code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
__snake_case = '''Input must be a string of 8 numbers plus letter''' __snake_case = '''TRWAGMYFPDXBNJZSQVHLCKE''' def _A ( _lowercase ) -> bool: """simple docstring""" if not isinstance(_lowercase , _lowercase ): __UpperCamelCase = f'''Expected string as input, found {type(_lowercase ).__name__}''' raise TypeError(_lowercase ) __UpperCamelCase = spanish_id.replace('-' , '' ).upper() if len(_lowercase ) != 9: raise ValueError(_lowercase ) try: __UpperCamelCase = int(spanish_id_clean[0:8] ) __UpperCamelCase = spanish_id_clean[8] except ValueError as ex: raise ValueError(_lowercase ) from ex if letter.isdigit(): raise ValueError(_lowercase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
310
def _A ( _lowercase ) -> list: """simple docstring""" def merge(_lowercase , _lowercase ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(_lowercase ) <= 1: return collection __UpperCamelCase = len(_lowercase ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() __snake_case = input('''Enter numbers separated by a comma:\n''').strip() __snake_case = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
310
1
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _A ( _lowercase , _lowercase=0.9_99 , _lowercase="cosine" , ) -> Optional[int]: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(_lowercase ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_lowercase ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) __UpperCamelCase = [] for i in range(_lowercase ): __UpperCamelCase = i / num_diffusion_timesteps __UpperCamelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_lowercase ) / alpha_bar_fn(_lowercase ) , _lowercase ) ) return torch.tensor(_lowercase , dtype=torch.floataa ) class __lowerCamelCase (_a , _a ): _lowercase = [e.name for e in KarrasDiffusionSchedulers] _lowercase = 2 @register_to_config def __init__( self: Dict,A_: int = 1000,A_: float = 0.0_0_0_8_5,A_: float = 0.0_1_2,A_: str = "linear",A_: Optional[Union[np.ndarray, List[float]]] = None,A_: str = "epsilon",A_: str = "linspace",A_: int = 0,): '''simple docstring''' if trained_betas is not None: __UpperCamelCase = torch.tensor(A_,dtype=torch.floataa ) elif beta_schedule == "linear": __UpperCamelCase = torch.linspace(A_,A_,A_,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __UpperCamelCase = ( torch.linspace(beta_start**0.5,beta_end**0.5,A_,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __UpperCamelCase = betas_for_alpha_bar(A_ ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) __UpperCamelCase = 1.0 - self.betas __UpperCamelCase = torch.cumprod(self.alphas,dim=0 ) # set all values self.set_timesteps(A_,A_,A_ ) def snake_case_ ( self: str,A_: int,A_: Optional[Any]=None ): '''simple docstring''' if schedule_timesteps is None: __UpperCamelCase = self.timesteps __UpperCamelCase = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __UpperCamelCase = 1 if len(A_ ) > 1 else 0 else: __UpperCamelCase = timestep.cpu().item() if torch.is_tensor(A_ ) else timestep __UpperCamelCase = self._index_counter[timestep_int] return indices[pos].item() @property def snake_case_ ( self: Tuple ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def snake_case_ ( self: List[str],A_: torch.FloatTensor,A_: Union[float, torch.FloatTensor],): '''simple docstring''' __UpperCamelCase = self.index_for_timestep(A_ ) if self.state_in_first_order: __UpperCamelCase = self.sigmas[step_index] else: __UpperCamelCase = self.sigmas_interpol[step_index] __UpperCamelCase = sample / ((sigma**2 + 1) ** 0.5) return sample def snake_case_ ( self: List[Any],A_: int,A_: Union[str, torch.device] = None,A_: Optional[int] = None,): '''simple docstring''' __UpperCamelCase = num_inference_steps __UpperCamelCase = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __UpperCamelCase = np.linspace(0,num_train_timesteps - 1,A_,dtype=A_ )[::-1].copy() elif self.config.timestep_spacing == "leading": __UpperCamelCase = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __UpperCamelCase = (np.arange(0,A_ ) * step_ratio).round()[::-1].copy().astype(A_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __UpperCamelCase = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __UpperCamelCase = (np.arange(A_,0,-step_ratio )).round().copy().astype(A_ ) timesteps -= 1 else: raise ValueError( F'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) __UpperCamelCase = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __UpperCamelCase = torch.from_numpy(np.log(A_ ) ).to(A_ ) __UpperCamelCase = np.interp(A_,np.arange(0,len(A_ ) ),A_ ) __UpperCamelCase = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __UpperCamelCase = torch.from_numpy(A_ ).to(device=A_ ) # interpolate sigmas __UpperCamelCase = sigmas.log().lerp(sigmas.roll(1 ).log(),0.5 ).exp() __UpperCamelCase = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __UpperCamelCase = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(A_ ).startswith('mps' ): # mps does not support float64 __UpperCamelCase = torch.from_numpy(A_ ).to(A_,dtype=torch.floataa ) else: __UpperCamelCase = torch.from_numpy(A_ ).to(A_ ) # interpolate timesteps __UpperCamelCase = self.sigma_to_t(A_ ).to(A_,dtype=timesteps.dtype ) __UpperCamelCase = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]),dim=-1 ).flatten() __UpperCamelCase = torch.cat([timesteps[:1], interleaved_timesteps] ) __UpperCamelCase = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __UpperCamelCase = defaultdict(A_ ) def snake_case_ ( self: str,A_: int ): '''simple docstring''' __UpperCamelCase = sigma.log() # get distribution __UpperCamelCase = log_sigma - self.log_sigmas[:, None] # get sigmas range __UpperCamelCase = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __UpperCamelCase = low_idx + 1 __UpperCamelCase = self.log_sigmas[low_idx] __UpperCamelCase = self.log_sigmas[high_idx] # interpolate sigmas __UpperCamelCase = (low - log_sigma) / (low - high) __UpperCamelCase = w.clamp(0,1 ) # transform interpolation to time range __UpperCamelCase = (1 - w) * low_idx + w * high_idx __UpperCamelCase = t.view(sigma.shape ) return t @property def snake_case_ ( self: Tuple ): '''simple docstring''' return self.sample is None def snake_case_ ( self: Union[str, Any],A_: Union[torch.FloatTensor, np.ndarray],A_: Union[float, torch.FloatTensor],A_: Union[torch.FloatTensor, np.ndarray],A_: bool = True,): '''simple docstring''' __UpperCamelCase = self.index_for_timestep(A_ ) # advance index counter by 1 __UpperCamelCase = timestep.cpu().item() if torch.is_tensor(A_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __UpperCamelCase = self.sigmas[step_index] __UpperCamelCase = self.sigmas_interpol[step_index + 1] __UpperCamelCase = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __UpperCamelCase = self.sigmas[step_index - 1] __UpperCamelCase = self.sigmas_interpol[step_index] __UpperCamelCase = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __UpperCamelCase = 0 __UpperCamelCase = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __UpperCamelCase = sigma_hat if self.state_in_first_order else sigma_interpol __UpperCamelCase = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __UpperCamelCase = sigma_hat if self.state_in_first_order else sigma_interpol __UpperCamelCase = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('prediction_type not implemented yet: sample' ) else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __UpperCamelCase = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __UpperCamelCase = sigma_interpol - sigma_hat # store for 2nd order step __UpperCamelCase = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __UpperCamelCase = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep __UpperCamelCase = sigma_next - sigma_hat __UpperCamelCase = self.sample __UpperCamelCase = None __UpperCamelCase = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=A_ ) def snake_case_ ( self: List[str],A_: torch.FloatTensor,A_: torch.FloatTensor,A_: torch.FloatTensor,): '''simple docstring''' __UpperCamelCase = self.sigmas.to(device=original_samples.device,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(A_ ): # mps does not support float64 __UpperCamelCase = self.timesteps.to(original_samples.device,dtype=torch.floataa ) __UpperCamelCase = timesteps.to(original_samples.device,dtype=torch.floataa ) else: __UpperCamelCase = self.timesteps.to(original_samples.device ) __UpperCamelCase = timesteps.to(original_samples.device ) __UpperCamelCase = [self.index_for_timestep(A_,A_ ) for t in timesteps] __UpperCamelCase = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __UpperCamelCase = sigma.unsqueeze(-1 ) __UpperCamelCase = original_samples + noise * sigma return noisy_samples def __len__( self: Any ): '''simple docstring''' return self.config.num_train_timesteps
310
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowerCamelCase (_a ): _lowercase = 0 _lowercase = False _lowercase = 3.0 class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: Any ): '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs(),{} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs(),{'a': 2} ) self.assertDictEqual(MockClass(a=2,b=A_ ).to_kwargs(),{'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2,c=2.2_5 ).to_kwargs(),{'a': 2, 'c': 2.2_5} ) @require_cuda def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = GradScalerKwargs(init_scale=1024,growth_factor=2 ) AcceleratorState._reset_state() __UpperCamelCase = Accelerator(mixed_precision='fp16',kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __UpperCamelCase = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale,1_0_2_4.0 ) self.assertEqual(scaler._growth_factor,2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor,0.5 ) self.assertEqual(scaler._growth_interval,2000 ) self.assertEqual(scaler._enabled,A_ ) @require_multi_gpu def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(A_,env=os.environ.copy() ) if __name__ == "__main__": __snake_case = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) __snake_case = Accelerator(kwargs_handlers=[ddp_scaler]) __snake_case = torch.nn.Linear(1_0_0, 2_0_0) __snake_case = accelerator.prepare(model) # Check the values changed in kwargs __snake_case = '''''' __snake_case = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
310
1
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class __lowerCamelCase (_a ): _lowercase = 42 _lowercase = jnp.floataa _lowercase = True def snake_case_ ( self: Any ): '''simple docstring''' super().setup() __UpperCamelCase = nn.Dense(5,dtype=self.dtype ) def __call__( self: Optional[int],*A_: Dict,**A_: Tuple ): '''simple docstring''' __UpperCamelCase = super().__call__(*A_,**A_ ) __UpperCamelCase = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class __lowerCamelCase (_a ): _lowercase = FlaxBigBirdForNaturalQuestionsModule def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> str: """simple docstring""" def cross_entropy(_lowercase , _lowercase , _lowercase=None ): __UpperCamelCase = logits.shape[-1] __UpperCamelCase = (labels[..., None] == jnp.arange(_lowercase )[None]).astype('f4' ) __UpperCamelCase = jax.nn.log_softmax(_lowercase , axis=-1 ) __UpperCamelCase = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: __UpperCamelCase = reduction(_lowercase ) return loss __UpperCamelCase = partial(_lowercase , reduction=jnp.mean ) __UpperCamelCase = cross_entropy(_lowercase , _lowercase ) __UpperCamelCase = cross_entropy(_lowercase , _lowercase ) __UpperCamelCase = cross_entropy(_lowercase , _lowercase ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class __lowerCamelCase : _lowercase = "google/bigbird-roberta-base" _lowercase = 3000 _lowercase = 1_0500 _lowercase = 128 _lowercase = 3 _lowercase = 1 _lowercase = 5 # tx_args _lowercase = 3e-5 _lowercase = 0.0 _lowercase = 2_0000 _lowercase = 0.0095 _lowercase = "bigbird-roberta-natural-questions" _lowercase = "training-expt" _lowercase = "data/nq-training.jsonl" _lowercase = "data/nq-validation.jsonl" def snake_case_ ( self: Optional[int] ): '''simple docstring''' os.makedirs(self.base_dir,exist_ok=A_ ) __UpperCamelCase = os.path.join(self.base_dir,self.save_dir ) __UpperCamelCase = self.batch_size_per_device * jax.device_count() @dataclass class __lowerCamelCase : _lowercase = 42 _lowercase = 4096 # no dynamic padding on TPUs def __call__( self: Tuple,A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = self.collate_fn(A_ ) __UpperCamelCase = jax.tree_util.tree_map(A_,A_ ) return batch def snake_case_ ( self: List[str],A_: str ): '''simple docstring''' __UpperCamelCase, __UpperCamelCase = self.fetch_inputs(features['input_ids'] ) __UpperCamelCase = { 'input_ids': jnp.array(A_,dtype=jnp.intaa ), 'attention_mask': jnp.array(A_,dtype=jnp.intaa ), 'start_labels': jnp.array(features['start_token'],dtype=jnp.intaa ), 'end_labels': jnp.array(features['end_token'],dtype=jnp.intaa ), 'pooled_labels': jnp.array(features['category'],dtype=jnp.intaa ), } return batch def snake_case_ ( self: Tuple,A_: list ): '''simple docstring''' __UpperCamelCase = [self._fetch_inputs(A_ ) for ids in input_ids] return zip(*A_ ) def snake_case_ ( self: int,A_: list ): '''simple docstring''' __UpperCamelCase = [1 for _ in range(len(A_ ) )] while len(A_ ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def _A ( _lowercase , _lowercase , _lowercase=None ) -> Optional[int]: """simple docstring""" if seed is not None: __UpperCamelCase = dataset.shuffle(seed=_lowercase ) for i in range(len(_lowercase ) // batch_size ): __UpperCamelCase = dataset[i * batch_size : (i + 1) * batch_size] yield dict(_lowercase ) @partial(jax.pmap , axis_name='batch' ) def _A ( _lowercase , _lowercase , **_lowercase ) -> Union[str, Any]: """simple docstring""" def loss_fn(_lowercase ): __UpperCamelCase = model_inputs.pop('start_labels' ) __UpperCamelCase = model_inputs.pop('end_labels' ) __UpperCamelCase = model_inputs.pop('pooled_labels' ) __UpperCamelCase = state.apply_fn(**_lowercase , params=_lowercase , dropout_rng=_lowercase , train=_lowercase ) __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = outputs return state.loss_fn( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) __UpperCamelCase, __UpperCamelCase = jax.random.split(_lowercase ) __UpperCamelCase = jax.value_and_grad(_lowercase ) __UpperCamelCase, __UpperCamelCase = grad_fn(state.params ) __UpperCamelCase = jax.lax.pmean({'loss': loss} , axis_name='batch' ) __UpperCamelCase = jax.lax.pmean(_lowercase , 'batch' ) __UpperCamelCase = state.apply_gradients(grads=_lowercase ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='batch' ) def _A ( _lowercase , **_lowercase ) -> Tuple: """simple docstring""" __UpperCamelCase = model_inputs.pop('start_labels' ) __UpperCamelCase = model_inputs.pop('end_labels' ) __UpperCamelCase = model_inputs.pop('pooled_labels' ) __UpperCamelCase = state.apply_fn(**_lowercase , params=state.params , train=_lowercase ) __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = outputs __UpperCamelCase = state.loss_fn(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) __UpperCamelCase = jax.lax.pmean({'loss': loss} , axis_name='batch' ) return metrics class __lowerCamelCase (train_state.TrainState ): _lowercase = struct.field(pytree_node=_a ) @dataclass class __lowerCamelCase : _lowercase = 42 _lowercase = 42 _lowercase = 42 _lowercase = 42 _lowercase = 42 _lowercase = 42 _lowercase = None def snake_case_ ( self: List[Any],A_: Optional[Any],A_: List[Any],A_: Dict,A_: Dict=None ): '''simple docstring''' __UpperCamelCase = model.params __UpperCamelCase = TrainState.create( apply_fn=model.__call__,params=A_,tx=A_,loss_fn=A_,) if ckpt_dir is not None: __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = restore_checkpoint(A_,A_ ) __UpperCamelCase = { 'lr': args.lr, 'init_lr': args.init_lr, 'warmup_steps': args.warmup_steps, 'num_train_steps': num_train_steps, 'weight_decay': args.weight_decay, } __UpperCamelCase, __UpperCamelCase = build_tx(**A_ ) __UpperCamelCase = train_state.TrainState( step=A_,apply_fn=model.__call__,params=A_,tx=A_,opt_state=A_,) __UpperCamelCase = args __UpperCamelCase = data_collator __UpperCamelCase = lr __UpperCamelCase = params __UpperCamelCase = jax_utils.replicate(A_ ) return state def snake_case_ ( self: Any,A_: Tuple,A_: Any,A_: Tuple ): '''simple docstring''' __UpperCamelCase = self.args __UpperCamelCase = len(A_ ) // args.batch_size __UpperCamelCase = jax.random.PRNGKey(0 ) __UpperCamelCase = jax.random.split(A_,jax.device_count() ) for epoch in range(args.max_epochs ): __UpperCamelCase = jnp.array(0,dtype=jnp.floataa ) __UpperCamelCase = get_batched_dataset(A_,args.batch_size,seed=A_ ) __UpperCamelCase = 0 for batch in tqdm(A_,total=A_,desc=F'''Running EPOCH-{epoch}''' ): __UpperCamelCase = self.data_collator(A_ ) __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = self.train_step_fn(A_,A_,**A_ ) running_loss += jax_utils.unreplicate(metrics['loss'] ) i += 1 if i % args.logging_steps == 0: __UpperCamelCase = jax_utils.unreplicate(state.step ) __UpperCamelCase = running_loss.item() / i __UpperCamelCase = self.scheduler_fn(state_step - 1 ) __UpperCamelCase = self.evaluate(A_,A_ ) __UpperCamelCase = { 'step': state_step.item(), 'eval_loss': eval_loss.item(), 'tr_loss': tr_loss, 'lr': lr.item(), } tqdm.write(str(A_ ) ) self.logger.log(A_,commit=A_ ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F'''-e{epoch}-s{i}''',state=A_ ) def snake_case_ ( self: Union[str, Any],A_: Any,A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = get_batched_dataset(A_,self.args.batch_size ) __UpperCamelCase = len(A_ ) // self.args.batch_size __UpperCamelCase = jnp.array(0,dtype=jnp.floataa ) __UpperCamelCase = 0 for batch in tqdm(A_,total=A_,desc='Evaluating ... ' ): __UpperCamelCase = self.data_collator(A_ ) __UpperCamelCase = self.val_step_fn(A_,**A_ ) running_loss += jax_utils.unreplicate(metrics['loss'] ) i += 1 return running_loss / i def snake_case_ ( self: int,A_: Optional[int],A_: Tuple ): '''simple docstring''' __UpperCamelCase = jax_utils.unreplicate(A_ ) print(F'''SAVING CHECKPOINT IN {save_dir}''',end=' ... ' ) self.model_save_fn(A_,params=state.params ) with open(os.path.join(A_,'opt_state.msgpack' ),'wb' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args,os.path.join(A_,'args.joblib' ) ) joblib.dump(self.data_collator,os.path.join(A_,'data_collator.joblib' ) ) with open(os.path.join(A_,'training_state.json' ),'w' ) as f: json.dump({'step': state.step.item()},A_ ) print('DONE' ) def _A ( _lowercase , _lowercase ) -> Optional[int]: """simple docstring""" print(f'''RESTORING CHECKPOINT FROM {save_dir}''' , end=' ... ' ) with open(os.path.join(_lowercase , 'flax_model.msgpack' ) , 'rb' ) as f: __UpperCamelCase = from_bytes(state.params , f.read() ) with open(os.path.join(_lowercase , 'opt_state.msgpack' ) , 'rb' ) as f: __UpperCamelCase = from_bytes(state.opt_state , f.read() ) __UpperCamelCase = joblib.load(os.path.join(_lowercase , 'args.joblib' ) ) __UpperCamelCase = joblib.load(os.path.join(_lowercase , 'data_collator.joblib' ) ) with open(os.path.join(_lowercase , 'training_state.json' ) , 'r' ) as f: __UpperCamelCase = json.load(_lowercase ) __UpperCamelCase = training_state['step'] print('DONE' ) return params, opt_state, step, args, data_collator def _A ( _lowercase , _lowercase , _lowercase , _lowercase ) -> Optional[int]: """simple docstring""" __UpperCamelCase = num_train_steps - warmup_steps __UpperCamelCase = optax.linear_schedule(init_value=_lowercase , end_value=_lowercase , transition_steps=_lowercase ) __UpperCamelCase = optax.linear_schedule(init_value=_lowercase , end_value=1e-7 , transition_steps=_lowercase ) __UpperCamelCase = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[Any]: """simple docstring""" def weight_decay_mask(_lowercase ): __UpperCamelCase = traverse_util.flatten_dict(_lowercase ) __UpperCamelCase = {k: (v[-1] != 'bias' and v[-2:] != ('LayerNorm', 'scale')) for k, v in params.items()} return traverse_util.unflatten_dict(_lowercase ) __UpperCamelCase = scheduler_fn(_lowercase , _lowercase , _lowercase , _lowercase ) __UpperCamelCase = optax.adamw(learning_rate=_lowercase , weight_decay=_lowercase , mask=_lowercase ) return tx, lr
310
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class __lowerCamelCase (_a ): _lowercase = ["""image_processor""", """tokenizer"""] _lowercase = """OwlViTImageProcessor""" _lowercase = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self: int,A_: Tuple=None,A_: int=None,**A_: int ): '''simple docstring''' __UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.',A_,) __UpperCamelCase = kwargs.pop('feature_extractor' ) __UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(A_,A_ ) def __call__( self: str,A_: Dict=None,A_: Optional[int]=None,A_: Any=None,A_: Tuple="max_length",A_: int="np",**A_: Optional[Any] ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(A_,A_ ) or (isinstance(A_,A_ ) and not isinstance(text[0],A_ )): __UpperCamelCase = [self.tokenizer(A_,padding=A_,return_tensors=A_,**A_ )] elif isinstance(A_,A_ ) and isinstance(text[0],A_ ): __UpperCamelCase = [] # Maximum number of queries across batch __UpperCamelCase = max([len(A_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(A_ ) != max_num_queries: __UpperCamelCase = t + [' '] * (max_num_queries - len(A_ )) __UpperCamelCase = self.tokenizer(A_,padding=A_,return_tensors=A_,**A_ ) encodings.append(A_ ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": __UpperCamelCase = np.concatenate([encoding['input_ids'] for encoding in encodings],axis=0 ) __UpperCamelCase = np.concatenate([encoding['attention_mask'] for encoding in encodings],axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __UpperCamelCase = jnp.concatenate([encoding['input_ids'] for encoding in encodings],axis=0 ) __UpperCamelCase = jnp.concatenate([encoding['attention_mask'] for encoding in encodings],axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __UpperCamelCase = torch.cat([encoding['input_ids'] for encoding in encodings],dim=0 ) __UpperCamelCase = torch.cat([encoding['attention_mask'] for encoding in encodings],dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __UpperCamelCase = tf.stack([encoding['input_ids'] for encoding in encodings],axis=0 ) __UpperCamelCase = tf.stack([encoding['attention_mask'] for encoding in encodings],axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) __UpperCamelCase = BatchEncoding() __UpperCamelCase = input_ids __UpperCamelCase = attention_mask if query_images is not None: __UpperCamelCase = BatchEncoding() __UpperCamelCase = self.image_processor( A_,return_tensors=A_,**A_ ).pixel_values __UpperCamelCase = query_pixel_values if images is not None: __UpperCamelCase = self.image_processor(A_,return_tensors=A_,**A_ ) if text is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**A_ ),tensor_type=A_ ) def snake_case_ ( self: Optional[int],*A_: int,**A_: List[Any] ): '''simple docstring''' return self.image_processor.post_process(*A_,**A_ ) def snake_case_ ( self: str,*A_: Optional[int],**A_: List[Any] ): '''simple docstring''' return self.image_processor.post_process_object_detection(*A_,**A_ ) def snake_case_ ( self: str,*A_: Tuple,**A_: int ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*A_,**A_ ) def snake_case_ ( self: List[str],*A_: str,**A_: List[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*A_,**A_ ) def snake_case_ ( self: int,*A_: Any,**A_: Tuple ): '''simple docstring''' return self.tokenizer.decode(*A_,**A_ ) @property def snake_case_ ( self: Optional[Any] ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.',A_,) return self.image_processor_class @property def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.',A_,) return self.image_processor
310
1
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __lowerCamelCase : _lowercase = 42 _lowercase = None # Automatically constructed _lowercase = "dict" _lowercase = None _lowercase = field(default="""Translation""" , init=_a , repr=_a ) def __call__( self: Tuple ): '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def snake_case_ ( self: List[str] ): '''simple docstring''' from .features import Value return {k: Value('string' ) for k in sorted(self.languages )} @dataclass class __lowerCamelCase : _lowercase = None _lowercase = None _lowercase = None # Automatically constructed _lowercase = "dict" _lowercase = None _lowercase = field(default="""TranslationVariableLanguages""" , init=_a , repr=_a ) def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = sorted(set(self.languages ) ) if self.languages else None __UpperCamelCase = len(self.languages ) if self.languages else None def __call__( self: Any ): '''simple docstring''' return pa.struct({'language': pa.list_(pa.string() ), 'translation': pa.list_(pa.string() )} ) def snake_case_ ( self: str,A_: Dict ): '''simple docstring''' __UpperCamelCase = set(self.languages ) if self.languages and set(A_ ) - lang_set: raise ValueError( F'''Some languages in example ({', '.join(sorted(set(A_ ) - lang_set ) )}) are not in valid set ({', '.join(A_ )}).''' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __UpperCamelCase = [] for lang, text in translation_dict.items(): if isinstance(A_,A_ ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __UpperCamelCase, __UpperCamelCase = zip(*sorted(A_ ) ) return {"language": languages, "translation": translations} def snake_case_ ( self: List[str] ): '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value('string' ) ), "translation": Sequence(Value('string' ) ), }
310
import math def _A ( _lowercase ) -> int: """simple docstring""" if not isinstance(_lowercase , _lowercase ): __UpperCamelCase = f'''Input value of [number={number}] must be an integer''' raise TypeError(_lowercase ) if number < 1: __UpperCamelCase = f'''Input value of [number={number}] must be > 0''' raise ValueError(_lowercase ) elif number == 1: return 3 elif number == 2: return 5 else: __UpperCamelCase = int(math.log(number // 3 , 2 ) ) + 2 __UpperCamelCase = [3, 5] __UpperCamelCase = 2 __UpperCamelCase = 3 for block in range(1 , _lowercase ): for _ in range(_lowercase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(1_1): __snake_case = 0 try: __snake_case = proth(number) except ValueError: print(f"""ValueError: there is no {number}th Proth number""") continue print(f"""The {number}th Proth number: {value}""")
310
1
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class __lowerCamelCase (_a ): def snake_case_ ( self: Optional[Any],A_: str ): '''simple docstring''' with open(A_,encoding='utf-8' ) as input_file: __UpperCamelCase = re.compile(r'(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)' ) __UpperCamelCase = input_file.read() __UpperCamelCase = regexp.search(A_ ) return match def snake_case_ ( self: Optional[Any],A_: str ): '''simple docstring''' with open(A_,encoding='utf-8' ) as input_file: __UpperCamelCase = re.compile(r'#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()',re.DOTALL ) __UpperCamelCase = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` __UpperCamelCase = regexp.finditer(A_ ) __UpperCamelCase = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = Path('./datasets' ) __UpperCamelCase = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(A_ ) ): raise AssertionError(F'''open(...) must use utf-8 encoding in {dataset}''' ) def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = Path('./datasets' ) __UpperCamelCase = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_print_statements(str(A_ ) ): raise AssertionError(F'''print statement found in {dataset}. Use datasets.logger/logging instead.''' )
310
import torch from transformers import AutoModel class __lowerCamelCase (torch.nn.Module ): def __init__( self: Union[str, Any],A_: Tuple="sayef/fsner-bert-base-uncased" ): '''simple docstring''' super(A_,self ).__init__() __UpperCamelCase = AutoModel.from_pretrained(A_,return_dict=A_ ) __UpperCamelCase = torch.nn.CosineSimilarity(3,1E-08 ) __UpperCamelCase = torch.nn.Softmax(dim=1 ) def snake_case_ ( self: Tuple,**A_: Union[str, Any] ): '''simple docstring''' return self.bert(**A_ ).last_hidden_state def snake_case_ ( self: Union[str, Any],A_: Union[str, Any] ): '''simple docstring''' return token_embeddings.sum(2,keepdim=A_ ) def snake_case_ ( self: List[str],A_: Dict,A_: Union[str, Any],A_: Union[str, Any]=1 ): '''simple docstring''' return self.softmax(T * self.cos(A_,A_ ) ) def snake_case_ ( self: Optional[int],A_: Union[str, Any],A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = W_supports['sizes'].tolist() __UpperCamelCase = W_supports['start_token_id'].item() __UpperCamelCase = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] __UpperCamelCase = self.BERT(**A_ ) __UpperCamelCase = self.BERT(**A_ ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = W_supports['input_ids'] == start_token_id __UpperCamelCase = W_supports['input_ids'] == end_token_id for i, size in enumerate(A_ ): if i == 0: __UpperCamelCase = 0 else: __UpperCamelCase = support_sizes[i - 1] __UpperCamelCase = S[s : s + size][start_token_masks[s : s + size]] __UpperCamelCase = S[s : s + size][end_token_masks[s : s + size]] __UpperCamelCase = torch.matmul(q[i],s_start.T ).sum(1 ).softmax(0 ) __UpperCamelCase = torch.matmul(q[i],s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: __UpperCamelCase = torch.vstack((p_starts, p_start) ) __UpperCamelCase = torch.vstack((p_ends, p_end) ) else: __UpperCamelCase = p_start __UpperCamelCase = p_end return p_starts, p_ends
310
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = {} class __lowerCamelCase (_a ): _lowercase = """llama""" _lowercase = ["""past_key_values"""] def __init__( self: Tuple,A_: List[str]=3_2000,A_: int=4096,A_: str=1_1008,A_: int=32,A_: Optional[Any]=32,A_: List[str]=None,A_: Union[str, Any]="silu",A_: Dict=2048,A_: Optional[Any]=0.0_2,A_: Any=1E-6,A_: int=True,A_: List[str]=0,A_: Any=1,A_: Optional[int]=2,A_: Optional[int]=1,A_: Optional[int]=False,A_: Dict=None,**A_: Optional[int],): '''simple docstring''' __UpperCamelCase = vocab_size __UpperCamelCase = max_position_embeddings __UpperCamelCase = hidden_size __UpperCamelCase = intermediate_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads # for backward compatibility if num_key_value_heads is None: __UpperCamelCase = num_attention_heads __UpperCamelCase = num_key_value_heads __UpperCamelCase = hidden_act __UpperCamelCase = initializer_range __UpperCamelCase = rms_norm_eps __UpperCamelCase = pretraining_tp __UpperCamelCase = use_cache __UpperCamelCase = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=A_,bos_token_id=A_,eos_token_id=A_,tie_word_embeddings=A_,**A_,) def snake_case_ ( self: Dict ): '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling,A_ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' F'''got {self.rope_scaling}''' ) __UpperCamelCase = self.rope_scaling.get('type',A_ ) __UpperCamelCase = self.rope_scaling.get('factor',A_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(A_,A_ ) or rope_scaling_factor <= 1.0: raise ValueError(F'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
310
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = BioGptTokenizer _lowercase = False def snake_case_ ( self: Any ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCamelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] __UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) ) __UpperCamelCase = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file,'w' ) as fp: fp.write(json.dumps(A_ ) ) with open(self.merges_file,'w' ) as fp: fp.write('\n'.join(A_ ) ) def snake_case_ ( self: Optional[int],A_: List[Any] ): '''simple docstring''' __UpperCamelCase = 'lower newer' __UpperCamelCase = 'lower newer' return input_text, output_text def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = BioGptTokenizer(self.vocab_file,self.merges_file ) __UpperCamelCase = 'lower' __UpperCamelCase = ['low', 'er</w>'] __UpperCamelCase = tokenizer.tokenize(A_ ) self.assertListEqual(A_,A_ ) __UpperCamelCase = tokens + ['<unk>'] __UpperCamelCase = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ),A_ ) @slow def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) __UpperCamelCase = tokenizer.encode('sequence builders',add_special_tokens=A_ ) __UpperCamelCase = tokenizer.encode('multi-sequence build',add_special_tokens=A_ ) __UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_ ) __UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_,A_ ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
310
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) def _A ( _lowercase ) -> YolosConfig: """simple docstring""" __UpperCamelCase = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: __UpperCamelCase = 1_92 __UpperCamelCase = 7_68 __UpperCamelCase = 12 __UpperCamelCase = 3 __UpperCamelCase = [8_00, 13_33] __UpperCamelCase = False elif yolos_name == "yolos_s_dWr": __UpperCamelCase = 3_30 __UpperCamelCase = 14 __UpperCamelCase = 6 __UpperCamelCase = 13_20 elif "yolos_s" in yolos_name: __UpperCamelCase = 3_84 __UpperCamelCase = 15_36 __UpperCamelCase = 12 __UpperCamelCase = 6 elif "yolos_b" in yolos_name: __UpperCamelCase = [8_00, 13_44] __UpperCamelCase = 91 __UpperCamelCase = 'huggingface/label-files' __UpperCamelCase = 'coco-detection-id2label.json' __UpperCamelCase = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='dataset' ) , 'r' ) ) __UpperCamelCase = {int(_lowercase ): v for k, v in idalabel.items()} __UpperCamelCase = idalabel __UpperCamelCase = {v: k for k, v in idalabel.items()} return config def _A ( _lowercase , _lowercase , _lowercase = False ) -> Dict: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __UpperCamelCase = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) __UpperCamelCase = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __UpperCamelCase = in_proj_weight[: config.hidden_size, :] __UpperCamelCase = in_proj_bias[: config.hidden_size] __UpperCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __UpperCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __UpperCamelCase = in_proj_weight[-config.hidden_size :, :] __UpperCamelCase = in_proj_bias[-config.hidden_size :] def _A ( _lowercase ) -> str: """simple docstring""" if "backbone" in name: __UpperCamelCase = name.replace('backbone' , 'vit' ) if "cls_token" in name: __UpperCamelCase = name.replace('cls_token' , 'embeddings.cls_token' ) if "det_token" in name: __UpperCamelCase = name.replace('det_token' , 'embeddings.detection_tokens' ) if "mid_pos_embed" in name: __UpperCamelCase = name.replace('mid_pos_embed' , 'encoder.mid_position_embeddings' ) if "pos_embed" in name: __UpperCamelCase = name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: __UpperCamelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "blocks" in name: __UpperCamelCase = name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: __UpperCamelCase = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: __UpperCamelCase = name.replace('attn' , 'attention.self' ) if "norm1" in name: __UpperCamelCase = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __UpperCamelCase = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __UpperCamelCase = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __UpperCamelCase = name.replace('mlp.fc2' , 'output.dense' ) if "class_embed" in name: __UpperCamelCase = name.replace('class_embed' , 'class_labels_classifier' ) if "bbox_embed" in name: __UpperCamelCase = name.replace('bbox_embed' , 'bbox_predictor' ) if "vit.norm" in name: __UpperCamelCase = name.replace('vit.norm' , 'vit.layernorm' ) return name def _A ( _lowercase , _lowercase ) -> dict: """simple docstring""" for key in orig_state_dict.copy().keys(): __UpperCamelCase = orig_state_dict.pop(_lowercase ) if "qkv" in key: __UpperCamelCase = key.split('.' ) __UpperCamelCase = int(key_split[2] ) __UpperCamelCase = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: __UpperCamelCase = val[:dim, :] __UpperCamelCase = val[ dim : dim * 2, : ] __UpperCamelCase = val[-dim:, :] else: __UpperCamelCase = val[:dim] __UpperCamelCase = val[dim : dim * 2] __UpperCamelCase = val[-dim:] else: __UpperCamelCase = val return orig_state_dict def _A ( ) -> torch.Tensor: """simple docstring""" __UpperCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __UpperCamelCase = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def _A ( _lowercase , _lowercase , _lowercase , _lowercase = False ) -> Tuple: """simple docstring""" __UpperCamelCase = get_yolos_config(_lowercase ) # load original state_dict __UpperCamelCase = torch.load(_lowercase , map_location='cpu' )['model'] # load 🤗 model __UpperCamelCase = YolosForObjectDetection(_lowercase ) model.eval() __UpperCamelCase = convert_state_dict(_lowercase , _lowercase ) model.load_state_dict(_lowercase ) # Check outputs on an image, prepared by YolosImageProcessor __UpperCamelCase = 8_00 if yolos_name != 'yolos_ti' else 5_12 __UpperCamelCase = YolosImageProcessor(format='coco_detection' , size=_lowercase ) __UpperCamelCase = image_processor(images=prepare_img() , return_tensors='pt' ) __UpperCamelCase = model(**_lowercase ) __UpperCamelCase, __UpperCamelCase = outputs.logits, outputs.pred_boxes __UpperCamelCase, __UpperCamelCase = None, None if yolos_name == "yolos_ti": __UpperCamelCase = torch.tensor( [[-39.50_22, -11.98_20, -17.68_88], [-29.95_74, -9.97_69, -17.76_91], [-42.32_81, -20.72_00, -30.62_94]] ) __UpperCamelCase = torch.tensor( [[0.40_21, 0.08_36, 0.79_79], [0.01_84, 0.26_09, 0.03_64], [0.17_81, 0.20_04, 0.20_95]] ) elif yolos_name == "yolos_s_200_pre": __UpperCamelCase = torch.tensor( [[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]] ) __UpperCamelCase = torch.tensor( [[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]] ) elif yolos_name == "yolos_s_300_pre": __UpperCamelCase = torch.tensor( [[-36.22_20, -14.43_85, -23.54_57], [-35.69_70, -14.75_83, -21.39_35], [-31.59_39, -13.60_42, -16.80_49]] ) __UpperCamelCase = torch.tensor( [[0.76_14, 0.23_16, 0.47_28], [0.71_68, 0.44_95, 0.38_55], [0.49_96, 0.14_66, 0.99_96]] ) elif yolos_name == "yolos_s_dWr": __UpperCamelCase = torch.tensor( [[-42.86_68, -24.10_49, -41.16_90], [-34.74_56, -14.12_74, -24.91_94], [-33.78_98, -12.19_46, -25.64_95]] ) __UpperCamelCase = torch.tensor( [[0.55_87, 0.27_73, 0.06_05], [0.50_04, 0.30_14, 0.99_94], [0.49_99, 0.15_48, 0.99_94]] ) elif yolos_name == "yolos_base": __UpperCamelCase = torch.tensor( [[-40.60_64, -24.30_84, -32.64_47], [-55.19_90, -30.77_19, -35.58_77], [-51.43_11, -33.35_07, -35.64_62]] ) __UpperCamelCase = torch.tensor( [[0.55_55, 0.27_94, 0.06_55], [0.90_49, 0.26_64, 0.18_94], [0.91_83, 0.19_84, 0.16_35]] ) else: raise ValueError(f'''Unknown yolos_name: {yolos_name}''' ) assert torch.allclose(logits[0, :3, :3] , _lowercase , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , _lowercase , atol=1e-4 ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(f'''Saving model {yolos_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowercase ) if push_to_hub: __UpperCamelCase = { 'yolos_ti': 'yolos-tiny', 'yolos_s_200_pre': 'yolos-small', 'yolos_s_300_pre': 'yolos-small-300', 'yolos_s_dWr': 'yolos-small-dwr', 'yolos_base': 'yolos-base', } print('Pushing to the hub...' ) __UpperCamelCase = model_mapping[yolos_name] image_processor.push_to_hub(_lowercase , organization='hustvl' ) model.push_to_hub(_lowercase , organization='hustvl' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--yolos_name''', default='''yolos_s_200_pre''', type=str, help=( '''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',''' ''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.''' ), ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __snake_case = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
310
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __snake_case = r''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(_a ) class __lowerCamelCase (_a ): _lowercase = """rag""" _lowercase = True def __init__( self: Tuple,A_: Any=None,A_: Any=True,A_: List[Any]=None,A_: Optional[int]=None,A_: List[Any]=None,A_: str=None,A_: Union[str, Any]=None,A_: List[Any]=" / ",A_: Union[str, Any]=" // ",A_: List[Any]=5,A_: Optional[int]=300,A_: Tuple=768,A_: Tuple=8,A_: Optional[Any]="wiki_dpr",A_: int="train",A_: Union[str, Any]="compressed",A_: Optional[int]=None,A_: List[Any]=None,A_: List[str]=False,A_: List[str]=False,A_: str=0.0,A_: List[Any]=True,A_: Tuple=False,A_: int=False,A_: Dict=False,A_: Tuple=True,A_: int=None,**A_: Optional[int],): '''simple docstring''' super().__init__( bos_token_id=A_,pad_token_id=A_,eos_token_id=A_,decoder_start_token_id=A_,forced_eos_token_id=A_,is_encoder_decoder=A_,prefix=A_,vocab_size=A_,**A_,) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" __UpperCamelCase = kwargs.pop('question_encoder' ) __UpperCamelCase = question_encoder_config.pop('model_type' ) __UpperCamelCase = kwargs.pop('generator' ) __UpperCamelCase = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig __UpperCamelCase = AutoConfig.for_model(A_,**A_ ) __UpperCamelCase = AutoConfig.for_model(A_,**A_ ) __UpperCamelCase = reduce_loss __UpperCamelCase = label_smoothing __UpperCamelCase = exclude_bos_score __UpperCamelCase = do_marginalize __UpperCamelCase = title_sep __UpperCamelCase = doc_sep __UpperCamelCase = n_docs __UpperCamelCase = max_combined_length __UpperCamelCase = dataset __UpperCamelCase = dataset_split __UpperCamelCase = index_name __UpperCamelCase = retrieval_vector_size __UpperCamelCase = retrieval_batch_size __UpperCamelCase = passages_path __UpperCamelCase = index_path __UpperCamelCase = use_dummy_dataset __UpperCamelCase = output_retrieved __UpperCamelCase = do_deduplication __UpperCamelCase = use_cache if self.forced_eos_token_id is None: __UpperCamelCase = getattr(self.generator,'forced_eos_token_id',A_ ) @classmethod def snake_case_ ( cls: Any,A_: PretrainedConfig,A_: PretrainedConfig,**A_: int ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict(),generator=generator_config.to_dict(),**A_ ) def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = copy.deepcopy(self.__dict__ ) __UpperCamelCase = self.question_encoder.to_dict() __UpperCamelCase = self.generator.to_dict() __UpperCamelCase = self.__class__.model_type return output
310
1
from __future__ import annotations __snake_case = [] def _A ( _lowercase , _lowercase , _lowercase ) -> bool: """simple docstring""" for i in range(len(_lowercase ) ): if board[row][i] == 1: return False for i in range(len(_lowercase ) ): if board[i][column] == 1: return False for i, j in zip(range(_lowercase , -1 , -1 ) , range(_lowercase , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(_lowercase , -1 , -1 ) , range(_lowercase , len(_lowercase ) ) ): if board[i][j] == 1: return False return True def _A ( _lowercase , _lowercase ) -> bool: """simple docstring""" if row >= len(_lowercase ): solution.append(_lowercase ) printboard(_lowercase ) print() return True for i in range(len(_lowercase ) ): if is_safe(_lowercase , _lowercase , _lowercase ): __UpperCamelCase = 1 solve(_lowercase , row + 1 ) __UpperCamelCase = 0 return False def _A ( _lowercase ) -> None: """simple docstring""" for i in range(len(_lowercase ) ): for j in range(len(_lowercase ) ): if board[i][j] == 1: print('Q' , end=' ' ) else: print('.' , end=' ' ) print() # n=int(input("The no. of queens")) __snake_case = 8 __snake_case = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('''The total no. of solutions are :''', len(solution))
310
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class __lowerCamelCase (_a ): _lowercase = """M-CLIP""" def __init__( self: int,A_: Any=1024,A_: Union[str, Any]=768,**A_: str ): '''simple docstring''' __UpperCamelCase = transformerDimSize __UpperCamelCase = imageDimSize super().__init__(**A_ ) class __lowerCamelCase (_a ): _lowercase = MCLIPConfig def __init__( self: int,A_: Optional[Any],*A_: List[str],**A_: Union[str, Any] ): '''simple docstring''' super().__init__(A_,*A_,**A_ ) __UpperCamelCase = XLMRobertaModel(A_ ) __UpperCamelCase = torch.nn.Linear( in_features=config.transformerDimensions,out_features=config.numDims ) def snake_case_ ( self: Dict,A_: int,A_: Optional[int] ): '''simple docstring''' __UpperCamelCase = self.transformer(input_ids=A_,attention_mask=A_ )[0] __UpperCamelCase = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(A_ ), embs
310
1
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __snake_case = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json''' with io.open(filename, '''r''', encoding='''utf-8''') as f: __snake_case = json.load(f) @require_torch class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: int,A_: int ): '''simple docstring''' return FSMTTokenizer.from_pretrained(A_ ) def snake_case_ ( self: Dict,A_: int ): '''simple docstring''' __UpperCamelCase = FSMTForConditionalGeneration.from_pretrained(A_ ).to(A_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 2_6.0], ['ru-en', 2_2.0], ['en-de', 2_2.0], ['de-en', 2_9.0], ] ) @slow def snake_case_ ( self: Tuple,A_: Any,A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = F'''facebook/wmt19-{pair}''' __UpperCamelCase = self.get_tokenizer(A_ ) __UpperCamelCase = self.get_model(A_ ) __UpperCamelCase = bleu_data[pair]['src'] __UpperCamelCase = bleu_data[pair]['tgt'] __UpperCamelCase = tokenizer(A_,return_tensors='pt',truncation=A_,padding='longest' ).to(A_ ) __UpperCamelCase = model.generate( input_ids=batch.input_ids,num_beams=8,) __UpperCamelCase = tokenizer.batch_decode( A_,skip_special_tokens=A_,clean_up_tokenization_spaces=A_ ) __UpperCamelCase = calculate_bleu(A_,A_ ) print(A_ ) self.assertGreaterEqual(scores['bleu'],A_ )
310
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class __lowerCamelCase : _lowercase = XGLMConfig _lowercase = {} _lowercase = """gelu""" def __init__( self: Optional[int],A_: Dict,A_: Any=14,A_: Optional[int]=7,A_: str=True,A_: Any=True,A_: Optional[int]=True,A_: Optional[int]=99,A_: List[str]=32,A_: Any=2,A_: Tuple=4,A_: List[str]=37,A_: Dict="gelu",A_: int=0.1,A_: List[str]=0.1,A_: int=512,A_: List[Any]=0.0_2,): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = d_model __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = ffn_dim __UpperCamelCase = activation_function __UpperCamelCase = activation_dropout __UpperCamelCase = attention_dropout __UpperCamelCase = max_position_embeddings __UpperCamelCase = initializer_range __UpperCamelCase = None __UpperCamelCase = 0 __UpperCamelCase = 2 __UpperCamelCase = 1 def snake_case_ ( self: Dict ): '''simple docstring''' return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length],self.vocab_size ),clip_value_min=0,clip_value_max=3 ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = self.get_config() __UpperCamelCase = floats_tensor([self.num_hidden_layers, self.num_attention_heads],2 ) return ( config, input_ids, input_mask, head_mask, ) def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' return XGLMConfig( vocab_size=self.vocab_size,d_model=self.hidden_size,num_layers=self.num_hidden_layers,attention_heads=self.num_attention_heads,ffn_dim=self.ffn_dim,activation_function=self.activation_function,activation_dropout=self.activation_dropout,attention_dropout=self.attention_dropout,max_position_embeddings=self.max_position_embeddings,initializer_range=self.initializer_range,use_cache=A_,bos_token_id=self.bos_token_id,eos_token_id=self.eos_token_id,pad_token_id=self.pad_token_id,return_dict=A_,) def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ) = config_and_inputs __UpperCamelCase = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class __lowerCamelCase (_a , _a , unittest.TestCase ): _lowercase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () _lowercase = (TFXGLMForCausalLM,) if is_tf_available() else () _lowercase = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) _lowercase = False _lowercase = False _lowercase = False def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = TFXGLMModelTester(self ) __UpperCamelCase = ConfigTester(self,config_class=A_,n_embd=37 ) def snake_case_ ( self: Any ): '''simple docstring''' self.config_tester.run_common_tests() @slow def snake_case_ ( self: Any ): '''simple docstring''' for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = TFXGLMModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def snake_case_ ( self: Tuple ): '''simple docstring''' super().test_resize_token_embeddings() @require_tf class __lowerCamelCase (unittest.TestCase ): @slow def snake_case_ ( self: Optional[Any],A_: int=True ): '''simple docstring''' __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = tf.convert_to_tensor([[2, 268, 9865]],dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __UpperCamelCase = [2, 268, 9865, 67, 11, 1988, 5_7252, 9865, 5, 984, 67, 1988, 21_3838, 1658, 53, 7_0446, 33, 6657, 278, 1581] # fmt: on __UpperCamelCase = model.generate(A_,do_sample=A_,num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist(),A_ ) @slow def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) __UpperCamelCase = tokenizer('Today is a nice day and',return_tensors='tf' ) __UpperCamelCase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): __UpperCamelCase = model.generate(A_,do_sample=A_,seed=[7, 0] ) __UpperCamelCase = tokenizer.decode(output_ids[0],skip_special_tokens=A_ ) __UpperCamelCase = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(A_,A_ ) @slow def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = 'left' # use different length sentences to test batching __UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] __UpperCamelCase = tokenizer(A_,return_tensors='tf',padding=A_ ) __UpperCamelCase = inputs['input_ids'] __UpperCamelCase = model.generate(input_ids=A_,attention_mask=inputs['attention_mask'],max_new_tokens=12 ) __UpperCamelCase = tokenizer(sentences[0],return_tensors='tf' ).input_ids __UpperCamelCase = model.generate(input_ids=A_,max_new_tokens=12 ) __UpperCamelCase = tokenizer(sentences[1],return_tensors='tf' ).input_ids __UpperCamelCase = model.generate(input_ids=A_,max_new_tokens=12 ) __UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ ) __UpperCamelCase = tokenizer.decode(output_non_padded[0],skip_special_tokens=A_ ) __UpperCamelCase = tokenizer.decode(output_padded[0],skip_special_tokens=A_ ) __UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(A_,A_ ) self.assertListEqual(A_,[non_padded_sentence, padded_sentence] )
310
1
import baseaa def _A ( _lowercase ) -> bytes: """simple docstring""" return baseaa.baaencode(string.encode('utf-8' ) ) def _A ( _lowercase ) -> str: """simple docstring""" return baseaa.baadecode(_lowercase ).decode('utf-8' ) if __name__ == "__main__": __snake_case = '''Hello World!''' __snake_case = baseaa_encode(test) print(encoded) __snake_case = baseaa_decode(encoded) print(decoded)
310
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __snake_case = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json''' with io.open(filename, '''r''', encoding='''utf-8''') as f: __snake_case = json.load(f) @require_torch class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: int,A_: int ): '''simple docstring''' return FSMTTokenizer.from_pretrained(A_ ) def snake_case_ ( self: Dict,A_: int ): '''simple docstring''' __UpperCamelCase = FSMTForConditionalGeneration.from_pretrained(A_ ).to(A_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 2_6.0], ['ru-en', 2_2.0], ['en-de', 2_2.0], ['de-en', 2_9.0], ] ) @slow def snake_case_ ( self: Tuple,A_: Any,A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = F'''facebook/wmt19-{pair}''' __UpperCamelCase = self.get_tokenizer(A_ ) __UpperCamelCase = self.get_model(A_ ) __UpperCamelCase = bleu_data[pair]['src'] __UpperCamelCase = bleu_data[pair]['tgt'] __UpperCamelCase = tokenizer(A_,return_tensors='pt',truncation=A_,padding='longest' ).to(A_ ) __UpperCamelCase = model.generate( input_ids=batch.input_ids,num_beams=8,) __UpperCamelCase = tokenizer.batch_decode( A_,skip_special_tokens=A_,clean_up_tokenization_spaces=A_ ) __UpperCamelCase = calculate_bleu(A_,A_ ) print(A_ ) self.assertGreaterEqual(scores['bleu'],A_ )
310
1
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors __snake_case = logging.getLogger(__name__) class __lowerCamelCase (_a ): _lowercase = """sequence-classification""" def __init__( self: Dict,A_: Tuple ): '''simple docstring''' if type(A_ ) == dict: __UpperCamelCase = Namespace(**A_ ) __UpperCamelCase = glue_output_modes[hparams.task] __UpperCamelCase = glue_tasks_num_labels[hparams.task] super().__init__(A_,A_,self.mode ) def snake_case_ ( self: Optional[Any],**A_: int ): '''simple docstring''' return self.model(**A_ ) def snake_case_ ( self: Optional[int],A_: Union[str, Any],A_: List[str] ): '''simple docstring''' __UpperCamelCase = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __UpperCamelCase = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None __UpperCamelCase = self(**A_ ) __UpperCamelCase = outputs[0] __UpperCamelCase = self.trainer.lr_schedulers[0]['scheduler'] __UpperCamelCase = {'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = self.hparams __UpperCamelCase = processors[args.task]() __UpperCamelCase = processor.get_labels() for mode in ["train", "dev"]: __UpperCamelCase = self._feature_file(A_ ) if os.path.exists(A_ ) and not args.overwrite_cache: logger.info('Loading features from cached file %s',A_ ) else: logger.info('Creating features from dataset file at %s',args.data_dir ) __UpperCamelCase = ( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) __UpperCamelCase = convert_examples_to_features( A_,self.tokenizer,max_length=args.max_seq_length,label_list=self.labels,output_mode=args.glue_output_mode,) logger.info('Saving features into cached file %s',A_ ) torch.save(A_,A_ ) def snake_case_ ( self: int,A_: str,A_: int,A_: bool = False ): '''simple docstring''' __UpperCamelCase = 'dev' if mode == 'test' else mode __UpperCamelCase = self._feature_file(A_ ) logger.info('Loading features from cached file %s',A_ ) __UpperCamelCase = torch.load(A_ ) __UpperCamelCase = torch.tensor([f.input_ids for f in features],dtype=torch.long ) __UpperCamelCase = torch.tensor([f.attention_mask for f in features],dtype=torch.long ) __UpperCamelCase = torch.tensor([f.token_type_ids for f in features],dtype=torch.long ) if self.hparams.glue_output_mode == "classification": __UpperCamelCase = torch.tensor([f.label for f in features],dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": __UpperCamelCase = torch.tensor([f.label for f in features],dtype=torch.float ) return DataLoader( TensorDataset(A_,A_,A_,A_ ),batch_size=A_,shuffle=A_,) def snake_case_ ( self: Union[str, Any],A_: List[Any],A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __UpperCamelCase = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None __UpperCamelCase = self(**A_ ) __UpperCamelCase, __UpperCamelCase = outputs[:2] __UpperCamelCase = logits.detach().cpu().numpy() __UpperCamelCase = inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def snake_case_ ( self: str,A_: List[Any] ): '''simple docstring''' __UpperCamelCase = torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() __UpperCamelCase = np.concatenate([x['pred'] for x in outputs],axis=0 ) if self.hparams.glue_output_mode == "classification": __UpperCamelCase = np.argmax(A_,axis=1 ) elif self.hparams.glue_output_mode == "regression": __UpperCamelCase = np.squeeze(A_ ) __UpperCamelCase = np.concatenate([x['target'] for x in outputs],axis=0 ) __UpperCamelCase = [[] for _ in range(out_label_ids.shape[0] )] __UpperCamelCase = [[] for _ in range(out_label_ids.shape[0] )] __UpperCamelCase = {**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task,A_,A_ )} __UpperCamelCase = dict(results.items() ) __UpperCamelCase = results return ret, preds_list, out_label_list def snake_case_ ( self: Dict,A_: list ): '''simple docstring''' __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = self._eval_end(A_ ) __UpperCamelCase = ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def snake_case_ ( self: Dict,A_: Dict ): '''simple docstring''' __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = self._eval_end(A_ ) __UpperCamelCase = ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def snake_case_ ( A_: Union[str, Any],A_: Any ): '''simple docstring''' BaseTransformer.add_model_specific_args(A_,A_ ) parser.add_argument( '--max_seq_length',default=128,type=A_,help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ),) parser.add_argument( '--task',default='',type=A_,required=A_,help='The GLUE task to run',) parser.add_argument( '--gpus',default=0,type=A_,help='The number of GPUs allocated for this, it is by default 0 meaning none',) parser.add_argument( '--overwrite_cache',action='store_true',help='Overwrite the cached training and evaluation sets' ) return parser def _A ( ) -> int: """simple docstring""" __UpperCamelCase = argparse.ArgumentParser() add_generic_args(_lowercase , os.getcwd() ) __UpperCamelCase = GLUETransformer.add_model_specific_args(_lowercase , os.getcwd() ) __UpperCamelCase = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: __UpperCamelCase = os.path.join( './results' , f'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) __UpperCamelCase = GLUETransformer(_lowercase ) __UpperCamelCase = generic_train(_lowercase , _lowercase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: __UpperCamelCase = sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=_lowercase ) ) __UpperCamelCase = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(_lowercase ) if __name__ == "__main__": main()
310
def _A ( _lowercase ) -> list[int]: """simple docstring""" if length <= 0 or not isinstance(_lowercase , _lowercase ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(_lowercase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=1_0))
310
1
from numpy import exp, pi, sqrt def _A ( _lowercase , _lowercase = 0.0 , _lowercase = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
310
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = MgpstrTokenizer _lowercase = False _lowercase = {} _lowercase = False def snake_case_ ( self: int ): '''simple docstring''' super().setUp() # fmt: off __UpperCamelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on __UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) ) __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file,'w',encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) def snake_case_ ( self: Dict,**A_: Tuple ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname,**A_ ) def snake_case_ ( self: List[Any],A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = 'tester' __UpperCamelCase = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.' ) def snake_case_ ( self: str ): '''simple docstring''' pass def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCamelCase = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token} ) __UpperCamelCase = tokenizer.encode([special_token],add_special_tokens=A_ ) self.assertEqual(len(A_ ),1 ) __UpperCamelCase = tokenizer.decode(A_,skip_special_tokens=A_ ) self.assertTrue(special_token not in decoded ) def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCamelCase, __UpperCamelCase = self.get_input_output_texts(A_ ) __UpperCamelCase = tokenizer.tokenize(A_ ) __UpperCamelCase = tokenizer.convert_tokens_to_ids(A_ ) __UpperCamelCase = tokenizer.encode(A_,add_special_tokens=A_ ) self.assertListEqual(A_,A_ ) __UpperCamelCase = tokenizer.convert_ids_to_tokens(A_ ) self.assertNotEqual(len(A_ ),0 ) __UpperCamelCase = tokenizer.decode(A_ ) self.assertIsInstance(A_,A_ ) self.assertEqual(text_a.replace(' ','' ),A_ ) @unittest.skip('MGP-STR tokenizer only handles one sequence.' ) def snake_case_ ( self: int ): '''simple docstring''' pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' ) def snake_case_ ( self: List[str] ): '''simple docstring''' pass
310
1
