() else () _lowercase = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) _lowercase = False _lowercase = False _lowercase = False def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = TFXGLMModelTester(self ) __UpperCamelCase = ConfigTester(self,config_class=A_,n_embd=37 ) def snake_case_ ( self: Any ): '''simple docstring''' self.config_tester.run_common_tests() @slow def snake_case_ ( self: Any ): '''simple docstring''' for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = TFXGLMModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def snake_case_ ( self: Tuple ): '''simple docstring''' super().test_resize_token_embeddings() @require_tf class __lowerCamelCase (unittest.TestCase ): @slow def snake_case_ ( self: Optional[Any],A_: int=True ): '''simple docstring''' __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = tf.convert_to_tensor([[2, 268, 9865]],dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __UpperCamelCase = [2, 268, 9865, 67, 11, 1988, 5_7252, 9865, 5, 984, 67, 1988, 21_3838, 1658, 53, 7_0446, 33, 6657, 278, 1581] # fmt: on __UpperCamelCase = model.generate(A_,do_sample=A_,num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist(),A_ ) @slow def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) __UpperCamelCase = tokenizer('Today is a nice day and',return_tensors='tf' ) __UpperCamelCase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): __UpperCamelCase = model.generate(A_,do_sample=A_,seed=[7, 0] ) __UpperCamelCase = tokenizer.decode(output_ids[0],skip_special_tokens=A_ ) __UpperCamelCase = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(A_,A_ ) @slow def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = 'left' # use different length sentences to test batching __UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] __UpperCamelCase = tokenizer(A_,return_tensors='tf',padding=A_ ) __UpperCamelCase = inputs['input_ids'] __UpperCamelCase = model.generate(input_ids=A_,attention_mask=inputs['attention_mask'],max_new_tokens=12 ) __UpperCamelCase = tokenizer(sentences[0],return_tensors='tf' ).input_ids __UpperCamelCase = model.generate(input_ids=A_,max_new_tokens=12 ) __UpperCamelCase = tokenizer(sentences[1],return_tensors='tf' ).input_ids __UpperCamelCase = model.generate(input_ids=A_,max_new_tokens=12 ) __UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ ) __UpperCamelCase = tokenizer.decode(output_non_padded[0],skip_special_tokens=A_ ) __UpperCamelCase = tokenizer.decode(output_padded[0],skip_special_tokens=A_ ) __UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(A_,A_ ) self.assertListEqual(A_,[non_padded_sentence, padded_sentence] )
310
0
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class __snake_case ( unittest.TestCase ): __lowerCamelCase : List[Any] = MODEL_FOR_CAUSAL_LM_MAPPING __lowerCamelCase : str = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : Tuple =pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output UpperCAmelCase : List[str] =text_generator('''This is a test''' , do_sample=A_ ) self.assertEqual( A_ , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) UpperCAmelCase : Optional[int] =text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( A_ , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) UpperCAmelCase : int =text_generator('''This is a test''' , do_sample=A_ , num_return_sequences=2 , return_tensors=A_ ) self.assertEqual( A_ , [ {'''generated_token_ids''': ANY(A_ )}, {'''generated_token_ids''': ANY(A_ )}, ] , ) UpperCAmelCase : Optional[int] =text_generator.model.config.eos_token_id UpperCAmelCase : List[Any] ='''<pad>''' UpperCAmelCase : List[str] =text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=A_ , num_return_sequences=2 , batch_size=2 , return_tensors=A_ , ) self.assertEqual( A_ , [ [ {'''generated_token_ids''': ANY(A_ )}, {'''generated_token_ids''': ANY(A_ )}, ], [ {'''generated_token_ids''': ANY(A_ )}, {'''generated_token_ids''': ANY(A_ )}, ], ] , ) @require_tf def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : str =pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output UpperCAmelCase : Optional[Any] =text_generator('''This is a test''' , do_sample=A_ ) self.assertEqual( A_ , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) UpperCAmelCase : Optional[Any] =text_generator(['''This is a test''', '''This is a second test'''] , do_sample=A_ ) self.assertEqual( A_ , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ ) -> Tuple: '''simple docstring''' UpperCAmelCase : List[str] =TextGenerationPipeline(model=A_ , tokenizer=A_ ) return text_generator, ["This is a test", "Another test"] def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Union[str, Any] ='''Hello I believe in''' UpperCAmelCase : int =pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) UpperCAmelCase : Union[str, Any] =text_generator(A_ ) self.assertEqual( A_ , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) UpperCAmelCase : Optional[int] =text_generator(A_ , stop_sequence=''' fe''' ) self.assertEqual(A_ , [{'''generated_text''': '''Hello I believe in fe'''}] ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> int: '''simple docstring''' UpperCAmelCase : Union[str, Any] =text_generator.model UpperCAmelCase : Union[str, Any] =text_generator.tokenizer UpperCAmelCase : List[str] =text_generator('''This is a test''' ) self.assertEqual(A_ , [{'''generated_text''': ANY(A_ )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) UpperCAmelCase : Optional[Any] =text_generator('''This is a test''' , return_full_text=A_ ) self.assertEqual(A_ , [{'''generated_text''': ANY(A_ )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) UpperCAmelCase : List[str] =pipeline(task='''text-generation''' , model=A_ , tokenizer=A_ , return_full_text=A_ ) UpperCAmelCase : Tuple =text_generator('''This is a test''' ) self.assertEqual(A_ , [{'''generated_text''': ANY(A_ )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) UpperCAmelCase : Dict =text_generator('''This is a test''' , return_full_text=A_ ) self.assertEqual(A_ , [{'''generated_text''': ANY(A_ )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) UpperCAmelCase : Dict =text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=A_ ) self.assertEqual( A_ , [ [{'''generated_text''': ANY(A_ )}, {'''generated_text''': ANY(A_ )}], [{'''generated_text''': ANY(A_ )}, {'''generated_text''': ANY(A_ )}], ] , ) if text_generator.tokenizer.pad_token is not None: UpperCAmelCase : List[Any] =text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=A_ ) self.assertEqual( A_ , [ [{'''generated_text''': ANY(A_ )}, {'''generated_text''': ANY(A_ )}], [{'''generated_text''': ANY(A_ )}, {'''generated_text''': ANY(A_ )}], ] , ) with self.assertRaises(A_ ): UpperCAmelCase : Optional[int] =text_generator('''test''' , return_full_text=A_ , return_text=A_ ) with self.assertRaises(A_ ): UpperCAmelCase : int =text_generator('''test''' , return_full_text=A_ , return_tensors=A_ ) with self.assertRaises(A_ ): UpperCAmelCase : Optional[Any] =text_generator('''test''' , return_text=A_ , return_tensors=A_ ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): UpperCAmelCase : Optional[int] =text_generator('''''' ) self.assertEqual(A_ , [{'''generated_text''': ANY(A_ )}] ) else: with self.assertRaises((ValueError, AssertionError) ): UpperCAmelCase : Optional[int] =text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. UpperCAmelCase : Any =['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 1_0000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 500 , max_new_tokens=20 ) UpperCAmelCase : Union[str, Any] =text_generator('''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(A_ ): text_generator( '''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' import torch # Classic `model_kwargs` UpperCAmelCase : Optional[int] =pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) UpperCAmelCase : Tuple =pipe('''This is a test''' ) self.assertEqual( A_ , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) UpperCAmelCase : Any =pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) UpperCAmelCase : str =pipe('''This is a test''' ) self.assertEqual( A_ , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 UpperCAmelCase : Dict =pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) UpperCAmelCase : Optional[int] =pipe('''This is a test''' ) self.assertEqual( A_ , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' import torch UpperCAmelCase : Any =pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' import torch UpperCAmelCase : str =pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=A_ , top_p=0.5 ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : int ='''Hello world''' UpperCAmelCase : Any =pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": UpperCAmelCase : List[Any] =logging.get_logger('''transformers.generation.tf_utils''' ) else: UpperCAmelCase : Optional[Any] =logging.get_logger('''transformers.generation.utils''' ) UpperCAmelCase : List[Any] ='''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(A_ ) as cl: UpperCAmelCase : Dict =text_generator(A_ , max_length=10 , max_new_tokens=1 ) self.assertIn(A_ , cl.out ) # The user only sets one -> no warning with CaptureLogger(A_ ) as cl: UpperCAmelCase : Dict =text_generator(A_ , max_new_tokens=1 ) self.assertNotIn(A_ , cl.out ) with CaptureLogger(A_ ) as cl: UpperCAmelCase : Optional[int] =text_generator(A_ , max_length=10 ) self.assertNotIn(A_ , cl.out )
348
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __snake_case = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json''' with io.open(filename, '''r''', encoding='''utf-8''') as f: __snake_case = json.load(f) @require_torch class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: int,A_: int ): '''simple docstring''' return FSMTTokenizer.from_pretrained(A_ ) def snake_case_ ( self: Dict,A_: int ): '''simple docstring''' __UpperCamelCase = FSMTForConditionalGeneration.from_pretrained(A_ ).to(A_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 2_6.0], ['ru-en', 2_2.0], ['en-de', 2_2.0], ['de-en', 2_9.0], ] ) @slow def snake_case_ ( self: Tuple,A_: Any,A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = F'''facebook/wmt19-{pair}''' __UpperCamelCase = self.get_tokenizer(A_ ) __UpperCamelCase = self.get_model(A_ ) __UpperCamelCase = bleu_data[pair]['src'] __UpperCamelCase = bleu_data[pair]['tgt'] __UpperCamelCase = tokenizer(A_,return_tensors='pt',truncation=A_,padding='longest' ).to(A_ ) __UpperCamelCase = model.generate( input_ids=batch.input_ids,num_beams=8,) __UpperCamelCase = tokenizer.batch_decode( A_,skip_special_tokens=A_,clean_up_tokenization_spaces=A_ ) __UpperCamelCase = calculate_bleu(A_,A_ ) print(A_ ) self.assertGreaterEqual(scores['bleu'],A_ )
310
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { '''facebook/data2vec-vision-base-ft''': ( '''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json''' ), } class A ( _a ): __snake_case = 'data2vec-vision' def __init__( self, UpperCamelCase__=768, UpperCamelCase__=12, UpperCamelCase__=12, UpperCamelCase__=3072, UpperCamelCase__="gelu", UpperCamelCase__=0.0, UpperCamelCase__=0.0, UpperCamelCase__=0.02, UpperCamelCase__=1E-12, UpperCamelCase__=224, UpperCamelCase__=16, UpperCamelCase__=3, UpperCamelCase__=False, UpperCamelCase__=False, UpperCamelCase__=False, UpperCamelCase__=False, UpperCamelCase__=0.1, UpperCamelCase__=0.1, UpperCamelCase__=True, UpperCamelCase__=[3, 5, 7, 11], UpperCamelCase__=[1, 2, 3, 6], UpperCamelCase__=True, UpperCamelCase__=0.4, UpperCamelCase__=256, UpperCamelCase__=1, UpperCamelCase__=False, UpperCamelCase__=255, **UpperCamelCase__, ): """simple docstring""" super().__init__(**A_ ) lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = image_size lowerCAmelCase_ = patch_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = use_mask_token lowerCAmelCase_ = use_absolute_position_embeddings lowerCAmelCase_ = use_relative_position_bias lowerCAmelCase_ = use_shared_relative_position_bias lowerCAmelCase_ = layer_scale_init_value lowerCAmelCase_ = drop_path_rate lowerCAmelCase_ = use_mean_pooling # decode head attributes (semantic segmentation) lowerCAmelCase_ = out_indices lowerCAmelCase_ = pool_scales # auxiliary head attributes (semantic segmentation) lowerCAmelCase_ = use_auxiliary_head lowerCAmelCase_ = auxiliary_loss_weight lowerCAmelCase_ = auxiliary_channels lowerCAmelCase_ = auxiliary_num_convs lowerCAmelCase_ = auxiliary_concat_input lowerCAmelCase_ = semantic_loss_ignore_index class A ( _a ): __snake_case = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return 1E-4
278
def _A ( _lowercase ) -> list[int]: """simple docstring""" if length <= 0 or not isinstance(_lowercase , _lowercase ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(_lowercase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=1_0))
310
0
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem A : Optional[Any] = importlib.util.find_spec('''s3fs''') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 A : Union[str, Any] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F'''A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.''') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def __lowerCamelCase ( __a :Optional[int] ) -> str: """simple docstring""" if "://" in dataset_path: A__ = dataset_path.split("""://""" )[1] return dataset_path def __lowerCamelCase ( __a :Union[str, Any] ) -> bool: """simple docstring""" if fs is not None and fs.protocol != "file": return True else: return False def __lowerCamelCase ( __a :Tuple , __a :str , __a :Any ) -> Optional[int]: """simple docstring""" A__ = not is_remote_filesystem(_lowercase ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(_lowercase ) , fs._strip_protocol(_lowercase ) ) else: fs.mv(_lowercase , _lowercase , recursive=_lowercase ) def __lowerCamelCase ( ) -> None: """simple docstring""" if hasattr(fsspec.asyn , """reset_lock""" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: A__ = None A__ = None A__ = threading.Lock()
274
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = MgpstrTokenizer _lowercase = False _lowercase = {} _lowercase = False def snake_case_ ( self: int ): '''simple docstring''' super().setUp() # fmt: off __UpperCamelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on __UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) ) __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file,'w',encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) def snake_case_ ( self: Dict,**A_: Tuple ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname,**A_ ) def snake_case_ ( self: List[Any],A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = 'tester' __UpperCamelCase = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.' ) def snake_case_ ( self: str ): '''simple docstring''' pass def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCamelCase = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token} ) __UpperCamelCase = tokenizer.encode([special_token],add_special_tokens=A_ ) self.assertEqual(len(A_ ),1 ) __UpperCamelCase = tokenizer.decode(A_,skip_special_tokens=A_ ) self.assertTrue(special_token not in decoded ) def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCamelCase, __UpperCamelCase = self.get_input_output_texts(A_ ) __UpperCamelCase = tokenizer.tokenize(A_ ) __UpperCamelCase = tokenizer.convert_tokens_to_ids(A_ ) __UpperCamelCase = tokenizer.encode(A_,add_special_tokens=A_ ) self.assertListEqual(A_,A_ ) __UpperCamelCase = tokenizer.convert_ids_to_tokens(A_ ) self.assertNotEqual(len(A_ ),0 ) __UpperCamelCase = tokenizer.decode(A_ ) self.assertIsInstance(A_,A_ ) self.assertEqual(text_a.replace(' ','' ),A_ ) @unittest.skip('MGP-STR tokenizer only handles one sequence.' ) def snake_case_ ( self: int ): '''simple docstring''' pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' ) def snake_case_ ( self: List[str] ): '''simple docstring''' pass
310
0
'''simple docstring''' def _A (lowerCAmelCase__ :int ) -> str: '''simple docstring''' return "".join(chr(ord(_lowercase ) - 32 ) if 'a' <= char <= 'z' else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
168