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( 'compression_format, is_archive' , [ ('7z', True), ('bz2', False), ('gzip', False), ('lz4', False), ('tar', True), ('xz', False), ('zip', True), ('zstd', False), ] , ) def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) -> List[str]: """simple docstring""" __UpperCamelCase = { '7z': (seven_zip_file, SevenZipExtractor), 'bz2': (bza_file, BzipaExtractor), 'gzip': (gz_file, GzipExtractor), 'lz4': (lza_file, LzaExtractor), 'tar': (tar_file, TarExtractor), 'xz': (xz_file, XzExtractor), 'zip': (zip_file, ZipExtractor), 'zstd': (zstd_file, ZstdExtractor), } __UpperCamelCase, __UpperCamelCase = input_paths_and_base_extractors[compression_format] if input_path is None: __UpperCamelCase = f'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(_lowercase ) assert base_extractor.is_extractable(_lowercase ) __UpperCamelCase = tmp_path / ('extracted' if is_archive else 'extracted.txt') base_extractor.extract(_lowercase , _lowercase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __UpperCamelCase = file_path.read_text(encoding='utf-8' ) else: __UpperCamelCase = output_path.read_text(encoding='utf-8' ) __UpperCamelCase = text_file.read_text(encoding='utf-8' ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( 'compression_format, is_archive' , [ ('7z', True), ('bz2', False), ('gzip', False), ('lz4', False), ('tar', True), ('xz', False), ('zip', True), ('zstd', False), ] , ) def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) -> Dict: """simple docstring""" __UpperCamelCase = { '7z': seven_zip_file, 'bz2': bza_file, 'gzip': gz_file, 'lz4': lza_file, 'tar': tar_file, 'xz': xz_file, 'zip': zip_file, 'zstd': zstd_file, } __UpperCamelCase = input_paths[compression_format] if input_path is None: __UpperCamelCase = f'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(_lowercase ) __UpperCamelCase = Extractor.infer_extractor_format(_lowercase ) assert extractor_format is not None __UpperCamelCase = tmp_path / ('extracted' if is_archive else 'extracted.txt') Extractor.extract(_lowercase , _lowercase , _lowercase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __UpperCamelCase = file_path.read_text(encoding='utf-8' ) else: __UpperCamelCase = output_path.read_text(encoding='utf-8' ) __UpperCamelCase = text_file.read_text(encoding='utf-8' ) assert extracted_file_content == expected_file_content @pytest.fixture def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" import tarfile __UpperCamelCase = tmp_path / 'data_dot_dot' directory.mkdir() __UpperCamelCase = directory / 'tar_file_with_dot_dot.tar' with tarfile.TarFile(_lowercase , 'w' ) as f: f.add(_lowercase , arcname=os.path.join('..' , text_file.name ) ) return path @pytest.fixture def _A ( _lowercase ) -> str: """simple docstring""" import tarfile __UpperCamelCase = tmp_path / 'data_sym_link' directory.mkdir() __UpperCamelCase = directory / 'tar_file_with_sym_link.tar' os.symlink('..' , directory / 'subdir' , target_is_directory=_lowercase ) with tarfile.TarFile(_lowercase , 'w' ) as f: f.add(str(directory / 'subdir' ) , arcname='subdir' ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( 'insecure_tar_file, error_log' , [('tar_file_with_dot_dot', 'illegal path'), ('tar_file_with_sym_link', 'Symlink')] , ) def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[Any]: """simple docstring""" __UpperCamelCase = { 'tar_file_with_dot_dot': tar_file_with_dot_dot, 'tar_file_with_sym_link': tar_file_with_sym_link, } __UpperCamelCase = insecure_tar_files[insecure_tar_file] __UpperCamelCase = tmp_path / 'extracted' TarExtractor.extract(_lowercase , _lowercase ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def _A ( _lowercase ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = tmpdir / 'not_a_zip_file' # From: https://github.com/python/cpython/pull/5053 __UpperCamelCase = ( B'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00' B'\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6\'\x00\x00\x00\x15I' B'DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07' B'\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82' ) with not_a_zip_file.open('wb' ) as f: f.write(_lowercase ) assert zipfile.is_zipfile(str(_lowercase ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(_lowercase ) # but we're right
310
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( """The RoBERTa Model transformer with early exiting (DeeRoBERTa). """ , _a , ) class __lowerCamelCase (_a ): _lowercase = RobertaConfig _lowercase = """roberta""" def __init__( self: Union[str, Any],A_: List[str] ): '''simple docstring''' super().__init__(A_ ) __UpperCamelCase = RobertaEmbeddings(A_ ) self.init_weights() @add_start_docstrings( """RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. """ , _a , ) class __lowerCamelCase (_a ): _lowercase = RobertaConfig _lowercase = """roberta""" def __init__( self: Any,A_: int ): '''simple docstring''' super().__init__(A_ ) __UpperCamelCase = config.num_labels __UpperCamelCase = config.num_hidden_layers __UpperCamelCase = DeeRobertaModel(A_ ) __UpperCamelCase = nn.Dropout(config.hidden_dropout_prob ) __UpperCamelCase = nn.Linear(config.hidden_size,self.config.num_labels ) @add_start_docstrings_to_model_forward(A_ ) def snake_case_ ( self: List[str],A_: int=None,A_: List[Any]=None,A_: List[str]=None,A_: List[str]=None,A_: Optional[int]=None,A_: List[str]=None,A_: Any=None,A_: List[Any]=-1,A_: List[Any]=False,): '''simple docstring''' __UpperCamelCase = self.num_layers try: __UpperCamelCase = self.roberta( A_,attention_mask=A_,token_type_ids=A_,position_ids=A_,head_mask=A_,inputs_embeds=A_,) __UpperCamelCase = outputs[1] __UpperCamelCase = self.dropout(A_ ) __UpperCamelCase = self.classifier(A_ ) __UpperCamelCase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __UpperCamelCase = e.message __UpperCamelCase = e.exit_layer __UpperCamelCase = outputs[0] if not self.training: __UpperCamelCase = entropy(A_ ) __UpperCamelCase = [] __UpperCamelCase = [] if labels is not None: if self.num_labels == 1: # We are doing regression __UpperCamelCase = MSELoss() __UpperCamelCase = loss_fct(logits.view(-1 ),labels.view(-1 ) ) else: __UpperCamelCase = CrossEntropyLoss() __UpperCamelCase = loss_fct(logits.view(-1,self.num_labels ),labels.view(-1 ) ) # work with highway exits __UpperCamelCase = [] for highway_exit in outputs[-1]: __UpperCamelCase = highway_exit[0] if not self.training: highway_logits_all.append(A_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __UpperCamelCase = MSELoss() __UpperCamelCase = loss_fct(highway_logits.view(-1 ),labels.view(-1 ) ) else: __UpperCamelCase = CrossEntropyLoss() __UpperCamelCase = loss_fct(highway_logits.view(-1,self.num_labels ),labels.view(-1 ) ) highway_losses.append(A_ ) if train_highway: __UpperCamelCase = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __UpperCamelCase = (loss,) + outputs if not self.training: __UpperCamelCase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __UpperCamelCase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
310
1
from typing import Any def _A ( _lowercase ) -> list[Any]: """simple docstring""" if not input_list: return [] __UpperCamelCase = [input_list.count(_lowercase ) for value in input_list] __UpperCamelCase = max(_lowercase ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(_lowercase ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
310
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCamelCase : @staticmethod def snake_case_ ( *A_: Optional[Any],**A_: Tuple ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class __lowerCamelCase (unittest.TestCase ): _lowercase = MODEL_FOR_OBJECT_DETECTION_MAPPING def snake_case_ ( self: Dict,A_: Optional[int],A_: Tuple,A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = ObjectDetectionPipeline(model=A_,image_processor=A_ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def snake_case_ ( self: int,A_: Any,A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png',threshold=0.0 ) self.assertGreater(len(A_ ),0 ) for detected_object in outputs: self.assertEqual( A_,{ 'score': ANY(A_ ), 'label': ANY(A_ ), 'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )}, },) import datasets __UpperCamelCase = datasets.load_dataset('hf-internal-testing/fixtures_image_utils','image',split='test' ) __UpperCamelCase = [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] __UpperCamelCase = object_detector(A_,threshold=0.0 ) self.assertEqual(len(A_ ),len(A_ ) ) for outputs in batch_outputs: self.assertGreater(len(A_ ),0 ) for detected_object in outputs: self.assertEqual( A_,{ 'score': ANY(A_ ), 'label': ANY(A_ ), 'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )}, },) @require_tf @unittest.skip('Object detection not implemented in TF' ) def snake_case_ ( self: str ): '''simple docstring''' pass @require_torch def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = 'hf-internal-testing/tiny-detr-mobilenetsv3' __UpperCamelCase = AutoModelForObjectDetection.from_pretrained(A_ ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained(A_ ) __UpperCamelCase = ObjectDetectionPipeline(model=A_,feature_extractor=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg',threshold=0.0 ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ],threshold=0.0,) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], ],) @require_torch @slow def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = AutoModelForObjectDetection.from_pretrained(A_ ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained(A_ ) __UpperCamelCase = ObjectDetectionPipeline(model=A_,feature_extractor=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ],) @require_torch @slow def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = pipeline('object-detection',model=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ],) @require_torch @slow def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = 0.9_9_8_5 __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = pipeline('object-detection',model=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg',threshold=A_ ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) @require_torch @require_pytesseract @slow def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = 'Narsil/layoutlmv3-finetuned-funsd' __UpperCamelCase = 0.9_9_9_3 __UpperCamelCase = pipeline('object-detection',model=A_,threshold=A_ ) __UpperCamelCase = object_detector( 'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, {'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, ],)
310
1
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=True , _lowercase="pt" ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = {'add_prefix_space': True} if isinstance(_lowercase , _lowercase ) and not line.startswith(' ' ) else {} __UpperCamelCase = padding_side return tokenizer( [line] , max_length=_lowercase , padding='max_length' if pad_to_max_length else None , truncation=_lowercase , return_tensors=_lowercase , add_special_tokens=_lowercase , **_lowercase , ) def _A ( _lowercase , _lowercase , _lowercase=None , ) -> List[Any]: """simple docstring""" __UpperCamelCase = input_ids.ne(_lowercase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCamelCase (_a ): def __init__( self: List[str],A_: str,A_: List[str],A_: List[str],A_: List[str],A_: Tuple="train",A_: Any=None,A_: List[str]=None,A_: List[Any]=None,A_: int="",): '''simple docstring''' super().__init__() __UpperCamelCase = Path(A_ ).joinpath(type_path + '.source' ) __UpperCamelCase = Path(A_ ).joinpath(type_path + '.target' ) __UpperCamelCase = self.get_char_lens(self.src_file ) __UpperCamelCase = max_source_length __UpperCamelCase = max_target_length assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}''' __UpperCamelCase = tokenizer __UpperCamelCase = prefix if n_obs is not None: __UpperCamelCase = self.src_lens[:n_obs] __UpperCamelCase = src_lang __UpperCamelCase = tgt_lang def __len__( self: Optional[Any] ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self: int,A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = index + 1 # linecache starts at 1 __UpperCamelCase = self.prefix + linecache.getline(str(self.src_file ),A_ ).rstrip('\n' ) __UpperCamelCase = linecache.getline(str(self.tgt_file ),A_ ).rstrip('\n' ) assert source_line, F'''empty source line for index {index}''' assert tgt_line, F'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer,A_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __UpperCamelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer,A_ ) else self.tokenizer ) __UpperCamelCase = self.tokenizer.generator if isinstance(self.tokenizer,A_ ) else self.tokenizer __UpperCamelCase = encode_line(A_,A_,self.max_source_length,'right' ) __UpperCamelCase = encode_line(A_,A_,self.max_target_length,'right' ) __UpperCamelCase = source_inputs['input_ids'].squeeze() __UpperCamelCase = target_inputs['input_ids'].squeeze() __UpperCamelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def snake_case_ ( A_: List[Any] ): '''simple docstring''' return [len(A_ ) for x in Path(A_ ).open().readlines()] def snake_case_ ( self: Union[str, Any],A_: Any ): '''simple docstring''' __UpperCamelCase = torch.stack([x['input_ids'] for x in batch] ) __UpperCamelCase = torch.stack([x['attention_mask'] for x in batch] ) __UpperCamelCase = torch.stack([x['decoder_input_ids'] for x in batch] ) __UpperCamelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer,A_ ) else self.tokenizer.pad_token_id ) __UpperCamelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer,A_ ) else self.tokenizer.pad_token_id ) __UpperCamelCase = trim_batch(A_,A_ ) __UpperCamelCase, __UpperCamelCase = trim_batch(A_,A_,attention_mask=A_ ) __UpperCamelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch __snake_case = getLogger(__name__) def _A ( _lowercase ) -> Any: """simple docstring""" return list(itertools.chain.from_iterable(_lowercase ) ) def _A ( _lowercase ) -> None: """simple docstring""" __UpperCamelCase = get_git_info() save_json(_lowercase , os.path.join(_lowercase , 'git_log.json' ) ) def _A ( _lowercase , _lowercase , _lowercase=4 , **_lowercase ) -> List[Any]: """simple docstring""" with open(_lowercase , 'w' ) as f: json.dump(_lowercase , _lowercase , indent=_lowercase , **_lowercase ) def _A ( _lowercase ) -> Union[str, Any]: """simple docstring""" with open(_lowercase ) as f: return json.load(_lowercase ) def _A ( ) -> Dict: """simple docstring""" __UpperCamelCase = git.Repo(search_parent_directories=_lowercase ) __UpperCamelCase = { 'repo_id': str(_lowercase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def _A ( _lowercase , _lowercase ) -> List: """simple docstring""" return list(map(_lowercase , _lowercase ) ) def _A ( _lowercase , _lowercase ) -> Tuple: """simple docstring""" with open(_lowercase , 'wb' ) as f: return pickle.dump(_lowercase , _lowercase ) def _A ( _lowercase ) -> List[Any]: """simple docstring""" def remove_articles(_lowercase ): return re.sub(r'\b(a|an|the)\b' , ' ' , _lowercase ) def white_space_fix(_lowercase ): return " ".join(text.split() ) def remove_punc(_lowercase ): __UpperCamelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowercase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowercase ) ) ) ) def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" __UpperCamelCase = normalize_answer(_lowercase ).split() __UpperCamelCase = normalize_answer(_lowercase ).split() __UpperCamelCase = Counter(_lowercase ) & Counter(_lowercase ) __UpperCamelCase = sum(common.values() ) if num_same == 0: return 0 __UpperCamelCase = 1.0 * num_same / len(_lowercase ) __UpperCamelCase = 1.0 * num_same / len(_lowercase ) __UpperCamelCase = (2 * precision * recall) / (precision + recall) return fa def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" return normalize_answer(_lowercase ) == normalize_answer(_lowercase ) def _A ( _lowercase , _lowercase ) -> Dict: """simple docstring""" assert len(_lowercase ) == len(_lowercase ) __UpperCamelCase = 0 for hypo, pred in zip(_lowercase , _lowercase ): em += exact_match_score(_lowercase , _lowercase ) if len(_lowercase ) > 0: em /= len(_lowercase ) return {"em": em} def _A ( _lowercase ) -> Optional[Any]: """simple docstring""" return model_prefix.startswith('rag' ) def _A ( _lowercase , _lowercase , _lowercase ) -> Dict: """simple docstring""" __UpperCamelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __UpperCamelCase = 'dropout_rate' for p in extra_params: if getattr(_lowercase , _lowercase , _lowercase ): if not hasattr(_lowercase , _lowercase ) and not hasattr(_lowercase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_lowercase ) ) delattr(_lowercase , _lowercase ) continue __UpperCamelCase = p if hasattr(_lowercase , _lowercase ) else equivalent_param[p] setattr(_lowercase , _lowercase , getattr(_lowercase , _lowercase ) ) delattr(_lowercase , _lowercase ) return hparams, config
310
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json''' ), } class __lowerCamelCase (_a ): _lowercase = """xlm-roberta""" def __init__( self: Union[str, Any],A_: Union[str, Any]=3_0522,A_: Dict=768,A_: Union[str, Any]=12,A_: Any=12,A_: str=3072,A_: Union[str, Any]="gelu",A_: str=0.1,A_: Optional[int]=0.1,A_: List[Any]=512,A_: Optional[Any]=2,A_: Dict=0.0_2,A_: List[Any]=1E-12,A_: Optional[int]=1,A_: str=0,A_: str=2,A_: Optional[Any]="absolute",A_: Union[str, Any]=True,A_: int=None,**A_: Optional[Any],): '''simple docstring''' super().__init__(pad_token_id=A_,bos_token_id=A_,eos_token_id=A_,**A_ ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = position_embedding_type __UpperCamelCase = use_cache __UpperCamelCase = classifier_dropout class __lowerCamelCase (_a ): @property def snake_case_ ( self: Optional[Any] ): '''simple docstring''' if self.task == "multiple-choice": __UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
310
1
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class __lowerCamelCase (_a ): _lowercase = """xlnet""" _lowercase = ["""mems"""] _lowercase = { """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self: List[Any],A_: Optional[int]=3_2000,A_: List[Any]=1024,A_: List[str]=24,A_: str=16,A_: Optional[Any]=4096,A_: Union[str, Any]="gelu",A_: Dict=True,A_: Union[str, Any]="bi",A_: Union[str, Any]=0.0_2,A_: Optional[int]=1E-12,A_: Tuple=0.1,A_: int=512,A_: str=None,A_: Tuple=True,A_: Optional[Any]=False,A_: Any=False,A_: Tuple=-1,A_: Any=False,A_: str="last",A_: int=True,A_: Union[str, Any]="tanh",A_: List[str]=0.1,A_: List[Any]=5,A_: Union[str, Any]=5,A_: Union[str, Any]=5,A_: Optional[int]=1,A_: Union[str, Any]=2,**A_: Union[str, Any],): '''simple docstring''' __UpperCamelCase = vocab_size __UpperCamelCase = d_model __UpperCamelCase = n_layer __UpperCamelCase = n_head if d_model % n_head != 0: raise ValueError(F'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F'''`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})''' ) __UpperCamelCase = d_model // n_head __UpperCamelCase = ff_activation __UpperCamelCase = d_inner __UpperCamelCase = untie_r __UpperCamelCase = attn_type __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = dropout __UpperCamelCase = mem_len __UpperCamelCase = reuse_len __UpperCamelCase = bi_data __UpperCamelCase = clamp_len __UpperCamelCase = same_length __UpperCamelCase = summary_type __UpperCamelCase = summary_use_proj __UpperCamelCase = summary_activation __UpperCamelCase = summary_last_dropout __UpperCamelCase = start_n_top __UpperCamelCase = end_n_top __UpperCamelCase = bos_token_id __UpperCamelCase = pad_token_id __UpperCamelCase = eos_token_id if "use_cache" in kwargs: warnings.warn( 'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`' ' instead.',A_,) __UpperCamelCase = kwargs['use_cache'] __UpperCamelCase = use_mems_eval __UpperCamelCase = use_mems_train super().__init__(pad_token_id=A_,bos_token_id=A_,eos_token_id=A_,**A_ ) @property def snake_case_ ( self: Optional[int] ): '''simple docstring''' logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def snake_case_ ( self: int,A_: List[Any] ): '''simple docstring''' raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
310
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __snake_case = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCamelCase (_a ): _lowercase = field(default=_a , metadata={"""help""": """Whether to use SortishSampler or not."""} ) _lowercase = field( default=_a , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} ) _lowercase = field( default=_a , metadata={ """help""": ( """The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `max_length` value of the model configuration.""" ) } , ) _lowercase = field( default=_a , metadata={ """help""": ( """The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `num_beams` value of the model configuration.""" ) } , ) _lowercase = field( default=_a , metadata={ """help""": """Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.""" } , ) def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = super().to_dict() for k, v in d.items(): if isinstance(A_,A_ ): __UpperCamelCase = v.to_dict() return d
310
1
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class __lowerCamelCase (_a ): _lowercase = ["""image_processor""", """tokenizer"""] _lowercase = """OwlViTImageProcessor""" _lowercase = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self: int,A_: Tuple=None,A_: int=None,**A_: int ): '''simple docstring''' __UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.',A_,) __UpperCamelCase = kwargs.pop('feature_extractor' ) __UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(A_,A_ ) def __call__( self: str,A_: Dict=None,A_: Optional[int]=None,A_: Any=None,A_: Tuple="max_length",A_: int="np",**A_: Optional[Any] ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(A_,A_ ) or (isinstance(A_,A_ ) and not isinstance(text[0],A_ )): __UpperCamelCase = [self.tokenizer(A_,padding=A_,return_tensors=A_,**A_ )] elif isinstance(A_,A_ ) and isinstance(text[0],A_ ): __UpperCamelCase = [] # Maximum number of queries across batch __UpperCamelCase = max([len(A_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(A_ ) != max_num_queries: __UpperCamelCase = t + [' '] * (max_num_queries - len(A_ )) __UpperCamelCase = self.tokenizer(A_,padding=A_,return_tensors=A_,**A_ ) encodings.append(A_ ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": __UpperCamelCase = np.concatenate([encoding['input_ids'] for encoding in encodings],axis=0 ) __UpperCamelCase = np.concatenate([encoding['attention_mask'] for encoding in encodings],axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __UpperCamelCase = jnp.concatenate([encoding['input_ids'] for encoding in encodings],axis=0 ) __UpperCamelCase = jnp.concatenate([encoding['attention_mask'] for encoding in encodings],axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __UpperCamelCase = torch.cat([encoding['input_ids'] for encoding in encodings],dim=0 ) __UpperCamelCase = torch.cat([encoding['attention_mask'] for encoding in encodings],dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __UpperCamelCase = tf.stack([encoding['input_ids'] for encoding in encodings],axis=0 ) __UpperCamelCase = tf.stack([encoding['attention_mask'] for encoding in encodings],axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) __UpperCamelCase = BatchEncoding() __UpperCamelCase = input_ids __UpperCamelCase = attention_mask if query_images is not None: __UpperCamelCase = BatchEncoding() __UpperCamelCase = self.image_processor( A_,return_tensors=A_,**A_ ).pixel_values __UpperCamelCase = query_pixel_values if images is not None: __UpperCamelCase = self.image_processor(A_,return_tensors=A_,**A_ ) if text is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**A_ ),tensor_type=A_ ) def snake_case_ ( self: Optional[int],*A_: int,**A_: List[Any] ): '''simple docstring''' return self.image_processor.post_process(*A_,**A_ ) def snake_case_ ( self: str,*A_: Optional[int],**A_: List[Any] ): '''simple docstring''' return self.image_processor.post_process_object_detection(*A_,**A_ ) def snake_case_ ( self: str,*A_: Tuple,**A_: int ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*A_,**A_ ) def snake_case_ ( self: List[str],*A_: str,**A_: List[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*A_,**A_ ) def snake_case_ ( self: int,*A_: Any,**A_: Tuple ): '''simple docstring''' return self.tokenizer.decode(*A_,**A_ ) @property def snake_case_ ( self: Optional[Any] ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.',A_,) return self.image_processor_class @property def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.',A_,) return self.image_processor
310
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _A ( _lowercase ) -> Dict: """simple docstring""" if is_torch_version('<' , '2.0.0' ) or not hasattr(_lowercase , '_dynamo' ): return False return isinstance(_lowercase , torch._dynamo.eval_frame.OptimizedModule ) def _A ( _lowercase , _lowercase = True ) -> Optional[int]: """simple docstring""" __UpperCamelCase = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __UpperCamelCase = is_compiled_module(_lowercase ) if is_compiled: __UpperCamelCase = model __UpperCamelCase = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_lowercase , _lowercase ): __UpperCamelCase = model.module if not keep_fpaa_wrapper: __UpperCamelCase = getattr(_lowercase , 'forward' ) __UpperCamelCase = model.__dict__.pop('_original_forward' , _lowercase ) if original_forward is not None: while hasattr(_lowercase , '__wrapped__' ): __UpperCamelCase = forward.__wrapped__ if forward == original_forward: break __UpperCamelCase = forward if getattr(_lowercase , '_converted_to_transformer_engine' , _lowercase ): convert_model(_lowercase , to_transformer_engine=_lowercase ) if is_compiled: __UpperCamelCase = model __UpperCamelCase = compiled_model return model def _A ( ) -> Any: """simple docstring""" PartialState().wait_for_everyone() def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(_lowercase , _lowercase ) elif PartialState().local_process_index == 0: torch.save(_lowercase , _lowercase ) @contextmanager def _A ( **_lowercase ) -> Union[str, Any]: """simple docstring""" for key, value in kwargs.items(): __UpperCamelCase = str(_lowercase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _A ( _lowercase ) -> Tuple: """simple docstring""" if not hasattr(_lowercase , '__qualname__' ) and not hasattr(_lowercase , '__name__' ): __UpperCamelCase = getattr(_lowercase , '__class__' , _lowercase ) if hasattr(_lowercase , '__qualname__' ): return obj.__qualname__ if hasattr(_lowercase , '__name__' ): return obj.__name__ return str(_lowercase ) def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" for key, value in source.items(): if isinstance(_lowercase , _lowercase ): __UpperCamelCase = destination.setdefault(_lowercase , {} ) merge_dicts(_lowercase , _lowercase ) else: __UpperCamelCase = value return destination def _A ( _lowercase = None ) -> bool: """simple docstring""" if port is None: __UpperCamelCase = 2_95_00 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
310
1
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed __snake_case = logging.getLogger(__name__) def _A ( _lowercase=2 , _lowercase=3 , _lowercase=16 , _lowercase = 10 , _lowercase = 2 ) -> Tuple: """simple docstring""" def get_dataset(_lowercase ): __UpperCamelCase = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(_lowercase , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) __UpperCamelCase = get_dataset(_lowercase ) __UpperCamelCase = get_dataset(_lowercase ) __UpperCamelCase = DataLoader(_lowercase , shuffle=_lowercase , batch_size=_lowercase , num_workers=4 ) __UpperCamelCase = DataLoader(_lowercase , shuffle=_lowercase , batch_size=_lowercase , num_workers=4 ) return (train_dataloader, valid_dataloader) def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None ) -> Tuple: """simple docstring""" __UpperCamelCase = [] for epoch in range(_lowercase ): # Train quickly model.train() for batch in dataloader: __UpperCamelCase, __UpperCamelCase = batch __UpperCamelCase = model(_lowercase ) __UpperCamelCase = torch.nn.functional.mse_loss(_lowercase , _lowercase ) accelerator.backward(_lowercase ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class __lowerCamelCase (nn.Module ): def __init__( self: Optional[Any] ): '''simple docstring''' super().__init__() __UpperCamelCase = nn.Parameter(torch.randn(1 ) ) __UpperCamelCase = nn.Parameter(torch.randn(1 ) ) def snake_case_ ( self: List[Any],A_: Tuple ): '''simple docstring''' return x * self.a + self.b class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: int ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters(),lr=1E-3 ) __UpperCamelCase, __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(total_limit=1,project_dir=A_,automatic_checkpoint_naming=A_ ) # Train baseline __UpperCamelCase = Accelerator(project_config=A_ ) __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = accelerator.prepare( A_,A_,A_,A_ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ),1 ) def snake_case_ ( self: str ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters(),lr=1E-3 ) __UpperCamelCase, __UpperCamelCase = dummy_dataloaders() # Train baseline __UpperCamelCase = Accelerator() __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = accelerator.prepare( A_,A_,A_,A_ ) # Save initial __UpperCamelCase = os.path.join(A_,'initial' ) accelerator.save_state(A_ ) ((__UpperCamelCase), (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() __UpperCamelCase = train(3,A_,A_,A_,A_ ) ((__UpperCamelCase), (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() # Train partially set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters(),lr=1E-3 ) __UpperCamelCase, __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = Accelerator() __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = accelerator.prepare( A_,A_,A_,A_ ) accelerator.load_state(A_ ) ((__UpperCamelCase), (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(A_,A_ ) self.assertEqual(A_,A_ ) self.assertEqual(A_,A_ ) __UpperCamelCase = train(2,A_,A_,A_,A_ ) # Save everything __UpperCamelCase = os.path.join(A_,'checkpoint' ) accelerator.save_state(A_ ) # Load everything back in and make sure all states work accelerator.load_state(A_ ) test_rands += train(1,A_,A_,A_,A_ ) ((__UpperCamelCase), (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(A_,A_ ) self.assertEqual(A_,A_ ) self.assertEqual(A_,A_ ) self.assertEqual(A_,A_ ) def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters(),lr=1E-3 ) __UpperCamelCase, __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=A_ ) # Train baseline __UpperCamelCase = Accelerator(project_dir=A_,project_config=A_ ) __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = accelerator.prepare( A_,A_,A_,A_ ) # Save initial accelerator.save_state() ((__UpperCamelCase), (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() __UpperCamelCase = train(3,A_,A_,A_,A_ ) ((__UpperCamelCase), (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() # Train partially set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters(),lr=1E-3 ) __UpperCamelCase, __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(iteration=1,automatic_checkpoint_naming=A_ ) __UpperCamelCase = Accelerator(project_dir=A_,project_config=A_ ) __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = accelerator.prepare( A_,A_,A_,A_ ) accelerator.load_state(os.path.join(A_,'checkpoints','checkpoint_0' ) ) ((__UpperCamelCase), (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(A_,A_ ) self.assertEqual(A_,A_ ) self.assertEqual(A_,A_ ) __UpperCamelCase = train(2,A_,A_,A_,A_ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(A_,'checkpoints','checkpoint_1' ) ) test_rands += train(1,A_,A_,A_,A_ ) ((__UpperCamelCase), (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(A_,A_ ) self.assertEqual(A_,A_ ) self.assertEqual(A_,A_ ) self.assertEqual(A_,A_ ) def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = torch.tensor([1, 2, 3] ) __UpperCamelCase = torch.tensor([2, 3, 4] ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(net.parameters() ) __UpperCamelCase = Accelerator() with self.assertRaises(A_ ) as ve: accelerator.register_for_checkpointing(A_,A_,A_,A_ ) __UpperCamelCase = str(ve.exception ) self.assertTrue('Item at index 0' in message ) self.assertTrue('Item at index 1' in message ) self.assertFalse('Item at index 2' in message ) self.assertFalse('Item at index 3' in message ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters(),lr=1E-3 ) __UpperCamelCase = torch.optim.lr_scheduler.StepLR(A_,step_size=1,gamma=0.9_9 ) __UpperCamelCase, __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=A_ ) # Train baseline __UpperCamelCase = Accelerator(project_dir=A_,project_config=A_ ) __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = accelerator.prepare( A_,A_,A_,A_,A_ ) # Save initial accelerator.save_state() __UpperCamelCase = scheduler.state_dict() train(3,A_,A_,A_,A_,A_ ) self.assertNotEqual(A_,scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(A_,'checkpoints','checkpoint_0' ) ) self.assertEqual(A_,scheduler.state_dict() ) def snake_case_ ( self: Dict ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=A_,total_limit=2 ) # Train baseline __UpperCamelCase = Accelerator(project_dir=A_,project_config=A_ ) __UpperCamelCase = accelerator.prepare(A_ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(A_,'checkpoints','checkpoint_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(A_,'checkpoints','checkpoint_9' ) ) ) self.assertTrue(os.path.exists(os.path.join(A_,'checkpoints','checkpoint_10' ) ) ) @require_cuda def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(A_,env=os.environ.copy() ) if __name__ == "__main__": __snake_case = '''/tmp/accelerate/state_checkpointing''' __snake_case = DummyModel() __snake_case = torch.optim.Adam(params=model.parameters(), lr=1e-3) __snake_case = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) __snake_case , __snake_case = dummy_dataloaders() __snake_case = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline __snake_case = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='''no''') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) __snake_case , __snake_case = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: __snake_case = group['''params'''][0].device break assert param_device.type == accelerator.device.type __snake_case = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''cpu''') for group in optimizer.param_groups: __snake_case = group['''params'''][0].device break assert ( param_device.type == torch.device('''cpu''').type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''on_device''') for group in optimizer.param_groups: __snake_case = group['''params'''][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='''Unsupported optimizer map location passed'''): accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''invalid''') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
310
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __snake_case = logging.getLogger(__name__) def _A ( _lowercase , _lowercase ) -> Optional[int]: """simple docstring""" return (preds == labels).mean() @dataclass class __lowerCamelCase : _lowercase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _lowercase = field( default=_a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __lowerCamelCase : _lowercase = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) _lowercase = field(metadata={"""help""": """Should contain the data files for the task."""} ) _lowercase = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _lowercase = field( default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _A ( ) -> str: """simple docstring""" __UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _lowercase ) # Set seed set_seed(training_args.seed ) try: __UpperCamelCase = processors[data_args.task_name]() __UpperCamelCase = processor.get_labels() __UpperCamelCase = len(_lowercase ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowercase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , ) # Get datasets __UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_lowercase ) -> Dict: __UpperCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_lowercase , p.label_ids )} # Data collator __UpperCamelCase = DataCollatorWithPadding(_lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __UpperCamelCase = Trainer( model=_lowercase , args=_lowercase , train_dataset=_lowercase , eval_dataset=_lowercase , compute_metrics=_lowercase , data_collator=_lowercase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCamelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __UpperCamelCase = trainer.evaluate() __UpperCamelCase = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(_lowercase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , _lowercase , _lowercase ) writer.write('%s = %s\n' % (key, value) ) results.update(_lowercase ) return results def _A ( _lowercase ) -> List[Any]: """simple docstring""" main() if __name__ == "__main__": main()
310
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __lowerCamelCase (_a ): _lowercase = """yolos""" def __init__( self: Tuple,A_: Any=768,A_: Any=12,A_: str=12,A_: Optional[int]=3072,A_: Dict="gelu",A_: Optional[Any]=0.0,A_: int=0.0,A_: int=0.0_2,A_: str=1E-12,A_: List[Any]=[512, 864],A_: Optional[int]=16,A_: Tuple=3,A_: Optional[int]=True,A_: List[str]=100,A_: Dict=True,A_: Optional[int]=False,A_: Dict=1,A_: Any=5,A_: Optional[Any]=2,A_: Optional[Any]=5,A_: str=2,A_: Union[str, Any]=0.1,**A_: Tuple,): '''simple docstring''' super().__init__(**A_ ) __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = num_channels __UpperCamelCase = qkv_bias __UpperCamelCase = num_detection_tokens __UpperCamelCase = use_mid_position_embeddings __UpperCamelCase = auxiliary_loss # Hungarian matcher __UpperCamelCase = class_cost __UpperCamelCase = bbox_cost __UpperCamelCase = giou_cost # Loss coefficients __UpperCamelCase = bbox_loss_coefficient __UpperCamelCase = giou_loss_coefficient __UpperCamelCase = eos_coefficient class __lowerCamelCase (_a ): _lowercase = version.parse("""1.11""" ) @property def snake_case_ ( self: Any ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def snake_case_ ( self: Optional[int] ): '''simple docstring''' return 1E-4 @property def snake_case_ ( self: Optional[Any] ): '''simple docstring''' return 12
310
import os def _A ( ) -> Tuple: """simple docstring""" with open(os.path.dirname(_lowercase ) + '/p022_names.txt' ) as file: __UpperCamelCase = str(file.readlines()[0] ) __UpperCamelCase = names.replace('"' , '' ).split(',' ) names.sort() __UpperCamelCase = 0 __UpperCamelCase = 0 for i, name in enumerate(_lowercase ): for letter in name: name_score += ord(_lowercase ) - 64 total_score += (i + 1) * name_score __UpperCamelCase = 0 return total_score if __name__ == "__main__": print(solution())
310
1
UpperCAmelCase__ = 256 # Modulus to hash a string UpperCAmelCase__ = 1000003 def _a ( a :str , a :str ) -> bool: a = len(a ) a = len(a ) if p_len > t_len: return False a = 0 a = 0 a = 1 # Calculating the hash of pattern and substring of text for i in range(a ): a = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus a = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue a = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash a = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def _a ( ) -> None: a = '''abc1abc12''' a = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' a = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(a , a ) and not rabin_karp(a , a ) # Test 2) a = '''ABABX''' a = '''ABABZABABYABABX''' assert rabin_karp(a , a ) # Test 3) a = '''AAAB''' a = '''ABAAAAAB''' assert rabin_karp(a , a ) # Test 4) a = '''abcdabcy''' a = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(a , a ) # Test 5) a = '''Lü''' a = '''Lüsai''' assert rabin_karp(a , a ) a = '''Lue''' assert not rabin_karp(a , a ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
0
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=True , _lowercase="pt" ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = {'add_prefix_space': True} if isinstance(_lowercase , _lowercase ) and not line.startswith(' ' ) else {} __UpperCamelCase = padding_side return tokenizer( [line] , max_length=_lowercase , padding='max_length' if pad_to_max_length else None , truncation=_lowercase , return_tensors=_lowercase , add_special_tokens=_lowercase , **_lowercase , ) def _A ( _lowercase , _lowercase , _lowercase=None , ) -> List[Any]: """simple docstring""" __UpperCamelCase = input_ids.ne(_lowercase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCamelCase (_a ): def __init__( self: List[str],A_: str,A_: List[str],A_: List[str],A_: List[str],A_: Tuple="train",A_: Any=None,A_: List[str]=None,A_: List[Any]=None,A_: int="",): '''simple docstring''' super().__init__() __UpperCamelCase = Path(A_ ).joinpath(type_path + '.source' ) __UpperCamelCase = Path(A_ ).joinpath(type_path + '.target' ) __UpperCamelCase = self.get_char_lens(self.src_file ) __UpperCamelCase = max_source_length __UpperCamelCase = max_target_length assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}''' __UpperCamelCase = tokenizer __UpperCamelCase = prefix if n_obs is not None: __UpperCamelCase = self.src_lens[:n_obs] __UpperCamelCase = src_lang __UpperCamelCase = tgt_lang def __len__( self: Optional[Any] ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self: int,A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = index + 1 # linecache starts at 1 __UpperCamelCase = self.prefix + linecache.getline(str(self.src_file ),A_ ).rstrip('\n' ) __UpperCamelCase = linecache.getline(str(self.tgt_file ),A_ ).rstrip('\n' ) assert source_line, F'''empty source line for index {index}''' assert tgt_line, F'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer,A_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __UpperCamelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer,A_ ) else self.tokenizer ) __UpperCamelCase = self.tokenizer.generator if isinstance(self.tokenizer,A_ ) else self.tokenizer __UpperCamelCase = encode_line(A_,A_,self.max_source_length,'right' ) __UpperCamelCase = encode_line(A_,A_,self.max_target_length,'right' ) __UpperCamelCase = source_inputs['input_ids'].squeeze() __UpperCamelCase = target_inputs['input_ids'].squeeze() __UpperCamelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def snake_case_ ( A_: List[Any] ): '''simple docstring''' return [len(A_ ) for x in Path(A_ ).open().readlines()] def snake_case_ ( self: Union[str, Any],A_: Any ): '''simple docstring''' __UpperCamelCase = torch.stack([x['input_ids'] for x in batch] ) __UpperCamelCase = torch.stack([x['attention_mask'] for x in batch] ) __UpperCamelCase = torch.stack([x['decoder_input_ids'] for x in batch] ) __UpperCamelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer,A_ ) else self.tokenizer.pad_token_id ) __UpperCamelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer,A_ ) else self.tokenizer.pad_token_id ) __UpperCamelCase = trim_batch(A_,A_ ) __UpperCamelCase, __UpperCamelCase = trim_batch(A_,A_,attention_mask=A_ ) __UpperCamelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch __snake_case = getLogger(__name__) def _A ( _lowercase ) -> Any: """simple docstring""" return list(itertools.chain.from_iterable(_lowercase ) ) def _A ( _lowercase ) -> None: """simple docstring""" __UpperCamelCase = get_git_info() save_json(_lowercase , os.path.join(_lowercase , 'git_log.json' ) ) def _A ( _lowercase , _lowercase , _lowercase=4 , **_lowercase ) -> List[Any]: """simple docstring""" with open(_lowercase , 'w' ) as f: json.dump(_lowercase , _lowercase , indent=_lowercase , **_lowercase ) def _A ( _lowercase ) -> Union[str, Any]: """simple docstring""" with open(_lowercase ) as f: return json.load(_lowercase ) def _A ( ) -> Dict: """simple docstring""" __UpperCamelCase = git.Repo(search_parent_directories=_lowercase ) __UpperCamelCase = { 'repo_id': str(_lowercase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def _A ( _lowercase , _lowercase ) -> List: """simple docstring""" return list(map(_lowercase , _lowercase ) ) def _A ( _lowercase , _lowercase ) -> Tuple: """simple docstring""" with open(_lowercase , 'wb' ) as f: return pickle.dump(_lowercase , _lowercase ) def _A ( _lowercase ) -> List[Any]: """simple docstring""" def remove_articles(_lowercase ): return re.sub(r'\b(a|an|the)\b' , ' ' , _lowercase ) def white_space_fix(_lowercase ): return " ".join(text.split() ) def remove_punc(_lowercase ): __UpperCamelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowercase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowercase ) ) ) ) def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" __UpperCamelCase = normalize_answer(_lowercase ).split() __UpperCamelCase = normalize_answer(_lowercase ).split() __UpperCamelCase = Counter(_lowercase ) & Counter(_lowercase ) __UpperCamelCase = sum(common.values() ) if num_same == 0: return 0 __UpperCamelCase = 1.0 * num_same / len(_lowercase ) __UpperCamelCase = 1.0 * num_same / len(_lowercase ) __UpperCamelCase = (2 * precision * recall) / (precision + recall) return fa def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" return normalize_answer(_lowercase ) == normalize_answer(_lowercase ) def _A ( _lowercase , _lowercase ) -> Dict: """simple docstring""" assert len(_lowercase ) == len(_lowercase ) __UpperCamelCase = 0 for hypo, pred in zip(_lowercase , _lowercase ): em += exact_match_score(_lowercase , _lowercase ) if len(_lowercase ) > 0: em /= len(_lowercase ) return {"em": em} def _A ( _lowercase ) -> Optional[Any]: """simple docstring""" return model_prefix.startswith('rag' ) def _A ( _lowercase , _lowercase , _lowercase ) -> Dict: """simple docstring""" __UpperCamelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __UpperCamelCase = 'dropout_rate' for p in extra_params: if getattr(_lowercase , _lowercase , _lowercase ): if not hasattr(_lowercase , _lowercase ) and not hasattr(_lowercase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_lowercase ) ) delattr(_lowercase , _lowercase ) continue __UpperCamelCase = p if hasattr(_lowercase , _lowercase ) else equivalent_param[p] setattr(_lowercase , _lowercase , getattr(_lowercase , _lowercase ) ) delattr(_lowercase , _lowercase ) return hparams, config
310
0
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features SCREAMING_SNAKE_CASE_: Dict =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: Optional[int] =list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) SCREAMING_SNAKE_CASE_: Optional[Any] =tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __A : a__ : str = field( default=UpperCamelCase__ , metadata={"""help""": """Model type selected in the list: """ + """, """.join(UpperCamelCase__ )} ) a__ : str = field( default=UpperCamelCase__ , metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} ) a__ : int = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a__ : int = field( default=128 , metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} , ) a__ : int = field( default=64 , metadata={ """help""": ( """The maximum number of tokens for the question. Questions longer than this will """ """be truncated to this length.""" ) } , ) a__ : int = field( default=30 , metadata={ """help""": ( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ) } , ) a__ : bool = field( default=UpperCamelCase__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a__ : bool = field( default=UpperCamelCase__ , metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} ) a__ : float = field( default=0.0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a__ : int = field( default=20 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a__ : int = field( default=0 , metadata={ """help""": ( """language id of input for language-specific xlm models (see""" """ tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)""" ) } , ) a__ : int = field(default=1 , metadata={"""help""": """multiple threads for converting example to features"""} ) class __A ( UpperCamelCase__ ): a__ : str = """train""" a__ : List[Any] = """dev""" class __A ( UpperCamelCase__ ): a__ : SquadDataTrainingArguments a__ : List[SquadFeatures] a__ : Split a__ : bool def __init__(self : Optional[int] , __a : SquadDataTrainingArguments , __a : PreTrainedTokenizer , __a : Optional[int] = None , __a : Union[str, Split] = Split.train , __a : Optional[bool] = False , __a : Optional[str] = None , __a : Optional[str] = "pt" , ): UpperCAmelCase_ = args UpperCAmelCase_ = is_language_sensitive UpperCAmelCase_ = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__a , __a ): try: UpperCAmelCase_ = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) UpperCAmelCase_ = mode # Load data features from cache or dataset file UpperCAmelCase_ = "v2" if args.version_2_with_negative else "v1" UpperCAmelCase_ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}""" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase_ = cached_features_file + ".lock" with FileLock(__a ): if os.path.exists(__a ) and not args.overwrite_cache: UpperCAmelCase_ = time.time() UpperCAmelCase_ = torch.load(__a ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. UpperCAmelCase_ = self.old_features["features"] UpperCAmelCase_ = self.old_features.get("dataset" , __a ) UpperCAmelCase_ = self.old_features.get("examples" , __a ) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f"""Deleting cached file {cached_features_file} will allow dataset and examples to be cached in""" " future run" ) else: if mode == Split.dev: UpperCAmelCase_ = self.processor.get_dev_examples(args.data_dir ) else: UpperCAmelCase_ = self.processor.get_train_examples(args.data_dir ) UpperCAmelCase_ , UpperCAmelCase_ = squad_convert_examples_to_features( examples=self.examples , tokenizer=__a , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=__a , ) UpperCAmelCase_ = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples} , __a , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__(self : List[Any] ): return len(self.features ) def __getitem__(self : Dict , __a : Optional[int] ): # Convert to Tensors and build dataset UpperCAmelCase_ = self.features[i] UpperCAmelCase_ = torch.tensor(feature.input_ids , dtype=torch.long ) UpperCAmelCase_ = torch.tensor(feature.attention_mask , dtype=torch.long ) UpperCAmelCase_ = torch.tensor(feature.token_type_ids , dtype=torch.long ) UpperCAmelCase_ = torch.tensor(feature.cls_index , dtype=torch.long ) UpperCAmelCase_ = torch.tensor(feature.p_mask , dtype=torch.float ) UpperCAmelCase_ = torch.tensor(feature.is_impossible , dtype=torch.float ) UpperCAmelCase_ = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: UpperCAmelCase_ = torch.tensor(feature.start_position , dtype=torch.long ) UpperCAmelCase_ = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __snake_case = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
310
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' def __init__(self : Dict , UpperCamelCase : str , UpperCamelCase : Union[str, Any]=7 , UpperCamelCase : Optional[int]=3 , UpperCamelCase : Optional[int]=18 , UpperCamelCase : List[Any]=30 , UpperCamelCase : Dict=400 , UpperCamelCase : Dict=True , UpperCamelCase : Optional[Any]=None , UpperCamelCase : List[Any]=True , UpperCamelCase : int=None , UpperCamelCase : Optional[int]=True , UpperCamelCase : Union[str, Any]=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , UpperCamelCase : Union[str, Any]=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , UpperCamelCase : Union[str, Any]=True , ): '''simple docstring''' lowercase__ = size if size is not None else {'''height''': 224, '''width''': 224} lowercase__ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size lowercase__ = do_center_crop lowercase__ = crop_size lowercase__ = do_normalize lowercase__ = image_mean lowercase__ = image_std lowercase__ = do_convert_rgb def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def UpperCamelCase__ (self : List[str] , UpperCamelCase : Dict=False , UpperCamelCase : Optional[int]=False , UpperCamelCase : Tuple=False ): '''simple docstring''' assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: lowercase__ = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: lowercase__ = [] for i in range(self.batch_size ): lowercase__ ,lowercase__ = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension lowercase__ = [Image.fromarray(np.moveaxis(UpperCamelCase , 0 , -1 ) ) for x in image_inputs] if torchify: lowercase__ = [torch.from_numpy(UpperCamelCase ) for x in image_inputs] return image_inputs @require_torch @require_vision class __lowerCAmelCase (lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : str = ChineseCLIPImageProcessor if is_vision_available() else None def UpperCamelCase__ (self : Tuple ): '''simple docstring''' lowercase__ = ChineseCLIPImageProcessingTester(self , do_center_crop=UpperCamelCase ) @property def UpperCamelCase__ (self : List[str] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ (self : str ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase , '''size''' ) ) self.assertTrue(hasattr(UpperCamelCase , '''do_center_crop''' ) ) self.assertTrue(hasattr(UpperCamelCase , '''center_crop''' ) ) self.assertTrue(hasattr(UpperCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCamelCase , '''image_std''' ) ) self.assertTrue(hasattr(UpperCamelCase , '''do_convert_rgb''' ) ) def UpperCamelCase__ (self : Tuple ): '''simple docstring''' lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 224, '''width''': 224} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def UpperCamelCase__ (self : Dict ): '''simple docstring''' pass def UpperCamelCase__ (self : Any ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = self.image_processor_tester.prepare_inputs(equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase__ = image_processing(UpperCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCamelCase__ (self : Any ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = self.image_processor_tester.prepare_inputs(equal_resolution=UpperCamelCase , numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , np.ndarray ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase__ = image_processing(UpperCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = self.image_processor_tester.prepare_inputs(equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase__ = image_processing(UpperCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) @require_torch @require_vision class __lowerCAmelCase (lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : List[Any] = ChineseCLIPImageProcessor if is_vision_available() else None def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' lowercase__ = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=UpperCamelCase ) lowercase__ = 3 @property def UpperCamelCase__ (self : int ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase , '''size''' ) ) self.assertTrue(hasattr(UpperCamelCase , '''do_center_crop''' ) ) self.assertTrue(hasattr(UpperCamelCase , '''center_crop''' ) ) self.assertTrue(hasattr(UpperCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCamelCase , '''image_std''' ) ) self.assertTrue(hasattr(UpperCamelCase , '''do_convert_rgb''' ) ) def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' pass def UpperCamelCase__ (self : Tuple ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = self.image_processor_tester.prepare_inputs(equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase__ = image_processing(UpperCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
2
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup __snake_case = '''https://www.indeed.co.in/jobs?q=mobile+app+development&l=''' def _A ( _lowercase = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" __UpperCamelCase = BeautifulSoup(requests.get(url + location ).content , 'html.parser' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('div' , attrs={'data-tn-component': 'organicJob'} ): __UpperCamelCase = job.find('a' , attrs={'data-tn-element': 'jobTitle'} ).text.strip() __UpperCamelCase = job.find('span' , {'class': 'company'} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('''Bangalore'''), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
310
0
'''simple docstring''' from collections.abc import Callable def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' A : float = a A : float = b if function(snake_case__ ) == 0: # one of the a or b is a root for the function return a elif function(snake_case__ ) == 0: return b elif ( function(snake_case__ ) * function(snake_case__ ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('''could not find root in given interval.''' ) else: A : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(snake_case__ ) == 0: return mid elif function(snake_case__ ) * function(snake_case__ ) < 0: A : Union[str, Any] = mid else: A : Optional[Any] = mid A : Optional[int] = start + (end - start) / 2.0 return mid def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 10_00)) import doctest doctest.testmod()
3
def _A ( _lowercase ) -> list: """simple docstring""" def merge(_lowercase , _lowercase ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(_lowercase ) <= 1: return collection __UpperCamelCase = len(_lowercase ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() __snake_case = input('''Enter numbers separated by a comma:\n''').strip() __snake_case = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
310
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor __snake_case =logging.get_logger(__name__) class UpperCAmelCase_ ( __lowercase ): def __init__( self : Dict , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : List[str] ) -> None: warnings.warn( 'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use FlavaImageProcessor instead.' , UpperCAmelCase__ , ) super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
4
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowerCamelCase (_a ): _lowercase = 0 _lowercase = False _lowercase = 3.0 class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: Any ): '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs(),{} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs(),{'a': 2} ) self.assertDictEqual(MockClass(a=2,b=A_ ).to_kwargs(),{'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2,c=2.2_5 ).to_kwargs(),{'a': 2, 'c': 2.2_5} ) @require_cuda def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = GradScalerKwargs(init_scale=1024,growth_factor=2 ) AcceleratorState._reset_state() __UpperCamelCase = Accelerator(mixed_precision='fp16',kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __UpperCamelCase = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale,1_0_2_4.0 ) self.assertEqual(scaler._growth_factor,2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor,0.5 ) self.assertEqual(scaler._growth_interval,2000 ) self.assertEqual(scaler._enabled,A_ ) @require_multi_gpu def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(A_,env=os.environ.copy() ) if __name__ == "__main__": __snake_case = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) __snake_case = Accelerator(kwargs_handlers=[ddp_scaler]) __snake_case = torch.nn.Linear(1_0_0, 2_0_0) __snake_case = accelerator.prepare(model) # Check the values changed in kwargs __snake_case = '''''' __snake_case = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
310
0
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase__ ( lowerCAmelCase , unittest.TestCase): SCREAMING_SNAKE_CASE__ = BlenderbotSmallTokenizer SCREAMING_SNAKE_CASE__ = False def __A (self ) -> Any: super().setUp() _lowercase =['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__'''] _lowercase =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) _lowercase =['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', ''''''] _lowercase ={'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''} _lowercase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowercase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCAmelCase ) ) def __A (self , **UpperCAmelCase ) -> List[str]: kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def __A (self , UpperCAmelCase ) -> Optional[int]: _lowercase ='''adapt act apte''' _lowercase ='''adapt act apte''' return input_text, output_text def __A (self ) -> str: _lowercase =BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowercase ='''adapt act apte''' _lowercase =['''adapt''', '''act''', '''ap@@''', '''te'''] _lowercase =tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) _lowercase =[tokenizer.bos_token] + tokens + [tokenizer.eos_token] _lowercase =[0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , UpperCAmelCase ) def __A (self ) -> Dict: _lowercase =BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) assert tok('''sam''' ).input_ids == [1_3_8_4] _lowercase ='''I am a small frog.''' _lowercase =tok([src_text] , padding=UpperCAmelCase , truncation=UpperCAmelCase )['''input_ids'''] _lowercase =tok.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __A (self ) -> Dict: _lowercase =BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) _lowercase ='''I am a small frog .''' _lowercase ='''.''' _lowercase =tok(UpperCAmelCase )['''input_ids'''] _lowercase =tok(UpperCAmelCase )['''input_ids'''] assert encoded[-1] == encoded_dot[0]
5
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class __lowerCamelCase (_a ): _lowercase = ["""image_processor""", """tokenizer"""] _lowercase = """OwlViTImageProcessor""" _lowercase = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self: int,A_: Tuple=None,A_: int=None,**A_: int ): '''simple docstring''' __UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.',A_,) __UpperCamelCase = kwargs.pop('feature_extractor' ) __UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(A_,A_ ) def __call__( self: str,A_: Dict=None,A_: Optional[int]=None,A_: Any=None,A_: Tuple="max_length",A_: int="np",**A_: Optional[Any] ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(A_,A_ ) or (isinstance(A_,A_ ) and not isinstance(text[0],A_ )): __UpperCamelCase = [self.tokenizer(A_,padding=A_,return_tensors=A_,**A_ )] elif isinstance(A_,A_ ) and isinstance(text[0],A_ ): __UpperCamelCase = [] # Maximum number of queries across batch __UpperCamelCase = max([len(A_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(A_ ) != max_num_queries: __UpperCamelCase = t + [' '] * (max_num_queries - len(A_ )) __UpperCamelCase = self.tokenizer(A_,padding=A_,return_tensors=A_,**A_ ) encodings.append(A_ ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": __UpperCamelCase = np.concatenate([encoding['input_ids'] for encoding in encodings],axis=0 ) __UpperCamelCase = np.concatenate([encoding['attention_mask'] for encoding in encodings],axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __UpperCamelCase = jnp.concatenate([encoding['input_ids'] for encoding in encodings],axis=0 ) __UpperCamelCase = jnp.concatenate([encoding['attention_mask'] for encoding in encodings],axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __UpperCamelCase = torch.cat([encoding['input_ids'] for encoding in encodings],dim=0 ) __UpperCamelCase = torch.cat([encoding['attention_mask'] for encoding in encodings],dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __UpperCamelCase = tf.stack([encoding['input_ids'] for encoding in encodings],axis=0 ) __UpperCamelCase = tf.stack([encoding['attention_mask'] for encoding in encodings],axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) __UpperCamelCase = BatchEncoding() __UpperCamelCase = input_ids __UpperCamelCase = attention_mask if query_images is not None: __UpperCamelCase = BatchEncoding() __UpperCamelCase = self.image_processor( A_,return_tensors=A_,**A_ ).pixel_values __UpperCamelCase = query_pixel_values if images is not None: __UpperCamelCase = self.image_processor(A_,return_tensors=A_,**A_ ) if text is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**A_ ),tensor_type=A_ ) def snake_case_ ( self: Optional[int],*A_: int,**A_: List[Any] ): '''simple docstring''' return self.image_processor.post_process(*A_,**A_ ) def snake_case_ ( self: str,*A_: Optional[int],**A_: List[Any] ): '''simple docstring''' return self.image_processor.post_process_object_detection(*A_,**A_ ) def snake_case_ ( self: str,*A_: Tuple,**A_: int ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*A_,**A_ ) def snake_case_ ( self: List[str],*A_: str,**A_: List[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*A_,**A_ ) def snake_case_ ( self: int,*A_: Any,**A_: Tuple ): '''simple docstring''' return self.tokenizer.decode(*A_,**A_ ) @property def snake_case_ ( self: Optional[Any] ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.',A_,) return self.image_processor_class @property def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.',A_,) return self.image_processor
310
0
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup A : str = logging.get_logger(__name__) class __A( a ): def __init__( self , **_snake_case ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''bs4'''] ) super().__init__(**_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> int: '''simple docstring''' __a = [] __a = [] __a = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag __a = parent.find_all(child.name , recursive=_snake_case ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(_snake_case ) else next(i for i, s in enumerate(_snake_case , 1 ) if s is child ) ) __a = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Optional[int]: '''simple docstring''' __a = BeautifulSoup(_snake_case , '''html.parser''' ) __a = [] __a = [] __a = [] for element in html_code.descendants: if type(_snake_case ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue __a = html.unescape(_snake_case ).strip() if not text_in_this_tag: continue all_doc_strings.append(_snake_case ) __a , __a = self.xpath_soup(_snake_case ) stringaxtag_seq.append(_snake_case ) stringaxsubs_seq.append(_snake_case ) if len(_snake_case ) != len(_snake_case ): raise ValueError('''Number of doc strings and xtags does not correspond''' ) if len(_snake_case ) != len(_snake_case ): raise ValueError('''Number of doc strings and xsubs does not correspond''' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = '''''' for tagname, subs in zip(_snake_case , _snake_case ): xpath += F"""/{tagname}""" if subs != 0: xpath += F"""[{subs}]""" return xpath def __call__( self , _snake_case ) -> BatchFeature: '''simple docstring''' __a = False # Check that strings has a valid type if isinstance(_snake_case , _snake_case ): __a = True elif isinstance(_snake_case , (list, tuple) ): if len(_snake_case ) == 0 or isinstance(html_strings[0] , _snake_case ): __a = True if not valid_strings: raise ValueError( '''HTML strings must of type `str`, `List[str]` (batch of examples), ''' F"""but is of type {type(_snake_case )}.""" ) __a = bool(isinstance(_snake_case , (list, tuple) ) and (isinstance(html_strings[0] , _snake_case )) ) if not is_batched: __a = [html_strings] # Get nodes + xpaths __a = [] __a = [] for html_string in html_strings: __a , __a , __a = self.get_three_from_single(_snake_case ) nodes.append(_snake_case ) __a = [] for node, tag_list, sub_list in zip(_snake_case , _snake_case , _snake_case ): __a = self.construct_xpath(_snake_case , _snake_case ) xpath_strings.append(_snake_case ) xpaths.append(_snake_case ) # return as Dict __a = {'''nodes''': nodes, '''xpaths''': xpaths} __a = BatchFeature(data=_snake_case , tensor_type=_snake_case ) return encoded_inputs
6
import math def _A ( _lowercase ) -> int: """simple docstring""" if not isinstance(_lowercase , _lowercase ): __UpperCamelCase = f'''Input value of [number={number}] must be an integer''' raise TypeError(_lowercase ) if number < 1: __UpperCamelCase = f'''Input value of [number={number}] must be > 0''' raise ValueError(_lowercase ) elif number == 1: return 3 elif number == 2: return 5 else: __UpperCamelCase = int(math.log(number // 3 , 2 ) ) + 2 __UpperCamelCase = [3, 5] __UpperCamelCase = 2 __UpperCamelCase = 3 for block in range(1 , _lowercase ): for _ in range(_lowercase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(1_1): __snake_case = 0 try: __snake_case = proth(number) except ValueError: print(f"""ValueError: there is no {number}th Proth number""") continue print(f"""The {number}th Proth number: {value}""")
310
0
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class A ( _UpperCAmelCase ): """simple docstring""" def snake_case__ ( self : List[Any] )-> int: '''simple docstring''' A__ = tempfile.mkdtemp() A__ = 8 # DPR tok A__ = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] A__ = os.path.join(self.tmpdirname,'dpr_tokenizer' ) os.makedirs(lowercase_,exist_ok=lowercase_ ) A__ = os.path.join(lowercase_,DPR_VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file,'w',encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) # BART tok A__ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] A__ = dict(zip(lowercase_,range(len(lowercase_ ) ) ) ) A__ = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] A__ = {'unk_token': '<unk>'} A__ = os.path.join(self.tmpdirname,'bart_tokenizer' ) os.makedirs(lowercase_,exist_ok=lowercase_ ) A__ = os.path.join(lowercase_,BART_VOCAB_FILES_NAMES['vocab_file'] ) A__ = os.path.join(lowercase_,BART_VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file,'w',encoding='utf-8' ) as fp: fp.write(json.dumps(lowercase_ ) + '\n' ) with open(self.merges_file,'w',encoding='utf-8' ) as fp: fp.write('\n'.join(lowercase_ ) ) def snake_case__ ( self : List[str] )-> DPRQuestionEncoderTokenizer: '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname,'dpr_tokenizer' ) ) def snake_case__ ( self : List[Any] )-> BartTokenizer: '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname,'bart_tokenizer' ) ) def snake_case__ ( self : List[str] )-> List[str]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) @require_tokenizers def snake_case__ ( self : str )-> Any: '''simple docstring''' A__ = os.path.join(self.tmpdirname,'rag_tokenizer' ) A__ = RagConfig(question_encoder=DPRConfig().to_dict(),generator=BartConfig().to_dict() ) A__ = RagTokenizer(question_encoder=self.get_dpr_tokenizer(),generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(lowercase_ ) rag_tokenizer.save_pretrained(lowercase_ ) A__ = RagTokenizer.from_pretrained(lowercase_,config=lowercase_ ) self.assertIsInstance(new_rag_tokenizer.question_encoder,lowercase_ ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab(),rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator,lowercase_ ) self.assertEqual(new_rag_tokenizer.generator.get_vocab(),rag_tokenizer.generator.get_vocab() ) @slow def snake_case__ ( self : Optional[int] )-> Union[str, Any]: '''simple docstring''' A__ = RagTokenizer.from_pretrained('facebook/rag-token-nq' ) A__ = [ 'who got the first nobel prize in physics', 'when is the next deadpool movie being released', 'which mode is used for short wave broadcast service', 'who is the owner of reading football club', 'when is the next scandal episode coming out', 'when is the last time the philadelphia won the superbowl', 'what is the most current adobe flash player version', 'how many episodes are there in dragon ball z', 'what is the first step in the evolution of the eye', 'where is gall bladder situated in human body', 'what is the main mineral in lithium batteries', 'who is the president of usa right now', 'where do the greasers live in the outsiders', 'panda is a national animal of which country', 'what is the name of manchester united stadium', ] A__ = tokenizer(lowercase_ ) self.assertIsNotNone(lowercase_ ) @slow def snake_case__ ( self : Optional[Any] )-> Dict: '''simple docstring''' A__ = RagTokenizer.from_pretrained('facebook/rag-sequence-nq' ) A__ = [ 'who got the first nobel prize in physics', 'when is the next deadpool movie being released', 'which mode is used for short wave broadcast service', 'who is the owner of reading football club', 'when is the next scandal episode coming out', 'when is the last time the philadelphia won the superbowl', 'what is the most current adobe flash player version', 'how many episodes are there in dragon ball z', 'what is the first step in the evolution of the eye', 'where is gall bladder situated in human body', 'what is the main mineral in lithium batteries', 'who is the president of usa right now', 'where do the greasers live in the outsiders', 'panda is a national animal of which country', 'what is the name of manchester united stadium', ] A__ = tokenizer(lowercase_ ) self.assertIsNotNone(lowercase_ )
7
import torch from transformers import AutoModel class __lowerCamelCase (torch.nn.Module ): def __init__( self: Union[str, Any],A_: Tuple="sayef/fsner-bert-base-uncased" ): '''simple docstring''' super(A_,self ).__init__() __UpperCamelCase = AutoModel.from_pretrained(A_,return_dict=A_ ) __UpperCamelCase = torch.nn.CosineSimilarity(3,1E-08 ) __UpperCamelCase = torch.nn.Softmax(dim=1 ) def snake_case_ ( self: Tuple,**A_: Union[str, Any] ): '''simple docstring''' return self.bert(**A_ ).last_hidden_state def snake_case_ ( self: Union[str, Any],A_: Union[str, Any] ): '''simple docstring''' return token_embeddings.sum(2,keepdim=A_ ) def snake_case_ ( self: List[str],A_: Dict,A_: Union[str, Any],A_: Union[str, Any]=1 ): '''simple docstring''' return self.softmax(T * self.cos(A_,A_ ) ) def snake_case_ ( self: Optional[int],A_: Union[str, Any],A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = W_supports['sizes'].tolist() __UpperCamelCase = W_supports['start_token_id'].item() __UpperCamelCase = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] __UpperCamelCase = self.BERT(**A_ ) __UpperCamelCase = self.BERT(**A_ ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = W_supports['input_ids'] == start_token_id __UpperCamelCase = W_supports['input_ids'] == end_token_id for i, size in enumerate(A_ ): if i == 0: __UpperCamelCase = 0 else: __UpperCamelCase = support_sizes[i - 1] __UpperCamelCase = S[s : s + size][start_token_masks[s : s + size]] __UpperCamelCase = S[s : s + size][end_token_masks[s : s + size]] __UpperCamelCase = torch.matmul(q[i],s_start.T ).sum(1 ).softmax(0 ) __UpperCamelCase = torch.matmul(q[i],s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: __UpperCamelCase = torch.vstack((p_starts, p_start) ) __UpperCamelCase = torch.vstack((p_ends, p_end) ) else: __UpperCamelCase = p_start __UpperCamelCase = p_end return p_starts, p_ends
310
0
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = os.path.abspath(SCREAMING_SNAKE_CASE__ ) logger.info(F'''Converting TensorFlow checkpoint from {tf_path}''' ) # Load weights from TF model snake_case_ = tf.train.list_variables(SCREAMING_SNAKE_CASE__ ) snake_case_ = [] snake_case_ = [] snake_case_ = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") snake_case_ = full_name.split('''/''' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(F'''Skipping non-model layer {full_name}''' ) continue if "optimizer" in full_name: logger.info(F'''Skipping optimization layer {full_name}''' ) continue if name[0] == "model": # ignore initial 'model' snake_case_ = name[1:] # figure out how many levels deep the name is snake_case_ = 0 for _name in name: if _name.startswith('''layer_with_weights''' ): depth += 1 else: break layer_depth.append(SCREAMING_SNAKE_CASE__ ) # read data snake_case_ = tf.train.load_variable(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) names.append('''/'''.join(SCREAMING_SNAKE_CASE__ ) ) arrays.append(SCREAMING_SNAKE_CASE__ ) logger.info(F'''Read a total of {len(SCREAMING_SNAKE_CASE__ ):,} layers''' ) # Sanity check if len(set(SCREAMING_SNAKE_CASE__ ) ) != 1: raise ValueError(F'''Found layer names with different depths (layer depth {list(set(SCREAMING_SNAKE_CASE__ ) )})''' ) snake_case_ = list(set(SCREAMING_SNAKE_CASE__ ) )[0] if layer_depth != 1: raise ValueError( '''The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP''' ''' heads.''' ) # convert layers logger.info('''Converting weights...''' ) for full_name, array in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = full_name.split('''/''' ) snake_case_ = model snake_case_ = [] for i, m_name in enumerate(SCREAMING_SNAKE_CASE__ ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('''layer_with_weights''' ): snake_case_ = int(m_name.split('''-''' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['''embeddings''', '''LayerNorm'''] ) snake_case_ = getattr(SCREAMING_SNAKE_CASE__ , '''embeddings''' ) snake_case_ = getattr(SCREAMING_SNAKE_CASE__ , '''LayerNorm''' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['''encoder''', '''layer''', str(layer_num - 4 )] ) snake_case_ = getattr(SCREAMING_SNAKE_CASE__ , '''encoder''' ) snake_case_ = getattr(SCREAMING_SNAKE_CASE__ , '''layer''' ) snake_case_ = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['''pooler''', '''dense'''] ) snake_case_ = getattr(SCREAMING_SNAKE_CASE__ , '''pooler''' ) snake_case_ = getattr(SCREAMING_SNAKE_CASE__ , '''dense''' ) elif m_name == "embeddings": trace.append('''embeddings''' ) snake_case_ = getattr(SCREAMING_SNAKE_CASE__ , '''embeddings''' ) if layer_num == 0: trace.append('''word_embeddings''' ) snake_case_ = getattr(SCREAMING_SNAKE_CASE__ , '''word_embeddings''' ) elif layer_num == 1: trace.append('''position_embeddings''' ) snake_case_ = getattr(SCREAMING_SNAKE_CASE__ , '''position_embeddings''' ) elif layer_num == 2: trace.append('''token_type_embeddings''' ) snake_case_ = getattr(SCREAMING_SNAKE_CASE__ , '''token_type_embeddings''' ) else: raise ValueError(F'''Unknown embedding layer with name {full_name}''' ) trace.append('''weight''' ) snake_case_ = getattr(SCREAMING_SNAKE_CASE__ , '''weight''' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['''attention''', '''self'''] ) snake_case_ = getattr(SCREAMING_SNAKE_CASE__ , '''attention''' ) snake_case_ = getattr(SCREAMING_SNAKE_CASE__ , '''self''' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['''attention''', '''output''', '''LayerNorm'''] ) snake_case_ = getattr(SCREAMING_SNAKE_CASE__ , '''attention''' ) snake_case_ = getattr(SCREAMING_SNAKE_CASE__ , '''output''' ) snake_case_ = getattr(SCREAMING_SNAKE_CASE__ , '''LayerNorm''' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['''attention''', '''output''', '''dense'''] ) snake_case_ = getattr(SCREAMING_SNAKE_CASE__ , '''attention''' ) snake_case_ = getattr(SCREAMING_SNAKE_CASE__ , '''output''' ) snake_case_ = getattr(SCREAMING_SNAKE_CASE__ , '''dense''' ) elif m_name == "_output_dense": # output dense trace.extend(['''output''', '''dense'''] ) snake_case_ = getattr(SCREAMING_SNAKE_CASE__ , '''output''' ) snake_case_ = getattr(SCREAMING_SNAKE_CASE__ , '''dense''' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['''output''', '''LayerNorm'''] ) snake_case_ = getattr(SCREAMING_SNAKE_CASE__ , '''output''' ) snake_case_ = getattr(SCREAMING_SNAKE_CASE__ , '''LayerNorm''' ) elif m_name == "_key_dense": # attention key trace.append('''key''' ) snake_case_ = getattr(SCREAMING_SNAKE_CASE__ , '''key''' ) elif m_name == "_query_dense": # attention query trace.append('''query''' ) snake_case_ = getattr(SCREAMING_SNAKE_CASE__ , '''query''' ) elif m_name == "_value_dense": # attention value trace.append('''value''' ) snake_case_ = getattr(SCREAMING_SNAKE_CASE__ , '''value''' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['''intermediate''', '''dense'''] ) snake_case_ = getattr(SCREAMING_SNAKE_CASE__ , '''intermediate''' ) snake_case_ = getattr(SCREAMING_SNAKE_CASE__ , '''dense''' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('''output''' ) snake_case_ = getattr(SCREAMING_SNAKE_CASE__ , '''output''' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('''bias''' ) snake_case_ = getattr(SCREAMING_SNAKE_CASE__ , '''bias''' ) elif m_name in ["kernel", "gamma"]: trace.append('''weight''' ) snake_case_ = getattr(SCREAMING_SNAKE_CASE__ , '''weight''' ) else: logger.warning(F'''Ignored {m_name}''' ) # for certain layers reshape is necessary snake_case_ = '''.'''.join(SCREAMING_SNAKE_CASE__ ) if re.match(R'''(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)''' , SCREAMING_SNAKE_CASE__ ) or re.match( R'''(\S+)\.attention\.output\.dense\.weight''' , SCREAMING_SNAKE_CASE__ ): snake_case_ = array.reshape(pointer.data.shape ) if "kernel" in full_name: snake_case_ = array.transpose() if pointer.shape == array.shape: snake_case_ = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) else: raise ValueError( F'''Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:''' F''' {array.shape}''' ) logger.info(F'''Successfully set variable {full_name} to PyTorch layer {trace}''' ) return model def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # Instantiate model logger.info(F'''Loading model based on config from {config_path}...''' ) snake_case_ = BertConfig.from_json_file(SCREAMING_SNAKE_CASE__ ) snake_case_ = BertModel(SCREAMING_SNAKE_CASE__ ) # Load weights from checkpoint logger.info(F'''Loading weights from checkpoint {tf_checkpoint_path}...''' ) load_tfa_weights_in_bert(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Save pytorch-model logger.info(F'''Saving PyTorch model to {pytorch_dump_path}...''' ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow 2.x checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', type=str, required=True, help='''The config json file corresponding to the BERT model. This specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', type=str, required=True, help='''Path to the output PyTorch model (must include filename).''', ) lowerCAmelCase_ = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
8
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = BioGptTokenizer _lowercase = False def snake_case_ ( self: Any ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCamelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] __UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) ) __UpperCamelCase = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file,'w' ) as fp: fp.write(json.dumps(A_ ) ) with open(self.merges_file,'w' ) as fp: fp.write('\n'.join(A_ ) ) def snake_case_ ( self: Optional[int],A_: List[Any] ): '''simple docstring''' __UpperCamelCase = 'lower newer' __UpperCamelCase = 'lower newer' return input_text, output_text def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = BioGptTokenizer(self.vocab_file,self.merges_file ) __UpperCamelCase = 'lower' __UpperCamelCase = ['low', 'er</w>'] __UpperCamelCase = tokenizer.tokenize(A_ ) self.assertListEqual(A_,A_ ) __UpperCamelCase = tokens + ['<unk>'] __UpperCamelCase = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ),A_ ) @slow def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) __UpperCamelCase = tokenizer.encode('sequence builders',add_special_tokens=A_ ) __UpperCamelCase = tokenizer.encode('multi-sequence build',add_special_tokens=A_ ) __UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_ ) __UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_,A_ ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
310
0
from math import sqrt def _UpperCamelCase ( lowercase__ ): assert isinstance(lowercase__ , lowercase__ ) and ( number >= 0 ), "'number' must been an int and positive" __SCREAMING_SNAKE_CASE : str = True # 0 and 1 are none primes. if number <= 1: __SCREAMING_SNAKE_CASE : Any = False for divisor in range(2 , int(round(sqrt(lowercase__ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __SCREAMING_SNAKE_CASE : List[Any] = False break # precondition assert isinstance(lowercase__ , lowercase__ ), "'status' must been from type bool" return status def _UpperCamelCase ( lowercase__ ): assert isinstance(lowercase__ , lowercase__ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __SCREAMING_SNAKE_CASE : Optional[Any] = list(range(2 , n + 1 ) ) __SCREAMING_SNAKE_CASE : Optional[int] = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowercase__ ) ): for j in range(i + 1 , len(lowercase__ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __SCREAMING_SNAKE_CASE : List[Any] = 0 # filters actual prime numbers. __SCREAMING_SNAKE_CASE : Tuple = [x for x in begin_list if x != 0] # precondition assert isinstance(lowercase__ , lowercase__ ), "'ans' must been from type list" return ans def _UpperCamelCase ( lowercase__ ): assert isinstance(lowercase__ , lowercase__ ) and (n > 2), "'N' must been an int and > 2" __SCREAMING_SNAKE_CASE : str = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(lowercase__ ): ans.append(lowercase__ ) # precondition assert isinstance(lowercase__ , lowercase__ ), "'ans' must been from type list" return ans def _UpperCamelCase ( lowercase__ ): assert isinstance(lowercase__ , lowercase__ ) and number >= 0, "'number' must been an int and >= 0" __SCREAMING_SNAKE_CASE : str = [] # this list will be returns of the function. # potential prime number factors. __SCREAMING_SNAKE_CASE : Union[str, Any] = 2 __SCREAMING_SNAKE_CASE : Any = number if number == 0 or number == 1: ans.append(lowercase__ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowercase__ ): while quotient != 1: if is_prime(lowercase__ ) and (quotient % factor == 0): ans.append(lowercase__ ) quotient /= factor else: factor += 1 else: ans.append(lowercase__ ) # precondition assert isinstance(lowercase__ , lowercase__ ), "'ans' must been from type list" return ans def _UpperCamelCase ( lowercase__ ): assert isinstance(lowercase__ , lowercase__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __SCREAMING_SNAKE_CASE : Optional[Any] = 0 # prime factorization of 'number' __SCREAMING_SNAKE_CASE : Optional[Any] = prime_factorization(lowercase__ ) __SCREAMING_SNAKE_CASE : Tuple = max(lowercase__ ) # precondition assert isinstance(lowercase__ , lowercase__ ), "'ans' must been from type int" return ans def _UpperCamelCase ( lowercase__ ): assert isinstance(lowercase__ , lowercase__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __SCREAMING_SNAKE_CASE : int = 0 # prime factorization of 'number' __SCREAMING_SNAKE_CASE : List[Any] = prime_factorization(lowercase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = min(lowercase__ ) # precondition assert isinstance(lowercase__ , lowercase__ ), "'ans' must been from type int" return ans def _UpperCamelCase ( lowercase__ ): assert isinstance(lowercase__ , lowercase__ ), "'number' must been an int" assert isinstance(number % 2 == 0 , lowercase__ ), "compare bust been from type bool" return number % 2 == 0 def _UpperCamelCase ( lowercase__ ): assert isinstance(lowercase__ , lowercase__ ), "'number' must been an int" assert isinstance(number % 2 != 0 , lowercase__ ), "compare bust been from type bool" return number % 2 != 0 def _UpperCamelCase ( lowercase__ ): assert ( isinstance(lowercase__ , lowercase__ ) and (number > 2) and is_even(lowercase__ ) ), "'number' must been an int, even and > 2" __SCREAMING_SNAKE_CASE : Tuple = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __SCREAMING_SNAKE_CASE : Optional[Any] = get_prime_numbers(lowercase__ ) __SCREAMING_SNAKE_CASE : Tuple = len(lowercase__ ) # run variable for while-loops. __SCREAMING_SNAKE_CASE : List[str] = 0 __SCREAMING_SNAKE_CASE : Tuple = None # exit variable. for break up the loops __SCREAMING_SNAKE_CASE : Any = True while i < len_pn and loop: __SCREAMING_SNAKE_CASE : Tuple = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __SCREAMING_SNAKE_CASE : List[str] = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowercase__ , lowercase__ ) and (len(lowercase__ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _UpperCamelCase ( lowercase__ , lowercase__ ): assert ( isinstance(lowercase__ , lowercase__ ) and isinstance(lowercase__ , lowercase__ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __SCREAMING_SNAKE_CASE : Any = 0 while numbera != 0: __SCREAMING_SNAKE_CASE : List[Any] = numbera % numbera __SCREAMING_SNAKE_CASE : Optional[int] = numbera __SCREAMING_SNAKE_CASE : Optional[int] = rest # precondition assert isinstance(lowercase__ , lowercase__ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _UpperCamelCase ( lowercase__ , lowercase__ ): assert ( isinstance(lowercase__ , lowercase__ ) and isinstance(lowercase__ , lowercase__ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __SCREAMING_SNAKE_CASE : Dict = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __SCREAMING_SNAKE_CASE : Any = prime_factorization(lowercase__ ) __SCREAMING_SNAKE_CASE : Dict = prime_factorization(lowercase__ ) elif numbera == 1 or numbera == 1: __SCREAMING_SNAKE_CASE : List[str] = [] __SCREAMING_SNAKE_CASE : List[Any] = [] __SCREAMING_SNAKE_CASE : Optional[Any] = max(lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE : int = 0 __SCREAMING_SNAKE_CASE : List[str] = 0 __SCREAMING_SNAKE_CASE : Any = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __SCREAMING_SNAKE_CASE : int = prime_fac_a.count(lowercase__ ) __SCREAMING_SNAKE_CASE : str = prime_fac_a.count(lowercase__ ) for _ in range(max(lowercase__ , lowercase__ ) ): ans *= n else: __SCREAMING_SNAKE_CASE : str = prime_fac_a.count(lowercase__ ) for _ in range(lowercase__ ): ans *= n done.append(lowercase__ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __SCREAMING_SNAKE_CASE : str = prime_fac_a.count(lowercase__ ) for _ in range(lowercase__ ): ans *= n done.append(lowercase__ ) # precondition assert isinstance(lowercase__ , lowercase__ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _UpperCamelCase ( lowercase__ ): assert isinstance(lowercase__ , lowercase__ ) and (n >= 0), "'number' must been a positive int" __SCREAMING_SNAKE_CASE : int = 0 __SCREAMING_SNAKE_CASE : Union[str, Any] = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowercase__ ): ans += 1 # precondition assert isinstance(lowercase__ , lowercase__ ) and is_prime( lowercase__ ), "'ans' must been a prime number and from type int" return ans def _UpperCamelCase ( lowercase__ , lowercase__ ): assert ( is_prime(lowercase__ ) and is_prime(lowercase__ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __SCREAMING_SNAKE_CASE : Optional[Any] = p_number_a + 1 # jump to the next number __SCREAMING_SNAKE_CASE : Optional[Any] = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowercase__ ): number += 1 while number < p_number_a: ans.append(lowercase__ ) number += 1 # fetch the next prime number. while not is_prime(lowercase__ ): number += 1 # precondition assert ( isinstance(lowercase__ , lowercase__ ) and ans[0] != p_number_a and ans[len(lowercase__ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _UpperCamelCase ( lowercase__ ): assert isinstance(lowercase__ , lowercase__ ) and (n >= 1), "'n' must been int and >= 1" __SCREAMING_SNAKE_CASE : List[str] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(lowercase__ ) # precondition assert ans[0] == 1 and ans[len(lowercase__ ) - 1] == n, "Error in function getDivisiors(...)" return ans def _UpperCamelCase ( lowercase__ ): assert isinstance(lowercase__ , lowercase__ ) and ( number > 1 ), "'number' must been an int and >= 1" __SCREAMING_SNAKE_CASE : str = get_divisors(lowercase__ ) # precondition assert ( isinstance(lowercase__ , lowercase__ ) and (divisors[0] == 1) and (divisors[len(lowercase__ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _UpperCamelCase ( lowercase__ , lowercase__ ): assert ( isinstance(lowercase__ , lowercase__ ) and isinstance(lowercase__ , lowercase__ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __SCREAMING_SNAKE_CASE : Optional[Any] = gcd(abs(lowercase__ ) , abs(lowercase__ ) ) # precondition assert ( isinstance(lowercase__ , lowercase__ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _UpperCamelCase ( lowercase__ ): assert isinstance(lowercase__ , lowercase__ ) and (n >= 0), "'n' must been a int and >= 0" __SCREAMING_SNAKE_CASE : Any = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _UpperCamelCase ( lowercase__ ): assert isinstance(lowercase__ , lowercase__ ) and (n >= 0), "'n' must been an int and >= 0" __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 __SCREAMING_SNAKE_CASE : Union[str, Any] = 1 __SCREAMING_SNAKE_CASE : Optional[int] = 1 # this will be return for _ in range(n - 1 ): __SCREAMING_SNAKE_CASE : Optional[Any] = ans ans += fiba __SCREAMING_SNAKE_CASE : Optional[Any] = tmp return ans
9
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __snake_case = r''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(_a ) class __lowerCamelCase (_a ): _lowercase = """rag""" _lowercase = True def __init__( self: Tuple,A_: Any=None,A_: Any=True,A_: List[Any]=None,A_: Optional[int]=None,A_: List[Any]=None,A_: str=None,A_: Union[str, Any]=None,A_: List[Any]=" / ",A_: Union[str, Any]=" // ",A_: List[Any]=5,A_: Optional[int]=300,A_: Tuple=768,A_: Tuple=8,A_: Optional[Any]="wiki_dpr",A_: int="train",A_: Union[str, Any]="compressed",A_: Optional[int]=None,A_: List[Any]=None,A_: List[str]=False,A_: List[str]=False,A_: str=0.0,A_: List[Any]=True,A_: Tuple=False,A_: int=False,A_: Dict=False,A_: Tuple=True,A_: int=None,**A_: Optional[int],): '''simple docstring''' super().__init__( bos_token_id=A_,pad_token_id=A_,eos_token_id=A_,decoder_start_token_id=A_,forced_eos_token_id=A_,is_encoder_decoder=A_,prefix=A_,vocab_size=A_,**A_,) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" __UpperCamelCase = kwargs.pop('question_encoder' ) __UpperCamelCase = question_encoder_config.pop('model_type' ) __UpperCamelCase = kwargs.pop('generator' ) __UpperCamelCase = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig __UpperCamelCase = AutoConfig.for_model(A_,**A_ ) __UpperCamelCase = AutoConfig.for_model(A_,**A_ ) __UpperCamelCase = reduce_loss __UpperCamelCase = label_smoothing __UpperCamelCase = exclude_bos_score __UpperCamelCase = do_marginalize __UpperCamelCase = title_sep __UpperCamelCase = doc_sep __UpperCamelCase = n_docs __UpperCamelCase = max_combined_length __UpperCamelCase = dataset __UpperCamelCase = dataset_split __UpperCamelCase = index_name __UpperCamelCase = retrieval_vector_size __UpperCamelCase = retrieval_batch_size __UpperCamelCase = passages_path __UpperCamelCase = index_path __UpperCamelCase = use_dummy_dataset __UpperCamelCase = output_retrieved __UpperCamelCase = do_deduplication __UpperCamelCase = use_cache if self.forced_eos_token_id is None: __UpperCamelCase = getattr(self.generator,'forced_eos_token_id',A_ ) @classmethod def snake_case_ ( cls: Any,A_: PretrainedConfig,A_: PretrainedConfig,**A_: int ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict(),generator=generator_config.to_dict(),**A_ ) def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = copy.deepcopy(self.__dict__ ) __UpperCamelCase = self.question_encoder.to_dict() __UpperCamelCase = self.generator.to_dict() __UpperCamelCase = self.__class__.model_type return output
310
0
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np __A = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 __A = typing.Union[np.floataa, int, float] # noqa: UP007 def lowerCAmelCase_ ( __a , __a ) -> VectorOut: """simple docstring""" return np.sqrt(np.sum((np.asarray(__a ) - np.asarray(__a )) ** 2 ) ) def lowerCAmelCase_ ( __a , __a ) -> VectorOut: """simple docstring""" return sum((va - va) ** 2 for va, va in zip(__a , __a ) ) ** (1 / 2) if __name__ == "__main__": def lowerCAmelCase_ ( ) -> None: """simple docstring""" from timeit import timeit print("Without Numpy" ) print( timeit( "euclidean_distance_no_np([1, 2, 3], [4, 5, 6])" , number=10000 , globals=globals() , ) ) print("With Numpy" ) print( timeit( "euclidean_distance([1, 2, 3], [4, 5, 6])" , number=10000 , globals=globals() , ) ) benchmark()
10
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class __lowerCamelCase (_a ): _lowercase = """M-CLIP""" def __init__( self: int,A_: Any=1024,A_: Union[str, Any]=768,**A_: str ): '''simple docstring''' __UpperCamelCase = transformerDimSize __UpperCamelCase = imageDimSize super().__init__(**A_ ) class __lowerCamelCase (_a ): _lowercase = MCLIPConfig def __init__( self: int,A_: Optional[Any],*A_: List[str],**A_: Union[str, Any] ): '''simple docstring''' super().__init__(A_,*A_,**A_ ) __UpperCamelCase = XLMRobertaModel(A_ ) __UpperCamelCase = torch.nn.Linear( in_features=config.transformerDimensions,out_features=config.numDims ) def snake_case_ ( self: Dict,A_: int,A_: Optional[int] ): '''simple docstring''' __UpperCamelCase = self.transformer(input_ids=A_,attention_mask=A_ )[0] __UpperCamelCase = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(A_ ), embs
310
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=a) class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = field(default="automatic-speech-recognition" , metadata={"include_in_asdict_even_if_is_default": True}) __SCREAMING_SNAKE_CASE = Features({"audio": Audio()}) __SCREAMING_SNAKE_CASE = Features({"transcription": Value("string")}) __SCREAMING_SNAKE_CASE = "audio" __SCREAMING_SNAKE_CASE = "transcription" def _lowerCamelCase ( self , __lowerCamelCase) -> Any: if self.audio_column not in features: raise ValueError(F"Column {self.audio_column} is not present in features.") if not isinstance(features[self.audio_column] , __lowerCamelCase): raise ValueError(F"Column {self.audio_column} is not an Audio type.") _A : Optional[int] = copy.deepcopy(self) _A : List[str] = self.input_schema.copy() _A : Any = features[self.audio_column] _A : Tuple = input_schema return task_template @property def _lowerCamelCase ( self) -> Dict[str, str]: return {self.audio_column: "audio", self.transcription_column: "transcription"}
11
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class __lowerCamelCase : _lowercase = XGLMConfig _lowercase = {} _lowercase = """gelu""" def __init__( self: Optional[int],A_: Dict,A_: Any=14,A_: Optional[int]=7,A_: str=True,A_: Any=True,A_: Optional[int]=True,A_: Optional[int]=99,A_: List[str]=32,A_: Any=2,A_: Tuple=4,A_: List[str]=37,A_: Dict="gelu",A_: int=0.1,A_: List[str]=0.1,A_: int=512,A_: List[Any]=0.0_2,): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = d_model __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = ffn_dim __UpperCamelCase = activation_function __UpperCamelCase = activation_dropout __UpperCamelCase = attention_dropout __UpperCamelCase = max_position_embeddings __UpperCamelCase = initializer_range __UpperCamelCase = None __UpperCamelCase = 0 __UpperCamelCase = 2 __UpperCamelCase = 1 def snake_case_ ( self: Dict ): '''simple docstring''' return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length],self.vocab_size ),clip_value_min=0,clip_value_max=3 ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = self.get_config() __UpperCamelCase = floats_tensor([self.num_hidden_layers, self.num_attention_heads],2 ) return ( config, input_ids, input_mask, head_mask, ) def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' return XGLMConfig( vocab_size=self.vocab_size,d_model=self.hidden_size,num_layers=self.num_hidden_layers,attention_heads=self.num_attention_heads,ffn_dim=self.ffn_dim,activation_function=self.activation_function,activation_dropout=self.activation_dropout,attention_dropout=self.attention_dropout,max_position_embeddings=self.max_position_embeddings,initializer_range=self.initializer_range,use_cache=A_,bos_token_id=self.bos_token_id,eos_token_id=self.eos_token_id,pad_token_id=self.pad_token_id,return_dict=A_,) def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ) = config_and_inputs __UpperCamelCase = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class __lowerCamelCase (_a , _a , unittest.TestCase ): _lowercase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () _lowercase = (TFXGLMForCausalLM,) if is_tf_available() else () _lowercase = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) _lowercase = False _lowercase = False _lowercase = False def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = TFXGLMModelTester(self ) __UpperCamelCase = ConfigTester(self,config_class=A_,n_embd=37 ) def snake_case_ ( self: Any ): '''simple docstring''' self.config_tester.run_common_tests() @slow def snake_case_ ( self: Any ): '''simple docstring''' for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = TFXGLMModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def snake_case_ ( self: Tuple ): '''simple docstring''' super().test_resize_token_embeddings() @require_tf class __lowerCamelCase (unittest.TestCase ): @slow def snake_case_ ( self: Optional[Any],A_: int=True ): '''simple docstring''' __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = tf.convert_to_tensor([[2, 268, 9865]],dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __UpperCamelCase = [2, 268, 9865, 67, 11, 1988, 5_7252, 9865, 5, 984, 67, 1988, 21_3838, 1658, 53, 7_0446, 33, 6657, 278, 1581] # fmt: on __UpperCamelCase = model.generate(A_,do_sample=A_,num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist(),A_ ) @slow def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) __UpperCamelCase = tokenizer('Today is a nice day and',return_tensors='tf' ) __UpperCamelCase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): __UpperCamelCase = model.generate(A_,do_sample=A_,seed=[7, 0] ) __UpperCamelCase = tokenizer.decode(output_ids[0],skip_special_tokens=A_ ) __UpperCamelCase = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(A_,A_ ) @slow def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = 'left' # use different length sentences to test batching __UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] __UpperCamelCase = tokenizer(A_,return_tensors='tf',padding=A_ ) __UpperCamelCase = inputs['input_ids'] __UpperCamelCase = model.generate(input_ids=A_,attention_mask=inputs['attention_mask'],max_new_tokens=12 ) __UpperCamelCase = tokenizer(sentences[0],return_tensors='tf' ).input_ids __UpperCamelCase = model.generate(input_ids=A_,max_new_tokens=12 ) __UpperCamelCase = tokenizer(sentences[1],return_tensors='tf' ).input_ids __UpperCamelCase = model.generate(input_ids=A_,max_new_tokens=12 ) __UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ ) __UpperCamelCase = tokenizer.decode(output_non_padded[0],skip_special_tokens=A_ ) __UpperCamelCase = tokenizer.decode(output_padded[0],skip_special_tokens=A_ ) __UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(A_,A_ ) self.assertListEqual(A_,[non_padded_sentence, padded_sentence] )
310
0
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: UpperCAmelCase_ = None UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json' ), }, } UpperCAmelCase_ = { 'facebook/nllb-large-en-ro': 1_024, 'facebook/nllb-200-distilled-600M': 1_024, } # fmt: off UpperCAmelCase_ = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES UpperCAmelCase__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : int = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : str = ['input_ids', 'attention_mask'] UpperCAmelCase__ : str = NllbTokenizer UpperCAmelCase__ : List[int] = [] UpperCAmelCase__ : List[int] = [] def __init__( self: Dict , UpperCamelCase_: Union[str, Any]=None , UpperCamelCase_: Optional[int]=None , UpperCamelCase_: Any="<s>" , UpperCamelCase_: Any="</s>" , UpperCamelCase_: List[Any]="</s>" , UpperCamelCase_: Optional[Any]="<s>" , UpperCamelCase_: int="<unk>" , UpperCamelCase_: Union[str, Any]="<pad>" , UpperCamelCase_: Union[str, Any]="<mask>" , UpperCamelCase_: Union[str, Any]=None , UpperCamelCase_: str=None , UpperCamelCase_: Dict=None , UpperCamelCase_: Optional[Any]=False , **UpperCamelCase_: int , ): # Mask token behave like a normal word, i.e. include the space before it __lowerCamelCase = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token __lowerCamelCase = legacy_behaviour super().__init__( vocab_file=UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , src_lang=UpperCamelCase_ , tgt_lang=UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , legacy_behaviour=UpperCamelCase_ , **UpperCamelCase_ , ) __lowerCamelCase = vocab_file __lowerCamelCase = False if not self.vocab_file else True __lowerCamelCase = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) __lowerCamelCase = { lang_code: self.convert_tokens_to_ids(UpperCamelCase_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __lowerCamelCase = src_lang if src_lang is not None else """eng_Latn""" __lowerCamelCase = self.convert_tokens_to_ids(self._src_lang ) __lowerCamelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowerCAmelCase__ ( self: int ): return self._src_lang @src_lang.setter def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: str ): __lowerCamelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCAmelCase__ ( self: int , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCAmelCase__ ( self: Any , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ): __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: str , UpperCamelCase_: str , UpperCamelCase_: Optional[str] , UpperCamelCase_: Optional[str] , **UpperCamelCase_: int ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) __lowerCamelCase = src_lang __lowerCamelCase = self(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ ) __lowerCamelCase = self.convert_tokens_to_ids(UpperCamelCase_ ) __lowerCamelCase = tgt_lang_id return inputs def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: List[str] , UpperCamelCase_: str = "eng_Latn" , UpperCamelCase_: Optional[List[str]] = None , UpperCamelCase_: str = "fra_Latn" , **UpperCamelCase_: Optional[int] , ): __lowerCamelCase = src_lang __lowerCamelCase = tgt_lang return super().prepare_seqaseq_batch(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Dict ): return self.set_src_lang_special_tokens(self.src_lang ) def lowerCAmelCase__ ( self: List[str] ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Optional[int] ): __lowerCamelCase = self.convert_tokens_to_ids(UpperCamelCase_ ) if self.legacy_behaviour: __lowerCamelCase = [] __lowerCamelCase = [self.eos_token_id, self.cur_lang_code] else: __lowerCamelCase = [self.cur_lang_code] __lowerCamelCase = [self.eos_token_id] __lowerCamelCase = self.convert_ids_to_tokens(self.prefix_tokens ) __lowerCamelCase = self.convert_ids_to_tokens(self.suffix_tokens ) __lowerCamelCase = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCAmelCase__ ( self: Any , UpperCamelCase_: str ): __lowerCamelCase = self.convert_tokens_to_ids(UpperCamelCase_ ) if self.legacy_behaviour: __lowerCamelCase = [] __lowerCamelCase = [self.eos_token_id, self.cur_lang_code] else: __lowerCamelCase = [self.cur_lang_code] __lowerCamelCase = [self.eos_token_id] __lowerCamelCase = self.convert_ids_to_tokens(self.prefix_tokens ) __lowerCamelCase = self.convert_ids_to_tokens(self.suffix_tokens ) __lowerCamelCase = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCAmelCase__ ( self: Any , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCamelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return __lowerCamelCase = os.path.join( UpperCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ): copyfile(self.vocab_file , UpperCamelCase_ ) return (out_vocab_file,)
12
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __snake_case = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json''' with io.open(filename, '''r''', encoding='''utf-8''') as f: __snake_case = json.load(f) @require_torch class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: int,A_: int ): '''simple docstring''' return FSMTTokenizer.from_pretrained(A_ ) def snake_case_ ( self: Dict,A_: int ): '''simple docstring''' __UpperCamelCase = FSMTForConditionalGeneration.from_pretrained(A_ ).to(A_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 2_6.0], ['ru-en', 2_2.0], ['en-de', 2_2.0], ['de-en', 2_9.0], ] ) @slow def snake_case_ ( self: Tuple,A_: Any,A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = F'''facebook/wmt19-{pair}''' __UpperCamelCase = self.get_tokenizer(A_ ) __UpperCamelCase = self.get_model(A_ ) __UpperCamelCase = bleu_data[pair]['src'] __UpperCamelCase = bleu_data[pair]['tgt'] __UpperCamelCase = tokenizer(A_,return_tensors='pt',truncation=A_,padding='longest' ).to(A_ ) __UpperCamelCase = model.generate( input_ids=batch.input_ids,num_beams=8,) __UpperCamelCase = tokenizer.batch_decode( A_,skip_special_tokens=A_,clean_up_tokenization_spaces=A_ ) __UpperCamelCase = calculate_bleu(A_,A_ ) print(A_ ) self.assertGreaterEqual(scores['bleu'],A_ )
310
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) lowerCAmelCase : str = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[str] = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
13
def _A ( _lowercase ) -> list[int]: """simple docstring""" if length <= 0 or not isinstance(_lowercase , _lowercase ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(_lowercase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=1_0))
310
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : Optional[int] = { """studio-ousia/luke-base""": """https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json""", """studio-ousia/luke-large""": """https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json""", } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''luke''' def __init__( self : Any , UpperCAmelCase__ : str=50_267 , UpperCAmelCase__ : Any=500_000 , UpperCAmelCase__ : Dict=768 , UpperCAmelCase__ : str=256 , UpperCAmelCase__ : Dict=12 , UpperCAmelCase__ : List[str]=12 , UpperCAmelCase__ : Optional[Any]=3_072 , UpperCAmelCase__ : Union[str, Any]="gelu" , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : Optional[int]=512 , UpperCAmelCase__ : Tuple=2 , UpperCAmelCase__ : str=0.02 , UpperCAmelCase__ : Optional[Any]=1e-12 , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : str=1 , UpperCAmelCase__ : Union[str, Any]=0 , UpperCAmelCase__ : Optional[int]=2 , **UpperCAmelCase__ : Any , ) ->List[Any]: '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__) A__ = vocab_size A__ = entity_vocab_size A__ = hidden_size A__ = entity_emb_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = layer_norm_eps A__ = use_entity_aware_attention A__ = classifier_dropout
14
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = MgpstrTokenizer _lowercase = False _lowercase = {} _lowercase = False def snake_case_ ( self: int ): '''simple docstring''' super().setUp() # fmt: off __UpperCamelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on __UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) ) __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file,'w',encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) def snake_case_ ( self: Dict,**A_: Tuple ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname,**A_ ) def snake_case_ ( self: List[Any],A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = 'tester' __UpperCamelCase = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.' ) def snake_case_ ( self: str ): '''simple docstring''' pass def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCamelCase = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token} ) __UpperCamelCase = tokenizer.encode([special_token],add_special_tokens=A_ ) self.assertEqual(len(A_ ),1 ) __UpperCamelCase = tokenizer.decode(A_,skip_special_tokens=A_ ) self.assertTrue(special_token not in decoded ) def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCamelCase, __UpperCamelCase = self.get_input_output_texts(A_ ) __UpperCamelCase = tokenizer.tokenize(A_ ) __UpperCamelCase = tokenizer.convert_tokens_to_ids(A_ ) __UpperCamelCase = tokenizer.encode(A_,add_special_tokens=A_ ) self.assertListEqual(A_,A_ ) __UpperCamelCase = tokenizer.convert_ids_to_tokens(A_ ) self.assertNotEqual(len(A_ ),0 ) __UpperCamelCase = tokenizer.decode(A_ ) self.assertIsInstance(A_,A_ ) self.assertEqual(text_a.replace(' ','' ),A_ ) @unittest.skip('MGP-STR tokenizer only handles one sequence.' ) def snake_case_ ( self: int ): '''simple docstring''' pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' ) def snake_case_ ( self: List[str] ): '''simple docstring''' pass
310
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE :List[Any] = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Dict = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
15
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( """The RoBERTa Model transformer with early exiting (DeeRoBERTa). """ , _a , ) class __lowerCamelCase (_a ): _lowercase = RobertaConfig _lowercase = """roberta""" def __init__( self: Union[str, Any],A_: List[str] ): '''simple docstring''' super().__init__(A_ ) __UpperCamelCase = RobertaEmbeddings(A_ ) self.init_weights() @add_start_docstrings( """RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. """ , _a , ) class __lowerCamelCase (_a ): _lowercase = RobertaConfig _lowercase = """roberta""" def __init__( self: Any,A_: int ): '''simple docstring''' super().__init__(A_ ) __UpperCamelCase = config.num_labels __UpperCamelCase = config.num_hidden_layers __UpperCamelCase = DeeRobertaModel(A_ ) __UpperCamelCase = nn.Dropout(config.hidden_dropout_prob ) __UpperCamelCase = nn.Linear(config.hidden_size,self.config.num_labels ) @add_start_docstrings_to_model_forward(A_ ) def snake_case_ ( self: List[str],A_: int=None,A_: List[Any]=None,A_: List[str]=None,A_: List[str]=None,A_: Optional[int]=None,A_: List[str]=None,A_: Any=None,A_: List[Any]=-1,A_: List[Any]=False,): '''simple docstring''' __UpperCamelCase = self.num_layers try: __UpperCamelCase = self.roberta( A_,attention_mask=A_,token_type_ids=A_,position_ids=A_,head_mask=A_,inputs_embeds=A_,) __UpperCamelCase = outputs[1] __UpperCamelCase = self.dropout(A_ ) __UpperCamelCase = self.classifier(A_ ) __UpperCamelCase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __UpperCamelCase = e.message __UpperCamelCase = e.exit_layer __UpperCamelCase = outputs[0] if not self.training: __UpperCamelCase = entropy(A_ ) __UpperCamelCase = [] __UpperCamelCase = [] if labels is not None: if self.num_labels == 1: # We are doing regression __UpperCamelCase = MSELoss() __UpperCamelCase = loss_fct(logits.view(-1 ),labels.view(-1 ) ) else: __UpperCamelCase = CrossEntropyLoss() __UpperCamelCase = loss_fct(logits.view(-1,self.num_labels ),labels.view(-1 ) ) # work with highway exits __UpperCamelCase = [] for highway_exit in outputs[-1]: __UpperCamelCase = highway_exit[0] if not self.training: highway_logits_all.append(A_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __UpperCamelCase = MSELoss() __UpperCamelCase = loss_fct(highway_logits.view(-1 ),labels.view(-1 ) ) else: __UpperCamelCase = CrossEntropyLoss() __UpperCamelCase = loss_fct(highway_logits.view(-1,self.num_labels ),labels.view(-1 ) ) highway_losses.append(A_ ) if train_highway: __UpperCamelCase = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __UpperCamelCase = (loss,) + outputs if not self.training: __UpperCamelCase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __UpperCamelCase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
310
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = { 'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'], 'tokenization_electra': ['ElectraTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['ElectraTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'ElectraForCausalLM', 'ElectraForMaskedLM', 'ElectraForMultipleChoice', 'ElectraForPreTraining', 'ElectraForQuestionAnswering', 'ElectraForSequenceClassification', 'ElectraForTokenClassification', 'ElectraModel', 'ElectraPreTrainedModel', 'load_tf_weights_in_electra', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFElectraForMaskedLM', 'TFElectraForMultipleChoice', 'TFElectraForPreTraining', 'TFElectraForQuestionAnswering', 'TFElectraForSequenceClassification', 'TFElectraForTokenClassification', 'TFElectraModel', 'TFElectraPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'FlaxElectraForCausalLM', 'FlaxElectraForMaskedLM', 'FlaxElectraForMultipleChoice', 'FlaxElectraForPreTraining', 'FlaxElectraForQuestionAnswering', 'FlaxElectraForSequenceClassification', 'FlaxElectraForTokenClassification', 'FlaxElectraModel', 'FlaxElectraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCamelCase : @staticmethod def snake_case_ ( *A_: Optional[Any],**A_: Tuple ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class __lowerCamelCase (unittest.TestCase ): _lowercase = MODEL_FOR_OBJECT_DETECTION_MAPPING def snake_case_ ( self: Dict,A_: Optional[int],A_: Tuple,A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = ObjectDetectionPipeline(model=A_,image_processor=A_ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def snake_case_ ( self: int,A_: Any,A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png',threshold=0.0 ) self.assertGreater(len(A_ ),0 ) for detected_object in outputs: self.assertEqual( A_,{ 'score': ANY(A_ ), 'label': ANY(A_ ), 'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )}, },) import datasets __UpperCamelCase = datasets.load_dataset('hf-internal-testing/fixtures_image_utils','image',split='test' ) __UpperCamelCase = [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] __UpperCamelCase = object_detector(A_,threshold=0.0 ) self.assertEqual(len(A_ ),len(A_ ) ) for outputs in batch_outputs: self.assertGreater(len(A_ ),0 ) for detected_object in outputs: self.assertEqual( A_,{ 'score': ANY(A_ ), 'label': ANY(A_ ), 'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )}, },) @require_tf @unittest.skip('Object detection not implemented in TF' ) def snake_case_ ( self: str ): '''simple docstring''' pass @require_torch def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = 'hf-internal-testing/tiny-detr-mobilenetsv3' __UpperCamelCase = AutoModelForObjectDetection.from_pretrained(A_ ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained(A_ ) __UpperCamelCase = ObjectDetectionPipeline(model=A_,feature_extractor=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg',threshold=0.0 ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ],threshold=0.0,) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], ],) @require_torch @slow def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = AutoModelForObjectDetection.from_pretrained(A_ ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained(A_ ) __UpperCamelCase = ObjectDetectionPipeline(model=A_,feature_extractor=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ],) @require_torch @slow def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = pipeline('object-detection',model=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ],) @require_torch @slow def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = 0.9_9_8_5 __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = pipeline('object-detection',model=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg',threshold=A_ ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) @require_torch @require_pytesseract @slow def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = 'Narsil/layoutlmv3-finetuned-funsd' __UpperCamelCase = 0.9_9_9_3 __UpperCamelCase = pipeline('object-detection',model=A_,threshold=A_ ) __UpperCamelCase = object_detector( 'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, {'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, ],)
310
0
"""simple docstring""" import os from collections.abc import Iterator def _A ( UpperCamelCase_ : str = ".") -> Iterator[str]: '''simple docstring''' for dir_path, dir_names, filenames in os.walk(UpperCamelCase_): __lowercase = [d for d in dir_names if d != "scripts" and d[0] not in "._"] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(UpperCamelCase_)[1] in (".py", ".ipynb"): yield os.path.join(UpperCamelCase_, UpperCamelCase_).lstrip("./") def _A ( UpperCamelCase_ : Any) -> Union[str, Any]: '''simple docstring''' return F"""{i * " "}*""" if i else "\n##" def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str) -> str: '''simple docstring''' __lowercase = old_path.split(os.sep) for i, new_part in enumerate(new_path.split(os.sep)): if (i + 1 > len(UpperCamelCase_) or old_parts[i] != new_part) and new_part: print(F"""{md_prefix(UpperCamelCase_)} {new_part.replace("_", " ").title()}""") return new_path def _A ( UpperCamelCase_ : str = ".") -> None: '''simple docstring''' __lowercase = "" for filepath in sorted(good_file_paths(UpperCamelCase_)): __lowercase ,__lowercase = os.path.split(UpperCamelCase_) if filepath != old_path: __lowercase = print_path(UpperCamelCase_, UpperCamelCase_) __lowercase = (filepath.count(os.sep) + 1) if filepath else 0 __lowercase = F"""{filepath}/{filename}""".replace(" ", "%20") __lowercase = os.path.splitext(filename.replace("_", " ").title())[0] print(F"""{md_prefix(UpperCamelCase_)} [{filename}]({url})""") if __name__ == "__main__": print_directory_md('.')