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( """The RoBERTa Model transformer with early exiting (DeeRoBERTa). """ , _a , ) class __lowerCamelCase (_a ): _lowercase = RobertaConfig _lowercase = """roberta""" def __init__( self: Union[str, Any],A_: List[str] ): '''simple docstring''' super().__init__(A_ ) __UpperCamelCase = RobertaEmbeddings(A_ ) self.init_weights() @add_start_docstrings( """RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. """ , _a , ) class __lowerCamelCase (_a ): _lowercase = RobertaConfig _lowercase = """roberta""" def __init__( self: Any,A_: int ): '''simple docstring''' super().__init__(A_ ) __UpperCamelCase = config.num_labels __UpperCamelCase = config.num_hidden_layers __UpperCamelCase = DeeRobertaModel(A_ ) __UpperCamelCase = nn.Dropout(config.hidden_dropout_prob ) __UpperCamelCase = nn.Linear(config.hidden_size,self.config.num_labels ) @add_start_docstrings_to_model_forward(A_ ) def snake_case_ ( self: List[str],A_: int=None,A_: List[Any]=None,A_: List[str]=None,A_: List[str]=None,A_: Optional[int]=None,A_: List[str]=None,A_: Any=None,A_: List[Any]=-1,A_: List[Any]=False,): '''simple docstring''' __UpperCamelCase = self.num_layers try: __UpperCamelCase = self.roberta( A_,attention_mask=A_,token_type_ids=A_,position_ids=A_,head_mask=A_,inputs_embeds=A_,) __UpperCamelCase = outputs[1] __UpperCamelCase = self.dropout(A_ ) __UpperCamelCase = self.classifier(A_ ) __UpperCamelCase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __UpperCamelCase = e.message __UpperCamelCase = e.exit_layer __UpperCamelCase = outputs[0] if not self.training: __UpperCamelCase = entropy(A_ ) __UpperCamelCase = [] __UpperCamelCase = [] if labels is not None: if self.num_labels == 1: # We are doing regression __UpperCamelCase = MSELoss() __UpperCamelCase = loss_fct(logits.view(-1 ),labels.view(-1 ) ) else: __UpperCamelCase = CrossEntropyLoss() __UpperCamelCase = loss_fct(logits.view(-1,self.num_labels ),labels.view(-1 ) ) # work with highway exits __UpperCamelCase = [] for highway_exit in outputs[-1]: __UpperCamelCase = highway_exit[0] if not self.training: highway_logits_all.append(A_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __UpperCamelCase = MSELoss() __UpperCamelCase = loss_fct(highway_logits.view(-1 ),labels.view(-1 ) ) else: __UpperCamelCase = CrossEntropyLoss() __UpperCamelCase = loss_fct(highway_logits.view(-1,self.num_labels ),labels.view(-1 ) ) highway_losses.append(A_ ) if train_highway: __UpperCamelCase = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __UpperCamelCase = (loss,) + outputs if not self.training: __UpperCamelCase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __UpperCamelCase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
310
0
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def a ( __a ) -> Dict: '''simple docstring''' if is_torch_version('''<''' , '''2.0.0''' ) or not hasattr(_lowercase , '''_dynamo''' ): return False return isinstance(_lowercase , torch._dynamo.eval_frame.OptimizedModule ) def a ( __a , __a = True ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ :Dict = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) UpperCamelCase__ :int = is_compiled_module(_lowercase ) if is_compiled: UpperCamelCase__ :List[str] = model UpperCamelCase__ :int = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_lowercase , _lowercase ): UpperCamelCase__ :str = model.module if not keep_fpaa_wrapper: UpperCamelCase__ :Union[str, Any] = getattr(_lowercase , '''forward''' ) UpperCamelCase__ :int = model.__dict__.pop('''_original_forward''' , _lowercase ) if original_forward is not None: while hasattr(_lowercase , '''__wrapped__''' ): UpperCamelCase__ :List[Any] = forward.__wrapped__ if forward == original_forward: break UpperCamelCase__ :Any = forward if getattr(_lowercase , '''_converted_to_transformer_engine''' , _lowercase ): convert_model(_lowercase , to_transformer_engine=_lowercase ) if is_compiled: UpperCamelCase__ :str = model UpperCamelCase__ :int = compiled_model return model def a ( ) -> Any: '''simple docstring''' PartialState().wait_for_everyone() def a ( __a , __a ) -> Any: '''simple docstring''' if PartialState().distributed_type == DistributedType.TPU: xm.save(_lowercase , _lowercase ) elif PartialState().local_process_index == 0: torch.save(_lowercase , _lowercase ) @contextmanager def a ( **__a ) -> Union[str, Any]: '''simple docstring''' for key, value in kwargs.items(): UpperCamelCase__ :Optional[int] = str(_lowercase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def a ( __a ) -> Tuple: '''simple docstring''' if not hasattr(_lowercase , '''__qualname__''' ) and not hasattr(_lowercase , '''__name__''' ): UpperCamelCase__ :str = getattr(_lowercase , '''__class__''' , _lowercase ) if hasattr(_lowercase , '''__qualname__''' ): return obj.__qualname__ if hasattr(_lowercase , '''__name__''' ): return obj.__name__ return str(_lowercase ) def a ( __a , __a ) -> Any: '''simple docstring''' for key, value in source.items(): if isinstance(_lowercase , _lowercase ): UpperCamelCase__ :Any = destination.setdefault(_lowercase , {} ) merge_dicts(_lowercase , _lowercase ) else: UpperCamelCase__ :Tuple = value return destination def a ( __a = None ) -> bool: '''simple docstring''' if port is None: UpperCamelCase__ :str = 29500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('''localhost''', port) ) == 0
97
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCamelCase : @staticmethod def snake_case_ ( *A_: Optional[Any],**A_: Tuple ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class __lowerCamelCase (unittest.TestCase ): _lowercase = MODEL_FOR_OBJECT_DETECTION_MAPPING def snake_case_ ( self: Dict,A_: Optional[int],A_: Tuple,A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = ObjectDetectionPipeline(model=A_,image_processor=A_ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def snake_case_ ( self: int,A_: Any,A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png',threshold=0.0 ) self.assertGreater(len(A_ ),0 ) for detected_object in outputs: self.assertEqual( A_,{ 'score': ANY(A_ ), 'label': ANY(A_ ), 'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )}, },) import datasets __UpperCamelCase = datasets.load_dataset('hf-internal-testing/fixtures_image_utils','image',split='test' ) __UpperCamelCase = [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] __UpperCamelCase = object_detector(A_,threshold=0.0 ) self.assertEqual(len(A_ ),len(A_ ) ) for outputs in batch_outputs: self.assertGreater(len(A_ ),0 ) for detected_object in outputs: self.assertEqual( A_,{ 'score': ANY(A_ ), 'label': ANY(A_ ), 'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )}, },) @require_tf @unittest.skip('Object detection not implemented in TF' ) def snake_case_ ( self: str ): '''simple docstring''' pass @require_torch def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = 'hf-internal-testing/tiny-detr-mobilenetsv3' __UpperCamelCase = AutoModelForObjectDetection.from_pretrained(A_ ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained(A_ ) __UpperCamelCase = ObjectDetectionPipeline(model=A_,feature_extractor=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg',threshold=0.0 ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ],threshold=0.0,) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], ],) @require_torch @slow def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = AutoModelForObjectDetection.from_pretrained(A_ ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained(A_ ) __UpperCamelCase = ObjectDetectionPipeline(model=A_,feature_extractor=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ],) @require_torch @slow def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = pipeline('object-detection',model=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ],) @require_torch @slow def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = 0.9_9_8_5 __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = pipeline('object-detection',model=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg',threshold=A_ ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) @require_torch @require_pytesseract @slow def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = 'Narsil/layoutlmv3-finetuned-funsd' __UpperCamelCase = 0.9_9_9_3 __UpperCamelCase = pipeline('object-detection',model=A_,threshold=A_ ) __UpperCamelCase = object_detector( 'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, {'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, ],)