17
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json''' ), } class __lowerCamelCase (_a ): _lowercase = """xlm-roberta""" def __init__( self: Union[str, Any],A_: Union[str, Any]=3_0522,A_: Dict=768,A_: Union[str, Any]=12,A_: Any=12,A_: str=3072,A_: Union[str, Any]="gelu",A_: str=0.1,A_: Optional[int]=0.1,A_: List[Any]=512,A_: Optional[Any]=2,A_: Dict=0.0_2,A_: List[Any]=1E-12,A_: Optional[int]=1,A_: str=0,A_: str=2,A_: Optional[Any]="absolute",A_: Union[str, Any]=True,A_: int=None,**A_: Optional[Any],): '''simple docstring''' super().__init__(pad_token_id=A_,bos_token_id=A_,eos_token_id=A_,**A_ ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = position_embedding_type __UpperCamelCase = use_cache __UpperCamelCase = classifier_dropout class __lowerCamelCase (_a ): @property def snake_case_ ( self: Optional[Any] ): '''simple docstring''' if self.task == "multiple-choice": __UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
310
0
def _snake_case ( lowerCAmelCase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = 1 SCREAMING_SNAKE_CASE_ : Optional[Any] = 2 while i * i <= n: SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = 1 SCREAMING_SNAKE_CASE_ : List[str] = 1 while True: i += 1 t_num += i if count_divisors(lowerCAmelCase ) > 5_0_0: break return t_num if __name__ == "__main__": print(solution())
18
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __snake_case = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCamelCase (_a ): _lowercase = field(default=_a , metadata={"""help""": """Whether to use SortishSampler or not."""} ) _lowercase = field( default=_a , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} ) _lowercase = field( default=_a , metadata={ """help""": ( """The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `max_length` value of the model configuration.""" ) } , ) _lowercase = field( default=_a , metadata={ """help""": ( """The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `num_beams` value of the model configuration.""" ) } , ) _lowercase = field( default=_a , metadata={ """help""": """Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.""" } , ) def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = super().to_dict() for k, v in d.items(): if isinstance(A_,A_ ): __UpperCamelCase = v.to_dict() return d
310
0
import argparse import os import re import packaging.version __A ='''examples/''' __A ={ '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } __A ={ '''init''': '''src/diffusers/__init__.py''', '''setup''': '''setup.py''', } __A ='''README.md''' def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): with open(lowerCamelCase__ , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCamelCase_ = f.read() lowerCamelCase_ , lowerCamelCase_ = REPLACE_PATTERNS[pattern] lowerCamelCase_ = replace.replace("VERSION" , lowerCamelCase__ ) lowerCamelCase_ = re_pattern.sub(lowerCamelCase__ , lowerCamelCase__ ) with open(lowerCamelCase__ , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(lowerCamelCase__ ) def lowerCamelCase_ ( lowerCamelCase__ ): for folder, directories, fnames in os.walk(lowerCamelCase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ , pattern="examples" ) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) if not patch: update_version_in_examples(lowerCamelCase__ ) def lowerCamelCase_ ( ): lowerCamelCase_ = "🤗 Transformers currently provides the following architectures" lowerCamelCase_ = "1. Want to contribute a new model?" with open(lowerCamelCase__ , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCamelCase_ = f.readlines() # Find the start of the list. lowerCamelCase_ = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowerCamelCase_ = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): lowerCamelCase_ = lines[index].replace( "https://huggingface.co/docs/diffusers/main/model_doc" , "https://huggingface.co/docs/diffusers/model_doc" , ) index += 1 with open(lowerCamelCase__ , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lowerCamelCase__ ) def lowerCamelCase_ ( ): with open(REPLACE_FILES["init"] , "r" ) as f: lowerCamelCase_ = f.read() lowerCamelCase_ = REPLACE_PATTERNS["init"][0].search(lowerCamelCase__ ).groups()[0] return packaging.version.parse(lowerCamelCase__ ) def lowerCamelCase_ ( lowerCamelCase__=False ): lowerCamelCase_ = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: lowerCamelCase_ = default_version.base_version elif patch: lowerCamelCase_ = F'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: lowerCamelCase_ = F'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. lowerCamelCase_ = input(F'Which version are you releasing? [{default_version}]' ) if len(lowerCamelCase__ ) == 0: lowerCamelCase_ = default_version print(F'Updating version to {version}.' ) global_version_update(lowerCamelCase__ , patch=lowerCamelCase__ ) def lowerCamelCase_ ( ): lowerCamelCase_ = get_version() lowerCamelCase_ = F'{current_version.major}.{current_version.minor + 1}.0.dev0' lowerCamelCase_ = current_version.base_version # Check with the user we got that right. lowerCamelCase_ = input(F'Which version are we developing now? [{dev_version}]' ) if len(lowerCamelCase__ ) == 0: lowerCamelCase_ = dev_version print(F'Updating version to {version}.' ) global_version_update(lowerCamelCase__ ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": __A =argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') __A =parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
19
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _A ( _lowercase ) -> Dict: """simple docstring""" if is_torch_version('<' , '2.0.0' ) or not hasattr(_lowercase , '_dynamo' ): return False return isinstance(_lowercase , torch._dynamo.eval_frame.OptimizedModule ) def _A ( _lowercase , _lowercase = True ) -> Optional[int]: """simple docstring""" __UpperCamelCase = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __UpperCamelCase = is_compiled_module(_lowercase ) if is_compiled: __UpperCamelCase = model __UpperCamelCase = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_lowercase , _lowercase ): __UpperCamelCase = model.module if not keep_fpaa_wrapper: __UpperCamelCase = getattr(_lowercase , 'forward' ) __UpperCamelCase = model.__dict__.pop('_original_forward' , _lowercase ) if original_forward is not None: while hasattr(_lowercase , '__wrapped__' ): __UpperCamelCase = forward.__wrapped__ if forward == original_forward: break __UpperCamelCase = forward if getattr(_lowercase , '_converted_to_transformer_engine' , _lowercase ): convert_model(_lowercase , to_transformer_engine=_lowercase ) if is_compiled: __UpperCamelCase = model __UpperCamelCase = compiled_model return model def _A ( ) -> Any: """simple docstring""" PartialState().wait_for_everyone() def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(_lowercase , _lowercase ) elif PartialState().local_process_index == 0: torch.save(_lowercase , _lowercase ) @contextmanager def _A ( **_lowercase ) -> Union[str, Any]: """simple docstring""" for key, value in kwargs.items(): __UpperCamelCase = str(_lowercase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _A ( _lowercase ) -> Tuple: """simple docstring""" if not hasattr(_lowercase , '__qualname__' ) and not hasattr(_lowercase , '__name__' ): __UpperCamelCase = getattr(_lowercase , '__class__' , _lowercase ) if hasattr(_lowercase , '__qualname__' ): return obj.__qualname__ if hasattr(_lowercase , '__name__' ): return obj.__name__ return str(_lowercase ) def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" for key, value in source.items(): if isinstance(_lowercase , _lowercase ): __UpperCamelCase = destination.setdefault(_lowercase , {} ) merge_dicts(_lowercase , _lowercase ) else: __UpperCamelCase = value return destination def _A ( _lowercase = None ) -> bool: """simple docstring""" if port is None: __UpperCamelCase = 2_95_00 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
310
0
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class __snake_case : _a : int _a : TreeNode | None= None _a : TreeNode | None= None lowercase : Dict = namedtuple("""CoinsDistribResult""", """moves excess""") def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: if root is None: return 0 # Validation def count_nodes(SCREAMING_SNAKE_CASE__ ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(SCREAMING_SNAKE_CASE__ ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(SCREAMING_SNAKE_CASE__ ) != count_coins(SCREAMING_SNAKE_CASE__ ): raise ValueError("""The nodes number should be same as the number of coins""" ) # Main calculation def get_distrib(SCREAMING_SNAKE_CASE__ ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowercase , lowercase : int = get_distrib(node.left ) lowercase , lowercase : List[Any] = get_distrib(node.right ) lowercase : Optional[Any] = 1 - left_distrib_excess lowercase : Union[str, Any] = 1 - right_distrib_excess lowercase : List[Any] = ( left_distrib_moves + right_distrib_moves + abs(SCREAMING_SNAKE_CASE__ ) + abs(SCREAMING_SNAKE_CASE__ ) ) lowercase : Any = node.data - coins_to_left - coins_to_right return CoinsDistribResult(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return get_distrib(SCREAMING_SNAKE_CASE__ )[0] if __name__ == "__main__": import doctest doctest.testmod()
20
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __snake_case = logging.getLogger(__name__) def _A ( _lowercase , _lowercase ) -> Optional[int]: """simple docstring""" return (preds == labels).mean() @dataclass class __lowerCamelCase : _lowercase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _lowercase = field( default=_a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __lowerCamelCase : _lowercase = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) _lowercase = field(metadata={"""help""": """Should contain the data files for the task."""} ) _lowercase = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _lowercase = field( default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _A ( ) -> str: """simple docstring""" __UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _lowercase ) # Set seed set_seed(training_args.seed ) try: __UpperCamelCase = processors[data_args.task_name]() __UpperCamelCase = processor.get_labels() __UpperCamelCase = len(_lowercase ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowercase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , ) # Get datasets __UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_lowercase ) -> Dict: __UpperCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_lowercase , p.label_ids )} # Data collator __UpperCamelCase = DataCollatorWithPadding(_lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __UpperCamelCase = Trainer( model=_lowercase , args=_lowercase , train_dataset=_lowercase , eval_dataset=_lowercase , compute_metrics=_lowercase , data_collator=_lowercase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCamelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __UpperCamelCase = trainer.evaluate() __UpperCamelCase = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(_lowercase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , _lowercase , _lowercase ) writer.write('%s = %s\n' % (key, value) ) results.update(_lowercase ) return results def _A ( _lowercase ) -> List[Any]: """simple docstring""" main() if __name__ == "__main__": main()
310
0
def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> str: if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) _lowercase : int = str(bin(lowerCamelCase_ ) )[2:] # remove the leading "0b" _lowercase : Any = str(bin(lowerCamelCase_ ) )[2:] _lowercase : List[Any] = max(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) ) return "0b" + "".join( str(int('1' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowerCamelCase_ ) , b_binary.zfill(lowerCamelCase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
21
import os def _A ( ) -> Tuple: """simple docstring""" with open(os.path.dirname(_lowercase ) + '/p022_names.txt' ) as file: __UpperCamelCase = str(file.readlines()[0] ) __UpperCamelCase = names.replace('"' , '' ).split(',' ) names.sort() __UpperCamelCase = 0 __UpperCamelCase = 0 for i, name in enumerate(_lowercase ): for letter in name: name_score += ord(_lowercase ) - 64 total_score += (i + 1) * name_score __UpperCamelCase = 0 return total_score if __name__ == "__main__": print(solution())
310
0
'''simple docstring''' from __future__ import annotations __SCREAMING_SNAKE_CASE :Union[str, Any] = '''Muhammad Umer Farooq''' __SCREAMING_SNAKE_CASE :Optional[int] = '''MIT''' __SCREAMING_SNAKE_CASE :Any = '''1.0.0''' __SCREAMING_SNAKE_CASE :Union[str, Any] = '''Muhammad Umer Farooq''' __SCREAMING_SNAKE_CASE :Optional[int] = '''contact@muhammadumerfarooq.me''' __SCREAMING_SNAKE_CASE :Any = '''Alpha''' import re from html.parser import HTMLParser from urllib import parse import requests class A_ ( lowerCAmelCase_ ): def __init__( self : Tuple , snake_case_ : str ): super().__init__() _UpperCAmelCase = [] _UpperCAmelCase = domain def lowercase ( self : List[Any] , snake_case_ : str , snake_case_ : list[tuple[str, str | None]] ): # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: _UpperCAmelCase = parse.urljoin(self.domain , snake_case_ ) self.urls.append(snake_case_ ) def UpperCAmelCase_ ( __lowercase : str ) -> str: '''simple docstring''' return ".".join(get_sub_domain_name(__lowercase ).split("." )[-2:] ) def UpperCAmelCase_ ( __lowercase : str ) -> str: '''simple docstring''' return parse.urlparse(__lowercase ).netloc def UpperCAmelCase_ ( __lowercase : str = "https://github.com" ) -> list[str]: '''simple docstring''' _UpperCAmelCase = get_domain_name(__lowercase ) # Initialize the parser _UpperCAmelCase = Parser(__lowercase ) try: # Open URL _UpperCAmelCase = requests.get(__lowercase ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through _UpperCAmelCase = set() for link in parser.urls: # open URL. # read = requests.get(link) try: _UpperCAmelCase = requests.get(__lowercase ) # Get the valid email. _UpperCAmelCase = re.findall("[a-zA-Z0-9]+@" + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(__lowercase ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(__lowercase ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE :str = emails_from_url('''https://github.com''') print(F"{len(emails)} emails found:") print('''\n'''.join(sorted(emails)))
22
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=True , _lowercase="pt" ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = {'add_prefix_space': True} if isinstance(_lowercase , _lowercase ) and not line.startswith(' ' ) else {} __UpperCamelCase = padding_side return tokenizer( [line] , max_length=_lowercase , padding='max_length' if pad_to_max_length else None , truncation=_lowercase , return_tensors=_lowercase , add_special_tokens=_lowercase , **_lowercase , ) def _A ( _lowercase , _lowercase , _lowercase=None , ) -> List[Any]: """simple docstring""" __UpperCamelCase = input_ids.ne(_lowercase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCamelCase (_a ): def __init__( self: List[str],A_: str,A_: List[str],A_: List[str],A_: List[str],A_: Tuple="train",A_: Any=None,A_: List[str]=None,A_: List[Any]=None,A_: int="",): '''simple docstring''' super().__init__() __UpperCamelCase = Path(A_ ).joinpath(type_path + '.source' ) __UpperCamelCase = Path(A_ ).joinpath(type_path + '.target' ) __UpperCamelCase = self.get_char_lens(self.src_file ) __UpperCamelCase = max_source_length __UpperCamelCase = max_target_length assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}''' __UpperCamelCase = tokenizer __UpperCamelCase = prefix if n_obs is not None: __UpperCamelCase = self.src_lens[:n_obs] __UpperCamelCase = src_lang __UpperCamelCase = tgt_lang def __len__( self: Optional[Any] ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self: int,A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = index + 1 # linecache starts at 1 __UpperCamelCase = self.prefix + linecache.getline(str(self.src_file ),A_ ).rstrip('\n' ) __UpperCamelCase = linecache.getline(str(self.tgt_file ),A_ ).rstrip('\n' ) assert source_line, F'''empty source line for index {index}''' assert tgt_line, F'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer,A_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __UpperCamelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer,A_ ) else self.tokenizer ) __UpperCamelCase = self.tokenizer.generator if isinstance(self.tokenizer,A_ ) else self.tokenizer __UpperCamelCase = encode_line(A_,A_,self.max_source_length,'right' ) __UpperCamelCase = encode_line(A_,A_,self.max_target_length,'right' ) __UpperCamelCase = source_inputs['input_ids'].squeeze() __UpperCamelCase = target_inputs['input_ids'].squeeze() __UpperCamelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def snake_case_ ( A_: List[Any] ): '''simple docstring''' return [len(A_ ) for x in Path(A_ ).open().readlines()] def snake_case_ ( self: Union[str, Any],A_: Any ): '''simple docstring''' __UpperCamelCase = torch.stack([x['input_ids'] for x in batch] ) __UpperCamelCase = torch.stack([x['attention_mask'] for x in batch] ) __UpperCamelCase = torch.stack([x['decoder_input_ids'] for x in batch] ) __UpperCamelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer,A_ ) else self.tokenizer.pad_token_id ) __UpperCamelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer,A_ ) else self.tokenizer.pad_token_id ) __UpperCamelCase = trim_batch(A_,A_ ) __UpperCamelCase, __UpperCamelCase = trim_batch(A_,A_,attention_mask=A_ ) __UpperCamelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch __snake_case = getLogger(__name__) def _A ( _lowercase ) -> Any: """simple docstring""" return list(itertools.chain.from_iterable(_lowercase ) ) def _A ( _lowercase ) -> None: """simple docstring""" __UpperCamelCase = get_git_info() save_json(_lowercase , os.path.join(_lowercase , 'git_log.json' ) ) def _A ( _lowercase , _lowercase , _lowercase=4 , **_lowercase ) -> List[Any]: """simple docstring""" with open(_lowercase , 'w' ) as f: json.dump(_lowercase , _lowercase , indent=_lowercase , **_lowercase ) def _A ( _lowercase ) -> Union[str, Any]: """simple docstring""" with open(_lowercase ) as f: return json.load(_lowercase ) def _A ( ) -> Dict: """simple docstring""" __UpperCamelCase = git.Repo(search_parent_directories=_lowercase ) __UpperCamelCase = { 'repo_id': str(_lowercase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def _A ( _lowercase , _lowercase ) -> List: """simple docstring""" return list(map(_lowercase , _lowercase ) ) def _A ( _lowercase , _lowercase ) -> Tuple: """simple docstring""" with open(_lowercase , 'wb' ) as f: return pickle.dump(_lowercase , _lowercase ) def _A ( _lowercase ) -> List[Any]: """simple docstring""" def remove_articles(_lowercase ): return re.sub(r'\b(a|an|the)\b' , ' ' , _lowercase ) def white_space_fix(_lowercase ): return " ".join(text.split() ) def remove_punc(_lowercase ): __UpperCamelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowercase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowercase ) ) ) ) def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" __UpperCamelCase = normalize_answer(_lowercase ).split() __UpperCamelCase = normalize_answer(_lowercase ).split() __UpperCamelCase = Counter(_lowercase ) & Counter(_lowercase ) __UpperCamelCase = sum(common.values() ) if num_same == 0: return 0 __UpperCamelCase = 1.0 * num_same / len(_lowercase ) __UpperCamelCase = 1.0 * num_same / len(_lowercase ) __UpperCamelCase = (2 * precision * recall) / (precision + recall) return fa def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" return normalize_answer(_lowercase ) == normalize_answer(_lowercase ) def _A ( _lowercase , _lowercase ) -> Dict: """simple docstring""" assert len(_lowercase ) == len(_lowercase ) __UpperCamelCase = 0 for hypo, pred in zip(_lowercase , _lowercase ): em += exact_match_score(_lowercase , _lowercase ) if len(_lowercase ) > 0: em /= len(_lowercase ) return {"em": em} def _A ( _lowercase ) -> Optional[Any]: """simple docstring""" return model_prefix.startswith('rag' ) def _A ( _lowercase , _lowercase , _lowercase ) -> Dict: """simple docstring""" __UpperCamelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __UpperCamelCase = 'dropout_rate' for p in extra_params: if getattr(_lowercase , _lowercase , _lowercase ): if not hasattr(_lowercase , _lowercase ) and not hasattr(_lowercase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_lowercase ) ) delattr(_lowercase , _lowercase ) continue __UpperCamelCase = p if hasattr(_lowercase , _lowercase ) else equivalent_param[p] setattr(_lowercase , _lowercase , getattr(_lowercase , _lowercase ) ) delattr(_lowercase , _lowercase ) return hparams, config
310
0
'''simple docstring''' import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class SCREAMING_SNAKE_CASE( A__ , A__ , A__ ): """simple docstring""" @register_to_config def __init__( self : str , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : float , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : str , __snake_case : bool = False , ) -> int: super().__init__() UpperCAmelCase : Any = nn.Embedding(__snake_case , __snake_case ) UpperCAmelCase : Tuple = nn.Embedding(__snake_case , __snake_case ) UpperCAmelCase : List[Any] = False UpperCAmelCase : Dict = nn.Dropout(p=__snake_case ) UpperCAmelCase : str = TaConfig( vocab_size=__snake_case , d_model=__snake_case , num_heads=__snake_case , d_kv=__snake_case , d_ff=__snake_case , dropout_rate=__snake_case , feed_forward_proj=__snake_case , is_decoder=__snake_case , is_encoder_decoder=__snake_case , ) UpperCAmelCase : List[str] = nn.ModuleList() for lyr_num in range(__snake_case ): UpperCAmelCase : int = TaBlock(__snake_case ) self.encoders.append(__snake_case ) UpperCAmelCase : Dict = TaLayerNorm(__snake_case ) UpperCAmelCase : Dict = nn.Dropout(p=__snake_case ) def A ( self : Union[str, Any] , __snake_case : List[Any] , __snake_case : str ) -> Dict: UpperCAmelCase : Dict = self.token_embedder(__snake_case ) UpperCAmelCase : Tuple = encoder_input_tokens.shape[1] UpperCAmelCase : Union[str, Any] = torch.arange(__snake_case , device=encoder_input_tokens.device ) x += self.position_encoding(__snake_case ) UpperCAmelCase : int = self.dropout_pre(__snake_case ) # inverted the attention mask UpperCAmelCase : List[str] = encoder_input_tokens.size() UpperCAmelCase : str = self.get_extended_attention_mask(__snake_case , __snake_case ) for lyr in self.encoders: UpperCAmelCase : Dict = lyr(__snake_case , __snake_case )[0] UpperCAmelCase : Optional[int] = self.layer_norm(__snake_case ) return self.dropout_post(__snake_case ), encoder_inputs_mask
23
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __snake_case = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
310
0
from manim import * class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def a (self : List[str] ): """simple docstring""" __snake_case = Rectangle(height=0.5 , width=0.5 ) __snake_case = Rectangle(height=0.2_5 , width=0.2_5 ) __snake_case = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) __snake_case = [mem.copy() for i in range(6 )] __snake_case = [mem.copy() for i in range(6 )] __snake_case = VGroup(*a__ ).arrange(a__ , buff=0 ) __snake_case = VGroup(*a__ ).arrange(a__ , buff=0 ) __snake_case = VGroup(a__ , a__ ).arrange(a__ , buff=0 ) __snake_case = Text('''CPU''' , font_size=24 ) __snake_case = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(a__ ) __snake_case = [mem.copy() for i in range(4 )] __snake_case = VGroup(*a__ ).arrange(a__ , buff=0 ) __snake_case = Text('''GPU''' , font_size=24 ) __snake_case = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) gpu.move_to([-1, -1, 0] ) self.add(a__ ) __snake_case = [mem.copy() for i in range(6 )] __snake_case = VGroup(*a__ ).arrange(a__ , buff=0 ) __snake_case = Text('''Model''' , font_size=24 ) __snake_case = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) model.move_to([3, -1.0, 0] ) self.add(a__ ) __snake_case = [] __snake_case = [] __snake_case = [] for i, rect in enumerate(a__ ): rect.set_stroke(a__ ) __snake_case = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(a__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=a__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=a__ , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=a__ , buff=0.0 ) self.add(a__ ) model_cpu_arr.append(a__ ) self.add(*a__ , *a__ , *a__ ) __snake_case = [mem.copy() for i in range(6 )] __snake_case = VGroup(*a__ ).arrange(a__ , buff=0 ) __snake_case = Text('''Loaded Checkpoint''' , font_size=24 ) __snake_case = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) checkpoint.move_to([3, 0.5, 0] ) self.add(a__ ) __snake_case = [] __snake_case = [] for i, rect in enumerate(a__ ): __snake_case = fill.copy().set_fill(a__ , opacity=0.7 ) target.move_to(a__ ) ckpt_arr.append(a__ ) __snake_case = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(a__ ) self.add(*a__ , *a__ ) __snake_case = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __snake_case = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(a__ , a__ ) __snake_case = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(a__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(a__ ) __snake_case = MarkupText( f"""Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) __snake_case = [meta_mem.copy() for i in range(6 )] __snake_case = [meta_mem.copy() for i in range(6 )] __snake_case = VGroup(*a__ ).arrange(a__ , buff=0 ) __snake_case = VGroup(*a__ ).arrange(a__ , buff=0 ) __snake_case = VGroup(a__ , a__ ).arrange(a__ , buff=0 ) __snake_case = Text('''Disk''' , font_size=24 ) __snake_case = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) disk.move_to([-4.0, -1.2_5, 0] ) self.play(Write(a__ , run_time=3 ) , Write(a__ , run_time=1 ) , Create(a__ , run_time=1 ) ) __snake_case = [] for i, rect in enumerate(a__ ): __snake_case = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(a__ , run_time=1.5 ) ) self.play(*a__ ) self.play(FadeOut(a__ ) ) __snake_case = MarkupText(f"""Then, the checkpoint is removed from memory\nthrough garbage collection.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(a__ , run_time=3 ) ) self.play( FadeOut(a__ , a__ , *a__ , *a__ ) , ) self.wait()
24
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup __snake_case = '''https://www.indeed.co.in/jobs?q=mobile+app+development&l=''' def _A ( _lowercase = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" __UpperCamelCase = BeautifulSoup(requests.get(url + location ).content , 'html.parser' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('div' , attrs={'data-tn-component': 'organicJob'} ): __UpperCamelCase = job.find('a' , attrs={'data-tn-element': 'jobTitle'} ).text.strip() __UpperCamelCase = job.find('span' , {'class': 'company'} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('''Bangalore'''), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
310
0
"""simple docstring""" import requests UpperCAmelCase__ : Optional[Any] = 'YOUR API KEY' def lowercase_ ( _snake_case ,_snake_case = giphy_api_key ): SCREAMING_SNAKE_CASE__ : Tuple = """+""".join(query.split() ) SCREAMING_SNAKE_CASE__ : Optional[int] = f'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}''' SCREAMING_SNAKE_CASE__ : List[Any] = requests.get(_snake_case ).json()["""data"""] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
25
def _A ( _lowercase ) -> list: """simple docstring""" def merge(_lowercase , _lowercase ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(_lowercase ) <= 1: return collection __UpperCamelCase = len(_lowercase ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() __snake_case = input('''Enter numbers separated by a comma:\n''').strip() __snake_case = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
310
0
from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge _snake_case = [ "Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of the" " final seconds on board Flight 9525. The Germanwings co-pilot says he had a \"previous episode of severe" " depression\" German airline confirms it knew of Andreas Lubitz's depression years before he took control.", "The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal" " accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC's" " founding Rome Statute in January. Israel and the United States opposed the Palestinians' efforts to join the" " body.", "Amnesty International releases its annual report on the death penalty. The report catalogs the use of" " state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the" " world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital" " punishment.", ] _snake_case = [ "Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports ." " Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz" " had informed his Lufthansa training school of an episode of severe depression, airline says .", "Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June ." " Israel and the United States opposed the move, which could open the door to war crimes investigations against" " Israelis .", "Amnesty's annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to" " death . Organization claims that governments around the world are using the threat of terrorism to advance" " executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death" " sentences up by 28% .", ] def lowerCAmelCase_ ( ): _A : int = calculate_rouge(snake_case_,snake_case_,bootstrap_aggregation=snake_case_,rouge_keys=["""rouge2""", """rougeL"""] ) assert isinstance(snake_case_,snake_case_ ) _A : List[str] = calculate_rouge(snake_case_,snake_case_,bootstrap_aggregation=snake_case_,rouge_keys=["""rouge2"""] ) assert ( pd.DataFrame(no_aggregation["""rouge2"""] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra["""rouge2"""] ).fmeasure.mean() ) def lowerCAmelCase_ ( ): _A : Any = """rougeLsum""" _A : List[str] = calculate_rouge(snake_case_,snake_case_,newline_sep=snake_case_,rouge_keys=[k] )[k] _A : List[Any] = calculate_rouge(snake_case_,snake_case_,newline_sep=snake_case_,rouge_keys=[k] )[k] assert score > score_no_sep def lowerCAmelCase_ ( ): _A : Dict = ["""rouge1""", """rouge2""", """rougeL"""] _A : Dict = calculate_rouge(snake_case_,snake_case_,newline_sep=snake_case_,rouge_keys=snake_case_ ) _A : List[Any] = calculate_rouge(snake_case_,snake_case_,newline_sep=snake_case_,rouge_keys=snake_case_ ) assert score_sep == score_no_sep def lowerCAmelCase_ ( ): _A : Union[str, Any] = [ """Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.""", """Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .""", ] _A : int = [ """Margot Frank, died in 1945, a month earlier than previously thought.""", """Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of""" """ the final seconds on board Flight 9525.""", ] assert calculate_rouge(snake_case_,snake_case_,newline_sep=snake_case_ ) == calculate_rouge(snake_case_,snake_case_,newline_sep=snake_case_ ) def lowerCAmelCase_ ( ): _A : int = [ """\" \"a person who has such a video needs to immediately give it to the investigators,\" prosecutor says .<n> \"it is a very disturbing scene,\" editor-in-chief of bild online tells \"erin burnett: outfront\" """ ] _A : Any = [ """ Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports . Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .""" ] _A : Dict = calculate_rouge(snake_case_,snake_case_,rouge_keys=["""rougeLsum"""],newline_sep=snake_case_ )["""rougeLsum"""] _A : List[str] = calculate_rouge(snake_case_,snake_case_,rouge_keys=["""rougeLsum"""] )["""rougeLsum"""] assert new_score > prev_score def lowerCAmelCase_ ( ): _A : int = Path("""examples/seq2seq/test_data/wmt_en_ro""" ) _A : Optional[Any] = calculate_rouge_path(data_dir.joinpath("""test.source""" ),data_dir.joinpath("""test.target""" ) ) assert isinstance(snake_case_,snake_case_ ) _A : Dict = calculate_rouge_path( data_dir.joinpath("""test.source""" ),data_dir.joinpath("""test.target""" ),bootstrap_aggregation=snake_case_ ) assert isinstance(snake_case_,snake_case_ )
26
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowerCamelCase (_a ): _lowercase = 0 _lowercase = False _lowercase = 3.0 class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: Any ): '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs(),{} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs(),{'a': 2} ) self.assertDictEqual(MockClass(a=2,b=A_ ).to_kwargs(),{'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2,c=2.2_5 ).to_kwargs(),{'a': 2, 'c': 2.2_5} ) @require_cuda def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = GradScalerKwargs(init_scale=1024,growth_factor=2 ) AcceleratorState._reset_state() __UpperCamelCase = Accelerator(mixed_precision='fp16',kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __UpperCamelCase = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale,1_0_2_4.0 ) self.assertEqual(scaler._growth_factor,2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor,0.5 ) self.assertEqual(scaler._growth_interval,2000 ) self.assertEqual(scaler._enabled,A_ ) @require_multi_gpu def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(A_,env=os.environ.copy() ) if __name__ == "__main__": __snake_case = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) __snake_case = Accelerator(kwargs_handlers=[ddp_scaler]) __snake_case = torch.nn.Linear(1_0_0, 2_0_0) __snake_case = accelerator.prepare(model) # Check the values changed in kwargs __snake_case = '''''' __snake_case = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
310
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowercase : Union[str, Any] = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Tuple = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __lowercase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
27
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class __lowerCamelCase (_a ): _lowercase = ["""image_processor""", """tokenizer"""] _lowercase = """OwlViTImageProcessor""" _lowercase = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self: int,A_: Tuple=None,A_: int=None,**A_: int ): '''simple docstring''' __UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.',A_,) __UpperCamelCase = kwargs.pop('feature_extractor' ) __UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(A_,A_ ) def __call__( self: str,A_: Dict=None,A_: Optional[int]=None,A_: Any=None,A_: Tuple="max_length",A_: int="np",**A_: Optional[Any] ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(A_,A_ ) or (isinstance(A_,A_ ) and not isinstance(text[0],A_ )): __UpperCamelCase = [self.tokenizer(A_,padding=A_,return_tensors=A_,**A_ )] elif isinstance(A_,A_ ) and isinstance(text[0],A_ ): __UpperCamelCase = [] # Maximum number of queries across batch __UpperCamelCase = max([len(A_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(A_ ) != max_num_queries: __UpperCamelCase = t + [' '] * (max_num_queries - len(A_ )) __UpperCamelCase = self.tokenizer(A_,padding=A_,return_tensors=A_,**A_ ) encodings.append(A_ ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": __UpperCamelCase = np.concatenate([encoding['input_ids'] for encoding in encodings],axis=0 ) __UpperCamelCase = np.concatenate([encoding['attention_mask'] for encoding in encodings],axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __UpperCamelCase = jnp.concatenate([encoding['input_ids'] for encoding in encodings],axis=0 ) __UpperCamelCase = jnp.concatenate([encoding['attention_mask'] for encoding in encodings],axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __UpperCamelCase = torch.cat([encoding['input_ids'] for encoding in encodings],dim=0 ) __UpperCamelCase = torch.cat([encoding['attention_mask'] for encoding in encodings],dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __UpperCamelCase = tf.stack([encoding['input_ids'] for encoding in encodings],axis=0 ) __UpperCamelCase = tf.stack([encoding['attention_mask'] for encoding in encodings],axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) __UpperCamelCase = BatchEncoding() __UpperCamelCase = input_ids __UpperCamelCase = attention_mask if query_images is not None: __UpperCamelCase = BatchEncoding() __UpperCamelCase = self.image_processor( A_,return_tensors=A_,**A_ ).pixel_values __UpperCamelCase = query_pixel_values if images is not None: __UpperCamelCase = self.image_processor(A_,return_tensors=A_,**A_ ) if text is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**A_ ),tensor_type=A_ ) def snake_case_ ( self: Optional[int],*A_: int,**A_: List[Any] ): '''simple docstring''' return self.image_processor.post_process(*A_,**A_ ) def snake_case_ ( self: str,*A_: Optional[int],**A_: List[Any] ): '''simple docstring''' return self.image_processor.post_process_object_detection(*A_,**A_ ) def snake_case_ ( self: str,*A_: Tuple,**A_: int ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*A_,**A_ ) def snake_case_ ( self: List[str],*A_: str,**A_: List[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*A_,**A_ ) def snake_case_ ( self: int,*A_: Any,**A_: Tuple ): '''simple docstring''' return self.tokenizer.decode(*A_,**A_ ) @property def snake_case_ ( self: Optional[Any] ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.',A_,) return self.image_processor_class @property def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.',A_,) return self.image_processor
310
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: _lowerCamelCase : Tuple = None _lowerCamelCase : int = logging.get_logger(__name__) _lowerCamelCase : Any = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} _lowerCamelCase : Union[str, Any] = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } _lowerCamelCase : str = { "facebook/mbart-large-en-ro": 1024, "facebook/mbart-large-cc25": 1024, } # fmt: off _lowerCamelCase : List[str] = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" _SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE = ["""input_ids""", """attention_mask"""] _SCREAMING_SNAKE_CASE = MBartTokenizer _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] def __init__( self : Optional[int] , UpperCamelCase__ : int=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : int="<s>" , UpperCamelCase__ : str="</s>" , UpperCamelCase__ : Optional[int]="</s>" , UpperCamelCase__ : Tuple="<s>" , UpperCamelCase__ : Optional[Any]="<unk>" , UpperCamelCase__ : Dict="<pad>" , UpperCamelCase__ : Optional[Any]="<mask>" , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Any=None , **UpperCamelCase__ : Union[str, Any] , ): """simple docstring""" UpperCamelCase = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token super().__init__( vocab_file=UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , src_lang=UpperCamelCase__ , tgt_lang=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , **UpperCamelCase__ , ) UpperCamelCase = vocab_file UpperCamelCase = False if not self.vocab_file else True UpperCamelCase = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) UpperCamelCase = { lang_code: self.convert_tokens_to_ids(UpperCamelCase__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } UpperCamelCase = src_lang if src_lang is not None else 'en_XX' UpperCamelCase = self.convert_tokens_to_ids(self._src_lang ) UpperCamelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def A ( self : str ): """simple docstring""" return self._src_lang @src_lang.setter def A ( self : Optional[Any] , UpperCamelCase__ : str ): """simple docstring""" UpperCamelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def A ( self : Dict , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A ( self : List[Any] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A ( self : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] , UpperCamelCase__ : Optional[str] , **UpperCamelCase__ : int ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) UpperCamelCase = src_lang UpperCamelCase = self(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) UpperCamelCase = self.convert_tokens_to_ids(UpperCamelCase__ ) UpperCamelCase = tgt_lang_id return inputs def A ( self : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : str = "en_XX" , UpperCamelCase__ : Optional[List[str]] = None , UpperCamelCase__ : str = "ro_RO" , **UpperCamelCase__ : int , ): """simple docstring""" UpperCamelCase = src_lang UpperCamelCase = tgt_lang return super().prepare_seqaseq_batch(UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) def A ( self : int ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def A ( self : Union[str, Any] ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def A ( self : Tuple , UpperCamelCase__ : Any ): """simple docstring""" UpperCamelCase = self.convert_tokens_to_ids(UpperCamelCase__ ) UpperCamelCase = [] UpperCamelCase = [self.eos_token_id, self.cur_lang_code] UpperCamelCase = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A ( self : List[str] , UpperCamelCase__ : str ): """simple docstring""" UpperCamelCase = self.convert_tokens_to_ids(UpperCamelCase__ ) UpperCamelCase = [] UpperCamelCase = [self.eos_token_id, self.cur_lang_code] UpperCamelCase = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A ( self : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(UpperCamelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return UpperCamelCase = os.path.join( UpperCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ): copyfile(self.vocab_file , UpperCamelCase__ ) return (out_vocab_file,)
28
import math def _A ( _lowercase ) -> int: """simple docstring""" if not isinstance(_lowercase , _lowercase ): __UpperCamelCase = f'''Input value of [number={number}] must be an integer''' raise TypeError(_lowercase ) if number < 1: __UpperCamelCase = f'''Input value of [number={number}] must be > 0''' raise ValueError(_lowercase ) elif number == 1: return 3 elif number == 2: return 5 else: __UpperCamelCase = int(math.log(number // 3 , 2 ) ) + 2 __UpperCamelCase = [3, 5] __UpperCamelCase = 2 __UpperCamelCase = 3 for block in range(1 , _lowercase ): for _ in range(_lowercase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(1_1): __snake_case = 0 try: __snake_case = proth(number) except ValueError: print(f"""ValueError: there is no {number}th Proth number""") continue print(f"""The {number}th Proth number: {value}""")
310
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'} class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Optional[int] = '''ctrl''' _snake_case : Tuple = ['''past_key_values'''] _snake_case : Tuple = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _UpperCamelCase=2_4_6_5_3_4 , _UpperCamelCase=2_5_6 , _UpperCamelCase=1_2_8_0 , _UpperCamelCase=8_1_9_2 , _UpperCamelCase=4_8 , _UpperCamelCase=1_6 , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=1E-6 , _UpperCamelCase=0.02 , _UpperCamelCase=True , **_UpperCamelCase , ) -> Union[str, Any]: UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : Dict = n_positions UpperCAmelCase_ : List[str] = n_embd UpperCAmelCase_ : Optional[Any] = n_layer UpperCAmelCase_ : List[Any] = n_head UpperCAmelCase_ : Any = dff UpperCAmelCase_ : Union[str, Any] = resid_pdrop UpperCAmelCase_ : Any = embd_pdrop UpperCAmelCase_ : int = layer_norm_epsilon UpperCAmelCase_ : List[Any] = initializer_range UpperCAmelCase_ : Any = use_cache super().__init__(**_UpperCamelCase )
29
import torch from transformers import AutoModel class __lowerCamelCase (torch.nn.Module ): def __init__( self: Union[str, Any],A_: Tuple="sayef/fsner-bert-base-uncased" ): '''simple docstring''' super(A_,self ).__init__() __UpperCamelCase = AutoModel.from_pretrained(A_,return_dict=A_ ) __UpperCamelCase = torch.nn.CosineSimilarity(3,1E-08 ) __UpperCamelCase = torch.nn.Softmax(dim=1 ) def snake_case_ ( self: Tuple,**A_: Union[str, Any] ): '''simple docstring''' return self.bert(**A_ ).last_hidden_state def snake_case_ ( self: Union[str, Any],A_: Union[str, Any] ): '''simple docstring''' return token_embeddings.sum(2,keepdim=A_ ) def snake_case_ ( self: List[str],A_: Dict,A_: Union[str, Any],A_: Union[str, Any]=1 ): '''simple docstring''' return self.softmax(T * self.cos(A_,A_ ) ) def snake_case_ ( self: Optional[int],A_: Union[str, Any],A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = W_supports['sizes'].tolist() __UpperCamelCase = W_supports['start_token_id'].item() __UpperCamelCase = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] __UpperCamelCase = self.BERT(**A_ ) __UpperCamelCase = self.BERT(**A_ ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = W_supports['input_ids'] == start_token_id __UpperCamelCase = W_supports['input_ids'] == end_token_id for i, size in enumerate(A_ ): if i == 0: __UpperCamelCase = 0 else: __UpperCamelCase = support_sizes[i - 1] __UpperCamelCase = S[s : s + size][start_token_masks[s : s + size]] __UpperCamelCase = S[s : s + size][end_token_masks[s : s + size]] __UpperCamelCase = torch.matmul(q[i],s_start.T ).sum(1 ).softmax(0 ) __UpperCamelCase = torch.matmul(q[i],s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: __UpperCamelCase = torch.vstack((p_starts, p_start) ) __UpperCamelCase = torch.vstack((p_ends, p_end) ) else: __UpperCamelCase = p_start __UpperCamelCase = p_end return p_starts, p_ends
310
0
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel __a = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class lowercase__( unittest.TestCase ): """simple docstring""" @classmethod def _lowercase ( cls : Any ) -> Optional[Any]: lowercase_ = TOKEN HfFolder.save_token(SCREAMING_SNAKE_CASE_ ) @classmethod def _lowercase ( cls : int ) -> str: try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def _lowercase ( self : List[Any] ) -> str: lowercase_ = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) lowercase_ = FlaxBertModel(SCREAMING_SNAKE_CASE_ ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) lowercase_ = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) lowercase_ = flatten_dict(unfreeze(model.params ) ) lowercase_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowercase_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(SCREAMING_SNAKE_CASE_ , 1e-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(SCREAMING_SNAKE_CASE_ , repo_id='''test-model-flax''' , push_to_hub=SCREAMING_SNAKE_CASE_ , use_auth_token=self._token ) lowercase_ = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) lowercase_ = flatten_dict(unfreeze(model.params ) ) lowercase_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowercase_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(SCREAMING_SNAKE_CASE_ , 1e-3 , msg=f'''{key} not identical''' ) def _lowercase ( self : Union[str, Any] ) -> List[Any]: lowercase_ = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) lowercase_ = FlaxBertModel(SCREAMING_SNAKE_CASE_ ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) lowercase_ = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) lowercase_ = flatten_dict(unfreeze(model.params ) ) lowercase_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowercase_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(SCREAMING_SNAKE_CASE_ , 1e-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( SCREAMING_SNAKE_CASE_ , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=SCREAMING_SNAKE_CASE_ , use_auth_token=self._token ) lowercase_ = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) lowercase_ = flatten_dict(unfreeze(model.params ) ) lowercase_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowercase_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(SCREAMING_SNAKE_CASE_ , 1e-3 , msg=f'''{key} not identical''' ) def a ( snake_case__: Any , snake_case__: List[str] ): '''simple docstring''' lowercase_ = True lowercase_ = flatten_dict(modela.params ) lowercase_ = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: lowercase_ = False return models_are_equal @require_flax class lowercase__( unittest.TestCase ): """simple docstring""" def _lowercase ( self : int ) -> Union[str, Any]: lowercase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) lowercase_ = FlaxBertModel(SCREAMING_SNAKE_CASE_ ) lowercase_ = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): lowercase_ = FlaxBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowercase_ = FlaxBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ , subfolder=SCREAMING_SNAKE_CASE_ ) self.assertTrue(check_models_equal(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def _lowercase ( self : List[str] ) -> Union[str, Any]: lowercase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) lowercase_ = FlaxBertModel(SCREAMING_SNAKE_CASE_ ) lowercase_ = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , max_shard_size='''10KB''' ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): lowercase_ = FlaxBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowercase_ = FlaxBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ , subfolder=SCREAMING_SNAKE_CASE_ ) self.assertTrue(check_models_equal(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def _lowercase ( self : Tuple ) -> List[str]: lowercase_ = '''bert''' lowercase_ = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(SCREAMING_SNAKE_CASE_ ): lowercase_ = FlaxBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowercase_ = FlaxBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ , subfolder=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Any ) -> str: lowercase_ = '''bert''' lowercase_ = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(SCREAMING_SNAKE_CASE_ ): lowercase_ = FlaxBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowercase_ = FlaxBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ , subfolder=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
30
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = BioGptTokenizer _lowercase = False def snake_case_ ( self: Any ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCamelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] __UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) ) __UpperCamelCase = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file,'w' ) as fp: fp.write(json.dumps(A_ ) ) with open(self.merges_file,'w' ) as fp: fp.write('\n'.join(A_ ) ) def snake_case_ ( self: Optional[int],A_: List[Any] ): '''simple docstring''' __UpperCamelCase = 'lower newer' __UpperCamelCase = 'lower newer' return input_text, output_text def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = BioGptTokenizer(self.vocab_file,self.merges_file ) __UpperCamelCase = 'lower' __UpperCamelCase = ['low', 'er</w>'] __UpperCamelCase = tokenizer.tokenize(A_ ) self.assertListEqual(A_,A_ ) __UpperCamelCase = tokens + ['<unk>'] __UpperCamelCase = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ),A_ ) @slow def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) __UpperCamelCase = tokenizer.encode('sequence builders',add_special_tokens=A_ ) __UpperCamelCase = tokenizer.encode('multi-sequence build',add_special_tokens=A_ ) __UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_ ) __UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_,A_ ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
310
0
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __SCREAMING_SNAKE_CASE : Any = imread(R"""digital_image_processing/image_data/lena_small.jpg""") __SCREAMING_SNAKE_CASE : Tuple = cvtColor(img, COLOR_BGR2GRAY) def UpperCamelCase_ ( ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = cn.convert_to_negative(_UpperCAmelCase ) # assert negative_img array for at least one True assert negative_img.any() def UpperCamelCase_ ( ) -> Optional[Any]: """simple docstring""" with Image.open("digital_image_processing/image_data/lena_small.jpg" ) as img: # Work around assertion for response assert str(cc.change_contrast(_UpperCAmelCase , 110 ) ).startswith( "<PIL.Image.Image image mode=RGB size=100x100 at" ) def UpperCamelCase_ ( ) -> Tuple: """simple docstring""" _UpperCAmelCase : int = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def UpperCamelCase_ ( ) -> Tuple: """simple docstring""" _UpperCAmelCase : str = imread("digital_image_processing/image_data/lena_small.jpg" , 0 ) # assert ambiguous array for all == True assert canny_img.all() _UpperCAmelCase : str = canny.canny(_UpperCAmelCase ) # assert canny array for at least one True assert canny_array.any() def UpperCamelCase_ ( ) -> Optional[Any]: """simple docstring""" assert gg.gaussian_filter(_UpperCAmelCase , 5 , sigma=0.9 ).all() def UpperCamelCase_ ( ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[str] = array([[0.2_5, 0.5, 0.2_5], [0.5, -3, 0.5], [0.2_5, 0.5, 0.2_5]] ) _UpperCAmelCase : List[str] = conv.img_convolve(_UpperCAmelCase , _UpperCAmelCase ).astype(_UpperCAmelCase ) assert res.any() def UpperCamelCase_ ( ) -> Optional[Any]: """simple docstring""" assert med.median_filter(_UpperCAmelCase , 3 ).any() def UpperCamelCase_ ( ) -> List[str]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase : Any = sob.sobel_filter(_UpperCAmelCase ) assert grad.any() and theta.any() def UpperCamelCase_ ( ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Optional[Any] = sp.make_sepia(_UpperCAmelCase , 20 ) assert sepia.all() def UpperCamelCase_ ( _UpperCAmelCase : str = "digital_image_processing/image_data/lena_small.jpg" ) -> Tuple: """simple docstring""" _UpperCAmelCase : Tuple = bs.Burkes(imread(_UpperCAmelCase , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def UpperCamelCase_ ( _UpperCAmelCase : str = "digital_image_processing/image_data/lena_small.jpg" , ) -> List[str]: """simple docstring""" _UpperCAmelCase : Tuple = rs.NearestNeighbour(imread(_UpperCAmelCase , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def UpperCamelCase_ ( ) -> Tuple: """simple docstring""" _UpperCAmelCase : str = "digital_image_processing/image_data/lena.jpg" # Reading the image and converting it to grayscale. _UpperCAmelCase : Tuple = imread(_UpperCAmelCase , 0 ) # Test for get_neighbors_pixel function() return not None _UpperCAmelCase : Any = 0 _UpperCAmelCase : str = 0 _UpperCAmelCase : Tuple = image[x_coordinate][y_coordinate] _UpperCAmelCase : Dict = lbp.get_neighbors_pixel( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image _UpperCAmelCase : Dict = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): _UpperCAmelCase : List[str] = lbp.local_binary_value(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) assert lbp_image.any()
31