310
0
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def UpperCAmelCase_ ( __lowercase : str , __lowercase : Union[str, Any] , __lowercase : Union[str, Any] , __lowercase : str , __lowercase : List[Any] ) -> Dict: '''simple docstring''' with open(_lowercase ) as metadata_file: _UpperCAmelCase = json.load(_lowercase ) _UpperCAmelCase = LukeConfig(use_entity_aware_attention=_lowercase , **metadata["model_config"] ) # Load in the weights from the checkpoint_path _UpperCAmelCase = torch.load(_lowercase , map_location="cpu" )["module"] # Load the entity vocab file _UpperCAmelCase = load_original_entity_vocab(_lowercase ) # add an entry for [MASK2] _UpperCAmelCase = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _UpperCAmelCase = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks _UpperCAmelCase = AddedToken("<ent>" , lstrip=_lowercase , rstrip=_lowercase ) _UpperCAmelCase = AddedToken("<ent2>" , lstrip=_lowercase , rstrip=_lowercase ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(_lowercase ) with open(os.path.join(_lowercase , "tokenizer_config.json" ) , "r" ) as f: _UpperCAmelCase = json.load(_lowercase ) _UpperCAmelCase = "MLukeTokenizer" with open(os.path.join(_lowercase , "tokenizer_config.json" ) , "w" ) as f: json.dump(_lowercase , _lowercase ) with open(os.path.join(_lowercase , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(_lowercase , _lowercase ) _UpperCAmelCase = MLukeTokenizer.from_pretrained(_lowercase ) # Initialize the embeddings of the special tokens _UpperCAmelCase = tokenizer.convert_tokens_to_ids(["@"] )[0] _UpperCAmelCase = tokenizer.convert_tokens_to_ids(["#"] )[0] _UpperCAmelCase = state_dict["embeddings.word_embeddings.weight"] _UpperCAmelCase = word_emb[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = word_emb[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _UpperCAmelCase = state_dict[bias_name] _UpperCAmelCase = decoder_bias[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = decoder_bias[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _UpperCAmelCase = f'encoder.layer.{layer_index}.attention.self.' _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _UpperCAmelCase = state_dict["entity_embeddings.entity_embeddings.weight"] _UpperCAmelCase = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _UpperCAmelCase = state_dict["entity_predictions.bias"] _UpperCAmelCase = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_prediction_bias, entity_mask_bias] ) _UpperCAmelCase = LukeForMaskedLM(config=_lowercase ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) _UpperCAmelCase = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): _UpperCAmelCase = state_dict[key] else: _UpperCAmelCase = state_dict[key] _UpperCAmelCase , _UpperCAmelCase = model.load_state_dict(_lowercase , strict=_lowercase ) if set(_lowercase ) != {"luke.embeddings.position_ids"}: raise ValueError(f'Unexpected unexpected_keys: {unexpected_keys}' ) if set(_lowercase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _UpperCAmelCase = MLukeTokenizer.from_pretrained(_lowercase , task="entity_classification" ) _UpperCAmelCase = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." _UpperCAmelCase = (0, 9) _UpperCAmelCase = tokenizer(_lowercase , entity_spans=[span] , return_tensors="pt" ) _UpperCAmelCase = model(**_lowercase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 33, 768) ) _UpperCAmelCase = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _lowercase , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 1, 768) ) _UpperCAmelCase = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' f' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _lowercase , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _UpperCAmelCase = MLukeTokenizer.from_pretrained(_lowercase ) _UpperCAmelCase = "Tokyo is the capital of <mask>." _UpperCAmelCase = (24, 30) _UpperCAmelCase = tokenizer(_lowercase , entity_spans=[span] , return_tensors="pt" ) _UpperCAmelCase = model(**_lowercase ) _UpperCAmelCase = encoding["input_ids"][0].tolist() _UpperCAmelCase = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) _UpperCAmelCase = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(_lowercase ) _UpperCAmelCase = outputs.entity_logits[0][0].argmax().item() _UpperCAmelCase = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(_lowercase ) ) model.save_pretrained(_lowercase ) def UpperCAmelCase_ ( __lowercase : str ) -> Any: '''simple docstring''' _UpperCAmelCase = ["[MASK]", "[PAD]", "[UNK]"] _UpperCAmelCase = [json.loads(_lowercase ) for line in open(_lowercase )] _UpperCAmelCase = {} for entry in data: _UpperCAmelCase = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _UpperCAmelCase = entity_id break _UpperCAmelCase = f'{language}:{entity_name}' _UpperCAmelCase = entity_id return new_mapping if __name__ == "__main__": __SCREAMING_SNAKE_CASE :Any = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) __SCREAMING_SNAKE_CASE :Dict = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
22
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json''' ), } class __lowerCamelCase (_a ): _lowercase = """xlm-roberta""" def __init__( self: Union[str, Any],A_: Union[str, Any]=3_0522,A_: Dict=768,A_: Union[str, Any]=12,A_: Any=12,A_: str=3072,A_: Union[str, Any]="gelu",A_: str=0.1,A_: Optional[int]=0.1,A_: List[Any]=512,A_: Optional[Any]=2,A_: Dict=0.0_2,A_: List[Any]=1E-12,A_: Optional[int]=1,A_: str=0,A_: str=2,A_: Optional[Any]="absolute",A_: Union[str, Any]=True,A_: int=None,**A_: Optional[Any],): '''simple docstring''' super().__init__(pad_token_id=A_,bos_token_id=A_,eos_token_id=A_,**A_ ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = position_embedding_type __UpperCamelCase = use_cache __UpperCamelCase = classifier_dropout class __lowerCamelCase (_a ): @property def snake_case_ ( self: Optional[Any] ): '''simple docstring''' if self.task == "multiple-choice": __UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
310
0
from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def lowerCAmelCase_ ( __a , __a , __a = False ) -> list[float]: """simple docstring""" if radian_mode: return [magnitude * cos(_lowercase ), magnitude * sin(_lowercase )] return [magnitude * cos(radians(_lowercase ) ), magnitude * sin(radians(_lowercase ) )] def lowerCAmelCase_ ( __a , __a , __a = 10**-1 ) -> bool: """simple docstring""" lowerCamelCase__: Optional[int] =cross(_lowercase , _lowercase ) lowerCamelCase__: List[Any] =sum(_lowercase ) return abs(_lowercase ) < eps if __name__ == "__main__": # Test to check if it works __A = array( [ polar_force(7_1_8.4, 180 - 30), polar_force(8_7_9.5_4, 45), polar_force(100, -90), ] ) __A = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg __A = array( [ polar_force(30 * 9.8_1, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) __A = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg __A = array([[0, -2000], [0, -1200], [0, 1_5600], [0, -1_2400]]) __A = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
10
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __snake_case = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCamelCase (_a ): _lowercase = field(default=_a , metadata={"""help""": """Whether to use SortishSampler or not."""} ) _lowercase = field( default=_a , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} ) _lowercase = field( default=_a , metadata={ """help""": ( """The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `max_length` value of the model configuration.""" ) } , ) _lowercase = field( default=_a , metadata={ """help""": ( """The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `num_beams` value of the model configuration.""" ) } , ) _lowercase = field( default=_a , metadata={ """help""": """Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.""" } , ) def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = super().to_dict() for k, v in d.items(): if isinstance(A_,A_ ): __UpperCamelCase = v.to_dict() return d