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __snake_case = r''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(_a ) class __lowerCamelCase (_a ): _lowercase = """rag""" _lowercase = True def __init__( self: Tuple,A_: Any=None,A_: Any=True,A_: List[Any]=None,A_: Optional[int]=None,A_: List[Any]=None,A_: str=None,A_: Union[str, Any]=None,A_: List[Any]=" / ",A_: Union[str, Any]=" // ",A_: List[Any]=5,A_: Optional[int]=300,A_: Tuple=768,A_: Tuple=8,A_: Optional[Any]="wiki_dpr",A_: int="train",A_: Union[str, Any]="compressed",A_: Optional[int]=None,A_: List[Any]=None,A_: List[str]=False,A_: List[str]=False,A_: str=0.0,A_: List[Any]=True,A_: Tuple=False,A_: int=False,A_: Dict=False,A_: Tuple=True,A_: int=None,**A_: Optional[int],): '''simple docstring''' super().__init__( bos_token_id=A_,pad_token_id=A_,eos_token_id=A_,decoder_start_token_id=A_,forced_eos_token_id=A_,is_encoder_decoder=A_,prefix=A_,vocab_size=A_,**A_,) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" __UpperCamelCase = kwargs.pop('question_encoder' ) __UpperCamelCase = question_encoder_config.pop('model_type' ) __UpperCamelCase = kwargs.pop('generator' ) __UpperCamelCase = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig __UpperCamelCase = AutoConfig.for_model(A_,**A_ ) __UpperCamelCase = AutoConfig.for_model(A_,**A_ ) __UpperCamelCase = reduce_loss __UpperCamelCase = label_smoothing __UpperCamelCase = exclude_bos_score __UpperCamelCase = do_marginalize __UpperCamelCase = title_sep __UpperCamelCase = doc_sep __UpperCamelCase = n_docs __UpperCamelCase = max_combined_length __UpperCamelCase = dataset __UpperCamelCase = dataset_split __UpperCamelCase = index_name __UpperCamelCase = retrieval_vector_size __UpperCamelCase = retrieval_batch_size __UpperCamelCase = passages_path __UpperCamelCase = index_path __UpperCamelCase = use_dummy_dataset __UpperCamelCase = output_retrieved __UpperCamelCase = do_deduplication __UpperCamelCase = use_cache if self.forced_eos_token_id is None: __UpperCamelCase = getattr(self.generator,'forced_eos_token_id',A_ ) @classmethod def snake_case_ ( cls: Any,A_: PretrainedConfig,A_: PretrainedConfig,**A_: int ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict(),generator=generator_config.to_dict(),**A_ ) def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = copy.deepcopy(self.__dict__ ) __UpperCamelCase = self.question_encoder.to_dict() __UpperCamelCase = self.generator.to_dict() __UpperCamelCase = self.__class__.model_type return output
310
0
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class SCREAMING_SNAKE_CASE__ : snake_case__ : int snake_case__ : Node | None = None snake_case__ : Node | None = None def SCREAMING_SNAKE_CASE_ ( ) -> Node | None: """simple docstring""" a_ : Dict = Node(1 ) a_ : Any = Node(2 ) a_ : List[Any] = Node(3 ) a_ : Tuple = Node(4 ) a_ : int = Node(5 ) return tree def SCREAMING_SNAKE_CASE_ ( __A : Node | None ) -> list[int]: """simple docstring""" return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def SCREAMING_SNAKE_CASE_ ( __A : Node | None ) -> list[int]: """simple docstring""" return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def SCREAMING_SNAKE_CASE_ ( __A : Node | None ) -> list[int]: """simple docstring""" return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def SCREAMING_SNAKE_CASE_ ( __A : Node | None ) -> int: """simple docstring""" return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def SCREAMING_SNAKE_CASE_ ( __A : Node | None ) -> Sequence[Node | None]: """simple docstring""" a_ : list[Any] = [] if root is None: return output a_ : Optional[int] = deque([root] ) while process_queue: a_ : str = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def SCREAMING_SNAKE_CASE_ ( __A : Node | None , __A : int ) -> Sequence[Node | None]: """simple docstring""" a_ : list[Any] = [] def populate_output(__A : Node | None , __A : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(__A , __A ) return output def SCREAMING_SNAKE_CASE_ ( __A : Node | None , __A : int ) -> Sequence[Node | None]: """simple docstring""" a_ : list[Any] = [] def populate_output(__A : Node | None , __A : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(__A , __A ) return output def SCREAMING_SNAKE_CASE_ ( __A : Node | None ) -> Sequence[Node | None] | list[Any]: """simple docstring""" if root is None: return [] a_ : list[Sequence[Node | None]] = [] a_ : List[str] = 0 a_ : Any = height(__A ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(__A , __A ) ) a_ : List[Any] = 1 else: output.append(get_nodes_from_right_to_left(__A , __A ) ) a_ : Any = 0 return output def SCREAMING_SNAKE_CASE_ ( ) -> None: # Main function for testing. """simple docstring""" a_ : str = make_tree() print(F"""In-order Traversal: {inorder(__A )}""" ) print(F"""Pre-order Traversal: {preorder(__A )}""" ) print(F"""Post-order Traversal: {postorder(__A )}""" , '\n' ) print(F"""Height of Tree: {height(__A )}""" , '\n' ) print('Complete Level Order Traversal: ' ) print(level_order(__A ) , '\n' ) print('Level-wise order Traversal: ' ) for level in range(1 , height(__A ) + 1 ): print(F"""Level {level}:""" , get_nodes_from_left_to_right(__A , level=__A ) ) print('\nZigZag order Traversal: ' ) print(zigzag(__A ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
32
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class __lowerCamelCase (_a ): _lowercase = """M-CLIP""" def __init__( self: int,A_: Any=1024,A_: Union[str, Any]=768,**A_: str ): '''simple docstring''' __UpperCamelCase = transformerDimSize __UpperCamelCase = imageDimSize super().__init__(**A_ ) class __lowerCamelCase (_a ): _lowercase = MCLIPConfig def __init__( self: int,A_: Optional[Any],*A_: List[str],**A_: Union[str, Any] ): '''simple docstring''' super().__init__(A_,*A_,**A_ ) __UpperCamelCase = XLMRobertaModel(A_ ) __UpperCamelCase = torch.nn.Linear( in_features=config.transformerDimensions,out_features=config.numDims ) def snake_case_ ( self: Dict,A_: int,A_: Optional[int] ): '''simple docstring''' __UpperCamelCase = self.transformer(input_ids=A_,attention_mask=A_ )[0] __UpperCamelCase = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(A_ ), embs
310
0
"""simple docstring""" import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowercase ( __snake_case : Tuple , __snake_case : Dict ): lowercase_ : int = old_name if "patch_embed" in old_name: lowercase_ , lowercase_ , lowercase_ : Optional[int] = old_name.split('''.''' ) if layer == "0": lowercase_ : Optional[Any] = old_name.replace('''0''' , '''convolution1''' ) elif layer == "1": lowercase_ : str = old_name.replace('''1''' , '''batchnorm_before''' ) elif layer == "3": lowercase_ : List[Any] = old_name.replace('''3''' , '''convolution2''' ) else: lowercase_ : List[Any] = old_name.replace('''4''' , '''batchnorm_after''' ) if "network" in old_name and re.search(r'''\d\.\d''' , __snake_case ): lowercase_ : List[str] = r'''\b\d{2}\b''' if bool(re.search(__snake_case , __snake_case ) ): lowercase_ : Optional[Any] = re.search(r'''\d\.\d\d.''' , __snake_case ).group() else: lowercase_ : Dict = re.search(r'''\d\.\d.''' , __snake_case ).group() if int(match[0] ) < 6: lowercase_ : int = old_name.replace(__snake_case , '''''' ) lowercase_ : Union[str, Any] = trimmed_name.replace('''network''' , match[0] + '''.meta4D_layers.blocks.''' + match[2:-1] ) lowercase_ : Any = '''intermediate_stages.''' + trimmed_name else: lowercase_ : Optional[Any] = old_name.replace(__snake_case , '''''' ) if int(match[2] ) < num_meta4D_last_stage: lowercase_ : List[str] = trimmed_name.replace('''network''' , '''meta4D_layers.blocks.''' + match[2] ) else: lowercase_ : Tuple = str(int(match[2] ) - num_meta4D_last_stage ) lowercase_ : Union[str, Any] = trimmed_name.replace('''network''' , '''meta3D_layers.blocks.''' + layer_index ) if "norm1" in old_name: lowercase_ : Optional[int] = trimmed_name.replace('''norm1''' , '''layernorm1''' ) elif "norm2" in old_name: lowercase_ : List[Any] = trimmed_name.replace('''norm2''' , '''layernorm2''' ) elif "fc1" in old_name: lowercase_ : Union[str, Any] = trimmed_name.replace('''fc1''' , '''linear_in''' ) elif "fc2" in old_name: lowercase_ : str = trimmed_name.replace('''fc2''' , '''linear_out''' ) lowercase_ : str = '''last_stage.''' + trimmed_name elif "network" in old_name and re.search(r'''.\d.''' , __snake_case ): lowercase_ : Union[str, Any] = old_name.replace('''network''' , '''intermediate_stages''' ) if "fc" in new_name: lowercase_ : Tuple = new_name.replace('''fc''' , '''convolution''' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): lowercase_ : str = new_name.replace('''norm1''' , '''batchnorm_before''' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): lowercase_ : List[Any] = new_name.replace('''norm2''' , '''batchnorm_after''' ) if "proj" in new_name: lowercase_ : Union[str, Any] = new_name.replace('''proj''' , '''projection''' ) if "dist_head" in new_name: lowercase_ : List[str] = new_name.replace('''dist_head''' , '''distillation_classifier''' ) elif "head" in new_name: lowercase_ : List[Any] = new_name.replace('''head''' , '''classifier''' ) elif "patch_embed" in new_name: lowercase_ : int = '''efficientformer.''' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": lowercase_ : Dict = new_name.replace('''norm''' , '''layernorm''' ) lowercase_ : Any = '''efficientformer.''' + new_name else: lowercase_ : List[Any] = '''efficientformer.encoder.''' + new_name return new_name def lowercase ( __snake_case : int , __snake_case : List[Any] ): for key in checkpoint.copy().keys(): lowercase_ : int = checkpoint.pop(__snake_case ) lowercase_ : int = val return checkpoint def lowercase ( ): lowercase_ : Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase_ : List[Any] = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return image def lowercase ( __snake_case : Path , __snake_case : Path , __snake_case : Path , __snake_case : bool ): lowercase_ : Union[str, Any] = torch.load(__snake_case , map_location='''cpu''' )['''model'''] lowercase_ : str = EfficientFormerConfig.from_json_file(__snake_case ) lowercase_ : Tuple = EfficientFormerForImageClassificationWithTeacher(__snake_case ) lowercase_ : Dict = '''_'''.join(checkpoint_path.split('''/''' )[-1].split('''.''' )[0].split('''_''' )[:-1] ) lowercase_ : Optional[Any] = config.depths[-1] - config.num_metaad_blocks + 1 lowercase_ : Optional[int] = convert_torch_checkpoint(__snake_case , __snake_case ) model.load_state_dict(__snake_case ) model.eval() lowercase_ : Dict = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } # prepare image lowercase_ : str = prepare_img() lowercase_ : int = 2_5_6 lowercase_ : str = 2_2_4 lowercase_ : Tuple = EfficientFormerImageProcessor( size={'''shortest_edge''': image_size} , crop_size={'''height''': crop_size, '''width''': crop_size} , resample=pillow_resamplings['''bicubic'''] , ) lowercase_ : Union[str, Any] = processor(images=__snake_case , return_tensors='''pt''' ).pixel_values # original processing pipeline lowercase_ : int = Compose( [ Resize(__snake_case , interpolation=pillow_resamplings['''bicubic'''] ), CenterCrop(__snake_case ), ToTensor(), Normalize(__snake_case , __snake_case ), ] ) lowercase_ : Dict = image_transforms(__snake_case ).unsqueeze(0 ) assert torch.allclose(__snake_case , __snake_case ) lowercase_ : str = model(__snake_case ) lowercase_ : List[str] = outputs.logits lowercase_ : Any = (1, 1_0_0_0) if "l1" in model_name: lowercase_ : Any = torch.Tensor( [-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] ) assert torch.allclose(logits[0, :1_0] , __snake_case , atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: lowercase_ : Dict = torch.Tensor( [-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] ) assert torch.allclose(logits[0, :1_0] , __snake_case , atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: lowercase_ : Optional[Any] = torch.Tensor( [-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] ) assert logits.shape == expected_shape else: raise ValueError( F'''Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7''' ) # Save Checkpoints Path(__snake_case ).mkdir(exist_ok=__snake_case ) model.save_pretrained(__snake_case ) print(F'''Checkpoint successfuly converted. Model saved at {pytorch_dump_path}''' ) processor.save_pretrained(__snake_case ) print(F'''Processor successfuly saved at {pytorch_dump_path}''' ) if push_to_hub: print('''Pushing model to the hub...''' ) model.push_to_hub( repo_id=F'''Bearnardd/{pytorch_dump_path}''' , commit_message='''Add model''' , use_temp_dir=__snake_case , ) processor.push_to_hub( repo_id=F'''Bearnardd/{pytorch_dump_path}''' , commit_message='''Add image processor''' , use_temp_dir=__snake_case , ) if __name__ == "__main__": __A : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to EfficientFormer pytorch checkpoint.''', ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for EfficientFormer model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) parser.set_defaults(push_to_hub=True) __A : int = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
33
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class __lowerCamelCase : _lowercase = XGLMConfig _lowercase = {} _lowercase = """gelu""" def __init__( self: Optional[int],A_: Dict,A_: Any=14,A_: Optional[int]=7,A_: str=True,A_: Any=True,A_: Optional[int]=True,A_: Optional[int]=99,A_: List[str]=32,A_: Any=2,A_: Tuple=4,A_: List[str]=37,A_: Dict="gelu",A_: int=0.1,A_: List[str]=0.1,A_: int=512,A_: List[Any]=0.0_2,): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = d_model __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = ffn_dim __UpperCamelCase = activation_function __UpperCamelCase = activation_dropout __UpperCamelCase = attention_dropout __UpperCamelCase = max_position_embeddings __UpperCamelCase = initializer_range __UpperCamelCase = None __UpperCamelCase = 0 __UpperCamelCase = 2 __UpperCamelCase = 1 def snake_case_ ( self: Dict ): '''simple docstring''' return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length],self.vocab_size ),clip_value_min=0,clip_value_max=3 ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = self.get_config() __UpperCamelCase = floats_tensor([self.num_hidden_layers, self.num_attention_heads],2 ) return ( config, input_ids, input_mask, head_mask, ) def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' return XGLMConfig( vocab_size=self.vocab_size,d_model=self.hidden_size,num_layers=self.num_hidden_layers,attention_heads=self.num_attention_heads,ffn_dim=self.ffn_dim,activation_function=self.activation_function,activation_dropout=self.activation_dropout,attention_dropout=self.attention_dropout,max_position_embeddings=self.max_position_embeddings,initializer_range=self.initializer_range,use_cache=A_,bos_token_id=self.bos_token_id,eos_token_id=self.eos_token_id,pad_token_id=self.pad_token_id,return_dict=A_,) def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ) = config_and_inputs __UpperCamelCase = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class __lowerCamelCase (_a , _a , unittest.TestCase ): _lowercase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () _lowercase = (TFXGLMForCausalLM,) if is_tf_available() else () _lowercase = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) _lowercase = False _lowercase = False _lowercase = False def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = TFXGLMModelTester(self ) __UpperCamelCase = ConfigTester(self,config_class=A_,n_embd=37 ) def snake_case_ ( self: Any ): '''simple docstring''' self.config_tester.run_common_tests() @slow def snake_case_ ( self: Any ): '''simple docstring''' for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = TFXGLMModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def snake_case_ ( self: Tuple ): '''simple docstring''' super().test_resize_token_embeddings() @require_tf class __lowerCamelCase (unittest.TestCase ): @slow def snake_case_ ( self: Optional[Any],A_: int=True ): '''simple docstring''' __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = tf.convert_to_tensor([[2, 268, 9865]],dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __UpperCamelCase = [2, 268, 9865, 67, 11, 1988, 5_7252, 9865, 5, 984, 67, 1988, 21_3838, 1658, 53, 7_0446, 33, 6657, 278, 1581] # fmt: on __UpperCamelCase = model.generate(A_,do_sample=A_,num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist(),A_ ) @slow def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) __UpperCamelCase = tokenizer('Today is a nice day and',return_tensors='tf' ) __UpperCamelCase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): __UpperCamelCase = model.generate(A_,do_sample=A_,seed=[7, 0] ) __UpperCamelCase = tokenizer.decode(output_ids[0],skip_special_tokens=A_ ) __UpperCamelCase = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(A_,A_ ) @slow def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = 'left' # use different length sentences to test batching __UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] __UpperCamelCase = tokenizer(A_,return_tensors='tf',padding=A_ ) __UpperCamelCase = inputs['input_ids'] __UpperCamelCase = model.generate(input_ids=A_,attention_mask=inputs['attention_mask'],max_new_tokens=12 ) __UpperCamelCase = tokenizer(sentences[0],return_tensors='tf' ).input_ids __UpperCamelCase = model.generate(input_ids=A_,max_new_tokens=12 ) __UpperCamelCase = tokenizer(sentences[1],return_tensors='tf' ).input_ids __UpperCamelCase = model.generate(input_ids=A_,max_new_tokens=12 ) __UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ ) __UpperCamelCase = tokenizer.decode(output_non_padded[0],skip_special_tokens=A_ ) __UpperCamelCase = tokenizer.decode(output_padded[0],skip_special_tokens=A_ ) __UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(A_,A_ ) self.assertListEqual(A_,[non_padded_sentence, padded_sentence] )
310
0
'''simple docstring''' def snake_case_ (_a : int ): if number < 0: raise ValueError('''number must not be negative''' ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
34
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __snake_case = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json''' with io.open(filename, '''r''', encoding='''utf-8''') as f: __snake_case = json.load(f) @require_torch class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: int,A_: int ): '''simple docstring''' return FSMTTokenizer.from_pretrained(A_ ) def snake_case_ ( self: Dict,A_: int ): '''simple docstring''' __UpperCamelCase = FSMTForConditionalGeneration.from_pretrained(A_ ).to(A_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 2_6.0], ['ru-en', 2_2.0], ['en-de', 2_2.0], ['de-en', 2_9.0], ] ) @slow def snake_case_ ( self: Tuple,A_: Any,A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = F'''facebook/wmt19-{pair}''' __UpperCamelCase = self.get_tokenizer(A_ ) __UpperCamelCase = self.get_model(A_ ) __UpperCamelCase = bleu_data[pair]['src'] __UpperCamelCase = bleu_data[pair]['tgt'] __UpperCamelCase = tokenizer(A_,return_tensors='pt',truncation=A_,padding='longest' ).to(A_ ) __UpperCamelCase = model.generate( input_ids=batch.input_ids,num_beams=8,) __UpperCamelCase = tokenizer.batch_decode( A_,skip_special_tokens=A_,clean_up_tokenization_spaces=A_ ) __UpperCamelCase = calculate_bleu(A_,A_ ) print(A_ ) self.assertGreaterEqual(scores['bleu'],A_ )
310
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __a = {"configuration_glpn": ["GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP", "GLPNConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["GLPNFeatureExtractor"] __a = ["GLPNImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "GLPN_PRETRAINED_MODEL_ARCHIVE_LIST", "GLPNForDepthEstimation", "GLPNLayer", "GLPNModel", "GLPNPreTrainedModel", ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
35
def _A ( _lowercase ) -> list[int]: """simple docstring""" if length <= 0 or not isinstance(_lowercase , _lowercase ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(_lowercase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=1_0))
310
0
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class UpperCAmelCase_ ( a): def __init__( self, __a = "▁", __a = True, __a = "<unk>", __a = "</s>", __a = "<pad>", ): '''simple docstring''' _lowerCAmelCase : List[str] = { "pad": {"id": 0, "token": pad_token}, "eos": {"id": 1, "token": eos_token}, "unk": {"id": 2, "token": unk_token}, } _lowerCAmelCase : str = [None] * len(self.special_tokens) for token_dict in self.special_tokens.values(): _lowerCAmelCase : Dict = token_dict["token"] _lowerCAmelCase : int = Tokenizer(Unigram()) _lowerCAmelCase : Any = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}"), " "), normalizers.Lowercase(), ]) _lowerCAmelCase : Tuple = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=__a, add_prefix_space=__a), pre_tokenizers.Digits(individual_digits=__a), pre_tokenizers.Punctuation(), ]) _lowerCAmelCase : List[str] = decoders.Metaspace(replacement=__a, add_prefix_space=__a) _lowerCAmelCase : Tuple = TemplateProcessing( single=f"$A {self.special_tokens['eos']['token']}", special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])], ) _lowerCAmelCase : List[Any] = { "model": "SentencePieceUnigram", "replacement": replacement, "add_prefix_space": add_prefix_space, } super().__init__(__a, __a) def snake_case__ ( self, __a, __a = 8000, __a = True, ): '''simple docstring''' _lowerCAmelCase : Dict = trainers.UnigramTrainer( vocab_size=__a, special_tokens=self.special_tokens_list, show_progress=__a, ) if isinstance(__a, __a): _lowerCAmelCase : Union[str, Any] = [files] self._tokenizer.train(__a, trainer=__a) self.add_unk_id() def snake_case__ ( self, __a, __a = 8000, __a = True, ): '''simple docstring''' _lowerCAmelCase : Optional[int] = trainers.UnigramTrainer( vocab_size=__a, special_tokens=self.special_tokens_list, show_progress=__a, ) self._tokenizer.train_from_iterator(__a, trainer=__a) self.add_unk_id() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = json.loads(self._tokenizer.to_str()) _lowerCAmelCase : Tuple = self.special_tokens["unk"]["id"] _lowerCAmelCase : Any = Tokenizer.from_str(json.dumps(__a))
36
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = MgpstrTokenizer _lowercase = False _lowercase = {} _lowercase = False def snake_case_ ( self: int ): '''simple docstring''' super().setUp() # fmt: off __UpperCamelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on __UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) ) __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file,'w',encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) def snake_case_ ( self: Dict,**A_: Tuple ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname,**A_ ) def snake_case_ ( self: List[Any],A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = 'tester' __UpperCamelCase = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.' ) def snake_case_ ( self: str ): '''simple docstring''' pass def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCamelCase = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token} ) __UpperCamelCase = tokenizer.encode([special_token],add_special_tokens=A_ ) self.assertEqual(len(A_ ),1 ) __UpperCamelCase = tokenizer.decode(A_,skip_special_tokens=A_ ) self.assertTrue(special_token not in decoded ) def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCamelCase, __UpperCamelCase = self.get_input_output_texts(A_ ) __UpperCamelCase = tokenizer.tokenize(A_ ) __UpperCamelCase = tokenizer.convert_tokens_to_ids(A_ ) __UpperCamelCase = tokenizer.encode(A_,add_special_tokens=A_ ) self.assertListEqual(A_,A_ ) __UpperCamelCase = tokenizer.convert_ids_to_tokens(A_ ) self.assertNotEqual(len(A_ ),0 ) __UpperCamelCase = tokenizer.decode(A_ ) self.assertIsInstance(A_,A_ ) self.assertEqual(text_a.replace(' ','' ),A_ ) @unittest.skip('MGP-STR tokenizer only handles one sequence.' ) def snake_case_ ( self: int ): '''simple docstring''' pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' ) def snake_case_ ( self: List[str] ): '''simple docstring''' pass
310
0
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_5_0, '''eval_accuracy''': 0.7, '''eval_loss''': 0.6}, }, { '''framework''': '''pytorch''', '''script''': '''run_ddp.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_0_0, '''eval_accuracy''': 0.7, '''eval_loss''': 0.6}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf_dist.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_0_0, '''eval_accuracy''': 0.6, '''eval_loss''': 0.7}, }, ] ) class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self ) -> Optional[Any]: if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() ,encoding="""utf-8""" ,check=__UpperCAmelCase ,) assert hasattr(self ,"""env""" ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Optional[Any]: lowerCAmelCase__ : Optional[int] = F"""{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}""" # distributed data settings lowerCAmelCase__ : Any = {"""smdistributed""": {"""dataparallel""": {"""enabled""": True}}} if self.script != """run_ddp.py""" else None # creates estimator return HuggingFace( entry_point=self.script ,source_dir=self.env.test_path ,role=self.env.role ,image_uri=self.env.image_uri ,base_job_name=__UpperCAmelCase ,instance_count=__UpperCAmelCase ,instance_type=self.instance_type ,debugger_hook_config=__UpperCAmelCase ,hyperparameters={**self.env.distributed_hyperparameters, """model_name_or_path""": self.model_name_or_path} ,metric_definitions=self.env.metric_definitions ,distribution=__UpperCAmelCase ,py_version="""py36""" ,) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Optional[Any]: TrainingJobAnalytics(__UpperCAmelCase ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(2,)] ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Any: # create estimator lowerCAmelCase__ : List[Any] = self.create_estimator(__UpperCAmelCase ) # run training estimator.fit() # result dataframe lowerCAmelCase__ : Any = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCAmelCase__ : int = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) lowerCAmelCase__ : List[Any] = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase__ : List[str] = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" ,99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" ,"""w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} ,__UpperCAmelCase )
37
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( """The RoBERTa Model transformer with early exiting (DeeRoBERTa). """ , _a , ) class __lowerCamelCase (_a ): _lowercase = RobertaConfig _lowercase = """roberta""" def __init__( self: Union[str, Any],A_: List[str] ): '''simple docstring''' super().__init__(A_ ) __UpperCamelCase = RobertaEmbeddings(A_ ) self.init_weights() @add_start_docstrings( """RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. """ , _a , ) class __lowerCamelCase (_a ): _lowercase = RobertaConfig _lowercase = """roberta""" def __init__( self: Any,A_: int ): '''simple docstring''' super().__init__(A_ ) __UpperCamelCase = config.num_labels __UpperCamelCase = config.num_hidden_layers __UpperCamelCase = DeeRobertaModel(A_ ) __UpperCamelCase = nn.Dropout(config.hidden_dropout_prob ) __UpperCamelCase = nn.Linear(config.hidden_size,self.config.num_labels ) @add_start_docstrings_to_model_forward(A_ ) def snake_case_ ( self: List[str],A_: int=None,A_: List[Any]=None,A_: List[str]=None,A_: List[str]=None,A_: Optional[int]=None,A_: List[str]=None,A_: Any=None,A_: List[Any]=-1,A_: List[Any]=False,): '''simple docstring''' __UpperCamelCase = self.num_layers try: __UpperCamelCase = self.roberta( A_,attention_mask=A_,token_type_ids=A_,position_ids=A_,head_mask=A_,inputs_embeds=A_,) __UpperCamelCase = outputs[1] __UpperCamelCase = self.dropout(A_ ) __UpperCamelCase = self.classifier(A_ ) __UpperCamelCase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __UpperCamelCase = e.message __UpperCamelCase = e.exit_layer __UpperCamelCase = outputs[0] if not self.training: __UpperCamelCase = entropy(A_ ) __UpperCamelCase = [] __UpperCamelCase = [] if labels is not None: if self.num_labels == 1: # We are doing regression __UpperCamelCase = MSELoss() __UpperCamelCase = loss_fct(logits.view(-1 ),labels.view(-1 ) ) else: __UpperCamelCase = CrossEntropyLoss() __UpperCamelCase = loss_fct(logits.view(-1,self.num_labels ),labels.view(-1 ) ) # work with highway exits __UpperCamelCase = [] for highway_exit in outputs[-1]: __UpperCamelCase = highway_exit[0] if not self.training: highway_logits_all.append(A_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __UpperCamelCase = MSELoss() __UpperCamelCase = loss_fct(highway_logits.view(-1 ),labels.view(-1 ) ) else: __UpperCamelCase = CrossEntropyLoss() __UpperCamelCase = loss_fct(highway_logits.view(-1,self.num_labels ),labels.view(-1 ) ) highway_losses.append(A_ ) if train_highway: __UpperCamelCase = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __UpperCamelCase = (loss,) + outputs if not self.training: __UpperCamelCase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __UpperCamelCase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
310
0
from __future__ import annotations from math import pi def SCREAMING_SNAKE_CASE_ ( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float ) -> dict[str, float]: """simple docstring""" if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if inductance < 0: raise ValueError("""Inductance cannot be negative""" ) if frequency < 0: raise ValueError("""Frequency cannot be negative""" ) if reactance < 0: raise ValueError("""Inductive reactance cannot be negative""" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
38
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCamelCase : @staticmethod def snake_case_ ( *A_: Optional[Any],**A_: Tuple ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class __lowerCamelCase (unittest.TestCase ): _lowercase = MODEL_FOR_OBJECT_DETECTION_MAPPING def snake_case_ ( self: Dict,A_: Optional[int],A_: Tuple,A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = ObjectDetectionPipeline(model=A_,image_processor=A_ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def snake_case_ ( self: int,A_: Any,A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png',threshold=0.0 ) self.assertGreater(len(A_ ),0 ) for detected_object in outputs: self.assertEqual( A_,{ 'score': ANY(A_ ), 'label': ANY(A_ ), 'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )}, },) import datasets __UpperCamelCase = datasets.load_dataset('hf-internal-testing/fixtures_image_utils','image',split='test' ) __UpperCamelCase = [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] __UpperCamelCase = object_detector(A_,threshold=0.0 ) self.assertEqual(len(A_ ),len(A_ ) ) for outputs in batch_outputs: self.assertGreater(len(A_ ),0 ) for detected_object in outputs: self.assertEqual( A_,{ 'score': ANY(A_ ), 'label': ANY(A_ ), 'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )}, },) @require_tf @unittest.skip('Object detection not implemented in TF' ) def snake_case_ ( self: str ): '''simple docstring''' pass @require_torch def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = 'hf-internal-testing/tiny-detr-mobilenetsv3' __UpperCamelCase = AutoModelForObjectDetection.from_pretrained(A_ ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained(A_ ) __UpperCamelCase = ObjectDetectionPipeline(model=A_,feature_extractor=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg',threshold=0.0 ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ],threshold=0.0,) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], ],) @require_torch @slow def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = AutoModelForObjectDetection.from_pretrained(A_ ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained(A_ ) __UpperCamelCase = ObjectDetectionPipeline(model=A_,feature_extractor=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ],) @require_torch @slow def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = pipeline('object-detection',model=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ],) @require_torch @slow def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = 0.9_9_8_5 __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = pipeline('object-detection',model=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg',threshold=A_ ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) @require_torch @require_pytesseract @slow def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = 'Narsil/layoutlmv3-finetuned-funsd' __UpperCamelCase = 0.9_9_9_3 __UpperCamelCase = pipeline('object-detection',model=A_,threshold=A_ ) __UpperCamelCase = object_detector( 'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, {'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, ],)
310
0
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
39
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json''' ), } class __lowerCamelCase (_a ): _lowercase = """xlm-roberta""" def __init__( self: Union[str, Any],A_: Union[str, Any]=3_0522,A_: Dict=768,A_: Union[str, Any]=12,A_: Any=12,A_: str=3072,A_: Union[str, Any]="gelu",A_: str=0.1,A_: Optional[int]=0.1,A_: List[Any]=512,A_: Optional[Any]=2,A_: Dict=0.0_2,A_: List[Any]=1E-12,A_: Optional[int]=1,A_: str=0,A_: str=2,A_: Optional[Any]="absolute",A_: Union[str, Any]=True,A_: int=None,**A_: Optional[Any],): '''simple docstring''' super().__init__(pad_token_id=A_,bos_token_id=A_,eos_token_id=A_,**A_ ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = position_embedding_type __UpperCamelCase = use_cache __UpperCamelCase = classifier_dropout class __lowerCamelCase (_a ): @property def snake_case_ ( self: Optional[Any] ): '''simple docstring''' if self.task == "multiple-choice": __UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
310
0
"""simple docstring""" class _A : """simple docstring""" def __init__( self : List[Any] , __UpperCAmelCase : Optional[Any]): a : Union[str, Any] = val a : str = None a : Dict = None def __snake_case ( self : Tuple , __UpperCAmelCase : List[Any]): if self.val: if val < self.val: if self.left is None: a : Tuple = Node(__UpperCAmelCase) else: self.left.insert(__UpperCAmelCase) elif val > self.val: if self.right is None: a : Union[str, Any] = Node(__UpperCAmelCase) else: self.right.insert(__UpperCAmelCase) else: a : Tuple = val def lowercase ( A_ , A_ )-> Any: '''simple docstring''' if root: inorder(root.left , A_ ) res.append(root.val ) inorder(root.right , A_ ) def lowercase ( A_ )-> Any: '''simple docstring''' if len(A_ ) == 0: return arr a : Optional[int] = Node(arr[0] ) for i in range(1 , len(A_ ) ): root.insert(arr[i] ) # Traverse BST in order. a : Optional[Any] = [] inorder(A_ , A_ ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
40
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __snake_case = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCamelCase (_a ): _lowercase = field(default=_a , metadata={"""help""": """Whether to use SortishSampler or not."""} ) _lowercase = field( default=_a , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} ) _lowercase = field( default=_a , metadata={ """help""": ( """The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `max_length` value of the model configuration.""" ) } , ) _lowercase = field( default=_a , metadata={ """help""": ( """The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `num_beams` value of the model configuration.""" ) } , ) _lowercase = field( default=_a , metadata={ """help""": """Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.""" } , ) def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = super().to_dict() for k, v in d.items(): if isinstance(A_,A_ ): __UpperCamelCase = v.to_dict() return d
310
0
'''simple docstring''' import os import sys import unittest _A : List[str] =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path _A : Dict =os.path.join(git_repo_path, '''src''', '''transformers''') _A : Dict =''' {0} = None ''' _A : Dict =''' class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) ''' _A : List[str] =''' def {0}(*args, **kwargs): requires_backends({0}, {1}) ''' class _lowercase ( unittest.TestCase ): def lowerCamelCase_ ( self: str ): lowerCamelCase__ : int = find_backend(""" _import_structure[\"models.albert\"].append(\"AlbertTokenizerFast\")""" ) self.assertIsNone(UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = find_backend(""" if not is_tokenizers_available():""" ) self.assertEqual(UpperCamelCase__ , """tokenizers""" ) lowerCamelCase__ : Tuple = find_backend(""" if not is_tensorflow_text_available():""" ) self.assertEqual(UpperCamelCase__ , """tensorflow_text""" ) lowerCamelCase__ : Dict = find_backend(""" if not (is_sentencepiece_available() and is_tokenizers_available()):""" ) self.assertEqual(UpperCamelCase__ , """sentencepiece_and_tokenizers""" ) lowerCamelCase__ : Union[str, Any] = find_backend( """ if not (is_sentencepiece_available() and is_tensorflow_text_available()):""" ) self.assertEqual(UpperCamelCase__ , """sentencepiece_and_tensorflow_text""" ) lowerCamelCase__ : str = find_backend( """ if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):""" ) self.assertEqual(UpperCamelCase__ , """sentencepiece_and_tokenizers_and_vision""" ) def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : Tuple = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""" , UpperCamelCase__ ) self.assertIn("""tensorflow_text""" , UpperCamelCase__ ) self.assertIn("""sentencepiece_and_tokenizers""" , UpperCamelCase__ ) # Likewise, we can't assert on the exact content of a key self.assertIn("""BertModel""" , objects["""torch"""] ) self.assertIn("""TFBertModel""" , objects["""tf"""] ) self.assertIn("""FlaxBertModel""" , objects["""flax"""] ) self.assertIn("""BertModel""" , objects["""torch"""] ) self.assertIn("""TFBertTokenizer""" , objects["""tensorflow_text"""] ) self.assertIn("""convert_slow_tokenizer""" , objects["""sentencepiece_and_tokenizers"""] ) def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : Tuple = create_dummy_object("""CONSTANT""" , """'torch'""" ) self.assertEqual(UpperCamelCase__ , """\nCONSTANT = None\n""" ) lowerCamelCase__ : List[str] = create_dummy_object("""function""" , """'torch'""" ) self.assertEqual( UpperCamelCase__ , """\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) lowerCamelCase__ : List[str] = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') """ lowerCamelCase__ : int = create_dummy_object("""FakeClass""" , """'torch'""" ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : List[Any] = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) """ lowerCamelCase__ : Any = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""] , UpperCamelCase__ )
41
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _A ( _lowercase ) -> Dict: """simple docstring""" if is_torch_version('<' , '2.0.0' ) or not hasattr(_lowercase , '_dynamo' ): return False return isinstance(_lowercase , torch._dynamo.eval_frame.OptimizedModule ) def _A ( _lowercase , _lowercase = True ) -> Optional[int]: """simple docstring""" __UpperCamelCase = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __UpperCamelCase = is_compiled_module(_lowercase ) if is_compiled: __UpperCamelCase = model __UpperCamelCase = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_lowercase , _lowercase ): __UpperCamelCase = model.module if not keep_fpaa_wrapper: __UpperCamelCase = getattr(_lowercase , 'forward' ) __UpperCamelCase = model.__dict__.pop('_original_forward' , _lowercase ) if original_forward is not None: while hasattr(_lowercase , '__wrapped__' ): __UpperCamelCase = forward.__wrapped__ if forward == original_forward: break __UpperCamelCase = forward if getattr(_lowercase , '_converted_to_transformer_engine' , _lowercase ): convert_model(_lowercase , to_transformer_engine=_lowercase ) if is_compiled: __UpperCamelCase = model __UpperCamelCase = compiled_model return model def _A ( ) -> Any: """simple docstring""" PartialState().wait_for_everyone() def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(_lowercase , _lowercase ) elif PartialState().local_process_index == 0: torch.save(_lowercase , _lowercase ) @contextmanager def _A ( **_lowercase ) -> Union[str, Any]: """simple docstring""" for key, value in kwargs.items(): __UpperCamelCase = str(_lowercase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _A ( _lowercase ) -> Tuple: """simple docstring""" if not hasattr(_lowercase , '__qualname__' ) and not hasattr(_lowercase , '__name__' ): __UpperCamelCase = getattr(_lowercase , '__class__' , _lowercase ) if hasattr(_lowercase , '__qualname__' ): return obj.__qualname__ if hasattr(_lowercase , '__name__' ): return obj.__name__ return str(_lowercase ) def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" for key, value in source.items(): if isinstance(_lowercase , _lowercase ): __UpperCamelCase = destination.setdefault(_lowercase , {} ) merge_dicts(_lowercase , _lowercase ) else: __UpperCamelCase = value return destination def _A ( _lowercase = None ) -> bool: """simple docstring""" if port is None: __UpperCamelCase = 2_95_00 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
310
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class __UpperCAmelCase ( unittest.TestCase ): __lowercase = StableDiffusionLDMaDPipeline __lowercase = TEXT_TO_IMAGE_PARAMS __lowercase = TEXT_TO_IMAGE_BATCH_PARAMS __lowercase = TEXT_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase ( self ): """simple docstring""" torch.manual_seed(0 ) _snake_case = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) _snake_case = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=lowerCAmelCase_ , set_alpha_to_one=lowerCAmelCase_ , ) torch.manual_seed(0 ) _snake_case = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) _snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) _snake_case = CLIPTextModel(lowerCAmelCase_ ) _snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _snake_case = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=0 ): """simple docstring""" if str(lowerCAmelCase_ ).startswith('mps' ): _snake_case = torch.manual_seed(lowerCAmelCase_ ) else: _snake_case = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _snake_case = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowerCamelCase ( self ): """simple docstring""" _snake_case = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = StableDiffusionLDMaDPipeline(**lowerCAmelCase_ ) _snake_case = ldmad_pipe.to(lowerCAmelCase_ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_dummy_inputs(lowerCAmelCase_ ) _snake_case = ldmad_pipe(**lowerCAmelCase_ ) _snake_case , _snake_case = output.rgb, output.depth _snake_case = rgb[0, -3:, -3:, -1] _snake_case = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) _snake_case = np.array( [0.37338176, 0.70247, 0.74203193, 0.51643604, 0.58256793, 0.60932136, 0.4181095, 0.48355877, 0.46535262] ) _snake_case = np.array([103.46727, 85.812004, 87.849236] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1E-2 def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.get_dummy_components() _snake_case = StableDiffusionLDMaDPipeline(**lowerCAmelCase_ ) _snake_case = ldmad_pipe.to(lowerCAmelCase_ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_dummy_inputs(lowerCAmelCase_ ) _snake_case = 3 * [inputs['prompt']] # forward _snake_case = ldmad_pipe(**lowerCAmelCase_ ) _snake_case , _snake_case = output.rgb, output.depth _snake_case = rgb_slice_a[0, -3:, -3:, -1] _snake_case = depth_slice_a[0, -3:, -1] _snake_case = self.get_dummy_inputs(lowerCAmelCase_ ) _snake_case = 3 * [inputs.pop('prompt' )] _snake_case = ldmad_pipe.tokenizer( lowerCAmelCase_ , padding='max_length' , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=lowerCAmelCase_ , return_tensors='pt' , ) _snake_case = text_inputs['input_ids'].to(lowerCAmelCase_ ) _snake_case = ldmad_pipe.text_encoder(lowerCAmelCase_ )[0] _snake_case = prompt_embeds # forward _snake_case = ldmad_pipe(**lowerCAmelCase_ ) _snake_case , _snake_case = output.rgb, output.depth _snake_case = rgb_slice_a[0, -3:, -3:, -1] _snake_case = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1E-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1E-4 def lowerCamelCase ( self ): """simple docstring""" _snake_case = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = PNDMScheduler(skip_prk_steps=lowerCAmelCase_ ) _snake_case = StableDiffusionLDMaDPipeline(**lowerCAmelCase_ ) _snake_case = ldmad_pipe.to(lowerCAmelCase_ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_dummy_inputs(lowerCAmelCase_ ) _snake_case = 'french fries' _snake_case = ldmad_pipe(**lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ ) _snake_case , _snake_case = output.rgb, output.depth _snake_case = rgb[0, -3:, -3:, -1] _snake_case = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) _snake_case = np.array( [0.37044, 0.71811503, 0.7223251, 0.48603675, 0.5638391, 0.6364948, 0.42833704, 0.4901315, 0.47926217] ) _snake_case = np.array([107.84738, 84.62802, 89.962135] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1E-2 @slow @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_="cpu" , lowerCAmelCase_=torch.floataa , lowerCAmelCase_=0 ): """simple docstring""" _snake_case = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _snake_case = np.random.RandomState(lowerCAmelCase_ ).standard_normal((1, 4, 64, 64) ) _snake_case = torch.from_numpy(lowerCAmelCase_ ).to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) _snake_case = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def lowerCamelCase ( self ): """simple docstring""" _snake_case = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d' ) _snake_case = ldmad_pipe.to(lowerCAmelCase_ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_inputs(lowerCAmelCase_ ) _snake_case = ldmad_pipe(**lowerCAmelCase_ ) _snake_case , _snake_case = output.rgb, output.depth _snake_case = rgb[0, -3:, -3:, -1].flatten() _snake_case = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 5_12, 5_12, 3) assert depth.shape == (1, 5_12, 5_12) _snake_case = np.array( [0.53805465, 0.56707305, 0.5486515, 0.57012236, 0.5814511, 0.56253487, 0.54843014, 0.55092263, 0.6459706] ) _snake_case = np.array( [0.9263781, 0.6678672, 0.5486515, 0.92202145, 0.67831135, 0.56253487, 0.9241694, 0.7551478, 0.6459706] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3E-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3E-3 @nightly @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_="cpu" , lowerCAmelCase_=torch.floataa , lowerCAmelCase_=0 ): """simple docstring""" _snake_case = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _snake_case = np.random.RandomState(lowerCAmelCase_ ).standard_normal((1, 4, 64, 64) ) _snake_case = torch.from_numpy(lowerCAmelCase_ ).to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) _snake_case = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def lowerCamelCase ( self ): """simple docstring""" _snake_case = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d' ).to(lowerCAmelCase_ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_inputs(lowerCAmelCase_ ) _snake_case = ldmad_pipe(**lowerCAmelCase_ ) _snake_case , _snake_case = output.rgb, output.depth _snake_case = 0.495586 _snake_case = 0.33795515 _snake_case = 112.48518 _snake_case = 98.489746 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3 def lowerCamelCase ( self ): """simple docstring""" _snake_case = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d-4c' ).to(lowerCAmelCase_ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_inputs(lowerCAmelCase_ ) _snake_case = ldmad_pipe(**lowerCAmelCase_ ) _snake_case , _snake_case = output.rgb, output.depth _snake_case = 0.4194127 _snake_case = 0.35375586 _snake_case = 0.5638502 _snake_case = 0.34686103 assert rgb.shape == (1, 5_12, 5_12, 3) assert depth.shape == (1, 5_12, 5_12, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3
42
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __snake_case = logging.getLogger(__name__) def _A ( _lowercase , _lowercase ) -> Optional[int]: """simple docstring""" return (preds == labels).mean() @dataclass class __lowerCamelCase : _lowercase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _lowercase = field( default=_a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __lowerCamelCase : _lowercase = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) _lowercase = field(metadata={"""help""": """Should contain the data files for the task."""} ) _lowercase = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _lowercase = field( default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _A ( ) -> str: """simple docstring""" __UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _lowercase ) # Set seed set_seed(training_args.seed ) try: __UpperCamelCase = processors[data_args.task_name]() __UpperCamelCase = processor.get_labels() __UpperCamelCase = len(_lowercase ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowercase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , ) # Get datasets __UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_lowercase ) -> Dict: __UpperCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_lowercase , p.label_ids )} # Data collator __UpperCamelCase = DataCollatorWithPadding(_lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __UpperCamelCase = Trainer( model=_lowercase , args=_lowercase , train_dataset=_lowercase , eval_dataset=_lowercase , compute_metrics=_lowercase , data_collator=_lowercase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCamelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __UpperCamelCase = trainer.evaluate() __UpperCamelCase = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(_lowercase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , _lowercase , _lowercase ) writer.write('%s = %s\n' % (key, value) ) results.update(_lowercase ) return results def _A ( _lowercase ) -> List[Any]: """simple docstring""" main() if __name__ == "__main__": main()
310
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __lowercase = { '''configuration_layoutlmv2''': ['''LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv2Config'''], '''processing_layoutlmv2''': ['''LayoutLMv2Processor'''], '''tokenization_layoutlmv2''': ['''LayoutLMv2Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ['''LayoutLMv2TokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ['''LayoutLMv2FeatureExtractor'''] __lowercase = ['''LayoutLMv2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv2ForQuestionAnswering''', '''LayoutLMv2ForSequenceClassification''', '''LayoutLMv2ForTokenClassification''', '''LayoutLMv2Layer''', '''LayoutLMv2Model''', '''LayoutLMv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
43
import os def _A ( ) -> Tuple: """simple docstring""" with open(os.path.dirname(_lowercase ) + '/p022_names.txt' ) as file: __UpperCamelCase = str(file.readlines()[0] ) __UpperCamelCase = names.replace('"' , '' ).split(',' ) names.sort() __UpperCamelCase = 0 __UpperCamelCase = 0 for i, name in enumerate(_lowercase ): for letter in name: name_score += ord(_lowercase ) - 64 total_score += (i + 1) * name_score __UpperCamelCase = 0 return total_score if __name__ == "__main__": print(solution())
310
0