310
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCAmelCase ( _a ): '''simple docstring''' @staticmethod @abstractmethod def snake_case__ ( __lowercase : ArgumentParser ): """simple docstring""" raise NotImplementedError() @abstractmethod def snake_case__ ( self : str ): """simple docstring""" raise NotImplementedError()
187
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _A ( _lowercase ) -> Dict: """simple docstring""" if is_torch_version('<' , '2.0.0' ) or not hasattr(_lowercase , '_dynamo' ): return False return isinstance(_lowercase , torch._dynamo.eval_frame.OptimizedModule ) def _A ( _lowercase , _lowercase = True ) -> Optional[int]: """simple docstring""" __UpperCamelCase = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __UpperCamelCase = is_compiled_module(_lowercase ) if is_compiled: __UpperCamelCase = model __UpperCamelCase = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_lowercase , _lowercase ): __UpperCamelCase = model.module if not keep_fpaa_wrapper: __UpperCamelCase = getattr(_lowercase , 'forward' ) __UpperCamelCase = model.__dict__.pop('_original_forward' , _lowercase ) if original_forward is not None: while hasattr(_lowercase , '__wrapped__' ): __UpperCamelCase = forward.__wrapped__ if forward == original_forward: break __UpperCamelCase = forward if getattr(_lowercase , '_converted_to_transformer_engine' , _lowercase ): convert_model(_lowercase , to_transformer_engine=_lowercase ) if is_compiled: __UpperCamelCase = model __UpperCamelCase = compiled_model return model def _A ( ) -> Any: """simple docstring""" PartialState().wait_for_everyone() def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(_lowercase , _lowercase ) elif PartialState().local_process_index == 0: torch.save(_lowercase , _lowercase ) @contextmanager def _A ( **_lowercase ) -> Union[str, Any]: """simple docstring""" for key, value in kwargs.items(): __UpperCamelCase = str(_lowercase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _A ( _lowercase ) -> Tuple: """simple docstring""" if not hasattr(_lowercase , '__qualname__' ) and not hasattr(_lowercase , '__name__' ): __UpperCamelCase = getattr(_lowercase , '__class__' , _lowercase ) if hasattr(_lowercase , '__qualname__' ): return obj.__qualname__ if hasattr(_lowercase , '__name__' ): return obj.__name__ return str(_lowercase ) def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" for key, value in source.items(): if isinstance(_lowercase , _lowercase ): __UpperCamelCase = destination.setdefault(_lowercase , {} ) merge_dicts(_lowercase , _lowercase ) else: __UpperCamelCase = value return destination def _A ( _lowercase = None ) -> bool: """simple docstring""" if port is None: __UpperCamelCase = 2_95_00 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
310
0
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class UpperCAmelCase ( _a ): '''simple docstring''' def __init__( self : Optional[Any] , *lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Tuple=None , **lowerCAmelCase_ : Dict ): """simple docstring""" super().__init__(*A_ , **A_ ) _A: Dict = eval_examples _A: Optional[int] = post_process_function def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : str = "eval" ): """simple docstring""" _A: Tuple = self.eval_dataset if eval_dataset is None else eval_dataset _A: List[str] = self.get_eval_dataloader(A_ ) _A: Optional[int] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _A: List[Any] = self.compute_metrics _A: Tuple = None _A: Dict = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _A: str = time.time() try: _A: List[Any] = eval_loop( A_ , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=A_ , metric_key_prefix=A_ , ) finally: _A: Tuple = compute_metrics _A: Optional[int] = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( A_ , A_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _A: Optional[int] = self.post_process_function(A_ , A_ , output.predictions ) _A: Optional[Any] = self.compute_metrics(A_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): _A: Optional[int] = metrics.pop(A_ ) metrics.update(output.metrics ) else: _A: Any = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(A_ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _A: List[str] = self.callback_handler.on_evaluate(self.args , self.state , self.control , A_ ) return metrics def __magic_name__ ( self : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : str=None , lowerCAmelCase_ : str = "test" ): """simple docstring""" _A: Any = self.get_test_dataloader(A_ ) # Temporarily disable metric computation, we will do it in the loop here. _A: Dict = self.compute_metrics _A: Tuple = None _A: Dict = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _A: int = time.time() try: _A: List[Any] = eval_loop( A_ , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=A_ , metric_key_prefix=A_ , ) finally: _A: str = compute_metrics _A: Optional[Any] = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( A_ , A_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _A: Any = self.post_process_function(A_ , A_ , output.predictions , '''predict''' ) _A: str = self.compute_metrics(A_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): _A: Tuple = metrics.pop(A_ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=A_ )
121
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __snake_case = logging.getLogger(__name__) def _A ( _lowercase , _lowercase ) -> Optional[int]: """simple docstring""" return (preds == labels).mean() @dataclass class __lowerCamelCase : _lowercase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _lowercase = field( default=_a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __lowerCamelCase : _lowercase = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) _lowercase = field(metadata={"""help""": """Should contain the data files for the task."""} ) _lowercase = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _lowercase = field( default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _A ( ) -> str: """simple docstring""" __UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _lowercase ) # Set seed set_seed(training_args.seed ) try: __UpperCamelCase = processors[data_args.task_name]() __UpperCamelCase = processor.get_labels() __UpperCamelCase = len(_lowercase ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowercase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , ) # Get datasets __UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_lowercase ) -> Dict: __UpperCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_lowercase , p.label_ids )} # Data collator __UpperCamelCase = DataCollatorWithPadding(_lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __UpperCamelCase = Trainer( model=_lowercase , args=_lowercase , train_dataset=_lowercase , eval_dataset=_lowercase , compute_metrics=_lowercase , data_collator=_lowercase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCamelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __UpperCamelCase = trainer.evaluate() __UpperCamelCase = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(_lowercase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , _lowercase , _lowercase ) writer.write('%s = %s\n' % (key, value) ) results.update(_lowercase ) return results def _A ( _lowercase ) -> List[Any]: """simple docstring""" main() if __name__ == "__main__": main()
310
0
"""simple docstring""" import os from pathlib import Path def a__ ( ) -> List[Any]: from torch.utils.cpp_extension import load __lowerCAmelCase: Tuple = Path(_lowercase ).resolve().parent.parent.parent / "kernels" / "deformable_detr" __lowerCAmelCase: Optional[int] = [ root / filename for filename in [ "vision.cpp", os.path.join("cpu" , "ms_deform_attn_cpu.cpp" ), os.path.join("cuda" , "ms_deform_attn_cuda.cu" ), ] ] load( "MultiScaleDeformableAttention" , _lowercase , with_cuda=_lowercase , extra_include_paths=[str(_lowercase )] , extra_cflags=["-DWITH_CUDA=1"] , extra_cuda_cflags=[ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