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig _a : List[Any] = logging.get_logger(__name__) # General docstring _a : Optional[int] = 'RegNetConfig' # Base docstring _a : Union[str, Any] = 'facebook/regnet-y-040' _a : Tuple = [1, 1_088, 7, 7] # Image classification docstring _a : Tuple = 'facebook/regnet-y-040' _a : Union[str, Any] = 'tabby, tabby cat' _a : Union[str, Any] = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class __A ( nn.Module ): def __init__( self , a__ , a__ , a__ = 3 , a__ = 1 , a__ = 1 , a__ = "relu" , ): super().__init__() _lowerCAmelCase : str = nn.Convad( a__ , a__ , kernel_size=a__ , stride=a__ , padding=kernel_size // 2 , groups=a__ , bias=a__ , ) _lowerCAmelCase : str = nn.BatchNormad(a__ ) _lowerCAmelCase : Optional[int] = ACTaFN[activation] if activation is not None else nn.Identity() def __A ( self , a__ ): _lowerCAmelCase : List[str] = self.convolution(a__ ) _lowerCAmelCase : Union[str, Any] = self.normalization(a__ ) _lowerCAmelCase : List[Any] = self.activation(a__ ) return hidden_state class __A ( nn.Module ): def __init__( self , a__ ): super().__init__() _lowerCAmelCase : Optional[int] = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) _lowerCAmelCase : List[Any] = config.num_channels def __A ( self , a__ ): _lowerCAmelCase : Tuple = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) _lowerCAmelCase : List[Any] = self.embedder(a__ ) return hidden_state class __A ( nn.Module ): def __init__( self , a__ , a__ , a__ = 2 ): super().__init__() _lowerCAmelCase : Union[str, Any] = nn.Convad(a__ , a__ , kernel_size=1 , stride=a__ , bias=a__ ) _lowerCAmelCase : Optional[int] = nn.BatchNormad(a__ ) def __A ( self , a__ ): _lowerCAmelCase : str = self.convolution(a__ ) _lowerCAmelCase : Tuple = self.normalization(a__ ) return hidden_state class __A ( nn.Module ): def __init__( self , a__ , a__ ): super().__init__() _lowerCAmelCase : Dict = nn.AdaptiveAvgPoolad((1, 1) ) _lowerCAmelCase : Tuple = nn.Sequential( nn.Convad(a__ , a__ , kernel_size=1 ) , nn.ReLU() , nn.Convad(a__ , a__ , kernel_size=1 ) , nn.Sigmoid() , ) def __A ( self , a__ ): # b c h w -> b c 1 1 _lowerCAmelCase : Tuple = self.pooler(a__ ) _lowerCAmelCase : int = self.attention(a__ ) _lowerCAmelCase : Optional[Any] = hidden_state * attention return hidden_state class __A ( nn.Module ): def __init__( self , a__ , a__ , a__ , a__ = 1 ): super().__init__() _lowerCAmelCase : Optional[Any] = in_channels != out_channels or stride != 1 _lowerCAmelCase : Optional[Any] = max(1 , out_channels // config.groups_width ) _lowerCAmelCase : Tuple = ( RegNetShortCut(a__ , a__ , stride=a__ ) if should_apply_shortcut else nn.Identity() ) _lowerCAmelCase : str = nn.Sequential( RegNetConvLayer(a__ , a__ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(a__ , a__ , stride=a__ , groups=a__ , activation=config.hidden_act ) , RegNetConvLayer(a__ , a__ , kernel_size=1 , activation=a__ ) , ) _lowerCAmelCase : Union[str, Any] = ACTaFN[config.hidden_act] def __A ( self , a__ ): _lowerCAmelCase : Any = hidden_state _lowerCAmelCase : Any = self.layer(a__ ) _lowerCAmelCase : str = self.shortcut(a__ ) hidden_state += residual _lowerCAmelCase : int = self.activation(a__ ) return hidden_state class __A ( nn.Module ): def __init__( self , a__ , a__ , a__ , a__ = 1 ): super().__init__() _lowerCAmelCase : Dict = in_channels != out_channels or stride != 1 _lowerCAmelCase : List[Any] = max(1 , out_channels // config.groups_width ) _lowerCAmelCase : List[Any] = ( RegNetShortCut(a__ , a__ , stride=a__ ) if should_apply_shortcut else nn.Identity() ) _lowerCAmelCase : Tuple = nn.Sequential( RegNetConvLayer(a__ , a__ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(a__ , a__ , stride=a__ , groups=a__ , activation=config.hidden_act ) , RegNetSELayer(a__ , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(a__ , a__ , kernel_size=1 , activation=a__ ) , ) _lowerCAmelCase : Dict = ACTaFN[config.hidden_act] def __A ( self , a__ ): _lowerCAmelCase : List[str] = hidden_state _lowerCAmelCase : Optional[int] = self.layer(a__ ) _lowerCAmelCase : List[Any] = self.shortcut(a__ ) hidden_state += residual _lowerCAmelCase : List[str] = self.activation(a__ ) return hidden_state class __A ( nn.Module ): def __init__( self , a__ , a__ , a__ , a__ = 2 , a__ = 2 , ): super().__init__() _lowerCAmelCase : List[Any] = RegNetXLayer if config.layer_type == """x""" else RegNetYLayer _lowerCAmelCase : str = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( a__ , a__ , a__ , stride=a__ , ) , *[layer(a__ , a__ , a__ ) for _ in range(depth - 1 )] , ) def __A ( self , a__ ): _lowerCAmelCase : List[Any] = self.layers(a__ ) return hidden_state class __A ( nn.Module ): def __init__( self , a__ ): super().__init__() _lowerCAmelCase : Optional[int] = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( a__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _lowerCAmelCase : List[str] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(a__ , config.depths[1:] ): self.stages.append(RegNetStage(a__ , a__ , a__ , depth=a__ ) ) def __A ( self , a__ , a__ = False , a__ = True ): _lowerCAmelCase : Any = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _lowerCAmelCase : Union[str, Any] = hidden_states + (hidden_state,) _lowerCAmelCase : Union[str, Any] = stage_module(a__ ) if output_hidden_states: _lowerCAmelCase : Union[str, Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=a__ , hidden_states=a__ ) class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Tuple = RegNetConfig _UpperCamelCase : int = "regnet" _UpperCamelCase : List[str] = "pixel_values" _UpperCamelCase : Union[str, Any] = True def __A ( self , a__ ): if isinstance(a__ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""" ) elif isinstance(a__ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def __A ( self , a__ , a__=False ): if isinstance(a__ , a__ ): _lowerCAmelCase : Optional[int] = value _a : List[Any] = r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' _a : List[Any] = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , SCREAMING_SNAKE_CASE_ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ ): super().__init__(a__ ) _lowerCAmelCase : List[Any] = config _lowerCAmelCase : Any = RegNetEmbeddings(a__ ) _lowerCAmelCase : List[str] = RegNetEncoder(a__ ) _lowerCAmelCase : str = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(a__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=a__ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __A ( self , a__ , a__ = None , a__ = None ): _lowerCAmelCase : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowerCAmelCase : Tuple = return_dict if return_dict is not None else self.config.use_return_dict _lowerCAmelCase : List[Any] = self.embedder(a__ ) _lowerCAmelCase : Optional[Any] = self.encoder( a__ , output_hidden_states=a__ , return_dict=a__ ) _lowerCAmelCase : str = encoder_outputs[0] _lowerCAmelCase : Optional[Any] = self.pooler(a__ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=a__ , pooler_output=a__ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , SCREAMING_SNAKE_CASE_ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ ): super().__init__(a__ ) _lowerCAmelCase : Any = config.num_labels _lowerCAmelCase : Optional[int] = RegNetModel(a__ ) # classification head _lowerCAmelCase : Optional[Any] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(a__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=a__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __A ( self , a__ = None , a__ = None , a__ = None , a__ = None , ): _lowerCAmelCase : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict _lowerCAmelCase : Union[str, Any] = self.regnet(a__ , output_hidden_states=a__ , return_dict=a__ ) _lowerCAmelCase : str = outputs.pooler_output if return_dict else outputs[1] _lowerCAmelCase : str = self.classifier(a__ ) _lowerCAmelCase : List[str] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _lowerCAmelCase : str = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _lowerCAmelCase : Optional[int] = """single_label_classification""" else: _lowerCAmelCase : Optional[int] = """multi_label_classification""" if self.config.problem_type == "regression": _lowerCAmelCase : Optional[Any] = MSELoss() if self.num_labels == 1: _lowerCAmelCase : int = loss_fct(logits.squeeze() , labels.squeeze() ) else: _lowerCAmelCase : Dict = loss_fct(a__ , a__ ) elif self.config.problem_type == "single_label_classification": _lowerCAmelCase : Any = CrossEntropyLoss() _lowerCAmelCase : Dict = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _lowerCAmelCase : Dict = BCEWithLogitsLoss() _lowerCAmelCase : Tuple = loss_fct(a__ , a__ ) if not return_dict: _lowerCAmelCase : Optional[int] = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=a__ , logits=a__ , hidden_states=outputs.hidden_states )
44
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=True , _lowercase="pt" ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = {'add_prefix_space': True} if isinstance(_lowercase , _lowercase ) and not line.startswith(' ' ) else {} __UpperCamelCase = padding_side return tokenizer( [line] , max_length=_lowercase , padding='max_length' if pad_to_max_length else None , truncation=_lowercase , return_tensors=_lowercase , add_special_tokens=_lowercase , **_lowercase , ) def _A ( _lowercase , _lowercase , _lowercase=None , ) -> List[Any]: """simple docstring""" __UpperCamelCase = input_ids.ne(_lowercase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCamelCase (_a ): def __init__( self: List[str],A_: str,A_: List[str],A_: List[str],A_: List[str],A_: Tuple="train",A_: Any=None,A_: List[str]=None,A_: List[Any]=None,A_: int="",): '''simple docstring''' super().__init__() __UpperCamelCase = Path(A_ ).joinpath(type_path + '.source' ) __UpperCamelCase = Path(A_ ).joinpath(type_path + '.target' ) __UpperCamelCase = self.get_char_lens(self.src_file ) __UpperCamelCase = max_source_length __UpperCamelCase = max_target_length assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}''' __UpperCamelCase = tokenizer __UpperCamelCase = prefix if n_obs is not None: __UpperCamelCase = self.src_lens[:n_obs] __UpperCamelCase = src_lang __UpperCamelCase = tgt_lang def __len__( self: Optional[Any] ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self: int,A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = index + 1 # linecache starts at 1 __UpperCamelCase = self.prefix + linecache.getline(str(self.src_file ),A_ ).rstrip('\n' ) __UpperCamelCase = linecache.getline(str(self.tgt_file ),A_ ).rstrip('\n' ) assert source_line, F'''empty source line for index {index}''' assert tgt_line, F'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer,A_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __UpperCamelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer,A_ ) else self.tokenizer ) __UpperCamelCase = self.tokenizer.generator if isinstance(self.tokenizer,A_ ) else self.tokenizer __UpperCamelCase = encode_line(A_,A_,self.max_source_length,'right' ) __UpperCamelCase = encode_line(A_,A_,self.max_target_length,'right' ) __UpperCamelCase = source_inputs['input_ids'].squeeze() __UpperCamelCase = target_inputs['input_ids'].squeeze() __UpperCamelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def snake_case_ ( A_: List[Any] ): '''simple docstring''' return [len(A_ ) for x in Path(A_ ).open().readlines()] def snake_case_ ( self: Union[str, Any],A_: Any ): '''simple docstring''' __UpperCamelCase = torch.stack([x['input_ids'] for x in batch] ) __UpperCamelCase = torch.stack([x['attention_mask'] for x in batch] ) __UpperCamelCase = torch.stack([x['decoder_input_ids'] for x in batch] ) __UpperCamelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer,A_ ) else self.tokenizer.pad_token_id ) __UpperCamelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer,A_ ) else self.tokenizer.pad_token_id ) __UpperCamelCase = trim_batch(A_,A_ ) __UpperCamelCase, __UpperCamelCase = trim_batch(A_,A_,attention_mask=A_ ) __UpperCamelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch __snake_case = getLogger(__name__) def _A ( _lowercase ) -> Any: """simple docstring""" return list(itertools.chain.from_iterable(_lowercase ) ) def _A ( _lowercase ) -> None: """simple docstring""" __UpperCamelCase = get_git_info() save_json(_lowercase , os.path.join(_lowercase , 'git_log.json' ) ) def _A ( _lowercase , _lowercase , _lowercase=4 , **_lowercase ) -> List[Any]: """simple docstring""" with open(_lowercase , 'w' ) as f: json.dump(_lowercase , _lowercase , indent=_lowercase , **_lowercase ) def _A ( _lowercase ) -> Union[str, Any]: """simple docstring""" with open(_lowercase ) as f: return json.load(_lowercase ) def _A ( ) -> Dict: """simple docstring""" __UpperCamelCase = git.Repo(search_parent_directories=_lowercase ) __UpperCamelCase = { 'repo_id': str(_lowercase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def _A ( _lowercase , _lowercase ) -> List: """simple docstring""" return list(map(_lowercase , _lowercase ) ) def _A ( _lowercase , _lowercase ) -> Tuple: """simple docstring""" with open(_lowercase , 'wb' ) as f: return pickle.dump(_lowercase , _lowercase ) def _A ( _lowercase ) -> List[Any]: """simple docstring""" def remove_articles(_lowercase ): return re.sub(r'\b(a|an|the)\b' , ' ' , _lowercase ) def white_space_fix(_lowercase ): return " ".join(text.split() ) def remove_punc(_lowercase ): __UpperCamelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowercase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowercase ) ) ) ) def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" __UpperCamelCase = normalize_answer(_lowercase ).split() __UpperCamelCase = normalize_answer(_lowercase ).split() __UpperCamelCase = Counter(_lowercase ) & Counter(_lowercase ) __UpperCamelCase = sum(common.values() ) if num_same == 0: return 0 __UpperCamelCase = 1.0 * num_same / len(_lowercase ) __UpperCamelCase = 1.0 * num_same / len(_lowercase ) __UpperCamelCase = (2 * precision * recall) / (precision + recall) return fa def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" return normalize_answer(_lowercase ) == normalize_answer(_lowercase ) def _A ( _lowercase , _lowercase ) -> Dict: """simple docstring""" assert len(_lowercase ) == len(_lowercase ) __UpperCamelCase = 0 for hypo, pred in zip(_lowercase , _lowercase ): em += exact_match_score(_lowercase , _lowercase ) if len(_lowercase ) > 0: em /= len(_lowercase ) return {"em": em} def _A ( _lowercase ) -> Optional[Any]: """simple docstring""" return model_prefix.startswith('rag' ) def _A ( _lowercase , _lowercase , _lowercase ) -> Dict: """simple docstring""" __UpperCamelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __UpperCamelCase = 'dropout_rate' for p in extra_params: if getattr(_lowercase , _lowercase , _lowercase ): if not hasattr(_lowercase , _lowercase ) and not hasattr(_lowercase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_lowercase ) ) delattr(_lowercase , _lowercase ) continue __UpperCamelCase = p if hasattr(_lowercase , _lowercase ) else equivalent_param[p] setattr(_lowercase , _lowercase , getattr(_lowercase , _lowercase ) ) delattr(_lowercase , _lowercase ) return hparams, config
310
0
"""simple docstring""" import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def lowercase ( lowerCAmelCase__ : Tuple ) -> str: if is_torch_version('''<''' , '''2.0.0''' ) or not hasattr(lowerCAmelCase__ , '''_dynamo''' ): return False return isinstance(lowerCAmelCase__ , torch._dynamo.eval_frame.OptimizedModule ) def lowercase ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : bool = True ) -> int: __a = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __a = is_compiled_module(lowerCAmelCase__ ) if is_compiled: __a = model __a = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = model.module if not keep_fpaa_wrapper: __a = getattr(lowerCAmelCase__ , '''forward''' ) __a = model.__dict__.pop('''_original_forward''' , lowerCAmelCase__ ) if original_forward is not None: while hasattr(lowerCAmelCase__ , '''__wrapped__''' ): __a = forward.__wrapped__ if forward == original_forward: break __a = forward if getattr(lowerCAmelCase__ , '''_converted_to_transformer_engine''' , lowerCAmelCase__ ): convert_model(lowerCAmelCase__ , to_transformer_engine=lowerCAmelCase__ ) if is_compiled: __a = model __a = compiled_model return model def lowercase ( ) -> Optional[int]: PartialState().wait_for_everyone() def lowercase ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple ) -> int: if PartialState().distributed_type == DistributedType.TPU: xm.save(lowerCAmelCase__ , lowerCAmelCase__ ) elif PartialState().local_process_index == 0: torch.save(lowerCAmelCase__ , lowerCAmelCase__ ) @contextmanager def lowercase ( **lowerCAmelCase__ : List[str] ) -> List[str]: for key, value in kwargs.items(): __a = str(lowerCAmelCase__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def lowercase ( lowerCAmelCase__ : Any ) -> Optional[int]: if not hasattr(lowerCAmelCase__ , '''__qualname__''' ) and not hasattr(lowerCAmelCase__ , '''__name__''' ): __a = getattr(lowerCAmelCase__ , '''__class__''' , lowerCAmelCase__ ) if hasattr(lowerCAmelCase__ , '''__qualname__''' ): return obj.__qualname__ if hasattr(lowerCAmelCase__ , '''__name__''' ): return obj.__name__ return str(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Union[str, Any] ) -> str: for key, value in source.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = destination.setdefault(lowerCAmelCase__ , {} ) merge_dicts(lowerCAmelCase__ , lowerCAmelCase__ ) else: __a = value return destination def lowercase ( lowerCAmelCase__ : int = None ) -> bool: if port is None: __a = 29500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('''localhost''', port) ) == 0
45
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __snake_case = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
310
0
"""simple docstring""" import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowercase : @staticmethod def _snake_case ( *lowercase , **lowercase ) -> Any: pass @is_pipeline_test @require_vision class lowercase ( unittest.TestCase ): @require_torch def _snake_case ( self ) -> List[str]: lowerCAmelCase = pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , ) lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowerCAmelCase = image_classifier(lowercase , candidate_labels=["""a""", """b""", """c"""] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(lowercase ) , [ [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """b"""}, {"""score""": 0.333, """label""": """c"""}], [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """c"""}, {"""score""": 0.333, """label""": """b"""}], ] , ) lowerCAmelCase = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 ) self.assertEqual( nested_simplify(lowercase ) , [ [ {"""score""": 0.333, """label""": ANY(lowercase )}, {"""score""": 0.333, """label""": ANY(lowercase )}, {"""score""": 0.333, """label""": ANY(lowercase )}, ], [ {"""score""": 0.333, """label""": ANY(lowercase )}, {"""score""": 0.333, """label""": ANY(lowercase )}, {"""score""": 0.333, """label""": ANY(lowercase )}, ], [ {"""score""": 0.333, """label""": ANY(lowercase )}, {"""score""": 0.333, """label""": ANY(lowercase )}, {"""score""": 0.333, """label""": ANY(lowercase )}, ], [ {"""score""": 0.333, """label""": ANY(lowercase )}, {"""score""": 0.333, """label""": ANY(lowercase )}, {"""score""": 0.333, """label""": ANY(lowercase )}, ], [ {"""score""": 0.333, """label""": ANY(lowercase )}, {"""score""": 0.333, """label""": ANY(lowercase )}, {"""score""": 0.333, """label""": ANY(lowercase )}, ], ] , ) @require_tf def _snake_case ( self ) -> List[str]: lowerCAmelCase = pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , framework="""tf""" ) lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowerCAmelCase = image_classifier(lowercase , candidate_labels=["""a""", """b""", """c"""] ) self.assertEqual( nested_simplify(lowercase ) , [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """b"""}, {"""score""": 0.333, """label""": """c"""}] , ) lowerCAmelCase = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 ) self.assertEqual( nested_simplify(lowercase ) , [ [ {"""score""": 0.333, """label""": ANY(lowercase )}, {"""score""": 0.333, """label""": ANY(lowercase )}, {"""score""": 0.333, """label""": ANY(lowercase )}, ], [ {"""score""": 0.333, """label""": ANY(lowercase )}, {"""score""": 0.333, """label""": ANY(lowercase )}, {"""score""": 0.333, """label""": ANY(lowercase )}, ], [ {"""score""": 0.333, """label""": ANY(lowercase )}, {"""score""": 0.333, """label""": ANY(lowercase )}, {"""score""": 0.333, """label""": ANY(lowercase )}, ], [ {"""score""": 0.333, """label""": ANY(lowercase )}, {"""score""": 0.333, """label""": ANY(lowercase )}, {"""score""": 0.333, """label""": ANY(lowercase )}, ], [ {"""score""": 0.333, """label""": ANY(lowercase )}, {"""score""": 0.333, """label""": ANY(lowercase )}, {"""score""": 0.333, """label""": ANY(lowercase )}, ], ] , ) @slow @require_torch def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = pipeline( task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , ) # This is an image of 2 cats with remotes and no planes lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowerCAmelCase = image_classifier(lowercase , candidate_labels=["""cat""", """plane""", """remote"""] ) self.assertEqual( nested_simplify(lowercase ) , [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ] , ) lowerCAmelCase = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 ) self.assertEqual( nested_simplify(lowercase ) , [ [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ], ] * 5 , ) @slow @require_tf def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase = pipeline( task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , framework="""tf""" ) # This is an image of 2 cats with remotes and no planes lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowerCAmelCase = image_classifier(lowercase , candidate_labels=["""cat""", """plane""", """remote"""] ) self.assertEqual( nested_simplify(lowercase ) , [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ] , ) lowerCAmelCase = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 ) self.assertEqual( nested_simplify(lowercase ) , [ [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ], ] * 5 , )
46
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup __snake_case = '''https://www.indeed.co.in/jobs?q=mobile+app+development&l=''' def _A ( _lowercase = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" __UpperCamelCase = BeautifulSoup(requests.get(url + location ).content , 'html.parser' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('div' , attrs={'data-tn-component': 'organicJob'} ): __UpperCamelCase = job.find('a' , attrs={'data-tn-element': 'jobTitle'} ).text.strip() __UpperCamelCase = job.find('span' , {'class': 'company'} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('''Bangalore'''), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
310
0
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) lowerCamelCase : Dict = "\\n Text data.\n Second line of data." lowerCamelCase : List[str] = "file" @pytest.fixture(scope='session' ) def _lowerCAmelCase ( _UpperCamelCase : Dict ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =tmp_path_factory.mktemp('data' ) / (FILE_PATH + '.zstd') _SCREAMING_SNAKE_CASE =bytes(_UpperCamelCase , 'utf-8' ) with zstd.open(_UpperCamelCase , 'wb' ) as f: f.write(_UpperCamelCase ) return path @pytest.fixture def _lowerCAmelCase ( _UpperCamelCase : List[str] ) -> Dict: """simple docstring""" with open(os.path.join(tmpfs.local_root_dir , _UpperCamelCase ) , 'w' ) as f: f.write(_UpperCamelCase ) return FILE_PATH @pytest.mark.parametrize('compression_format' , ['gzip', 'xz', 'zstd'] ) def _lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE ={'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_path} _SCREAMING_SNAKE_CASE =input_paths[compression_format] _SCREAMING_SNAKE_CASE =tmp_path / 'cache' _SCREAMING_SNAKE_CASE =DownloadConfig(cache_dir=_UpperCamelCase , extract_compressed_file=_UpperCamelCase ) _SCREAMING_SNAKE_CASE =cached_path(_UpperCamelCase , download_config=_UpperCamelCase ) with open(_UpperCamelCase ) as f: _SCREAMING_SNAKE_CASE =f.read() with open(_UpperCamelCase ) as f: _SCREAMING_SNAKE_CASE =f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('default_extracted' , [True, False] ) @pytest.mark.parametrize('default_cache_dir' , [True, False] ) def _lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : str , _UpperCamelCase : Tuple , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE ='custom_cache' _SCREAMING_SNAKE_CASE ='custom_extracted_dir' _SCREAMING_SNAKE_CASE =tmp_path / 'custom_extracted_path' if default_extracted: _SCREAMING_SNAKE_CASE =('downloads' if default_cache_dir else custom_cache_dir, 'extracted') else: monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_DIR' , _UpperCamelCase ) monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(_UpperCamelCase ) ) _SCREAMING_SNAKE_CASE =custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _SCREAMING_SNAKE_CASE =xz_file _SCREAMING_SNAKE_CASE =( DownloadConfig(extract_compressed_file=_UpperCamelCase ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_UpperCamelCase ) ) _SCREAMING_SNAKE_CASE =cached_path(_UpperCamelCase , download_config=_UpperCamelCase ) assert Path(_UpperCamelCase ).parent.parts[-2:] == expected def _lowerCAmelCase ( _UpperCamelCase : Optional[Any] ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =str(Path(_UpperCamelCase ).resolve() ) assert cached_path(_UpperCamelCase ) == text_file # relative path _SCREAMING_SNAKE_CASE =str(Path(_UpperCamelCase ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(_UpperCamelCase ) == text_file def _lowerCAmelCase ( _UpperCamelCase : List[str] ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =str(tmp_path.resolve() / '__missing_file__.txt' ) with pytest.raises(_UpperCamelCase ): cached_path(_UpperCamelCase ) # relative path _SCREAMING_SNAKE_CASE ='./__missing_file__.txt' with pytest.raises(_UpperCamelCase ): cached_path(_UpperCamelCase ) def _lowerCAmelCase ( _UpperCamelCase : Optional[Any] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =get_from_cache(f"tmp://{tmpfs_file}" ) with open(_UpperCamelCase ) as f: _SCREAMING_SNAKE_CASE =f.read() assert output_file_content == FILE_CONTENT @patch('datasets.config.HF_DATASETS_OFFLINE' , _UpperCamelCase ) def _lowerCAmelCase ( ) -> Union[str, Any]: """simple docstring""" with pytest.raises(_UpperCamelCase ): cached_path('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , _UpperCamelCase ) def _lowerCAmelCase ( _UpperCamelCase : List[str] ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(_UpperCamelCase ): http_get('https://huggingface.co' , temp_file=_UpperCamelCase ) with pytest.raises(_UpperCamelCase ): http_head('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , _UpperCamelCase ) def _lowerCAmelCase ( _UpperCamelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(_UpperCamelCase ): ftp_get('ftp://huggingface.co' , temp_file=_UpperCamelCase ) with pytest.raises(_UpperCamelCase ): ftp_head('ftp://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , _UpperCamelCase ) def _lowerCAmelCase ( _UpperCamelCase : Tuple ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(_UpperCamelCase ): fsspec_get('s3://huggingface.co' , temp_file=_UpperCamelCase ) with pytest.raises(_UpperCamelCase ): fsspec_head('s3://huggingface.co' )
47
def _A ( _lowercase ) -> list: """simple docstring""" def merge(_lowercase , _lowercase ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(_lowercase ) <= 1: return collection __UpperCamelCase = len(_lowercase ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() __snake_case = input('''Enter numbers separated by a comma:\n''').strip() __snake_case = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
310
0
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , ) -> Optional[int]: lowerCamelCase : int = parent lowerCamelCase : int = 13 lowerCamelCase : str = 7 lowerCamelCase : Any = True lowerCamelCase : Optional[int] = True lowerCamelCase : Dict = True lowerCamelCase : List[Any] = 99 lowerCamelCase : List[Any] = 32 lowerCamelCase : str = 2 lowerCamelCase : Union[str, Any] = 4 lowerCamelCase : str = 37 lowerCamelCase : Any = "gelu" lowerCamelCase : Optional[Any] = 0.1 lowerCamelCase : Dict = 0.1 lowerCamelCase : Optional[Any] = 512 lowerCamelCase : Optional[Any] = 16 lowerCamelCase : List[Any] = 2 lowerCamelCase : int = 0.02 lowerCamelCase : Tuple = 3 lowerCamelCase : Optional[int] = 4 lowerCamelCase : Any = None def _lowercase ( self ) -> List[str]: lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase : Union[str, Any] = None if self.use_input_mask: lowerCamelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase : Union[str, Any] = None lowerCamelCase : Tuple = None lowerCamelCase : Tuple = None if self.use_labels: lowerCamelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase : Union[str, Any] = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self ) -> Dict: ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) : Dict = self.prepare_config_and_inputs() lowerCamelCase : Union[str, Any] = True lowerCamelCase : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: lowerCamelCase : List[Any] = TFEsmModel(config=UpperCamelCase__ ) lowerCamelCase : int = {"input_ids": input_ids, "attention_mask": input_mask} lowerCamelCase : List[Any] = model(UpperCamelCase__ ) lowerCamelCase : int = [input_ids, input_mask] lowerCamelCase : Optional[Any] = model(UpperCamelCase__ ) lowerCamelCase : Union[str, Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> str: lowerCamelCase : Optional[int] = True lowerCamelCase : Union[str, Any] = TFEsmModel(config=UpperCamelCase__ ) lowerCamelCase : str = { "input_ids": input_ids, "attention_mask": input_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, } lowerCamelCase : List[str] = model(UpperCamelCase__ ) lowerCamelCase : Tuple = [input_ids, input_mask] lowerCamelCase : Dict = model(UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ ) # Also check the case where encoder outputs are not passed lowerCamelCase : Any = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: lowerCamelCase : List[str] = TFEsmForMaskedLM(config=UpperCamelCase__ ) lowerCamelCase : Any = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: lowerCamelCase : List[Any] = self.num_labels lowerCamelCase : Dict = TFEsmForTokenClassification(config=UpperCamelCase__ ) lowerCamelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask} lowerCamelCase : Dict = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self ) -> Optional[Any]: lowerCamelCase : Tuple = self.prepare_config_and_inputs() ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) : Optional[Any] = config_and_inputs lowerCamelCase : Any = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class UpperCamelCase__ (lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ : Dict = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) lowerCamelCase_ : Optional[Any] = ( { """feature-extraction""": TFEsmModel, """fill-mask""": TFEsmForMaskedLM, """text-classification""": TFEsmForSequenceClassification, """token-classification""": TFEsmForTokenClassification, """zero-shot""": TFEsmForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase_ : Any = False lowerCamelCase_ : Dict = False def _lowercase ( self ) -> Any: lowerCamelCase : Tuple = TFEsmModelTester(self ) lowerCamelCase : int = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def _lowercase ( self ) -> List[str]: self.config_tester.run_common_tests() def _lowercase ( self ) -> str: lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def _lowercase ( self ) -> List[str]: lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*UpperCamelCase__ ) def _lowercase ( self ) -> Union[str, Any]: lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase__ ) def _lowercase ( self ) -> List[Any]: lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase__ ) @slow def _lowercase ( self ) -> List[Any]: for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase : Any = TFEsmModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @unittest.skip("Protein models do not support embedding resizing." ) def _lowercase ( self ) -> List[str]: pass @unittest.skip("Protein models do not support embedding resizing." ) def _lowercase ( self ) -> Optional[Any]: pass def _lowercase ( self ) -> Tuple: lowerCamelCase , lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : Optional[Any] = model_class(UpperCamelCase__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowerCamelCase : Any = model.get_bias() assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) for k, v in name.items(): assert isinstance(UpperCamelCase__ , tf.Variable ) else: lowerCamelCase : str = model.get_output_embeddings() assert x is None lowerCamelCase : Optional[Any] = model.get_bias() assert name is None @require_tf class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self ) -> Dict: lowerCamelCase : int = TFEsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D" ) lowerCamelCase : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase : Optional[int] = model(UpperCamelCase__ )[0] lowerCamelCase : Union[str, Any] = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , UpperCamelCase__ ) # compare the actual values for a slice. lowerCamelCase : List[str] = tf.constant( [ [ [8.921518, -10.589814, -6.4671307], [-6.3967156, -13.911377, -1.1211915], [-7.781247, -13.951557, -3.740592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def _lowercase ( self ) -> str: lowerCamelCase : Dict = TFEsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D" ) lowerCamelCase : int = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCamelCase : Dict = model(UpperCamelCase__ )[0] # compare the actual values for a slice. lowerCamelCase : int = tf.constant( [ [ [0.14443092, 0.54125327, 0.3247739], [0.30340484, 0.00526676, 0.31077722], [0.32278043, -0.24987096, 0.3414628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
48
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowerCamelCase (_a ): _lowercase = 0 _lowercase = False _lowercase = 3.0 class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: Any ): '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs(),{} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs(),{'a': 2} ) self.assertDictEqual(MockClass(a=2,b=A_ ).to_kwargs(),{'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2,c=2.2_5 ).to_kwargs(),{'a': 2, 'c': 2.2_5} ) @require_cuda def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = GradScalerKwargs(init_scale=1024,growth_factor=2 ) AcceleratorState._reset_state() __UpperCamelCase = Accelerator(mixed_precision='fp16',kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __UpperCamelCase = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale,1_0_2_4.0 ) self.assertEqual(scaler._growth_factor,2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor,0.5 ) self.assertEqual(scaler._growth_interval,2000 ) self.assertEqual(scaler._enabled,A_ ) @require_multi_gpu def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(A_,env=os.environ.copy() ) if __name__ == "__main__": __snake_case = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) __snake_case = Accelerator(kwargs_handlers=[ddp_scaler]) __snake_case = torch.nn.Linear(1_0_0, 2_0_0) __snake_case = accelerator.prepare(model) # Check the values changed in kwargs __snake_case = '''''' __snake_case = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
310
0
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __a = np.full((len(_UpperCAmelCase ), sequence_length, 2) , _UpperCAmelCase ) else: __a = np.full((len(_UpperCAmelCase ), sequence_length) , _UpperCAmelCase ) for i, tensor in enumerate(_UpperCAmelCase ): if padding_side == "right": if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __a = tensor[:sequence_length] else: __a = tensor[:sequence_length] else: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __a = tensor[:sequence_length] else: __a = tensor[:sequence_length] return out_tensor.tolist() def __snake_case ( _UpperCAmelCase ): __a = ord(_UpperCAmelCase ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True __a = unicodedata.category(_UpperCAmelCase ) if cat.startswith('''P''' ): return True return False @dataclass class _A ( __UpperCAmelCase ): UpperCamelCase__ : PreTrainedTokenizerBase UpperCamelCase__ : Union[bool, str, PaddingStrategy] = True UpperCamelCase__ : Optional[int] = None UpperCamelCase__ : Optional[int] = None UpperCamelCase__ : int = -100 UpperCamelCase__ : str = "pt" def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]): '''simple docstring''' import torch __a = '''label''' if '''label''' in features[0].keys() else '''labels''' __a = [feature[label_name] for feature in features] if label_name in features[0].keys() else None __a = self.tokenizer.pad( __SCREAMING_SNAKE_CASE , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch __a = torch.tensor(batch['''entity_ids''']).shape[1] __a = self.tokenizer.padding_side if padding_side == "right": __a = [ list(__SCREAMING_SNAKE_CASE) + [self.label_pad_token_id] * (sequence_length - len(__SCREAMING_SNAKE_CASE)) for label in labels ] else: __a = [ [self.label_pad_token_id] * (sequence_length - len(__SCREAMING_SNAKE_CASE)) + list(__SCREAMING_SNAKE_CASE) for label in labels ] __a = [feature['''ner_tags'''] for feature in features] __a = padding_tensor(__SCREAMING_SNAKE_CASE , -1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = [feature['''original_entity_spans'''] for feature in features] __a = padding_tensor(__SCREAMING_SNAKE_CASE , (-1, -1) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = {k: torch.tensor(__SCREAMING_SNAKE_CASE , dtype=torch.intaa) for k, v in batch.items()} return batch
49
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class __lowerCamelCase (_a ): _lowercase = ["""image_processor""", """tokenizer"""] _lowercase = """OwlViTImageProcessor""" _lowercase = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self: int,A_: Tuple=None,A_: int=None,**A_: int ): '''simple docstring''' __UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.',A_,) __UpperCamelCase = kwargs.pop('feature_extractor' ) __UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(A_,A_ ) def __call__( self: str,A_: Dict=None,A_: Optional[int]=None,A_: Any=None,A_: Tuple="max_length",A_: int="np",**A_: Optional[Any] ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(A_,A_ ) or (isinstance(A_,A_ ) and not isinstance(text[0],A_ )): __UpperCamelCase = [self.tokenizer(A_,padding=A_,return_tensors=A_,**A_ )] elif isinstance(A_,A_ ) and isinstance(text[0],A_ ): __UpperCamelCase = [] # Maximum number of queries across batch __UpperCamelCase = max([len(A_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(A_ ) != max_num_queries: __UpperCamelCase = t + [' '] * (max_num_queries - len(A_ )) __UpperCamelCase = self.tokenizer(A_,padding=A_,return_tensors=A_,**A_ ) encodings.append(A_ ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": __UpperCamelCase = np.concatenate([encoding['input_ids'] for encoding in encodings],axis=0 ) __UpperCamelCase = np.concatenate([encoding['attention_mask'] for encoding in encodings],axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __UpperCamelCase = jnp.concatenate([encoding['input_ids'] for encoding in encodings],axis=0 ) __UpperCamelCase = jnp.concatenate([encoding['attention_mask'] for encoding in encodings],axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __UpperCamelCase = torch.cat([encoding['input_ids'] for encoding in encodings],dim=0 ) __UpperCamelCase = torch.cat([encoding['attention_mask'] for encoding in encodings],dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __UpperCamelCase = tf.stack([encoding['input_ids'] for encoding in encodings],axis=0 ) __UpperCamelCase = tf.stack([encoding['attention_mask'] for encoding in encodings],axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) __UpperCamelCase = BatchEncoding() __UpperCamelCase = input_ids __UpperCamelCase = attention_mask if query_images is not None: __UpperCamelCase = BatchEncoding() __UpperCamelCase = self.image_processor( A_,return_tensors=A_,**A_ ).pixel_values __UpperCamelCase = query_pixel_values if images is not None: __UpperCamelCase = self.image_processor(A_,return_tensors=A_,**A_ ) if text is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**A_ ),tensor_type=A_ ) def snake_case_ ( self: Optional[int],*A_: int,**A_: List[Any] ): '''simple docstring''' return self.image_processor.post_process(*A_,**A_ ) def snake_case_ ( self: str,*A_: Optional[int],**A_: List[Any] ): '''simple docstring''' return self.image_processor.post_process_object_detection(*A_,**A_ ) def snake_case_ ( self: str,*A_: Tuple,**A_: int ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*A_,**A_ ) def snake_case_ ( self: List[str],*A_: str,**A_: List[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*A_,**A_ ) def snake_case_ ( self: int,*A_: Any,**A_: Tuple ): '''simple docstring''' return self.tokenizer.decode(*A_,**A_ ) @property def snake_case_ ( self: Optional[Any] ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.',A_,) return self.image_processor_class @property def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.',A_,) return self.image_processor
310
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCAmelCase : Dict = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : int = [ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys _UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
50
import math def _A ( _lowercase ) -> int: """simple docstring""" if not isinstance(_lowercase , _lowercase ): __UpperCamelCase = f'''Input value of [number={number}] must be an integer''' raise TypeError(_lowercase ) if number < 1: __UpperCamelCase = f'''Input value of [number={number}] must be > 0''' raise ValueError(_lowercase ) elif number == 1: return 3 elif number == 2: return 5 else: __UpperCamelCase = int(math.log(number // 3 , 2 ) ) + 2 __UpperCamelCase = [3, 5] __UpperCamelCase = 2 __UpperCamelCase = 3 for block in range(1 , _lowercase ): for _ in range(_lowercase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(1_1): __snake_case = 0 try: __snake_case = proth(number) except ValueError: print(f"""ValueError: there is no {number}th Proth number""") continue print(f"""The {number}th Proth number: {value}""")
310
0
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel snake_case_ : int = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class __snake_case ( unittest.TestCase ): @classmethod def lowerCamelCase ( cls : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = TOKEN HfFolder.save_token(_snake_case) @classmethod def lowerCamelCase ( cls : Union[str, Any]): """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-model-flax''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''') except HTTPError: pass def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37) UpperCAmelCase_ = FlaxBertModel(_snake_case) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token) UpperCAmelCase_ = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""") UpperCAmelCase_ = flatten_dict(unfreeze(model.params)) UpperCAmelCase_ = flatten_dict(unfreeze(new_model.params)) for key in base_params.keys(): UpperCAmelCase_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1e-3 , msg=F"""{key} not identical""") # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_snake_case , repo_id='''test-model-flax''' , push_to_hub=_snake_case , use_auth_token=self._token) UpperCAmelCase_ = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""") UpperCAmelCase_ = flatten_dict(unfreeze(model.params)) UpperCAmelCase_ = flatten_dict(unfreeze(new_model.params)) for key in base_params.keys(): UpperCAmelCase_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1e-3 , msg=F"""{key} not identical""") def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37) UpperCAmelCase_ = FlaxBertModel(_snake_case) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token) UpperCAmelCase_ = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''') UpperCAmelCase_ = flatten_dict(unfreeze(model.params)) UpperCAmelCase_ = flatten_dict(unfreeze(new_model.params)) for key in base_params.keys(): UpperCAmelCase_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1e-3 , msg=F"""{key} not identical""") # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _snake_case , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_snake_case , use_auth_token=self._token) UpperCAmelCase_ = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''') UpperCAmelCase_ = flatten_dict(unfreeze(model.params)) UpperCAmelCase_ = flatten_dict(unfreeze(new_model.params)) for key in base_params.keys(): UpperCAmelCase_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1e-3 , msg=F"""{key} not identical""") def A (__A : Dict , __A : Dict ) -> int: """simple docstring""" UpperCAmelCase_ = True UpperCAmelCase_ = flatten_dict(modela.params ) UpperCAmelCase_ = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: UpperCAmelCase_ = False return models_are_equal @require_flax class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''') UpperCAmelCase_ = FlaxBertModel(_snake_case) UpperCAmelCase_ = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_snake_case , _snake_case)) with self.assertRaises(_snake_case): UpperCAmelCase_ = FlaxBertModel.from_pretrained(_snake_case) UpperCAmelCase_ = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case) self.assertTrue(check_models_equal(_snake_case , _snake_case)) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''') UpperCAmelCase_ = FlaxBertModel(_snake_case) UpperCAmelCase_ = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_snake_case , _snake_case) , max_shard_size='''10KB''') with self.assertRaises(_snake_case): UpperCAmelCase_ = FlaxBertModel.from_pretrained(_snake_case) UpperCAmelCase_ = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case) self.assertTrue(check_models_equal(_snake_case , _snake_case)) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = '''bert''' UpperCAmelCase_ = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_snake_case): UpperCAmelCase_ = FlaxBertModel.from_pretrained(_snake_case) UpperCAmelCase_ = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case) self.assertIsNotNone(_snake_case) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = '''bert''' UpperCAmelCase_ = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_snake_case): UpperCAmelCase_ = FlaxBertModel.from_pretrained(_snake_case) UpperCAmelCase_ = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case) self.assertIsNotNone(_snake_case)
51
import torch from transformers import AutoModel class __lowerCamelCase (torch.nn.Module ): def __init__( self: Union[str, Any],A_: Tuple="sayef/fsner-bert-base-uncased" ): '''simple docstring''' super(A_,self ).__init__() __UpperCamelCase = AutoModel.from_pretrained(A_,return_dict=A_ ) __UpperCamelCase = torch.nn.CosineSimilarity(3,1E-08 ) __UpperCamelCase = torch.nn.Softmax(dim=1 ) def snake_case_ ( self: Tuple,**A_: Union[str, Any] ): '''simple docstring''' return self.bert(**A_ ).last_hidden_state def snake_case_ ( self: Union[str, Any],A_: Union[str, Any] ): '''simple docstring''' return token_embeddings.sum(2,keepdim=A_ ) def snake_case_ ( self: List[str],A_: Dict,A_: Union[str, Any],A_: Union[str, Any]=1 ): '''simple docstring''' return self.softmax(T * self.cos(A_,A_ ) ) def snake_case_ ( self: Optional[int],A_: Union[str, Any],A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = W_supports['sizes'].tolist() __UpperCamelCase = W_supports['start_token_id'].item() __UpperCamelCase = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] __UpperCamelCase = self.BERT(**A_ ) __UpperCamelCase = self.BERT(**A_ ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = W_supports['input_ids'] == start_token_id __UpperCamelCase = W_supports['input_ids'] == end_token_id for i, size in enumerate(A_ ): if i == 0: __UpperCamelCase = 0 else: __UpperCamelCase = support_sizes[i - 1] __UpperCamelCase = S[s : s + size][start_token_masks[s : s + size]] __UpperCamelCase = S[s : s + size][end_token_masks[s : s + size]] __UpperCamelCase = torch.matmul(q[i],s_start.T ).sum(1 ).softmax(0 ) __UpperCamelCase = torch.matmul(q[i],s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: __UpperCamelCase = torch.vstack((p_starts, p_start) ) __UpperCamelCase = torch.vstack((p_ends, p_end) ) else: __UpperCamelCase = p_start __UpperCamelCase = p_end return p_starts, p_ends
310
0
import numpy # List of input, output pairs __lowerCamelCase : Any = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) __lowerCamelCase : Optional[Any] = (((515, 22, 13), 555), ((61, 35, 49), 150)) __lowerCamelCase : Tuple = [2, 4, 1, 5] __lowerCamelCase : List[str] = len(train_data) __lowerCamelCase : Union[str, Any] = 0.0_0_9 def A_ ( _lowerCAmelCase , _lowerCAmelCase="train" ) -> Tuple: return calculate_hypothesis_value(_lowerCAmelCase , _lowerCAmelCase ) - output( _lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase ) -> str: UpperCamelCase : Dict = 0 for i in range(len(_lowerCAmelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> Any: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def A_ ( _lowerCAmelCase , _lowerCAmelCase=m ) -> Any: UpperCamelCase : int = 0 for i in range(_lowerCAmelCase ): if index == -1: summation_value += _error(_lowerCAmelCase ) else: summation_value += _error(_lowerCAmelCase ) * train_data[i][0][index] return summation_value def A_ ( _lowerCAmelCase ) -> Any: UpperCamelCase : str = summation_of_cost_derivative(_lowerCAmelCase , _lowerCAmelCase ) / m return cost_derivative_value def A_ ( ) -> Union[str, Any]: global parameter_vector # Tune these values to set a tolerance value for predicted output UpperCamelCase : int = 0.000_002 UpperCamelCase : Optional[int] = 0 UpperCamelCase : List[str] = 0 while True: j += 1 UpperCamelCase : List[Any] = [0, 0, 0, 0] for i in range(0 , len(_lowerCAmelCase ) ): UpperCamelCase : List[Any] = get_cost_derivative(i - 1 ) UpperCamelCase : Union[str, Any] = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( _lowerCAmelCase , _lowerCAmelCase , atol=_lowerCAmelCase , rtol=_lowerCAmelCase , ): break UpperCamelCase : Union[str, Any] = temp_parameter_vector print(("Number of iterations:", j) ) def A_ ( ) -> Tuple: for i in range(len(_lowerCAmelCase ) ): print(("Actual output value:", output(_lowerCAmelCase , "test" )) ) print(("Hypothesis output:", calculate_hypothesis_value(_lowerCAmelCase , "test" )) ) if __name__ == "__main__": run_gradient_descent() print("""\nTesting gradient descent for a linear hypothesis function.\n""") test_gradient_descent()
52
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = BioGptTokenizer _lowercase = False def snake_case_ ( self: Any ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCamelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] __UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) ) __UpperCamelCase = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file,'w' ) as fp: fp.write(json.dumps(A_ ) ) with open(self.merges_file,'w' ) as fp: fp.write('\n'.join(A_ ) ) def snake_case_ ( self: Optional[int],A_: List[Any] ): '''simple docstring''' __UpperCamelCase = 'lower newer' __UpperCamelCase = 'lower newer' return input_text, output_text def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = BioGptTokenizer(self.vocab_file,self.merges_file ) __UpperCamelCase = 'lower' __UpperCamelCase = ['low', 'er</w>'] __UpperCamelCase = tokenizer.tokenize(A_ ) self.assertListEqual(A_,A_ ) __UpperCamelCase = tokens + ['<unk>'] __UpperCamelCase = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ),A_ ) @slow def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) __UpperCamelCase = tokenizer.encode('sequence builders',add_special_tokens=A_ ) __UpperCamelCase = tokenizer.encode('multi-sequence build',add_special_tokens=A_ ) __UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_ ) __UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_,A_ ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
310
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging a__ : str =logging.get_logger(__name__) class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str =["input_features", "attention_mask"] def __init__( self : Union[str, Any] , __A : Optional[int]=8_0 , __A : Tuple=1_6_0_0_0 , __A : Optional[Any]=8_0 , __A : Any=0.0 , __A : Any=True , __A : List[str]=True , __A : str=True , **__A : List[Any] , ): super().__init__(feature_size=__A , sampling_rate=__A , padding_value=__A , **__A ) __UpperCamelCase = num_mel_bins __UpperCamelCase = do_ceptral_normalize __UpperCamelCase = normalize_means __UpperCamelCase = normalize_vars __UpperCamelCase = True def _lowerCamelCase ( self : Union[str, Any] , __A : np.ndarray , ): __UpperCamelCase = waveform * (2**1_5) # Kaldi compliance: 16-bit signed integers __UpperCamelCase = torch.from_numpy(__A ).unsqueeze(0 ) __UpperCamelCase = ta_kaldi.fbank(__A , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def _lowerCamelCase ( __A : np.ndarray , __A : int , __A : Optional[bool] = True , __A : Optional[bool] = True , __A : float = 0.0 , ): # make sure we normalize float32 arrays if normalize_means: __UpperCamelCase = x[:input_length].mean(axis=0 ) __UpperCamelCase = np.subtract(__A , __A ) if normalize_vars: __UpperCamelCase = x[:input_length].std(axis=0 ) __UpperCamelCase = np.divide(__A , __A ) if input_length < x.shape[0]: __UpperCamelCase = padding_value # make sure array is in float32 __UpperCamelCase = x.astype(np.floataa ) return x def _lowerCamelCase ( self : int , __A : List[np.ndarray] , __A : Optional[np.ndarray] = None ): __UpperCamelCase = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(__A , __A , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(__A , __A ) ] def __call__( self : List[Any] , __A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __A : Union[bool, str, PaddingStrategy] = False , __A : Optional[int] = None , __A : bool = False , __A : Optional[int] = None , __A : Optional[Union[str, TensorType]] = None , __A : Optional[int] = None , __A : Optional[bool] = None , **__A : Dict , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) __UpperCamelCase = isinstance(__A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) __UpperCamelCase = is_batched_numpy or ( isinstance(__A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __UpperCamelCase = [np.asarray(__A , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__A , np.ndarray ): __UpperCamelCase = np.asarray(__A , dtype=np.floataa ) elif isinstance(__A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __UpperCamelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __UpperCamelCase = [raw_speech] # extract fbank features __UpperCamelCase = [self._extract_fbank_features(__A ) for waveform in raw_speech] # convert into correct format for padding __UpperCamelCase = BatchFeature({'input_features': features} ) __UpperCamelCase = self.pad( __A , padding=__A , max_length=__A , truncation=__A , pad_to_multiple_of=__A , return_attention_mask=__A , **__A , ) # make sure list is in array format __UpperCamelCase = padded_inputs.get('input_features' ) if isinstance(input_features[0] , __A ): __UpperCamelCase = [np.asarray(__A , dtype=np.floataa ) for feature in input_features] __UpperCamelCase = padded_inputs.get('attention_mask' ) if attention_mask is not None: __UpperCamelCase = [np.asarray(__A , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: __UpperCamelCase = ( np.array(__A , dtype=np.intaa ) if self._get_padding_strategies(__A , max_length=__A ) is not PaddingStrategy.DO_NOT_PAD else None ) __UpperCamelCase = self.normalize( padded_inputs['input_features'] , attention_mask=__A ) if return_tensors is not None: __UpperCamelCase = padded_inputs.convert_to_tensors(__A ) return padded_inputs
53
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __snake_case = r''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(_a ) class __lowerCamelCase (_a ): _lowercase = """rag""" _lowercase = True def __init__( self: Tuple,A_: Any=None,A_: Any=True,A_: List[Any]=None,A_: Optional[int]=None,A_: List[Any]=None,A_: str=None,A_: Union[str, Any]=None,A_: List[Any]=" / ",A_: Union[str, Any]=" // ",A_: List[Any]=5,A_: Optional[int]=300,A_: Tuple=768,A_: Tuple=8,A_: Optional[Any]="wiki_dpr",A_: int="train",A_: Union[str, Any]="compressed",A_: Optional[int]=None,A_: List[Any]=None,A_: List[str]=False,A_: List[str]=False,A_: str=0.0,A_: List[Any]=True,A_: Tuple=False,A_: int=False,A_: Dict=False,A_: Tuple=True,A_: int=None,**A_: Optional[int],): '''simple docstring''' super().__init__( bos_token_id=A_,pad_token_id=A_,eos_token_id=A_,decoder_start_token_id=A_,forced_eos_token_id=A_,is_encoder_decoder=A_,prefix=A_,vocab_size=A_,**A_,) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" __UpperCamelCase = kwargs.pop('question_encoder' ) __UpperCamelCase = question_encoder_config.pop('model_type' ) __UpperCamelCase = kwargs.pop('generator' ) __UpperCamelCase = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig __UpperCamelCase = AutoConfig.for_model(A_,**A_ ) __UpperCamelCase = AutoConfig.for_model(A_,**A_ ) __UpperCamelCase = reduce_loss __UpperCamelCase = label_smoothing __UpperCamelCase = exclude_bos_score __UpperCamelCase = do_marginalize __UpperCamelCase = title_sep __UpperCamelCase = doc_sep __UpperCamelCase = n_docs __UpperCamelCase = max_combined_length __UpperCamelCase = dataset __UpperCamelCase = dataset_split __UpperCamelCase = index_name __UpperCamelCase = retrieval_vector_size __UpperCamelCase = retrieval_batch_size __UpperCamelCase = passages_path __UpperCamelCase = index_path __UpperCamelCase = use_dummy_dataset __UpperCamelCase = output_retrieved __UpperCamelCase = do_deduplication __UpperCamelCase = use_cache if self.forced_eos_token_id is None: __UpperCamelCase = getattr(self.generator,'forced_eos_token_id',A_ ) @classmethod def snake_case_ ( cls: Any,A_: PretrainedConfig,A_: PretrainedConfig,**A_: int ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict(),generator=generator_config.to_dict(),**A_ ) def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = copy.deepcopy(self.__dict__ ) __UpperCamelCase = self.question_encoder.to_dict() __UpperCamelCase = self.generator.to_dict() __UpperCamelCase = self.__class__.model_type return output
310
0
"""simple docstring""" import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase_ ( UpperCamelCase , unittest.TestCase): """simple docstring""" snake_case__ : Dict = BioGptTokenizer snake_case__ : List[str] = False def UpperCAmelCase_ ( self : Dict ) -> int: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __SCREAMING_SNAKE_CASE = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] __SCREAMING_SNAKE_CASE = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__ ) ) ) ) __SCREAMING_SNAKE_CASE = ["l o 123", "lo w 1456", "e r</w> 1789", ""] __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(UpperCAmelCase__ ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(UpperCAmelCase__ ) ) def UpperCAmelCase_ ( self : Any , UpperCAmelCase__ : str ) -> Dict: __SCREAMING_SNAKE_CASE = "lower newer" __SCREAMING_SNAKE_CASE = "lower newer" return input_text, output_text def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = BioGptTokenizer(self.vocab_file , self.merges_file ) __SCREAMING_SNAKE_CASE = "lower" __SCREAMING_SNAKE_CASE = ["low", "er</w>"] __SCREAMING_SNAKE_CASE = tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokens + ["<unk>"] __SCREAMING_SNAKE_CASE = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , UpperCAmelCase__ ) @slow def UpperCAmelCase_ ( self : Dict ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = BioGptTokenizer.from_pretrained("microsoft/biogpt" ) __SCREAMING_SNAKE_CASE = tokenizer.encode("sequence builders" , add_special_tokens=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer.encode("multi-sequence build" , add_special_tokens=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
54
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class __lowerCamelCase (_a ): _lowercase = """M-CLIP""" def __init__( self: int,A_: Any=1024,A_: Union[str, Any]=768,**A_: str ): '''simple docstring''' __UpperCamelCase = transformerDimSize __UpperCamelCase = imageDimSize super().__init__(**A_ ) class __lowerCamelCase (_a ): _lowercase = MCLIPConfig def __init__( self: int,A_: Optional[Any],*A_: List[str],**A_: Union[str, Any] ): '''simple docstring''' super().__init__(A_,*A_,**A_ ) __UpperCamelCase = XLMRobertaModel(A_ ) __UpperCamelCase = torch.nn.Linear( in_features=config.transformerDimensions,out_features=config.numDims ) def snake_case_ ( self: Dict,A_: int,A_: Optional[int] ): '''simple docstring''' __UpperCamelCase = self.transformer(input_ids=A_,attention_mask=A_ )[0] __UpperCamelCase = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(A_ ), embs
310
0
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class snake_case : """simple docstring""" def __init__( self , UpperCamelCase , UpperCamelCase=13 , UpperCamelCase=10 , UpperCamelCase=3 , UpperCamelCase=2 , UpperCamelCase=2 , UpperCamelCase=2 , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=32 , UpperCamelCase=5 , UpperCamelCase=4 , UpperCamelCase=37 , UpperCamelCase="gelu" , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=10 , UpperCamelCase=0.02 , UpperCamelCase=0.9 , UpperCamelCase=None , ): """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = num_channels lowerCamelCase_ = patch_size lowerCamelCase_ = tubelet_size lowerCamelCase_ = num_frames lowerCamelCase_ = is_training lowerCamelCase_ = use_labels lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = mask_ratio lowerCamelCase_ = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame lowerCamelCase_ = (image_size // patch_size) ** 2 lowerCamelCase_ = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos lowerCamelCase_ = int(mask_ratio * self.seq_length ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def snake_case ( self ): """simple docstring""" return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase , initializer_range=self.initializer_range , ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = VideoMAEModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() lowerCamelCase_ = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = VideoMAEForPreTraining(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowerCamelCase_ = torch.ones((self.num_masks,) ) lowerCamelCase_ = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) lowerCamelCase_ = mask.expand(self.batch_size , -1 ).bool() lowerCamelCase_ = model(UpperCamelCase , UpperCamelCase ) # model only returns predictions for masked patches lowerCamelCase_ = mask.sum().item() lowerCamelCase_ = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _lowerCamelCase = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) _lowerCamelCase = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def snake_case ( self ): """simple docstring""" lowerCamelCase_ = VideoMAEModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=UpperCamelCase , has_text_modality=UpperCamelCase , hidden_size=37 ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase=False ): """simple docstring""" lowerCamelCase_ = copy.deepcopy(UpperCamelCase ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowerCamelCase_ = torch.ones((self.model_tester.num_masks,) ) lowerCamelCase_ = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) lowerCamelCase_ = mask.expand(self.model_tester.batch_size , -1 ).bool() lowerCamelCase_ = bool_masked_pos.to(UpperCamelCase ) if return_labels: if model_class in [ *get_values(UpperCamelCase ), ]: lowerCamelCase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase ) return inputs_dict def snake_case ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="VideoMAE does not use inputs_embeds" ) def snake_case ( self ): """simple docstring""" pass def snake_case ( self ): """simple docstring""" lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase , nn.Linear ) ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(UpperCamelCase ) lowerCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase ) @slow def snake_case ( self ): """simple docstring""" for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = VideoMAEModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) def snake_case ( self ): """simple docstring""" if not self.has_attentions: pass else: lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = True for model_class in self.all_model_classes: lowerCamelCase_ = self.model_tester.seq_length - self.model_tester.num_masks lowerCamelCase_ = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) lowerCamelCase_ = True lowerCamelCase_ = False lowerCamelCase_ = True lowerCamelCase_ = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) lowerCamelCase_ = outputs.attentions self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase_ = True lowerCamelCase_ = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) lowerCamelCase_ = outputs.attentions self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowerCamelCase_ = len(UpperCamelCase ) # Check attention is always last and order is fine lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) self.assertEqual(out_len + 1 , len(UpperCamelCase ) ) lowerCamelCase_ = outputs.attentions self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def snake_case ( self ): """simple docstring""" def check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ): lowerCamelCase_ = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) lowerCamelCase_ = outputs.hidden_states lowerCamelCase_ = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) lowerCamelCase_ = self.model_tester.seq_length - self.model_tester.num_masks lowerCamelCase_ = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def snake_case ( self ): """simple docstring""" pass def __snake_case ( ): lowerCamelCase_ = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) lowerCamelCase_ = np.load(UpperCAmelCase_ ) return list(UpperCAmelCase_ ) @require_torch @require_vision class snake_case ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case ( self ): """simple docstring""" # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def snake_case ( self ): """simple docstring""" lowerCamelCase_ = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics" ).to( UpperCamelCase ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_video() lowerCamelCase_ = image_processor(UpperCamelCase , return_tensors="pt" ).to(UpperCamelCase ) # forward pass with torch.no_grad(): lowerCamelCase_ = model(**UpperCamelCase ) # verify the logits lowerCamelCase_ = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) lowerCamelCase_ = torch.tensor([0.3_669, -0.0_688, -0.2_421] ).to(UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase , atol=1e-4 ) ) @slow def snake_case ( self ): """simple docstring""" lowerCamelCase_ = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" ).to(UpperCamelCase ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_video() lowerCamelCase_ = image_processor(UpperCamelCase , return_tensors="pt" ).to(UpperCamelCase ) # add boolean mask, indicating which patches to mask lowerCamelCase_ = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos" , filename="bool_masked_pos.pt" ) lowerCamelCase_ = torch.load(UpperCamelCase ) # forward pass with torch.no_grad(): lowerCamelCase_ = model(**UpperCamelCase ) # verify the logits lowerCamelCase_ = torch.Size([1, 1408, 1536] ) lowerCamelCase_ = torch.tensor( [[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]] , device=UpperCamelCase ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , UpperCamelCase , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) lowerCamelCase_ = torch.tensor([0.5_142] , device=UpperCamelCase ) self.assertTrue(torch.allclose(outputs.loss , UpperCamelCase , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) lowerCamelCase_ = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" , norm_pix_loss=UpperCamelCase ).to( UpperCamelCase ) with torch.no_grad(): lowerCamelCase_ = model(**UpperCamelCase ) lowerCamelCase_ = torch.tensor(torch.tensor([0.6_469] ) , device=UpperCamelCase ) self.assertTrue(torch.allclose(outputs.loss , UpperCamelCase , atol=1e-4 ) )
55
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class __lowerCamelCase : _lowercase = XGLMConfig _lowercase = {} _lowercase = """gelu""" def __init__( self: Optional[int],A_: Dict,A_: Any=14,A_: Optional[int]=7,A_: str=True,A_: Any=True,A_: Optional[int]=True,A_: Optional[int]=99,A_: List[str]=32,A_: Any=2,A_: Tuple=4,A_: List[str]=37,A_: Dict="gelu",A_: int=0.1,A_: List[str]=0.1,A_: int=512,A_: List[Any]=0.0_2,): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = d_model __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = ffn_dim __UpperCamelCase = activation_function __UpperCamelCase = activation_dropout __UpperCamelCase = attention_dropout __UpperCamelCase = max_position_embeddings __UpperCamelCase = initializer_range __UpperCamelCase = None __UpperCamelCase = 0 __UpperCamelCase = 2 __UpperCamelCase = 1 def snake_case_ ( self: Dict ): '''simple docstring''' return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length],self.vocab_size ),clip_value_min=0,clip_value_max=3 ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = self.get_config() __UpperCamelCase = floats_tensor([self.num_hidden_layers, self.num_attention_heads],2 ) return ( config, input_ids, input_mask, head_mask, ) def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' return XGLMConfig( vocab_size=self.vocab_size,d_model=self.hidden_size,num_layers=self.num_hidden_layers,attention_heads=self.num_attention_heads,ffn_dim=self.ffn_dim,activation_function=self.activation_function,activation_dropout=self.activation_dropout,attention_dropout=self.attention_dropout,max_position_embeddings=self.max_position_embeddings,initializer_range=self.initializer_range,use_cache=A_,bos_token_id=self.bos_token_id,eos_token_id=self.eos_token_id,pad_token_id=self.pad_token_id,return_dict=A_,) def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ) = config_and_inputs __UpperCamelCase = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class __lowerCamelCase (_a , _a , unittest.TestCase ): _lowercase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () _lowercase = (TFXGLMForCausalLM,) if is_tf_available() else () _lowercase = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) _lowercase = False _lowercase = False _lowercase = False def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = TFXGLMModelTester(self ) __UpperCamelCase = ConfigTester(self,config_class=A_,n_embd=37 ) def snake_case_ ( self: Any ): '''simple docstring''' self.config_tester.run_common_tests() @slow def snake_case_ ( self: Any ): '''simple docstring''' for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = TFXGLMModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def snake_case_ ( self: Tuple ): '''simple docstring''' super().test_resize_token_embeddings() @require_tf class __lowerCamelCase (unittest.TestCase ): @slow def snake_case_ ( self: Optional[Any],A_: int=True ): '''simple docstring''' __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = tf.convert_to_tensor([[2, 268, 9865]],dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __UpperCamelCase = [2, 268, 9865, 67, 11, 1988, 5_7252, 9865, 5, 984, 67, 1988, 21_3838, 1658, 53, 7_0446, 33, 6657, 278, 1581] # fmt: on __UpperCamelCase = model.generate(A_,do_sample=A_,num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist(),A_ ) @slow def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) __UpperCamelCase = tokenizer('Today is a nice day and',return_tensors='tf' ) __UpperCamelCase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): __UpperCamelCase = model.generate(A_,do_sample=A_,seed=[7, 0] ) __UpperCamelCase = tokenizer.decode(output_ids[0],skip_special_tokens=A_ ) __UpperCamelCase = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(A_,A_ ) @slow def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = 'left' # use different length sentences to test batching __UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] __UpperCamelCase = tokenizer(A_,return_tensors='tf',padding=A_ ) __UpperCamelCase = inputs['input_ids'] __UpperCamelCase = model.generate(input_ids=A_,attention_mask=inputs['attention_mask'],max_new_tokens=12 ) __UpperCamelCase = tokenizer(sentences[0],return_tensors='tf' ).input_ids __UpperCamelCase = model.generate(input_ids=A_,max_new_tokens=12 ) __UpperCamelCase = tokenizer(sentences[1],return_tensors='tf' ).input_ids __UpperCamelCase = model.generate(input_ids=A_,max_new_tokens=12 ) __UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ ) __UpperCamelCase = tokenizer.decode(output_non_padded[0],skip_special_tokens=A_ ) __UpperCamelCase = tokenizer.decode(output_padded[0],skip_special_tokens=A_ ) __UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(A_,A_ ) self.assertListEqual(A_,[non_padded_sentence, padded_sentence] )
310
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType a : Optional[Any] = logging.get_logger(__name__) a : Tuple = { 'microsoft/layoutlmv3-base': 'https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json', } class a ( _lowerCamelCase ): snake_case_ = "layoutlmv3" def __init__( self : Optional[Any] , lowercase_ : Optional[Any]=5_0265 , lowercase_ : Optional[Any]=768 , lowercase_ : int=12 , lowercase_ : Optional[Any]=12 , lowercase_ : Dict=3072 , lowercase_ : str="gelu" , lowercase_ : Tuple=0.1 , lowercase_ : Tuple=0.1 , lowercase_ : List[Any]=512 , lowercase_ : Union[str, Any]=2 , lowercase_ : Dict=0.02 , lowercase_ : Optional[int]=1e-5 , lowercase_ : List[str]=1 , lowercase_ : Tuple=0 , lowercase_ : List[str]=2 , lowercase_ : Union[str, Any]=1024 , lowercase_ : Union[str, Any]=128 , lowercase_ : Optional[int]=128 , lowercase_ : Optional[Any]=True , lowercase_ : Optional[int]=32 , lowercase_ : Tuple=128 , lowercase_ : Dict=64 , lowercase_ : Tuple=256 , lowercase_ : Optional[int]=True , lowercase_ : List[str]=True , lowercase_ : str=True , lowercase_ : Any=224 , lowercase_ : List[Any]=3 , lowercase_ : Optional[Any]=16 , lowercase_ : int=None , **lowercase_ : Optional[Any] , ): super().__init__( vocab_size=lowercase_ , hidden_size=lowercase_ , num_hidden_layers=lowercase_ , num_attention_heads=lowercase_ , intermediate_size=lowercase_ , hidden_act=lowercase_ , hidden_dropout_prob=lowercase_ , attention_probs_dropout_prob=lowercase_ , max_position_embeddings=lowercase_ , type_vocab_size=lowercase_ , initializer_range=lowercase_ , layer_norm_eps=lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ , ) snake_case_ = max_ad_position_embeddings snake_case_ = coordinate_size snake_case_ = shape_size snake_case_ = has_relative_attention_bias snake_case_ = rel_pos_bins snake_case_ = max_rel_pos snake_case_ = has_spatial_attention_bias snake_case_ = rel_ad_pos_bins snake_case_ = max_rel_ad_pos snake_case_ = text_embed snake_case_ = visual_embed snake_case_ = input_size snake_case_ = num_channels snake_case_ = patch_size snake_case_ = classifier_dropout class a ( _lowerCamelCase ): snake_case_ = version.parse("1.12" ) @property def A_ ( self : List[Any] ): # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) else: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels'''}), ] ) @property def A_ ( self : Dict ): return 1e-5 @property def A_ ( self : int ): return 12 def A_ ( self : List[Any] , lowercase_ : "ProcessorMixin" , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional["TensorType"] = None , lowercase_ : int = 3 , lowercase_ : int = 40 , lowercase_ : int = 40 , ): setattr(processor.image_processor , '''apply_ocr''' , lowercase_ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX snake_case_ = compute_effective_axis_dimension( lowercase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX snake_case_ = processor.tokenizer.num_special_tokens_to_add(lowercase_ ) snake_case_ = compute_effective_axis_dimension( lowercase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase_ ) # Generate dummy inputs according to compute batch and sequence snake_case_ = [[''' '''.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes snake_case_ = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) snake_case_ = self._generate_dummy_images(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) snake_case_ = dict( processor( lowercase_ , text=lowercase_ , boxes=lowercase_ , return_tensors=lowercase_ , ) ) return inputs
56
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __snake_case = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json''' with io.open(filename, '''r''', encoding='''utf-8''') as f: __snake_case = json.load(f) @require_torch class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: int,A_: int ): '''simple docstring''' return FSMTTokenizer.from_pretrained(A_ ) def snake_case_ ( self: Dict,A_: int ): '''simple docstring''' __UpperCamelCase = FSMTForConditionalGeneration.from_pretrained(A_ ).to(A_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 2_6.0], ['ru-en', 2_2.0], ['en-de', 2_2.0], ['de-en', 2_9.0], ] ) @slow def snake_case_ ( self: Tuple,A_: Any,A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = F'''facebook/wmt19-{pair}''' __UpperCamelCase = self.get_tokenizer(A_ ) __UpperCamelCase = self.get_model(A_ ) __UpperCamelCase = bleu_data[pair]['src'] __UpperCamelCase = bleu_data[pair]['tgt'] __UpperCamelCase = tokenizer(A_,return_tensors='pt',truncation=A_,padding='longest' ).to(A_ ) __UpperCamelCase = model.generate( input_ids=batch.input_ids,num_beams=8,) __UpperCamelCase = tokenizer.batch_decode( A_,skip_special_tokens=A_,clean_up_tokenization_spaces=A_ ) __UpperCamelCase = calculate_bleu(A_,A_ ) print(A_ ) self.assertGreaterEqual(scores['bleu'],A_ )
310
0
"""simple docstring""" from manim import * class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def snake_case ( self ): __lowerCAmelCase = Rectangle(height=0.5 , width=0.5 ) __lowerCAmelCase = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) __lowerCAmelCase = [mem.copy() for i in range(6 )] __lowerCAmelCase = [mem.copy() for i in range(6 )] __lowerCAmelCase = VGroup(*__a ).arrange(__a , buff=0 ) __lowerCAmelCase = VGroup(*__a ).arrange(__a , buff=0 ) __lowerCAmelCase = VGroup(__a , __a ).arrange(__a , buff=0 ) __lowerCAmelCase = Text("CPU" , font_size=24 ) __lowerCAmelCase = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__a ) __lowerCAmelCase = [mem.copy() for i in range(4 )] __lowerCAmelCase = VGroup(*__a ).arrange(__a , buff=0 ) __lowerCAmelCase = Text("GPU" , font_size=24 ) __lowerCAmelCase = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) gpu.move_to([-1, -1, 0] ) self.add(__a ) __lowerCAmelCase = [mem.copy() for i in range(6 )] __lowerCAmelCase = VGroup(*__a ).arrange(__a , buff=0 ) __lowerCAmelCase = Text("Model" , font_size=24 ) __lowerCAmelCase = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) model.move_to([3, -1.0, 0] ) self.add(__a ) __lowerCAmelCase = [] for i, rect in enumerate(__a ): rect.set_stroke(__a ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) __lowerCAmelCase = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(__a , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=__a ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__a , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__a , buff=0.0 ) self.add(__a ) cpu_targs.append(__a ) __lowerCAmelCase = [mem.copy() for i in range(6 )] __lowerCAmelCase = VGroup(*__a ).arrange(__a , buff=0 ) __lowerCAmelCase = Text("Loaded Checkpoint" , font_size=24 ) __lowerCAmelCase = Group(__a , __a ).arrange(__a , aligned_edge=__a , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) __lowerCAmelCase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __lowerCAmelCase = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__a , __a ) __lowerCAmelCase = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(__a , DOWN * 2.4 , aligned_edge=key_text.get_left() ) __lowerCAmelCase = MarkupText( f"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__a ) , Write(__a ) ) self.play(Write(__a , run_time=1 ) , Create(__a , run_time=1 ) ) __lowerCAmelCase = [] __lowerCAmelCase = [] for i, rect in enumerate(__a ): __lowerCAmelCase = fill.copy().set_fill(__a , opacity=0.7 ) target.move_to(__a ) first_animations.append(GrowFromCenter(__a , run_time=1 ) ) __lowerCAmelCase = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__a , run_time=1.5 ) ) self.play(*__a ) self.play(*__a ) self.wait()
57
def _A ( _lowercase ) -> list[int]: """simple docstring""" if length <= 0 or not isinstance(_lowercase , _lowercase ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(_lowercase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=1_0))
310
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor lowercase_ = logging.get_logger(__name__) class a_ ( snake_case_ ): '''simple docstring''' def __init__( self , *A , **A ) -> None: warnings.warn( """The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use PerceiverImageProcessor instead.""" , A , ) super().__init__(*A , **A )
58
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = MgpstrTokenizer _lowercase = False _lowercase = {} _lowercase = False def snake_case_ ( self: int ): '''simple docstring''' super().setUp() # fmt: off __UpperCamelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on __UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) ) __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file,'w',encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) def snake_case_ ( self: Dict,**A_: Tuple ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname,**A_ ) def snake_case_ ( self: List[Any],A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = 'tester' __UpperCamelCase = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.' ) def snake_case_ ( self: str ): '''simple docstring''' pass def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCamelCase = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token} ) __UpperCamelCase = tokenizer.encode([special_token],add_special_tokens=A_ ) self.assertEqual(len(A_ ),1 ) __UpperCamelCase = tokenizer.decode(A_,skip_special_tokens=A_ ) self.assertTrue(special_token not in decoded ) def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCamelCase, __UpperCamelCase = self.get_input_output_texts(A_ ) __UpperCamelCase = tokenizer.tokenize(A_ ) __UpperCamelCase = tokenizer.convert_tokens_to_ids(A_ ) __UpperCamelCase = tokenizer.encode(A_,add_special_tokens=A_ ) self.assertListEqual(A_,A_ ) __UpperCamelCase = tokenizer.convert_ids_to_tokens(A_ ) self.assertNotEqual(len(A_ ),0 ) __UpperCamelCase = tokenizer.decode(A_ ) self.assertIsInstance(A_,A_ ) self.assertEqual(text_a.replace(' ','' ),A_ ) @unittest.skip('MGP-STR tokenizer only handles one sequence.' ) def snake_case_ ( self: int ): '''simple docstring''' pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' ) def snake_case_ ( self: List[str] ): '''simple docstring''' pass
310
0
def UpperCamelCase ( __lowerCamelCase : str ): if not all(char in "01" for char in bin_string ): raise ValueError("Non-binary value was passed to the function" ) if not bin_string: raise ValueError("Empty string was passed to the function" ) snake_case : Tuple = "" while len(__lowerCamelCase ) % 3 != 0: snake_case : Any = "0" + bin_string snake_case : Any = [ bin_string[index : index + 3] for index in range(len(__lowerCamelCase ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: snake_case : Union[str, Any] = 0 for index, val in enumerate(__lowerCamelCase ): oct_val += int(2 ** (2 - index) * int(__lowerCamelCase ) ) oct_string += str(__lowerCamelCase ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
59
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( """The RoBERTa Model transformer with early exiting (DeeRoBERTa). """ , _a , ) class __lowerCamelCase (_a ): _lowercase = RobertaConfig _lowercase = """roberta""" def __init__( self: Union[str, Any],A_: List[str] ): '''simple docstring''' super().__init__(A_ ) __UpperCamelCase = RobertaEmbeddings(A_ ) self.init_weights() @add_start_docstrings( """RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. """ , _a , ) class __lowerCamelCase (_a ): _lowercase = RobertaConfig _lowercase = """roberta""" def __init__( self: Any,A_: int ): '''simple docstring''' super().__init__(A_ ) __UpperCamelCase = config.num_labels __UpperCamelCase = config.num_hidden_layers __UpperCamelCase = DeeRobertaModel(A_ ) __UpperCamelCase = nn.Dropout(config.hidden_dropout_prob ) __UpperCamelCase = nn.Linear(config.hidden_size,self.config.num_labels ) @add_start_docstrings_to_model_forward(A_ ) def snake_case_ ( self: List[str],A_: int=None,A_: List[Any]=None,A_: List[str]=None,A_: List[str]=None,A_: Optional[int]=None,A_: List[str]=None,A_: Any=None,A_: List[Any]=-1,A_: List[Any]=False,): '''simple docstring''' __UpperCamelCase = self.num_layers try: __UpperCamelCase = self.roberta( A_,attention_mask=A_,token_type_ids=A_,position_ids=A_,head_mask=A_,inputs_embeds=A_,) __UpperCamelCase = outputs[1] __UpperCamelCase = self.dropout(A_ ) __UpperCamelCase = self.classifier(A_ ) __UpperCamelCase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __UpperCamelCase = e.message __UpperCamelCase = e.exit_layer __UpperCamelCase = outputs[0] if not self.training: __UpperCamelCase = entropy(A_ ) __UpperCamelCase = [] __UpperCamelCase = [] if labels is not None: if self.num_labels == 1: # We are doing regression __UpperCamelCase = MSELoss() __UpperCamelCase = loss_fct(logits.view(-1 ),labels.view(-1 ) ) else: __UpperCamelCase = CrossEntropyLoss() __UpperCamelCase = loss_fct(logits.view(-1,self.num_labels ),labels.view(-1 ) ) # work with highway exits __UpperCamelCase = [] for highway_exit in outputs[-1]: __UpperCamelCase = highway_exit[0] if not self.training: highway_logits_all.append(A_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __UpperCamelCase = MSELoss() __UpperCamelCase = loss_fct(highway_logits.view(-1 ),labels.view(-1 ) ) else: __UpperCamelCase = CrossEntropyLoss() __UpperCamelCase = loss_fct(highway_logits.view(-1,self.num_labels ),labels.view(-1 ) ) highway_losses.append(A_ ) if train_highway: __UpperCamelCase = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __UpperCamelCase = (loss,) + outputs if not self.training: __UpperCamelCase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __UpperCamelCase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
310
0
"""simple docstring""" from __future__ import annotations import math def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : bool , _snake_case : list[int] , _snake_case : float ): if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , _snake_case , _snake_case , _snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , _snake_case , _snake_case , _snake_case ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , _snake_case , _snake_case , _snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , _snake_case , _snake_case , _snake_case ) , ) ) def _snake_case ( ): lowerCAmelCase : Optional[int] = [90, 23, 6, 33, 21, 65, 123, 34423] lowerCAmelCase : Union[str, Any] = math.log(len(_snake_case ) , 2 ) print(f'''Optimal value : {minimax(0 , 0 , _snake_case , _snake_case , _snake_case )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
60
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCamelCase : @staticmethod def snake_case_ ( *A_: Optional[Any],**A_: Tuple ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class __lowerCamelCase (unittest.TestCase ): _lowercase = MODEL_FOR_OBJECT_DETECTION_MAPPING def snake_case_ ( self: Dict,A_: Optional[int],A_: Tuple,A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = ObjectDetectionPipeline(model=A_,image_processor=A_ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def snake_case_ ( self: int,A_: Any,A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png',threshold=0.0 ) self.assertGreater(len(A_ ),0 ) for detected_object in outputs: self.assertEqual( A_,{ 'score': ANY(A_ ), 'label': ANY(A_ ), 'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )}, },) import datasets __UpperCamelCase = datasets.load_dataset('hf-internal-testing/fixtures_image_utils','image',split='test' ) __UpperCamelCase = [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] __UpperCamelCase = object_detector(A_,threshold=0.0 ) self.assertEqual(len(A_ ),len(A_ ) ) for outputs in batch_outputs: self.assertGreater(len(A_ ),0 ) for detected_object in outputs: self.assertEqual( A_,{ 'score': ANY(A_ ), 'label': ANY(A_ ), 'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )}, },) @require_tf @unittest.skip('Object detection not implemented in TF' ) def snake_case_ ( self: str ): '''simple docstring''' pass @require_torch def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = 'hf-internal-testing/tiny-detr-mobilenetsv3' __UpperCamelCase = AutoModelForObjectDetection.from_pretrained(A_ ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained(A_ ) __UpperCamelCase = ObjectDetectionPipeline(model=A_,feature_extractor=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg',threshold=0.0 ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ],threshold=0.0,) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], ],) @require_torch @slow def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = AutoModelForObjectDetection.from_pretrained(A_ ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained(A_ ) __UpperCamelCase = ObjectDetectionPipeline(model=A_,feature_extractor=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ],) @require_torch @slow def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = pipeline('object-detection',model=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ],) @require_torch @slow def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = 0.9_9_8_5 __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = pipeline('object-detection',model=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg',threshold=A_ ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) @require_torch @require_pytesseract @slow def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = 'Narsil/layoutlmv3-finetuned-funsd' __UpperCamelCase = 0.9_9_9_3 __UpperCamelCase = pipeline('object-detection',model=A_,threshold=A_ ) __UpperCamelCase = object_detector( 'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, {'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, ],)
310
0
"""simple docstring""" from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
61
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json''' ), } class __lowerCamelCase (_a ): _lowercase = """xlm-roberta""" def __init__( self: Union[str, Any],A_: Union[str, Any]=3_0522,A_: Dict=768,A_: Union[str, Any]=12,A_: Any=12,A_: str=3072,A_: Union[str, Any]="gelu",A_: str=0.1,A_: Optional[int]=0.1,A_: List[Any]=512,A_: Optional[Any]=2,A_: Dict=0.0_2,A_: List[Any]=1E-12,A_: Optional[int]=1,A_: str=0,A_: str=2,A_: Optional[Any]="absolute",A_: Union[str, Any]=True,A_: int=None,**A_: Optional[Any],): '''simple docstring''' super().__init__(pad_token_id=A_,bos_token_id=A_,eos_token_id=A_,**A_ ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = position_embedding_type __UpperCamelCase = use_cache __UpperCamelCase = classifier_dropout class __lowerCamelCase (_a ): @property def snake_case_ ( self: Optional[Any] ): '''simple docstring''' if self.task == "multiple-choice": __UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
310
0
import sys from collections import defaultdict class UpperCAmelCase__ : """simple docstring""" def __init__( self ) -> List[str]: __UpperCamelCase =[] def _a ( self , A_ ) -> List[Any]: return self.node_position[vertex] def _a ( self , A_ , A_ ) -> List[Any]: __UpperCamelCase =pos def _a ( self , A_ , A_ , A_ , A_ ) -> List[Any]: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __UpperCamelCase =2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __UpperCamelCase =2 * start + 1 else: __UpperCamelCase =2 * start + 2 if heap[smallest_child] < heap[start]: __UpperCamelCase , __UpperCamelCase =heap[smallest_child], positions[smallest_child] __UpperCamelCase , __UpperCamelCase =( heap[start], positions[start], ) __UpperCamelCase , __UpperCamelCase =temp, tempa __UpperCamelCase =self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , A_ ) self.top_to_bottom(A_ , A_ , A_ , A_ ) def _a ( self , A_ , A_ , A_ , A_ ) -> int: __UpperCamelCase =position[index] while index != 0: __UpperCamelCase =int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __UpperCamelCase =heap[parent] __UpperCamelCase =position[parent] self.set_position(position[parent] , A_ ) else: __UpperCamelCase =val __UpperCamelCase =temp self.set_position(A_ , A_ ) break __UpperCamelCase =parent else: __UpperCamelCase =val __UpperCamelCase =temp self.set_position(A_ , 0 ) def _a ( self , A_ , A_ ) -> List[str]: __UpperCamelCase =len(A_ ) // 2 - 1 for i in range(A_ , -1 , -1 ): self.top_to_bottom(A_ , A_ , len(A_ ) , A_ ) def _a ( self , A_ , A_ ) -> str: __UpperCamelCase =positions[0] __UpperCamelCase =sys.maxsize self.top_to_bottom(A_ , 0 , len(A_ ) , A_ ) return temp def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Dict ): __UpperCamelCase =Heap() __UpperCamelCase =[0] * len(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[-1] * len(SCREAMING_SNAKE_CASE__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __UpperCamelCase =[] # Heap of Distance of vertices from their neighboring vertex __UpperCamelCase =[] for vertex in range(len(SCREAMING_SNAKE_CASE__ ) ): distance_tv.append(sys.maxsize ) positions.append(SCREAMING_SNAKE_CASE__ ) heap.node_position.append(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[] __UpperCamelCase =1 __UpperCamelCase =sys.maxsize for neighbor, distance in adjacency_list[0]: __UpperCamelCase =0 __UpperCamelCase =distance heap.heapify(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): __UpperCamelCase =heap.delete_minimum(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __UpperCamelCase =1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(SCREAMING_SNAKE_CASE__ )] ): __UpperCamelCase =distance heap.bottom_to_top( SCREAMING_SNAKE_CASE__ , heap.get_position(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _A = int(input('Enter number of edges: ').strip()) _A = defaultdict(list) for _ in range(edges_number): _A = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
62
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __snake_case = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCamelCase (_a ): _lowercase = field(default=_a , metadata={"""help""": """Whether to use SortishSampler or not."""} ) _lowercase = field( default=_a , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} ) _lowercase = field( default=_a , metadata={ """help""": ( """The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `max_length` value of the model configuration.""" ) } , ) _lowercase = field( default=_a , metadata={ """help""": ( """The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `num_beams` value of the model configuration.""" ) } , ) _lowercase = field( default=_a , metadata={ """help""": """Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.""" } , ) def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = super().to_dict() for k, v in d.items(): if isinstance(A_,A_ ): __UpperCamelCase = v.to_dict() return d
310
0
'''simple docstring''' from timeit import timeit lowerCAmelCase_ : int = { 'MALAYALAM': True, 'String': False, 'rotor': True, 'level': True, 'A': True, 'BB': True, 'ABC': False, 'amanaplanacanalpanama': True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def _lowerCamelCase ( lowercase : str ) -> bool: _a = 0 _a = len(lowercase ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def _lowerCamelCase ( lowercase : str ) -> bool: _a = len(lowercase ) // 2 _a = len(lowercase ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(lowercase ) ) def _lowerCamelCase ( lowercase : str ) -> bool: if len(lowercase ) <= 2: return True if s[0] == s[len(lowercase ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def _lowerCamelCase ( lowercase : str ) -> bool: return s == s[::-1] def _lowerCamelCase ( lowercase : str ) -> None: _a = F'all({name}(key) is value for key, value in test_data.items())' _a = F'from __main__ import test_data, {name}' _a = 50_0000 _a = timeit(stmt=lowercase , setup=lowercase , number=lowercase ) print(F'{name:<35} finished {number:,} runs in {result:.5f} seconds' ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(f"""{key:21} {value}""") print('a man a plan a canal panama') # finished 500,000 runs in 0.46793 seconds benchmark_function('is_palindrome_slice') # finished 500,000 runs in 0.85234 seconds benchmark_function('is_palindrome') # finished 500,000 runs in 1.32028 seconds benchmark_function('is_palindrome_recursive') # finished 500,000 runs in 2.08679 seconds benchmark_function('is_palindrome_traversal')
63
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _A ( _lowercase ) -> Dict: """simple docstring""" if is_torch_version('<' , '2.0.0' ) or not hasattr(_lowercase , '_dynamo' ): return False return isinstance(_lowercase , torch._dynamo.eval_frame.OptimizedModule ) def _A ( _lowercase , _lowercase = True ) -> Optional[int]: """simple docstring""" __UpperCamelCase = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __UpperCamelCase = is_compiled_module(_lowercase ) if is_compiled: __UpperCamelCase = model __UpperCamelCase = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_lowercase , _lowercase ): __UpperCamelCase = model.module if not keep_fpaa_wrapper: __UpperCamelCase = getattr(_lowercase , 'forward' ) __UpperCamelCase = model.__dict__.pop('_original_forward' , _lowercase ) if original_forward is not None: while hasattr(_lowercase , '__wrapped__' ): __UpperCamelCase = forward.__wrapped__ if forward == original_forward: break __UpperCamelCase = forward if getattr(_lowercase , '_converted_to_transformer_engine' , _lowercase ): convert_model(_lowercase , to_transformer_engine=_lowercase ) if is_compiled: __UpperCamelCase = model __UpperCamelCase = compiled_model return model def _A ( ) -> Any: """simple docstring""" PartialState().wait_for_everyone() def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(_lowercase , _lowercase ) elif PartialState().local_process_index == 0: torch.save(_lowercase , _lowercase ) @contextmanager def _A ( **_lowercase ) -> Union[str, Any]: """simple docstring""" for key, value in kwargs.items(): __UpperCamelCase = str(_lowercase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _A ( _lowercase ) -> Tuple: """simple docstring""" if not hasattr(_lowercase , '__qualname__' ) and not hasattr(_lowercase , '__name__' ): __UpperCamelCase = getattr(_lowercase , '__class__' , _lowercase ) if hasattr(_lowercase , '__qualname__' ): return obj.__qualname__ if hasattr(_lowercase , '__name__' ): return obj.__name__ return str(_lowercase ) def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" for key, value in source.items(): if isinstance(_lowercase , _lowercase ): __UpperCamelCase = destination.setdefault(_lowercase , {} ) merge_dicts(_lowercase , _lowercase ) else: __UpperCamelCase = value return destination def _A ( _lowercase = None ) -> bool: """simple docstring""" if port is None: __UpperCamelCase = 2_95_00 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
310
0
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings A_ = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class lowercase( __a ): '''simple docstring''' lowercase__ = field(default=__a , metadata={"help": "Whether to use SortishSampler or not."} ) lowercase__ = field( default=__a , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowercase__ = field( default=__a , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) lowercase__ = field( default=__a , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) lowercase__ = field( default=__a , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Tuple = super().to_dict() for k, v in d.items(): if isinstance(a_, a_ ): _snake_case : int = v.to_dict() return d
64
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __snake_case = logging.getLogger(__name__) def _A ( _lowercase , _lowercase ) -> Optional[int]: """simple docstring""" return (preds == labels).mean() @dataclass class __lowerCamelCase : _lowercase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _lowercase = field( default=_a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __lowerCamelCase : _lowercase = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) _lowercase = field(metadata={"""help""": """Should contain the data files for the task."""} ) _lowercase = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _lowercase = field( default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _A ( ) -> str: """simple docstring""" __UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _lowercase ) # Set seed set_seed(training_args.seed ) try: __UpperCamelCase = processors[data_args.task_name]() __UpperCamelCase = processor.get_labels() __UpperCamelCase = len(_lowercase ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowercase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , ) # Get datasets __UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_lowercase ) -> Dict: __UpperCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_lowercase , p.label_ids )} # Data collator __UpperCamelCase = DataCollatorWithPadding(_lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __UpperCamelCase = Trainer( model=_lowercase , args=_lowercase , train_dataset=_lowercase , eval_dataset=_lowercase , compute_metrics=_lowercase , data_collator=_lowercase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCamelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __UpperCamelCase = trainer.evaluate() __UpperCamelCase = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(_lowercase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , _lowercase , _lowercase ) writer.write('%s = %s\n' % (key, value) ) results.update(_lowercase ) return results def _A ( _lowercase ) -> List[Any]: """simple docstring""" main() if __name__ == "__main__": main()
310
0
from __future__ import annotations def lowerCAmelCase_ ( __A = 4 ) -> list[list[int]]: '''simple docstring''' UpperCAmelCase__ = abs(__A ) or 4 return [[1 + x + y * row_size for x in range(__A )] for y in range(__A )] def lowerCAmelCase_ ( __A ) -> list[list[int]]: '''simple docstring''' return reverse_row(transpose(__A ) ) # OR.. transpose(reverse_column(matrix)) def lowerCAmelCase_ ( __A ) -> list[list[int]]: '''simple docstring''' return reverse_row(reverse_column(__A ) ) # OR.. reverse_column(reverse_row(matrix)) def lowerCAmelCase_ ( __A ) -> list[list[int]]: '''simple docstring''' return reverse_column(transpose(__A ) ) # OR.. transpose(reverse_row(matrix)) def lowerCAmelCase_ ( __A ) -> list[list[int]]: '''simple docstring''' UpperCAmelCase__ = [list(__A ) for x in zip(*__A )] return matrix def lowerCAmelCase_ ( __A ) -> list[list[int]]: '''simple docstring''' UpperCAmelCase__ = matrix[::-1] return matrix def lowerCAmelCase_ ( __A ) -> list[list[int]]: '''simple docstring''' UpperCAmelCase__ = [x[::-1] for x in matrix] return matrix def lowerCAmelCase_ ( __A ) -> None: '''simple docstring''' for i in matrix: print(*__A ) if __name__ == "__main__": UpperCamelCase__ = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 90 counterclockwise:\n') print_matrix(rotate_aa(matrix)) UpperCamelCase__ = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 180:\n') print_matrix(rotate_aaa(matrix)) UpperCamelCase__ = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 270 counterclockwise:\n') print_matrix(rotate_aaa(matrix))
65
import os def _A ( ) -> Tuple: """simple docstring""" with open(os.path.dirname(_lowercase ) + '/p022_names.txt' ) as file: __UpperCamelCase = str(file.readlines()[0] ) __UpperCamelCase = names.replace('"' , '' ).split(',' ) names.sort() __UpperCamelCase = 0 __UpperCamelCase = 0 for i, name in enumerate(_lowercase ): for letter in name: name_score += ord(_lowercase ) - 64 total_score += (i + 1) * name_score __UpperCamelCase = 0 return total_score if __name__ == "__main__": print(solution())
310
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { "BAAI/AltCLIP": "https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json", # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' _A : Dict = """altclip_text_model""" def __init__( self: Tuple , snake_case: List[Any]=250_002 , snake_case: Dict=1_024 , snake_case: Tuple=24 , snake_case: int=16 , snake_case: Any=4_096 , snake_case: Optional[int]="gelu" , snake_case: List[Any]=0.1 , snake_case: Union[str, Any]=0.1 , snake_case: List[str]=514 , snake_case: List[Any]=1 , snake_case: Any=0.0_2 , snake_case: Optional[int]=0.0_2 , snake_case: Union[str, Any]=1E-05 , snake_case: List[Any]=1 , snake_case: Tuple=0 , snake_case: int=2 , snake_case: Dict="absolute" , snake_case: Optional[int]=True , snake_case: Tuple=768 , **snake_case: Union[str, Any] , ) -> Union[str, Any]: super().__init__(pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , **snake_case ) snake_case_ :Dict = vocab_size snake_case_ :str = hidden_size snake_case_ :List[Any] = num_hidden_layers snake_case_ :List[Any] = num_attention_heads snake_case_ :Union[str, Any] = hidden_act snake_case_ :Tuple = intermediate_size snake_case_ :List[str] = hidden_dropout_prob snake_case_ :int = attention_probs_dropout_prob snake_case_ :int = max_position_embeddings snake_case_ :Optional[int] = type_vocab_size snake_case_ :Union[str, Any] = initializer_range snake_case_ :str = initializer_factor snake_case_ :List[str] = layer_norm_eps snake_case_ :Tuple = position_embedding_type snake_case_ :str = use_cache snake_case_ :List[str] = project_dim class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' _A : Optional[Any] = """altclip_vision_model""" def __init__( self: Dict , snake_case: Dict=768 , snake_case: List[Any]=3_072 , snake_case: int=512 , snake_case: List[Any]=12 , snake_case: List[str]=12 , snake_case: Optional[int]=3 , snake_case: int=224 , snake_case: Optional[Any]=32 , snake_case: Optional[int]="quick_gelu" , snake_case: Tuple=1E-5 , snake_case: Tuple=0.0 , snake_case: List[str]=0.0_2 , snake_case: Union[str, Any]=1.0 , **snake_case: str , ) -> Optional[Any]: super().__init__(**snake_case ) snake_case_ :int = hidden_size snake_case_ :Optional[int] = intermediate_size snake_case_ :List[str] = projection_dim snake_case_ :Any = num_hidden_layers snake_case_ :Optional[Any] = num_attention_heads snake_case_ :Union[str, Any] = num_channels snake_case_ :int = patch_size snake_case_ :List[Any] = image_size snake_case_ :int = initializer_range snake_case_ :Optional[Any] = initializer_factor snake_case_ :str = attention_dropout snake_case_ :List[Any] = layer_norm_eps snake_case_ :List[str] = hidden_act @classmethod def lowerCAmelCase_ ( cls: List[str] , snake_case: Union[str, os.PathLike] , **snake_case: List[Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(snake_case ) snake_case_, snake_case_ :List[str] = cls.get_config_dict(snake_case , **snake_case ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("""model_type""" ) == "altclip": snake_case_ :Optional[Any] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(snake_case , **snake_case ) class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' _A : str = """altclip""" _A : Any = True def __init__( self: int , snake_case: Any=None , snake_case: Optional[Any]=None , snake_case: str=768 , snake_case: int=2.6_5_9_2 , **snake_case: Union[str, Any] ) -> str: # If `_config_dict` exist, we use them for the backward compatibility. # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot # of confusion!). snake_case_ :str = kwargs.pop("""text_config_dict""" , snake_case ) snake_case_ :List[str] = kwargs.pop("""vision_config_dict""" , snake_case ) super().__init__(**snake_case ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: snake_case_ :Tuple = {} # This is the complete result when using `text_config_dict`. snake_case_ :str = AltCLIPTextConfig(**snake_case ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: snake_case_ :List[str] = ( f"""`{key}` is found in both `text_config_dict` and `text_config` but with different values. """ f"""The value `text_config_dict[\"{key}\"]` will be used instead.""" ) # If inferred from default argument values (just to be super careful) else: snake_case_ :str = ( f"""`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The """ f"""value `text_config[\"{key}\"]` will be overriden.""" ) logger.warning(snake_case ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: snake_case_ :Tuple = {} # This is the complete result when using `vision_config_dict`. snake_case_ :Dict = AltCLIPVisionConfig(**snake_case ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: snake_case_ :Union[str, Any] = { str(snake_case ): value for key, value in _vision_config_dict["""id2label"""].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: snake_case_ :Dict = ( f"""`{key}` is found in both `vision_config_dict` and `vision_config` but with different """ f"""values. The value `vision_config_dict[\"{key}\"]` will be used instead.""" ) # If inferred from default argument values (just to be super careful) else: snake_case_ :Dict = ( f"""`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. """ f"""The value `vision_config[\"{key}\"]` will be overriden.""" ) logger.warning(snake_case ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: snake_case_ :Optional[Any] = {} logger.info("""`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.""" ) if vision_config is None: snake_case_ :List[str] = {} logger.info("""`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.""" ) snake_case_ :Tuple = AltCLIPTextConfig(**snake_case ) snake_case_ :str = AltCLIPVisionConfig(**snake_case ) snake_case_ :int = projection_dim snake_case_ :Union[str, Any] = logit_scale_init_value snake_case_ :Dict = 1.0 @classmethod def lowerCAmelCase_ ( cls: str , snake_case: AltCLIPTextConfig , snake_case: AltCLIPVisionConfig , **snake_case: int ) -> Union[str, Any]: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **snake_case ) def lowerCAmelCase_ ( self: int ) -> Tuple: snake_case_ :str = copy.deepcopy(self.__dict__ ) snake_case_ :Any = self.text_config.to_dict() snake_case_ :Optional[int] = self.vision_config.to_dict() snake_case_ :List[Any] = self.__class__.model_type return output
66