217
import os def _A ( ) -> Tuple: """simple docstring""" with open(os.path.dirname(_lowercase ) + '/p022_names.txt' ) as file: __UpperCamelCase = str(file.readlines()[0] ) __UpperCamelCase = names.replace('"' , '' ).split(',' ) names.sort() __UpperCamelCase = 0 __UpperCamelCase = 0 for i, name in enumerate(_lowercase ): for letter in name: name_score += ord(_lowercase ) - 64 total_score += (i + 1) * name_score __UpperCamelCase = 0 return total_score if __name__ == "__main__": print(solution())
310
0
'''simple docstring''' import math def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> float: if ( not isinstance(_lowercase , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("""power_factor must be a valid float value between -1 and 1.""" ) return apparent_power * power_factor def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> float: if ( not isinstance(_lowercase , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("""power_factor must be a valid float value between -1 and 1.""" ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
35
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=True , _lowercase="pt" ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = {'add_prefix_space': True} if isinstance(_lowercase , _lowercase ) and not line.startswith(' ' ) else {} __UpperCamelCase = padding_side return tokenizer( [line] , max_length=_lowercase , padding='max_length' if pad_to_max_length else None , truncation=_lowercase , return_tensors=_lowercase , add_special_tokens=_lowercase , **_lowercase , ) def _A ( _lowercase , _lowercase , _lowercase=None , ) -> List[Any]: """simple docstring""" __UpperCamelCase = input_ids.ne(_lowercase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCamelCase (_a ): def __init__( self: List[str],A_: str,A_: List[str],A_: List[str],A_: List[str],A_: Tuple="train",A_: Any=None,A_: List[str]=None,A_: List[Any]=None,A_: int="",): '''simple docstring''' super().__init__() __UpperCamelCase = Path(A_ ).joinpath(type_path + '.source' ) __UpperCamelCase = Path(A_ ).joinpath(type_path + '.target' ) __UpperCamelCase = self.get_char_lens(self.src_file ) __UpperCamelCase = max_source_length __UpperCamelCase = max_target_length assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}''' __UpperCamelCase = tokenizer __UpperCamelCase = prefix if n_obs is not None: __UpperCamelCase = self.src_lens[:n_obs] __UpperCamelCase = src_lang __UpperCamelCase = tgt_lang def __len__( self: Optional[Any] ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self: int,A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = index + 1 # linecache starts at 1 __UpperCamelCase = self.prefix + linecache.getline(str(self.src_file ),A_ ).rstrip('\n' ) __UpperCamelCase = linecache.getline(str(self.tgt_file ),A_ ).rstrip('\n' ) assert source_line, F'''empty source line for index {index}''' assert tgt_line, F'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer,A_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __UpperCamelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer,A_ ) else self.tokenizer ) __UpperCamelCase = self.tokenizer.generator if isinstance(self.tokenizer,A_ ) else self.tokenizer __UpperCamelCase = encode_line(A_,A_,self.max_source_length,'right' ) __UpperCamelCase = encode_line(A_,A_,self.max_target_length,'right' ) __UpperCamelCase = source_inputs['input_ids'].squeeze() __UpperCamelCase = target_inputs['input_ids'].squeeze() __UpperCamelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def snake_case_ ( A_: List[Any] ): '''simple docstring''' return [len(A_ ) for x in Path(A_ ).open().readlines()] def snake_case_ ( self: Union[str, Any],A_: Any ): '''simple docstring''' __UpperCamelCase = torch.stack([x['input_ids'] for x in batch] ) __UpperCamelCase = torch.stack([x['attention_mask'] for x in batch] ) __UpperCamelCase = torch.stack([x['decoder_input_ids'] for x in batch] ) __UpperCamelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer,A_ ) else self.tokenizer.pad_token_id ) __UpperCamelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer,A_ ) else self.tokenizer.pad_token_id ) __UpperCamelCase = trim_batch(A_,A_ ) __UpperCamelCase, __UpperCamelCase = trim_batch(A_,A_,attention_mask=A_ ) __UpperCamelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch __snake_case = getLogger(__name__) def _A ( _lowercase ) -> Any: """simple docstring""" return list(itertools.chain.from_iterable(_lowercase ) ) def _A ( _lowercase ) -> None: """simple docstring""" __UpperCamelCase = get_git_info() save_json(_lowercase , os.path.join(_lowercase , 'git_log.json' ) ) def _A ( _lowercase , _lowercase , _lowercase=4 , **_lowercase ) -> List[Any]: """simple docstring""" with open(_lowercase , 'w' ) as f: json.dump(_lowercase , _lowercase , indent=_lowercase , **_lowercase ) def _A ( _lowercase ) -> Union[str, Any]: """simple docstring""" with open(_lowercase ) as f: return json.load(_lowercase ) def _A ( ) -> Dict: """simple docstring""" __UpperCamelCase = git.Repo(search_parent_directories=_lowercase ) __UpperCamelCase = { 'repo_id': str(_lowercase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def _A ( _lowercase , _lowercase ) -> List: """simple docstring""" return list(map(_lowercase , _lowercase ) ) def _A ( _lowercase , _lowercase ) -> Tuple: """simple docstring""" with open(_lowercase , 'wb' ) as f: return pickle.dump(_lowercase , _lowercase ) def _A ( _lowercase ) -> List[Any]: """simple docstring""" def remove_articles(_lowercase ): return re.sub(r'\b(a|an|the)\b' , ' ' , _lowercase ) def white_space_fix(_lowercase ): return " ".join(text.split() ) def remove_punc(_lowercase ): __UpperCamelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowercase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowercase ) ) ) ) def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" __UpperCamelCase = normalize_answer(_lowercase ).split() __UpperCamelCase = normalize_answer(_lowercase ).split() __UpperCamelCase = Counter(_lowercase ) & Counter(_lowercase ) __UpperCamelCase = sum(common.values() ) if num_same == 0: return 0 __UpperCamelCase = 1.0 * num_same / len(_lowercase ) __UpperCamelCase = 1.0 * num_same / len(_lowercase ) __UpperCamelCase = (2 * precision * recall) / (precision + recall) return fa def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" return normalize_answer(_lowercase ) == normalize_answer(_lowercase ) def _A ( _lowercase , _lowercase ) -> Dict: """simple docstring""" assert len(_lowercase ) == len(_lowercase ) __UpperCamelCase = 0 for hypo, pred in zip(_lowercase , _lowercase ): em += exact_match_score(_lowercase , _lowercase ) if len(_lowercase ) > 0: em /= len(_lowercase ) return {"em": em} def _A ( _lowercase ) -> Optional[Any]: """simple docstring""" return model_prefix.startswith('rag' ) def _A ( _lowercase , _lowercase , _lowercase ) -> Dict: """simple docstring""" __UpperCamelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __UpperCamelCase = 'dropout_rate' for p in extra_params: if getattr(_lowercase , _lowercase , _lowercase ): if not hasattr(_lowercase , _lowercase ) and not hasattr(_lowercase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_lowercase ) ) delattr(_lowercase , _lowercase ) continue __UpperCamelCase = p if hasattr(_lowercase , _lowercase ) else equivalent_param[p] setattr(_lowercase , _lowercase , getattr(_lowercase , _lowercase ) ) delattr(_lowercase , _lowercase ) return hparams, config
310
0
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> Optional[Any]: '''simple docstring''' UpperCAmelCase : int =AlbertConfig.from_json_file(_lowercase ) print(f'''Building PyTorch model from configuration: {config}''' ) UpperCAmelCase : Union[str, Any] =AlbertForPreTraining(_lowercase ) # Load weights from tf checkpoint load_tf_weights_in_albert(_lowercase , _lowercase , _lowercase ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , _lowercase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--albert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained ALBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __snake_case = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