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=True , _lowercase="pt" ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = {'add_prefix_space': True} if isinstance(_lowercase , _lowercase ) and not line.startswith(' ' ) else {} __UpperCamelCase = padding_side return tokenizer( [line] , max_length=_lowercase , padding='max_length' if pad_to_max_length else None , truncation=_lowercase , return_tensors=_lowercase , add_special_tokens=_lowercase , **_lowercase , ) def _A ( _lowercase , _lowercase , _lowercase=None , ) -> List[Any]: """simple docstring""" __UpperCamelCase = input_ids.ne(_lowercase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCamelCase (_a ): def __init__( self: List[str],A_: str,A_: List[str],A_: List[str],A_: List[str],A_: Tuple="train",A_: Any=None,A_: List[str]=None,A_: List[Any]=None,A_: int="",): '''simple docstring''' super().__init__() __UpperCamelCase = Path(A_ ).joinpath(type_path + '.source' ) __UpperCamelCase = Path(A_ ).joinpath(type_path + '.target' ) __UpperCamelCase = self.get_char_lens(self.src_file ) __UpperCamelCase = max_source_length __UpperCamelCase = max_target_length assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}''' __UpperCamelCase = tokenizer __UpperCamelCase = prefix if n_obs is not None: __UpperCamelCase = self.src_lens[:n_obs] __UpperCamelCase = src_lang __UpperCamelCase = tgt_lang def __len__( self: Optional[Any] ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self: int,A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = index + 1 # linecache starts at 1 __UpperCamelCase = self.prefix + linecache.getline(str(self.src_file ),A_ ).rstrip('\n' ) __UpperCamelCase = linecache.getline(str(self.tgt_file ),A_ ).rstrip('\n' ) assert source_line, F'''empty source line for index {index}''' assert tgt_line, F'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer,A_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __UpperCamelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer,A_ ) else self.tokenizer ) __UpperCamelCase = self.tokenizer.generator if isinstance(self.tokenizer,A_ ) else self.tokenizer __UpperCamelCase = encode_line(A_,A_,self.max_source_length,'right' ) __UpperCamelCase = encode_line(A_,A_,self.max_target_length,'right' ) __UpperCamelCase = source_inputs['input_ids'].squeeze() __UpperCamelCase = target_inputs['input_ids'].squeeze() __UpperCamelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def snake_case_ ( A_: List[Any] ): '''simple docstring''' return [len(A_ ) for x in Path(A_ ).open().readlines()] def snake_case_ ( self: Union[str, Any],A_: Any ): '''simple docstring''' __UpperCamelCase = torch.stack([x['input_ids'] for x in batch] ) __UpperCamelCase = torch.stack([x['attention_mask'] for x in batch] ) __UpperCamelCase = torch.stack([x['decoder_input_ids'] for x in batch] ) __UpperCamelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer,A_ ) else self.tokenizer.pad_token_id ) __UpperCamelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer,A_ ) else self.tokenizer.pad_token_id ) __UpperCamelCase = trim_batch(A_,A_ ) __UpperCamelCase, __UpperCamelCase = trim_batch(A_,A_,attention_mask=A_ ) __UpperCamelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch __snake_case = getLogger(__name__) def _A ( _lowercase ) -> Any: """simple docstring""" return list(itertools.chain.from_iterable(_lowercase ) ) def _A ( _lowercase ) -> None: """simple docstring""" __UpperCamelCase = get_git_info() save_json(_lowercase , os.path.join(_lowercase , 'git_log.json' ) ) def _A ( _lowercase , _lowercase , _lowercase=4 , **_lowercase ) -> List[Any]: """simple docstring""" with open(_lowercase , 'w' ) as f: json.dump(_lowercase , _lowercase , indent=_lowercase , **_lowercase ) def _A ( _lowercase ) -> Union[str, Any]: """simple docstring""" with open(_lowercase ) as f: return json.load(_lowercase ) def _A ( ) -> Dict: """simple docstring""" __UpperCamelCase = git.Repo(search_parent_directories=_lowercase ) __UpperCamelCase = { 'repo_id': str(_lowercase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def _A ( _lowercase , _lowercase ) -> List: """simple docstring""" return list(map(_lowercase , _lowercase ) ) def _A ( _lowercase , _lowercase ) -> Tuple: """simple docstring""" with open(_lowercase , 'wb' ) as f: return pickle.dump(_lowercase , _lowercase ) def _A ( _lowercase ) -> List[Any]: """simple docstring""" def remove_articles(_lowercase ): return re.sub(r'\b(a|an|the)\b' , ' ' , _lowercase ) def white_space_fix(_lowercase ): return " ".join(text.split() ) def remove_punc(_lowercase ): __UpperCamelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowercase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowercase ) ) ) ) def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" __UpperCamelCase = normalize_answer(_lowercase ).split() __UpperCamelCase = normalize_answer(_lowercase ).split() __UpperCamelCase = Counter(_lowercase ) & Counter(_lowercase ) __UpperCamelCase = sum(common.values() ) if num_same == 0: return 0 __UpperCamelCase = 1.0 * num_same / len(_lowercase ) __UpperCamelCase = 1.0 * num_same / len(_lowercase ) __UpperCamelCase = (2 * precision * recall) / (precision + recall) return fa def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" return normalize_answer(_lowercase ) == normalize_answer(_lowercase ) def _A ( _lowercase , _lowercase ) -> Dict: """simple docstring""" assert len(_lowercase ) == len(_lowercase ) __UpperCamelCase = 0 for hypo, pred in zip(_lowercase , _lowercase ): em += exact_match_score(_lowercase , _lowercase ) if len(_lowercase ) > 0: em /= len(_lowercase ) return {"em": em} def _A ( _lowercase ) -> Optional[Any]: """simple docstring""" return model_prefix.startswith('rag' ) def _A ( _lowercase , _lowercase , _lowercase ) -> Dict: """simple docstring""" __UpperCamelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __UpperCamelCase = 'dropout_rate' for p in extra_params: if getattr(_lowercase , _lowercase , _lowercase ): if not hasattr(_lowercase , _lowercase ) and not hasattr(_lowercase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_lowercase ) ) delattr(_lowercase , _lowercase ) continue __UpperCamelCase = p if hasattr(_lowercase , _lowercase ) else equivalent_param[p] setattr(_lowercase , _lowercase , getattr(_lowercase , _lowercase ) ) delattr(_lowercase , _lowercase ) return hparams, config
310
0
'''simple docstring''' from __future__ import annotations def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = False , ) -> tuple[int, float, str]: __lowerCamelCase = cipher_alphabet or [chr(UpperCamelCase__ ) for i in range(97 , 1_23 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) __lowerCamelCase = { '''a''': 0.0_8_4_9_7, '''b''': 0.0_1_4_9_2, '''c''': 0.0_2_2_0_2, '''d''': 0.0_4_2_5_3, '''e''': 0.1_1_1_6_2, '''f''': 0.0_2_2_2_8, '''g''': 0.0_2_0_1_5, '''h''': 0.0_6_0_9_4, '''i''': 0.0_7_5_4_6, '''j''': 0.0_0_1_5_3, '''k''': 0.0_1_2_9_2, '''l''': 0.0_4_0_2_5, '''m''': 0.0_2_4_0_6, '''n''': 0.0_6_7_4_9, '''o''': 0.0_7_5_0_7, '''p''': 0.0_1_9_2_9, '''q''': 0.0_0_0_9_5, '''r''': 0.0_7_5_8_7, '''s''': 0.0_6_3_2_7, '''t''': 0.0_9_3_5_6, '''u''': 0.0_2_7_5_8, '''v''': 0.0_0_9_7_8, '''w''': 0.0_2_5_6_0, '''x''': 0.0_0_1_5_0, '''y''': 0.0_1_9_9_4, '''z''': 0.0_0_0_7_7, } else: # Custom frequencies dictionary __lowerCamelCase = frequencies_dict if not case_sensitive: __lowerCamelCase = ciphertext.lower() # Chi squared statistic values __lowerCamelCase = {} # cycle through all of the shifts for shift in range(len(UpperCamelCase__ ) ): __lowerCamelCase = '''''' # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet __lowerCamelCase = (alphabet_letters.index(letter.lower() ) - shift) % len( UpperCamelCase__ ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter __lowerCamelCase = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: __lowerCamelCase = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message __lowerCamelCase = decrypted_with_shift.lower().count(UpperCamelCase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies __lowerCamelCase = frequencies[letter] * occurrences # Complete the chi squared statistic formula __lowerCamelCase = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message __lowerCamelCase = decrypted_with_shift.count(UpperCamelCase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies __lowerCamelCase = frequencies[letter] * occurrences # Complete the chi squared statistic formula __lowerCamelCase = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary __lowerCamelCase = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(UpperCamelCase__ ) -> tuple[float, str]: return chi_squared_statistic_values[key] __lowerCamelCase = min( UpperCamelCase__ , key=UpperCamelCase__ , ) # Get all the data from the most likely cipher (key, decoded message) ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
67
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __snake_case = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
310
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class a__ : """simple docstring""" __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None # sigma(t_i) @classmethod def UpperCamelCase ( cls ) -> Any: '''simple docstring''' return cls() @dataclass class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = 42 __lowerCamelCase = 42 __lowerCamelCase = 42 class a__ ( snake_case , snake_case ): """simple docstring""" @property def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' return True @register_to_config def __init__( self , lowercase = 0.02 , lowercase = 100 , lowercase = 1.007 , lowercase = 80 , lowercase = 0.05 , lowercase = 50 , ) -> Any: '''simple docstring''' pass def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' return KarrasVeSchedulerState.create() def UpperCamelCase ( self , lowercase , lowercase , lowercase = () ) -> KarrasVeSchedulerState: '''simple docstring''' A__ = jnp.arange(0 , lowercase )[::-1].copy() A__ = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=lowercase , schedule=jnp.array(lowercase , dtype=jnp.floataa ) , timesteps=lowercase , ) def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase , ) -> Tuple[jnp.ndarray, float]: '''simple docstring''' if self.config.s_min <= sigma <= self.config.s_max: A__ = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: A__ = 0 # sample eps ~ N(0, S_noise^2 * I) A__ = random.split(lowercase , num=1 ) A__ = self.config.s_noise * random.normal(key=lowercase , shape=sample.shape ) A__ = sigma + gamma * sigma A__ = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase = True , ) -> Union[FlaxKarrasVeOutput, Tuple]: '''simple docstring''' A__ = sample_hat + sigma_hat * model_output A__ = (sample_hat - pred_original_sample) / sigma_hat A__ = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=lowercase , derivative=lowercase , state=lowercase ) def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase = True , ) -> Union[FlaxKarrasVeOutput, Tuple]: '''simple docstring''' A__ = sample_prev + sigma_prev * model_output A__ = (sample_prev - pred_original_sample) / sigma_prev A__ = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=lowercase , derivative=lowercase , state=lowercase ) def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase ) -> Tuple: '''simple docstring''' raise NotImplementedError()
68
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup __snake_case = '''https://www.indeed.co.in/jobs?q=mobile+app+development&l=''' def _A ( _lowercase = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" __UpperCamelCase = BeautifulSoup(requests.get(url + location ).content , 'html.parser' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('div' , attrs={'data-tn-component': 'organicJob'} ): __UpperCamelCase = job.find('a' , attrs={'data-tn-element': 'jobTitle'} ).text.strip() __UpperCamelCase = job.find('span' , {'class': 'company'} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('''Bangalore'''), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
310
0
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=0 ) -> List[str]: return sorted(UpperCAmelCase , key=lambda UpperCAmelCase : x[column] ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=float('inf' ) ) -> Any: for i in range(points_counts - 1 ): for j in range(i + 1 , UpperCAmelCase ): snake_case_ = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: snake_case_ = current_dis return min_dis def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=float('inf' ) ) -> Optional[int]: for i in range(min(6 , points_counts - 1 ) , UpperCAmelCase ): for j in range(max(0 , i - 6 ) , UpperCAmelCase ): snake_case_ = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: snake_case_ = current_dis return min_dis def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: # base case if points_counts <= 3: return dis_between_closest_pair(UpperCAmelCase , UpperCAmelCase ) # recursion snake_case_ = points_counts // 2 snake_case_ = closest_pair_of_points_sqr( UpperCAmelCase , points_sorted_on_y[:mid] , UpperCAmelCase ) snake_case_ = closest_pair_of_points_sqr( UpperCAmelCase , points_sorted_on_y[mid:] , points_counts - mid ) snake_case_ = min(UpperCAmelCase , UpperCAmelCase ) snake_case_ = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(UpperCAmelCase ) snake_case_ = dis_between_closest_in_strip( UpperCAmelCase , len(UpperCAmelCase ) , UpperCAmelCase ) return min(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Dict: snake_case_ = column_based_sort(UpperCAmelCase , column=0 ) snake_case_ = column_based_sort(UpperCAmelCase , column=1 ) return ( closest_pair_of_points_sqr( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) ** 0.5 if __name__ == "__main__": __UpperCamelCase = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print('''Distance:''', closest_pair_of_points(points, len(points)))
69
def _A ( _lowercase ) -> list: """simple docstring""" def merge(_lowercase , _lowercase ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(_lowercase ) <= 1: return collection __UpperCamelCase = len(_lowercase ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() __snake_case = input('''Enter numbers separated by a comma:\n''').strip() __snake_case = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
310
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A__ : List[Any] =logging.get_logger(__name__) A__ : Any =torch.device('''cpu''') def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" _lowerCAmelCase = Image.open(requests.get(lowerCAmelCase , stream=lowerCAmelCase ).raw ) return im def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.17_03e00, 2.11_07e00, -2.08_11e00, 8.86_85e-01, 2.43_60e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.96_36e-01, 2.34_78e-01, -1.69_63e00, -1.73_81e00, -8.63_37e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.27_68e-01, -4.74_29e-01, -1.08_97e00, -1.02_48e00, 3.55_23e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.53_30e-01, 2.42_11e-01, -6.01_85e-01, -8.27_89e-01, -6.04_46e-02] ) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = dct.pop(lowerCAmelCase ) _lowerCAmelCase = val def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = [] for k in state_dict.keys(): _lowerCAmelCase = k if ".pwconv" in k: _lowerCAmelCase = k_new.replace(""".pwconv""" , """.point_wise_conv""" ) if ".dwconv" in k: _lowerCAmelCase = k_new.replace(""".dwconv""" , """.depth_wise_conv""" ) if ".Proj." in k: _lowerCAmelCase = k_new.replace(""".Proj.""" , """.proj.""" ) if "patch_embed" in k_new: _lowerCAmelCase = k_new.replace("""patch_embed""" , """swiftformer.patch_embed.patch_embedding""" ) if "network" in k_new: _lowerCAmelCase = k_new.split(""".""" ) if ls[2].isdigit(): _lowerCAmelCase = """swiftformer.encoder.network.""" + ls[1] + """.blocks.""" + ls[2] + """.""" + """.""".join(ls[3:] ) else: _lowerCAmelCase = k_new.replace("""network""" , """swiftformer.encoder.network""" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size _lowerCAmelCase = 10_00 _lowerCAmelCase = """huggingface/label-files""" _lowerCAmelCase = """imagenet-1k-id2label.json""" _lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) _lowerCAmelCase = {int(lowerCAmelCase ): v for k, v in idalabel.items()} _lowerCAmelCase = idalabel _lowerCAmelCase = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": _lowerCAmelCase = [3, 3, 6, 4] _lowerCAmelCase = [48, 56, 1_12, 2_20] elif swiftformer_name == "swiftformer_s": _lowerCAmelCase = [3, 3, 9, 6] _lowerCAmelCase = [48, 64, 1_68, 2_24] elif swiftformer_name == "swiftformer_l1": _lowerCAmelCase = [4, 3, 10, 5] _lowerCAmelCase = [48, 96, 1_92, 3_84] elif swiftformer_name == "swiftformer_l3": _lowerCAmelCase = [4, 4, 12, 6] _lowerCAmelCase = [64, 1_28, 3_20, 5_12] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("""https""" ): _lowerCAmelCase = torch.hub.load_state_dict_from_url(lowerCAmelCase , map_location="""cpu""" , check_hash=lowerCAmelCase ) else: _lowerCAmelCase = torch.load(lowerCAmelCase , map_location="""cpu""" ) _lowerCAmelCase = checkpoint _lowerCAmelCase = create_rename_keys(lowerCAmelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # load HuggingFace model _lowerCAmelCase = SwiftFormerForImageClassification(lowerCAmelCase ).eval() hf_model.load_state_dict(lowerCAmelCase ) # prepare test inputs _lowerCAmelCase = prepare_img() _lowerCAmelCase = ViTImageProcessor.from_pretrained("""preprocessor_config""" ) _lowerCAmelCase = processor(images=lowerCAmelCase , return_tensors="""pt""" ) # compare outputs from both models _lowerCAmelCase = get_expected_output(lowerCAmelCase ) _lowerCAmelCase = hf_model(inputs["""pixel_values"""] ).logits assert hf_logits.shape == torch.Size([1, 10_00] ) assert torch.allclose(hf_logits[0, 0:5] , lowerCAmelCase , atol=1e-3 ) Path(lowerCAmelCase ).mkdir(exist_ok=lowerCAmelCase ) print(f"Saving model {swiftformer_name} to {pytorch_dump_folder_path}" ) hf_model.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": A__ : str =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swiftformer_name''', default='''swiftformer_xs''', choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''], type=str, help='''Name of the SwiftFormer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''./converted_outputs/''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''') A__ : Tuple =parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
70
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowerCamelCase (_a ): _lowercase = 0 _lowercase = False _lowercase = 3.0 class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: Any ): '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs(),{} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs(),{'a': 2} ) self.assertDictEqual(MockClass(a=2,b=A_ ).to_kwargs(),{'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2,c=2.2_5 ).to_kwargs(),{'a': 2, 'c': 2.2_5} ) @require_cuda def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = GradScalerKwargs(init_scale=1024,growth_factor=2 ) AcceleratorState._reset_state() __UpperCamelCase = Accelerator(mixed_precision='fp16',kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __UpperCamelCase = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale,1_0_2_4.0 ) self.assertEqual(scaler._growth_factor,2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor,0.5 ) self.assertEqual(scaler._growth_interval,2000 ) self.assertEqual(scaler._enabled,A_ ) @require_multi_gpu def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(A_,env=os.environ.copy() ) if __name__ == "__main__": __snake_case = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) __snake_case = Accelerator(kwargs_handlers=[ddp_scaler]) __snake_case = torch.nn.Linear(1_0_0, 2_0_0) __snake_case = accelerator.prepare(model) # Check the values changed in kwargs __snake_case = '''''' __snake_case = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
310
0
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __A ( a ): """simple docstring""" UpperCamelCase__ : int =["""image_processor""", """tokenizer"""] UpperCamelCase__ : Any ="""BridgeTowerImageProcessor""" UpperCamelCase__ : List[str] =("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" super().__init__(lowerCamelCase__ , lowerCamelCase__ ) def __call__( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = True , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = 0 , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = True , lowerCamelCase__ = None , **lowerCamelCase__ , ): """simple docstring""" __UpperCamelCase : Union[str, Any] =self.tokenizer( text=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , stride=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , return_overflowing_tokens=lowerCamelCase__ , return_special_tokens_mask=lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , return_length=lowerCamelCase__ , verbose=lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ , ) # add pixel_values + pixel_mask __UpperCamelCase : Tuple =self.image_processor( lowerCamelCase__ , return_tensors=lowerCamelCase__ , do_normalize=lowerCamelCase__ , do_center_crop=lowerCamelCase__ , **lowerCamelCase__ ) encoding.update(lowerCamelCase__ ) return encoding def __lowercase ( self , *lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCamelCase__ , **lowerCamelCase__ ) def __lowercase ( self , *lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" return self.tokenizer.decode(*lowerCamelCase__ , **lowerCamelCase__ ) @property def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Union[str, Any] =self.tokenizer.model_input_names __UpperCamelCase : Optional[int] =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
71
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class __lowerCamelCase (_a ): _lowercase = ["""image_processor""", """tokenizer"""] _lowercase = """OwlViTImageProcessor""" _lowercase = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self: int,A_: Tuple=None,A_: int=None,**A_: int ): '''simple docstring''' __UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.',A_,) __UpperCamelCase = kwargs.pop('feature_extractor' ) __UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(A_,A_ ) def __call__( self: str,A_: Dict=None,A_: Optional[int]=None,A_: Any=None,A_: Tuple="max_length",A_: int="np",**A_: Optional[Any] ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(A_,A_ ) or (isinstance(A_,A_ ) and not isinstance(text[0],A_ )): __UpperCamelCase = [self.tokenizer(A_,padding=A_,return_tensors=A_,**A_ )] elif isinstance(A_,A_ ) and isinstance(text[0],A_ ): __UpperCamelCase = [] # Maximum number of queries across batch __UpperCamelCase = max([len(A_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(A_ ) != max_num_queries: __UpperCamelCase = t + [' '] * (max_num_queries - len(A_ )) __UpperCamelCase = self.tokenizer(A_,padding=A_,return_tensors=A_,**A_ ) encodings.append(A_ ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": __UpperCamelCase = np.concatenate([encoding['input_ids'] for encoding in encodings],axis=0 ) __UpperCamelCase = np.concatenate([encoding['attention_mask'] for encoding in encodings],axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __UpperCamelCase = jnp.concatenate([encoding['input_ids'] for encoding in encodings],axis=0 ) __UpperCamelCase = jnp.concatenate([encoding['attention_mask'] for encoding in encodings],axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __UpperCamelCase = torch.cat([encoding['input_ids'] for encoding in encodings],dim=0 ) __UpperCamelCase = torch.cat([encoding['attention_mask'] for encoding in encodings],dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __UpperCamelCase = tf.stack([encoding['input_ids'] for encoding in encodings],axis=0 ) __UpperCamelCase = tf.stack([encoding['attention_mask'] for encoding in encodings],axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) __UpperCamelCase = BatchEncoding() __UpperCamelCase = input_ids __UpperCamelCase = attention_mask if query_images is not None: __UpperCamelCase = BatchEncoding() __UpperCamelCase = self.image_processor( A_,return_tensors=A_,**A_ ).pixel_values __UpperCamelCase = query_pixel_values if images is not None: __UpperCamelCase = self.image_processor(A_,return_tensors=A_,**A_ ) if text is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**A_ ),tensor_type=A_ ) def snake_case_ ( self: Optional[int],*A_: int,**A_: List[Any] ): '''simple docstring''' return self.image_processor.post_process(*A_,**A_ ) def snake_case_ ( self: str,*A_: Optional[int],**A_: List[Any] ): '''simple docstring''' return self.image_processor.post_process_object_detection(*A_,**A_ ) def snake_case_ ( self: str,*A_: Tuple,**A_: int ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*A_,**A_ ) def snake_case_ ( self: List[str],*A_: str,**A_: List[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*A_,**A_ ) def snake_case_ ( self: int,*A_: Any,**A_: Tuple ): '''simple docstring''' return self.tokenizer.decode(*A_,**A_ ) @property def snake_case_ ( self: Optional[Any] ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.',A_,) return self.image_processor_class @property def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.',A_,) return self.image_processor
310
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class __snake_case ( _lowercase): snake_case__ : str = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) snake_case__ : Any = "CIDAS/clipseg-rd64-refined" snake_case__ : Union[str, Any] = "image_segmenter" snake_case__ : Union[str, Any] = CLIPSegForImageSegmentation snake_case__ : int = ["image", "text"] snake_case__ : List[str] = ["image"] def __init__( self : str , *__lowerCAmelCase : Union[str, Any] , **__lowerCAmelCase : int ): """simple docstring""" requires_backends(self , ['''vision'''] ) super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : "Image" , __lowerCAmelCase : str ): """simple docstring""" return self.pre_processor(text=[label] , images=[image] , padding=__lowerCAmelCase , return_tensors='''pt''' ) def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : Optional[Any] ): """simple docstring""" with torch.no_grad(): _lowerCamelCase : List[Any] = self.model(**__lowerCAmelCase ).logits return logits def SCREAMING_SNAKE_CASE ( self : List[str] , __lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase : str = outputs.cpu().detach().numpy() _lowerCamelCase : Dict = 0 _lowerCamelCase : Any = 1 return Image.fromarray((array * 2_5_5).astype(np.uinta ) )
72
import math def _A ( _lowercase ) -> int: """simple docstring""" if not isinstance(_lowercase , _lowercase ): __UpperCamelCase = f'''Input value of [number={number}] must be an integer''' raise TypeError(_lowercase ) if number < 1: __UpperCamelCase = f'''Input value of [number={number}] must be > 0''' raise ValueError(_lowercase ) elif number == 1: return 3 elif number == 2: return 5 else: __UpperCamelCase = int(math.log(number // 3 , 2 ) ) + 2 __UpperCamelCase = [3, 5] __UpperCamelCase = 2 __UpperCamelCase = 3 for block in range(1 , _lowercase ): for _ in range(_lowercase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(1_1): __snake_case = 0 try: __snake_case = proth(number) except ValueError: print(f"""ValueError: there is no {number}th Proth number""") continue print(f"""The {number}th Proth number: {value}""")
310
0
from math import ceil def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Dict: __lowerCamelCase : Optional[Any] = list(range(0 , lowerCamelCase__ ) ) __lowerCamelCase : Optional[Any] = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check __lowerCamelCase : Tuple = [] for i in device_map_blocks: if device_map_blocks.count(lowerCamelCase__ ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(lowerCamelCase__ ) # Missing blocks __lowerCamelCase : Tuple = [i for i in blocks if i not in device_map_blocks] __lowerCamelCase : int = [i for i in device_map_blocks if i not in blocks] if len(lowerCamelCase__ ) != 0: raise ValueError( 'Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.' ' These attention blocks were specified more than once: ' + str(lowerCamelCase__ ) ) if len(lowerCamelCase__ ) != 0: raise ValueError( 'There are attention blocks for this model that are not specified in the device_map. Add these attention ' 'blocks to a device on the device_map: ' + str(lowerCamelCase__ ) ) if len(lowerCamelCase__ ) != 0: raise ValueError( 'The device_map contains more attention blocks than this model has. Remove these from the device_map:' + str(lowerCamelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: __lowerCamelCase : Dict = list(range(lowerCamelCase__ ) ) __lowerCamelCase : Union[str, Any] = int(ceil(n_layers / len(lowerCamelCase__ ) ) ) __lowerCamelCase : Tuple = [layers[i : i + n_blocks] for i in range(0 , lowerCamelCase__ , lowerCamelCase__ )] return dict(zip(lowerCamelCase__ , lowerCamelCase__ ) )
73
import torch from transformers import AutoModel class __lowerCamelCase (torch.nn.Module ): def __init__( self: Union[str, Any],A_: Tuple="sayef/fsner-bert-base-uncased" ): '''simple docstring''' super(A_,self ).__init__() __UpperCamelCase = AutoModel.from_pretrained(A_,return_dict=A_ ) __UpperCamelCase = torch.nn.CosineSimilarity(3,1E-08 ) __UpperCamelCase = torch.nn.Softmax(dim=1 ) def snake_case_ ( self: Tuple,**A_: Union[str, Any] ): '''simple docstring''' return self.bert(**A_ ).last_hidden_state def snake_case_ ( self: Union[str, Any],A_: Union[str, Any] ): '''simple docstring''' return token_embeddings.sum(2,keepdim=A_ ) def snake_case_ ( self: List[str],A_: Dict,A_: Union[str, Any],A_: Union[str, Any]=1 ): '''simple docstring''' return self.softmax(T * self.cos(A_,A_ ) ) def snake_case_ ( self: Optional[int],A_: Union[str, Any],A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = W_supports['sizes'].tolist() __UpperCamelCase = W_supports['start_token_id'].item() __UpperCamelCase = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] __UpperCamelCase = self.BERT(**A_ ) __UpperCamelCase = self.BERT(**A_ ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = W_supports['input_ids'] == start_token_id __UpperCamelCase = W_supports['input_ids'] == end_token_id for i, size in enumerate(A_ ): if i == 0: __UpperCamelCase = 0 else: __UpperCamelCase = support_sizes[i - 1] __UpperCamelCase = S[s : s + size][start_token_masks[s : s + size]] __UpperCamelCase = S[s : s + size][end_token_masks[s : s + size]] __UpperCamelCase = torch.matmul(q[i],s_start.T ).sum(1 ).softmax(0 ) __UpperCamelCase = torch.matmul(q[i],s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: __UpperCamelCase = torch.vstack((p_starts, p_start) ) __UpperCamelCase = torch.vstack((p_ends, p_end) ) else: __UpperCamelCase = p_start __UpperCamelCase = p_end return p_starts, p_ends
310
0
"""simple docstring""" import os def _snake_case ( ): A = os.path.dirname(os.path.realpath(snake_case__ ) ) A = os.path.join(snake_case__ , 'triangle.txt' ) with open(snake_case__ ) as f: A = f.readlines() A = [] for line in triangle: A = [] for number in line.strip().split(' ' ): numbers_from_line.append(int(snake_case__ ) ) a.append(snake_case__ ) for i in range(1 , len(snake_case__ ) ): for j in range(len(a[i] ) ): A = a[i - 1][j] if j != len(a[i - 1] ) else 0 A = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(snake_case__ , snake_case__ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
74
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = BioGptTokenizer _lowercase = False def snake_case_ ( self: Any ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCamelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] __UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) ) __UpperCamelCase = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file,'w' ) as fp: fp.write(json.dumps(A_ ) ) with open(self.merges_file,'w' ) as fp: fp.write('\n'.join(A_ ) ) def snake_case_ ( self: Optional[int],A_: List[Any] ): '''simple docstring''' __UpperCamelCase = 'lower newer' __UpperCamelCase = 'lower newer' return input_text, output_text def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = BioGptTokenizer(self.vocab_file,self.merges_file ) __UpperCamelCase = 'lower' __UpperCamelCase = ['low', 'er</w>'] __UpperCamelCase = tokenizer.tokenize(A_ ) self.assertListEqual(A_,A_ ) __UpperCamelCase = tokens + ['<unk>'] __UpperCamelCase = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ),A_ ) @slow def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) __UpperCamelCase = tokenizer.encode('sequence builders',add_special_tokens=A_ ) __UpperCamelCase = tokenizer.encode('multi-sequence build',add_special_tokens=A_ ) __UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_ ) __UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_,A_ ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
310
0
'''simple docstring''' from collections.abc import Callable import numpy as np def a_ ( __snake_case : Callable , __snake_case : float , __snake_case : float , __snake_case : float , __snake_case : float ) -> np.ndarray: """simple docstring""" lowerCamelCase_ =int(np.ceil((x_end - xa) / step_size ) ) lowerCamelCase_ =np.zeros((n + 1,) ) lowerCamelCase_ =ya lowerCamelCase_ =xa for k in range(__snake_case ): lowerCamelCase_ =y[k] + step_size * ode_func(__snake_case , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
75
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __snake_case = r''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(_a ) class __lowerCamelCase (_a ): _lowercase = """rag""" _lowercase = True def __init__( self: Tuple,A_: Any=None,A_: Any=True,A_: List[Any]=None,A_: Optional[int]=None,A_: List[Any]=None,A_: str=None,A_: Union[str, Any]=None,A_: List[Any]=" / ",A_: Union[str, Any]=" // ",A_: List[Any]=5,A_: Optional[int]=300,A_: Tuple=768,A_: Tuple=8,A_: Optional[Any]="wiki_dpr",A_: int="train",A_: Union[str, Any]="compressed",A_: Optional[int]=None,A_: List[Any]=None,A_: List[str]=False,A_: List[str]=False,A_: str=0.0,A_: List[Any]=True,A_: Tuple=False,A_: int=False,A_: Dict=False,A_: Tuple=True,A_: int=None,**A_: Optional[int],): '''simple docstring''' super().__init__( bos_token_id=A_,pad_token_id=A_,eos_token_id=A_,decoder_start_token_id=A_,forced_eos_token_id=A_,is_encoder_decoder=A_,prefix=A_,vocab_size=A_,**A_,) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" __UpperCamelCase = kwargs.pop('question_encoder' ) __UpperCamelCase = question_encoder_config.pop('model_type' ) __UpperCamelCase = kwargs.pop('generator' ) __UpperCamelCase = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig __UpperCamelCase = AutoConfig.for_model(A_,**A_ ) __UpperCamelCase = AutoConfig.for_model(A_,**A_ ) __UpperCamelCase = reduce_loss __UpperCamelCase = label_smoothing __UpperCamelCase = exclude_bos_score __UpperCamelCase = do_marginalize __UpperCamelCase = title_sep __UpperCamelCase = doc_sep __UpperCamelCase = n_docs __UpperCamelCase = max_combined_length __UpperCamelCase = dataset __UpperCamelCase = dataset_split __UpperCamelCase = index_name __UpperCamelCase = retrieval_vector_size __UpperCamelCase = retrieval_batch_size __UpperCamelCase = passages_path __UpperCamelCase = index_path __UpperCamelCase = use_dummy_dataset __UpperCamelCase = output_retrieved __UpperCamelCase = do_deduplication __UpperCamelCase = use_cache if self.forced_eos_token_id is None: __UpperCamelCase = getattr(self.generator,'forced_eos_token_id',A_ ) @classmethod def snake_case_ ( cls: Any,A_: PretrainedConfig,A_: PretrainedConfig,**A_: int ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict(),generator=generator_config.to_dict(),**A_ ) def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = copy.deepcopy(self.__dict__ ) __UpperCamelCase = self.question_encoder.to_dict() __UpperCamelCase = self.generator.to_dict() __UpperCamelCase = self.__class__.model_type return output
310
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { 'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'], 'tokenization_roberta': ['RobertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['RobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaForCausalLM', 'RobertaForMaskedLM', 'RobertaForMultipleChoice', 'RobertaForQuestionAnswering', 'RobertaForSequenceClassification', 'RobertaForTokenClassification', 'RobertaModel', 'RobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaForCausalLM', 'TFRobertaForMaskedLM', 'TFRobertaForMultipleChoice', 'TFRobertaForQuestionAnswering', 'TFRobertaForSequenceClassification', 'TFRobertaForTokenClassification', 'TFRobertaMainLayer', 'TFRobertaModel', 'TFRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'FlaxRobertaForCausalLM', 'FlaxRobertaForMaskedLM', 'FlaxRobertaForMultipleChoice', 'FlaxRobertaForQuestionAnswering', 'FlaxRobertaForSequenceClassification', 'FlaxRobertaForTokenClassification', 'FlaxRobertaModel', 'FlaxRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
76
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class __lowerCamelCase (_a ): _lowercase = """M-CLIP""" def __init__( self: int,A_: Any=1024,A_: Union[str, Any]=768,**A_: str ): '''simple docstring''' __UpperCamelCase = transformerDimSize __UpperCamelCase = imageDimSize super().__init__(**A_ ) class __lowerCamelCase (_a ): _lowercase = MCLIPConfig def __init__( self: int,A_: Optional[Any],*A_: List[str],**A_: Union[str, Any] ): '''simple docstring''' super().__init__(A_,*A_,**A_ ) __UpperCamelCase = XLMRobertaModel(A_ ) __UpperCamelCase = torch.nn.Linear( in_features=config.transformerDimensions,out_features=config.numDims ) def snake_case_ ( self: Dict,A_: int,A_: Optional[int] ): '''simple docstring''' __UpperCamelCase = self.transformer(input_ids=A_,attention_mask=A_ )[0] __UpperCamelCase = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(A_ ), embs
310
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ : Union[str, Any] = ViTImageProcessor if is_vision_available() else None @property def _UpperCAmelCase ( self ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Union[str, Any] = (3, 3_2, 1_2_8) lowercase__ : Dict = tempfile.mkdtemp() # fmt: off lowercase__ : Tuple = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on lowercase__ : Union[str, Any] = dict(zip(a , range(len(a ) ) ) ) lowercase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(a ) + '\n' ) lowercase__ : Dict = { 'do_normalize': False, 'do_resize': True, 'image_processor_type': 'ViTImageProcessor', 'resample': 3, 'size': {'height': 3_2, 'width': 1_2_8}, } lowercase__ : Dict = os.path.join(self.tmpdirname , a ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(a , a ) def _UpperCAmelCase ( self , **a ) -> Union[str, Any]: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **a ) def _UpperCAmelCase ( self , **a ) -> Any: return ViTImageProcessor.from_pretrained(self.tmpdirname , **a ) def _UpperCAmelCase ( self ) -> List[str]: shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase ( self ) -> str: lowercase__ : List[str] = np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta ) lowercase__ : Union[str, Any] = Image.fromarray(np.moveaxis(a , 0 , -1 ) ) return image_input def _UpperCAmelCase ( self ) -> int: lowercase__ : Optional[int] = self.get_tokenizer() lowercase__ : Optional[Any] = self.get_image_processor() lowercase__ : Optional[Any] = MgpstrProcessor(tokenizer=a , image_processor=a ) processor.save_pretrained(self.tmpdirname ) lowercase__ : Dict = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=a ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , a ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Tuple = self.get_tokenizer() lowercase__ : Dict = self.get_image_processor() lowercase__ : Optional[Any] = MgpstrProcessor(tokenizer=a , image_processor=a ) processor.save_pretrained(self.tmpdirname ) lowercase__ : List[str] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowercase__ : Optional[int] = self.get_image_processor(do_normalize=a , padding_value=1.0 ) lowercase__ : int = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=a , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , a ) def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Tuple = self.get_image_processor() lowercase__ : Tuple = self.get_tokenizer() lowercase__ : Tuple = MgpstrProcessor(tokenizer=a , image_processor=a ) lowercase__ : str = self.prepare_image_inputs() lowercase__ : List[str] = image_processor(a , return_tensors='np' ) lowercase__ : str = processor(images=a , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : Dict = self.get_image_processor() lowercase__ : Any = self.get_tokenizer() lowercase__ : Union[str, Any] = MgpstrProcessor(tokenizer=a , image_processor=a ) lowercase__ : List[str] = 'test' lowercase__ : str = processor(text=a ) lowercase__ : List[Any] = tokenizer(a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Any = self.get_image_processor() lowercase__ : List[Any] = self.get_tokenizer() lowercase__ : int = MgpstrProcessor(tokenizer=a , image_processor=a ) lowercase__ : Union[str, Any] = 'test' lowercase__ : List[Any] = self.prepare_image_inputs() lowercase__ : List[Any] = processor(text=a , images=a ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'labels'] ) # test if it raises when no input is passed with pytest.raises(a ): processor() def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : List[str] = self.get_image_processor() lowercase__ : Dict = self.get_tokenizer() lowercase__ : List[str] = MgpstrProcessor(tokenizer=a , image_processor=a ) lowercase__ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] lowercase__ : List[str] = processor.char_decode(a ) lowercase__ : Union[str, Any] = tokenizer.batch_decode(a ) lowercase__ : Any = [seq.replace(' ' , '' ) for seq in decoded_tok] self.assertListEqual(a , a ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : List[Any] = self.get_image_processor() lowercase__ : Tuple = self.get_tokenizer() lowercase__ : Dict = MgpstrProcessor(tokenizer=a , image_processor=a ) lowercase__ : Optional[Any] = None lowercase__ : int = self.prepare_image_inputs() lowercase__ : Optional[int] = processor(text=a , images=a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : List[str] = self.get_image_processor() lowercase__ : Any = self.get_tokenizer() lowercase__ : str = MgpstrProcessor(tokenizer=a , image_processor=a ) lowercase__ : List[Any] = torch.randn(1 , 2_7 , 3_8 ) lowercase__ : List[str] = torch.randn(1 , 2_7 , 5_0_2_5_7 ) lowercase__ : List[str] = torch.randn(1 , 2_7 , 3_0_5_2_2 ) lowercase__ : str = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ['generated_text', 'scores', 'char_preds', 'bpe_preds', 'wp_preds'] )
77
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class __lowerCamelCase : _lowercase = XGLMConfig _lowercase = {} _lowercase = """gelu""" def __init__( self: Optional[int],A_: Dict,A_: Any=14,A_: Optional[int]=7,A_: str=True,A_: Any=True,A_: Optional[int]=True,A_: Optional[int]=99,A_: List[str]=32,A_: Any=2,A_: Tuple=4,A_: List[str]=37,A_: Dict="gelu",A_: int=0.1,A_: List[str]=0.1,A_: int=512,A_: List[Any]=0.0_2,): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = d_model __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = ffn_dim __UpperCamelCase = activation_function __UpperCamelCase = activation_dropout __UpperCamelCase = attention_dropout __UpperCamelCase = max_position_embeddings __UpperCamelCase = initializer_range __UpperCamelCase = None __UpperCamelCase = 0 __UpperCamelCase = 2 __UpperCamelCase = 1 def snake_case_ ( self: Dict ): '''simple docstring''' return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length],self.vocab_size ),clip_value_min=0,clip_value_max=3 ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = self.get_config() __UpperCamelCase = floats_tensor([self.num_hidden_layers, self.num_attention_heads],2 ) return ( config, input_ids, input_mask, head_mask, ) def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' return XGLMConfig( vocab_size=self.vocab_size,d_model=self.hidden_size,num_layers=self.num_hidden_layers,attention_heads=self.num_attention_heads,ffn_dim=self.ffn_dim,activation_function=self.activation_function,activation_dropout=self.activation_dropout,attention_dropout=self.attention_dropout,max_position_embeddings=self.max_position_embeddings,initializer_range=self.initializer_range,use_cache=A_,bos_token_id=self.bos_token_id,eos_token_id=self.eos_token_id,pad_token_id=self.pad_token_id,return_dict=A_,) def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ) = config_and_inputs __UpperCamelCase = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class __lowerCamelCase (_a , _a , unittest.TestCase ): _lowercase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () _lowercase = (TFXGLMForCausalLM,) if is_tf_available() else () _lowercase = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) _lowercase = False _lowercase = False _lowercase = False def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = TFXGLMModelTester(self ) __UpperCamelCase = ConfigTester(self,config_class=A_,n_embd=37 ) def snake_case_ ( self: Any ): '''simple docstring''' self.config_tester.run_common_tests() @slow def snake_case_ ( self: Any ): '''simple docstring''' for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = TFXGLMModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def snake_case_ ( self: Tuple ): '''simple docstring''' super().test_resize_token_embeddings() @require_tf class __lowerCamelCase (unittest.TestCase ): @slow def snake_case_ ( self: Optional[Any],A_: int=True ): '''simple docstring''' __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = tf.convert_to_tensor([[2, 268, 9865]],dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __UpperCamelCase = [2, 268, 9865, 67, 11, 1988, 5_7252, 9865, 5, 984, 67, 1988, 21_3838, 1658, 53, 7_0446, 33, 6657, 278, 1581] # fmt: on __UpperCamelCase = model.generate(A_,do_sample=A_,num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist(),A_ ) @slow def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) __UpperCamelCase = tokenizer('Today is a nice day and',return_tensors='tf' ) __UpperCamelCase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): __UpperCamelCase = model.generate(A_,do_sample=A_,seed=[7, 0] ) __UpperCamelCase = tokenizer.decode(output_ids[0],skip_special_tokens=A_ ) __UpperCamelCase = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(A_,A_ ) @slow def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = 'left' # use different length sentences to test batching __UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] __UpperCamelCase = tokenizer(A_,return_tensors='tf',padding=A_ ) __UpperCamelCase = inputs['input_ids'] __UpperCamelCase = model.generate(input_ids=A_,attention_mask=inputs['attention_mask'],max_new_tokens=12 ) __UpperCamelCase = tokenizer(sentences[0],return_tensors='tf' ).input_ids __UpperCamelCase = model.generate(input_ids=A_,max_new_tokens=12 ) __UpperCamelCase = tokenizer(sentences[1],return_tensors='tf' ).input_ids __UpperCamelCase = model.generate(input_ids=A_,max_new_tokens=12 ) __UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ ) __UpperCamelCase = tokenizer.decode(output_non_padded[0],skip_special_tokens=A_ ) __UpperCamelCase = tokenizer.decode(output_padded[0],skip_special_tokens=A_ ) __UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(A_,A_ ) self.assertListEqual(A_,[non_padded_sentence, padded_sentence] )
310
0
"""simple docstring""" from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
78
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __snake_case = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json''' with io.open(filename, '''r''', encoding='''utf-8''') as f: __snake_case = json.load(f) @require_torch class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: int,A_: int ): '''simple docstring''' return FSMTTokenizer.from_pretrained(A_ ) def snake_case_ ( self: Dict,A_: int ): '''simple docstring''' __UpperCamelCase = FSMTForConditionalGeneration.from_pretrained(A_ ).to(A_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 2_6.0], ['ru-en', 2_2.0], ['en-de', 2_2.0], ['de-en', 2_9.0], ] ) @slow def snake_case_ ( self: Tuple,A_: Any,A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = F'''facebook/wmt19-{pair}''' __UpperCamelCase = self.get_tokenizer(A_ ) __UpperCamelCase = self.get_model(A_ ) __UpperCamelCase = bleu_data[pair]['src'] __UpperCamelCase = bleu_data[pair]['tgt'] __UpperCamelCase = tokenizer(A_,return_tensors='pt',truncation=A_,padding='longest' ).to(A_ ) __UpperCamelCase = model.generate( input_ids=batch.input_ids,num_beams=8,) __UpperCamelCase = tokenizer.batch_decode( A_,skip_special_tokens=A_,clean_up_tokenization_spaces=A_ ) __UpperCamelCase = calculate_bleu(A_,A_ ) print(A_ ) self.assertGreaterEqual(scores['bleu'],A_ )
310
0
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Any , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any]=3 , __UpperCAmelCase : Dict=32 , __UpperCAmelCase : List[str]=3 , __UpperCAmelCase : Optional[Any]=10 , __UpperCAmelCase : Optional[int]=[10, 20, 30, 40] , __UpperCAmelCase : Dict=[1, 1, 2, 1] , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : Optional[Any]="relu" , __UpperCAmelCase : Tuple=3 , __UpperCAmelCase : Optional[int]=None , ): '''simple docstring''' _A = parent _A = batch_size _A = image_size _A = num_channels _A = embeddings_size _A = hidden_sizes _A = depths _A = is_training _A = use_labels _A = hidden_act _A = num_labels _A = scope _A = len(__UpperCAmelCase ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' _A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A = self.get_config() return config, pixel_values def lowerCAmelCase ( self : Dict ): '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[int] ): '''simple docstring''' _A = FlaxRegNetModel(config=__UpperCAmelCase ) _A = model(__UpperCAmelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Dict , __UpperCAmelCase : str ): '''simple docstring''' _A = self.num_labels _A = FlaxRegNetForImageClassification(config=__UpperCAmelCase ) _A = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' _A = self.prepare_config_and_inputs() _A , _A = config_and_inputs _A = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class _UpperCAmelCase ( snake_case_ , unittest.TestCase ): """simple docstring""" snake_case = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () snake_case = False snake_case = False snake_case = False def lowerCAmelCase ( self : Tuple ): '''simple docstring''' _A = FlaxRegNetModelTester(self ) _A = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self : Any ): '''simple docstring''' return def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @unittest.skip(reason="RegNet does not use inputs_embeds" ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason="RegNet does not support input and output embeddings" ) def lowerCAmelCase ( self : Any ): '''simple docstring''' pass def lowerCAmelCase ( self : str ): '''simple docstring''' _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(__UpperCAmelCase ) _A = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A = [*signature.parameters.keys()] _A = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def lowerCAmelCase ( self : int ): '''simple docstring''' def check_hidden_states_output(__UpperCAmelCase : Tuple , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] ): _A = model_class(__UpperCAmelCase ) _A = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) _A = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _A = self.model_tester.num_stages self.assertEqual(len(__UpperCAmelCase ) , expected_num_stages + 1 ) _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def lowerCAmelCase ( self : str ): '''simple docstring''' _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _A = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) _A = model_class(__UpperCAmelCase ) @jax.jit def model_jitted(__UpperCAmelCase : List[Any] , **__UpperCAmelCase : Any ): return model(pixel_values=__UpperCAmelCase , **__UpperCAmelCase ) with self.subTest("JIT Enabled" ): _A = model_jitted(**__UpperCAmelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): _A = model_jitted(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) for jitted_output, output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def __lowercase ( ) -> str: '''simple docstring''' _A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCAmelCase ( self : str ): '''simple docstring''' return AutoImageProcessor.from_pretrained("facebook/regnet-y-040" ) if is_vision_available() else None @slow def lowerCAmelCase ( self : Any ): '''simple docstring''' _A = FlaxRegNetForImageClassification.from_pretrained("facebook/regnet-y-040" ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(images=__UpperCAmelCase , return_tensors="np" ) _A = model(**__UpperCAmelCase ) # verify the logits _A = (1, 1000) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) _A = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
79
def _A ( _lowercase ) -> list[int]: """simple docstring""" if length <= 0 or not isinstance(_lowercase , _lowercase ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(_lowercase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=1_0))
310
0
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() a__ : int = logging.get_logger(__name__) def _UpperCamelCase ( __A , __A , __A ) -> List[str]: '''simple docstring''' UpperCamelCase__ = UniSpeechSatForSequenceClassification.from_pretrained(__A , config=__A ) UpperCamelCase__ = downstream_dict["projector.weight"] UpperCamelCase__ = downstream_dict["projector.bias"] UpperCamelCase__ = downstream_dict["model.post_net.linear.weight"] UpperCamelCase__ = downstream_dict["model.post_net.linear.bias"] return model def _UpperCamelCase ( __A , __A , __A ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = UniSpeechSatForAudioFrameClassification.from_pretrained(__A , config=__A ) UpperCamelCase__ = downstream_dict["model.linear.weight"] UpperCamelCase__ = downstream_dict["model.linear.bias"] return model def _UpperCamelCase ( __A , __A , __A ) -> str: '''simple docstring''' UpperCamelCase__ = UniSpeechSatForXVector.from_pretrained(__A , config=__A ) UpperCamelCase__ = downstream_dict["connector.weight"] UpperCamelCase__ = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): UpperCamelCase__ = downstream_dict[ F'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] UpperCamelCase__ = downstream_dict[F'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] UpperCamelCase__ = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] UpperCamelCase__ = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] UpperCamelCase__ = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] UpperCamelCase__ = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] UpperCamelCase__ = downstream_dict["objective.W"] return model @torch.no_grad() def _UpperCamelCase ( __A , __A , __A , __A ) -> List[str]: '''simple docstring''' UpperCamelCase__ = torch.load(__A , map_location="cpu" ) UpperCamelCase__ = checkpoint["Downstream"] UpperCamelCase__ = UniSpeechSatConfig.from_pretrained(__A ) UpperCamelCase__ = WavaVecaFeatureExtractor.from_pretrained( __A , return_attention_mask=__A , do_normalize=__A ) UpperCamelCase__ = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): UpperCamelCase__ = convert_classification(__A , __A , __A ) elif arch.endswith("ForAudioFrameClassification" ): UpperCamelCase__ = convert_diarization(__A , __A , __A ) elif arch.endswith("ForXVector" ): UpperCamelCase__ = convert_xvector(__A , __A , __A ) else: raise NotImplementedError(F'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: UpperCamelCase__ = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(__A ) hf_model.save_pretrained(__A ) if __name__ == "__main__": a__ : Tuple = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') a__ : Union[str, Any] = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
80
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = MgpstrTokenizer _lowercase = False _lowercase = {} _lowercase = False def snake_case_ ( self: int ): '''simple docstring''' super().setUp() # fmt: off __UpperCamelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on __UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) ) __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file,'w',encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) def snake_case_ ( self: Dict,**A_: Tuple ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname,**A_ ) def snake_case_ ( self: List[Any],A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = 'tester' __UpperCamelCase = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.' ) def snake_case_ ( self: str ): '''simple docstring''' pass def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCamelCase = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token} ) __UpperCamelCase = tokenizer.encode([special_token],add_special_tokens=A_ ) self.assertEqual(len(A_ ),1 ) __UpperCamelCase = tokenizer.decode(A_,skip_special_tokens=A_ ) self.assertTrue(special_token not in decoded ) def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCamelCase, __UpperCamelCase = self.get_input_output_texts(A_ ) __UpperCamelCase = tokenizer.tokenize(A_ ) __UpperCamelCase = tokenizer.convert_tokens_to_ids(A_ ) __UpperCamelCase = tokenizer.encode(A_,add_special_tokens=A_ ) self.assertListEqual(A_,A_ ) __UpperCamelCase = tokenizer.convert_ids_to_tokens(A_ ) self.assertNotEqual(len(A_ ),0 ) __UpperCamelCase = tokenizer.decode(A_ ) self.assertIsInstance(A_,A_ ) self.assertEqual(text_a.replace(' ','' ),A_ ) @unittest.skip('MGP-STR tokenizer only handles one sequence.' ) def snake_case_ ( self: int ): '''simple docstring''' pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' ) def snake_case_ ( self: List[str] ): '''simple docstring''' pass
310
0