348
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __snake_case = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
310
0
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('''0.8.3'''): raise Exception('''requires gluonnlp == 0.8.3''') if version.parse(mx.__version__) != version.parse('''1.5.0'''): raise Exception('''requires mxnet == 1.5.0''') logging.set_verbosity_info() _A = logging.get_logger(__name__) _A = '''The Nymphenburg Palace is a beautiful palace in Munich!''' def __UpperCamelCase ( _A , _A ): lowerCAmelCase_ = { '''attention_cell''': '''multi_head''', '''num_layers''': 4, '''units''': 1024, '''hidden_size''': 768, '''max_length''': 512, '''num_heads''': 8, '''scaled''': True, '''dropout''': 0.1, '''use_residual''': True, '''embed_size''': 1024, '''embed_dropout''': 0.1, '''word_embed''': None, '''layer_norm_eps''': 1E-5, '''token_type_vocab_size''': 2, } lowerCAmelCase_ = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py lowerCAmelCase_ = BERTEncoder( attention_cell=predefined_args['''attention_cell'''] , num_layers=predefined_args['''num_layers'''] , units=predefined_args['''units'''] , hidden_size=predefined_args['''hidden_size'''] , max_length=predefined_args['''max_length'''] , num_heads=predefined_args['''num_heads'''] , scaled=predefined_args['''scaled'''] , dropout=predefined_args['''dropout'''] , output_attention=_lowercase , output_all_encodings=_lowercase , use_residual=predefined_args['''use_residual'''] , activation=predefined_args.get('''activation''' , '''gelu''' ) , layer_norm_eps=predefined_args.get('''layer_norm_eps''' , _lowercase ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later lowerCAmelCase_ = '''openwebtext_ccnews_stories_books_cased''' # Specify download folder to Gluonnlp's vocab lowerCAmelCase_ = os.path.join(get_home_dir() , '''models''' ) lowerCAmelCase_ = _load_vocab(_lowercase , _lowercase , _lowercase , cls=_lowercase ) lowerCAmelCase_ = nlp.model.BERTModel( _lowercase , len(_lowercase ) , units=predefined_args['''units'''] , embed_size=predefined_args['''embed_size'''] , embed_dropout=predefined_args['''embed_dropout'''] , word_embed=predefined_args['''word_embed'''] , use_pooler=_lowercase , use_token_type_embed=_lowercase , token_type_vocab_size=predefined_args['''token_type_vocab_size'''] , use_classifier=_lowercase , use_decoder=_lowercase , ) original_bort.load_parameters(_lowercase , cast_dtype=_lowercase , ignore_extra=_lowercase ) lowerCAmelCase_ = original_bort._collect_params_with_prefix() # Build our config 🤗 lowerCAmelCase_ = { '''architectures''': ['''BertForMaskedLM'''], '''attention_probs_dropout_prob''': predefined_args['''dropout'''], '''hidden_act''': '''gelu''', '''hidden_dropout_prob''': predefined_args['''dropout'''], '''hidden_size''': predefined_args['''embed_size'''], '''initializer_range''': 0.0_2, '''intermediate_size''': predefined_args['''hidden_size'''], '''layer_norm_eps''': predefined_args['''layer_norm_eps'''], '''max_position_embeddings''': predefined_args['''max_length'''], '''model_type''': '''bort''', '''num_attention_heads''': predefined_args['''num_heads'''], '''num_hidden_layers''': predefined_args['''num_layers'''], '''pad_token_id''': 1, # 2 = BERT, 1 = RoBERTa '''type_vocab_size''': 1, # 2 = BERT, 1 = RoBERTa '''vocab_size''': len(_lowercase ), } lowerCAmelCase_ = BertConfig.from_dict(_lowercase ) lowerCAmelCase_ = BertForMaskedLM(_lowercase ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(_A ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(_A , _A ): lowerCAmelCase_ = hf_param.shape lowerCAmelCase_ = to_torch(params[gluon_param] ) lowerCAmelCase_ = gluon_param.shape assert ( shape_hf == shape_gluon ), f"The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers" return gluon_param lowerCAmelCase_ = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , '''word_embed.0.weight''' ) lowerCAmelCase_ = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , '''encoder.position_weight''' ) lowerCAmelCase_ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , '''encoder.layer_norm.beta''' ) lowerCAmelCase_ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , '''encoder.layer_norm.gamma''' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) lowerCAmelCase_ = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): lowerCAmelCase_ = hf_bort_model.bert.encoder.layer[i] # self attention lowerCAmelCase_ = layer.attention.self lowerCAmelCase_ = check_and_map_params( self_attn.key.bias.data , f"encoder.transformer_cells.{i}.attention_cell.proj_key.bias" ) lowerCAmelCase_ = check_and_map_params( self_attn.key.weight.data , f"encoder.transformer_cells.{i}.attention_cell.proj_key.weight" ) lowerCAmelCase_ = check_and_map_params( self_attn.query.bias.data , f"encoder.transformer_cells.{i}.attention_cell.proj_query.bias" ) lowerCAmelCase_ = check_and_map_params( self_attn.query.weight.data , f"encoder.transformer_cells.{i}.attention_cell.proj_query.weight" ) lowerCAmelCase_ = check_and_map_params( self_attn.value.bias.data , f"encoder.transformer_cells.{i}.attention_cell.proj_value.bias" ) lowerCAmelCase_ = check_and_map_params( self_attn.value.weight.data , f"encoder.transformer_cells.{i}.attention_cell.proj_value.weight" ) # self attention output lowerCAmelCase_ = layer.attention.output lowerCAmelCase_ = check_and_map_params( self_output.dense.bias , f"encoder.transformer_cells.{i}.proj.bias" ) lowerCAmelCase_ = check_and_map_params( self_output.dense.weight , f"encoder.transformer_cells.{i}.proj.weight" ) lowerCAmelCase_ = check_and_map_params( self_output.LayerNorm.bias , f"encoder.transformer_cells.{i}.layer_norm.beta" ) lowerCAmelCase_ = check_and_map_params( self_output.LayerNorm.weight , f"encoder.transformer_cells.{i}.layer_norm.gamma" ) # intermediate lowerCAmelCase_ = layer.intermediate lowerCAmelCase_ = check_and_map_params( intermediate.dense.bias , f"encoder.transformer_cells.{i}.ffn.ffn_1.bias" ) lowerCAmelCase_ = check_and_map_params( intermediate.dense.weight , f"encoder.transformer_cells.{i}.ffn.ffn_1.weight" ) # output lowerCAmelCase_ = layer.output lowerCAmelCase_ = check_and_map_params( bert_output.dense.bias , f"encoder.transformer_cells.{i}.ffn.ffn_2.bias" ) lowerCAmelCase_ = check_and_map_params( bert_output.dense.weight , f"encoder.transformer_cells.{i}.ffn.ffn_2.weight" ) lowerCAmelCase_ = check_and_map_params( bert_output.LayerNorm.bias , f"encoder.transformer_cells.{i}.ffn.layer_norm.beta" ) lowerCAmelCase_ = check_and_map_params( bert_output.LayerNorm.weight , f"encoder.transformer_cells.{i}.ffn.layer_norm.gamma" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models lowerCAmelCase_ = RobertaTokenizer.from_pretrained('''roberta-base''' ) lowerCAmelCase_ = tokenizer.encode_plus(_lowercase )['''input_ids'''] # Get gluon output lowerCAmelCase_ = mx.nd.array([input_ids] ) lowerCAmelCase_ = original_bort(inputs=_lowercase , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(_lowercase ) lowerCAmelCase_ = BertModel.from_pretrained(_lowercase ) hf_bort_model.eval() lowerCAmelCase_ = tokenizer.encode_plus(_lowercase , return_tensors='''pt''' ) lowerCAmelCase_ = hf_bort_model(**_lowercase )[0] lowerCAmelCase_ = output_gluon[0].asnumpy() lowerCAmelCase_ = output_hf[0].detach().numpy() lowerCAmelCase_ = np.max(np.abs(hf_layer - gluon_layer ) ).item() lowerCAmelCase_ = np.allclose(_lowercase , _lowercase , atol=1E-3 ) if success: print('''✔️ Both model do output the same tensors''' ) else: print('''❌ Both model do **NOT** output the same tensors''' ) print('''Absolute difference is:''' , _lowercase ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _A = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
278
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup __snake_case = '''https://www.indeed.co.in/jobs?q=mobile+app+development&l=''' def _A ( _lowercase = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" __UpperCamelCase = BeautifulSoup(requests.get(url + location ).content , 'html.parser' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('div' , attrs={'data-tn-component': 'organicJob'} ): __UpperCamelCase = job.find('a' , attrs={'data-tn-element': 'jobTitle'} ).text.strip() __UpperCamelCase = job.find('span' , {'class': 'company'} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('''Bangalore'''), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
310
0
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: A : List[Any] = None A : List[str] = logging.get_logger(__name__) A : Dict = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} A : int = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/tokenizer.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/tokenizer.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/tokenizer.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/tokenizer.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/tokenizer.json''', }, } # TODO(PVP) - this should be removed in Transformers v5 A : Optional[int] = { '''t5-small''': 5_1_2, '''t5-base''': 5_1_2, '''t5-large''': 5_1_2, '''t5-3b''': 5_1_2, '''t5-11b''': 5_1_2, } class A (_a ): '''simple docstring''' __lowerCamelCase : str = VOCAB_FILES_NAMES __lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Tuple = ['''input_ids''', '''attention_mask'''] __lowerCamelCase : List[Any] = TaTokenizer __lowerCamelCase : Any = [] def __init__( self : List[str] , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : int=None , __lowerCAmelCase : int="</s>" , __lowerCAmelCase : Tuple="<unk>" , __lowerCAmelCase : Dict="<pad>" , __lowerCAmelCase : Union[str, Any]=1_00 , __lowerCAmelCase : Optional[Any]=None , **__lowerCAmelCase : List[str] , ) -> Union[str, Any]: """simple docstring""" if extra_ids > 0 and additional_special_tokens is None: A__ = [f'<extra_id_{i}>' for i in range(A_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens A__ = len(set(filter(lambda __lowerCAmelCase : bool("""extra_id_""" in str(A_ ) ) , A_ ) ) ) if extra_tokens != extra_ids: raise ValueError( f'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) super().__init__( A_ , tokenizer_file=A_ , eos_token=A_ , unk_token=A_ , pad_token=A_ , extra_ids=A_ , additional_special_tokens=A_ , **A_ , ) A__ = vocab_file A__ = False if not self.vocab_file else True A__ = extra_ids @staticmethod def a_ ( __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict ) -> Any: """simple docstring""" if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: A__ = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" f' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" f' {pretrained_model_name_or_path} automatically truncating your input to' f' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' f' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , A_ , ) return max_model_length def a_ ( self : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ) -> List[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(A_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A__ = os.path.join( A_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ): copyfile(self.vocab_file , A_ ) logger.info(f'Copy vocab file to {out_vocab_file}' ) return (out_vocab_file,) def a_ ( self : Dict , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> Optional[int]: """simple docstring""" A__ = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: A__ = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def a_ ( self : Any , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> List[str]: """simple docstring""" A__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def a_ ( self : str ) -> int: """simple docstring""" return list( set(filter(lambda __lowerCAmelCase : bool(re.search(R"""<extra_id_\d+>""" , A_ ) ) is not None , self.additional_special_tokens ) ) ) def a_ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" return [self.convert_tokens_to_ids(A_ ) for token in self.get_sentinel_tokens()]
274
def _A ( _lowercase ) -> list: """simple docstring""" def merge(_lowercase , _lowercase ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(_lowercase ) <= 1: return collection __UpperCamelCase = len(_lowercase ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() __snake_case = input('''Enter numbers separated by a comma:\n''').strip() __snake_case = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
310
0
'''simple docstring''' from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( """The RoBERTa Model transformer with early exiting (DeeRoBERTa). """ , _a , ) class a ( _a ): _lowerCAmelCase = RobertaConfig _lowerCAmelCase = """roberta""" def __init__( self , __magic_name__ ) -> int: super().__init__(A_ ) _a = RobertaEmbeddings(A_ ) self.init_weights() @add_start_docstrings( """RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. """ , _a , ) class a ( _a ): _lowerCAmelCase = RobertaConfig _lowerCAmelCase = """roberta""" def __init__( self , __magic_name__ ) -> List[str]: super().__init__(A_ ) _a = config.num_labels _a = config.num_hidden_layers _a = DeeRobertaModel(A_ ) _a = nn.Dropout(config.hidden_dropout_prob ) _a = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(A_ ) def __UpperCAmelCase ( self , __magic_name__=None , __magic_name__=None , __magic_name__=None , __magic_name__=None , __magic_name__=None , __magic_name__=None , __magic_name__=None , __magic_name__=-1 , __magic_name__=False , ) -> List[str]: _a = self.num_layers try: _a = self.roberta( A_ , attention_mask=A_ , token_type_ids=A_ , position_ids=A_ , head_mask=A_ , inputs_embeds=A_ , ) _a = outputs[1] _a = self.dropout(A_ ) _a = self.classifier(A_ ) _a = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _a = e.message _a = e.exit_layer _a = outputs[0] if not self.training: _a = entropy(A_ ) _a = [] _a = [] if labels is not None: if self.num_labels == 1: # We are doing regression _a = MSELoss() _a = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: _a = CrossEntropyLoss() _a = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits _a = [] for highway_exit in outputs[-1]: _a = highway_exit[0] if not self.training: highway_logits_all.append(A_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression _a = MSELoss() _a = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: _a = CrossEntropyLoss() _a = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(A_ ) if train_highway: _a = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: _a = (loss,) + outputs if not self.training: _a = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _a = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
168
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowerCamelCase (_a ): _lowercase = 0 _lowercase = False _lowercase = 3.0 class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: Any ): '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs(),{} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs(),{'a': 2} ) self.assertDictEqual(MockClass(a=2,b=A_ ).to_kwargs(),{'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2,c=2.2_5 ).to_kwargs(),{'a': 2, 'c': 2.2_5} ) @require_cuda def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = GradScalerKwargs(init_scale=1024,growth_factor=2 ) AcceleratorState._reset_state() __UpperCamelCase = Accelerator(mixed_precision='fp16',kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __UpperCamelCase = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale,1_0_2_4.0 ) self.assertEqual(scaler._growth_factor,2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor,0.5 ) self.assertEqual(scaler._growth_interval,2000 ) self.assertEqual(scaler._enabled,A_ ) @require_multi_gpu def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(A_,env=os.environ.copy() ) if __name__ == "__main__": __snake_case = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) __snake_case = Accelerator(kwargs_handlers=[ddp_scaler]) __snake_case = torch.nn.Linear(1_0_0, 2_0_0) __snake_case = accelerator.prepare(model) # Check the values changed in kwargs __snake_case = '''''' __snake_case = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
310
0